WO2007132577A1 - Platform board and production control method - Google Patents

Platform board and production control method Download PDF

Info

Publication number
WO2007132577A1
WO2007132577A1 PCT/JP2007/052198 JP2007052198W WO2007132577A1 WO 2007132577 A1 WO2007132577 A1 WO 2007132577A1 JP 2007052198 W JP2007052198 W JP 2007052198W WO 2007132577 A1 WO2007132577 A1 WO 2007132577A1
Authority
WO
WIPO (PCT)
Prior art keywords
platform board
board
fpga
platform
equipment
Prior art date
Application number
PCT/JP2007/052198
Other languages
French (fr)
Japanese (ja)
Inventor
Itaru Ueda
Hirofumi Doi
Original Assignee
Murata Manufacturing Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co., Ltd. filed Critical Murata Manufacturing Co., Ltd.
Priority to JP2008515443A priority Critical patent/JPWO2007132577A1/en
Publication of WO2007132577A1 publication Critical patent/WO2007132577A1/en

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/418Total factory control, i.e. centrally controlling a plurality of machines, e.g. direct or distributed numerical control [DNC], flexible manufacturing systems [FMS], integrated manufacturing systems [IMS] or computer integrated manufacturing [CIM]
    • G05B19/4184Total factory control, i.e. centrally controlling a plurality of machines, e.g. direct or distributed numerical control [DNC], flexible manufacturing systems [FMS], integrated manufacturing systems [IMS] or computer integrated manufacturing [CIM] characterised by fault tolerance, reliability of production system
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P90/00Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
    • Y02P90/02Total factory control, e.g. smart factories, flexible manufacturing systems [FMS] or integrated manufacturing systems [IMS]

Definitions

  • the present invention relates to a platform board and a production management method for controlling equipment used in each process of a production line.
  • Patent Document 1 can easily change the width of the substrate transfer section that is different for each type of substrate, and easily accommodates various types of substrates.
  • the technology optimizes the cassette mounting method at the time of lot exchange and efficiently produces a wide variety of wafers.
  • Patent Document 3 increases the operating rate of the Kushiro process by controlling the construction sequence, and efficiently produces a wide variety of products.
  • Patent Document 1 Japanese Patent Laid-Open No. 2003-243888
  • Patent Document 2 JP 2002-280425 A
  • Patent Document 3 Japanese Patent Laid-Open No. 10-198403
  • V and deviation are technologies that correspond to a wide variety of products, depending on the jigs, equipment, and work procedures of a specific process, and parts that need to be changed for each product type. The other parts are made common by improving.
  • the products to which these technologies are applied are of the same type, and it is only possible to deal with various types of products such as substrates constituting the same type of product. Therefore, with the conventional technology, it is not possible to share hardware and software programs of facility equipment for products of different types. It was difficult.
  • the present invention has been made to solve the above-described problems.
  • the hardware for controlling control equipment and inspection equipment used in all processes of the production line and the software program thereof are made common.
  • the purpose is to provide a platform board and a production management method that achieves efficient production processing and low cost for multiple types of products.
  • the invention of claim 1 is a platform board that is provided for each process of the production line, and controls and processes equipment in each process and measures product characteristics. Mount the necessary types and number of hardware elements on the board to control, process, and measure products in all processes on the production line, and control, process, and measure products on the equipment in which the board is installed.
  • a program for moving the hardware elements necessary for the operation is stored in a predetermined hardware element, and a programmable hardware element is applied as a hardware element for controlling and processing the equipment in the process.
  • the platform board Due to the powerful configuration, the platform board has common hardware elements for controlling, processing and measuring products in all processes. By deploying the platform board in all processes on the production line, Processing and product property measurements can be made on each platform board.
  • the invention of claim 2 is the platform board according to claim 1, wherein the board is provided with a communication interface that enables communication between the boards and communication with the host computer.
  • the invention of claim 3 is a platform board according to claim 1 or claim 2, in which an FPGA or PLD is applied as a programmable hardware element, and as a hardware element for measuring a process device, An interface that enables connection between process equipment and hardware elements by applying analog-digital change ⁇ and digital-analog change ⁇ . Ace is applied.
  • the powerful configuration allows the FPGA or PLD to be used in common in all processes, making it easy to store design data such as hardware and software programs and create a library. Also, by applying analog / digital and digital / analog variations, the platform board can be used as a measuring instrument. In addition, since measuring instruments, cameras, sensors, etc. can be connected to the interface, signals can be input and output that cannot be measured with digital-analog converters and analog-digital converters. Signal processing or the like can be performed.
  • the production management method according to the invention of claim 4 is provided with the platform board according to claim 1 or 3 according to any one of claims 1 and 3 for each process of the production line.
  • the process is configured to control equipment, process, and measure product characteristics.
  • the invention of claim 5 is the production management method according to claim 4, wherein the production line has a processing step and an inspection step, and the FPGA or the PLD controls and processes the equipment in the processing step.
  • the platform board In the state where the FPGA or PLD is connected to the processing process equipment via the interface, the platform board is installed in the processing process, and the FPGA or PLD is controlled and controlled by the inspection process equipment.
  • the platform board is deployed in the inspection process with the instrument connected to the equipment in the inspection process via the interface.
  • the invention of claim 6 is the production management method according to claim 4 or claim 5, wherein a plurality of platform boards are connected to each other via a communication interface to perform one process.
  • the board is configured to perform distributed processing.
  • the invention according to claim 7 is the production management method according to any one of claims 4 to 6.
  • the platform board for all processes was configured to be centrally managed by the host computer.
  • the platform The hardware elements necessary for control, processing and product measurement of equipment in all processes are provided on the board, and the hardware for each platform board is shared, so it is possible to construct a production line at low cost. effective.
  • platform board hardware used not only on the same production line but also on different production lines, the design assets of the original production line can be reused on different production lines. The benefits are great.
  • design data such as hardware and software programs can be easily stored and made into a library. There is an effect that a line can be constructed in a short period of time.
  • claim 6 and claim 7 since one process can be distributed by a plurality of platform boards, the processing load applied to the platform board is reduced. be able to.
  • multiple platform boards can be centrally managed by the host computer, it is possible to control each platform board and obtain various data from each platform board. As a result, advanced production process management is possible. .
  • FIG. 1 is a schematic view showing a production management method according to a first embodiment of the present invention.
  • FIG. 2 is a schematic plan view of a platform board applied to the production management method of FIG.
  • FIG. 3 is a schematic plan view showing a device for executing a component mounting process.
  • FIG. 4 is a schematic perspective view showing an apparatus for performing a substrate cutting process.
  • FIG. 5 is a schematic front view showing an apparatus for performing an appearance inspection process.
  • FIG. 6 is a schematic front view showing an apparatus for executing a characteristic inspection process.
  • FIG. 7 is a schematic view showing a main part of a production management method according to a second embodiment of the present invention.
  • FIG. 8 is a schematic diagram showing a production management method according to a third embodiment of the present invention.
  • FIG. 9 is a schematic view showing a production management method according to the fourth embodiment of the present invention.
  • FIG. 1 is a schematic view showing a production management method according to the first embodiment of the present invention
  • FIG. 2 is a schematic plan view of a platform board applied to the production management method of FIG.
  • the production management method of this embodiment is a method for managing a production line using RF modules as products.
  • the process on the RF module production line varies depending on the structure of the RF module, and has the power to have various processing and inspection processes.
  • Fig. 1 Let us exemplify a production line that has four processes, namely, a component mounting process 101, a board cutting process 102, an appearance inspection process 103 and a characteristic inspection process 104 as inspection processes.
  • the production management method of this embodiment is a single-type platform board in which device control, processing, and measurement of product characteristics in the component mounting process 101 to the characteristic inspection process 104 of a powerful production line are arranged in each process. 1 (1 1 to 1-4).
  • Platform Board 1 consists of a FPGA (Filed Programmable Gate Array) 11 (11 1 ⁇ : LI a) and b analog / digital converters ⁇ 12 (12-1 ⁇ 12—b), c digital analog converters ⁇ 13 (13—l to 13—c), interface 14 for enabling connection between these hardware elements and each process device, and camera And d detection interfaces 15 for connecting sensors and the like.
  • FPGA Field Programmable Gate Array
  • the FPGA 11 is a programmable hardware element for performing control and processing on devices in each process, and exhibits the same functions as a desired CPU (Central Processing Unit) or MPU (Micro Processing Unit) depending on the program. Can be made.
  • a CPU, memory, and MPU are applied to some hardware elements of the power a to which the FPGA 11 is applied as all the hardware elements, and the memory is connected to the memory elements. You may want to store the executable program.
  • Analog-digital conversion 12 (hereinafter referred to as "A-D conversion 12") inputs analog signals from measuring instruments, sensors, etc., converts them into digital signals, and measures voltage. It is a hardware element that can perform the above.
  • Digital-analog conversion 13 (hereinafter referred to as “D-A conversion 13”) is a signal source for performing measurement and control necessary for each process, and generates signals necessary for measurement and so on. It is a hardware element that can be used.
  • these types of FPGA 11 to detection interface 15 are used to control, process, and measure products in all processes from component mounting process 101 to characteristic inspection process 104 in this RF module production line. As many as necessary for mounting on the board 10.
  • FIG. 3 is a schematic plan view showing a device 110 for performing the component mounting step 101
  • FIG. 4 is a schematic perspective view showing a device 120 for performing the board cutting step 102
  • FIG. 6 is a schematic front view showing a device 130 for executing the appearance inspection step 103
  • FIG. 6 is a schematic front view showing a device 140 for executing the characteristic inspection step 104.
  • a component mounting process 101 shown in FIG. 1 is a process for mounting components such as an IC, an inductor, and a capacitor on a spell-printed printed circuit board 100, and an apparatus for executing this component mounting process 101
  • a transport mechanism 111 for transporting the spelling substrate 100 to the XY stage 112, an XY stage 112 for moving the spelling substrate 100 in the XY direction, A suction chuck 113 for sucking the component 200 and mounting it on a predetermined portion on the spelling substrate 100 is provided.
  • the reflow process for soldering the component 200 to the spelling board 100 is omitted.
  • the board 10 of the platform board 1-1 deployed in the component mounting process 101 includes at least three FPGAs 11 for controlling the transfer mechanism 111, the X—Y stage 112, and the suction chuck 113, respectively.
  • Interface 14 that enables connection between the device 110 and the device 110.
  • the spelling substrate 100 on which components are mounted is divided into a plurality of RF modules.
  • a device 120 for performing this substrate cutting step 102 as shown in FIG. 4, for example, an X—Y for moving the spelling substrate 100 in the X—Y direction.
  • a stage 121 and a dicing blade 122 that divides the spelling substrate 100 into a plurality of RF modules 100a are provided.
  • the board 10 of the platform board 1-2 deployed in the board cutting process 102 includes at least two FPGAs 11 for controlling the X—Y stage 121 and the dicing blade 122, and the FPGA 11 and the equipment 120. It is necessary to implement interface 14 that enables connection to the.
  • the appearance inspection process 103 shown in FIG. 1 is a process for inspecting the quality of the RF module 100a solder and the missing or improper mounting of components.
  • an apparatus 130 for executing this appearance inspection process 103 For example, as shown in FIG. 5, an X—Y stage 131 that moves the RF module 100a in the X—Y direction, and a flashlight 132 that applies light to the RF module 100 a on the X—Y stage 131, And a plurality of cameras 133 for photographing the surface of the RF module 100a.
  • the substrate 10 of the platform board 1-3 arranged in the appearance inspection process 103 includes at least two FPGAs 11 for controlling the X—Y stage 131, the flashlight 132, and the plurality of cameras 133, and the camera 133, respectively.
  • Image processing from the image signal to determine whether the solder for the component 200 is good or not, and whether the component 200 is missing or mismounted at least one FPGA 11, an X—Y stage 131, a flashlight 132, multiple cameras 133, and a device 130 It is necessary to implement an interface 14 that enables connection to the camera and at least one detection interface 15 for inputting an image signal from the camera 133.
  • the characteristic inspection step 104 shown in FIG. 1 is a step for inspecting the RF module 100a for short-circuit checking, digital input / output and high-frequency characteristics of the output signal, and equipment for executing this characteristic inspection step 104
  • 140 includes a probe 141 for short check, a probe 142 for digital input / output inspection, and a measuring instrument 143 such as a spectrum analyzer for inspecting the high frequency characteristics of the output signal.
  • the platform 10 of the platform board 1 to 4 deployed in the characteristic inspection process 104 is required to execute the movement control of the probes 141 and 142 and the control of the measuring instrument 143, respectively.
  • All three FPGAs11, at least one A—D converter ⁇ 12 that processes the signal of the probe 141, at least one D—A converter 13 to process the signal of the probe 142, and these FPGA11 It is necessary to implement the A—D change and the D—A change 13 and the interface 14 that enables the device 140 to be connected.
  • the FPGA 11 has at least three for the component mounting process 101, at least two for the substrate cutting process 102, at least three for the appearance inspection process 103, and at least three for the characteristic inspection process 104. Therefore, by mounting at least three FPGAs 11 on the substrate 10, the platform board 1 can be used for any deviation from the component mounting process 101 to the characteristic inspection process 104.
  • A-D transformation 12 and D- ⁇ transformation 13 are required for the characteristic inspection process 104 at least one each, A-D transformation 12 and D-A transformation 13 are at least You can implement one by one.
  • the number of interfaces 14 corresponding to FPGA 11 and the number corresponding to A—D conversion 12 and D—A conversion 13 is mounted, and at least one detection interface 15 is mounted for camera 133 in visual inspection process 103. If you do.
  • the platform board 1 has at least three FPGAs 11 (11—1 to: L 1 3) and at least one A—D variable ⁇ 12 and D—A, respectively.
  • the converter 13, the number of interfaces 14 corresponding to the FPGA 11, the AD converter 12 and the DA converter 13, and at least one detection interface 15 are implemented.
  • the powerful platform board is then replaced with the platform board 1-1 for the component mounting process 101, the platform board 1-2 for the board cutting process 102, the platform board 1-3 for the visual inspection process 103, and the characteristic inspection process 104.
  • the FPGA 11-1 is programmed so that the transport mechanism 111 can be controlled by the FPGA 11-1, and the FPGA 11-2 is programmed. Then, the XY stage 112 can be controlled by the FPGA 11-2, the FPGA 11-3 is programmed, and the suction chuck 113 can be controlled by the FPGA 11-3. And these FPGA11-1, 11-2, 11-3 and equipment 110 transport mechanism With the 111, XY stage 112, and suction chuck 113 connected via the interface 14, the platform board 1-1 was deployed in the component mounting process 101.
  • the FPGA 11-1 is programmed so that the XY stage 121 can be controlled by the FPGA 11-1, and the FPGA 11 —2 was programmed so that dicing blade 122 could be controlled by FPGA1 1-2. Then, with these FPGAs 11-1, 11-2, the XY stage 121, and the dicing blade 122 connected via the interface 14, the platform board 1-2 was deployed in the substrate cutting process 102.
  • the FPGA 11-1 is programmed so that the XY stage 131 can be controlled by the FPGA 11-1, and the FPGA 11-2
  • the flashlight 132 and the plurality of cameras 133 can be controlled by the FPGA 11-2
  • the FPGA 11-3 is programmed so that the image signal from the camera 133 can be processed by the FPGA 11-3.
  • I—2 and X—Y stage 131, flashlight 132, and multiple cameras 133 are connected via interface 14, and FPGA 11-3 and the camera 133 signal output terminal are connected via detection interface 15.
  • the platform board 1-3 was deployed in the visual inspection process 103.
  • the FPGAs 11-11 and 11-2 are programmed, and the probes 141 and 142 are connected to the FPGA.
  • I I-1, 11— 2 enabled movement control
  • FPGA 11-3 was programmed to enable measurement of instrument 143 with FPGA 11-3.
  • FPGA11-1 ⁇ : L1-3, probe 141, 142 and measuring instrument 143 are connected via interface 14, and A—D change ⁇ 12, D—A change ⁇ 13 and probe 141 , 142 are connected to each other via the interface 14, and the platform board 1-4 is deployed in the characteristic inspection process 104.
  • the spelling board 100 on which the component 200 is mounted is transported to the board cutting process 102 side, as shown in Fig. 4, by the operation of the platform board 1-2, the spelling board 100 force FPGA 11-1, 11-
  • the XY stage 121 and the dicing blade 122 controlled in 2 are divided into a plurality of RF modules 100a and conveyed to the appearance inspection process 103 side.
  • each RF module 100a is transported to the appearance inspection process 103 side, as shown in Fig. 5, the RF module 100a is controlled by the FPGA 11-1 by the operation of the platform board 1-3. —Positioned in position by Y stage 131. Then, the flashlight 132 force RF module 100a controlled by the F PGA11-2 is caused to turn on the strobe and the camera 133 images the RF module 100a. Then, based on the image signal from the camera 133 input through the FPGA 11-3 force detection interface 15, image processing is performed to extract the mark on the RF module 100a and extract the contour and shading of the component 200. After that, the FPGA 11-3 judges whether or not the extracted contour and shading are similar to the stored component reference, and determines whether the RF module 100a is soldered correctly or missing or erroneously mounted.
  • the component 200 by the probe 141 is controlled by the FPGA 11-1 of the platform board 1-4. Terminal voltage measurement is performed and the signal is input to A—D conversion 12 via interface 14 and A—D conversion 12 compares the measured voltage with the reference voltage to perform a short test on component 200. Done.
  • the digital input / output control from the probe 142 to the D— ⁇ converter 13 is performed under the control of the FPGA 11-2, and the high frequency characteristics of the RF module 100a are measured by the measuring instrument 143 under the control of the FPGA 11-3. Is called.
  • the RF module 100a that passed the visual inspection process 103 is tested.
  • the tape is taped to the loop 150, and the whole process is completed.
  • FPGA11, A— D change ⁇ 12, D— A change ⁇ 13, interface 14 and detection interface 15 are provided on one platform board 1, and the platform board used in each process 1 1-1-4 hardware Since the use of hardware is common, there is no need for expensive equipment dedicated to each process, making it possible to construct a production line at a lower cost.
  • FIG. 7 is a schematic view showing the main part of the production management method according to the second embodiment of the present invention. This embodiment is different from the first embodiment in that a load distributed to one platform board 1 is distributed by a plurality of platform boards 1.
  • the FPGA 11-3 inputs an image signal from the camera 133 that images the RF module 100a via the detection interface 15, and performs image processing based on the image signal. That is, the FPGA 11-3 functions as a DSP (Digital Signal Processor). However, since image processing is applied to the large load of FPGA 11-3, the single platform board 1 often cannot process images in a short time.
  • DSP Digital Signal Processor
  • This embodiment provides a production management method that can cope with a case where power is applied.
  • a communication interface 16 is provided on each platform board 1 as shown in FIG.
  • the platform board 1 is configured to process a large amount of image data in a distributed manner.
  • Ethernet (Ethern) is used as the communication interface 16.
  • et (“Ethernet” and “Ethernet” are registered trademarks).
  • a short-range wireless interface such as infrared may be used as the communication interface 16!
  • the detection interface 15 of the platform board 1 3a is connected to the camera 133 shown in FIG. 5, and three platform boards 1-3a to l-3c are connected. Connected with communication interface 16. Then, the platform board 1-3 c and the platform board 1-3 d were connected via the detection interface 15, and the platform board 1-3 d was connected via the interface 14 to the device 130 in the visual inspection process 103.
  • the X-Y stage 131, the flashlight 132, and the camera 133 of the device 130 are controlled via the interface 14 of the platform board 1-3d, and a large amount of image data captured from the camera 133 force. Is distributed by 3 platform boards 1 3a ⁇ l 3c.
  • FIG. 8 is a schematic diagram showing a production management method according to the third embodiment of the present invention. This embodiment is different from the first and second embodiments in that the platform boards 1-1 to 1-4 in each process are LAN-connected.
  • a communication interface 16 is provided on the platform boards 1 1 to 14, and the platform boards 1-1 to 1-4 are connected to each other via these communication interfaces 16.
  • LAN connection Then, host computer 2 is connected to this LAN, and program rewriting and management of measurement data and quality data for each FPGA 11 of platform boards 1-1 to 1-4 are centrally managed by this host computer 2. did.
  • Example 4 Other configurations, operations, and effects are the same as those in the first and second embodiments, and thus the description thereof is omitted.
  • Example 4
  • FIG. 9 is a schematic diagram showing a production management method according to the fourth embodiment of the present invention.
  • the load on one platform board 1 is distributedly processed by a plurality of platform boards 1 and the platform boards 1 1 to 14 of each process are lan connected. Different from the third embodiment.
  • a detection interface 15 and a communication interface 16 are provided on the platform boards 11 to 14, and a communication interface 17 for LAN connection is also provided.
  • the detection interface 15 of the platform board 1-3a is connected to the camera 133, and three platform boards l-3a to l-3c are communicated. The connection was made using the 16 interface. Then, the platform board 1-3c and the platform board 1-3d were connected via the detection interface 15, and the platform board 1-3d was connected to the device 130 in the appearance inspection process 103 via the interface 14.
  • platform boards 1-1-1-4 are connected to each other via communication interface 17, host computer 2 is connected to this LAN, and platform boards 1-1-1-4 are connected to this host computer.
  • the centralized management was done in 2.
  • the interface 14, the detection interface 15, and the communication interface 16 are exemplified as the interface.
  • GPIB General Purpose Interface Bus
  • RS-232C Recommended Standard 232 version C
  • an interface such as can be provided on the platform board 1.
  • the number of FPGAs 11 in the above embodiment is an example, and one FP GAl 1 can have a plurality of functions, or one function can be shared by a plurality of FPGAs 1. Furthermore, the contents of the FPGA program can be switched in time series so that one platform board 1 can be shared by multiple processes.
  • a power PLD Programmable Logic Device
  • FPGA Field-programmable programmable programmable programmable programmable programmable hardware element

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Quality & Reliability (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • General Factory Administration (AREA)

Abstract

A platform board and a production control method in which production processing efficiency is enhanced for a plurality of kinds of product while their costs are reduced by shared use of hardware and its software program for controlling control apparatuses and inspection apparatuses used in the entire processes of a production line. Control, processing of apparatus and measurement of product characteristics in the component mounting process (101) through the characteristics inspection process (104) of a production line are performed on a single kind of platform board (1) arranged in each process. The board (1) comprises an FPGA (11), an A-D converter (12), a D-A converter (13), an interface (14) and a detection interface (15). As many FPGAs (11) through detection interfaces (15) as required for performing control, processing of the apparatus and measurement of product in all processes (101)-(104) are mounted on a substrate (10). Preferably, the boards (1) of respective processes are LAN-interconnected and controlled centrally by means of a host computer.

Description

明 細 書  Specification
プラットフォームボード及び生産管理方法  Platform board and production management method
技術分野  Technical field
[0001] この発明は、生産ラインの各工程で用いられる機器をコントロールするためのプラッ トフオームボード及び生産管理方法に関するものである。  The present invention relates to a platform board and a production management method for controlling equipment used in each process of a production line.
背景技術  Background art
[0002] 一般に、 PC,マイコン, DSP等の専用の装置を、各生産工程毎に組み込むことで [0002] In general, dedicated devices such as PCs, microcomputers, and DSPs are incorporated into each production process.
、各生産工程に関する制御機器や測定機器等をコントロールするハードウェアやそ のソフトウェアプログラムを構築して 、る。 Develop hardware and software programs to control control equipment and measuring equipment for each production process.
しかし、近年では、生産効率や生産コスト等の観点から、特許文献 1〜3に開示の 技術のように、各工程で使用するハードウェアやソフトウェアプログラムを共通化した 技術が提案されている。  However, in recent years, from the viewpoint of production efficiency, production cost, etc., a technology that shares hardware and software programs used in each process, such as the technology disclosed in Patent Documents 1 to 3, has been proposed.
特許文献 1に開示の技術は、基板の品種毎に異なる基板搬送部の幅を変更するこ とができるようにして、容易に多品種の基板に対応するものであり、特許文献 2に開示 の技術は、ロット交換時のカセット装着方法を最適化し、効率よく多品種のウェハ生 産を行うものである。また、特許文献 3に開示の技術は、着工順序を制御して隘路ェ 程の稼働率を上げ、効率よく多品種の生産を行うものである。  The technology disclosed in Patent Document 1 can easily change the width of the substrate transfer section that is different for each type of substrate, and easily accommodates various types of substrates. The technology optimizes the cassette mounting method at the time of lot exchange and efficiently produces a wide variety of wafers. In addition, the technique disclosed in Patent Document 3 increases the operating rate of the Kushiro process by controlling the construction sequence, and efficiently produces a wide variety of products.
[0003] 特許文献 1:特開 2003— 243888号公報 [0003] Patent Document 1: Japanese Patent Laid-Open No. 2003-243888
特許文献 2:特開 2002 - 280425号公報  Patent Document 2: JP 2002-280425 A
特許文献 3 :特開平 10— 198403号公報  Patent Document 3: Japanese Patent Laid-Open No. 10-198403
発明の開示  Disclosure of the invention
[0004] 上記した従来の技術では、 V、ずれも、特定の工程の治具,設備や作業手順の最適 ィ匕によって、多品種に対応する技術であり、品種毎に変更する必要がある部分を改 良することで、その他の部分を共通化している。しかし、これらの技術が適用される製 品は、同一種類であり、同一種類の製品を構成する基板等の品種に対して、多品種 対応が可能なだけである。したがって、従来の技術では、種類が異なる製品に対して 、設備機器のハードウェアやソフトウェアプログラムを共通化することができず、対応 が困難であった。 [0004] In the above-described conventional technology, V and deviation are technologies that correspond to a wide variety of products, depending on the jigs, equipment, and work procedures of a specific process, and parts that need to be changed for each product type. The other parts are made common by improving. However, the products to which these technologies are applied are of the same type, and it is only possible to deal with various types of products such as substrates constituting the same type of product. Therefore, with the conventional technology, it is not possible to share hardware and software programs of facility equipment for products of different types. It was difficult.
[0005] この発明は、上述した課題を解決するためになされたもので、生産ラインの全ての 工程で用いられる制御機器や検査機器等をコントロールするハードウェアやそのソフ トウエアプログラムを共通化して、複数種類の製品に対する生産処理の効率化と低コ スト化とを図ったプラットフォームボード及び生産管理方法を提供することを目的とす る。  [0005] The present invention has been made to solve the above-described problems. The hardware for controlling control equipment and inspection equipment used in all processes of the production line and the software program thereof are made common. The purpose is to provide a platform board and a production management method that achieves efficient production processing and low cost for multiple types of products.
[0006] 上記課題を解決するために、請求項 1の発明は、生産ラインの各工程毎に配備さ れ、各工程の機器の制御,処理及び製品特性の測定を行うプラットフォームボードで あって、生産ラインにおける全工程の機器の制御,処理及び製品測定を行うに必要 な種類と個数のハードウェア素子を基板に実装すると共に、基板が配備される工程 の機器に対する制御,処理及び製品測定を行うに必要なハードウェア素子を動かす ためのプログラムを所定のハードウェア素子に格納し、工程の機器の制御及び処理 用のハードウェア素子として、プログラマブルなハードウェア素子を適用した構成と する。  [0006] In order to solve the above-mentioned problems, the invention of claim 1 is a platform board that is provided for each process of the production line, and controls and processes equipment in each process and measures product characteristics. Mount the necessary types and number of hardware elements on the board to control, process, and measure products in all processes on the production line, and control, process, and measure products on the equipment in which the board is installed. A program for moving the hardware elements necessary for the operation is stored in a predetermined hardware element, and a programmable hardware element is applied as a hardware element for controlling and processing the equipment in the process.
力かる構成により、プラットフォームボードが全工程の機器の制御,処理及び製品 測定に共通なハードウェア素子を有するので、プラットフォームボードを生産ラインの 全工程に配備することで、各工程の機器の制御,処理及び製品特性の測定を各ブラ ットフォームボードで行うことができる。  Due to the powerful configuration, the platform board has common hardware elements for controlling, processing and measuring products in all processes. By deploying the platform board in all processes on the production line, Processing and product property measurements can be made on each platform board.
[0007] 請求項 2の発明は、請求項 1に記載のプラットフォームボードにおいて、基板に、基 板同士での通信及びホストコンピュータとの通信を可能にする通信用インタフェース を設けた構成とする。 [0007] The invention of claim 2 is the platform board according to claim 1, wherein the board is provided with a communication interface that enables communication between the boards and communication with the host computer.
力かる構成により、一の処理を複数のプラットフォームボードによって分散処理する ことができ、また、ホストコンピュータによって複数のプラットフォームボードを一元管 理することができる。  With this powerful configuration, one process can be distributed and processed by multiple platform boards, and multiple platform boards can be centrally managed by the host computer.
[0008] 請求項 3の発明は、請求項 1又は請求項 2に記載のプラットフォームボードにおいて 、プログラマブルなハードウェア素子として、 FPGA又は PLDを適用し、工程の機器 の測定用のハードウェア素子として、アナログ デジタル変^^とデジタル アナ口 グ変^^とを適用し、工程の機器とハードウェア素子との接続を可能にするインタフ エースを適用した構成とする。 [0008] The invention of claim 3 is a platform board according to claim 1 or claim 2, in which an FPGA or PLD is applied as a programmable hardware element, and as a hardware element for measuring a process device, An interface that enables connection between process equipment and hardware elements by applying analog-digital change ^^ and digital-analog change ^^. Ace is applied.
力かる構成により、 FPGA又は PLDを全工程で共通に使用することができるので、 ハードウェア及びソフトウェアプログラム等の設計データを蓄積して、ライブラリイ匕する ことが容易となる。また、アナログ デジタル変^^とデジタル アナログ変^^とを 適用することで、プラットフォームボードを測定器として使用することが可能となる。 さらに、インタフェースに測定器やカメラ、センサ等を接続することができるので、デ ジタルーアナログ変換器、アナログ デジタル変換器では測定できな 、信号等の入 出力が可能となり、これらの信号によって測定及び信号処理等を行うことができる。  The powerful configuration allows the FPGA or PLD to be used in common in all processes, making it easy to store design data such as hardware and software programs and create a library. Also, by applying analog / digital and digital / analog variations, the platform board can be used as a measuring instrument. In addition, since measuring instruments, cameras, sensors, etc. can be connected to the interface, signals can be input and output that cannot be measured with digital-analog converters and analog-digital converters. Signal processing or the like can be performed.
[0009] また、請求項 4の発明に係る生産管理方法は、請求項 1な!、し請求項 3の 、ずれか に記載のプラットフォームボードを生産ラインの各工程毎に配備して、当該各工程の 機器の制御,処理及び製品特性の測定を行う構成とした。  [0009] Furthermore, the production management method according to the invention of claim 4 is provided with the platform board according to claim 1 or 3 according to any one of claims 1 and 3 for each process of the production line. The process is configured to control equipment, process, and measure product characteristics.
[0010] 請求項 5の発明は、請求項 4に記載の生産管理方法において、生産ラインは、処理 工程と検査工程とを有し、 FPGA又は PLDを処理工程の機器の制御及び処理を行 わせるようにプログラムすると共に、当該 FPGA又は PLDをインタフェースを介して当 該処理工程の機器に接続した状態で、プラットフォームボードを当該処理工程に配 備し、 FPGA又は PLDを検査工程の機器の制御及び処理を行わせるようにプロダラ ムし、当該 FPGA又は PLD,製品測定用のアナログ信号を生成するためのデジタル アナログ変換器,及び入力したアナログ信号をデジタル信号に変換して製品測定 を行うアナログ デジタル変換器をインタフェースを介して当該検査工程の機器に接 続した状態で、当該プラットフォームボードを当該検査工程に配備した構成とする。  [0010] The invention of claim 5 is the production management method according to claim 4, wherein the production line has a processing step and an inspection step, and the FPGA or the PLD controls and processes the equipment in the processing step. In the state where the FPGA or PLD is connected to the processing process equipment via the interface, the platform board is installed in the processing process, and the FPGA or PLD is controlled and controlled by the inspection process equipment. Program to perform processing, the relevant FPGA or PLD, a digital-to-analog converter to generate analog signals for product measurement, and analog-to-digital conversion to convert the input analog signals to digital signals and perform product measurements The platform board is deployed in the inspection process with the instrument connected to the equipment in the inspection process via the interface.
[0011] 請求項 6の発明は、請求項 4又は請求項 5に記載の生産管理方法において、複数 のプラットフォームボード同士を通信用インタフェースを介して接続することにより、一 の処理を当該複数のプラットフォームボードで分散処理する構成とした。 [0011] The invention of claim 6 is the production management method according to claim 4 or claim 5, wherein a plurality of platform boards are connected to each other via a communication interface to perform one process. The board is configured to perform distributed processing.
[0012] 請求項 7の発明は、請求項 4ないし請求項 6のいずれかに記載の生産管理方法に お!、て、各工程のプラットフォームボードとホストコンピュータとを通信用インタフエ一 スを介して接続することにより、全工程のプラットフォームボードを当該ホストコンビュ ータにより一元管理する構成とした。 [0012] The invention according to claim 7 is the production management method according to any one of claims 4 to 6. By connecting the platform board for each process and the host computer via a communication interface, the platform board for all processes was configured to be centrally managed by the host computer.
[0013] 以上詳しく説明したように、請求項 1ないし請求項 7の発明によれば、プラットフォー ムボードに、全工程の機器の制御,処理及び製品測定に必要なハードウェア素子を 設けて、各プラットフォームボードにおけるハードウェアの共通化を図ったので、低コ ストで生産ラインを構築できるという優れた効果がある。また、同一生産ラインだけで なく異なる生産ラインで使用するプラットフォームボードのハードウェアの共通化を図 ることで、異なる生産ラインにおいて、元の生産ラインの設計資産の再利用が可能と なり、そのコストメリットも大きい。 [0013] As described in detail above, according to the invention of claims 1 to 7, the platform The hardware elements necessary for control, processing and product measurement of equipment in all processes are provided on the board, and the hardware for each platform board is shared, so it is possible to construct a production line at low cost. effective. In addition, by sharing platform board hardware used not only on the same production line but also on different production lines, the design assets of the original production line can be reused on different production lines. The benefits are great.
特に、請求項 3及び請求項 5の発明によれば、ハードウェア及びソフトウェアプログ ラム等の設計データを蓄積して、ライブラリ化することが容易となるので、このライブラ リを活用することで、生産ラインを短期間で構築することができるという効果がある。 さらに、請求項 2,請求項 6及び請求項 7の発明によれば、一の処理を複数のプラッ トフオームボードによって分散処理することができるので、プラットフォームボードに加 わる処理上の負荷を軽減させることができる。また、ホストコンピュータによって複数の プラットフォームボードを一元管理することができるので、各プラットフォームボードの 制御や各プラットフォームボードからの各種データを取得することができ、この結果、 高度な生産工程管理が可能となる。  In particular, according to the inventions of claim 3 and claim 5, design data such as hardware and software programs can be easily stored and made into a library. There is an effect that a line can be constructed in a short period of time. Furthermore, according to the inventions of claim 2, claim 6 and claim 7, since one process can be distributed by a plurality of platform boards, the processing load applied to the platform board is reduced. be able to. In addition, since multiple platform boards can be centrally managed by the host computer, it is possible to control each platform board and obtain various data from each platform board. As a result, advanced production process management is possible. .
図面の簡単な説明  Brief Description of Drawings
[0014] [図 1]この発明の第 1実施例に係る生産管理方法を示す概略図である。 FIG. 1 is a schematic view showing a production management method according to a first embodiment of the present invention.
[図 2]図 1の生産管理方法に適用されるプラットフォームボードの概略平面図である。  FIG. 2 is a schematic plan view of a platform board applied to the production management method of FIG.
[図 3]部品実装工程を実行するための機器を示す概略平面図である。  FIG. 3 is a schematic plan view showing a device for executing a component mounting process.
[図 4]基板切断工程を実行するための機器を示す概略斜視図である。  FIG. 4 is a schematic perspective view showing an apparatus for performing a substrate cutting process.
[図 5]外観検査工程を実行するための機器を示す概略正面図である。  FIG. 5 is a schematic front view showing an apparatus for performing an appearance inspection process.
[図 6]特性検査工程を実行するための機器を示す概略正面図である。  FIG. 6 is a schematic front view showing an apparatus for executing a characteristic inspection process.
[図 7]この発明の第 2実施例に係る生産管理方法の要部を示す概略図である。  FIG. 7 is a schematic view showing a main part of a production management method according to a second embodiment of the present invention.
[図 8]この発明の第 3実施例に係る生産管理方法を示す概略図である。  FIG. 8 is a schematic diagram showing a production management method according to a third embodiment of the present invention.
[図 9]この発明の第 4実施例に係る生産管理方法を示す概略図である。  FIG. 9 is a schematic view showing a production management method according to the fourth embodiment of the present invention.
符号の説明  Explanation of symbols
[0015] 1, 1 1〜1 4, l— 3a〜l— 3d…プラットフォームボード、 2· ··ホストコンピュー タ、 10· ··基板、 11, 11— 1〜: L I— a- "FPGA、 12, 12— 1〜12— b- "A— D変 翻、 13, 13— 1〜13— c"'D— A変翻、 14· ··インタフェース、 15· ··検知用 インタフェース、 16, 17…通信用インタフェース、 100· ··綴り基板、 100a- --RF モジュール、 101…部品実装工程、 102…基板切断工程、 103…外観検査ェ 程、 104…特性検査工程、 110〜140…機器、 150…テープ、 200…部品。 発明を実施するための最良の形態 [0015] 1, 1 1 to 1, 4, l—3a to l—3d… Platform board, 2 ··· Host computer, 10 ··· Board, 11, 11—1 to: LI—a- "FPGA, 12, 12— 1 to 12— b- "A- D variation 13, 13— 1 to 13— c "'D— A variation, 14 ... interface, 15 ... detection interface, 16, 17 ... communication interface, 100 ... spelling board, 100a- --RF module, 101 ... component mounting process, 102 ... substrate cutting process, 103 ... appearance inspection process, 104 ... characteristic inspection process, 110-140 ... equipment, 150 ... tape, 200 ... component Best form
[0016] 以下、この発明の最良の形態について図面を参照して説明する。 Hereinafter, the best mode of the present invention will be described with reference to the drawings.
実施例 1  Example 1
[0017] 図 1は、この発明の第 1実施例に係る生産管理方法を示す概略図であり、図 2は、 図 1の生産管理方法に適用されるプラットフォームボードの概略平面図である。  FIG. 1 is a schematic view showing a production management method according to the first embodiment of the present invention, and FIG. 2 is a schematic plan view of a platform board applied to the production management method of FIG.
この実施例の生産管理方法は、 RFモジュールを製品とする生産ラインを管理する ための方法である。 RFモジュールの生産ライン上の工程は、 RFモジュールの構造 によって異なり、多種の処理工程と検査工程とを有する力 この実施例では、理解を 容易にするため、図 1に示すように、処理工程としての部品実装工程 101及び基板 切断工程 102と、検査工程としての外観検査工程 103及び特性検査工程 104とで成 る 4つの工程を全工程とする生産ラインを例示することとする。  The production management method of this embodiment is a method for managing a production line using RF modules as products. The process on the RF module production line varies depending on the structure of the RF module, and has the power to have various processing and inspection processes. In this example, as shown in Fig. 1, Let us exemplify a production line that has four processes, namely, a component mounting process 101, a board cutting process 102, an appearance inspection process 103 and a characteristic inspection process 104 as inspection processes.
[0018] この実施例の生産管理方法は、力かる生産ラインの部品実装工程 101〜特性検査 工程 104における機器の制御,処理及び製品特性の測定を、各工程に配備した単 一種類のプラットフォームボード 1 (1 1〜1—4)で行うものである。  [0018] The production management method of this embodiment is a single-type platform board in which device control, processing, and measurement of product characteristics in the component mounting process 101 to the characteristic inspection process 104 of a powerful production line are arranged in each process. 1 (1 1 to 1-4).
[0019] プラットフォームボード 1は、図 2に示すように、 a個の FPGA(Fileld Programmable Gate Array ) 11 (11 1〜: L I a)と、 b個のアナログ デジタル変^^ 12 (12—1 〜12— b)と、 c個のデジタル アナログ変^^ 13 (13— l〜13— c)と、これらのハ 一ドウエア素子と各工程の機器とを接続可能にするためのインタフェース 14と、カメラ やセンサ等を接続するための d個の検知用インタフェース 15とを備えている。  [0019] As shown in Figure 2, Platform Board 1 consists of a FPGA (Filed Programmable Gate Array) 11 (11 1 ~: LI a) and b analog / digital converters ^^ 12 (12-1 ~ 12—b), c digital analog converters ^^ 13 (13—l to 13—c), interface 14 for enabling connection between these hardware elements and each process device, and camera And d detection interfaces 15 for connecting sensors and the like.
[0020] FPGA11は、各工程の機器に対する制御や処理を行わせるためのプログラマブル なハードウェア素子であり、プログラムによって所望の CPU (Central Processing Unit )や MPU (Micro Processing Unit)と同様の機能を発揮させることができる。なお、こ の実施例では、 a個の全てのハードウェア素子として、 FPGA11を適用した力 a個 の内のいくつかのハードウェア素子に、 CPU及びメモリや MPUを適用し、メモリにそ の実行プログラムを格納するようにしてもよ 、。 [0020] The FPGA 11 is a programmable hardware element for performing control and processing on devices in each process, and exhibits the same functions as a desired CPU (Central Processing Unit) or MPU (Micro Processing Unit) depending on the program. Can be made. In this embodiment, a CPU, memory, and MPU are applied to some hardware elements of the power a to which the FPGA 11 is applied as all the hardware elements, and the memory is connected to the memory elements. You may want to store the executable program.
[0021] アナログ—デジタル変翻 12 (以下、「A— D変翻 12」と記す)は、測定器やセン サ等カゝらのアナログ信号を入力し、デジタル信号に変換して、電圧測定等を行うこと ができるハードウェア素子である。  [0021] Analog-digital conversion 12 (hereinafter referred to as "A-D conversion 12") inputs analog signals from measuring instruments, sensors, etc., converts them into digital signals, and measures voltage. It is a hardware element that can perform the above.
また、デジタル—アナログ変翻13 (以下、「D— A変翻13」と記す)は、各工程 で必要な測定や制御を行うための信号発生源であり、測定等に必要な信号を生成す ることが可能なハードウェア素子である。  Digital-analog conversion 13 (hereinafter referred to as “D-A conversion 13”) is a signal source for performing measurement and control necessary for each process, and generates signals necessary for measurement and so on. It is a hardware element that can be used.
[0022] この実施例では、これら種類の FPGA11〜検知用インタフェース 15を、この RFモ ジュール生産ラインにおける部品実装工程 101〜特性検査工程 104の全工程の機 器の制御,処理及び製品測定を行うに必要な個数分だけ、基板 10に実装している。  [0022] In this embodiment, these types of FPGA 11 to detection interface 15 are used to control, process, and measure products in all processes from component mounting process 101 to characteristic inspection process 104 in this RF module production line. As many as necessary for mounting on the board 10.
[0023] 以下、プラットフォームボード 1の基板 10に実装する FPGA11等のハードウェア素 子の種類と個数について具体的に説明する。  [0023] Hereinafter, the types and the number of hardware elements such as the FPGA 11 mounted on the substrate 10 of the platform board 1 will be specifically described.
図 3は、部品実装工程 101を実行するための機器 110を示す概略平面図であり、 図 4は、基板切断工程 102を実行するための機器 120を示す概略斜視図であり、図 5は、外観検査工程 103を実行するための機器 130を示す概略正面図であり、図 6 は、特性検査工程 104を実行するための機器 140を示す概略正面図である。  FIG. 3 is a schematic plan view showing a device 110 for performing the component mounting step 101, FIG. 4 is a schematic perspective view showing a device 120 for performing the board cutting step 102, and FIG. FIG. 6 is a schematic front view showing a device 130 for executing the appearance inspection step 103, and FIG. 6 is a schematic front view showing a device 140 for executing the characteristic inspection step 104.
[0024] 図 1に示す部品実装工程 101は、 ICやインダクタ,コンデンサ等の部品を半田印刷 された綴り基板 100に搭載するための工程であり、この部品実装工程 101を実行す るための機器 110として、例えば、図 3に示すように、綴り基板 100を X—Yステージ 1 12に搬送するための搬送機構 111と、綴り基板 100を X— Y方向に移動させる X— Y ステージ 112と、部品 200を吸着して綴り基板 100上の所定部位に搭載するための 吸着チャック 113とを備えている。なお、この実施例では、部品 200の綴り基板 100 への半田付けを行うリフロー工程は省略した。  A component mounting process 101 shown in FIG. 1 is a process for mounting components such as an IC, an inductor, and a capacitor on a spell-printed printed circuit board 100, and an apparatus for executing this component mounting process 101 As 110, for example, as shown in FIG. 3, a transport mechanism 111 for transporting the spelling substrate 100 to the XY stage 112, an XY stage 112 for moving the spelling substrate 100 in the XY direction, A suction chuck 113 for sucking the component 200 and mounting it on a predetermined portion on the spelling substrate 100 is provided. In this embodiment, the reflow process for soldering the component 200 to the spelling board 100 is omitted.
従って、この部品実装工程 101に配備するプラットフォームボード 1— 1の基板 10に は、搬送機構 111と X—Yステージ 112と吸着チャック 113とをそれぞれ制御するた めの少なくとも 3つの FPGA11と、これら FPGA11と機器 110との接続を可能にする インタフェース 14とを実装する必要がある。  Therefore, the board 10 of the platform board 1-1 deployed in the component mounting process 101 includes at least three FPGAs 11 for controlling the transfer mechanism 111, the X—Y stage 112, and the suction chuck 113, respectively. Interface 14 that enables connection between the device 110 and the device 110.
[0025] 図 1に示す基板切断工程 102は、部品が搭載された綴り基板 100を複数の RFモジ ユール 100aに分割するための工程であり、この基板切断工程 102を実行するための 機器 120として、例えば、図 4に示すように、綴り基板 100を X—Y方向に移動させる ための X—Yステージ 121と、綴り基板 100を複数の RFモジュール 100aに分割する ダイシングブレード 122とを備えている。 [0025] In the substrate cutting step 102 shown in FIG. 1, the spelling substrate 100 on which components are mounted is divided into a plurality of RF modules. As a device 120 for performing this substrate cutting step 102, as shown in FIG. 4, for example, an X—Y for moving the spelling substrate 100 in the X—Y direction. A stage 121 and a dicing blade 122 that divides the spelling substrate 100 into a plurality of RF modules 100a are provided.
従って、この基板切断工程 102に配備するプラットフォームボード 1— 2の基板 10に は、 X—Yステージ 121とダイシングブレード 122とをそれぞれ制御するための少なく との 2つの FPGA11と、これら FPGA11と機器 120との接続を可能にするインタフエ ース 14とを実装する必要がある。  Therefore, the board 10 of the platform board 1-2 deployed in the board cutting process 102 includes at least two FPGAs 11 for controlling the X—Y stage 121 and the dicing blade 122, and the FPGA 11 and the equipment 120. It is necessary to implement interface 14 that enables connection to the.
[0026] 図 1に示す外観検査工程 103は、 RFモジュール 100aの半田の良否や部品の欠 落又は誤搭載を検査するための工程であり、この外観検査工程 103を実行するため の機器 130として、例えば、図 5に示すように、 RFモジュール 100aを X— Y方向に移 動させる X—Yステージ 131と、 X—Yステージ 131上の RFモジュール 100aに光を 当てるためのフラッシュライト 132と、 RFモジュール 100aの表面を撮影するための複 数のカメラ 133とを備えている。 [0026] The appearance inspection process 103 shown in FIG. 1 is a process for inspecting the quality of the RF module 100a solder and the missing or improper mounting of components. As an apparatus 130 for executing this appearance inspection process 103, For example, as shown in FIG. 5, an X—Y stage 131 that moves the RF module 100a in the X—Y direction, and a flashlight 132 that applies light to the RF module 100 a on the X—Y stage 131, And a plurality of cameras 133 for photographing the surface of the RF module 100a.
従って、この外観検査工程 103に配備するプラットフォームボード 1—3の基板 10に は、 X—Yステージ 131とフラッシュライト 132及び複数のカメラ 133とをそれぞれ制御 するための少なくとも 2つの FPGA11と、カメラ 133からの画像信号を画像処理して、 部品 200に関する半田の良否や部品 200の欠落又は誤搭載を判断する少なくとも 1 つの FPGA11と、 X—Yステージ 131とフラッシュライト 132及び複数のカメラ 133と 機器 130との接続を可能にするインタフェース 14と、カメラ 133からの画像信号を入 力するための少なくとも 1つの検知用インタフェース 15とを実装する必要がある。  Accordingly, the substrate 10 of the platform board 1-3 arranged in the appearance inspection process 103 includes at least two FPGAs 11 for controlling the X—Y stage 131, the flashlight 132, and the plurality of cameras 133, and the camera 133, respectively. Image processing from the image signal to determine whether the solder for the component 200 is good or not, and whether the component 200 is missing or mismounted, at least one FPGA 11, an X—Y stage 131, a flashlight 132, multiple cameras 133, and a device 130 It is necessary to implement an interface 14 that enables connection to the camera and at least one detection interface 15 for inputting an image signal from the camera 133.
[0027] 図 1に示す特性検査工程 104は、 RFモジュール 100aのショートチェック,デジタル 入出力や出力信号の高周波特性を検査するための工程であり、この特性検査工程 1 04を実行するための機器 140として、例えば、図 6に示すように、ショートチェック用 のプローブ 141,デジタル入出力検査用のプローブ 142や出力信号の高周波特性 を検査するスペクトラムアナライザ等の測定器 143とを備えている。 [0027] The characteristic inspection step 104 shown in FIG. 1 is a step for inspecting the RF module 100a for short-circuit checking, digital input / output and high-frequency characteristics of the output signal, and equipment for executing this characteristic inspection step 104 As shown in FIG. 6, for example, 140 includes a probe 141 for short check, a probe 142 for digital input / output inspection, and a measuring instrument 143 such as a spectrum analyzer for inspecting the high frequency characteristics of the output signal.
従って、この特性検査工程 104に配備するプラットフォームボード 1—4の基板 10に は、プローブ 141, 142の移動制御と測定器 143の制御とをそれぞれ実行する少なく とも 3つの FPGA11と、プローブ 141の信号を処理する少なくとも 1つの A— D変^^ 12と、プローブ 142の信号を処理するための少なくとも 1つの D— A変換器 13と、こ れら FPGA11と A— D変 と D— A変 13と機器 140との接続を可能にする インタフェース 14とを実装する必要がある。 Therefore, the platform 10 of the platform board 1 to 4 deployed in the characteristic inspection process 104 is required to execute the movement control of the probes 141 and 142 and the control of the measuring instrument 143, respectively. All three FPGAs11, at least one A—D converter ^ 12 that processes the signal of the probe 141, at least one D—A converter 13 to process the signal of the probe 142, and these FPGA11 It is necessary to implement the A—D change and the D—A change 13 and the interface 14 that enables the device 140 to be connected.
[0028] 以上から、 FPGA11は、部品実装工程 101用として少なくとも 3つ、基板切断工程 102用として少なくとの 2つ、外観検査工程 103用として、少なくとも 3つ、特性検査ェ 程 104として少なくとも 3つ必要であるので、 FPGA11を基板 10に少なくとも 3つ実装 しておくことにより、このプラットフォームボード 1を部品実装工程 101〜特性検査ェ 程 104の ヽずれにも使用することが可能となる。 From the above, the FPGA 11 has at least three for the component mounting process 101, at least two for the substrate cutting process 102, at least three for the appearance inspection process 103, and at least three for the characteristic inspection process 104. Therefore, by mounting at least three FPGAs 11 on the substrate 10, the platform board 1 can be used for any deviation from the component mounting process 101 to the characteristic inspection process 104.
また、 A— D変翻12と D— Α変翻13は、特性検査工程 104用として、少なくと もそれぞれ 1つ必要であるので、 A— D変 12と D— A変 13とは、少なくとも 1 つづつ実装すればよい。  In addition, since A-D transformation 12 and D-Α transformation 13 are required for the characteristic inspection process 104 at least one each, A-D transformation 12 and D-A transformation 13 are at least You can implement one by one.
そして、インタフェース 14は、 FPGA11用と A— D変翻 12及び D— A変翻 13 用に対応する数だけ実装し、検知用インタフェース 15は、外観検査工程 103のカメラ 133用に少なくとも 1つ実装すればょ 、。  The number of interfaces 14 corresponding to FPGA 11 and the number corresponding to A—D conversion 12 and D—A conversion 13 is mounted, and at least one detection interface 15 is mounted for camera 133 in visual inspection process 103. If you do.
そこで、この実施例では、図 2に示すように、プラットフォームボード 1に、少なくとも 3 つの FPGA11 (11— 1〜: L 1 3)と、それぞれ少なくとも 1つの A— D変^^ 12及び D— A変換器 13と、 FPGA11用と A— D変換器 12及び D— A変換器 13用に対応し た数のインタフェース 14と、少なくとも 1つの検知用インタフェース 15とを実装した。 そして、力かるプラットフォームボードを、部品実装工程 101用のプラットフォームボ ード 1— 1、基板切断工程 102用のプラットフォームボード 1— 2、外観検査工程 103 用のプラットフォームボード 1— 3、特性検査工程 104用のプラットフォームボード 1 4として使用することで、全工程におけるハードウェア素子の共通化を図った。  Therefore, in this embodiment, as shown in FIG. 2, the platform board 1 has at least three FPGAs 11 (11—1 to: L 1 3) and at least one A—D variable ^^ 12 and D—A, respectively. The converter 13, the number of interfaces 14 corresponding to the FPGA 11, the AD converter 12 and the DA converter 13, and at least one detection interface 15 are implemented. The powerful platform board is then replaced with the platform board 1-1 for the component mounting process 101, the platform board 1-2 for the board cutting process 102, the platform board 1-3 for the visual inspection process 103, and the characteristic inspection process 104. By using it as a platform board 14 for, hardware elements were shared in all processes.
[0029] したがって、部品実装工程 101用のプラットフォームボード 1—1では、図 3に示すよ うに、 FPGA11 - 1をプログラミングして、搬送機構 111を FPGA11 - 1で制御可能 にし、 FPGA11—2をプログラミングして、 X— Yステージ 112を FPGA11— 2で制御 可能にし、 FPGA11—3をプログラミングして、吸着チャック 113を FPGA11—3で制 御可能にした。そして、これら FPGA11— 1, 11 - 2, 11— 3と機器 110の搬送機構 111, X—Yステージ 112,吸着チャック 113とをインタフェース 14を介して接続した 状態で、プラットフォームボード 1— 1を部品実装工程 101に配備した。 Therefore, in the platform board 1-1 for the component mounting process 101, as shown in FIG. 3, the FPGA 11-1 is programmed so that the transport mechanism 111 can be controlled by the FPGA 11-1, and the FPGA 11-2 is programmed. Then, the XY stage 112 can be controlled by the FPGA 11-2, the FPGA 11-3 is programmed, and the suction chuck 113 can be controlled by the FPGA 11-3. And these FPGA11-1, 11-2, 11-3 and equipment 110 transport mechanism With the 111, XY stage 112, and suction chuck 113 connected via the interface 14, the platform board 1-1 was deployed in the component mounting process 101.
[0030] また、基板切断工程 102用のプラットフォームボード 1—2では、図 4に示すように、 FPGA11— 1をプログラミングして、 X— Yステージ 121を FPGA11— 1で制御可能 にすると共に、 FPGA11—2をプログラミングして、ダイシングブレード 122を FPGA1 1—2で制御可能にした。そして、これら FPGA11— 1, 11— 2と X—Yステージ 121 ,ダイシングブレード 122とをインタフェース 14を介して接続した状態で、プラットフォ ームボード 1—2を基板切断工程 102に配備した。  In addition, as shown in FIG. 4, in the platform board 1-2 for the substrate cutting process 102, the FPGA 11-1 is programmed so that the XY stage 121 can be controlled by the FPGA 11-1, and the FPGA 11 —2 was programmed so that dicing blade 122 could be controlled by FPGA1 1-2. Then, with these FPGAs 11-1, 11-2, the XY stage 121, and the dicing blade 122 connected via the interface 14, the platform board 1-2 was deployed in the substrate cutting process 102.
[0031] また、外観検査工程 103用のプラットフォームボード 1—3では、図 5に示すように、 FPGA11— 1をプログラミングして、 X— Yステージ 131を FPGA11— 1で制御可能 にし、 FPGA11—2をプログラミングして、フラッシュライト 132及び複数のカメラ 133 を FPGA11— 2で制御可能にし、 FPGA11—3をプログラミングして、カメラ 133から の画像信号を FPGA11—3で画像処理可能にした。そして、これら FPGA11— 1, 1 [0031] Also, in the platform board 1-3 for the appearance inspection process 103, as shown in FIG. 5, the FPGA 11-1 is programmed so that the XY stage 131 can be controlled by the FPGA 11-1, and the FPGA 11-2 The flashlight 132 and the plurality of cameras 133 can be controlled by the FPGA 11-2, and the FPGA 11-3 is programmed so that the image signal from the camera 133 can be processed by the FPGA 11-3. And these FPGA11—1, 1
I— 2と X—Yステージ 131,フラッシュライト 132及び複数のカメラ 133とをインタフエ ース 14を介して接続すると共に、 FPGA11—3とカメラ 133の信号出力端とを検知用 インタフェース 15を介して接続した状態で、プラットフォームボード 1—3を外観検査 工程 103に配備した。 I—2 and X—Y stage 131, flashlight 132, and multiple cameras 133 are connected via interface 14, and FPGA 11-3 and the camera 133 signal output terminal are connected via detection interface 15. In the connected state, the platform board 1-3 was deployed in the visual inspection process 103.
[0032] さらに、特性検査工程 104用のプラットフォームボード 1—4では、図 6に示すように 、FPGA11— 1, 11— 2をそれぞれプログラミングして、プローブ 141, 142を FPGA [0032] Further, in the platform board 1-4 for the characteristic inspection process 104, as shown in FIG. 6, the FPGAs 11-11 and 11-2 are programmed, and the probes 141 and 142 are connected to the FPGA.
I I - 1, 11— 2で移動制御可能にすると共に、 FPGA11—3をプログラミングして、 測定器 143を FPGA11—3で制御可能にした。そして、これら FPGA11— 1〜: L 1— 3,プローブ 141, 142,測定器 143とをインタフェース 14を介して接続すると共に、 A— D変^^ 12, D— A変^^ 13とプローブ 141, 142とをインタフェース 14を介し て接続した状態で、プラットフォームボード 1—4を特性検査工程 104に配備した。 I I-1, 11— 2 enabled movement control, and FPGA 11-3 was programmed to enable measurement of instrument 143 with FPGA 11-3. And these FPGA11-1 ~: L1-3, probe 141, 142 and measuring instrument 143 are connected via interface 14, and A—D change ^^ 12, D—A change ^^ 13 and probe 141 , 142 are connected to each other via the interface 14, and the platform board 1-4 is deployed in the characteristic inspection process 104.
[0033] 図 1に示すように、上記プラットフォームボード 1— 1〜1— 4を部品実装工程 101〜 特性検査工程 104に配備し、プラットフォームボード 1を作動させることにより、図 3に 示すように、半田印刷された綴り基板 100が、 FPGA11— 1で制御された搬送機構 1 11によって X—Yステージ 112上に配置され、 FPGA11 - 2で制御された X—Yステ ージ 112によって、所定の位置に位置決めされる。そして、 FPGA11— 3で制御され た吸着チャック 113が部品 200を吸着して、綴り基板 100上に運び、部品 200を所定 箇所に搭載する。綴り基板 100の全ての RFモジュール 100aについて部品 200の搭 載が終了すると、搬送機構 111によって、綴り基板 100が基板切断工程 102側に搬 送される。 [0033] As shown in FIG. 3, by placing the platform boards 1-1-1-4 in the component mounting process 101-characteristic inspection process 104 and operating the platform board 1, as shown in FIG. The solder printed spelling board 100 is placed on the X—Y stage 112 by the transport mechanism 111 controlled by the FPGA 11—1, and the X—Y stage controlled by the FPGA 11-2. The page 112 is positioned at a predetermined position. Then, the suction chuck 113 controlled by the FPGA 11-3 sucks the component 200, carries it on the spelling substrate 100, and mounts the component 200 at a predetermined location. When the mounting of the component 200 is completed for all the RF modules 100a of the spelling substrate 100, the spelling substrate 100 is transported to the substrate cutting step 102 side by the transport mechanism 111.
[0034] 部品 200が搭載された綴り基板 100が基板切断工程 102側に搬送されると、図 4に 示すように、プラットフォームボード 1—2の作動により、綴り基板 100力FPGA11— 1 , 11— 2で制御された X—Yステージ 121とダイシングブレード 122とによって、複数 の RFモジュール 100aに分割され、外観検査工程 103側に搬送される。  [0034] When the spelling board 100 on which the component 200 is mounted is transported to the board cutting process 102 side, as shown in Fig. 4, by the operation of the platform board 1-2, the spelling board 100 force FPGA 11-1, 11- The XY stage 121 and the dicing blade 122 controlled in 2 are divided into a plurality of RF modules 100a and conveyed to the appearance inspection process 103 side.
[0035] そして、各 RFモジュール 100aが外観検査工程 103側に搬送されると、図 5に示す ように、プラットフォームボード 1—3の作動により、 RFモジュール 100aが、 FPGA11 —1で制御された X—Yステージ 131によって定位置に位置決めされる。し力る後、 F PGA11—2で制御されたフラッシュライト 132力 RFモジュール 100aにストロボを点 灯させると共にカメラ 133が RFモジュール 100aを撮像する。そして、 FPGA11— 3 力 検知用インタフェース 15を介して入力したカメラ 133からの画像信号に基づいて 、画像処理し、 RFモジュール 100a上のマーク抽出、部品 200の輪郭及び濃淡の抽 出を行う。し力る後、 FPGA11— 3は、抽出輪郭及び濃淡が格納してある部品リファ レンスと似ているか否かを判断し、 RFモジュール 100aの半田の良否や部品の欠落 又は誤搭載を決定する。  [0035] Then, when each RF module 100a is transported to the appearance inspection process 103 side, as shown in Fig. 5, the RF module 100a is controlled by the FPGA 11-1 by the operation of the platform board 1-3. —Positioned in position by Y stage 131. Then, the flashlight 132 force RF module 100a controlled by the F PGA11-2 is caused to turn on the strobe and the camera 133 images the RF module 100a. Then, based on the image signal from the camera 133 input through the FPGA 11-3 force detection interface 15, image processing is performed to extract the mark on the RF module 100a and extract the contour and shading of the component 200. After that, the FPGA 11-3 judges whether or not the extracted contour and shading are similar to the stored component reference, and determines whether the RF module 100a is soldered correctly or missing or erroneously mounted.
[0036] 外観検査工程 103で合格した RFモジュール 100aが特性検査工程 104側に搬送 されると、図 6に示すように、プラットフォームボード 1—4の FPGA11—1の制御で、 プローブ 141による部品 200端子の電圧測定が行われ、その信号がインタフェース 1 4を介して A— D変 12に入力され、 A— D変 12によって、測定電圧がリファ レンス電圧と比較されて、部品 200のショートテストが行われる。また、 FPGA11— 2 の制御で、プローブ 142から D— Α変換器 13へのデジタル入出力制御が行なわれ、 FPGA11— 3の制御で、測定器 143による RFモジュール 100aの高周波特性の測 定が行われる。  [0036] When the RF module 100a that has passed the appearance inspection process 103 is transferred to the characteristic inspection process 104 side, as shown in Fig. 6, the component 200 by the probe 141 is controlled by the FPGA 11-1 of the platform board 1-4. Terminal voltage measurement is performed and the signal is input to A—D conversion 12 via interface 14 and A—D conversion 12 compares the measured voltage with the reference voltage to perform a short test on component 200. Done. In addition, the digital input / output control from the probe 142 to the D—Α converter 13 is performed under the control of the FPGA 11-2, and the high frequency characteristics of the RF module 100a are measured by the measuring instrument 143 under the control of the FPGA 11-3. Is called.
[0037] そして、図 1に示すように、外観検査工程 103で合格した RFモジュール 100aがテ ープ 150にテーピングされ、全工程が終了する。 [0037] Then, as shown in FIG. 1, the RF module 100a that passed the visual inspection process 103 is tested. The tape is taped to the loop 150, and the whole process is completed.
[0038] このように、この実施例の生産管理方法によれば、全ての部品実装工程 101〜特 性検査工程 104の機器 110〜 140の制御,処理及び製品測定に必要なハードゥエ ァ素子である FPGA11, A— D変^^ 12, D— A変^^ 13,インタフェース 14及び 検知用インタフェース 15を 1つのプラットフォームボード 1に設けて、各工程で使用す るプラットフォームボード 1 1〜1 4におけるハードウェアの共通化を図ったので、 各工程専用の高価な装置を必要とせず、その分、生産ラインを低コストで構築するこ とがでさる。 Thus, according to the production management method of this embodiment, it is a hard element required for control, processing, and product measurement of all devices 110 to 140 in component mounting process 101 to characteristic inspection process 104. FPGA11, A— D change ^^ 12, D— A change ^^ 13, interface 14 and detection interface 15 are provided on one platform board 1, and the platform board used in each process 1 1-1-4 hardware Since the use of hardware is common, there is no need for expensive equipment dedicated to each process, making it possible to construct a production line at a lower cost.
また、この実施例では、部品実装工程 101〜特性検査工程 104で成る 1つの生産 ラインに着目したため、この生産ラインに必要なハードウェア素子のみを基板 10に実 装した。しかし、この生産ラインだけでなぐ異なる生産ラインの機器をも想定したハー ドウエア素子を実装することで、異なる生産ラインで使用するプラットフォームボードを も共通化することができる。力かる共通化によって、設計資産の再利用が可能となり、 ライン構築時のコストメリットを大きくすることができる。  Further, in this embodiment, attention was paid to one production line composed of the component mounting process 101 to the characteristic inspection process 104, so only the hardware elements necessary for this production line were mounted on the board 10. However, it is possible to share platform boards for use in different production lines by mounting hardware elements that can be used not only for this production line, but also for devices on different production lines. The strong standardization enables reuse of design assets, which can increase the cost merit when building a line.
実施例 2  Example 2
[0039] 次に、この発明の第 2実施例について説明する。  Next, a second embodiment of the present invention will be described.
図 7は、この発明の第 2実施例に係る生産管理方法の要部を示す概略図である。 この実施例は、 1つのプラットフォームボード 1にカ卩わる負荷を複数のプラットフォー ムボード 1で分散処理する構成とした点が、上記第 1実施例と異なる。  FIG. 7 is a schematic view showing the main part of the production management method according to the second embodiment of the present invention. This embodiment is different from the first embodiment in that a load distributed to one platform board 1 is distributed by a plurality of platform boards 1.
外観検査工程 103では、 RFモジュール 100aを撮像したカメラ 133からの画像信号 を FPGA11— 3が、検知用インタフェース 15を介して入力し、この画像信号に基づ いて、画像処理する。すなわち、 FPGA11—3を DSP (Digital Signal Processor)とし て機能させる。しかし、画像処理には、大きな負荷力 FPGA11— 3に加わるため、 1 枚のプラットフォームボード 1では、短時間に画像処理できない場合が多い。  In the appearance inspection step 103, the FPGA 11-3 inputs an image signal from the camera 133 that images the RF module 100a via the detection interface 15, and performs image processing based on the image signal. That is, the FPGA 11-3 functions as a DSP (Digital Signal Processor). However, since image processing is applied to the large load of FPGA 11-3, the single platform board 1 often cannot process images in a short time.
この実施例は、力かる場合に対応可能な生産管理方法を提供するもので、図 7に 示すように、検知用インタフェース 15の他に通信用インタフェース 16を各プラットフォ ームボード 1に設け、複数のプラットフォームボード 1で膨大な画像データを分散処理 する構成とした。この実施例では、通信用インタフェース 16としてイーサネット(Ethern et) (「イーサネット」及び「Ethernet」は、登録商標である)のインタフェースを用いた。 勿論、イーサネットの代わりに、赤外線などの近距離無線のインタフェースを通信用ィ ンタフェース 16として用いてもよ!、。 This embodiment provides a production management method that can cope with a case where power is applied. In addition to the detection interface 15, a communication interface 16 is provided on each platform board 1 as shown in FIG. The platform board 1 is configured to process a large amount of image data in a distributed manner. In this embodiment, Ethernet (Ethern) is used as the communication interface 16. et) (“Ethernet” and “Ethernet” are registered trademarks). Of course, instead of Ethernet, a short-range wireless interface such as infrared may be used as the communication interface 16!
具体的には、図 7に示すように、プラットフォームボード 1 3aの検知用インタフエ一 ス 15を、図 5に示したカメラ 133に接続すると共に、 3枚のプラットフォームボード 1— 3a〜l— 3cを通信用インタフェース 16で接続した。そして、プラットフォームボード 1 —3cとプラットフォームボード 1— 3dとを検知用インタフェース 15を介して接続し、プ ラットフオームボード 1— 3dをインタフェース 14を介して外観検査工程 103の機器 13 0に接続した。  Specifically, as shown in FIG. 7, the detection interface 15 of the platform board 1 3a is connected to the camera 133 shown in FIG. 5, and three platform boards 1-3a to l-3c are connected. Connected with communication interface 16. Then, the platform board 1-3 c and the platform board 1-3 d were connected via the detection interface 15, and the platform board 1-3 d was connected via the interface 14 to the device 130 in the visual inspection process 103.
[0040] このようにして、プラットフォームボード 1— 3dのインタフェース 14を介して、機器 13 0の X—Yステージ 131やフラッシュライト 132及びカメラ 133を制御し、カメラ 133力 ら取り込んだ膨大な画像データを 3枚のプラットフォームボード 1 3a〜l 3cで分 散処理する。  [0040] In this way, the X-Y stage 131, the flashlight 132, and the camera 133 of the device 130 are controlled via the interface 14 of the platform board 1-3d, and a large amount of image data captured from the camera 133 force. Is distributed by 3 platform boards 1 3a ~ l 3c.
その他の構成、作用及び効果は、上記第 1実施例と同様であるので、その記載は 省略する。  Other configurations, operations, and effects are the same as those in the first embodiment, and the description thereof is omitted.
実施例 3  Example 3
[0041] 次に、この発明の第 3実施例について説明する。  [0041] Next, a third embodiment of the present invention will be described.
図 8は、この発明の第 3実施例に係る生産管理方法を示す概略図である。 この実施例は、各工程のプラットフォームボード 1 - 1〜1—4を LAN接続した点が 、上記第 1及び第 2実施例と異なる。  FIG. 8 is a schematic diagram showing a production management method according to the third embodiment of the present invention. This embodiment is different from the first and second embodiments in that the platform boards 1-1 to 1-4 in each process are LAN-connected.
具体的には、図 8に示すように、プラットフォームボード 1 1〜1 4に通信用インタ フェース 16を設け、これらの通信用インタフェース 16を介して、プラットフォームボー ド 1—1〜 1—4同士を LAN接続した。そして、ホストコンピュータ 2をこの LANに接続 し、プラットフォームボード 1—1〜1— 4の各 FPGA11に対するプログラムの書き換え 及び測定データや品質データの管理等を、このホストコンピュータ 2で一元管理する よつにした。  Specifically, as shown in FIG. 8, a communication interface 16 is provided on the platform boards 1 1 to 14, and the platform boards 1-1 to 1-4 are connected to each other via these communication interfaces 16. LAN connection. Then, host computer 2 is connected to this LAN, and program rewriting and management of measurement data and quality data for each FPGA 11 of platform boards 1-1 to 1-4 are centrally managed by this host computer 2. did.
その他の構成、作用及び効果は、上記第 1及び第 2実施例と同様であるので、その 記載は省略する。 実施例 4 Other configurations, operations, and effects are the same as those in the first and second embodiments, and thus the description thereof is omitted. Example 4
[0042] 次に、この発明の第 4実施例について説明する。  [0042] Next, a fourth embodiment of the present invention will be described.
図 9は、この発明の第 4実施例に係る生産管理方法を示す概略図である。 この実施例は、 1つのプラットフォームボード 1にカ卩わる負荷を複数のプラットフォー ムボード 1で分散処理すると共に、各工程のプラットフォームボード 1 1〜1 4を L AN接続した点が、上記第 1ないし第 3実施例と異なる。  FIG. 9 is a schematic diagram showing a production management method according to the fourth embodiment of the present invention. In this embodiment, the load on one platform board 1 is distributedly processed by a plurality of platform boards 1 and the platform boards 1 1 to 14 of each process are lan connected. Different from the third embodiment.
具体的には、図 9に示すように、検知用インタフェース 15及び通信用インタフェース 16を、プラットフォームボード 1 1〜1 4に設け、その他にさらに、 LAN接続用の 通信用インタフェース 17をも設けた。そして、外観検査工程 103のプラットフォームボ ード 1—3においては、プラットフォームボード 1— 3aの検知用インタフェース 15をカメ ラ 133に接続すると共に、 3枚のプラットフォームボード l— 3a〜l— 3cを通信用イン タフエース 16で接続した。そして、プラットフォームボード 1— 3cとプラットフォームボ ード 1— 3dとを検知用インタフェース 15を介して接続し、プラットフォームボード 1― 3 dをインタフェース 14を介して外観検査工程 103の機器 130に接続した。  Specifically, as shown in FIG. 9, a detection interface 15 and a communication interface 16 are provided on the platform boards 11 to 14, and a communication interface 17 for LAN connection is also provided. In the platform board 1-3 of the visual inspection process 103, the detection interface 15 of the platform board 1-3a is connected to the camera 133, and three platform boards l-3a to l-3c are communicated. The connection was made using the 16 interface. Then, the platform board 1-3c and the platform board 1-3d were connected via the detection interface 15, and the platform board 1-3d was connected to the device 130 in the appearance inspection process 103 via the interface 14.
そして、プラットフォームボード 1— 1〜1— 4同士を、通信用インタフェース 17を介し て LAN接続し、ホストコンピュータ 2をこの LANに接続して、プラットフォームボード 1 — 1〜1— 4を、このホストコンピュータ 2で一元管理するようにした。  Then, platform boards 1-1-1-4 are connected to each other via communication interface 17, host computer 2 is connected to this LAN, and platform boards 1-1-1-4 are connected to this host computer. The centralized management was done in 2.
その他の構成、作用及び効果は、上記第 1ないし第 3実施例と同様であるので、そ の記載は省略する。  Other configurations, operations, and effects are the same as those in the first to third embodiments, and thus description thereof is omitted.
[0043] なお、この発明は、上記実施例に限定されるものではなぐ発明の要旨の範囲内に お 、て種々の変形や変更が可能である。  [0043] It should be noted that the present invention is not limited to the above-described embodiments, and various modifications and changes can be made within the scope of the gist of the invention.
例えば、上記実施例では、インタフェースとしてインタフェース 14、検知用インタフエ ース 15、通信用インタフェース 16を例示したが、この他に、 GPIB(General Purpose I nterface Bus)や RS— 232C(Recommended Standard 232 version C)等のインタフエ ースをプラットフォームボード 1に設けることができることは勿論である。  For example, in the above embodiment, the interface 14, the detection interface 15, and the communication interface 16 are exemplified as the interface. However, in addition to this, GPIB (General Purpose Interface Bus) and RS-232C (Recommended Standard 232 version C Of course, an interface such as) can be provided on the platform board 1.
また、上記実施例における FPGA11の個数は一例であり、複数の機能を 1つの FP GAl 1に持たせたり、 1つの機能を複数の FPGAl 1で分担するようにすることもでき る。 さらに、 FPGAl lのプログラムの内容を時系列で切り換えるようにして、 1つのプラ ットフォームボード 1を複数の工程で共有するようにすることもできる。 In addition, the number of FPGAs 11 in the above embodiment is an example, and one FP GAl 1 can have a plurality of functions, or one function can be shared by a plurality of FPGAs 1. Furthermore, the contents of the FPGA program can be switched in time series so that one platform board 1 can be shared by multiple processes.
また、上記実施例では、プログラマブルなハードウェア素子として、 FPGAを適用し た力 PLD (Programmable Logic Device)を適用することもできる。勿論、 CPUや DP Sを適用してもよい。  In the above embodiment, a power PLD (Programmable Logic Device) to which an FPGA is applied can also be applied as a programmable hardware element. Of course, you may apply CPU and DPS.

Claims

請求の範囲 The scope of the claims
[1] 生産ラインの各工程毎に配備され、当該各工程の機器の制御,処理及び製品特性 の測定を行うプラットフォームボードであって、  [1] A platform board that is deployed for each process in the production line and controls equipment, processes, and measures product characteristics in each process.
上記生産ラインにおける全工程の機器の制御,処理及び製品測定を行うに必要な 種類と個数のハードウェア素子を基板に実装すると共に、当該基板が配備されるェ 程の機器に対する制御,処理及び製品測定を行うに必要な上記ハードウェア素子を 動かすためのプログラムを所定のハードウェア素子に格納し、  The types and number of hardware elements necessary for controlling, processing and measuring products in all processes in the above production line are mounted on the board, and the control, processing and products for the equipment where the board is installed. A program for moving the hardware elements necessary for measurement is stored in a predetermined hardware element.
上記工程の機器の制御及び処理用のハードウェア素子として、プログラマブルな ハードウェア素子を適用した、  As a hardware element for controlling and processing equipment in the above process, a programmable hardware element was applied,
ことを特徴とするプラットフォームボード。  Platform board characterized by that.
[2] 請求項 1に記載のプラットフォームボードにぉ ヽて、  [2] Upon entering the platform board according to claim 1,
上記基板に、基板同士での通信及びホストコンピュータとの通信を可能にする通信 用インタフェースを設けた、  The above board is equipped with a communication interface that enables communication between boards and communication with the host computer.
ことを特徴とするプラットフォームボード。  Platform board characterized by that.
[3] 請求項 1又は請求項 2に記載のプラットフォームボードにおいて、 [3] In the platform board according to claim 1 or claim 2,
上記プログラマブルなハードウェア素子として、 FPGA又は PLDを適用し、 上記工程の機器の測定用のハードウェア素子として、アナログ デジタル変^^と デジタル アナログ変^^とを適用し、  FPGA or PLD is applied as the programmable hardware element, and analog and digital analogy ^^ and digital and analog analogy ^^ are applied as hardware elements for measuring the equipment in the above process,
上記工程の機器と上記ハードウェア素子との接続を可能にするインタフェースを適 用した、  An interface that enables connection between the equipment in the above process and the above hardware element was applied.
ことを特徴とするプラットフォームボード。  Platform board characterized by that.
[4] 請求項 1な 、し請求項 3の 、ずれかに記載のプラットフォームボードを生産ラインの 各工程毎に配備して、当該各工程の機器の制御,処理及び製品特性の測定を行う、 ことを特徴とする生産管理方法。 [4] The platform board according to any one of claims 1 and 3 is deployed for each process of the production line, and equipment control in each process, processing, and measurement of product characteristics are performed. A production management method characterized by that.
[5] 請求項 4に記載の生産管理方法において、 [5] In the production management method according to claim 4,
上記生産ラインは、処理工程と検査工程とを有し、  The production line has a processing process and an inspection process,
上記 FPGA又は PLDを上記処理工程の機器の制御及び処理を行わせるようにプ ログラムすると共に、当該 FPGA又は PLDを上記インタフェースを介して当該処理工 程の機器に接続した状態で、プラットフォームボードを当該処理工程に配備し、 上記 FPGA又は PLDを上記検査工程の機器の制御及び処理を行わせるようにプ ログラムし、当該 FPGA又は PLD,製品測定用のアナログ信号を生成するためのデ ジタルーアナログ変換器,及び入力したアナログ信号をデジタル信号に変換して製 品測定を行うアナログ デジタル変換器を上記インタフェースを介して当該検査工程 の機器に接続した状態で、当該プラットフォームボードを当該検査工程に配備した、 ことを特徴とする生産管理方法。 The FPGA or PLD is programmed to control and process the equipment in the processing process, and the FPGA or PLD is connected to the processing process via the interface. With the platform board connected to the appropriate device, deploy the platform board in the relevant process, program the FPGA or PLD to control and process the equipment in the inspection process, and use the FPGA or PLD for product measurement. A digital-to-analog converter for generating analog signals and an analog-to-digital converter that converts the input analog signals into digital signals and performs product measurements were connected to the equipment in the inspection process via the interface. A production management method characterized in that, in a state, the platform board is deployed in the inspection process.
[6] 請求項 4又は請求項 5に記載の生産管理方法にお 、て、 [6] In the production management method according to claim 4 or claim 5,
複数の上記プラットフォームボード同士を通信用インタフェースを介して接続するこ とにより、一の処理を当該複数のプラットフォームボードで分散処理する、  A plurality of platform boards are connected to each other via a communication interface, whereby one process is distributed and processed by the plurality of platform boards.
ことを特徴とする生産管理方法。  A production management method characterized by that.
[7] 請求項 4な 、し請求項 6の 、ずれかに記載の生産管理方法にお!、て、 [7] In the production management method according to any one of claims 4 and 6 and!
各工程のプラットフォームボードとホストコンピュータとを通信用インタフェースを介し て接続することにより、全工程のプラットフォームボードを当該ホストコンピュータにより 一元管理する、  By connecting the platform board of each process and the host computer via the communication interface, the platform board of all processes is centrally managed by the host computer.
ことを特徴とする生産管理方法。  A production management method characterized by that.
PCT/JP2007/052198 2006-05-17 2007-02-08 Platform board and production control method WO2007132577A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008515443A JPWO2007132577A1 (en) 2006-05-17 2007-02-08 Platform board and production management method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006-138307 2006-05-17
JP2006138307 2006-05-17

Publications (1)

Publication Number Publication Date
WO2007132577A1 true WO2007132577A1 (en) 2007-11-22

Family

ID=38693678

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/052198 WO2007132577A1 (en) 2006-05-17 2007-02-08 Platform board and production control method

Country Status (2)

Country Link
JP (1) JPWO2007132577A1 (en)
WO (1) WO2007132577A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015052843A1 (en) * 2013-10-11 2015-04-16 富士機械製造株式会社 Multiplexing communication system and substrate processing machine
US9140752B2 (en) 2012-06-04 2015-09-22 Advantest Corporation Tester hardware
US9563527B2 (en) 2013-06-04 2017-02-07 Advantest Corporation Test system

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108681277A (en) * 2018-05-10 2018-10-19 中国人民解放军空军工程大学 Universal ground PHM devices and its application method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001314690A (en) * 2000-05-04 2001-11-13 Vasu Tech Ltd Electronic control device capable of changing structure
JP2005038251A (en) * 2003-07-16 2005-02-10 Mitsubishi Electric Corp Distributed control system, and system for supporting design of software for distributed control system

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0310304A (en) * 1989-06-08 1991-01-17 Fuji Electric Co Ltd Program controlling system
JPH04223849A (en) * 1990-12-21 1992-08-13 Yamatake Honeywell Co Ltd Multikind and small quantity production system
JPH0538009A (en) * 1991-07-29 1993-02-12 Aichi Denki Seisakusho:Kk Power control panel
JP4253752B2 (en) * 1999-11-29 2009-04-15 光洋電子工業株式会社 Programmable controller
JP3686380B2 (en) * 2002-02-01 2005-08-24 株式会社日立ハイテクノロジーズ Device controller

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001314690A (en) * 2000-05-04 2001-11-13 Vasu Tech Ltd Electronic control device capable of changing structure
JP2005038251A (en) * 2003-07-16 2005-02-10 Mitsubishi Electric Corp Distributed control system, and system for supporting design of software for distributed control system

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9140752B2 (en) 2012-06-04 2015-09-22 Advantest Corporation Tester hardware
US9563527B2 (en) 2013-06-04 2017-02-07 Advantest Corporation Test system
WO2015052843A1 (en) * 2013-10-11 2015-04-16 富士機械製造株式会社 Multiplexing communication system and substrate processing machine
JPWO2015052843A1 (en) * 2013-10-11 2017-03-09 富士機械製造株式会社 Multiplexed communication system and substrate work machine
US10033481B2 (en) 2013-10-11 2018-07-24 Fuji Machine Mfg. Co., Ltd. Multiplexing communication system and substrate working machine

Also Published As

Publication number Publication date
JPWO2007132577A1 (en) 2009-09-24

Similar Documents

Publication Publication Date Title
EP2617053B1 (en) Apparatus and method for generating patterns on workpieces
JP3080595B2 (en) Substrate inspection device and substrate inspection method
US7388390B2 (en) Method for testing electronic components
WO2007132577A1 (en) Platform board and production control method
US20070142950A1 (en) Device and method for connecting device manufacturing processing apparatuses, program, device manufacturing processing system, exposure apparatus and method, and measurement and inspection apparatus and method
KR101524709B1 (en) Method for generating reference data for inspection of a circuit board
CN104897998A (en) ICT testing system
WO2005008737A2 (en) Inspection and metrology module cluster tool with multi-tool manager
CN108241118B (en) PCB (printed circuit board) connecting plate paster processing system and method
US20070113124A1 (en) Method of testing integrated circuit and apparatus therefor
JP2003243900A (en) Production management system and production management method for mount board manufacturing process
US11002785B2 (en) Printed circuit board with contacting arrangement
JP2008107278A (en) Continuity testing device
TWI445979B (en) System and method for measuring voltage of pins of electronic components
CN110493967A (en) A kind of printed wiring board automation control etch system and process
WO2012003790A1 (en) Integrated circuit parallel testing method, device, and system
JP7266100B2 (en) market system
JP7442134B2 (en) Component mounting method and component mounting system
JPH1068753A (en) Radio testing device
KR100190669B1 (en) Apparatus for checking circuit board operated by network system
JPH10186003A (en) Component inspecting device
DeYong et al. Automated visual inspection stations for next-generation semiconductor package quality control
JP5433190B2 (en) Manufacturing management apparatus and method, and manufacturing management program
JP2000292477A (en) Electric characteristic inspection system for electronic parts
JP5673819B2 (en) Method for measuring characteristics of electronic components

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07708222

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2008515443

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07708222

Country of ref document: EP

Kind code of ref document: A1