WO2007126767A2 - Système de mandrin comprenant un réseau de chambres à fluide - Google Patents

Système de mandrin comprenant un réseau de chambres à fluide Download PDF

Info

Publication number
WO2007126767A2
WO2007126767A2 PCT/US2007/007487 US2007007487W WO2007126767A2 WO 2007126767 A2 WO2007126767 A2 WO 2007126767A2 US 2007007487 W US2007007487 W US 2007007487W WO 2007126767 A2 WO2007126767 A2 WO 2007126767A2
Authority
WO
WIPO (PCT)
Prior art keywords
fluid
chambers
substrate
chamber
mold
Prior art date
Application number
PCT/US2007/007487
Other languages
English (en)
Other versions
WO2007126767A3 (fr
Inventor
Anshuman Cherala
Byung-Jin Choi
Pankaj B. Lad
Steven C. Shackleton
Original Assignee
Molecular Imprints, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Molecular Imprints, Inc. filed Critical Molecular Imprints, Inc.
Priority to JP2009504203A priority Critical patent/JP4667524B2/ja
Priority to EP07754062A priority patent/EP2007566A4/fr
Publication of WO2007126767A2 publication Critical patent/WO2007126767A2/fr
Publication of WO2007126767A3 publication Critical patent/WO2007126767A3/fr

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/6838Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping with gripping and holding devices using a vacuum; Bernoulli devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y10/00Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/0002Lithographic processes using patterning methods other than those involving the exposure to radiation, e.g. by stamping
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/6715Apparatus for applying a liquid, a resin, an ink or the like

Definitions

  • the invention is directed to a chucking system comprising an array of fluid chambers.
  • Nano-fabrication involves the fabrication of very small structures, e.g., having features on the order of nanometers or smaller.
  • One area in which nano- fabrication has had a sizeable impact is in the processing of integrated circuits.
  • nano-fabrication becomes increasingly important. Nano-fabrication provides greater process control while allowing increased reduction of the minimum feature dimension of the structures formed.
  • Other areas of development in which nano-fabrication has been employed include biotechnology, optical technology, mechanical systems and the like.
  • An exemplary nano-fabrication technique is commonly referred to as imprint lithography.
  • Exemplary imprint lithography processes are described in detail in numerous publications, such as United States patent application publication 2004/0065976 filed as United States patent application 10/264,960, entitled, “Method and a Mold to Arrange Features on a Substrate to Replicate Features having Minimal Dimensional Variability"; United States patent application publication 2004/0065252 filed as United States patent application 10/264,926, entitled “Method of Forming a Layer on a Substrate to Facilitate Fabrication of Metrology Standards"; and United States patent number 6,936,194, entitled “Functional Patterning Material for Imprint Lithography Processes,” all of which are assigned to the assignee of the present invention.
  • the imprint lithography technique disclosed in each of the aforementioned United States patent application publications and United States patent includes formation of a relief pattern in a polymerizable layer and transferring a pattern corresponding to the relief pattern into an underlying substrate.
  • the substrate may be positioned upon a stage to obtain a desired position to facilitate patterning thereof.
  • a mold is employed spaced-apart from the substrate with a formable liquid present between the mold and the substrate.
  • the liquid is solidified to form a patterned layer that has a pattern recorded therein that is conforming to a shape of the surface of the mold in contact with the liquid.
  • the mold is then separated from the patterned layer such that the mold and the substrate are spaced-apart.
  • the substrate and the patterned layer are then subjected to processes to transfer, into the substrate, a relief image that corresponds to the pattern in the patterned layer.
  • FIG. 1 is a simplified side view of a lithographic system having a mold spaced-apart from a substrate, the substrate positioned upon a substrate chuck;
  • Fig. 2 is a top down view showing an array of droplets of imprinting material positioned upon a region of the substrate shown in Fig. 1;
  • FIG. 3 is a simplified side view of the substrate shown in Fig. 1, having a patterned layer positioned thereon;
  • FIG. 4 is a side view of the substrate chuck shown in Fig. 1 ;
  • FIG. 5 is a top down view of the substrate chuck shown in Fig. 1, showing a plurality of columns of pump systems in fluid communication with a plurality of fluid chambers of the substrate chuck;
  • FIG. 6 is a top down view of the substrate chuck shown in Fig. 1 , showing a plurality of rows of pump systems in fluid communication with a plurality of fluid chambers of the substrate chuck;
  • Fig. 7 is an exploded view of a portion of the substrate chuck and substrate, both shown in Fig. 1
  • Fig. 8 is a flow diagram showing a method of patterning a region of the substrate shown in Fig. 1;
  • Fig. 9 is a side view of the mold and the substrate shown in Fig. 1, with a shape of the substrate being altered;
  • Fig. 10 is a side view of the mold and the substrate shown in Fig. 9, the mold being in contact with a portion of the droplets of imprint material shown in Fig.
  • Figs. 1 1-13 are top down views showing the compression of the droplets shown in Fig. 2, employing the altered shape of the substrate shown in Fig. 9;
  • Fig. 14 is a side view of the mold and the substrate shown in Fig. 10, the substrate being positioned upon the substrate chuck;
  • Fig. 15 is a top down view showing the compression of the droplets in
  • Fig. 16 is a side view of the mold and the substrate shown in Fig. 1, the mold being partially separated from the substrate.
  • Substrate 12 may be coupled to a substrate chuck 14, described further below. Substrate 12 and substrate chuck 14 may be supported upon a stage 16. Further, stage 16, substrate 12, and substrate chuck 14 may be positioned on a base (not shown). Stage 16 may provide motion about the x and y axes.
  • a template 18 Spaced-apart from substrate 12 is a template 18 having a mesa 20 extending therefrom towards substrate 12 with a patterning surface 22 thereon. Further, mesa 20 may be referred to as a mold 20. Mesa 20 may also be referred to as a nanoimprint mold 20. In a further embodiment, template 18 may be substantially absent of mold 20.
  • Template 18 and/or mold 20 may be formed from such materials including, but not limited to, fused-silica, quartz, silicon, organic polymers, siloxane polymers, borosilicate glass, fluorocarbon polymers, metal, and hardened sapphire.
  • patterning surface 22 comprises features defined by a plurality of spaced- apart recesses 24 and protrusions 26.
  • patterning surface 22 may be substantially smooth and/or planar. Patterning surface 22 may define an original pattern that forms the basis of a pattern to be formed on substrate 12.
  • Template 18 may be coupled to a template chuck 28, template chuck 28 being any chuck including, but not limited to, vacuum, pin-type, groove-type, or electromagnetic, as described in United States patent 6,873,087 entitled "High- Precision Orientation Alignment and Gap Control Stages for Imprint Lithography Processes" which is incorporated herein by reference. Further, template chuck 28 may be coupled to an imprint head 30 to facilitate movement of template 18, and therefore, mold 20.
  • System 10 further comprises a fluid dispense system 32.
  • Fluid dispense system 32 may be in fluid communication with substrate 12 so as to deposit polymeric material 34 thereon.
  • System 10 may comprise any number of fluid dispensers, and fluid dispense system 32 may comprise a plurality of dispensing units therein.
  • Polymeric material 34 may be positioned upon substrate 12 using any known technique, e.g., drop dispense, spin-coating, dip coating, chemical vapor deposition (CVD), physical vapor deposition (PVD), thin film deposition, thick film deposition, and the like. As shown in Fig. 2, polymeric material 34 may be deposited upon substrate 12 as a plurality of spaced-apart droplets 36, defining a matrix array 38.
  • each of droplets 36 may have a unit volume of approximately 1-10 pico- liters.
  • Droplets 36 of matrix array 38 may be arranged in five columns C 1 -C 5 and five rows ri-r 5 .
  • droplets 36 may be arranged in any two-dimensional arrangement on substrate 12.
  • polymeric material 34 is disposed upon substrate 12 before the desired volume is defined between mold 20 and substrate 12.
  • polymeric material 34 may fill the volume after the desired volume has been obtained.
  • system 10 further comprises a source 40 of energy 42 coupled to direct energy 42 along a path 44.
  • Imprint head 30 and stage 16 are configured to arrange mold 20 and substrate 12, respectively, to be in superimposition and disposed in path 44.
  • Either imprint head 30, stage 16, or both vary a distance between mold 20 and substrate 12 to define a desired volume therebetween that is filled by polymeric material 34. More specifically, droplets 36 may ingress and fill recesses 24. The time required for droplets 36 to fill the pattern defined by patterning surface 22 may be defined as the "fill time" of mold 20.
  • source 40 produces energy 42, e.g., broadband ultraviolet radiation that causes polymeric material 34 to solidify and/or cross-link conforming to the shape of a surface 46 of substrate 12 and patterning surface 22, defining a patterned layer 48 on substrate 12.
  • Patterned layer 48 may comprise a residual layer 50 and a plurality of features shown as protrusions 52 and recessions 54.
  • System 10 may be regulated by a processor 56 that is in data communication with stage 16, imprint head 30, fluid dispense system 32, and source 40, operating on a computer readable program stored in memory 58. [0026] Referring to Figs. 1 and 4-6, as mentioned above, system 10 comprises substrate chuck 14.
  • Substrate chuck 14 is adapted to retain substrate 12 employing vacuum techniques.
  • Substrate chuck 14 comprises a chuck body 60 having first 62 and second 64 opposed sides. A side, or edge, surface 66 extends between first 62 and second 64 opposed sides.
  • First side 62 comprises a plurality of fluid chambers 68.
  • substrate chuck 14 comprises fluid chambers 68a — 68u; however, in a further embodiment, substrate chuck 14 may comprise any number of fluid chambers.
  • fluid chambers 68a - 68u may be positioned as an array arranged in five columns a ⁇ -as and five rows bi-bs. However, fluid chambers 68 may be arranged in any two-dimensional arrangement in chuck body 60.
  • each of fluid chambers 68 comprises a first recess 70 and a second recess 72, spaced-apart from first recess 70, defining a support region 74 and a second support region 76.
  • Second support region 76 cinctures second recess 72.
  • First support region 74 cinctures second support region 76 and first and second recesses 70 and 72.
  • Formed in chuck body 60 are a plurality of throughways 78 and 80 to place each of fluid chambers 68 in fluid communication with a pump system 82 and 84, respectively.
  • each first recess 70 of fluid chambers 68 may be in fluid communication with pump system 82 via throughway 78 and each second recess 72 may be in fluid communication with pump system 84 via throughway 80.
  • Each of pump systems 82 and 84 may include one or more pumps therein.
  • each first recess 70 of fluid chambers 68 in a column aj-as of fluid chambers 68 may be in fluid communication with pump system 82 via throughway 78. More specifically, first recess 70 of fluid chambers 68d, 68i, and 68n in column ai may be in fluid communication with a pump system 82a via a throughway 78a; first recess 70 of fluid chambers 68a, 68e, 68j, 68o, and 68s in column a 2 may be in fluid communication with a pump system 82b via a throughway 78b; first recess 70 of fluid chambers 68b, 68f, 68k, 68p, and 68t in column a 3 may be in fluid communication with a pump system 82c via a throughway 78c; first recess 70 of fluid chambers 68c, 68g, 681, 68q, and 68u in column & 4 may
  • each second recess 72 of fluid chambers 68 in a row bj-bs may be in fluid communication with pump system 84 via throughway 80. More specifically, second recess 72 of fluid chambers 68a, 68b, and 68c in row b ⁇ may be in fluid communication with a pump system 84a via a throughway 80a; second recess 72 of fluid chambers 68d, 68e, 68f, 68g, and 68h in row b 2 may be in fluid communication with a pump system 84b via a throughway 80b; second recess 72 of fluid chambers 68i, 68j, 68k, 681, and 68m in row b 3 may be in fluid communication with a pump system 84c via a throughway 80c; second recess 72 of fluid chambers 68n, 68o, 68p, 68q, and 68r in row b 4 may be in fluid communication with a
  • each first recess 70 of fluid chambers 68 and a portion of substrate 12 in superimposition therewith define a first chamber 86; and each second recess 72 of fluid chambers 68 and a portion of substrate 12 in superimposition therewith define a second chamber 88.
  • pump system 82 operates to control a pressure/vacuum within first chamber 86 and pump system 84 operates to control a pressure/vacuum within second chamber 88.
  • first chambers 86 and 88 may be established to maintain the position of substrate 12 to reduce, if not avoid, separation of substrate 12 from substrate chuck 14 while altering a shape of substrate 12, described further below.
  • Pump systems 82 and 84 may be in data communication with processor 56, operating on a computer readable program stored in memory 58 to control pump systems 82 and 84.
  • pump system 82a operates to control a pressure/vacuum within first chamber 86 of fluid chambers 68d, 68i, and 68n in column aj;
  • pump system 88b operates to control a pressure/vacuum within first chamber 86 of fluid chambers 68a, 68e, 68j, 68o, and 68s in column a 2 ;
  • pump system 88c operates to control a pressure/vacuum within first chamber 86 of fluid chambers 68b, 68f, 68k, 68p, and 68t in column ay
  • pump system 88d operates to control a pressure/vacuum within first chamber 86 of fluid chambers 68c, 68g, 681, 68q, and 68u in column a «;
  • pump system 88e operates to control a pressure/vacuum within first chamber 86 of fluid chambers 68h, 68m, and 68r in column as.
  • pump system 84a operates to control a pressure/vacuum within second chamber 88 of fluid chambers 68a, 68b, and 68c in row bi;
  • pump system 84b operates to control a pressure/vacuum within second chamber 88 of fluid chambers 68d, 68e, 68f, 68g, and 68h in row bi;
  • pump system 84c operates to control a pressure/vacuum within second chamber 88 of fluid chambers 68i, 68j, 68k, 681, and 68m in row b 3 ;
  • pump system 84d operates to control a pressure/vacuum within second chamber 88 of fluid chambers 68n, 68o, 68p, 68q, and 68r in row a ⁇ and pump system 84e operates to control a pressure/vacuum within second chamber 88 of fluid chambers 68s, 68t, and 68u in row b 5 .
  • each of fluid chambers 68 may have 1) a chucked state associated therewith or 2) a non-chucked/bowed state associated therewith, depending upon the application desired, described further below. More specifically, as mentioned above, first and second chambers 86 and 88 are associated with first and second recesses 70 and 72, respectively. To that end, a force exerted upon a portion of substrate 12 may be dependent upon, inter ⁇ li ⁇ , a magnitude of the areas of first and second recesses 70 and 72 in superimposition with the portion of substrate 12 and a magnitude of the pressure/vacuum within first and second chambers 86 and 88 in superimposition with the portion of substrate 12.
  • the force exerted upon portion 90 is a combination of a force Fi exerted upon a sub-portion 92 of portion 90 in superimposition with first recess 70 / first chamber 86 and a force F 2 exerted upon a sub-portion 94 of portion 90 in superimposition with second recess 72 / second chamber 88.
  • both force Fi and F 2 are in a direction away from substrate 12.
  • forces F] and F 2 may be in a direction towards substrate 12.
  • forces Fi and F2 may be in opposite directions.
  • force Fi exerted upon sub-portion 92 may be defined as follows:
  • Ai is the area of first recess 70 and P 1 is the pressure/vacuum associated with first chamber 86; and force F 2 exerted upon sub-portion 94 may be defined as follows:
  • a 2 is the area of second recess 72 and Pi is the pressure/vacuum associated with second chamber 88.
  • Forces Fi and F 2 associated with fluid chamber 68 may be referred to collectively as the chuck force F 0 exerted by substrate chuck 14 upon substrate 12.
  • first and second chambers 86 and 88 depend upon, inter alia, the direction of forces Fj and F 2 . More specifically, for force Fi being in a direction towards substrate 12, first chamber 86 is in the pressure state; for force Fj being in a direction away from substrate 12, first chamber 86 is in the vacuum state; for force F 2 being in a direction towards substrate 12, second chamber 88 is in the pressure state; and for force F 2 being in a direction away from substrate 12, second chamber 88 is in the vacuum state.
  • fluid chambers 68 may have one of four combinations associated therewith. Shown below in table 1 are the four combinations of vacuum/pressure within first and second chamber 86 and 88 and the resulting state of fluid chambers 68.
  • first chamber 86 is in the vacuum state and second chamber 88 is in the vacuum state, and as a result, fluid chamber 68 has a chucked state associated therewith.
  • first chamber 86 is in the pressure state and second chamber 88 is in the pressure state, and as a result, fluid chamber 68 has a non-chucked/bowed state associated therewith.
  • first and second chambers 86 and 88 have differing states associated therewith.
  • fluid chamber 68 has a chucked state associated therewith.
  • and A 2 of first and second recesses 70 and 72 is such that for a given pressure Kp and a given vacuum K v associated with first and second chambers 86 and 88, a magnitude of a force of forces Fi and F 2 associated with the vacuum state of first and second chambers 86 and 88 is greater than a magnitude of the force of the remaining forces Fi and F 2 associated with the pressure state of first and second chambers 86 and 88.
  • first chamber 86 is in the vacuum state and second chamber 88 is in the pressure state.
  • first chamber 86 is in the pressure state and second chamber 88 is in the vacuum state.
  • first chamber 86 is in the pressure state and second chamber 88 is in the vacuum state.
  • fluid chamber 68 is in the vacuum state:
  • first and second recesses 70 and 72 may be defined as follows:
  • Kp may be approximately 40 kPa and K v may be approximately -80 kPa, and thus, the ratio of the areas Ai to A 2 may be defined as follows:
  • a magnitude of the pressure within a fluid chamber 68 being in the non-chucked/bowed state may be varied. More specifically, processor 56, operating on a computer readable program stored in memory 58, may vary a magnitude of the pressure within first and second chambers 86 and 88 via pump systems 82 and 88, respectively, as a result of being in electrical communication with pump systems 82 and 84.
  • the gases and/or gas pockets may be such gases including, but not limited to air, nitrogen, carbon dioxide, and helium.
  • the gases between substrate 12 and mold 20 may result from, inter alia, a planarity of substrate 12 and mold 20. To that end, it may be desired to reduce the fill time, mentioned above, of mold 20.
  • the fill time is dependent upon, inter alia, the time required for the gases and/or gas pockets between substrate 12 and mold 20 and within patterning layer 48 to evacuate from between substrate 12 and mold 20 and/or dissolve into polymeric material 34 and/or diffuse into polymeric material 34.
  • a method and a system of minimizing, if not preventing, trapping of gas between mold 20 and substrate 12 are described below.
  • polymeric material 34 may be positioned on substrate 12 by drop dispense, spin- coating, dip coating, chemical vapor deposition (CVD), physical vapor deposition (PVD), thin film deposition, thick film deposition, and the like.
  • polymer material 34 may be positioned on mold 20.
  • a shape of substrate 12 may be altered such that a distance d
  • distance di is less than a distance d 2 , distance d 2 being defined at an edge of substrate 12. In a further embodiment, the distance di maybe defined at any desired location of substrate 12.
  • the shape of substrate 12 may be altered by controlling a pressure/vacuum within the plurality of fluid chambers 68. More specifically, fluid chambers 68 in superimposition with a portion 98 of substrate 12 are in a non-chucked/bowed state to bow portion 98 of substrate 12 towards mold 20 and away from substrate chuck 14.
  • the remaining fluid chambers 68 in superimposition with a portion 99 of substrate 12 are in a chucked state to retain substrate 12 upon substrate chuck 14.
  • either imprint head 30, shown in Fig. 1, stage 16, or both may vary distance di, shown in Fig. 9, such that a sub-portion of mold 20 contacts a sub-portion of droplets 36.
  • a center sub-portion of mold 20 contacts a sub-portion of droplets 36 prior to the remaining portions of mold 20 contacting the remaining droplets of droplets 36.
  • any portion of mold 20 may contact droplets 36 prior to remaining portions of mold 20.
  • mold 20 contacts all of droplets 36 associated with column C 3 , shown in Fig. 2, substantially concurrently.
  • the shape of substrate 12 may be further altered as the distance di is further reduced such that the desired volume defined between mold 20 and substrate 12 may be filled by polymeric material 34, as described above with respect to Fig. 1. More specifically, the shape of substrate 12 may be altered via fluid chambers 68 in combination with decreasing distance di via imprint head 30, stage 16, or both. More specifically, as mentioned above, the magnitude of the pressure within first and second chambers 86 and 88 of fluid chambers 68 in superimposition with portion 98 of substrate 12, shown in Fig. 9, may be varied. To that end, as the distance dj, shown in Fig.
  • first and second chambers 86 and 88 of fluid chambers 68 in superimposition with portion 98 of substrate 12 may be further reduced in combination with decreasing the magnitude of the pressure within first and second chambers 86 and 88 of fluid chambers 68 in superimposition with portion 98 of substrate 12, shown in Fig. 9, such that mold 20 subsequently comes into contact with droplets 36 associated with columns ci and Cs such that polymeric material 34 associated therewith spreads to become included in contiguous sheet 120, as shown in Fig. 13.
  • the pressure within first and second chambers 86 and 88 of fluid chambers 68 in superimposition with portion 98 of substrate 12 may be reduced such that portion 98 of substrate 12 is positioned upon substrate chuck 14, as shown in Fig. 14.
  • first and second chambers 86 and 88 of fluid chambers 68 in superimposition with portion 98 of substrate 12 may have a vacuum therein subsequent to spreading of droplets 36.
  • Figs. 8 and 13 As can be seen, interfaces 124a and 124b have moved towards edges 128c and 128a, respectively, so that there is an unimpeded path for the gases in the remaining volume 96, shown in Fig. 11, to travel thereto. This allows gases in volume 96, shown in Fig. 11 , to egress from between mold 20 and substrate 12 vis-a-vis edges 128a, 128b, 128c, and 128d. In this manner, the trapping of gases and/or gas pockets between substrate 12 and mold 20 and within patterning layer 48, show in Fig. 3, is minimized, if not prevented. [0049] Referring to Figs. 1 and 8, at step 108, as mentioned above with respect to Fig. 1 , polymeric material 34 may be then solidified and/or cross-linked, defining patterned layer 48, shown in Fig. 3. Subsequently at step 110, mold 20 may be separated from patterned layer 48.
  • the shape of substrate 12 may be altered along a first direction.
  • the shape of substrate 12 may be altered concurrently in first and second directions, with the second direction extending orthogonal to the first direction. More specifically, substrate 12 may be altered such that a center sub-portion of substrate 12 contacts mold 20, and thus, a center sub-portion of droplets 36 contacts mold 20 prior to the remaining droplets of droplets 36 contacting mold 20, as described above with respect to Fig. 10. This causes droplets 36 to spread and to produce contiguous liquid sheet 120 of polymeric material 34, defining continuous liquid-gas interface 124 that functions to push gases in volume 96 outward radially.
  • liquid sheet 120 may have a circular or circular-like expansion of liquid-gas interface 124 to push gases in volume 96 towards edges 128a, 128b, 128c, and 128d outward radially.
  • the shape of substrate 12 may be altered in any direction to produce liquid sheet 120 with any geometric shape, i.e. spherical, cylindrical, etc., desired to facilitate pushing gases in volume 96 towards edges 128a, 128b, 128c, and 128d outward radially to minimize, if not prevent, trapping of gas and/or gas pockets between substrate 12 and mold 120 and within patterning layer 48, as shown in Fig. 3.
  • a subset of rows or columns of first and second chambers 86 and 88, respectively, may be have no pressure/vacuum created therein.
  • substrate chuck 14 may be further employed to facilitate separation between mold 20 and patterned layer 48 positioned upon substrate 12. More specifically, separation of mold 20 from patterned layer 48 is achieved by application of a separation force F s to template 18 and mold 20. Separation force F s is of sufficient magnitude to overcome adhesion forces between mold 20 and patterned layer 48 and the resistance of substrate 12 to strain (deformation). It is believed that deformation of a portion of substrate 12 facilitates separation of mold 20 from patterned layer 48. To that end, it may be desired to minimize a magnitude of the separation force F s to achieve separation of mold 20 from patterned layer 48. Minimizing the magnitude of the separation force F s may, inter alia, facilitate alignment between mold 20 and substrate 12, increase a ratio of template patterning area versus total template area, and minimize probability of structural compromise of template 18, mold 20, substrate 12, and patterned layer 48.
  • a magnitude of the pressure within fluid chambers 68 may be varied.
  • fluid chambers 68 in superimposition with a portion 13 of substrate 12 may be in the non-chucked/bowed state.
  • fluid chambers 68 in superimposition with portion 13 of substrate 12 may exert chuck force F c , forces Fi and F 2 , shown in Fig. 7, in substantially the same direction as the direction of the separation force F s .
  • the magnitude of the separation force F s required to separate mold 20 from patterned layer 48 may be reduced.
  • the magnitude of chuck force F c in superimposition with portion 13 of substrate 12 is established to facilitate strain (deformation) of portion 13 of substrate 12 in response to separation force F s .
  • the magnitude of chuck force F c in superimposition with portion 13 of substrate 12 may have any value desired such that portions of substrate 12 outside of portion 13 are retained upon substrate chuck 14 when the same is subjected to separation force F s .
  • template 18/mold 20 may be positioned upon substrate chuck 14 to facilitate bending thereof in substantially the same method as described above with respect to substrate 12.
  • template 18/mold 20 may have a thickness of 1 mm to facilitate bending thereof.
  • substrate 12 may be altered employing a plurality of actuators in lieu of, or in combination with, substrate chuck 14.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Nanotechnology (AREA)
  • Manufacturing & Machinery (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mathematical Physics (AREA)
  • Theoretical Computer Science (AREA)
  • Shaping Of Tube Ends By Bending Or Straightening (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
  • Mechanical Engineering (AREA)
  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)

Abstract

La présente invention concerne un système de mandrin pour maintenir un substrat. Ce système comprend notamment un corps de mandrin présentant un premier et un second côté opposés, le premier côté comportant un réseau de chambres à fluide disposées en rangées et en colonnes. Lesdites chambres à fluide comprennent chacune un premier et un second évidement espacés définissant une première et une seconde région de support espacées, la première région de support entourant la seconde région de support et le premier et le second évidement, la seconde région de support entourant le second évidement et le substrat reposant contre la première et la seconde région de support. Le premier évidement et une partie du substrat superposée à celui-ci définissent une première chambre et le second évidement et une partie du substrat superposée à celui-ci définissent une seconde chambre. Chaque colonne de premières chambres et chaque rangée de secondes chambres sont en communication fluidique avec une source de fluide différente pour réguler un écoulement de fluide dans le réseau de chambres à fluide.
PCT/US2007/007487 2006-04-03 2007-03-26 Système de mandrin comprenant un réseau de chambres à fluide WO2007126767A2 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2009504203A JP4667524B2 (ja) 2006-04-03 2007-03-26 流体チャンバのアレイを備えるチャック・システム
EP07754062A EP2007566A4 (fr) 2006-04-03 2007-03-26 Système de mandrin comprenant un réseau de chambres à fluide

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US78877706P 2006-04-03 2006-04-03
US60/788,777 2006-04-03

Publications (2)

Publication Number Publication Date
WO2007126767A2 true WO2007126767A2 (fr) 2007-11-08
WO2007126767A3 WO2007126767A3 (fr) 2008-07-31

Family

ID=38656006

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2007/007487 WO2007126767A2 (fr) 2006-04-03 2007-03-26 Système de mandrin comprenant un réseau de chambres à fluide

Country Status (6)

Country Link
EP (1) EP2007566A4 (fr)
JP (2) JP4667524B2 (fr)
KR (1) KR20090004910A (fr)
CN (1) CN101415535A (fr)
TW (1) TWI352874B (fr)
WO (1) WO2007126767A2 (fr)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102203672A (zh) * 2008-10-23 2011-09-28 分子制模股份有限公司 压印平版印刷术系统和方法
JP2012234913A (ja) * 2011-04-28 2012-11-29 Canon Inc インプリント装置、インプリント方法及びデバイス製造方法
JP2015149484A (ja) * 2009-07-02 2015-08-20 モレキュラー・インプリンツ・インコーポレーテッド 引っ込んだ支持特徴部を有するチャッキングシステム
WO2015155988A1 (fr) * 2014-04-09 2015-10-15 Canon Kabushiki Kaisha Appareil d'impression et procédé de fabrication d'article
US10620532B2 (en) 2014-11-11 2020-04-14 Canon Kabushiki Kaisha Imprint method, imprint apparatus, mold, and article manufacturing method
US11106129B2 (en) 2018-04-06 2021-08-31 Canon Kabushiki Kaisha Imprint apparatus, imprint method, and method of manufacturing article

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4854383B2 (ja) * 2006-05-15 2012-01-18 アピックヤマダ株式会社 インプリント方法およびナノ・インプリント装置
US8652393B2 (en) * 2008-10-24 2014-02-18 Molecular Imprints, Inc. Strain and kinetics control during separation phase of imprint process
US8309008B2 (en) * 2008-10-30 2012-11-13 Molecular Imprints, Inc. Separation in an imprint lithography process
JP5893303B2 (ja) * 2011-09-07 2016-03-23 キヤノン株式会社 インプリント装置、それを用いた物品の製造方法
US20160300749A1 (en) * 2013-12-03 2016-10-13 Harmotec Co., Ltd. Holding equipment, holding system, control method, and conveyance equipment
JP6647027B2 (ja) 2015-12-03 2020-02-14 キヤノン株式会社 インプリント装置および物品製造方法
JP6940944B2 (ja) * 2016-12-06 2021-09-29 キヤノン株式会社 インプリント装置、及び物品製造方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000195927A (ja) 1998-12-28 2000-07-14 Sony Corp 真空チャック装置
WO2004044651A1 (fr) 2002-11-13 2004-05-27 Molecular Imprints, Inc. Systeme de mandrin et procede de modulation des formes de substrats
US6809802B1 (en) 1999-08-19 2004-10-26 Canon Kabushiki Kaisha Substrate attracting and holding system for use in exposure apparatus

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06244269A (ja) * 1992-09-07 1994-09-02 Mitsubishi Electric Corp 半導体製造装置並びに半導体製造装置におけるウエハ真空チャック装置及びガスクリーニング方法及び窒化膜形成方法
JP2001127145A (ja) * 1999-08-19 2001-05-11 Canon Inc 基板吸着保持方法、基板吸着保持装置および該基板吸着保持装置を用いた露光装置ならびにデバイス製造方法
JP2001127144A (ja) * 1999-08-19 2001-05-11 Canon Inc 基板吸着保持方法、基板吸着保持装置および該基板吸着保持装置を用いた露光装置ならびにデバイス製造方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000195927A (ja) 1998-12-28 2000-07-14 Sony Corp 真空チャック装置
US6809802B1 (en) 1999-08-19 2004-10-26 Canon Kabushiki Kaisha Substrate attracting and holding system for use in exposure apparatus
WO2004044651A1 (fr) 2002-11-13 2004-05-27 Molecular Imprints, Inc. Systeme de mandrin et procede de modulation des formes de substrats

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2007566A2

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102203672A (zh) * 2008-10-23 2011-09-28 分子制模股份有限公司 压印平版印刷术系统和方法
JP2012507138A (ja) * 2008-10-23 2012-03-22 モレキュラー・インプリンツ・インコーポレーテッド インプリント・リソグラフィ装置、および方法
CN102203672B (zh) * 2008-10-23 2013-11-13 分子制模股份有限公司 压印平版印刷术系统和方法
JP2015149484A (ja) * 2009-07-02 2015-08-20 モレキュラー・インプリンツ・インコーポレーテッド 引っ込んだ支持特徴部を有するチャッキングシステム
JP2012234913A (ja) * 2011-04-28 2012-11-29 Canon Inc インプリント装置、インプリント方法及びデバイス製造方法
WO2015155988A1 (fr) * 2014-04-09 2015-10-15 Canon Kabushiki Kaisha Appareil d'impression et procédé de fabrication d'article
US10335984B2 (en) 2014-04-09 2019-07-02 Canon Kabushiki Kaisha Imprint apparatus and article manufacturing method
US10620532B2 (en) 2014-11-11 2020-04-14 Canon Kabushiki Kaisha Imprint method, imprint apparatus, mold, and article manufacturing method
US11106129B2 (en) 2018-04-06 2021-08-31 Canon Kabushiki Kaisha Imprint apparatus, imprint method, and method of manufacturing article

Also Published As

Publication number Publication date
JP4667524B2 (ja) 2011-04-13
KR20090004910A (ko) 2009-01-12
EP2007566A2 (fr) 2008-12-31
JP2011077529A (ja) 2011-04-14
CN101415535A (zh) 2009-04-22
WO2007126767A3 (fr) 2008-07-31
JP2009532899A (ja) 2009-09-10
EP2007566A4 (fr) 2010-10-13
TWI352874B (en) 2011-11-21
TW200813619A (en) 2008-03-16

Similar Documents

Publication Publication Date Title
US7635263B2 (en) Chucking system comprising an array of fluid chambers
WO2007126767A2 (fr) Système de mandrin comprenant un réseau de chambres à fluide
US7641840B2 (en) Method for expelling gas positioned between a substrate and a mold
US8215946B2 (en) Imprint lithography system and method
USRE47483E1 (en) Template having a varying thickness to facilitate expelling a gas positioned between a substrate and the template
US8282383B2 (en) Method for expelling gas positioned between a substrate and a mold
EP1958025B1 (fr) Procédé permettant d'expulser un gaz positionné entre un substrat et un moule
US7670530B2 (en) Patterning substrates employing multiple chucks
US8545709B2 (en) Critical dimension control during template formation
US8913230B2 (en) Chucking system with recessed support feature
US20070231422A1 (en) System to vary dimensions of a thin template
TWI690482B (zh) 用於局部區域壓印之非對稱模板形狀調節
US20100015270A1 (en) Inner cavity system for nano-imprint lithography
US9164375B2 (en) Dual zone template chuck
WO2007136832A2 (fr) Procédé d'évacuation d'un gaz se trouvant entre un substrat et un moule

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07754062

Country of ref document: EP

Kind code of ref document: A2

WWE Wipo information: entry into national phase

Ref document number: 2009504203

Country of ref document: JP

Ref document number: 1020087024314

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 200780012009.2

Country of ref document: CN

NENP Non-entry into the national phase in:

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2007754062

Country of ref document: EP