WO2007132861A1 - 移動通信システム、移動局装置、基地局装置及び移動通信方法 - Google Patents

移動通信システム、移動局装置、基地局装置及び移動通信方法 Download PDF

Info

Publication number
WO2007132861A1
WO2007132861A1 PCT/JP2007/059981 JP2007059981W WO2007132861A1 WO 2007132861 A1 WO2007132861 A1 WO 2007132861A1 JP 2007059981 W JP2007059981 W JP 2007059981W WO 2007132861 A1 WO2007132861 A1 WO 2007132861A1
Authority
WO
WIPO (PCT)
Prior art keywords
station apparatus
mobile station
base station
gap
mobile
Prior art date
Application number
PCT/JP2007/059981
Other languages
English (en)
French (fr)
Inventor
Daiichirou Nakashima
Hidekazu Tsuboi
Original Assignee
Sharp Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Kabushiki Kaisha filed Critical Sharp Kabushiki Kaisha
Priority to JP2008515568A priority Critical patent/JP4875071B2/ja
Priority to EP07743416.5A priority patent/EP2020822B1/en
Priority to US12/300,768 priority patent/US8374108B2/en
Publication of WO2007132861A1 publication Critical patent/WO2007132861A1/ja

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/0005Control or signalling for completing the hand-off
    • H04W36/0083Determination of parameters used for hand-off, e.g. generation or modification of neighbour cell lists
    • H04W36/0085Hand-off measurements
    • H04W36/0088Scheduling hand-off measurements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/10Scheduling measurement reports ; Arrangements for measurement reports
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/14Reselecting a network or an air interface
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/14Reselecting a network or an air interface
    • H04W36/142Reselecting a network or an air interface over the same radio air interface technology

Definitions

  • Mobile communication system mobile station apparatus, base station apparatus, and mobile communication method
  • the present invention relates to a mobile communication system, a mobile station apparatus, a base station apparatus, and a mobile communication method.
  • the present invention relates to a system, a mobile station apparatus, a base station apparatus, and a mobile communication method.
  • Radio Access Technology Radio Access Technology
  • a large number of base station devices are distributed in a service area, and each base station device forms a radio area called a cell.
  • Wireless communication is enabled by connecting the mobile station apparatus to the base station apparatus of the cell in which the mobile station apparatus exists via a wireless channel.
  • the communication can be continued over different cells by performing a handover (HO: Hand Over).
  • HO Hand Over
  • Intra-Freq-HO Intra-Frequency-Handover
  • Inter-Freq-HO Inter-Frequency-Handover
  • Inter-cells using different radio access technologies performed when a mobile station apparatus moves between cells using different radio access technologies.
  • Inter—RAT—HO Inter-RAT-Hando
  • Intra-RAT-HO is a handover between cells of the same radio access technology.
  • FIG. 12 is a diagram for explaining a handover process when the mobile station apparatus moves.
  • Base station equipment BS1, BS2, BS3, BS4 forces are installed on the two-dimensional plane.
  • Base station apparatuses BS1, BS2, BS3, and BS4 perform radio communication with mobile station apparatuses using frequencies fl, f2, fl, and f3, respectively.
  • Base station apparatuses BS1, BS2, BS3, and BS4 perform radio communication with mobile station apparatuses using radio access technologies RATI, RATI, RATI, and RAT2, respectively.
  • the base station devices BS1, BS2, BS3, BS4 are mobile station devices MSI, MS2, MS4, MS6, mobile station devices MS4, which are located in the cells cl, c2, c3, c4, which are wireless communication ranges. Wireless communication can be performed with MS 5, mobile station apparatuses MS2 and MS3, and mobile station apparatuses MS6 and MS7.
  • the mobile station apparatus MS4 that moves between the cell c 1 and the cell c 2 performs handover by Intra—RAT HO (and Inter—Freq—HO).
  • the mobile station apparatus MS2 moving between the cell cl and the cell c3 performs handover by Intra-RAT-HO (and Intra-Freq-HO).
  • the mobile station apparatus MS6 moving between the cell cl and the cell c4 performs handover by Inter—RAT—HO (and Inter—Freq—HO).
  • W-C DMA Wideband-Code Division Multiple Access
  • 3GPP 3rd Generation Partnership Project
  • W-CDMA Wideband-Code Division Multiple Access
  • base stations that use different frequencies when performing Intra-RAT-HO (and Inter-Freq-HO) and Inter-RAT-HO (and Inter-Freq-HO).
  • a compressed mode is defined as a function for performing monitoring or measurement.
  • FIG. 13 (a) shows a case where a compressed mode is applied to a dedicated channel (DPCH: Dedicated Physical Channel) of W-CDMA to monitor a base station apparatus using different frequencies or It is a figure for demonstrating when measurement is performed.
  • DPCH Dedicated Physical Channel
  • the base station apparatus sets a gap (Gap) interval that is a transmission interruption time as shown in FIG. 13 (a), and stops data transmission on the dedicated channel in the gap interval.
  • the mobile station apparatus monitors the base station apparatus that uses a different frequency by switching the frequency using the time in the gap section.
  • HSDPA High Speed Downlink Packet Access
  • HS—SCCH High Speed-Downlink Shared Control Channel
  • HS—PDSCH High Speed-Physical Downlink Shared Channel
  • UpLink an individual control channel (HS—DPCCH: High Speed Dedicated Physical Control Channel) is additionally defined.
  • AMCS Adaptive Modulation and Coding Scheme
  • CQI Channel Quality Indication
  • SF time-frequency code spreading factor
  • HA RQ Hybrid Automatic Repeat reQuest
  • FIG. 13 (b) and (c) of FIG. 13 are diagrams illustrating an example of a packet signal transmitted from the base station apparatus to the mobile station apparatus.
  • FIG. 13 (b) is a diagram illustrating an example of a shared control channel transmitted from the base station apparatus to the mobile station apparatus.
  • FIG. 13 (c) is a diagram illustrating an example of a shared data channel transmitted from the base station apparatus to the mobile station apparatus.
  • the mobile station apparatus Upon receiving this instruction, the mobile station apparatus generates a gap section and monitors or measures the base station apparatus using a different frequency.
  • the base station apparatus generates a gap by compressing data with respect to continuous data addressed to a certain mobile station apparatus, and (b) of FIG. In (c) and (c), a gap is generated by not assigning the packet control signal and packet data addressed to the mobile station device to the gap section.
  • UTRA Universal Terrestrial Radio Access
  • EUTRA Evolved Universal Terrestria 1 Radio Access
  • EUT RAN Evolved Universal Terrestrial Radio Access Network
  • An OFDMA (Orthogonal Frequency Division Multiplexing Access) scheme has been proposed as a downlink of EUTRA.
  • AMCS technology is applied to OFDMA (see Non-Patent Document 3 and Non-Patent Document 4).
  • EUTRA proposes a downlink radio frame configuration and radio channel mapping method (see Non-Patent Document 4).
  • FIGS. 14A and 14B are diagrams for explaining an example of a gap section control method conventionally proposed.
  • the mobile station device receives the common pilot channel, measures the CQI instantaneous value at a constant CQI measurement interval CQI—Interval, and reports it to the base station device. At the same time, the mobile station device averages the instantaneous CQI values at a fixed period (system parameter) and calculates the average CQI value (Mean CQI). The mobile station device compares the measured CQI average value with the CQI threshold value of the system parameter. If it is below the CQI average value power threshold, it is set to a measurement mode (Measurement Mode) for monitoring or measuring a different frequency base station apparatus.
  • a measurement mode Measurement Mode
  • the base station apparatus when the measured CQI instantaneous value is less than or equal to the CQI average value in the measurement mode, the base station apparatus at the frequency used by the connected base station apparatus Is stopped and a gap interval is generated.
  • the base station device receives the CQI instantaneous value report and calculates the CQI average value of the corresponding mobile station device in the same way as the mobile station device.
  • the calculated CQI average value is compared with the CQI threshold of system parameters. If it is larger than the CQI average value power threshold, it is set to the normal mode, and if it is lower than the CQI threshold, it is set to the measurement mode for monitoring or measuring the base station apparatus using a different frequency. In measurement mode, if the measured CQI instantaneous value is less than or equal to the CQI average value, packet data transmission to the connected mobile station device connected is stopped and a gap interval is generated.
  • the mobile station device ends the gap interval after monitoring or measurement of different frequencies or base station devices, and measures CQI instantaneous values and base stations. Resume reporting to the device. Thereafter, similar processing is repeated.
  • FIG. 14 (b) shows a state in which a plurality of gaps g1 to g6 are continuously generated.
  • Next-generation mobile station devices that support EUTRAZEUTRAN are required to support a plurality of mobile communication systems that use different radio access technologies. For example, it is required to support mobile communication systems that use UTRA, GSM (Global System for Mobile Communications), and wireless access technology that is not specified by 3GPP. These mobile communication systems have different frame lengths and frame structural capabilities, and the reception quality measurement means and procedures of the mobile station apparatus are different. For this reason, the mobile station power of the EUTRAZEUTRAN mobile communication system under the control of the base station equipment Inter— RAT— HO (and Inter— Freq — The minimum gap length required for monitoring or measuring base station equipment of different radio access technologies when performing HO) is different, so the optimal gap length cannot be set for each radio access technology. There is. Therefore, when a gap longer than the minimum required gap length is set, there is a gap section that is not used, and the frequency band and time band cannot be used effectively.
  • Inter— RAT— HO Inter— Freq
  • Non-Patent Document 1 Keiji Tachikawa, "W-CDMA Mobile Communication System", ISBN4-621-04894-5
  • Non-Patent Document 2 3GPP TR (Technical Report) 25.858, and 3GPP HSDPA specification related materials (http: // www.3gpp. org / ftp / 3 ⁇ 4pecs / ntml—info / 25— series.
  • Non-Patent Document 3 3GPP TR (Technical Report) 25.913, V2.1.0 (2005-05), Requirements for
  • Non-Patent Document 4 3GPP TR (Technical Report) 25.814, V1.0.1 (2005-1 l), Physical Layer A spects for Evolved UTRA http://www.3gpp.org/ftp/Specs/htmHnfo/25814.htm
  • Non-Patent Document 5 NTT DoCoMo, Inc. "Measurement for LTE Intra- and Inter- RAT Mobility", 3GPP TSG RAN WG2 Meeting # 50, Sophia Antipolis, France, 9— 13 January, 200 6
  • the present invention has been made in view of the above circumstances, and an object thereof is a mobile communication system, a mobile station device, a base station device, and a mobile communication capable of effectively using a frequency band and a time band. It is to provide a method.
  • a mobile communication system of the present invention is made to solve the above-described problem, and is a mobile communication system including a plurality of mobile station apparatuses and a plurality of base station apparatuses, and the base station apparatus includes: A gap setting unit configured to set a gap length for the mobile station apparatus in accordance with a type of radio access technology to be monitored by the mobile station apparatus;
  • the gap setting unit of the base station apparatus of the mobile communication system of the present invention may be configured to change the mobile station apparatus according to the type of monitored radio access technology notified from the mobile station apparatus. Sets the length of the gap for placement.
  • the gap setting unit of the base station apparatus of the mobile communication system of the present invention is configured so that the mobile station apparatus has a plurality of types of monitored radio access technologies. A plurality of gap lengths in the apparatus are set simultaneously.
  • the mobile communication system of the present invention is a mobile communication system including a plurality of mobile station apparatuses and a plurality of base station apparatuses, and the base station apparatus performs radio access to be monitored by the mobile station apparatus.
  • a gap setting unit is provided for setting a gap length for the mobile station apparatus in accordance with the type of combination of the technology and the frequency band used for wireless communication.
  • the gap setting unit of the base station apparatus of the mobile communication system of the present invention depends on the combination type of the monitored radio access technology and the frequency band used for radio communication notified from the mobile station apparatus. To set the gap length for the mobile station device
  • the gap setting unit of the base station apparatus of the mobile communication system of the present invention has a plurality of types of combinations of the monitored radio access technology and the frequency band used for radio communication in the mobile station apparatus. A plurality of gap lengths in the mobile station apparatus are set at the same time.
  • the gap setting unit of the base station apparatus of the mobile communication system of the present invention is configured such that the base station apparatus receives a reception quality index from the mobile station apparatus with a short gap among a plurality of gap lengths set simultaneously.
  • the base station apparatus does not receive the reception quality information from the mobile station apparatus with a short gap, it is set longer than the short gap. Continue to set the gap length.
  • the mobile station apparatus of the mobile communication system of the present invention includes a gap setting unit that sets a gap length according to the type of monitored radio access technology.
  • the mobile station apparatus of the mobile communication system of the present invention includes a gap setting unit that sets a gap length according to a combination type of a monitored radio access technology and a use frequency band of radio communication. It comprises.
  • the mobile station apparatus of the mobile communication system of the present invention is based on a reception quality indicator.
  • a first mode determination unit that determines whether the measurement mode can monitor the surrounding base station apparatus or the normal mode that does not monitor the surrounding base station apparatus, and the mobile station
  • the gap setting unit of the apparatus sets the gap based on the determination result of the first mode determination unit and the reception quality index, and the base station apparatus sets the reception quality index fed back from the mobile station apparatus.
  • the gap setting unit of the base station device includes the second mode.
  • a gap is set based on the determination result of the determination unit and the reception quality indicator.
  • the mobile station apparatus of the mobile communication system of the present invention is set to a measurement mode in which the surrounding base station apparatus can be monitored based on the reception quality indicator, or the surrounding base station apparatus is monitored.
  • a first mode determining unit that determines whether or not to set a normal mode in which the mobile station apparatus is not used, and the gap setting unit of the mobile station apparatus is based on a determination result of the first mode determining unit and the reception quality indicator.
  • a gap is set, and the gap setting unit of the base station apparatus sets the gap based on the determination result of the first mode determination unit fed back from the mobile station apparatus and the reception quality indicator.
  • the mobile station apparatus of the mobile communication system of the present invention is set to a measurement mode in which it is possible to monitor a neighboring base station apparatus based on a reception quality index, or the neighboring base station apparatus is monitored.
  • a first mode determining unit that determines whether or not to set a normal mode in which the mobile station apparatus is not used, and the gap setting unit of the mobile station apparatus is based on a determination result of the first mode determining unit and the reception quality indicator.
  • the gap is set, and the gap setting unit of the base station apparatus sets the gap based on the report result of the reception quality index fed back from the mobile station apparatus.
  • the mobile station apparatus of the present invention is a mobile station apparatus that performs radio communication with the base station apparatus, and includes a gap setting unit that sets a gap length according to the type of the monitored radio access technology. To do.
  • the mobile station apparatus of the present invention is a mobile station apparatus that performs radio communication with a base station apparatus, and the gap is determined according to the type of combination of the monitored radio access technology and the frequency band used for radio communication.
  • a gap setting unit for setting the length is provided.
  • the base station apparatus of the present invention is a base station apparatus that performs radio communication with a mobile station apparatus, and is adapted for the mobile station apparatus according to the type of radio access technology to be monitored by the mobile station apparatus.
  • a gap setting unit for setting the length of the gap is provided.
  • the base station apparatus of the present invention is a base station apparatus that performs radio communication with a mobile station apparatus, and is a type of combination of a monitored radio access technology of the mobile station apparatus and a frequency band used for radio communication. And a gap setting unit for setting a gap length for the mobile station apparatus.
  • the mobile communication method of the present invention is a mobile communication method between a plurality of mobile station apparatuses and a plurality of base station apparatuses, wherein the base station apparatus is a monitoring target radio signal of the mobile station apparatus.
  • the length of the gap for the mobile station apparatus is set according to the type of access technology.
  • the mobile communication method of the present invention is a mobile communication method between a plurality of mobile station apparatuses and a plurality of base station apparatuses, wherein the base station apparatus is a monitoring target radio signal of the mobile station apparatus.
  • the gap length for the mobile station apparatus is set according to the type of combination of the access technology and the frequency band used for radio communication.
  • the base station apparatus sets the gap length for the mobile station apparatus in accordance with the type of radio access technology to be monitored by the mobile station apparatus.
  • the base station apparatus can set the gap length according to the type of monitored radio access technology of the mobile station apparatus, and can avoid the setting of redundant gap sections. Wireless resources can be used efficiently.
  • FIG. 1 is a diagram showing an example of a downlink radio frame configuration of EUTRA based on 3GPP.
  • FIG. 2 is a block diagram showing a configuration of a mobile station apparatus according to the first embodiment of the present invention.
  • FIG. 3 is a block diagram showing a configuration of a feedback interval setting unit 34 (FIG. 2) according to the first embodiment of the present invention.
  • FIG. 4A is a table showing the relationship between the radio access technology and the gap length in the first embodiment of the present invention.
  • FIG. 4B Radio access technology, operating frequency band, and gears in the first embodiment of the present invention It is a table showing the relationship of the length of a clip.
  • FIG. 5 is a diagram for explaining a gap length set by the base station apparatus according to the first embodiment of the present invention.
  • FIG. 6 is a block diagram showing a configuration of a base station apparatus according to the first embodiment of the present invention.
  • FIG. 7 is a block diagram showing the configuration of the resource allocation interval setting unit 43 (FIG. 6) according to the first embodiment of the present invention.
  • ⁇ 10 A diagram for explaining a resource allocation interval according to the second embodiment of the present invention.
  • ⁇ 11 A flowchart showing the processing of the resource allocation interval selection unit 24 of the base station apparatus according to the modification of the second embodiment of the present invention.
  • FIG. 12 is a diagram for explaining a handover process when a mobile station apparatus moves.
  • FIG. 13 A diagram showing an example of an individual channel transmitted from a base station apparatus to a mobile station apparatus.
  • FIG. 1 is a diagram showing an example of a downlink radio frame configuration of EUTRA based on 3GPP.
  • the downlink radio frame is a cluster of multiple subcarriers, and is composed of two-dimensional multiple radio resource blocks (RBs) determined by frequency bandwidth Bch and time bandwidth TTI (Transmission Timing Interval).
  • BW is the downlink frequency bandwidth
  • Bch is the resource block frequency bandwidth
  • Bsc is the subcarrier frequency bandwidth
  • Ts is the OF DM symbol length.
  • a common pilot channel (CPICH: Common Pilot Channel) is mapped to the head of each TTI, and a broadcast channel (BCH: Broadcast Channel) and a synchronization channel (SCH: Synchronization Channel) are used for each radio. It is mapped at the beginning of the frame. The remaining part of each resource block is used as a traffic channel (TCH) and is mapped to each mobile station apparatus using AMCS.
  • CPICH Common Pilot Channel
  • BCH Broadcast Channel
  • SCH Synchronization Channel
  • the mobile station apparatus When power is turned on for the first time, the mobile station apparatus receives a synchronization channel from the base station apparatus, and performs carrier offset, OFDM symbol timing, radio frame timing, TTI The timing, cell number group (Cell Group Index), Z cell number (Cell Index) (for example, scramble code number group Z scramble code number), etc. are identified. After that, the system broadcast information such as the unique information of the base station apparatus is received through the broadcast channel, the location registration is performed, the standby mode is entered, and the radio is transmitted through the downlink paging indicator channel (PICH). After the connection procedure, connect to the base station and enter active mode.
  • Cell Group Index Cell Group Index
  • Z cell number for example, scramble code number group Z scramble code number
  • PICH downlink paging indicator channel
  • the mobile station apparatus measures the CQI instantaneous value and feeds back the CQI instantaneous value to the base station apparatus.
  • the standby mode refers to a state in which the mobile station device is not performing packet data communication with the base station device.
  • the active mode indicates a state in which the mobile station device is communicating packet data with the base station device. Instead of the paging indicator channel and paging channel, you may use the downlink shared control channel (SCCH)! /.
  • SCCH downlink shared control channel
  • the base station apparatus receives the CQI instantaneous value of each mobile station apparatus and assigns packet data to each resource block of the downlink traffic channel.
  • the packet data allocation may be called packet data scheduling, resource allocation, and resource block allocation, but they all have the same meaning.
  • packet data allocation for users whose propagation path is small in time variation, localized allocation that gives multi-user diversity effect by allocating resource blocks of channels with good propagation path conditions, and propagation path time
  • distributed allocation which produces a frequency diversity effect by distributing packet data to resource blocks (or sub-carriers) in a wideband channel, is used.
  • RR Raund Robin
  • IR Maximum Carrier to Interference Ratio
  • PF Proportional Fairness
  • the RR method is a method for equally allocating downlink traffic channel resource blocks regardless of the downlink CQI state of each mobile station apparatus (user). This method gives priority to fairness, and the effect of scheduling is small. The average throughput of the entire cell is the smallest compared to other methods.
  • the MaxCIR method is a method of assigning a downlink traffic channel resource block to a mobile station apparatus having the maximum CQI instantaneous value of each mobile station apparatus. High CQI instantaneous value! For mobile station devices, the scheduling effect is very large and a very high throughput is obtained, and the average downlink throughput of the entire cell is also increased. However, almost no resource blocks are allocated to mobile station devices with low CQI instantaneous values, resulting in very low throughput and high unfairness between mobile station devices.
  • the PF method is based on the ratio between the CQI instantaneous value and the CQI average value of each mobile station device! /, And assigns traffic channel resource blocks to mobile station devices whose CQI instantaneous value is larger than the CQI average value. This is a method of guessing.
  • the resource block allocation to each mobile station device is made fairly fair, and the resource block allocation is realized preferentially for users with good CQI. However, although not as much as the RR method, the average throughput of the entire cell is reduced to some extent.
  • the measurement interval of the CQI instantaneous value in the measurement mode of the mobile station device in the active mode (CQI instantaneous value feedback interval in the mobile station device) is changed. Accordingly, the uplink resource allocation interval for feedback of the CQI instantaneous value of the base station apparatus or the downlink resource allocation interval is changed.
  • a mobile communication system in which a plurality of mobile station apparatuses that perform Inter—RAT—HO (and Inter—Freq—HO) for different mobile communication systems exist.
  • a certain mobile station apparatus performs monitoring and measurement of UTRA
  • a certain mobile station apparatus performs monitoring and measurement of GSM.
  • mobile communication systems that use radio access technologies other than UTRA, GSM, and 3GPP are specified with different frame lengths and frame structures, and the measurement methods and procedures for reception quality differ accordingly.
  • the minimum time required for measurement is different. Therefore, in this embodiment, the mobile station apparatus moves in the measurement mode of the mobile station apparatus in the active mode according to the type of the mobile communication system targeted by Inter-RAT-HO (and Inter-Freq-HO).
  • FIG. 2 is a block diagram showing the configuration of the mobile station apparatus according to the first embodiment of the present invention.
  • the mobile station apparatus includes a communication unit 30, a timer 31, a control unit 32, a CQI instantaneous value measurement unit 33, and a feedback interval setting unit 34.
  • the communication unit 30 transmits the CQI instantaneous value measured by the CQI instantaneous value measuring unit 33 to the base station device through the control unit 32, transmits / receives packet data to / from the base station device, and transmits packet data by wireless communication. Or output to CQI instantaneous value measurement unit 33 and control unit 32.
  • the CQI instantaneous value measurement unit 33 measures the CQI instantaneous value at a predetermined time based on the packet data input from the communication unit 30, and the measured CQI instantaneous value is a feedback interval setting unit 3
  • the timer 31 measures the time instructed by the control unit 32 and outputs the result to the control unit 32.
  • the control unit 32 controls the operation of each unit of the mobile station apparatus and outputs control information to each unit.
  • the feedback interval setting unit 34 calculates the CQI instantaneous value based on the CQI instantaneous value input from the CQI instantaneous value measuring unit 33 and the information on the radio access technology for monitoring and measuring for the knockover input from the control unit 32. Set the transmission interval to the base station and output the interval to the control unit 32.
  • the mobile station device measures the interval set by the feedback interval setting unit 34 with the timer 31 through the control unit 32 and transmits the CQI instantaneous value input from the control unit 32 to the base station device.
  • FIG. 3 is a block diagram showing a configuration of the feedback interval setting unit 34 (FIG. 2) according to the first embodiment of the present invention.
  • the feedback interval setting unit 34 includes an average CQI deriving unit 11, a memory 12, a mode determining unit 13 (first mode determining unit), and a feedback interval selecting unit 14 (gap setting unit).
  • the average CQI deriving unit 11 derives the CQI average value based on the CQI instantaneous value in the mobile station apparatus.
  • the memory 12 stores and holds a plurality of instantaneous CQI values (or average values thereof) measured during a certain period.
  • the mode determination unit 13 determines switching between the normal mode and the measurement mode from the CQI average value derived by the average CQI deriving unit 11 and the CQI threshold value. Note that the CQI threshold is notified in advance by the base station device or set as a system parameter in advance.
  • the feedback interval selection unit 14 determines whether the determination result of the mode determination unit 13 is the type of the monitored radio access technology of the mobile station device or the monitored radio access technology of the mobile station device and the frequency band used for radio communication
  • the gap length which is the feedback interval of the CQI instantaneous value, is selected and output according to the monitoring mobile communication system information consisting of the combination type. Examples of radio access technologies include UTRA, GSM, and non-3GPP.
  • FIG. 4A is a table showing the relationship between the radio access technology and the gap length in the first embodiment of the present invention.
  • the length of the gap is determined according to the monitoring target radio access technology of the mobile station apparatus.
  • the base station apparatus power also stops allocating link resources to the mobile station apparatus and generates a gap with a time length of T10.
  • the base station apparatus power also stops allocating link resources to the mobile station apparatus and generates a gap with a time length of T10.
  • gaps with time lengths of T20 and T30 are generated. Note that the length of the gap may be determined using the relationship shown in FIG. 4B below rather than the relationship shown in FIG. 4A.
  • FIG. 4B is a table showing a relationship among the radio access technology, the used frequency band, and the gap length in the first embodiment of the present invention.
  • the gap length is determined according to the combination of the monitored radio access technology of the mobile station apparatus and the frequency band used for radio communication.
  • the monitored radio access technology of the mobile station apparatus is UTRA
  • the frequency band used is flMHz band
  • the allocation of link resources to the base station apparatus power mobile station apparatus is stopped, and the time Creates a gap with a length of T10.
  • the frequency band used is the f2 MHz band
  • a gap with a time length of T10 is generated.
  • the radio access technology to be monitored by the mobile station device is GSM and the frequency band used is the f3 MHz band
  • allocation of link resources to the base station device power mobile station device is stopped, and the length of time is increased. Creates a gap of T20.
  • the frequency band used is the f4MHz band
  • a gap with a time length of T21 is generated.
  • the mobile station device's monitored radio access technology is a non-3GPP system and the frequency band used is f5 GHz
  • the link resource allocation from the base station device to the mobile station device is stopped, and the time A gap with a length of T30 is generated.
  • the frequency band used is the f6 GHz band
  • a gap with a time length of T31 is generated.
  • FIG. 5 are diagrams for explaining the length of the gap set by the base station apparatus of the first embodiment of the present invention. If the base station apparatus is a mobile station apparatus monitoring target radio access technology SGSM, the optimal gap length T20 is set to monitor the base station apparatus using GSM, and the mobile station apparatus Wireless communication is performed with the device (see Fig. 5 (a)).
  • the base station apparatus is a mobile station apparatus monitoring target radio access technology SGSM
  • the optimal gap length T20 is set to monitor the base station apparatus using GSM
  • the mobile station apparatus Wireless communication is performed with the device (see Fig. 5 (a)).
  • the base station apparatus sets an optimum gap length T10 to monitor the base station apparatus using UTRA, and moves Wireless communication is performed with the station equipment (see (b) in Fig. 5).
  • the base station apparatus sets an optimum gap length T30 for monitoring the base station apparatus using the non-3GPP system. Then, wireless communication is performed with the mobile station device (see (c) of FIG. 5).
  • 5A to 5C show the case where T20 and T10 ⁇ T30.
  • the average CQI deriving unit 11 detects the CQI instantaneous value detected based on the pilot signal included in the downlink common pilot channel of the packet data and the past fixed period stored in the memory 12.
  • the CQI average value is averaged with the CQI instantaneous value measured in step 1, and the derived CQI average value is output to the mode decision unit 13.
  • the new CQI instantaneous value is stored in memory 12 and the CQI instantaneous value after a certain period is deleted from memory 12.
  • the mode determination unit 13 compares the average CQI value input from the average CQI deriving unit 11 with the CQI threshold value for switching between the normal mode and the measurement mode, and the mode information determined by the feedback interval selection unit 14 Is output.
  • Feedback interval selector 14 is used for feedback interval in normal mode and measurement mode.
  • a plurality of feedback intervals for each type of wireless access technology or a combination of a wireless access technology and a frequency band used for wireless communication is stored in advance, and mode information and control input from the mode determination unit 13 are stored.
  • the feedback interval based on the monitored mobile communication system information including information on the monitored wireless access technology or the combination of the monitored wireless access technology and the frequency band used for wireless communication input from Figure 32 (Fig. 2) Select to output.
  • FIG. 6 is a block diagram showing the configuration of the base station apparatus according to the first embodiment of the present invention.
  • the base station apparatus includes a communication unit 40, a timer 41, a control unit 42, and a resource allocation interval setting unit 43.
  • the communication unit 40 receives the CQI instantaneous value measured by the CQI instantaneous value measurement unit 33 (Fig. 2) in the mobile station device, transmits / receives packet data to / from the mobile station device, and transmits packet data by wireless communication. Or output to the control unit 42.
  • the timer 41 measures the time instructed by the control unit 42 and outputs the time measurement result to the control unit 42.
  • the control unit 42 controls the operation of each unit of the base station apparatus and outputs control information to each unit.
  • the resource allocation interval setting unit 43 is a monitoring mobile communication including information on the CQI instantaneous value notified from the mobile station apparatus and the monitored radio access technology or the combination of the monitored radio access technology and the frequency band used for radio communication.
  • the interval for allocating radio resources is set based on the system information, and the interval is output to the control unit 42.
  • the base station device counts the interval set by the resource allocation interval setting unit 43 by the timer 41 through the control unit 42, allocates uplink radio resources to the mobile station device, and assigns the CQI instantaneous value to the mobile station. Receive from the device.
  • FIG. 7 is a block diagram showing a configuration of the resource allocation interval setting unit 43 (FIG. 6) according to the first embodiment of the present invention.
  • the resource allocation interval setting unit 43 includes an average CQI deriving unit 21, a memory 22, a mode determining unit 23 (second mode determining unit), and a resource allocation interval selecting unit 24 (gap setting unit).
  • User Equipment 1, UE2, ..., UEn) only.
  • the average CQI deriving unit 21 calculates the CQI based on the instantaneous CQI value that is also notified of the mobile station apparatus power. The average value is derived.
  • the memory 22 stores and holds a plurality of instantaneous CQI values (or their average values) measured during a certain period.
  • the mode determination unit 23 determines switching between the normal mode and the measurement mode from the CQI average value derived by the average CQI deriving unit 21 and the CQI threshold value.
  • the CQI threshold is set in advance.
  • the resource allocation interval selection unit 24 uses the determination result of the mode determination unit 23 and information on the monitoring target wireless access technology notified from the mobile station device or the combination of the monitoring target wireless access technology and the used frequency band used for wireless communication. Select and output the uplink resource allocation interval to the mobile station equipment for CQI instantaneous value feedback.
  • the CQI instantaneous value fed back from the mobile station device and the CQI measured during the past fixed period stored in the memory 22 are stored.
  • the CQI average value is derived by averaging the instantaneous values, and the derived CQI average value is output to the mode determination unit 23.
  • the new CQI instantaneous value is stored and held in the memory 22, and the CQI instantaneous value after a certain period (the CQI instantaneous value after a certain period of time without contributing to the average value calculation) is deleted from the memory 22.
  • the mode determination unit 23 compares the average CQI value input from the average CQI deriving unit 21 with the CQI threshold value for switching between the normal mode and the measurement mode, and determines the mode determined by the resource allocation interval selection unit 24. Output information.
  • the resource allocation interval selection unit 24 preliminarily sets a resource allocation interval in the normal mode and a plurality of resource allocation intervals for each type of radio access technology in the measurement mode or a combination of radio access technology and a use frequency band used for radio communication. Stored and used for radio communication with the monitored radio access technology or the monitored radio access technology notified from the mobile station device through the mode information input from the mode decision unit 23 and the control unit 42 (Fig. 6). Select and output the resource allocation interval used for uplink CQI instantaneous value feedback based on the combination frequency band information.
  • FIG. 8 is a flowchart showing processing of the feedback interval selection unit 14 of the mobile station apparatus according to the first embodiment of the present invention.
  • the case of the measurement mode of Inter—RAT—HO (and Inter—F req—HO) will be described.
  • the case where the mobile station apparatus uses any of UTRA, GSM, and non-3GPP system will be described.
  • the case where there is only one type of frequency band used for wireless communication using each wireless access technology will be described.
  • the average CQI deriving unit 11 resets the CQI report timer (step S10).
  • the mode determination unit 13 determines whether the current mode of the mobile station apparatus is the normal mode or the measurement mode (step S11). When in the normal mode, it is determined whether or not the timer value is equal to or greater than TO (normal mode CQI reporting interval) (step S12). If the timer value is greater than or equal to TO in step S12, the process proceeds to step S17. On the other hand, if the timer value is smaller than TO in step S12, the process proceeds to step S11.
  • step S11 If the measurement mode is set in step S11, it is determined whether the type of the monitored radio access technology is UTRA, GSM, or non-3GPP system (step S13).
  • step S13 when the type of the monitored radio access technology is UTRA, it is determined whether or not the timer value is equal to or greater than T10 (UTRA measurement mode CQI reporting interval) (step S14). If the timer value is equal to or greater than T10 in step S14, the process proceeds to step S17. On the other hand, if the timer value is smaller than T10 in step S14, the process proceeds to step S11.
  • T10 UTRA measurement mode CQI reporting interval
  • step S13 it is determined whether or not the timer value is T20 or more (step S15). If the value of the timer is greater than ST20 (GSM measurement mode CQI reporting interval) in step S15, the process proceeds to step S17. On the other hand, if the timer value is smaller than T20 in step S15, the process proceeds to step S11.
  • step S13 if the type of the monitored radio access technology is a non-3GPP system, whether or not it is equal to or greater than the timer value T30 (non-3GPP system measurement mode CQI reporting interval) Judgment is made (step S16). If the timer value is equal to or greater than T30 in step S16, the process proceeds to step S17. On the other hand, if the timer value is zJ greater than T30 in step S16, the process proceeds to step S11.
  • CQI instantaneous values are measured using CQI instantaneous values.
  • the unit 33 measures (step S17) and reports the CQI instantaneous value information by the communication unit 30 feeding back to the base station apparatus (step S18).
  • the average CQI deriving unit 11 calculates the CQI average value by using the CQI instantaneous value measured and derived in step S17 and the V and CQI instantaneous values stored in the memory 12 as V ( Step S 19).
  • the mode determination unit 13 determines whether or not the CQI average value is smaller than the CQI threshold (step S20). If the average CQI value is greater than or equal to the CQI threshold value in step S20, the mobile station apparatus is set to the normal mode (step S21). On the other hand, if the CQI average value force is smaller than the SCQI threshold value in step S20, the mobile station apparatus is set to the measurement mode (step S22). In step S14, step S15, and step S16, if it is determined No, the process proceeds to step S13 instead of proceeding to step S11.
  • the feedback interval selection unit 14 force in steps S13 and S14 to S16 depends on the type of the monitored radio access technology or the mobile station apparatus.
  • the measurement mode CQI reporting interval T10, ⁇ 20, ⁇ 30 (gap length) is set according to the type of combination of monitored radio access technology and radio communication frequency band. Note that the gap is the time during which the allocation of link resources to the mobile station device is stopped in order to monitor the base station device with which the mobile station device performs radio communication. In this gap time zone, the mobile station apparatus monitors base station apparatuses that perform wireless communication in the vicinity.
  • the optimum gap is selected according to the type of radio access technology or the type of combination of the monitored radio access technology of the mobile station apparatus and the frequency band used for radio communication. You can set the length of.
  • FIG. 9 is a flowchart showing a process of the resource allocation interval selection unit 24 of the base station apparatus according to the first embodiment of the present invention.
  • the case of the measurement mode of Inter-RAT- ⁇ (and Inter-Freq-HO) will be described.
  • different wireless access techniques As a technique, the case where the base station device uses either UTRA, GSM, or non-3GPP system will be explained. Also, the case where there is one type of frequency band used for wireless communication using each wireless access technology will be described.
  • the average CQI deriving unit 21 resets the CQI feedback timer (step S100). Then, the mode determination unit 23 determines whether the current mode of the base station apparatus with respect to the mobile station apparatus is the force measurement mode which is the normal mode (step S101). If the normal mode is set in step S101, it is determined whether or not the timer value is equal to or greater than TO (resource allocation interval for normal mode CQI feed knock) (step S102). If the timer value is greater than or equal to TO in step S102, the process proceeds to step S107. On the other hand, if the timer value is smaller than TO in step S102, the process proceeds to step S101.
  • TO resource allocation interval for normal mode CQI feed knock
  • step S101 it is determined whether the type of the monitored radio access technology that the mobile station device monitors and measures is UTRA, a force GSM, or a non-3GPP system (step S 103). If the monitored radio access technology is UTRA in step S103, it is determined whether or not the timer value is equal to or greater than T10 (UTRA measurement mode CQI feedback resource allocation interval) (step S104). If the timer value is equal to or greater than T10 in step S104, the process proceeds to step S107. On the other hand, if the timer value is smaller than T10 in step S104, the process proceeds to step S101.
  • T10 UTRA measurement mode CQI feedback resource allocation interval
  • step S105 it is determined whether or not the timer value is T20 or more (step S105). If the timer value is equal to or greater than T20 (GSM measurement mode CQI feedback resource allocation interval) in step S105, the process proceeds to step S107. On the other hand, if it is smaller than the timer value ST20 in step S105, the process proceeds to step S101.
  • step S103 if the type of the monitored radio access technology is a non-3GPP system, determine whether the timer value is equal to or greater than T30 (non-3GPP system measurement mode CQI feedback resource allocation interval). (Step S106). If the timer value is equal to or greater than T30 in step S106, the process proceeds to step S107. On the other hand, if the timer value is smaller than T30 in step S106, the process proceeds to step S101. [0062] Then, an uplink resource for CQI instantaneous value feedback is allocated to the mobile station apparatus based on the CQI feedback resource allocation interval in each mode (step S107), and the CQI in which the mobile station apparatus power is also fed back Get the instantaneous value (step S108).
  • the average CQI deriving unit 21 calculates the CQI average value using the CQI instantaneous value acquired in step S108 and the CQI instantaneous value stored in the memory 22, and calculates the CQI instantaneous value.
  • the CQI instantaneous value stored in the memory 22 is deleted from the memory 22 after a predetermined period of time (step S109).
  • the mode determination unit 23 determines whether or not the CQI average value is smaller than the CQI threshold (step S110). If the average CQI value is greater than or equal to the CQI threshold value at step SI10, the base station apparatus is set to the normal mode (step S111). On the other hand, if the CQI average value is smaller than the CQI threshold value in step S110, the base station apparatus is set to the measurement mode (step S112). It should be noted that step S104, step S105, step S106 [If you decide to answer No, you do not proceed to step S101, but proceed to step S103.
  • the resource allocation interval selection unit 24 determines the type of radio access technology to be monitored by the mobile station apparatus in steps S103 and S104 to S106. Accordingly, the measurement mode CQI feedback resource allocation interval T10, ⁇ 20, ⁇ 30 (gap length) for the mobile station apparatus is set.
  • the measurement mode CQI feedback resource allocation interval T10, ⁇ 20, ⁇ 30 (gap length) for the mobile station apparatus is set according to the type of the monitored radio access technology.
  • the base station device can set an appropriate gap length according to the type of radio access technology to be monitored by the mobile station device. Therefore, in wireless communication between the mobile station device and the base station device, Useless link resources can be prevented.
  • the mode determination unit 13 of the mobile station apparatus may monitor neighboring base station apparatuses in step S20 of FIG. In step S110 of FIG. 9, the mode determination unit 23 of the base station apparatus determines whether the mobile station apparatus power is also fed back. Based on the value, it is determined whether the mobile station apparatus is in the measurement mode or the normal mode.
  • the peripheral base station apparatus refers to a base station apparatus other than the base station apparatus in which the mobile station apparatus performs radio communication!
  • the mobile station apparatus and base station apparatus used in the first embodiment of the present invention described above share the CQI instantaneous value by feeding back the mobile station apparatus power to the base station apparatus and sharing it.
  • the measurement interval is controlled.
  • both the mobile station device and the base station device determine whether the mode is the normal mode or the measurement mode.
  • only the mobile station device that is not limited to such a form is provided with the mode determination unit 13 and notifies the base station device of the result, and the base station device uses the notified mode information as a basis.
  • the mobile station device mode status may be ascertained. That is, in step S20 in FIG.
  • the mode determination unit 13 of the mobile station apparatus does not monitor the base station apparatus around the force, which is a measurement mode in which the peripheral base station apparatus can be monitored.
  • the resource allocation interval selection unit 24 of the base station apparatus may set the resource allocation interval for the measurement mode CQI feedback based on the determination result of the mode determination unit 13 to which the mobile station apparatus power is also fed back. Good.
  • the base station device is provided with the mode determination unit 23, and the result is notified and instructed to the mobile station device, and the mobile station device sets the mode based on the notified and instructed mode information.
  • the base station apparatus broadcasts and transmits to the mobile station apparatus information on the radio access technology used by the neighboring base station apparatuses or the combination of the radio access technology and the used frequency band used for radio communication. Then, it is possible to narrow down mobile communication systems that perform mobile station apparatus power nter-RAT-HO (and Inter-Freq-HO) in advance.
  • the mobile station apparatus recognizes in advance that there is no corresponding radio access technology in the vicinity, and prevents unnecessary monitoring and measurement of the radio access technology, thereby reducing power consumption.
  • the base station device notifies the mobile station device in the cell that only UTRA exists in the vicinity, and the mobile station device that supports GSM does not perform unnecessary monitoring and measurement. Can be.
  • the resource allocation interval setting unit 43 of the base station apparatus is provided by the number of mobile station apparatuses.
  • the present invention is not limited to this. Absent.
  • Each unit may be shared for processing of a plurality of mobile station apparatuses, and processing may be performed by shifting processing timing between mobile station apparatuses.
  • the second embodiment of the present invention when one mobile station apparatus has a function capable of performing Inter-RAT-HO (and Inter-Freq-HO) in a plurality of different mobile communication systems, Uplink resources for feedback of instantaneous CQI values without the base station device being notified of the type of radio access technology to be monitored and measured from among multiple mobile station devices Multiple allocation intervals or downlink resource allocation intervals are set simultaneously.
  • the configuration of the base station apparatus according to the second embodiment of the present invention is the same as that of the first embodiment (FIGS. 6 and 7), and only the processing is different.
  • FIG. 10 is an explanatory diagram of resource allocation intervals in the base station apparatus of the second embodiment.
  • the base station device derives that the CQI instantaneous value, to which the mobile station device power is also fed back, is smaller than the average CQI value, and uses other radio for the mobile station device power nter—RAT—HO (and Inter—Freq—HO) It is determined that monitoring and measurement of access technology will start.
  • the base station apparatus provides feedback to a mobile station apparatus having a function capable of performing Inter-RAT-HO (and Inter-Freq-HO) for a plurality of different radio access technologies.
  • a plurality of uplink resources are allocated at different intervals.
  • uplink resources for monitoring of two radio access technologies for GSM and UTRA are allocated, and GSM is assumed to have a minimum time required for monitoring and measurement shorter than UTRA.
  • the mobile station apparatus feeds back the CQI instantaneous value to the base station apparatus using the GSM uplink resource, and when the UTRA monitoring and measurement is performed, the mobile station apparatus The CQI instantaneous value is fed back to the base station equipment using the uplink resources.
  • the meaning of allocating a plurality of uplink resources as described above means that the frame is actually constructed when the measurement mode is determined. If you are going to assign it, it means that you will.
  • the base station apparatus allocates resources in all frequency bands in consideration of other mobile station apparatuses at the timing of allocation. At this time, uplink resources for CQI instantaneous feedback are allocated.
  • the mobile station apparatus when the mobile station apparatus has a function capable of performing Inter-RAT-HO (and Inter-Freq-HO) for a plurality of different radio access technologies,
  • the CQI instantaneous value can be fed back at an appropriate timing without notifying the base station device which type of radio access technology to be monitored and measured from among multiple mobile station devices.
  • the base station apparatus receives CQI instantaneous values from the mobile station apparatus at a plurality of uplink resource allocation intervals set at the same time, with a short gap, from the mobile station apparatus.
  • the gap set longer than the gap is reset, and when the short CQI instantaneous value is not received from the mobile station device by the gap, the gap set longer than the short gap is continued. Set it, that is, keep allocating gaps without resetting them.
  • the base station device When the base station device receives an instantaneous CQI value with a GSM gap length T20 from the mobile station device, the base station device resets the allocated UTRA gap length T10, and again includes resources including other mobile station devices. If the mobile station device does not receive the CQI instantaneous value at the GSM gap length T20 from the mobile station device, it continues to set the assigned UTRA gap length T10. Receive CQI instantaneous value at gap length T10 for UTRA.
  • FIG. 11 is a flowchart showing the processing of the resource allocation interval selection unit 24 of the base station apparatus according to the modification of the second embodiment of the present invention.
  • the average CQI deriving unit 21 resets the CQI feedback timer (step S200). Then, the mode determination unit 23 determines whether the current mode of the base station apparatus with respect to the mobile station apparatus is the force measurement mode which is the normal mode (step S201). Ste If the normal mode is selected in step S201, it is determined whether or not the timer value is equal to or greater than TO (resource allocation interval for normal mode CQI feed knock) (step S202). If the timer value is greater than or equal to TO in step S202, the process proceeds to step S203. On the other hand, if the timer value is smaller than TO in step S202, the process proceeds to step S201.
  • TO resource allocation interval for normal mode CQI feed knock
  • step S204 it is determined whether it is the start timing of the measurement mode. If it is the start timing of the measurement mode in step S204, the resource allocation interval setting unit 43 sets the measurement interval of the mobile station device with the shortest measurement interval and the measurement interval of the candidate monitored radio access technology as the timer comparison time TX. (Step S205). As a result, when the mobile station device supports a plurality of radio access technologies different from the type of radio access technology of the base station device that is currently communicating, feedback of the CQI instantaneous value (reception quality index) in the mobile station device Set multiple gear lengths for the at the same time.
  • the gap length set shorter than the gap is reset.
  • the gap length set longer than the short gap is continuously set.
  • step S204 if it is not the start timing of measurement mode, proceed to step S206.
  • step S206 it is determined whether or not the timer value is equal to or greater than TX (a value that differs depending on the monitored radio access technology, resource allocation interval) (step S206). If the timer value is greater than or equal to TX in step S206, the process proceeds to step S203. On the other hand, if the timer value is smaller than TX in step S206, the process proceeds to step S201. Then, based on the CQI feedback resource allocation interval in each mode, uplink resources for CQI instantaneous value feedback are allocated to the mobile station apparatus (step S 203).
  • TX a value that differs depending on the monitored radio access technology, resource allocation interval
  • the mobile station apparatus power is also determined based on whether or not the CQI instantaneous value has been acquired (step S 207) o
  • the process proceeds to step S 208.
  • the mobile station device The candidate monitoring target radio access technology is updated (step S209), the timer comparison time TX is updated corresponding to the updated measurement interval for the candidate monitoring target radio access technology (step S210), and the process proceeds to step S206.
  • Step S208 [Calculating average CQI derivation ⁇ 21 ⁇ , Step C 207 Using the CQI instantaneous value obtained in step S207 and the CQI instantaneous value stored in memory 22! In addition to the calculation, the CQI instantaneous value is stored and held in the memory 22, and the CQI instantaneous value after a predetermined period is deleted from the memory 22.
  • the mode determination unit 23 determines whether or not the CQI average value is smaller than the CQI threshold value (step S211). If the CQI average value is greater than or equal to the CQI threshold value in step S211, the base station apparatus is set to the normal mode (step S212). On the other hand, if the CQI average value is smaller than the CQI threshold value in step S211, the base station apparatus is set to the measurement mode (step S213).
  • the mobile station apparatus can perform Inter-RAT HO (and Inter Freq HO) for a plurality of different radio access technologies.
  • the CQI instantaneous value is fed back at an appropriate timing without notifying the base station device of which type of radio access technology to be monitored and measured from among a plurality of mobile station devices.
  • the mobile station apparatus sets gaps for a plurality of different radio access technologies.
  • the mobile station device is used for radio access technologies and radio communications. This can also be applied to the case where gaps are set for a plurality of different combinations with the used frequency band.
  • the base station device broadcasts and transmits information related to the radio access technology used by the neighboring base station devices to the mobile station device, and the mobile station device power nter—RAT—HO (and Internet—Freq — It is also possible to narrow down the radio access technology of the mobile communication system performing HO) in advance. By narrowing down, the base station device only needs to set a gap when the mobile station device monitors and measures the narrowed radio access technology, thereby avoiding redundant resource allocation. In addition, certain wireless access technologies The mobile station apparatus recognizes that there is no such message, and can stop monitoring and measuring the radio access technology, thereby reducing power consumption.
  • the base station device notifies the mobile station device in its own cell that UTRA and non-3GPP radio access technologies exist in the vicinity, and the mobile station device uses Inter—RAT—HO (and Inter— Narrow down to UTRA or non-3GPP as candidates for Freq—HO).
  • Inter—RAT—HO Inter— Narrow down to UTRA or non-3GPP as candidates for Freq—HO
  • a mobile station apparatus having a function capable of performing Inter-RAT HO (and Inter-Freq-HO) in a mobile communication system using a plurality of different radio access technologies for example, to GSM Limit Inter-RAT-HO (and Inter-Freq-HO) to prevent GSM monitoring and measurement.
  • the base station apparatus generates a gap for the mobile station apparatus to perform monitoring and measurement of the radio access technology.
  • multiple uplink resource allocation intervals or downlink resource allocation intervals for feedback are set simultaneously, it can be excluded to set GSM intervals, avoiding redundant resource allocation. can do.
  • the processing related to the feedback interval of the CQI instantaneous value of the mobile station device in the measurement mode, the uplink resource allocation interval of the base station device, or the downlink resource allocation interval is actually performed by the Autonomous Gap Control Method.
  • the main purpose is to set the feedback interval of the CQI instantaneous value of the mobile station device when generating the gap, the uplink resource allocation interval, or the downlink resource allocation interval of the base station device. In other words, the purpose is to generate an appropriate gap according to the monitoring mobile communication system of the mobile station device.
  • the CQI instantaneous value feedback interval of the mobile station device in the interval where no gap is generated, the uplink resource allocation interval of the base station device, or the downlink resource allocation interval are the same as when generating the gap.
  • Value a value similar to the normal mode, or other values may be set.
  • a program that operates in the base station apparatus and mobile station apparatus according to the present embodiment is a program that controls a CPU or the like (a program that causes a computer to function) so as to change the CQI instantaneous value measurement interval according to the present embodiment. ).
  • Information handled by these devices Is temporarily stored in RAM during the process, then stored in various ROMs and HDDs, read by the CPU, and modified and written as necessary.
  • Recording media for storing programs include semiconductor media (eg, ROM, nonvolatile memory card, etc.), optical recording media (eg, DVD, MO, MD, CD, BD, etc.), magnetic recording media (eg, magnetic recording media). Any of tape, flexible disk, etc.) may be used.
  • semiconductor media eg, ROM, nonvolatile memory card, etc.
  • optical recording media eg, DVD, MO, MD, CD, BD, etc.
  • magnetic recording media eg, magnetic recording media. Any of tape, flexible disk, etc. may be used.
  • the program when distributing to a factory, can be stored in a portable recording medium for distribution, or transferred to a server computer connected via a network such as the Internet. .
  • the storage device of the server computer is also included in the recording medium of the present invention.
  • the wireless communication system according to the present embodiment can also be applied to a TDD (Time Division Duplex) system that assumes a FDD (Frequency Division Duplex) system.
  • TDD Time Division Duplex
  • FDD Frequency Division Duplex
  • the CQI instantaneous value feedback interval and the terminology are used, but this interval has two elements: the time for measuring one CQI and the interval for feeding back the measured CQI. included.
  • the CQI instantaneous value for feedback is measured and fed back every 4 TTIs in the normal mode, and the measurement is performed at 4 TTI intervals in relation to the normal mode processing in the measurement mode.
  • the measurement interval in the normal mode may not be fixed to a single value, but may be changed adaptively depending on the operation status of the mobile communication system.

Abstract

 本発明の移動通信システムは、複数の移動局装置と複数の基地局装置とを備える移動通信システムにおいて、基地局装置は、移動局装置の監視対象無線アクセス技術の種類に応じて移動局装置のためのギャップの長さを設定するギャップ設定部を具備する。

Description

明 細 書
移動通信システム、移動局装置、基地局装置及び移動通信方法 技術分野
[0001] 本発明は、移動通信システム、移動局装置、基地局装置及び移動通信方法に関し
、より詳細には、同一の無線アクセス技術における同一の無線周波数が割り当てられ たセル間、異なる無線周波数が割り当てられたセル間、又は異なる無線アクセス技術 におけるセル間で無線通信を行うための移動通信システム、移動局装置、基地局装 置及び移動通信方法に関する。
本願 ίま、 2006年 5月 16曰〖こ、曰本【こ出願された特願 2006— 136259号【こ基づさ 優先権を主張し、その内容をここに援用する。
背景技術
[0002] 同一の無線アクセス技術 RAT (Radio Access Technology)のセルラ移動通信シス テムでは、サービスエリアに多数の基地局装置を分散配置して、これらの基地局装置 によりセルと呼ばれる無線エリアをそれぞれ形成し、移動局装置を当該移動局装置 が存在するセルの基地局装置に無線チャネルを介して接続することにより無線通信 を可能にしている。
また、移動局装置が通信中に他のセルへ移動した場合には、ハンドオーバ (HO : Ha nd Over)を行うことにより異なるセルに亘つて通信を継続できるようにしている。
[0003] ハンドオーバには、同一の無線周波数が割り当てられたセル間を移動局装置が移 動する際に行われる同一周波数間のハンドオーバである Intra - Freq - HO (Intra- Frequency-Handover)と、異なる無線周波数が割り当てられたセル間を移動局装置 が移動する際に行われる異なる周波数間のハンドオーバである Inter - Freq - HO ( Inter-Frequency-Handover) ¾ある。
[0004] また、異なる無線アクセス技術により構成されているセルラ移動通信システムでは、 異なる無線アクセス技術を使用するセル間を移動局装置が移動する際に行われる異 なる無線アクセス技術を使用するセル間を移動局装置が移動する際に行われる異な る無線アクセス技術間のハンドオーバである Inter— RAT— HO (Inter- RAT- Hando ver)力 Sある。
これと対称にあるのが同一の無線アクセス技術のセル間のハンドオーバである Intra -RAT -HO (Intra— RAT— Handover)である。
[0005] 図 12は、移動局装置が移動する際のハンドオーバの処理について説明するため の図である。二次元平面上に、基地局装置 BS1、 BS2、 BS3、 BS4力 それぞれ設 置されている。基地局装置 BS1、 BS2、 BS3、 BS4は、それぞれ周波数 fl、 f2、 fl、 f3を使用して、移動局装置との間で無線通信を行う。また、基地局装置 BS1、 BS2、 BS3、 BS4は、それぞれ無線アクセス技術 RATI、 RATI, RATI, RAT2を利用し て、移動局装置との間で無線通信を行う。
[0006] 基地局装置 BS1、 BS2、 BS3、 BS4は、無線通信可能な範囲であるセル cl、 c2、 c3、 c4内に位置する移動局装置 MSI、 MS2、 MS4、 MS6、移動局装置 MS4、 M S5、移動局装置 MS2、 MS3、移動局装置 MS6、 MS7との間でそれぞれ無線通信 を行うことができる。
セル c 1とセル c 2との間を移動して!/、る移動局装置 MS4は、 Intra— RAT HO ( かつ、 Inter— Freq— HO)によるハンドオーバを行う。また、セル clとセル c3との間 を移動している移動局装置 MS2は、 Intra— RAT— HO (かつ、 Intra— Freq—HO )によるハンドオーバを行う。また、セル clとセル c4との間を移動している移動局装置 MS6は、 Inter— RAT— HO (かつ、 Inter— Freq—HO)によるハンドオーバを行う
[0007] 従来、例えば 3GPP (3rd Generation Partnership Project)で規定されて 、る W—C DMA (Wideband-Code Division Multiple Access)の無線アクセス技術が第三世代 セルラ移動通信方式として標準化され、順次サービスが開始されている (非特許文献 1参照)。 W— CDMA方式では、 Intra— RAT— HO (かつ、 Inter— Freq—HO)や 、 Inter— RAT— HO (かつ、 Inter— Freq— HO)を行う際に異なる周波数を使用す る基地局装置の監視又は測定を行うための機能としてコンプレストモード(Compresse d Mode)が規定されている。
[0008] 図 13の(a)は、 W— CDMAの個別チャネル(DPCH : Dedicated Physical Channel )にてコンプレストモードが適用されて、異周波数を使用する基地局装置の監視又は 測定が行われて 、る場合にっ 、て説明するための図である。
基地局装置は、図 13の (a)のような伝送中断時間であるギャップ (Gap)区間を設 定して、当該ギャップ区間で個別チャネルでのデータの送信を停止させる。一方、移 動局装置は、このギャップ区間内の時間を利用して周波数を切り替えて異周波数を 使用する基地局装置の監視を行う。
[0009] また、 3GPPでは、 W— CDMAの無線インタフェースを拡張した最大伝送速度 14 . 4Mbps程度の高速パケット伝送を下りリンク(Downlink)において実現する HSDPA (High Speed Downlink Packet Access)が標準化されている(非特許文献 2参照)。コ ンプレストモードが本来適用される個別チャネルとは別の独立したチャネルとして、下 りリンクでは、共用制御チャネル(HS— SCCH : High Speed-Downlink Shared Contr ol Channel)、共用データチャネル(HS— PDSCH : High Speed-Physical Downlink S hared Channel)が追加定義されている。また、上りリンク(UpLink)では、個別制御チ ャネル(HS— DPCCH : High Speed Dedicated Physical Control Channel)が追加定 義されている。
[0010] HSDPAでは、適応変調技術 AMCS (Adaptive Modulation and Coding Scheme) が採用されている。 AMCSとは、高速パケットデータ伝送を効率的に行うために、各 移動局装置の伝播路状況である下り受信品質指標 CQI (Channel Quality Indication )に応じて、共用データチャネルのデータ変調多値数、誤り訂正方式、誤り訂正の符 号化率、時間 '周波数軸の符号拡散率(SF : Spreading Factor)、マルチコード多重 数など無線伝送パラメータを切り替える方式である。また、ハイブリッド自動再送 (HA RQ : Hybrid Automatic Repeat reQuest)を採用している。移動局装置では、受信した 通達確認情報である ACK/NACK (Acknowledgement / Negative Acknowledgeme nt)、及び受信品質指標が個別制御チャネルを通じて基地局装置へフィードバックす る。
[0011] 図 13の (b)、(c)は、基地局装置から移動局装置に送信されるパケット信号の一例 を示す図である。図 13の (b)は、基地局装置から移動局装置に送信される共用制御 チャネルの一例を示す図である。また、図 13の(c)は、基地局装置から移動局装置 に送信される共用データチャネルの一例を示す図である。 HSDPAにおいても、移動局装置側では、異周波数を使用する基地局装置の監視 又は測定が行われる場合には基地局装置との間でデータ伝送ができなくなるため、 ギャップ区間に相当する共用データチャネルの区間に自移動局装置宛てのパケット データの割り当てが行われない。基地局装置側では、ギャップ区間が生成されるの に先立ち、共用制御チャネルを用 、て共用データチャネルのデータの割り当ての停 止を移動局装置側へ指示する。
この指示を受けた移動局装置は、ギャップ区間を生成し、異周波数を使用する基地 局装置の監視又は測定を行う。
[0012] すなわち、基地局装置は、図 13の(a)に示すように、ある移動局装置宛ての連続デ ータに対して、データの圧縮などによりギャップを生成し、図 13の(b)、(c)では、前 記移動局装置宛てのパケット制御信号およびパケットデータをギャップ区間に割り当 てないことによりギャップを生成する。
なお、 W— CDMA、 HSDPAの無線インタフェースを用いた移動通信システムは、 一般に UTRA (Universal Terrestrial Radio Access)と呼ばれる。
さらに、第三世代無線アクセス技術の進化(EUTRA: Evolved Universal Terrestria 1 Radio Access)及び第三世代無線アクセス技術のアクセスネットワークの進化(EUT RAN: Evolved Universal Terrestrial Radio Access Network)力恢討されてい 。 EUTRAの下りリンクとして、 OFDM A (Orthogonal Frequency Division Multiplexing Access)方式が提案されている。 EUTRA技術として、 OFDMA方式に AMCS技術 が適用されている (非特許文献 3、非特許文献 4参照)。 EUTRAでは、下りリンク無 線フレームの構成、無線チャネルのマッピング方法が提案されている(非特許文献 4 参照)。
[0013] EUTRAZEUTRANの Intra— RAT— HO (かつ、 Intra— Freq— HO)や、 Inte r— RAT— HO (かつ、 Inter— Freq— HO)を行う際に、異なる周波数を使用する基 地局装置の監視又は測定のギャップ区間の制御方法として、 CQI瞬時値 (Instantan eous CQI Value)が CQI平均値を下回ったときに、自立的に移動局装置のためのギ ヤップを生成する制御方法(Autonomous Gap Control Method)が提案されている(非 特許文献 5の Fig. 1参照)。 [0014] 図 14の(a)、 (b)は、従来から提案されていたギャップ区間の制御方法の一例を説 明するための図である。移動局装置は共通パイロットチャネルを受信し、一定の CQI 測定間隔 CQI— Intervalで CQI瞬時値を測定し、基地局装置に報告する。同時に 移動局装置は一定の周期(システムパラメータ)で CQI瞬時値を平均し、 CQI平均値 (Mean CQI)を算出する。移動局装置は、測定した CQI平均値を、システムパラメ一 タの CQI閾値と比較する。そして、 CQI平均値力 閾値以下である場合、異なる周 波数基地局装置の監視又は測定のための測定モード (Measurement Mode)に設定 する。
[0015] 移動局装置では、測定モードにお!、て、測定した CQI瞬時値が CQI平均値以下で ある場合、接続している基地局装置が使用している周波数での該基地局装置からの 受信を停止し、ギャップ区間を生成する。基地局装置では、 CQI瞬時値の報告を受 け、移動局装置と同様に該当移動局装置の CQI平均値を算出する。算出した CQI 平均値は、システムパラメータの CQI閾値と比較される。そして、 CQI平均値力 閾値より大きい場合には、通常モードに設定し、 CQI閾値以下である場合には、異な る周波数を使用する基地局装置の監視又は測定のための測定モードに設定する。 測定モードにおいて、測定した CQI瞬時値が CQI平均値以下である場合、接続して いる該当移動局装置宛てのパケットデータ送信を停止し、ギャップ区間を生成する。
[0016] 図 14の(a)に示したように、移動局装置は、異なる周波数あるいは基地局装置の監 視又は測定が完了した後に、ギャップ区間を終了し、 CQI瞬時値の測定及び基地局 装置への報告を再開する。その後も、同様な処理を繰り返す。図 14の (b)は、複数の ギャップ g 1〜g6が連続して生成される様子を示して 、る。
[0017] EUTRAZEUTRANに対応した次世代の移動局装置は、異なる無線アクセス技 術を用いる複数の移動通信システムに対応することが要求されている。例えば、 UT RA、 GSM (Global System for Mobile Communications)、また、 3GPPの規定外の無 線アクセス技術を用いる移動通信システムに対応することが要求されて 、る。これら の移動通信システムは異なるフレーム長、フレーム構造力 なり、また、移動局装置 の受信品質の測定手段、手順が異なる。そのため、 EUTRAZEUTRAN移動通信 システムの基地局装置管理下の移動局装置力 Inter— RAT— HO (かつ、 Inter— Freq— HO)を行う際の異なる無線アクセス技術の基地局装置の監視又は測定に必 要な最低限のギャップの長さが異なるため、各無線アクセス技術に最適なギャップの 長さを設定できないことがある。よって、最低限必要なギャップの長さよりも長いギヤッ プを設定した場合には、使用されないギャップ区間が生じ、周波数帯域及び時間帯 域を有効に利用することができないという問題があった。
非特許文献 1 :立川 敬二、 "W-CDMA移動通信方式"、 ISBN4-621-04894-5 非特許文献 2 : 3GPP TR(Technical Report)25.858、及び 3GPPの HSDPA仕様関連資 料 (http://www.3gpp. org/ftp/¾pecs/ntml—info/25— series. htmノ
非特許文献 3 : 3GPP TR(Technical Report)25.913 , V2.1.0(2005-05) , Requirements for
Access Network(UTRAN) . (http://www.3gpp . org/ftp/Specs/htmHnfo/25913. htm) 非特許文献 4 : 3GPP TR(Technical Report)25.814,V1.0.1(2005-1 l),Physical Layer A spects for Evolved UTRA http://www.3gpp.org/ftp/Specs/htmHnfo/25814.htm 非特許文献 5 : NTT DoCoMo,Inc."Measurement for LTE Intra- and Inter- RAT Mobil ity",3GPP TSG RAN WG2 Meeting # 50,Sophia Antipolis,France,9— 13 January,200 6
発明の開示
発明が解決しょうとする課題
[0018] 本発明は、上記事情に鑑みてなされたものであり、その目的は、周波数帯域及び 時間帯域を有効に利用することができる移動通信システム、移動局装置、基地局装 置及び移動通信方法を提供することにある。
課題を解決するための手段
[0019] 本発明の移動通信システムは、上記課題を解決するためになされたもので、複数 の移動局装置と複数の基地局装置とを備える移動通信システムであって、前記基地 局装置は、前記移動局装置の監視対象無線アクセス技術の種類に応じて前記移動 局装置のためのギャップの長さを設定するギャップ設定部を具備する。
[0020] また、本発明の移動通信システムの前記基地局装置のギャップ設定部は、前記移 動局装置から通知される監視対象無線アクセス技術の種類に応じて前記移動局装 置のためのギャップの長さを設定する。
[0021] また、本発明の移動通信システムの前記基地局装置のギャップ設定部は、前記移 動局装置が監視対象無線アクセス技術の種類を複数有して!/ヽる場合に、前記移動 局装置におけるギャップの長さを、同時に複数設定する。
[0022] また、本発明の移動通信システムは、複数の移動局装置と複数の基地局装置とを 備える移動通信システムであって、前記基地局装置は、前記移動局装置の監視対 象無線アクセス技術と無線通信の使用周波数帯域との組み合わせの種類に応じて 前記移動局装置のためのギャップの長さを設定するギャップ設定部を具備する。
[0023] また、本発明の移動通信システムの前記基地局装置のギャップ設定部は、前記移 動局装置から通知される監視対象無線アクセス技術と無線通信の使用周波数帯域 との組み合わせの種類に応じて前記移動局装置のためのギャップの長さを設定する
[0024] また、本発明の移動通信システムの前記基地局装置のギャップ設定部は、前記移 動局装置が監視対象無線アクセス技術と無線通信の使用周波数帯域との組み合わ せの種類を複数有している場合に、前記移動局装置におけるギャップの長さを、同 時に複数設定する。
[0025] また、本発明の移動通信システムの前記基地局装置のギャップ設定部は、同時に 設定した複数のギャップの長さのうち、短いギャップで前記基地局装置が前記移動 局装置より受信品質指標を受信した際は前記短いギャップより長く設定したギャップ の長さをリセットし、短いギャップで前記基地局装置が前記移動局装置より受信品質 情報を受信しな力つた際は前記短いギャップより長く設定したギャップの長さを «続 して設定する。
[0026] また、本発明の移動通信システムの前記移動局装置は、監視対象無線アクセス技 術の種類に応じてギャップの長さを設定するギャップ設定部を具備する。
[0027] また、本発明の移動通信システムの前記移動局装置は、監視対象無線アクセス技 術と無線通信の使用周波数帯域との組み合わせの種類に応じてギャップの長さを設 定するギャップ設定部を具備する。
[0028] また、本発明の移動通信システムの前記移動局装置は、受信品質指標に基づいて 、周辺の基地局装置の監視を行うことができる測定モードとするか前記周辺の基地 局装置の監視を行わない通常モードとするかを決定する第 1のモード決定部を有し、 前記移動局装置のギャップ設定部は、前記第 1のモード決定部の決定結果及び前 記受信品質指標に基づいてギャップを設定し、前記基地局装置は、前記移動局装 置からフィードバックされる受信品質指標に基づいて、前記移動局装置が前記測定 モードと前記通常モードのいずれのモードにあるかを決定する第 2のモード決定部を 有し、前記基地局装置のギャップ設定部は、前記第 2のモード決定部の決定結果及 び前記受信品質指標に基づいてギャップを設定する。
[0029] また、本発明の移動通信システムの前記移動局装置は、受信品質指標に基づいて 、周辺の基地局装置の監視を行うことができる測定モードとするか前記周辺の基地 局装置の監視を行わない通常モードとするかを決定する第 1のモード決定部を有し、 前記移動局装置のギャップ設定部は、前記第 1のモード決定部の決定結果及び前 記受信品質指標に基づいてギャップを設定し、前記基地局装置のギャップ設定部は 、前記移動局装置からフィードバックされる前記第 1のモード決定部の決定結果及び 前記受信品質指標に基づいてギャップを設定する。
[0030] また、本発明の移動通信システムの前記移動局装置は、受信品質指標に基づいて 、周辺の基地局装置の監視を行うことができる測定モードとするか前記周辺の基地 局装置の監視を行わない通常モードとするかを決定する第 1のモード決定部を有し、 前記移動局装置のギャップ設定部は、前記第 1のモード決定部の決定結果及び前 記受信品質指標に基づいてギャップを設定し、前記基地局装置のギャップ設定部は 、前記移動局装置からフィードバックされる受信品質指標の報告結果に基づ!、てギ ヤップを設定する。
[0031] また、本発明の移動局装置は、基地局装置と無線通信を行う移動局装置であって 、監視対象無線アクセス技術の種類に応じてギャップの長さを設定するギャップ設定 部を具備する。
[0032] また、本発明の移動局装置は、基地局装置と無線通信を行う移動局装置であって 、監視対象無線アクセス技術と無線通信の使用周波数帯域との組み合わせの種類 に応じてギャップの長さを設定するギャップ設定部を具備する。 [0033] また、本発明の基地局装置は、移動局装置と無線通信を行う基地局装置であって 、前記移動局装置の監視対象無線アクセス技術の種類に応じて前記移動局装置の ためのギャップの長さを設定するギャップ設定部を具備する。
[0034] また、本発明の基地局装置は、移動局装置と無線通信を行う基地局装置であって 、前記移動局装置の監視対象無線アクセス技術と無線通信の使用周波数帯域との 組み合わせの種類に応じて前記移動局装置のためのギャップの長さを設定するギヤ ップ設定部を具備する。
[0035] また、本発明の移動通信方法は、複数の移動局装置と複数の基地局装置との間の 移動通信方法であって、前記基地局装置は、前記移動局装置の監視対象無線ァク セス技術の種類に応じて前記移動局装置のためのギャップの長さを設定する。
[0036] また、本発明の移動通信方法は、複数の移動局装置と複数の基地局装置との間の 移動通信方法であって、前記基地局装置は、前記移動局装置の監視対象無線ァク セス技術と無線通信の使用周波数帯域との組み合わせの種類に応じて前記移動局 装置のためのギャップの長さを設定する。
発明の効果
[0037] 本発明では、移動局装置の監視対象無線アクセス技術の種類に応じてその移動 局装置のためのギャップの長さを基地局装置が設定するようにした。
これにより、基地局装置は、移動局装置の監視対象無線アクセス技術の種類に応 じてギャップの長さを設定することが可能となり、冗長なギャップ区間が設定されること を回避することができ、効率良く無線リソースを使用することができる。
図面の簡単な説明
[0038] [図 1]3GPPに基づく EUTRAの下りリンク無線フレーム構成の一例を示す図である。
[図 2]本発明の第 1の実施形態による移動局装置の構成を示すブロック図である。
[図 3]本発明の第 1の実施形態によるフィードバック間隔設定部 34 (図 2)の構成を示 すブロック図である。
[図 4A]本発明の第 1の実施形態における無線アクセス技術、ギャップの長さの関係を 表わす表である。
[図 4B]本発明の第 1の実施形態における無線アクセス技術、使用周波数帯域、ギヤ ップの長さの関係を表わす表である。
圆 5]本発明の第 1の実施形態の基地局装置が設定するギャップの長さについて説 明するための図である。
圆 6]本発明の第 1の実施形態による基地局装置の構成を示すブロック図である。 圆 7]本発明の第 1の実施形態によるリソース割り当て間隔設定部 43 (図 6)の構成を 示すブロック図である。
圆 8]本発明の第 1の実施形態による移動局装置のフィードバック間隔選択部 14の 処理を示すフローチャートである。
圆 9]本発明の第 1の実施形態による基地局装置のリソース割り当て間隔選択部 24 の処理を示すフローチャートである。
圆 10]本発明の第 2の実施形態によるリソース割り当て間隔を説明する図である。 圆 11]本発明の第 2の実施形態の変形例による基地局装置のリソース割り当て間隔 選択部 24の処理を示すフローチャートである。
[図 12]移動局装置が移動する際のハンドオーバの処理について説明するための図 である。
[図 13]基地局装置から移動局装置に送信される個別チャネルの一例を示す図等で ある。
圆 14]従来力も使用されていたギャップ区間の制御方法の一例を説明するための図 である。
符号の説明
BS1、 BS2、 BS3、 BS4 基地局装置、
MS1、 MS2、 MS4、 MS6 移動局装置、
11 平均 CQI導出部、
12 メモリ、
13 モード判定部、
14 フィードバック間隔選択部、
21 平均 CQI導出部、
22 メモリ、 23 モード判定部、
24 リソース割り当て間隔選択部、
30 通信部、
31 タイマ、
32 制御部、
33 CQI瞬時値測定部、
34 フィードバック間隔設定部、
40 通信部、
41 タイマ、
42 制御部、
43 リソース割り当て間隔設定部
発明を実施するための最良の形態
[0040] (第 1の実施形態)
始めに、本発明の第 1の実施形態による移動通信システムについて説明する。 図 1は、 3GPPに基づく EUTRAの下りリンク無線フレーム構成の一例を示す図で ある。この図において、横軸は時間であり、縦軸は周波数である。下りリンク無線フレ ームは、複数のサブキャリアの塊であり、周波数帯域幅 Bchと時間帯域幅 TTI (Trans mission Timing Interval)で定まる 2次元の複数無線リソースブロック(RB : Resource B lock)により構成されている。 BWは下りリンクの周波数帯域幅であり、 Bchはリソース ブロックの周波数帯域幅であり、 Bscはサブキャリアの周波数帯域幅であり、 Tsは OF DMシンボル長である。
図 1に示したように、共通パイロットチャネル(CPICH : Common Pilot Channel)は、 各 TTIの先頭にマッピングされ、報知チャネル(BCH : Broadcast Channel)と同期チ ャネル(SCH : Synchronization Channel)は、各無線フレームの先頭にマッピングされ ている。各リソースブロックの残りの一部はトラフィックチャネル(TCH : Traffic Channel )として使用し、 AMCSを用いて各移動局装置に宛ててマッピングされる。
[0041] 移動局装置は、初めて電源が投入される場合に、基地局装置から同期チャネルを 受信し、キャリアオフセット、 OFDMシンボルタイミング、無線フレームタイミング、 TTI タイミング、セル番号グループ(Cell Group Index) Zセル番号(Cell Index) (例えば、 スクランブルコード番号グループ Zスクランブルコード番号)などの同定を行う。その 後、報知チャネルにより基地局装置の固有情報などのシステム報知情報を受信し、 位置登録を経て、待ち受けモードに入り、下りリンクのページングインジケータチヤネ ル(PICH: Paging Indicator Channel)などを通じて、無線接続手順を経て、基地局装 置と接続し、アクティブモードに入る。そして、移動局装置は、 CQI瞬時値を測定し、 基地局装置に対してその CQI瞬時値をフィードバックする。待ち受けモードは、移動 局装置が基地局装置との間で、パケットデータ通信を行っていない状態をいう。また 、アクティブモードは、移動局装置が基地局装置との間で、パケットデータ通信中の 状態を 、う。ページングインジケータチャネル及びページングチャネルの代わりに、 下り共用制御チャネル (SCCH: Shared Control Channel)を使用してもよ!/、。
[0042] 基地局装置は、各移動局装置の CQI瞬時値を受信し、下りトラフィックチャネルの 各リソースブロックにパケットデータの割り当てを行う。前記パケットデータの割り当て を、パケットデータのスケジューリング、リソース割り当て、リソースブロックの割り当てと 呼称することもあるが、すべて同じ意味である。
パケットデータの割り当ての一例として、伝播路の時間的変動の小さいユーザに対 しては、伝播路状況の良いチャネルのリソースブロックを割り当てることによりマルチ ユーザダイバーシチ効果を出す Localized割り当てや、伝播路の時間的変動の大き いユーザに対しては広帯域のチャネルのリソースブロック(またはそのブロックの中の サブキャリア)にパケットデータを分散させて割り当てることにより周波数ダイバーシチ 効果を出す Distributed割り当てなどが用いられる。
[0043] また、パケットデータのスケジューリングの方法としては、 RR (Round Robin)法、 Ma xし IR (Maximum Carrier to Interference Ratio)法、 PF (Proportional Fairness)法の 3 つのアルゴリズムが主に知られて 、る。
RR法は、各移動局装置 (ユーザ)の下りリンク CQIの状態に関わらず、下りトラフイツ クチャネルのリソースブロックの割り当てを均等に行う方法である。公平性を最優先し た方法で、スケジューリングの効果は小さぐセル全体の平均スループットは他の方 式と比べて最も小さい。 [0044] MaxCIR法は、各移動局装置の CQI瞬時値が最大の移動局装置に対して、下りト ラフィックチャネルのリソースブロックの割り当てを行う方法である。 CQI瞬時値の高!ヽ 移動局装置に対して、スケジューリングの効果は大きぐ非常に高いスループットが 得られ、セル全体の下りリンク平均スループットも増大する。しかし、 CQI瞬時値の低 い移動局装置に対しては、ほとんどリソースブロックが割り当てられず、非常に低いス ループットとなり、移動局装置間の不公平性が高い。
[0045] PF法は、各移動局装置の CQI瞬時値と CQI平均値との比に基づ!/、て、 CQI瞬時 値が CQI平均値より大きい移動局装置にトラフィックチャネルのリソースブロックの割り 当てを行う方法である。各移動局装置に対するリソースブロックの割り当て時間をほ ぼ公平にした上で、 CQIが良好なユーザ力 優先的にリソースブロックの割り当てを 実現する。ただし、 RR法ほどではないが、ある程度セル全体の平均スループットが減 少する。
[0046] 本実施形態は、アクティブモードにおける移動局装置の測定モードでの CQI瞬時 値の測定間隔 (移動局装置における CQI瞬時値のフィードバック間隔)を変更する。 それに伴い、基地局装置の CQI瞬時値のフィードバック用の上りリンクリソース割り当 て間隔、又は下りリンクリソースの割り当て間隔を変更する。
異なる移動通信システムに対して Inter— RAT— HO (かつ、 Inter— Freq— HO) を行う移動局装置が複数存在する移動通信システムを想定する。このような状況では 、例えば、ある移動局装置は UTRAの監視、及び測定を行い、ある移動局装置は G SMの監視、及び測定を行う。この際、 UTRA、 GSM、また 3GPPの規定外の無線 アクセス技術を用いる移動通信システムは異なるフレーム長、フレーム構造が仕様と して規定されており、それに伴い受信品質の測定手段、手順が異なるため、測定に 最低限必要な時間が異なる。そこで、本実施形態では、移動局装置が Inter— RAT -HO (かつ、 Inter -Freq -HO)の対象とする移動通信システムの種類に応じて、 アクティブモードにおける移動局装置の測定モードでの移動局装置における CQI瞬 時値の測定間隔 (フィードバック間隔)、基地局装置における移動局装置の CQI瞬時 値のフィードバック用の上りリンクリソース割り当て間隔、又は下りリンクリソース割り当 て間隔を変更する。 [0047] 図 2は、本発明の第 1の実施形態による移動局装置の構成を示すブロック図である
。移動局装置は、通信部 30、タイマ 31、制御部 32、 CQI瞬時値測定部 33、フィード バック間隔設定部 34を具備する。
通信部 30は、無線通信により、 CQI瞬時値測定部 33で測定する CQI瞬時値を、 制御部 32を通して基地局装置へ送信したり、基地局装置とパケットデータの送受信 をしたり、パケットデータを CQI瞬時値測定部 33及び制御部 32に出力したりする。
CQI瞬時値測定部 33は、通信部 30から入力されたパケットデータを基に所定の時 刻における CQI瞬時値を測定し、測定した CQI瞬時値をフィードバック間隔設定部 3
4及び制御部 32に出力する。
[0048] タイマ 31は、制御部 32より指示された時間を計時し、結果を制御部 32に出力する
。制御部 32は、移動局装置の各部の動作を制御したり、制御情報を各部に出力した りする。
フィードバック間隔設定部 34は、 CQI瞬時値測定部 33より入力された CQI瞬時値 と制御部 32より入力されたノヽンドオーバのための監視及び測定を行う無線アクセス 技術の情報を基に CQI瞬時値を基地局装置へ送信する間隔を設定し、間隔を制御 部 32に出力する。移動局装置は、フィードバック間隔設定部 34で設定された間隔を 、制御部 32を通してタイマ 31で計時して、制御部 32より入力された CQI瞬時値を基 地局装置へ送信する。
[0049] 図 3は、本発明の第 1の実施形態によるフィードバック間隔設定部 34 (図 2)の構成 を示すブロック図である。フィードバック間隔設定部 34は、平均 CQI導出部 11、メモ リ 12、モード判定部 13 (第 1のモード決定部)、フィードバック間隔選択部 14 (ギヤッ プ設定部)を具備する。
平均 CQI導出部 11は、移動局装置における CQI瞬時値に基づいて、 CQI平均値 を導出する。メモリ 12は、一定期間の間に測定された複数の CQI瞬時値 (あるいはそ の平均値)を記憶保持する。
モード判定部 13は、平均 CQI導出部 11で導出された CQI平均値と、 CQI閾値とか ら通常モードと測定モードとの切り替えの判定を行う。なお、 CQI閾値は基地局装置 力 予め通知されたり、システムパラメータとして予め設定されたりする。 フィードバック間隔選択部 14は、モード判定部 13の判定結果と、移動局装置の監 視対象無線アクセス技術の種類又は前記移動局装置の監視対象無線アクセス技術 と無線通信に使用する使用周波数帯域との組み合わせの種類とから構成される監視 移動通信システム情報に応じて CQI瞬時値のフィードバック間隔であるギャップの長 さを選択し出力する。無線アクセス技術には、例えば、 UTRA、 GSM、非 3GPPなど がある。
図 4Aは、本発明の第 1の実施形態における無線アクセス技術、ギャップの長さの 関係を表わす表である。本実施形態では、移動局装置の監視対象無線アクセス技 術に応じて、ギャップの長さを決定する。
例えば、移動局装置の監視対象無線アクセス技術が UTRAである場合には、基地 局装置力も移動局装置に対するリンクリソースの割り当てを停止して、時間の長さが T 10のギャップを生成する。 GSM、非 3GPPシステムである場合には、時間の長さが T 20、 T30のギャップをそれぞれ生成する。なお、図 4Aに示す関係ではなぐ以下の 図 4Bに示す関係を利用してギャップの長さを決定してもよい。
図 4Bは、本発明の第 1の実施形態における無線アクセス技術、使用周波数帯域、 ギャップの長さの関係を表わす表である。本実施形態では、移動局装置の監視対象 無線アクセス技術と無線通信の使用周波数帯域との組み合わせに応じて、ギャップ の長さを決定する。
例えば、移動局装置の監視対象無線アクセス技術が UTRAである場合であって、 使用周波数帯域が flMHz帯域であるときには、基地局装置力 移動局装置に対す るリンクリソースの割り当てを停止して、時間の長さが T10のギャップを生成する。また 、使用周波数帯域が f2MHz帯域であるときには、時間の長さが T10のギャップを生 成する。
また、移動局装置の監視対象無線アクセス技術が GSMである場合であって、使用 周波数帯域が f3MHz帯域であるときには、基地局装置力 移動局装置に対するリン クリソースの割り当てを停止して、時間の長さが T20のギャップを生成する。また、使 用周波数帯域が f4MHz帯域であるときには、時間の長さが T21のギャップを生成す る。 また、移動局装置の監視対象無線アクセス技術が非 3GPPシステムである場合で あって、使用周波数帯域が f5GHz帯域であるときには、基地局装置から移動局装置 に対するリンクリソースの割り当てを停止して、時間の長さが T30のギャップを生成す る。また、使用周波数帯域が f6GHz帯域であるときには、時間の長さが T31のギヤッ プを生成する。
[0051] 図 5の (a)〜 (c)は、本発明の第 1の実施形態の基地局装置が設定するギャップの 長さについて説明するための図である。基地局装置は、移動局装置の監視対象無 線アクセス技術力 SGSMである場合には、 GSMを利用する基地局装置を監視するた めに最適なギャップの長さ T20を設定して、移動局装置との間で無線通信を行なう ( 図 5の (a)参照)。
また、基地局装置は、移動局装置の監視対象無線アクセス技術が UTRAである場 合には、 UTRAを利用する基地局装置を監視するために最適なギャップの長さ T10 を設定して、移動局装置との間で無線通信を行なう(図 5の (b)参照)。
また、基地局装置は、移動局装置の監視対象無線アクセス技術が非 3GPPシステ ムである場合には、非 3GPPシステムを利用する基地局装置を監視するために最適 なギャップの長さ T30を設定して、移動局装置との間で無線通信を行なう(図 5の(c) 参照)。
なお、図 5の(a)〜(c)では、 T20く T10<T30である場合を示している。
[0052] 平均 CQI導出部 11では、パケットデータの下りリンクの共通パイロットチャネルに含 まれるパイロット信号を基に検出された CQI瞬時値と、メモリ 12に記憶保持された過 去の一定期間の間に測定された CQI瞬時値とを平均することにより CQI平均値を導 出し、導出した CQI平均値をモード判定部 13に出力する。新たな CQI瞬時値はメモ リ 12に記憶保持されるとともに、一定期間を経過した CQI瞬時値はメモリ 12から消去 される。
モード判定部 13では、平均 CQI導出部 11から入力された CQI平均値と、通常モー ドと測定モードとの切り替えを行う CQI閾値との比較を行 、、フィードバック間隔選択 部 14に判定したモード情報を出力する。
フィードバック間隔選択部 14は、通常モード時のフィードバック間隔、測定モード時 の各種類の無線アクセス技術又は無線アクセス技術と無線通信に使用する使用周 波数帯域との組み合わせに対する複数のフィードバック間隔を予め記憶しており、モ ード判定部 13から入力されたモード情報、制御部 32 (図 2)より入力された監視対象 無線アクセス技術又は監視対象無線アクセス技術と無線通信に使用する使用周波 数帯域との組み合わせの情報が含まれる監視移動通信システム情報を基にフィード バック間隔を選択して出力する。
[0053] 図 6は、本発明の第 1の実施形態による基地局装置の構成を示すブロック図である 。基地局装置は、通信部 40、タイマ 41、制御部 42、リソース割り当て間隔設定部 43 を具備する。
通信部 40は、無線通信により、移動局装置における CQI瞬時値測定部 33 (図 2) で測定された CQI瞬時値を受信したり、移動局装置とパケットデータの送受信をした り、パケットデータを制御部 42に出力したりする。
タイマ 41は、制御部 42より指示された時間を計時し、その計時結果を制御部 42に 出力する。制御部 42は、基地局装置の各部の動作を制御したり、制御情報を各部に 出力したりする。
リソース割り当て間隔設定部 43は、移動局装置より通知された CQI瞬時値と監視 対象無線アクセス技術又は監視対象無線アクセス技術と無線通信に使用する使用 周波数帯域との組み合わせの情報が含まれる監視移動通信システム情報を基に無 線リソースの割り当てを行う間隔を設定し、間隔を制御部 42に出力する。
基地局装置は、リソース割り当て間隔設定部 43で設定された間隔を、制御部 42を 通してタイマ 41で計時して、アップリンクの無線リソースを移動局装置に割り当て、 C QI瞬時値を移動局装置から受信する。
[0054] 図 7は、本発明の第 1の実施形態によるリソース割り当て間隔設定部 43 (図 6)の構 成を示すブロック図である。リソース割り当て間隔設定部 43は、平均 CQI導出部 21、 メモリ 22、モード判定部 23 (第 2のモード決定部)、リソース割り当て間隔選択部 24 ( ギャップ設定部)を移動局装置の数(UE (User Equipment) 1、 UE2、 · · ·、 UEn)だ け具備する。
平均 CQI導出部 21は、移動局装置力も通知される CQI瞬時値に基づいて、 CQI 平均値を導出する。メモリ 22は、一定期間の間に測定された複数の CQI瞬時値 (あ るいはその平均値)を記憶保持する。
モード判定部 23は、平均 CQI導出部 21で導出された CQI平均値と、 CQI閾値とか ら通常モードと測定モードとの切り替えの判定を行う。なお、 CQI閾値は予め設定さ れている。リソース割り当て間隔選択部 24は、モード判定部 23の判定結果と、移動 局装置より通知された監視対象無線アクセス技術又は監視対象無線アクセス技術と 無線通信に使用する使用周波数帯域との組み合わせの情報から、 CQI瞬時値のフ イードバックのための移動局装置への上りリンクのリソース割り当て間隔を選択し出力 する。
[0055] 移動局装置毎に設けられた平均 CQI導出部 21では、移動局装置からフィードバッ クされた CQI瞬時値と、メモリ 22に記憶保持された過去の一定期間の間に測定され た CQI瞬時値とを平均することにより CQI平均値を導出し、導出した CQI平均値をモ ード判定部 23に出力する。新たな CQI瞬時値はメモリ 22に記憶保持されるとともに、 一定期間を経過した CQI瞬時値 (平均値算出に寄与しな 、一定時間を経過した CQ I瞬時値)はメモリ 22から消去される。
モード判定部 23では、平均 CQI導出部 21から入力された CQI平均値と、通常モー ドと測定モードとの切り替えを行う CQI閾値との比較を行い、リソース割り当て間隔選 択部 24に判定したモード情報を出力する。
リソース割り当て間隔選択部 24は通常モード時のリソース割り当て間隔、測定モー ド時の各種類の無線アクセス技術又は無線アクセス技術と無線通信に使用する使用 周波数帯域との組み合わせに対する複数のリソース割り当て間隔を予め格納してお り、モード判定部 23から入力されたモード情報、制御部 42 (図 6)を通して移動局装 置より通知された監視対象無線アクセス技術又は監視対象無線アクセス技術と無線 通信に使用する使用周波数帯域との組み合わせの情報を基に、上りリンクの CQI瞬 時値のフィードバックに使用するリソース割り当て間隔を選択して出力する。
[0056] 図 8は、本発明の第 1の実施形態による移動局装置のフィードバック間隔選択部 14 の処理を示すフローチャートである。ここでは、 Inter— RAT— HO (かつ、 Inter—F req— HO)の測定モードの場合について説明する。また、異なる無線アクセス技術と して、移動局装置が UTRA、 GSM、非 3GPPシステムのいずれかを使用する場合に ついて説明する。また、各無線アクセス技術を用いた無線通信に使用する使用周波 数帯域が 1種類の場合について説明する。
始めに、平均 CQI導出部 11は、 CQI報告タイマをリセットする (ステップ S 10)。そし て、移動局装置の現在のモードが、通常モードであるか、測定モードであるかについ てモード判定部 13が判定する (ステップ S 11)。通常モードにある場合には、タイマの 値が TO (通常モード CQI報告間隔)以上であるか否かにつ 、て判定する (ステップ S 12)。ステップ S 12でタイマの値が TO以上である場合には、ステップ S 17へ進む。一 方、ステップ S12でタイマの値が TOよりも小さい場合には、ステップ S11へ進む。
[0057] ステップ S11において測定モードにある場合には、監視対象無線アクセス技術の 種類が UTRAである力、 GSMである力、非 3GPPシステムであるかについて判定す る(ステップ S 13)。
ステップ S 13にお 、て監視対象無線アクセス技術の種類が UTRAである場合には 、タイマの値が T10 (UTRA測定モード CQI報告間隔)以上であるか否かについて 判定する(ステップ S14)。ステップ S14でタイマの値が T10以上である場合には、ス テツプ S17へ進む。一方、ステップ S14でタイマの値が T10よりも小さい場合には、ス テツプ S 11へ進む。
ステップ S 13において監視対象無線アクセス技術の種類が GSMである場合には、 タイマの値が T20以上であるか否かにつ!、て判定する(ステップ S 15)。ステップ S 15 でタイマの値力 ST20 (GSM測定モード CQI報告間隔)以上である場合には、ステツ プ S17へ進む。一方、ステップ S15でタイマの値が T20よりも小さい場合には、ステツ プ S 11へ進む。
[0058] ステップ S 13にお 、て監視対象無線アクセス技術の種類が非 3GPPシステムであ る場合には、タイマの値力T30 (非 3GPPシステム測定モード CQI報告間隔)以上で あるか否かについて判定する(ステップ S 16)。ステップ S 16でタイマの値が T30以上 である場合には、ステップ S17へ進む。一方、ステップ S16でタイマの値が T30よりも zJ、さい場合には、ステップ S 11へ進む。
そして、各モードにおける CQI報告間隔に基づ 、て CQI瞬時値を CQI瞬時値測定 部 33が計測し (ステップ S17)、その CQI瞬時値の情報を通信部 30が基地局装置に 対してフィードバックすることにより報告する (ステップ S18)。そして、平均 CQI導出 部 11は、ステップ S 17で計測して導出した CQI瞬時値と、メモリ 12に記憶保持されて V、る CQI瞬時値とを用 V、て、 CQI平均値を計算する (ステップ S 19)。
次に、モード判定部 13は、 CQI平均値が CQI閾値よりも小さいか否かについて判 定する(ステップ S 20)。ステップ S20において CQI平均値が CQI閾値以上である場 合には、移動局装置を通常モードに設定する (ステップ S21)。一方、ステップ S20に おいて CQI平均値力 SCQI閾値よりも小さい場合には、移動局装置を測定モードに設 定する(ステップ S22)。なお、ステップ S14、ステップ S15、ステップ S16において、 Noと判断した場合にステップ S 11に進むのではなぐステップ S 13に進むという処理 にすることちでさる。
[0059] 図 8で説明したように、本実施形態による移動局装置では、ステップ S13、ステップ S14〜S16においてフィードバック間隔選択部 14力 監視対象無線アクセス技術の 種類に応じて又は前記移動局装置の監視対象無線アクセス技術と無線通信の使用 周波数帯域との組み合わせの種類に応じて測定モード CQI報告間隔 T10、 Τ20、 Τ 30 (ギャップの長さ)を設定する。なお、ギャップとは、移動局装置が無線通信を行う 基地局装置の監視を行うために、基地局装置力 移動局装置へのリンクリソースの割 り当てを停止する時間である。このギャップの時間帯に、移動局装置は周辺の無線 通信を行う基地局装置を監視する。
このように、移動局装置では、無線アクセス技術の種類に応じて又は前記移動局装 置の監視対象無線アクセス技術と無線通信の使用周波数帯域との組み合わせの種 類に応じて移動局装置のためのギャップの長さを設定するようにしたので、無線ァク セス技術の種類に応じて又は前記移動局装置の監視対象無線アクセス技術と無線 通信の使用周波数帯域との組み合わせの種類に最適なギャップの長さを設定するこ とがでさる。
[0060] 図 9は、本発明の第 1の実施形態による基地局装置のリソース割り当て間隔選択部 24の処理を示すフローチャートである。ここでは、 Inter— RAT— ΗΟ (かつ、 Inter — Freq— HO)の測定モードの場合について説明する。また、異なる無線アクセス技 術として、基地局装置が UTRA、 GSM、非 3GPPシステムのいずれかを使用する場 合について説明する。また、各無線アクセス技術を用いた無線通信に使用する使用 周波数帯域が 1種類の場合について説明する。
始めに、平均 CQI導出部 21は、 CQIフィードバックタイマをリセットする(ステップ S1 00)。そして、移動局装置に対する基地局装置の現在のモードが、通常モードである 力 測定モードであるかについてモード判定部 23が判定する(ステップ S101)。ステ ップ S 101で通常モードにある場合には、タイマの値が TO (通常モード CQIフィード ノ ック用リソース割り当て間隔)以上であるか否かについて判定する (ステップ S102) 。ステップ S 102でタイマの値が TO以上である場合には、ステップ S 107へ進む。一 方、ステップ S102でタイマの値が TOよりも小さい場合には、ステップ S101へ進む。 ステップ S101において測定モードにある場合には、移動局装置が監視及び測定 を行う監視対象無線アクセス技術の種類が UTRAである力 GSMである力、非 3GP Pシステムであるかについて判定する(ステップ S 103)。ステップ S 103において監視 対象無線アクセス技術が UTRAである場合には、タイマの値が T10 (UTRA測定モ ード CQIフィードバック用リソース割り当て間隔)以上であるか否かについて判定する (ステップ S104)。ステップ S 104でタイマの値が T10以上である場合には、ステップ S107へ進む。一方、ステップ S104でタイマの値が T10よりも小さい場合には、ステ ップ S 101へ進む。
ステップ S103において監視対象無線アクセス技術の種類が GSMである場合には 、タイマの値が T20以上であるか否かについて判定する(ステップ S105)。ステップ S 105でタイマの値が T20 (GSM測定モード CQIフィードバック用リソース割り当て間 隔)以上である場合には、ステップ S107へ進む。一方、ステップ S 105でタイマの値 力 ST20よりも小さい場合には、ステップ S101へ進む。
ステップ S 103において監視対象無線アクセス技術の種類が非 3GPPシステムであ る場合には、タイマの値が T30 (非 3GPPシステム測定モード CQIフィードバック用リ ソース割り当て間隔)以上であるか否かについて判定する(ステップ S106)。ステップ S 106でタイマの値が T30以上である場合には、ステップ S107へ進む。一方、ステツ プ S106でタイマの値が T30よりも小さい場合には、ステップ S101へ進む。 [0062] そして、各モードにおける CQIフィードバック用リソース割り当て間隔に基づいて C QI瞬時値フィードバックのための上りリンクリソースを移動局装置に対して割り当て( ステップ S 107)、移動局装置力もフィードバックされた CQI瞬時値を取得する (ステツ プ S108)。そして、平均 CQI導出部 21は、ステップ S 108で取得した CQI瞬時値と、 メモリ 22に記憶保持されている CQI瞬時値とを用いて、 CQI平均値を計算するととも に、前記 CQI瞬時値をメモリ 22に記憶保持させ、一定期間を経過した CQI瞬時値は メモリ 22から消去する(ステップ S 109)。
次に、モード判定部 23は、 CQI平均値が CQI閾値よりも小さいか否かについて判 定する(ステップ S110)。ステップ SI 10で CQI平均値が CQI閾値以上である場合に は、基地局装置を通常モードに設定する (ステップ S 111)。一方、ステップ S 110で C QI平均値が CQI閾値よりも小さい場合には、基地局装置を測定モードに設定する( ステップ S 112)。なお、ステップ S 104、ステップ S 105、ステップ S 106【こお!ヽて、 No と判断した場合にステップ S 101に進むのではなぐステップ S 103に進むという処理 にすることちでさる。
[0063] 図 9で説明したように、本実施形態による基地局装置では、ステップ S103、ステツ プ S104〜S106においてリソース割り当て間隔選択部 24が、移動局装置の監視対 象無線アクセス技術の種類に応じて前記移動局装置のための測定モード CQIフィー ドバック用リソース割り当て間隔 T10、 Τ20、 Τ30 (ギャップの長さ)を設定する。
[0064] 上述したように、本発明の第 1の実施形態による移動通信システムでは、図 9のステ ップ S103、ステップ S104〜S106において基地局装置のリソース割り当て間隔選択 部 24が、移動局装置の監視対象無線アクセス技術の種類に応じて前記移動局装置 のための測定モード CQIフィードバック用リソース割り当て間隔 T10、 Τ20、 Τ30 (ギ ヤップの長さ)を設定する。これにより、移動局装置の監視対象無線アクセス技術の 種類に応じて、適切なギャップの長さを基地局装置が設定することができるため、移 動局装置と基地局装置の間の無線通信においてリンクリソースの利用に無駄が生じ ることを防ぐことができる。
[0065] また、本発明の第 1の実施形態による移動通信システムでは、図 8のステップ S20 において移動局装置のモード判定部 13が、周辺の基地局装置の監視を行うことが できる測定モードとするか周辺の基地局装置の監視を行わない通常モードとするか を決定し、図 9のステップ S110において基地局装置のモード判定部 23が、移動局 装置力もフィードバックされる CQI瞬時値に基づ 、て、移動局装置が測定モードと前 記通常モードのいずれのモードにあるかを決定する。ここで、周辺の基地局装置とは 、自移動局装置が無線通信を行って!/、る基地局装置以外の基地局装置を!、う。
[0066] なお、上述した本発明の第 1の実施形態で用いられる移動局装置と基地局装置は CQI瞬時値を移動局装置力も基地局装置へフィードバックして共有することにより C QI瞬時値の測定間隔を制御している。つまり、移動局装置と基地局装置の両方にお いて通常モードか測定モードかの判断を行っている。し力しながら、このような形態に 限定されるものではなぐ移動局装置のみにモード判定部 13を備え、その結果を基 地局装置に通知し、基地局装置は通知されたモード情報を基に移動局装置のモー ド状況を把握してもよい。つまり、図 8のステップ S20において移動局装置のモード判 定部 13が、周辺の基地局装置の監視を行うことができる測定モードとする力周辺の 基地局装置の監視を行わな 、通常モードとするかを決定し、基地局装置のリソース 割り当て間隔選択部 24が移動局装置力もフィードバックされるモード判定部 13の決 定結果に基づいて測定モード CQIフィードバック用リソース割り当て間隔を設定する ようにしてもよい。
また、基地局装置のみにモード判定部 23を備え、その結果を移動局装置に通知及 び指示し、移動局装置は通知、指示されたモード情報を基にモードを設定したりして ちょい。
[0067] なお、基地局装置が、周辺基地局装置が使用する無線アクセス技術又は無線ァク セス技術と無線通信に使用する使用周波数帯域との組み合わせに関する情報を移 動局装置に対して報知送信して、移動局装置力 nter— RAT— HO (かつ、 Inter— Freq-HO)を行う移動通信システムを予め絞り込むようにすることもできる。移動局 装置は対応する無線アクセス技術が周辺にないことを予め認識し、前記無線ァクセ ス技術の不必要な監視、測定を行わないようにすることにより、消費電力の低減が図 られる。例えば、基地局装置は周辺に UTRAのみが存在することをセル内の移動局 装置に通知し、 GSMに対応している移動局装置は不必要な監視、測定を行わない ようにすることができる。
[0068] なお、上述した本発明の第 1の実施形態では、基地局装置のリソース割り当て間隔 設定部 43を移動局装置の数だけ備えると記載しているが、これに限定されるもので はない。
各部を複数の移動局装置の処理に対して共有し、処理タイミングを移動局装置間で ずらして処理を行う構成とすることもできる。
[0069] (第 2の実施形態)
本発明の第 2の実施形態は、一つの移動局装置が複数の異なる移動通信システム に Inter— RAT— HO (かつ、 Inter— Freq— HO)を行うことができる機能を備えて いる場合に、移動局装置が複数ある中からどの種類の無線アクセス技術の監視、測 定を行うかを基地局装置は前記移動局装置力も通知されることなぐ CQI瞬時値のフ イードバックのための上りリンクリソース割り当て間隔、又は、下りリンクリソース割り当 て間隔を、同時に複数設定する。本発明の第 2の実施形態による基地局装置の構成 は第 1の実施形態(図 6、図 7)と同様であり、処理のみが異なる。
[0070] 図 10は、第 2の実施形態の基地局装置におけるリソース割り当て間隔の説明図で ある。基地局装置は、移動局装置力もフィードバックされた CQI瞬時値が CQI平均値 より小さいことを導出し、移動局装置力 nter— RAT— HO (かつ、 Inter— Freq— H O)のために他の無線アクセス技術の監視、測定を開始すると判定する。次に、基地 局装置は複数の異なる無線アクセス技術に Inter— RAT— HO (かつ、 Inter -Freq -HO)を行うことができる機能を備えている移動局装置に対して、フィードバックのた めの上りリンクリソースを異なる間隔で複数割り当てる。ここでは、 GSM用と UTRA用 の 2つの無線アクセス技術の監視用の上りリンクリソースを割り当てる場合を示し、 GS Mの方が UTRAより監視、測定に最低限必要な時間が短いとする。そして、移動局 装置は GSMの監視及び測定を行った場合には GSM用上りリンクリソースを用いて C QI瞬時値を基地局装置にフィードバックし、 UTRAの監視及び測定を行った場合に は UTRA用の上りリンクリソースを用いて CQI瞬時値を基地局装置にフィードバック する。
[0071] なお、複数の上りリンクリソースを割り当てることに関して、実際には複数の上りリンク リソースを割り当てる時間は異なり、ギャップ区間は上りリンクリソースを割り当てな 、こ とから、上述で複数の上りリンクリソースを割り当てると言う意味は、言い換えれば測 定モードと判定した際に実際にフレームを構築するのではなぐ割り当てる予定であ ると 、うことを意味して 、る。割り当てる予定のタイミングに基地局装置は他の移動局 装置のことも考慮しつつ、全周波数帯域のリソース割り当てを行う。その際に、 CQI瞬 時値のフィードバック用の上りリンクリソースを割り当てる。
[0072] 上述の実施形態により、移動局装置が複数の異なる無線アクセス技術に Inter— R AT— HO (かつ、 Inter— Freq— HO)を行うことができる機能を備えている場合にお いて、移動局装置が複数ある中からどの種類の無線アクセス技術の監視、測定を行 うかを基地局装置に通知することなぐ適切なタイミングで CQI瞬時値をフィードバッ クすることがでさる。
[0073] なお、第 2の実施形態の変形例として、基地局装置は同時に設定した複数の上りリ ンクリソース割り当て間隔にお!、て、短 、ギャップで移動局装置より CQI瞬時値を受 信した際は前記短!、ギャップより長く設定したギャップをリセットし、短 、ギャップで移 動局装置より CQI瞬時値を受信しな力つた際は前記短いギャップより長く設定したギ ヤップを継続して設定し、つまり割り当てたギャップをリセットせずに継続して割り当て るようにしてちょい。
[0074] 図 10を参照して説明を行う。基地局装置は移動局装置より GSM用のギャップの長 さ T20で CQI瞬時値を受信した際は割り当てた UTRA用のギャップの長さ T10をリ セットし、再度他の移動局装置も含めてリソース割り当てを行い、移動局装置より GS M用のギャップの長さ T20で CQI瞬時値を受信しな力つた際は割り当てた UTRA用 のギャップの長さ T10を継続して設定し、移動局装置より UTRA用のギャップの長さ T10で CQI瞬時値を受信する。
[0075] 図 11は、本発明の第 2の実施形態の変形例による基地局装置のリソース割り当て 間隔選択部 24の処理を示すフローチャートである。
始めに、平均 CQI導出部 21は、 CQIフィードバックタイマをリセットする(ステップ S2 00)。そして、移動局装置に対する基地局装置の現在のモードが、通常モードである 力 測定モードであるかについてモード判定部 23が判定する(ステップ S201)。ステ ップ S201で通常モードにある場合には、タイマの値が TO (通常モード CQIフィード ノ ック用リソース割り当て間隔)以上であるか否かについて判定する (ステップ S202) 。ステップ S202でタイマの値が TO以上である場合には、ステップ S203へ進む。一 方、ステップ S202でタイマの値が TOよりも小さい場合には、ステップ S201へ進む。
[0076] ステップ S201において測定モードにある場合には、測定モードの開始タイミングで あるかについて判定する(ステップ S 204)。ステップ S 204において測定モードの開 始タイミングである場合には、移動局装置の最も測定間隔の短 、候補監視対象無線 アクセス技術の測定間隔をタイマの比較時間 TXにリソース割り当て間隔設定部 43が 設定する (ステップ S 205)。これにより、移動局装置が現在通信中の基地局装置の 無線アクセス技術の種類とは異なる複数の無線アクセス技術に対応している場合に 、移動局装置における CQI瞬時値 (受信品質指標)のフィードバックのためのギヤッ プの長さを同時に複数設定する。具体的には、同時に設定した複数のギャップの長 さのうち、短いギャップで基地局装置が移動局装置より CQI瞬時値を受信した際は 短 、ギャップより長く設定したギャップの長さをリセットし、短 、ギャップで基地局装置 が移動局装置より CQI瞬時値を受信しな力つた際は短いギャップより長く設定したギ ヤップの長さを継続して設定する。
ステップ S204にお 、て測定モードの開始タイミングでな 、場合には、ステップ S 20 6へ進む o
ステップ S206において、タイマの値が TX (監視無線アクセス技術に応じて異なる 値、リソース割り当て間隔)以上である力否かについて判定する (ステップ S206)。 ステップ S206でタイマの値が TX以上である場合には、ステップ S203へ進む。一方 、ステップ S206でタイマの値が TXよりも小さい場合には、ステップ S201へ進む。そ して、各モードにおける CQIフィードバック用リソース割り当て間隔に基づいて CQI瞬 時値フィードバックのための上りリンクリソースを移動局装置に対して割り当てる (ステ ップ S 203)。
[0077] 次に、移動局装置力も CQI瞬時値を取得したか否かにっ 、て判定する (ステップ S 207) oステップ S207において CQI瞬時値を取得した場合は、ステップ S208へ進む 。一方、ステップ S207において CQI瞬時値を取得しなかった場合は、移動局装置の 候補監視対象無線アクセス技術を更新し (ステップ S209)、更新した候補監視対象 無線アクセス技術用の測定間隔に対応してタイマの比較時間 TXを更新し (ステップ S210)、ステップ S206へ進む。ステップ S208【こお!ヽて平均 CQI導出咅 21ίま、ステ ップ S 207で取得した CQI瞬時値と、メモリ 22に記憶保持されて!、る CQI瞬時値とを 用いて、 CQI平均値を計算するとともに、前記 CQI瞬時値をメモリ 22に記憶保持させ 、一定期間を経過した CQI瞬時値はメモリ 22から消去する。
次に、モード判定部 23は、 CQI平均値が CQI閾値よりも小さいか否かについて判 定する(ステップ S211)。ステップ S211で CQI平均値が CQI閾値以上である場合に は、基地局装置を通常モードに設定する (ステップ S212)。一方、ステップ S211で C QI平均値が CQI閾値よりも小さい場合には、基地局装置を測定モードに設定する( ステップ S 213)。
[0078] 本発明の第 2の実施形態及びその変形例を使用することにより、移動局装置が複 数の異なる無線アクセス技術に Inter— RAT HO (かつ、 Inter Freq HO)を 行うことができる機能を備えて 、る場合にぉ 、て、移動局装置が複数ある中からどの 種類の無線アクセス技術の監視、測定を行うかを基地局装置に通知することなぐ適 切なタイミングで CQI瞬時値をフィードバックすることができるとともに、冗長なリソース の割り当てを回避するため他の移動局装置へのリソース利用効率を向上させることが できる。
なお、上記第 2の実施形態では、移動局装置が複数の異なる無線アクセス技術に 対するギャップを設定する場合について説明したが、第 1の実施形態と同様に、無線 アクセス技術と無線通信に使用する使用周波数帯域との複数の異なる組み合わせ に対するギャップを設定する場合についても適用できる。
[0079] また、基地局装置が、周辺基地局装置が使用する無線アクセス技術に関する情報 を移動局装置に対して報知送信して、移動局装置力 nter— RAT— HO (かつ、 Int er— Freq— HO)を行う移動通信システムの無線アクセス技術を予め絞り込む形態と することもできる。絞り込むことにより、基地局装置は絞り込んだ無線アクセス技術を 移動局装置が監視、測定する場合のギャップのみを設定するだけでよくなり、冗長な リソースの割り当てを回避することができる。また、特定の無線アクセス技術が周辺に は存在しないということを移動局装置が認識し、前記無線アクセス技術の監視、測定 を行わないようにすることができ、消費電力の低減が図られる。
例えば、基地局装置が周辺には UTRA、非 3GPPの無線アクセス技術が存在する ことを自セル内の移動局装置に対して通知し、移動局装置は Inter— RAT— HO (か つ、 Inter—Freq— HO)の候補として UTRA又は非 3GPPに絞り込む。つまり、複 数の異なる無線アクセス技術を用 、た移動通信システムに Inter— RAT HO (かつ 、 Inter— Freq— HO)を行うことができる機能を備えている移動局装置において、例 えば GSMへの Inter— RAT— HO (かつ、 Inter—Freq—HO)を制限し、 GSMの 監視、測定を行わないようにする。
[0080] 上述した本発明の第 2の実施形態及びその変形例により、基地局装置は移動局装 置が無線アクセス技術の監視、測定を行うためのギャップを生成するために、 CQI瞬 時値のフィードバックのための上りリンクリソース割り当て間隔、又は、下りリンクリソー ス割り当て間隔を、同時に複数設定する際に、 GSM用の間隔を設定することを除外 することができ、冗長なリソースの割り当てを回避することができる。
[0081] なお、本実施形態において測定モードにおける移動局装置の CQI瞬時値のフィー ドバック間隔、基地局装置の上りリンクリソース割り当て間隔、又は下りリンクリソース 割り当て間隔に関する処理は Autonomous Gap Control Methodにより実際 にギャップを生成する際の移動局装置の CQI瞬時値のフィードバック間隔、基地局 装置の上りリンクリソース割り当て間隔、又は下りリンクリソース割り当て間隔の設定を 主な目的としている。つまり、移動局装置の監視移動通信システムに応じて適切なギ ヤップを生成することを目的としている。よって、測定モードにおいてもギャップを生成 しない区間の移動局装置の CQI瞬時値のフィードバック間隔、基地局装置の上りリン クリソース割り当て間隔、又は下りリンクリソース割り当て間隔についてはギャップを生 成する際と同様の値、通常モードと同様の値、又はそれら以外の値を設定してもよい
[0082] 本実施形態による基地局装置及び移動局装置で動作するプログラムは、本実施形 態に関わる CQI瞬時値測定間隔の変更を行うように、 CPU等を制御するプログラム( コンピュータを機能させるプログラム)である。そして、これら装置で取り扱われる情報 は、その処理時に一時的に RAMに蓄積され、その後、各種 ROMや HDDに格納さ れ、必要に応じて CPUによって読み出し、修正'書き込みが行われる。
プログラムを格納する記録媒体としては、半導体媒体 (例えば、 ROM,不揮発性メ モリカード等)、光記録媒体 (例えば、 DVD、 MO、 MD、 CD、 BD等)、磁気記録媒 体 (例えば、磁気テープ、フレキシブルディスク等)等のいずれであってもよい。
また、ロードしたプログラムを実行することにより、上述した実施形態の機能が実現さ れるだけでなぐそのプログラムの指示に基づき、オペレーティングシステムあるいは 他のアプリケーションプログラム等と共同して処理することにより、本実施形態による 基地局装置及び移動局装置の機能が実現される場合もある。
[0083] また、巿場に流通させる場合には、可搬型の記録媒体にプログラムを格納して流通 させたり、インターネット等のネットワークを介して接続されたサーバコンピュータに転 送したりすることができる。この場合、サーバコンピュータの記憶装置も本発明の記録 媒体に含まれる。
また、本実施形態による無線通信システムは FDD (Frequency Division Duplex)の システムを想定している力 TDD (Time Division Duplex)のシステムに適用することも 可能である。 TDDの場合、上りと下りで同一周波数を用いるため、 CQI瞬時値をフィ ードバックすることなぐ基地局装置と移動局装置とで、伝搬路状況を共有することも 可能である。
[0084] また、本実施形態では、 CQI瞬時値のフィードバック間隔と 、う用語を使用したが、 この間隔には一つの CQIを測定する時間と、測定した CQIをフィードバックする間隔 の 2つの要素が含まれる。例えば、通常モードで 4TTI毎にフィードバック用の CQI瞬 時値を測定してフィードバックして 、る状態にぉ 、て、測定モードで通常モードの処 理と関連を持たせて、 4TTI間隔で測定した CQI瞬時値を一つ飛ばしで、 8TTI間隔 で CQI瞬時値をフィードバックする形態や、測定モードで通常モードの処理と関連を 持たせずに、 7ΤΠ間隔で測定した CQI瞬時値をフィードバックする形態が含まれる 上述した実施形態では、これらの要素の少なくともどちらかを測定モードで切り替える なお、通常モードにおける測定間隔は一つの値に固定されるものではなぐ移動通 信システムの運用状況によって適応的に変更してもよい。
以上、この発明の実施形態について図面を参照して詳述してきた力 具体的な構 成はこの実施形態に限られるものではなぐこの発明の要旨を逸脱しない範囲の設 計等も含まれる。

Claims

請求の範囲
[1] 複数の移動局装置と複数の基地局装置とを備える移動通信システムであって、 前記基地局装置は、前記移動局装置の監視対象無線アクセス技術の種類に応じ て前記移動局装置のためのギャップの長さを設定するギャップ設定部を具備すること を特徴とする移動通信システム。
[2] 前記基地局装置のギャップ設定部は、
前記移動局装置力 通知される監視対象無線アクセス技術の種類に応じて前記移 動局装置のためのギャップの長さを設定することを特徴とする請求項 1に記載の移動 通信システム。
[3] 前記基地局装置のギャップ設定部は、
前記移動局装置が監視対象無線アクセス技術の種類を複数有して!/ヽる場合に、前 記移動局装置におけるギャップの長さを、同時に複数設定することを特徴とする請求 項 1に記載の移動通信システム。
[4] 複数の移動局装置と複数の基地局装置とを備える移動通信システムであって、 前記基地局装置は、前記移動局装置の監視対象無線アクセス技術と無線通信の 使用周波数帯域との組み合わせの種類に応じて前記移動局装置のためのギャップ の長さを設定するギャップ設定部を具備することを特徴とする移動通信システム。
[5] 前記基地局装置のギャップ設定部は、
前記移動局装置から通知される監視対象無線アクセス技術と無線通信の使用周波 数帯域との組み合わせの種類に応じて前記移動局装置のためのギャップの長さを設 定することを特徴とする請求項 4に記載の移動通信システム。
[6] 前記基地局装置のギャップ設定部は、
前記移動局装置が監視対象無線アクセス技術と無線通信の使用周波数帯域との 組み合わせの種類を複数有して!/ヽる場合に、前記移動局装置におけるギャップの長 さを、同時に複数設定することを特徴とする請求項 4に記載の移動通信システム。
[7] 前記基地局装置のギャップ設定部は、
同時に設定した複数のギャップの長さのうち、短いギャップで前記基地局装置が前 記移動局装置より受信品質指標を受信した際は前記短いギャップより長く設定したギ ヤップの長さをリセットし、短 、ギャップで前記基地局装置が前記移動局装置より受 信品質情報を受信しな力つた際は前記短いギャップより長く設定したギャップの長さ を継続して設定することを特徴とする請求項 3又は 6に記載の移動通信システム。
[8] 前記移動局装置は、
監視対象無線アクセス技術の種類に応じてギャップの長さを設定するギャップ設定 部を具備することを特徴とする請求項 1に記載の移動通信システム。
[9] 前記移動局装置は、
監視対象無線アクセス技術と無線通信の使用周波数帯域との組み合わせの種類 に応じてギャップの長さを設定するギャップ設定部を具備することを特徴とする請求 項 4に記載の移動通信システム。
[10] 前記移動局装置は、
受信品質指標に基づいて、周辺の基地局装置の監視を行うことができる測定モー ドとするか前記周辺の基地局装置の監視を行わない通常モードとするかを決定する 第 1のモード決定部を有し、
前記移動局装置のギャップ設定部は、前記第 1のモード決定部の決定結果及び前 記受信品質指標に基づいてギャップを設定し、
前記基地局装置は、
前記移動局装置力もフィードバックされる受信品質指標に基づいて、前記移動局 装置が前記測定モードと前記通常モードのいずれのモードにあるかを決定する第 2 のモード決定部を有し、
前記基地局装置のギャップ設定部は、前記第 2のモード決定部の決定結果及び前 記受信品質指標に基づいてギャップを設定することを特徴とする請求項 8又は 9に記 載の移動通信システム。
[11] 前記移動局装置は、
受信品質指標に基づいて、周辺の基地局装置の監視を行うことができる測定モー ドとするか前記周辺の基地局装置の監視を行わない通常モードとするかを決定する 第 1のモード決定部を有し、
前記移動局装置のギャップ設定部は、前記第 1のモード決定部の決定結果及び前 記受信品質指標に基づいてギャップを設定し、
前記基地局装置のギャップ設定部は、
前記移動局装置からフィードバックされる前記第 1のモード決定部の決定結果及び 前記受信品質指標に基づいてギャップを設定することを特徴とする請求項 8又は 9に 記載の移動通信システム。
[12] 前記移動局装置は、
受信品質指標に基づいて、周辺の基地局装置の監視を行うことができる測定モー ドとするか前記周辺の基地局装置の監視を行わない通常モードとするかを決定する 第 1のモード決定部を有し、
前記移動局装置のギャップ設定部は、前記第 1のモード決定部の決定結果及び前 記受信品質指標に基づいてギャップを設定し、
前記基地局装置のギャップ設定部は、
前記移動局装置からフィードバックされる受信品質指標の報告結果に基づいてギ ヤップを設定することを特徴とする請求項 8又は 9に記載の移動通信システム。
[13] 基地局装置と無線通信を行う移動局装置であって、
監視対象無線アクセス技術の種類に応じてギャップの長さを設定するギャップ設定 部を具備することを特徴とする移動局装置。
[14] 基地局装置と無線通信を行う移動局装置であって、
監視対象無線アクセス技術と無線通信の使用周波数帯域との組み合わせの種類 に応じてギャップの長さを設定するギャップ設定部を具備することを特徴とする移動 局装置。
[15] 移動局装置と無線通信を行う基地局装置であって、
前記移動局装置の監視対象無線アクセス技術の種類に応じて前記移動局装置の ためのギャップの長さを設定するギャップ設定部を具備することを特徴とする基地局 装置。
[16] 移動局装置と無線通信を行う基地局装置であって、
前記移動局装置の監視対象無線アクセス技術と無線通信の使用周波数帯域との 組み合わせの種類に応じて前記移動局装置のためのギャップの長さを設定するギヤ ップ設定部を具備することを特徴とする基地局装置。
[17] 複数の移動局装置と複数の基地局装置との間の移動通信方法であって、
前記基地局装置は、前記移動局装置の監視対象無線アクセス技術の種類に応じ て前記移動局装置のためのギャップの長さを設定することを特徴とする移動通信方 法。
[18] 複数の移動局装置と複数の基地局装置との間の移動通信方法であって、
前記基地局装置は、前記移動局装置の監視対象無線アクセス技術と無線通信の 使用周波数帯域との組み合わせの種類に応じて前記移動局装置のためのギャップ の長さを設定することを特徴とする移動通信方法。
PCT/JP2007/059981 2006-05-16 2007-05-15 移動通信システム、移動局装置、基地局装置及び移動通信方法 WO2007132861A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2008515568A JP4875071B2 (ja) 2006-05-16 2007-05-15 移動通信システム、基地局装置、移動局装置、処理装置および処理方法
EP07743416.5A EP2020822B1 (en) 2006-05-16 2007-05-15 Mobile communication system, mobile station apparatus, base station apparatus and mobile communication method
US12/300,768 US8374108B2 (en) 2006-05-16 2007-05-15 Mobile communication system, and mobile unit, base station unit and method therefore

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006136259 2006-05-16
JP2006-136259 2006-05-16

Publications (1)

Publication Number Publication Date
WO2007132861A1 true WO2007132861A1 (ja) 2007-11-22

Family

ID=38693950

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/059981 WO2007132861A1 (ja) 2006-05-16 2007-05-15 移動通信システム、移動局装置、基地局装置及び移動通信方法

Country Status (4)

Country Link
US (1) US8374108B2 (ja)
EP (1) EP2020822B1 (ja)
JP (2) JP4875071B2 (ja)
WO (1) WO2007132861A1 (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009131156A1 (ja) * 2008-04-22 2009-10-29 国立大学法人大阪大学 無線通信システム、送信装置、受信装置及び通信方法
JP2009278424A (ja) * 2008-05-15 2009-11-26 Sumitomo Electric Ind Ltd 基地局装置及びデータ送信方法
US20090310698A1 (en) * 2008-06-13 2009-12-17 Fujitsu Limited Wireless communication systems
JP2010273343A (ja) * 2009-05-21 2010-12-02 Innovative Sonic Corp 測定ギャップ設定装置および方法
WO2011105275A1 (ja) * 2010-02-26 2011-09-01 シャープ株式会社 無線通信システム、無線送信装置および無線送信方法
WO2012063739A1 (ja) * 2010-11-12 2012-05-18 シャープ株式会社 無線制御装置、無線端末装置、無線通信システム、無線制御装置および無線端末装置の制御プログラムおよび集積回路
JP2012195708A (ja) * 2011-03-15 2012-10-11 Fujitsu Ltd 送信局、受信局、通信システムおよびギャップ割当方法
JP2015507890A (ja) * 2012-01-19 2015-03-12 華為技術有限公司Huawei Technologies 周波数間セル測定のための方法、装置、及びシステム

Families Citing this family (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9100889B2 (en) * 2007-10-30 2015-08-04 Intel Mobile Communications GmbH Methods for signaling and determining the time of the beginning of a measurement time interval, communication device and communication network element
KR101541910B1 (ko) * 2007-11-29 2015-08-04 엘지전자 주식회사 무선통신 시스템에서 ack/nack 신호 전송방법
KR101467570B1 (ko) * 2007-11-29 2014-12-01 엘지전자 주식회사 무선통신 시스템에서 무선자원 할당방법
US8793362B2 (en) * 2007-11-29 2014-07-29 Barclays Capital Inc. Communications enterprise server monitor
US8929347B2 (en) * 2008-01-11 2015-01-06 Nokia Corporation Scheduling ahead for improving data transmission in case of measurement
US8995548B2 (en) * 2008-03-10 2015-03-31 Google Technology Holdings LLC Method and apparatus for channel sounding in an orthogonal frequency division multiplexing communication system
US8477734B2 (en) * 2008-03-25 2013-07-02 Qualcomm Incorporated Reporting of ACK and CQI information in a wireless communication system
JP5387687B2 (ja) * 2009-03-19 2014-01-15 日本電気株式会社 改良されたチャネル品質指標の方法
US8923244B2 (en) * 2009-08-12 2014-12-30 Qualcomm Incorporated Systems and methods of advertising handoff
US20110317635A1 (en) * 2009-12-18 2011-12-29 Qualcomm Incorporated Apparatus and method for receiving cell system information during autonomous gaps
US20110238242A1 (en) * 2010-03-29 2011-09-29 Invensys Rail Corporation Synchronization to adjacent wireless networks using single radio
US9526048B2 (en) 2010-05-04 2016-12-20 Acer Incorporated Method of handling measurement gap configuration and communication device thereof
US20120088455A1 (en) * 2010-10-08 2012-04-12 Motorola Mobility, Inc. Inter-modulation distortion reduction in multi-mode wireless communication device
US9413395B2 (en) 2011-01-13 2016-08-09 Google Technology Holdings LLC Inter-modulation distortion reduction in multi-mode wireless communication terminal
JP2012175335A (ja) * 2011-02-21 2012-09-10 Sharp Corp 無線通信システム、無線通信方法、送信装置、及びプロセッサ
JP2012213061A (ja) * 2011-03-31 2012-11-01 Jvc Kenwood Corp 基地局、移動局、無線通信システム、並びに基地局及び移動局の制御方法
CN102868499B (zh) * 2011-07-06 2017-04-12 华为技术有限公司 传输指示信息的方法、用户设备和基站设备
KR20140044322A (ko) * 2011-07-31 2014-04-14 엘지전자 주식회사 무선 접속 시스템에서 채널 품질 측정 방법 및 이를 위한 장치
US9780931B2 (en) * 2011-08-15 2017-10-03 Telefonaktiebolaget Lm Ericsson (Publ) Flexible transmission of messages in a wireless communication system
US20130223428A1 (en) * 2012-02-28 2013-08-29 Qualcomm Incorporated Method and apparatus for irat measurement when in td-scdma connected mode
US9408221B2 (en) 2012-04-13 2016-08-02 Qualcomm Incorporated Methods and apparatus for determining how to perform operations after communication suspend based on information before the suspend
GB2504058B (en) * 2012-05-15 2014-10-08 Nvidia Corp Selecting between radio access technologies
GB2509912B (en) 2013-01-16 2018-08-15 Sony Corp Telecommunications Apparatus and Methods
US20150146551A1 (en) * 2013-11-26 2015-05-28 Qualcomm Incorporated Inter radio access technology (irat) measurement using idle interval and dedicated channel measurement occasion
US10009807B2 (en) * 2015-01-26 2018-06-26 Cisco Technology, Inc. Radio access technology threshold adjustment
US9942009B2 (en) * 2015-04-08 2018-04-10 Telefonaktiebolaget Lm Ericsson (Publ) Measurement gap configuration
US10341927B2 (en) * 2017-07-20 2019-07-02 GM Global Technology Operations LLC Vehicle wireless unit and method of operating the same
EP3579443A1 (en) * 2018-06-07 2019-12-11 Volkswagen Aktiengesellschaft Vehicle, apparatus, method and computer program for communicating in multiple mobile communication systems
WO2022207356A1 (en) * 2021-03-30 2022-10-06 Nokia Technologies Oy Adjusting communication gaps related to receiving paging messages

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003525555A (ja) * 2000-02-29 2003-08-26 ノキア コーポレイション 周波数間測定における測定ギャップの画定
JP2006094550A (ja) * 2000-01-10 2006-04-06 Nokia Corp 周波数間ハンドオーバを準備する方法、移動局、ネットワーク構成要素

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FI105252B (fi) 1997-07-14 2000-06-30 Nokia Mobile Phones Ltd Menetelmä ajan varaamiseksi matkaviestimelle
KR100680070B1 (ko) * 1999-06-29 2007-02-09 유티스타콤코리아 유한회사 이동통신 시스템에서 주파수간/시스템간 핸드오버시데이터 전송방법
JP4184969B2 (ja) * 2001-11-17 2008-11-19 サムスン エレクトロニクス カンパニー リミテッド 移動通信システムにおけるハンドオーバーのための信号測定装置及び方法
FR2838019B1 (fr) * 2002-03-29 2004-08-27 Evolium Sas Procede de configuration de mode compresse dans un systeme de radiocommunications mobiles
ATE388589T1 (de) * 2003-04-11 2008-03-15 Ericsson Telefon Ab L M Verfahren zur synchronisierung in einem mobilen funkendgerät
JP4480461B2 (ja) * 2004-05-20 2010-06-16 株式会社エヌ・ティ・ティ・ドコモ 移動通信システム及び無線制御装置
KR100630355B1 (ko) * 2004-08-04 2006-09-29 한국전자통신연구원 무선 랜에서의 프레임 브리지 제공 장치 및 그 방법
US8358629B2 (en) * 2005-11-01 2013-01-22 Qualcomm Incorporated Mobile device-initiated measurement gap request

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006094550A (ja) * 2000-01-10 2006-04-06 Nokia Corp 周波数間ハンドオーバを準備する方法、移動局、ネットワーク構成要素
JP2003525555A (ja) * 2000-02-29 2003-08-26 ノキア コーポレイション 周波数間測定における測定ギャップの画定

Non-Patent Citations (8)

* Cited by examiner, † Cited by third party
Title
"3GPP TSG RAN WG2 Meeting #50", 9 January 2006, NTT DOCOMO, INC., article "Measurement for LTE Intra-and Inter-RAT Mobility"
"Physical Layer Aspects for Evolved UTRA", 3GPP TR (TECHNICAL REPORT) 25.814, November 2005 (2005-11-01), Retrieved from the Internet <URL:http://www.3gpp.org/ftp/Specslhtml-info/25814.htm>
"Requirements for Evolved Universal Terrestrial Radio Access (UTRA) and Universal Terrestrial RadioAccess Network OUTRAN", 3GPP TR (TECHNICAL REPORT) 25.913, May 2005 (2005-05-01), Retrieved from the Internet <URL:http://www.3gpp.org/ftp/Specs/html-info/25913.htm>
3GPP TR (TECHNICAL REPORT) 25.858 AND HSDPA SPECIFICATION - RELATED MATERIALS, Retrieved from the Internet <URL:http://www.3gpp.org/ftp/Specslhtml-info/25-series.htm>
KEIJI TACHIKAWA, W-CDMA MOBILE COMMUNICATION SYSTEM, ISBN: 4-621-04894-5
MOTOROLA: "E-UTRAN Measurement Gap Control for Inter-Frequency and Inter-RAT Handover", 3GPP TSG RAN WG2 #58 R2-072012, THE 3RD GENERATION PARTNERSHIP PROJECT, 4 May 2007 (2007-05-04), XP003018979, Retrieved from the Internet <URL:http://www.3gpp.org.ftp7tsg_ran/WG2_RL2/TSGR2_58/Documents/R2-072012.zip> *
NTT DOCOMO, INC.: "Inter-frequency/RAT Measurement Gap Control", 3GPP TSG RAN WG2 #52 R2-060841, THE 3RD GENERATION PARTNERSHIP PROJECT, 23 March 2006 (2006-03-23), XP003018978, Retrieved from the Internet <URL:http://www.3gpp.org/ftp/tsg_ran/WG2_RL2/TSGR2_52/Documents/R2-060841.zip> *
NTT DOCOMO, INC.: "Measurements for LTE Intra- and Inter-RAT Mobility", 3GPP TSG RAN WG2 #50, 3RD GENERATION PARTNERSHIP PROJECT, vol. TDOC-R2-60086, 5 January 2006 (2006-01-05), pages 1 - 5, XP003016698 *

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8503502B2 (en) 2008-04-22 2013-08-06 Sharp Kabushiki Kaisha Radio communication system, transmission device, reception device, and communication method
WO2009131156A1 (ja) * 2008-04-22 2009-10-29 国立大学法人大阪大学 無線通信システム、送信装置、受信装置及び通信方法
JP5269889B2 (ja) * 2008-04-22 2013-08-21 シャープ株式会社 通信装置及び無線通信システム
CN102017484A (zh) * 2008-04-22 2011-04-13 国立大学法人大阪大学 无线通信系统、发送设备、接收设备及通信方法
JP2009278424A (ja) * 2008-05-15 2009-11-26 Sumitomo Electric Ind Ltd 基地局装置及びデータ送信方法
US9264926B2 (en) * 2008-06-13 2016-02-16 Fujitsu Limited Method and system for communicating in a wireless communication systems
US20090310698A1 (en) * 2008-06-13 2009-12-17 Fujitsu Limited Wireless communication systems
JP2010273343A (ja) * 2009-05-21 2010-12-02 Innovative Sonic Corp 測定ギャップ設定装置および方法
WO2011105275A1 (ja) * 2010-02-26 2011-09-01 シャープ株式会社 無線通信システム、無線送信装置および無線送信方法
WO2012063739A1 (ja) * 2010-11-12 2012-05-18 シャープ株式会社 無線制御装置、無線端末装置、無線通信システム、無線制御装置および無線端末装置の制御プログラムおよび集積回路
JP2012105185A (ja) * 2010-11-12 2012-05-31 Sharp Corp 無線制御装置、無線端末装置、無線通信システム、無線制御装置および無線端末装置の制御プログラムおよび集積回路
JP2012195708A (ja) * 2011-03-15 2012-10-11 Fujitsu Ltd 送信局、受信局、通信システムおよびギャップ割当方法
JP2015507890A (ja) * 2012-01-19 2015-03-12 華為技術有限公司Huawei Technologies 周波数間セル測定のための方法、装置、及びシステム
JP2016067038A (ja) * 2012-01-19 2016-04-28 華為技術有限公司Huawei Technologies 周波数間セル測定のための方法、装置、及びシステム
US10039024B2 (en) 2012-01-19 2018-07-31 Huawei Technologies Co., Ltd. Method, device, and system for inter-frequency cell measurement
US10687240B2 (en) 2012-01-19 2020-06-16 Huawei Technologies Co., Ltd. Method, device, and system for inter-frequency cell measurement

Also Published As

Publication number Publication date
EP2020822A1 (en) 2009-02-04
JP4875071B2 (ja) 2012-02-15
US8374108B2 (en) 2013-02-12
JP2012050142A (ja) 2012-03-08
JPWO2007132861A1 (ja) 2009-09-24
US20090209256A1 (en) 2009-08-20
EP2020822A4 (en) 2014-01-22
JP5164049B2 (ja) 2013-03-13
EP2020822B1 (en) 2020-04-29

Similar Documents

Publication Publication Date Title
JP4875071B2 (ja) 移動通信システム、基地局装置、移動局装置、処理装置および処理方法
JP4824039B2 (ja) 移動通信システム、移動局装置、基地局装置及び移動通信方法
CN109644405B (zh) 侧向链路中的清除发送(cts)功率控制
US9301301B2 (en) Dynamic frequency refarming
JP4840448B2 (ja) 無線通信システムでセル間干渉を制御するための上りリンクリソース割り当て
JP4975727B2 (ja) 移動通信システム、移動局装置、基地局装置及び移動通信方法
JP6484857B2 (ja) 端末装置、基地局装置、および通信方法
KR20180092978A (ko) 분산된 비스케줄링된 송신들을 위한 네트워크 지원
KR20150097939A (ko) 우선 순위를 갖는 송신 빔 인덱스 선택 및 할당 방법 및 장치
WO2007050238A1 (en) Mobility enhancement for real-time service over high-speed downlink packet access (hsdpa)
JP2006352860A (ja) セル識別、セル間干渉検出およびダウンリンク測定に基づく要求に応じたアップリンク干渉調整のための方法、そのための基地局、モバイル端末およびモバイルネットワーク
WO2007136070A1 (ja) 移動通信方法、移動局装置、基地局装置及び移動通信システム
KR101110900B1 (ko) 무선 송수신 유닛-고유의 정보를 전송하는 방법 및 시스템
KR20130009733A (ko) Efta를 이용하는 무선 통신 시스템에서 라디오 리소스를 스케줄링하는 방법 및 노드
US9326151B2 (en) Methods and arrangements for a coordination of frequency band selections for interfering uplink transmissions in a cellular network
KR20120127490A (ko) 무선 통신 시스템, 통신 제어 방법, 및 기지국 및 이동 단말기
JP5364048B2 (ja) 基地局装置及び方法
JP5990169B2 (ja) 圧縮モードの制御方法及びシステム
AU2014398417A1 (en) Base station apparatus, mobile station apparatus, radio communication system, communication control method of base station apparatus, and communication control method of mobile station apparatus
EP3178278B1 (en) Systems and methods for scheduling communication at an access node
KR200380755Y1 (ko) 무선 송수신 유닛-특정의 정보를 전송하기 위한 무선다중셀 통신 시스템
JP2019004526A (ja) 基地局装置、移動局装置、無線通信システム、基地局装置の通信制御方法及び移動局装置の通信制御方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07743416

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2008515568

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 12300768

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2007743416

Country of ref document: EP