WO2007119346A1 - 粉末冶金用混合粉末、その圧粉体、および焼結体 - Google Patents

粉末冶金用混合粉末、その圧粉体、および焼結体 Download PDF

Info

Publication number
WO2007119346A1
WO2007119346A1 PCT/JP2007/054991 JP2007054991W WO2007119346A1 WO 2007119346 A1 WO2007119346 A1 WO 2007119346A1 JP 2007054991 W JP2007054991 W JP 2007054991W WO 2007119346 A1 WO2007119346 A1 WO 2007119346A1
Authority
WO
WIPO (PCT)
Prior art keywords
powder
carbon black
carbon
mixed
green compact
Prior art date
Application number
PCT/JP2007/054991
Other languages
English (en)
French (fr)
Inventor
Takayasu Fujiura
Yasuko Yakou
Satoshi Nishida
Yuuji Taniguchi
Tetsuya Goto
Original Assignee
Kabushiki Kaisha Kobe Seiko Sho
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kabushiki Kaisha Kobe Seiko Sho filed Critical Kabushiki Kaisha Kobe Seiko Sho
Priority to KR1020087019698A priority Critical patent/KR101061346B1/ko
Priority to US12/087,856 priority patent/US7645317B2/en
Priority to CA002632409A priority patent/CA2632409A1/en
Priority to CN200780001798XA priority patent/CN101360575B/zh
Priority to EP07738463.4A priority patent/EP1995004B1/en
Publication of WO2007119346A1 publication Critical patent/WO2007119346A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/10Metallic powder containing lubricating or binding agents; Metallic powder containing organic material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/12Metallic powder containing non-metallic particles

Definitions

  • the present invention sinters a powder mixture for powder metallurgy with little scattering and deflection of carbon supply components, a high-density green compact obtained using the powder mixture for powder metallurgy, and the green compact. It is related with the sintered compact obtained.
  • Powder metallurgy which uses iron-based powders to produce products such as sintered bodies, is widely used because it is superior to other methods in terms of price, product dimensional accuracy, and productivity. Yes.
  • a raw material powder containing iron-based powder is mixed, pressed to form a green compact, and sintered at a temperature below the melting point to produce a sintered body.
  • the mixing step is an extremely important operation for improving the handling of the mixed powder to improve the working efficiency in the pressure forming step and obtaining a homogeneous sintered body.
  • a lubricant for improving lubricity is added to and mixed with raw material powder obtained by adding a predetermined carbon supply component (carbon source) to iron-based powder.
  • graphite powder when used, the graphite powder generates dust (scatters) in the mixing process or the pressure molding process, so that the handling of the mixed powder is lowered and the work environment is deteriorated. Yes.
  • graphite powder has a difference in particle size and a large difference in specific gravity compared to iron-based powder, so even if it is once mixed in a mixer, it is separated and segregated during subsequent handling. Particle size segregation and specific gravity segregation) are likely to occur.
  • binder binder
  • the binder is generally sticky, it hinders the fluidity of the mixed powder.
  • the mixed powder has poor fluidity, for example, when the mixed powder is discharged from the storage hopper and transferred to the molding die, or when the mixed powder is filled into the molding die, the pressure molding process This causes problems such as bridging failure at the upper part of the storage hopper, and blockage of the hose from the storage hopper to the shoe box.
  • the mixed powder has poor fluidity, the mixed powder is difficult to be uniformly filled throughout the molding die (particularly the thin-walled portion), and it is difficult to obtain a homogeneous green compact.
  • Patent Documents 1 to 3 disclose novel binders that can prevent segregation of the graphite powder and also improve the fluidity of the mixed powder.
  • these binders are used, there is a problem that the density of the green compact does not sufficiently increase and it is difficult to obtain a sintered body having high strength and hardness.
  • Patent Documents 4 to 5 exemplify carbon black in addition to graphite powder as a carbon supply component.
  • experimental results using graphite powder are described.
  • the results of experiments using carbon black are not described at all.
  • Patent Document 1 JP 2003-105405 A
  • Patent Document 2 JP 2004-256899 A
  • Patent Document 3 Japanese Patent Laid-Open No. 2004-360008
  • Patent Document 4 Japanese Patent Laid-Open No. 2004-162170
  • Patent Document 5 Japanese Patent Application Laid-Open No. 2004-115882
  • the present invention has been made in view of the above circumstances, and an object of the present invention is to prevent generation and segregation of carbon supply components without using a binder, and to produce a homogeneous mixed powder for powder metallurgy. It is to provide.
  • Another object of the present invention is a mixed powder having the above-described characteristics, and further capable of producing a green compact having excellent mechanical properties and a homogeneous sintered body. Is to provide.
  • Another object of the present invention is to provide a green compact having high density and good shape retention.
  • Another object of the present invention is to provide a sintered body having high mechanical strength and high strength and hardness. Is to provide.
  • a powder mixture for powder metallurgy comprising an iron-based powder and a carbon supply component
  • the carbon supply component includes graphite powder and carbon black,
  • the carbon black preferably has a dibutyl phthalate absorption of 60 mL / l00 g or less and a nitrogen adsorption specific surface area of 50 m 2 / g or less.
  • the present invention provides:
  • a mixed powder for powder metallurgy comprising an iron-based powder and a carbon supply component, wherein the carbon supply component has a dibutyl phthalate absorption of 60 mLZl00 g or less and a nitrogen adsorption specific surface area of 50 m 2 / g or less. It also relates to powders containing metal as a main component.
  • the main component means that the carbon supply component consists only of carbon black or that the component with the largest proportion of the carbon supply component is carbon black.
  • the carbon-based powder is contained in an amount of not more than about 3 parts by weight based on 100 parts by weight of the iron-based powder.
  • the preferable lower limit of the carbon supply component is 0.1 part by weight.
  • the mixed powder for powder metallurgy preferably further contains a physical property improving component.
  • the mixed powder for powder metallurgy preferably further contains a lubricant.
  • the sintered body of the present invention that has solved the above-mentioned problems can be obtained by sintering the green compact described above.
  • the mixed powder for powder metallurgy according to the present invention has high density and good shape retention. Since a green compact is obtained, a sintered body having excellent mechanical properties is finally obtained.
  • FIG. 1 is a schematic cross-sectional view of an apparatus used for measuring the amount of free carbon in Example 1.
  • the inventor of the present invention is a mixed powder for powder metallurgy that does not require a binder, and in particular, in order to provide a mixed powder capable of producing a high-density green compact, in particular, studies have been made focusing on the carbon supply component. I did it.
  • the amount of free carbon is 30% or less
  • the density when the green compact is formed at a molding pressure of 490 MPa was determined to be at least 70 g / cm 3.
  • the present inventor first conducted an experiment using only carbon black. As a result, it was found that when carbon black was used instead of black lead powder, the amount of free carbon (C-loss) in the mixed powder generally decreased, and dust generation and segregation of the carbon supply component could be reduced. However, depending on the type of carbon black (dibutyl phthalate absorption, specific surface area, particle size), it is difficult to mix uniformly with iron-based powder. It has been found by experiments of the present inventor that the degree of the above increases, and further that a compact with sufficient strength cannot be obtained even by compacting.
  • the present inventor has determined that carbon black is charcoal regardless of the type of carbon black. Further studies have been made from the viewpoint of providing new technologies to be used as element supply components. As a result, by using carbon black mixed with graphite powder at a fixed ratio that does not use only carbon black as a carbon supply component, the characteristics required for mixed powder (regardless of the type of carbon black) ( It was found to be able to prevent the generation and segregation of carbon supply components). In addition, the properties when compacted into green compacts (density and ratra value of the compacts) are also good, and the properties when compacted as the final product (density, crushing strength, hardness) The present inventors have found that it is possible to provide such a mixed powder that is also excellent.
  • carbon black is a fine powder composed of approximately 95% or more of amorphous carbon and having a specific surface area of up to about 1000 m 2 / g.
  • Carbon black exists as chain-like or tuft-like aggregates (called structures) in which individual particles are fused together and spread in three dimensions.
  • the characteristics of carbon black are mainly evaluated on the basis of particle morphology (particle size, specific surface area, etc.), particle aggregation, and particle surface physicochemical properties.
  • particle morphology particle size, specific surface area, etc.
  • particle aggregation particle aggregation
  • particle surface physicochemical properties those having an appropriate range can be selected as long as the effects of the present invention are not impaired without limiting these characteristics.
  • the carbon black preferably satisfies the following requirements.
  • the amount of dibutylphthalate (DBP) absorption representing the aggregated form of particles is preferably approximately 120 mL / 100 g or less.
  • the "DBP absorption amount” is the amount of DBP necessary to fill the voids of carbon black (that is, the oil absorption amount that absorbs DBP in which carbon black is a liquid).
  • DBP absorption is known to be closely related to structure.
  • carbon black with high-order chain aggregation of primary particles with a small particle size (several nm to about 20 nm), that is, with a highly developed structure has a large volume of voids between the particles. The amount gets bigger.
  • carbon black with a large primary particle size and independent particle structure i.e., an undeveloped structure, has a small void volume, resulting in a low DBPP and yield. .
  • Carbon black which has a large DBP absorption, has an agglomerated structure with a highly developed structure, so the density of the green compact does not increase so much, and the mechanical strength represented by the Latra value also decreases. I guess that.
  • the lower limit of the density and mechanical strength of the green compact is not particularly limited from the viewpoint, but considering the structure that carbon black can form, 20 mL / 100 g or more It is preferable that
  • the DBP absorption amount of carbon black is measured based on JIS K6217-4 "Carbon black for rubber-Basic characteristics-Part 4: Determination of DBP absorption amount”.
  • the nitrogen adsorption specific surface area which is a typical index of the specific surface area, is preferably about 150 m 2 / g or less.
  • the “nitrogen adsorption specific surface area” is an amount corresponding to the total specific surface area including the pores on the surface of the carbon black.
  • the lower limit is not particularly limited from the viewpoint of improving the density and mechanical strength of the green compact, but it is 5 m 2 / g or more in consideration of the structure that carbon black can form. It is preferable.
  • the nitrogen adsorption specific surface area of carbon black is measured based on the method described in JIS K 6217-2.
  • the average particle size of the primary particles of carbon black is preferably 40 nm or more.
  • the properties of the green compact are further improved and the mechanical properties are further improved.
  • a sintered body is obtained.
  • the average primary particle size is less than 40 nm, carbon black tends to form a highly agglomerated complex structure in the mixing process, and the density of the green compact is reduced.
  • the larger the average particle size of the primary particles is, for example, 70 nm or more is preferable.
  • the upper limit is not particularly limited from the viewpoint of improving the density and mechanical strength of the green compact, and from the viewpoint, but it may be less than lOOOnm considering the structure that carbon black can form. preferable.
  • the average particle size of primary particles of carbon black can be measured using an electron microscope. Specifically, several tens of thousands of photographs are taken with an electron microscope, and the approximate circular diameter of each projected particle is measured from about 2,000 to 10,000 per sample. Measurement can be performed using an automatic particle size analyzer (Zeiss Model TGA10).
  • the carbon purity of the carbon black is not particularly limited. However, since atoms other than carbon (C) may adversely affect the properties of the sintered body, the carbon purity of carbon black is preferably as high as possible. Specifically, the ratio of C in carbon black is 95. It is preferable that the ratio is 0 or more, more preferably 99% or more.
  • elements other than C include hydrogen (H) and ash (metal elements and inorganic elements).
  • the ash include salts such as Mg, Ca, Si, Fe, Al, V, K, and Na, and oxides thereof. Of these, hydrogen (H) is 0.5% or less. It is preferable. Further, the ash content is preferably 0.5% or less in total, and more preferably 0.1% or less.
  • the method for producing carbon black satisfying such requirements is not particularly limited, and a commonly used method can be appropriately selected. Specifically, for example, oil furnace Method, thermal method (pyrolysis method) and the like. Among these, the latter thermal method has a feature that primary particles having a large average particle size of primary particles can be easily controlled to have an independent structure, and is recommended as a method for producing carbon black defined in the present invention. .
  • the present inventors have found that the main component of the carbon supply component, dibutyl phthalate absorption amount is not more than 60m L / I00g, and is the carbon black specific surface area by nitrogen adsorption is less than 50 m 2 / g It was found that the mixed powder for powder metallurgy has good characteristics (the density and ratra value of the green compact) when the amount of free carbon in the mixed powder is reduced and the green compact is pressed. In this case, good characteristics can be obtained even if the carbon supply component is carbon black alone. In this case, the carbon black is preferably contained at a ratio of 4.0 parts by weight or less with respect to 100 parts by weight of the iron-based powder as a base.
  • carbon black has the effect of increasing the density and strength of the green compact. However, if the carbon black content exceeds 4.0 parts by weight, the above effect may be reduced. is there. Note that the lower limit of the carbon black content is preferably 0.1 parts by weight, so that the above-mentioned action by the carbon black is effectively exhibited.
  • the content of carbon black is more preferably 0.2 parts by weight or more and 2.0 parts by weight or less.
  • the graphite powder is not particularly limited as long as it is usually used in a powder mixture for powder metallurgy.
  • the average particle size of the graphite powder is approximately 40 ⁇ m or less. This is because if the average particle size exceeds 40 ⁇ m, the reaction with the iron-based powder may be insufficient during the sintering process.
  • the lower limit is not particularly limited.
  • the average particle size of graphite powder that is usually used is about 5 to 20 zm, but in the present invention, such graphite powder can be used.
  • the ratio of carbon black is more preferably 20 parts by weight or more and 60 parts by weight or less, and further preferably 20 parts by weight or more and 50 parts by weight or less.
  • the mixing ratio of carbon black is preferably changed appropriately as appropriate according to the range of DBP absorption amount and nitrogen adsorption specific surface area of carbon black, as shown in the examples described later. .
  • a desired mixed powder free carbon content of 30% or less, green compact density of 6.70 g / cm 3 or more is obtained.
  • the mixed powder for powder metallurgy of the present invention contains the above-mentioned carbon supply component and iron-based powder.
  • the iron-based powder used in the present invention includes both pure iron powder and iron alloy powder. These may be used alone or in combination.
  • pure iron powder is an iron powder that contains 97% or more of iron powder, and the balance: inevitable impurities (for example, oxygen, silicon, carbon, manganese, etc.) can be regarded as a substantially pure iron component. .
  • the iron alloy powder contains an alloy component such as copper, nickel, chromium, molybdenum, sulfur, and manganese for the purpose of improving the properties of the sintered body as a component other than iron.
  • Iron alloy powders include diffusion-type iron powder (manufactured by diffusion bonding of alloying element to base iron powder, partially alio yed powder) and brareloy-type iron powder (manufactured by adding alloying element in the melting process, The power roughly classified into prealloyed powder) In the present invention, these may be used alone or in combination.
  • the mixed powder of the present invention may be composed of the above-described carbon supply component and iron-based powder. However, for the purpose of improving the properties of the sintered body, a physical property improving component may be added.
  • Examples of the physical property improving component include metal powder and inorganic powder. These may be used alone or in combination of two or more.
  • examples of the metal powder include copper, nickel, chromium, molybdenum, tin, vanadium, manganese, and phosphorus phosphorus. These may be used alone or in combination of two or more. In particular, when pure iron powder is used as the iron-based powder, it is preferable to add the above metal powder. These metal powders may be ferroalloys alloyed with iron, or alloy powders composed of two or more types other than iron.
  • Examples of the inorganic powder include sulfides such as manganese sulfide and manganese dioxide, nitrides such as boron nitride, oxides such as boric acid, magnesium oxide, potassium oxide, and silicon oxide, phosphorus, sulfur, and the like. Is mentioned. These may be used alone or in combination of two or more.
  • the content of the above-described physical property improving component is not particularly limited, and can be arbitrarily determined according to various properties required for the final product as long as the action of the present invention is not hindered.
  • the total ratio of iron-based powder to 100 parts by weight is preferably 0.01 parts by weight or more and 10 parts by weight or less.
  • the iron-based powder when pure iron powder is used as the iron-based powder, preferable contents of the following powder are as follows. Copper: 0.1 ⁇ : 10 parts by weight, nickel: 0.:! ⁇ 10 parts by weight, chromium: 0.:! ⁇ 8 parts by weight, molybdenum: 0.:! ⁇ 5 parts by weight, phosphorus: 0.01 ⁇ 3 parts by weight, sulfur: 0.0:! ⁇ 2 parts by weight.
  • the mixed powder of the present invention may further contain a lubricant as long as the effects of the present invention are not adversely affected.
  • the lubricant has an effect of reducing the coefficient of friction between the green compact and the mold during pressure molding of the green compact, and suppressing the occurrence of mold galling and mold damage.
  • the lubricant used in the present invention is not particularly limited as long as it is generally used in mixed powders for powder metallurgy.
  • ethylene bisstearylamide, stearamide, zinc stearate, stearic acid Examples include lithium. These may be used alone or in combination of two or more.
  • the lubricant is preferably contained in the range of 0.01 to 1.5 parts by weight with respect to 100 parts by weight of the iron-based powder. When the content of the lubricant is less than 0.01 parts by weight, the effect due to the addition of the lubricant is not sufficiently exerted. On the other hand, if the content of the lubricant exceeds 1.5 parts by weight, the compressibility of the green compact may decrease. The more preferable content of the lubricant is from 0.:! To 1.2 parts by weight, and the more preferable content is from 0.2 to: 1.0 parts by weight.
  • the binder that is usually added to the powder mixture for powder metallurgy can be omitted.
  • a predetermined mixture of graphite powder and carbon black, or a predetermined carbon black is used as a carbon supply component, so that the carbon supply component can be obtained without using a binder. This is because scattering and segregation can be sufficiently prevented (see Examples below).
  • conventionally used binders may be used as long as the effects of the present invention (particularly, the fluidity of the mixed powder) are not impaired.
  • Binder is added to suppress segregation of non-self-adhesive powders such as Ni powder and Cu powder, which are not added from the viewpoint of preventing segregation of carbon supply components.
  • the binders described in JP-A-2003-105405, JP-A-2004-256899, JP-A-2004-360008 and the like described above can also be used.
  • the mixed powder of the present invention is obtained by mixing the carbon supply component defined in the present invention (a predetermined mixture of graphite powder and carbon black or a predetermined carbon black) and iron-based powder. . If necessary, the above-described physical property improving component may be added, and a lubricant or a binder may be added.
  • the form of carbon black and graphite powder at the time of mixing with the iron-based powder is not particularly limited.
  • carbon black may be mixed with the iron-based powder in the form of a powder, or may be mixed with the iron-based powder in a dispersion in which carbon black is dispersed in a dispersion medium such as an organic solvent. May be. In the latter case, it is preferable to remove the dispersion medium by heating after mixing.
  • the mixing method is not particularly limited, and a bladed mixer, a V-shaped mixer, a double cone mixer ( W corn) etc., you can mix using a commonly used mixer.
  • the mixing conditions are
  • blade rotation speed blade circumferential speed
  • V-type mixer or a double cone mixer it is preferable to mix at 2 to 50 rpm for 1 to 60 minutes.
  • a green compact is obtained using the above mixed powder by a normal pressure molding method using a powder compression molding machine.
  • the specific molding conditions include the type and amount of components that make up the mixed powder, the shape of the green compact, the molding temperature (generally, room temperature to 150 ° C), the force S that varies depending on the molding pressure, etc. It is preferable to mold so that the density of the body is in the range of about 6.0 to 7.5 gZcm 3 .
  • a sintered body is obtained by the usual sintering method using the green compact described above.
  • Specific sintering conditions vary depending on the type and amount of components that make up the green compact, and the type of final product.For example, under an atmosphere of N, N-H, hydrocarbons, etc. ⁇ : 1300 ° C
  • Sintering is preferably performed at a temperature of 5 to 60 minutes.
  • the amount of free carbon (%) was calculated from the following equation. In this example, a carbon having an amount of free carbon of 30% or less was accepted.
  • Free carbon i (%) (l- (carbon i (%) after N gas flow) Z (before N gas flow)
  • the carbon amount (%) means the weight percentage of carbon in the mixed powder.
  • Density measurement To measure the density of the green compact, the diameter is based on Japan Society of Powder and Powder Metallurgy (JSPM) standard 1-64 (Method for testing compressibility of metal powder). A cylindrical compact with a diameter of 3 mm and a height of 10 mm was produced. The molding pressure was 490 MPa. The weight of the obtained green compact was measured, and the value (g / cm 3 ) divided by the volume was taken as the density of the green compact. In this example, a green compact with a density of 6.70 g / cm 3 or higher was accepted.
  • JSPM Japan Society of Powder and Powder Metallurgy
  • the above mixed powder was put into a powder compression molding machine and compression molded under a pressure of 490 MPa to obtain a cylindrical green compact having an outer diameter of 11.3 mm and a height of 10 mm.
  • Experiment 1 the mixed powder and the green compact of Experiment 14 were prepared in the same manner as in Experiment 1, except that 0.8% of carbon black b in Table 1 was used without using graphite powder X.
  • carbon black a (DBP absorption 38 mL / 100 g, nitrogen adsorption specific surface area 8 m 2 / g) and graphite powder X were used as carbon supply components, and the results when these mixing ratios were changed (experiment:! Consider 8 and 20).
  • carbon black b (DBP absorption: 113 mL / 100 g, nitrogen adsorption specific surface area: 130 m 2 / g) and graphite powder X were used as carbon supply components, and the results when these mixing ratios were changed (Experiment 9 to 9). Consider 14 and 20).
  • the mixing ratio of carbon black b and graphite powder X is within the preferred range of the present invention.
  • carbon black c (DBP absorption 22 mL / l00 g, nitrogen adsorption specific surface area 80 m 2 / g) and graphite powder X were used as carbon supply components, and the results when these mixing ratios were changed (Experiment 15- Consider 20).
  • the characteristics of the sintered body when using a mixture of carbon black and graphite powder as the carbon supply component in Example 1 described above were examined in comparison with the graphite powder.
  • the density of the sintered body was 6.80 g / cm 3 .
  • Table 4 shows the results for some of the experimental examples shown in Table 3. In other experiments shown in Table 3, the same experimental results as above are obtained. This is confirmed by experiments (not shown in Table 4). [0134] In addition, the above-mentioned series of results show the same tendency not only when carbon blacks a, b, and c but also carbon blacks belonging to carbon black groups A, B, and C are used. It has been confirmed by experiments that it is obtained (not shown in Table 4).
  • the mixed powder was put into a powder compression molding machine and compression molded under a pressure of 490 MPa to obtain a cylindrical green compact having an outer diameter of 11.3 mm and a height of 10 mm.
  • Table 6 also lists the types and characteristics of the carbon feed components used.
  • Experiments 25 and 30 each used carbon black di that satisfied the requirements of the present invention. This is an example of the present invention, and is excellent not only in the properties of the mixed powder but also in the properties of the green compact.
  • Experiments 31 to 36 are comparative examples using carbon black that does not satisfy the requirements of the present invention. Did not reach the reference value.
  • Experiment 37 was a conventional example using only graphite powder as a carbon supply component, and the amount of free carbon in the mixed powder increased.
  • the characteristics of the sintered body when using carbon black that satisfies the requirements of the present invention were examined in comparison with graphite powder.
  • the density of the sintered body was 6.80 g / cm 3 .
  • the above green compact was placed in a N -10 vol% H gas atmosphere using a pusher-type sintering furnace.
  • the present invention it is possible to obtain a mixed powder capable of reducing dust generation and segregation of the carbon supply component without using a binder, so that the productivity is excellent. Further, if the mixed powder for powder metallurgy according to the present invention is used, a compact having a high density and good shape retention can be obtained, and finally, a sintered body having excellent mechanical properties can be obtained.

Landscapes

  • Powder Metallurgy (AREA)

Abstract

 本発明は、鉄基粉末および炭素供給成分を含む粉末冶金用混合粉末であって、前記炭素供給成分は、黒鉛粉末およびカーボンブラックを含み、黒鉛粉末とカーボンブラックの混合比率が、黒鉛粉末:カーボンブラック=25~85重量部:75~15重量部の範囲内である粉末冶金用混合粉末;及び、鉄基粉末および炭素供給成分を含む粉末冶金用混合粉末であって、前記炭素供給成分が、フタル酸ジブチル吸収量が60mL/100g以下で、且つ、窒素吸着比表面積が50m2/g以下であるカーボンブラックを主成分として含む粉末冶金用混合粉末に関する。  本発明の粉末冶金用混合粉末は炭素供給成分の発塵や偏析が少なく、また、本発明の粉末冶金用混合粉末を用いれば、機械的特性に優れた圧粉体および焼結体を製造することができる。

Description

明 細 書
粉末冶金用混合粉末、その圧粉体、および焼結体
技術分野
[0001] 本発明は、炭素供給成分の飛散および偏折が少ない粉末冶金用混合粉末、当該 粉末冶金用混合粉末を用いて得られる高密度の圧粉体、および当該圧粉体を焼結 して得られる焼結体に関するものである。
背景技術
[0002] 鉄基粉末を用いて焼結体などの製品を製造する粉末冶金法は、他の方法に比べ て価格、製品寸法の精度、生産性などの点で優れているため、汎用されている。
[0003] 粉末冶金法では、鉄基粉末を含む原料粉末を混合し、加圧成形して圧粉体を成形 し、溶融点以下の温度で焼結することによって焼結体を製造している。このうち混合 工程は、混合粉末のハンドリング性を高めて加圧成形工程での作業効率を向上させ 、均質な焼結体を得るうえで、極めて重要な操作である。混合工程では、通常、鉄基 粉末に所定の炭素供給成分 (炭素源)を加えた原料粉末に、潤滑性を良好にするた めの潤滑剤を添加し、混合している。
[0004] 従来、炭素供給成分として、安価で入手が容易な黒鉛 (グラフアイト)粉末が汎用さ れている。
[0005] しかし、黒鉛粉末を使用すると、混合工程または加圧成形工程で黒鉛粉末が発塵( 飛散)するため、混合粉末のハンドリング性が低下し、職場環境が悪化するといつた 問題を抱えている。また、黒鉛粉末は、鉄基粉末に比べて粒径に差があり、比重の 差も大きいため、混合機中で一旦均質に混合されたとしても、それ以後のハンドリン グ中に分離、偏析 (粒度偏析、比重偏析)が起こり易い。
[0006] そこで、従来、黒鉛粉末の偏析を防ぐ方法として、バインダ (粘結剤)が用いられて いる。
[0007] しかし、バインダは、一般に粘着性を有しているため、混合粉末の流動性を阻害す る。混合粉末の流動性が悪いと、例えば、混合粉末を貯蔵ホッパから排出して成形 金型に移送する際、または混合粉末を成形金型に充填する際などの加圧成形工程 で、貯蔵ホッパの排出上部でブリッジングなどによる排出不良が生じたり、貯蔵ホッパ 力らシユーボックスまでのホースが閉塞したりするなどの問題が生じる。また、混合粉 末の流動性が悪いと、成形金型 (特に薄肉部分)内全体に混合粉末が均一に充填さ れ難くなり、均質な圧粉体が得られ難いという問題もある。
[0008] バインダによる上記問題点を解決するため、特許文献 1〜3には、黒鉛粉末の偏析 を防止し得、且つ、混合粉末の流動性も改善し得る新規のバインダが開示されてい る。しかし、これらのバインダを用いると圧粉体の密度が充分上昇せず、強度および 硬さが高い焼結体が得られ難いといった問題がある。
[0009] また、バインダを用いる従来の方法では、混合粉末中にバインダを添加し、混合す る工程が別途必要であり、生産性の低下は避けられない。
[0010] 一方、特許文献 4〜5には、炭素供給成分として、黒鉛粉末のほかにカーボンブラ ックも例示されているが、実施例の欄には、黒鉛粉末を用いた実験結果が記載され ているだけで、カーボンブラックを用いた実験結果は全く記載されていない。
特許文献 1 :特開 2003-105405号公報
特許文献 2:特開 2004-256899号公報
特許文献 3:特開 2004-360008号公報
特許文献 4:特開 2004- 162170号公報
特許文献 5:特開 2004-115882号公報
発明の開示
[0011] 本発明は、上記事情に鑑みてなされたものであり、その目的は、バインダを使用し なくても、炭素供給成分の発塵や偏析を防止でき、均質な粉末冶金用混合粉末を提 供することにある。
[0012] 本発明の他の目的は、前述した特性を備えた混合粉末であって、しかも、機械的特 性に優れた圧粉体および均質な焼結体を製造可能な粉末冶金用混合粉末を提供 することにある。
[0013] 更に、本発明の他の目的は、高密度で形状保持性が良好な圧粉体を提供すること にある。
[0014] 更に、本発明の他の目的は、強度および硬さが高ぐ機械的特性に優れた焼結体 を提供することにある。
[0015] すなわち、本発明は、
鉄基粉末および炭素供給成分を含む粉末冶金用混合粉末であって、
前記炭素供給成分は、黒鉛粉末およびカーボンブラックを含み、
黒鉛粉末とカーボンブラックの混合比率が、黒鉛粉末:カーボンブラック = 25〜85重 量部: 75〜: 15重量部の範囲内である粉末冶金用混合粉末、に関する。
[0016] 上記の粉末冶金用混合粉末において、カーボンブラックのフタル酸ジブチル吸収 量が 60mL/l00g以下で、且つ、窒素吸着比表面積が 50m2/g以下であることが 好ましい。
[0017] さらに、本発明は、
鉄基粉末および炭素供給成分を含む粉末冶金用混合粉末であって、 前記炭素供給成分が、フタル酸ジブチル吸収量が 60mLZl00g以下で、且つ、 窒素吸着比表面積が 50m2/g以下であるカーボンブラックを主成分として含む粉末 冶金用混合粉末、にも関する。
ここで主成分とは、炭素供給成分がカーボンブラックのみからなるか、炭素供給成 分のうち、最も割合の大きな成分がカーボンブラックであることを指す。
[0018] 上記の粉末冶金用混合粉末において、前記鉄基粉末 100重量部に対し、前記炭 素供給成分力 ¾重量部以下の範囲で含有されることが好ましい。なお、前記炭素供 給成分の好ましい下限は 0. 1重量部である。
[0019] 上記の粉末冶金用混合粉末は、更に、物性改善成分を含有することが好ましい。
[0020] 上記の粉末冶金用混合粉末は、更に、潤滑剤を含有することが好ましレ、。
[0021] 上記課題を解決することのできた本発明の圧粉体は、上記のいずれかに記載の粉 末冶金用混合粉末を用いて得られる。
[0022] 上記課題を解決することのできた本発明の焼結体は、上記の圧粉体を焼結して得 られる。
[0023] 本発明によれば、バインダを使用しなくても、炭素供給成分の発塵や偏析を低減可 能な混合粉末が得られるため、生産性に優れてレ、る。
[0024] また、本発明の粉末冶金用混合粉末を用いれば、高密度で形状保持性が良好な 圧粉体が得られるため、最終的に、機械的特性に優れた焼結体が得られる。
図面の簡単な説明
[0025] [図 1]実施例 1において、遊離カーボン量の測定に用いた装置の概略断面図である。
符号の説明
[0026] 1 ニューミリポアフィルター
2 漏斗状ガラス管
P 混合粉末
発明を実施するための最良の形態
[0027] 本発明者は、バインダを使用しなくても、炭素供給成分の発塵や偏析を防止し得る 新規な粉末冶金用混合粉末を提供するため、特に、カーボンブラックに着目して鋭 意検討してきた。その結果、炭素供給成分として、従来のように黒鉛粉末のみを使用 するのではなぐ黒鉛粉末とカーボンブラックの所定の混合物を用いれば、所期の目 的が達成されることを見出し、本発明を完成した。
[0028] 以下、本発明について、さらに詳しく説明する。
[0029] 本発明者は、バインダ不要の粉末冶金用混合粉末であって、特に、高密度の圧粉 体を製造可能な混合粉末を提供するため、特に、炭素供給成分に着目して検討を 行なった。
[0030] 具体的には、本発明では、混合粉末の指標として、(1)遊離カーボン量が 30%以 下であり、且つ、(2)成形圧力が 490MPaで圧粉体にしたときの密度が 6. 70g/cm 3以上であるものと定めた。
[0031] 本発明者は、まず、カーボンブラックのみを用いて実験を行なった。その結果、黒 鉛粉末の代わりにカーボンブラックを使用すると、概して、混合粉末の遊離カーボン 量 (C-loss)は少なくなり、炭素供給成分の発塵や偏析を低減できることが分かった。 ところ力 カーボンブラックの品種 (フタル酸ジブチル吸収量、比表面積、粒子径)に よっては、鉄基粉末への均一な混合が困難であり、黒鉛粉末を用いた場合に比べて 発塵や偏祈の程度が上昇すること、更には、圧粉成形によっても充分な強度を有す る圧粉体が得られないことが、本発明者の実験によって判明した。
[0032] そこで、本発明者は、カーボンブラックの品種にかかわらず、カーボンブラックを炭 素供給成分として利用する新規技術を提供するという観点から、更に検討を重ねて きた。その結果、炭素供給成分として、カーボンブラックのみを用いるのではなぐ所 定比率でカーボンブラックを黒鉛粉末と混合して用いることによって、カーボンブラッ クの品種にかかわらず、混合粉末に要求される特性 (炭素供給成分の発塵や偏析を 防止できる)を備えることがわかった。更に、圧粉体に加圧成形したときの特性 (圧粉 体の密度およびラトラ値)も良好であり、最終製品である焼結体としたときの特性 (密 度、圧環強度、硬さ)も優れている、そのような混合粉末を提供できることを見出し、本 発明に到達した。
[0033] 本発明のように黒鉛粉末とカーボンブラックとを所定比率で併用することにより、所 望の特性をすベて兼ね備えた粉末冶金用混合粉末が得られるメカニズムは、詳細に は不明であるが、以下のように推察される。カーボンブラックを黒鉛粉末と混合すると 、カーボンブラック粒子同士の凝着'固着を防止できるため、カーボンブラックの品種 にかかわらず、鉄基粉末への均一な混合が可能となり、発塵や偏祈の程度を低減で きることが考えられる。また、カーボンブラックを黒鉛粉末と混合すると、黒鉛粉末粒 子を覆うようにしてカーボンブラック粒子が存在し、このような被覆形態を有するカー ボンブラックが鉄基粉末に付着するため、鉄基粉末への付着性に乏しい黒鉛粉末の 使用が可能になることが考えられる。
[0034] まず、本発明に用いられるカーボンブラックについて説明する。
[0035] 一般に、カーボンブラックは、ほぼ 95%以上の無定形炭素質からなり、比表面積が 最大で 1000m2/g前後にもおよぶ微粒粉体である。カーボンブラックは、個々の粒 子同士が融着し、三次元的に広がった連鎖状または房状の凝集体 (ストラクチャーと 呼ばれる。)として存在している。
[0036] カーボンブラックの特性は、主に、粒子形態 (粒径、比表面積など)、粒子の凝集形 態、および粒子表面の物理化学的性状に基づいて評価される。本発明では、これら の特性について限定するものではなぐ本発明の作用を損なわない範囲で、適切な 範囲のものを選択することができる。
[0037] ただし、混合粉末に要求される上記特性を一層改善するため、カーボンブラックは 、以下の要件を満足していることが好ましい。 [0038] まず、粒子の凝集形態を表すフタル酸ジブチル(dibutylphthalate、 DBP)吸収量は 、おおむね、 120mL/100g以下であることが好ましい。
[0039] ここで、「DBP吸収量」は、カーボンブラックの空隙を満たすのに必要な DBPの量( すなわち、カーボンブラックが液体である DBPを吸収する吸油量)である。 DBP吸収 量は、ストラクチャーと密接な関係があることが知られている。例えば、小粒径(数 nm 〜20nm程度)の一次粒子が高次に連鎖凝集した、すなわち、ストラクチャーが高度 に発達したカーボンブラックでは、粒子間に存在する空隙の容積が大きいため、 DB P吸収量は大きくなる。一方、一次粒子の粒径が大きぐ且つ、それらの粒子が独立 した構造を有している、すなわち、ストラクチャーが発達していないカーボンブラックで は、空隙容積が小さいため、 DBPP及収量は小さくなる。
[0040] DBP吸収量が大きいカーボンブラックは、ストラクチャーが高度に発達した凝集構 造を有しているため、圧粉体の密度はあまり上昇せず、ラトラ値に代表される機械的 強度も低下すると推察される。
[0041] カーボンブラックの DBP吸収量は少ない程良ぐ例えば、 60mL/100g以下であ ることがより好ましぐ 50mL/100g以下であることが更に好ましぐ 40mL/100g以 下であることが更に一層好ましい。なお、その下限は、圧粉体の密度や機械的強度 の改善とレ、つた観点からは特に限定されなレ、が、カーボンブラックが形成し得るストラ クチャ一などを考慮すると、 20mL/100g以上であることが好ましい。
[0042] カーボンブラックの DBP吸収量は、 JIS K6217-4の「ゴム用カーボンブラック -基本 特性-第 4部: DBP吸収量の求め方」に基づレ、て測定する。
[0043] また、比表面積の代表的な指標である窒素吸着比表面積は、おおむね、 150m2/ g以下であることが好ましい。
[0044] ここで、「窒素吸着比表面積」は、カーボンブラック表面の細孔部分を含む全比表 面積に対応する量である。
[0045] 窒素吸着比表面積が大きくなると、圧粉体の密度はあまり上昇せず、ラトラ値が大き くなる。そのため、焼結体に要求される特性が充分得られない恐れがある。
[0046] カーボンブラックの窒素吸着比表面積は小さい程良ぐ例えば、 50m2/g以下であ ることがより好ましぐ 40m2Zg以下であることが更に好ましぐ 30m2/g以下であるこ とが更に一層好ましい。なお、その下限は、圧粉体の密度や機械的強度の改善とい つた観点からは特に限定されなレ、が、カーボンブラックが形成し得るストラクチャーな どを考慮すると、 5m2/g以上であることが好ましい。
[0047] カーボンブラックの窒素吸着比表面積は、 JIS K 6217-2に記載された方法に基 づいて測定する。
[0048] カーボンブラックの一次粒子の平均粒径は、 40nm以上であることが好ましい。前 述した窒素吸着比表面積に加え、一次粒子の平均粒径を更に制御してカーボンブ ラックの粒子形態を厳密に調整することにより、圧粉体の特性が一層改善され、機械 的特性に一層優れた焼結体が得られる。一次粒子の平均粒径が 40nm未満の場合 、カーボンブラックは、混合工程において、高度に凝集した複雑なストラクチャーを形 成し易くなり、圧粉体の密度などが低下してしまう。一次粒子の平均粒径は大きいほ どよぐ例えば、 70nm以上であることが好ましい。なお、その上限は、圧粉体の密度 や機械的強度の改善とレ、つた観点からは特に限定されなレ、が、カーボンブラックが 形成し得るストラクチャーなどを考慮すると、 lOOOnm以下であることが好ましい。
[0049] カーボンブラックの一次粒子の平均粒径は、電子顕微鏡を用いて測定することがで きる。具体的には、電子顕微鏡で数万倍の写真を数視野撮影し、投影された各粒子 の円近似直径を、 1試料当たり約 2千個〜 1万個計測する。計測は、粒子径自動解 析装置(Zeiss Model TGA10)などを用いて行なうことができる。
[0050] カーボンブラックの炭素純度は、特に限定されない。ただし、炭素(C)以外の原子 は、焼結体の特性に悪影響を及ぼす可能性があるため、カーボンブラックの炭素純 度は、出来るだけ高いことが好ましい。具体的には、カーボンブラック中の Cの比率は 、 95。/0以上であることが好ましぐ 99%以上であることがより好ましい。 C以外の元素 として、例えば、水素(H)や灰分 (金属元素、無機元素)などが挙げられる。灰分とし ては、例えば、 Mg、 Ca、 Si、 Fe、 Al、 V、 K、 Naなどの塩類やこれらの酸化物などが 挙げられ、このうち、水素(H)は 0. 5%以下であることが好ましい。また、灰分は、合 計で 0. 5%以下であることが好ましぐ 0. 1 %以下であることがより好ましい。
[0051] このような要件を満足するカーボンブラックの作製方法は、特に限定されず、通常 用いられる方法を適宜選択することができる。具体的には、例えば、オイルファーネス 法、サーマル法(熱分解法)などが挙げられる。このうち、後者のサーマル法は、一次 粒子の平均粒径が大きぐ一次粒子が独立した構造に制御しやすいという特徴を有 しており、本発明で規定するカーボンブラックの作製方法として推奨される。
[0052] 上記要件を満足するカーボンブラックは、例えば、市販品を用いることもできる。
[0053] また、本発明者らは、炭素供給成分の主成分が、フタル酸ジブチル吸収量が 60m L/I00g以下で、且つ、窒素吸着比表面積が 50m2/g以下であるカーボンブラック である粉末冶金用混合粉末が、混合粉末の遊離カーボン量を少なくし、且つ圧粉体 に加圧成形したときの特性 (圧粉体の密度およびラトラ値)が良好であることを見いだ した。この場合、炭素供給成分がカーボンブラック単独でも良好な特性が得られる。 この場合、カーボンブラックは、ベースとなる鉄基粉末 100重量部に対し、 4. 0重量 部以下の比率で含有することが好ましい。前述したように、カーボンブラックは、圧粉 体の密度や強度を上昇させる作用を有しているが、カーボンブラックの含有量が 4. 0 重量部を超えると、上記作用がかえって低下する恐れがある。なお、カーボンブラック の含有量の下限は、 0. 1重量部とすることが好ましぐこれにより、カーボンブラックに よる上記作用が有効に発揮される。カーボンブラックの含有量は、 0. 2重量部以上 2 . 0重量部以下であることがより好ましい。
また、焼結時のカーボンブラックの鉄基粉末への浸炭挙動は、黒鉛粉末と同等であ り、カーボンブラックも炭素供給源となる。
[0054] 次に、本発明に用いられる黒鉛粉末について説明する。
[0055] 黒鉛粉末は、粉末冶金用混合粉末に通常用いられるものであれば特に限定されな レ、。
[0056] ただし、黒鉛粉末の平均粒径は、おおむね、 40 μ m以下であることが好ましい。平 均粒径が 40 μ mを超えると、焼結工程で鉄基粉末との反応が不充分になる恐れが あるからである。なお、その下限は特に限定されない。通常用いられる黒鉛粉末の平 均粒径は、おおむね、 5〜20 z m程度であるが、本発明では、このような黒鉛粉末を 用レ、ることもできる。
[0057] 上記要件を満足する黒鉛粉末は、例えば、市販品を用いることもできる。
[0058] カーボンブラックと黒鉛粉末との混合比率は、後記する実施例に示すように、カー ボンブラックの品種にかかわらず、カーボンブラックおよび黒鉛粉末の合計 100重量 部に対し、カーボンブラックを 15重量部以上 75重量部以下の範囲内とすることが好 ましレ、。すなわち、黒鉛粉末とカーボンブラックの混合比率力 S、黒鉛粉末:カーボンブ ラック = 25〜85重量部: 75〜: 15重量部の範囲内であることが好ましレ、。カーボンブ ラックの比率が 15重量部未満の場合、遊離カーボン量 (C-loss)が大きくなり、炭素供 給成分の発塵や偏析が上昇してしまう。一方、カーボンブラックの比率が 75重量部 を超えると、カーボンブラックの品種による影響が大きくなり、選択したカーボンブラッ クよっては、加圧成形の際、脆くて形状を保持することが困難なものが発生することが ある。また、所望とする圧粉体の密度に達しない場合もある。カーボンブラックの比率 は、 20重量部以上 60重量部以下であることがより好ましぐ 20重量部以上 50重量部 以下であることが更に好ましい。
[0059] 具体的には、カーボンブラックの混合比率は、後記する実施例に示すように、カー ボンブラックの DBP吸収量および窒素吸着比表面積の範囲に応じて、適宜適切に 変更することが好ましい。これにより、所望とする混合粉末 (遊離カーボン量 30%以 下、圧粉体の密度 6. 70g/cm3以上)が得られる。
[0060] 本発明の粉末冶金用混合粉末は、上記の炭素供給成分と鉄基粉末とを含有して いる。
[0061] 本発明に用いられる鉄基粉末には、純鉄粉および鉄合金粉の両方が含まれる。こ れらは、単独で用いても良いし、併用しても良い。
[0062] このうち純鉄粉は、鉄粉を 97%以上含み、残部:不可避不純物(例えば、酸素、ケ ィ素、炭素、マンガンなど)からなる実質的に純鉄成分とみなせる鉄粉である。
[0063] また、鉄合金粉は、鉄以外の成分として、焼結体の特性改善を目的として、銅、ニッ ケル、クロム、モリブデン、硫黄、マンガンなどの合金成分を含むものである。鉄合金 粉には、拡散型鉄粉 (基鉄粉に合金元素を拡散接合して製造したもの、 partially alio yed powder)およびブレアロイ型鉄粉 (溶解工程で合金元素を添加して製造したもの 、 prealloyed powder)に大別される力 本発明では、これらを単独で、または両者を組 合わせたものを好適に用いることができる。
[0064] 本発明の混合粉末は、前述した炭素供給成分と鉄基粉末とから構成されていても よいが、焼結体の特性などを改善する目的で、更に物性改善成分を添加しても良い
[0065] 物性改善成分としては、例えば、金属粉末、無機粉末が挙げられる。これらは、単 独で使用しても良いし、 2種以上を併用しても良い。
[0066] このうち金属粉末としては、例えば、銅、ニッケル、クロム、モリブデン、スズ、バナジ ゥム、マンガン、フエ口リンなどが挙げられる。これらは単独で用いても良いし、 2種以 上を併用しても良い。特に、鉄基粉末として純鉄粉を用いる場合、上記の金属粉末 を添カ卩することが好ましい。これらの金属粉末は、鉄と合金となったフエロアロイ、また は鉄以外の 2種類以上からなる合金粉末であっても良い。
[0067] 無機粉末としては、例えば、硫化マンガン、二酸化マンガンなどの硫化物、窒化ホ ゥ素などの窒化物、ホウ酸、酸化マグネシウム、酸化カリウム、酸化ケィ素などの酸化 物、りん、硫黄などが挙げられる。これらは単独で用いても良いし、 2種以上を併用し ても良い。
[0068] 上記の物性改善成分の含有量は、特に限定されず、本発明の作用を阻害しない 限度で、最終製品に求められる諸特性に応じて任意に定めることができるが、おおむ ね、鉄基粉末 100重量部に対する比率を、合計で、 0. 01重量部以上 10重量部以 下とすることが好ましい。
[0069] 例えば、鉄基粉末として純鉄粉を用いた場合、下記粉末の好ましい含有量は、そ れぞれ、以下のとおりである。銅: 0. 1〜: 10重量部、ニッケル: 0.:!〜 10重量部、クロ ム: 0. :!〜 8重量部、モリブデン: 0.:!〜 5重量部、リン: 0. 01〜3重量部、硫黄: 0. 0 :!〜 2重量部。
[0070] 本発明の混合粉末は、本発明の作用に悪影響を与えない範囲で、さらに潤滑剤を 含有してもよい。潤滑剤は、圧粉体の加圧成形時に、圧粉体と金型との摩擦係数を 低減し、型かじりや金型損傷の発生などを抑える作用を有している。
[0071] 本発明で用いられる潤滑剤は、粉末冶金用混合粉末に通常用レ、られるものであれ ば特に限定されず、例えば、エチレンビスステアリルアミド、ステアリン酸アミド、ステア リン酸亜鉛、ステアリン酸リチウムなどが挙げられる。これらは、単独で使用しても良い し、 2種以上を併用しても良い。 [0072] 上記の潤滑剤は、鉄基粉末 100重量部に対し、 0. 01〜: 1. 5重量部の範囲内で含 有することが好ましい。潤滑剤の含有量が 0. 01重量部未満では、潤滑剤の添加に よる作用が充分発揮されない。一方、潤滑剤の含有量が 1. 5重量部を超えると、圧 粉体の圧縮性などが低下する恐れがある。潤滑剤のより好ましい含有量は、 0. :!〜 1 . 2重量部であり、更に好ましい含有量は、 0. 2〜: 1. 0重量部である。
[0073] 本発明では、粉末冶金用混合粉末に通常添加されるバインダを省略することがで きる。前述したように、本発明では、黒鉛粉末とカーボンブラックの所定の混合物、も しくは、所定のカーボンブラックを炭素供給成分として使用しているため、バインダを 使用しなくても、炭素供給成分の飛散や偏析を充分防止できるからである(後記する 実施例を参照)。ただし、本発明の作用(特に、混合粉末の流動性)を損なわない範 囲で、従来汎用されているバインダを使用しても良い。バインダは、炭素供給成分の 偏析防止という観点から添加するのではなぐ Ni粉や Cu粉などのように自己付着性 がない粉末の偏析を抑制するために添加する。あるいは、前述した特開 2003-105 405号公報、特開 2004-256899号公報、特開 2004-360008号公報等に記載さ れたバインダを使用することもできる。
[0074] 次に、上記の成分を用いて混合粉末、圧粉体、および焼結体を作製する方法を説 明する。
[0075] 本発明の混合粉末は、本発明に規定された炭素供給成分 (黒鉛粉末とカーボンブ ラックの所定の混合物、もしくは、所定のカーボンブラック)と、鉄基粉末とを混合する ことによって得られる。必要に応じて、前述した物性改善成分を添加しても良ぐ更に 、潤滑剤やバインダを添加しても良い。
[0076] 鉄基粉末との混合時におけるカーボンブラックおよび黒鉛粉末の形態は、特に限 定されない。
[0077] 例えば、カーボンブラックは、粉末形態のままで鉄基粉末と混合しても良いし、カー ボンブラックを有機溶剤などの分散媒に分散させた分散液の状態で鉄基粉末と混合 しても良い。後者の場合,混合後に,分散媒を加熱などの方法で除去することが好ま しい。
[0078] 混合方法は特に限定されず、羽根付き混合機、 V形混合機、二重円錐形混合機( Wコーン)など、通常、使用されている混合機を用いて混合すれば良レ、。混合条件は
、例えば、羽根付き混合機を用いる場合、羽根の回転速度(羽根の周速度)を約 2〜 10m/sの範囲内に制御し、約 0. 5〜20分間撹拌することが好ましい。また、 V形混 合機や二重円錐形混合機を用いる場合、おおむね、 2〜50rpmで 1〜60分間混合 することが好ましい。
[0079] 次に、上記の混合粉末を用い、粉末圧縮成形機を用いた通常の加圧成形方法に よって圧粉体を得る。具体的な成形条件は、混合粉末を構成する成分の種類や添 加量、圧粉体の形状、成形温度(おおむね、室温〜 150°C)、成形圧力などによって も相違する力 S、圧粉体の密度が約 6. 0〜7. 5gZcm3の範囲内になるように成形する ことが好ましい。
[0080] 最後に、上記の圧粉体を用い、通常の焼結方法によって焼結体を得る。具体的な 焼結条件は、圧粉体を構成する成分の種類や添加量、最終製品の種類などによつ ても相違する力 例えば、 N、 N -H、炭化水素などの雰囲気下、 1000〜: 1300°C
2 2 2
の温度で 5〜60分間焼結を行なうことが好ましい。
実施例
[0081] 以下、実施例を挙げて本発明をより具体的に説明するが、本発明は下記実施例に よって制限を受けるものではなぐ前 ·後記の趣旨に適合し得る範囲で適当に変更を 加えて実施することも可能であり、それらは何れも本発明の技術的範囲に含まれる。 なお、以下の実施例における「%」は、特に断らない限り、「重量%」を意味する。
[0082] 実施例 1 (混合粉末および圧粉体の特性の検討)
本実施例では、炭素供給成分として、種々のカーボンブラックおよび黒鉛粉末を用 レ、たときの混合粉末および圧粉体の特性を検討した。
[0083] 具体的には、表 1に示す a〜cのカーボンブラック(市販品)および表 2に記載の X〜 Zの黒鉛粉末 (市販品)を用い、以下のようにして粉末冶金用混合粉末および圧粉体 を得た(実験 1〜24)。表 1および 2には、市販品のカタログに記載された数値を転記 している。
[0084] 各実験で得られた混合粉末および圧粉体の特性を以下の方法で測定し、評価した [0085] (混合粉末の特性)
1.見掛密度の測 ¾IIS Z2504 (金属粉の見掛密度試験法)に基づき、混合粉末 の見掛密度 (g/cm3)を測定した。
[0086] 2.流動性の測 ^JIS Z2502 (金属粉の流動度試験法)に基づき、 2. 63mm φの オリフィスを混合粉末(50g)が流れ出るまでの時間(secZ50g)を測定した。
[0087] 3.遊離カーボン量 (発塵率、 C-loss)図 1に示すように、ニューミリポアフィルター 1
(網目 12 μ m)を取付けた漏斗状ガラス管 2 (内径: 16mm、高さ: 106mm)に混合粉 末 P (25g)を入れ、ガラス管 2の下方から Nガスを 0. 8リットル/分の速度で 20分間
2
流し、次式より遊離カーボン量(%)を求めた。本実施例では、遊離カーボン量が 30 %以下のものを合格とした。
遊離カーボン i (%) = [l- (Nガス流通後のカーボン i (%) ) Z (Nガス流通前の
2 2
カーボン量(%) ) ] X 100
ここで、カーボン量(%)とは、混合粉末中のカーボンの重量%を意味する。
[0088] (圧粉体の特性)
1.密度の測定圧粉体の密度を測定するため、粉体粉末冶金協会 (Japan Society o f Powder and Powder Metallurgy、 JSPM)標準 1-64 (金属粉の圧縮性試験方法)に 基づいて直径 11. 3mm、高さ 10mmの円柱状の圧粉体を作製した。成形圧力は、 4 90MPaとした。得られた圧粉体の重量を測定し、体積で除した値 (g/cm3)を圧粉 体の密度とした。本実施例では、圧粉体の密度が 6. 70g/cm3以上のものを合格と した。
[0089] 2.ラトラ値の測定日本粉末冶金工業規格(Japan Powder Metallurgy Association st &1^ 1^八) 011-1192 (金属圧粉体のラトラ値測定方法)に基づき、圧粉体のラ トラ値(%)を測定した。
[0090] (実験 1)
まず、鉄基粉末として、市販の純鉄粉 (神戸製鋼所製「アトメル 300M」)を用意し、 この純鉄粉に対し、市販のアトマイズ銅粉(平均粒径 48 x m)を 2. 0%、炭素供給成 分を 0. 80% [詳細には、表 1に記載のカーボンブラック aを 0. 004%、表 2に記載の 黒鉛粉末 Xを 0. 796% (カーボンブラック:黒鉛粉末 =0. 5重量部: 99. 5重量部)] 、潤滑剤としてエチレンビスステアリルアミドを 0. 75%の比率で添加した後、 V型混 合機を用いて 30rpmの回転速度で 30分間混合し、混合粉末を得た。ここでは、バイ ンダは使用していない。
[0091] 次に、上記の混合粉末を粉末圧縮成形機に入れ、 490MPaの圧力下で圧縮成形 し、外径 11. 3mm、高さ 10mmの円柱状の圧粉体を得た。
[0092] (実験 2〜7)
実験 1において、カーボンブラック aと黒鉛粉末 Xとの混合比率を、それぞれ、表 3に 記載のように変化させたこと以外は、実験 1と同様にして、実験 2〜7の混合粉末およ び圧粉体をそれぞれ作製した。
[0093] (実験 8)
実験 1において、黒鉛粉末 Xを用いずに、表 1のカーボンブラック aを 0. 80%用い たこと以外は、実験 1と同様にして、実験 8の混合粉末および圧粉体を作製した。
[0094] (実験 9〜: 13)
実験 1において、カーボンブラック aの代わりに表 1のカーボンブラック bを用い、表 3 に記載のようにカーボンブラック bと黒鉛粉末 Xとの混合比率を変化させたこと以外は 、実験 1と同様にして、実験 9〜: 13の混合粉末および圧粉体をそれぞれ作製した。
[0095] (実験 14)
実験 1において、黒鉛粉末 Xを用いずに、表 1のカーボンブラック bを 0. 80%用い たこと以外は、実験 1と同様にして、実験 14の混合粉末および圧粉体を作製した。
[0096] (実験 15〜: 18)
実験 1において、カーボンブラック aの代わりに表 1のカーボンブラック cを用い、表 3 に記載のようにカーボンブラック cと黒鉛粉末 Xとの混合比率を変化させたこと以外は 、実験 1と同様にして、実験 15〜: 18の混合粉末および圧粉体をそれぞれ作製した。
[0097] (実験 19)
実験 1において、黒鉛粉末 Xを用いずに、表 1のカーボンブラック cを 0. 80%用い たこと以外は、実験 1と同様にして、実験 19の混合粉末および圧粉体を作製した。
[0098] (実験 20)
実験 1において、カーボンブラックを用いずに、表 2の黒鉛粉末 Xを 0. 80%用いた こと以外は、実験 1と同様にして、実験 20の混合粉末および圧粉体を作製した。
[0099] (実験 21)
実験 5において、黒鉛粉末 Xの代わりに黒鉛粉末 Yを用いたこと以外は、実験 5と同 様にして、実験 21の混合粉末および圧粉体を作製した。
[0100] (実験 22)
実験 20において、黒鉛粉末 Xの代わりに表 2の黒鉛粉末 Yを 0. 80%用いたこと以 外は、実験 20と同様にして、実験 22の混合粉末および圧粉体を作製した。
[0101] (実験 23)
実験 5において、黒鉛粉末 Xの代わりに黒鉛粉末 Zを用いたこと以外は、実験 5と同 様にして、実験 23の混合粉末および圧粉体を作製した。
[0102] (実験 24)
実験 20において、黒鉛粉末 Xの代わりに表 2の黒鉛粉末 Zを 0. 80%用いたこと以 外は、実験 20と同様にして、実験 24の混合粉末および圧粉体を作製した。
[0103] これらの結果を表 3にまとめて示す。参考のため、表 3に総合評価の欄を設け、本 発明の合格基準 (遊離カーボン量 30%以下、成形圧力が 490MPaで圧粉体に成形 したときの密度 6· 70g/cm3以上)を満たす混合粉末に Aを、いずれか一方でも合 格基準を満たさないものに Bを付した。
[0104] [表 1]
Figure imgf000016_0001
[0105] [表 2] 純度 灰分 平均粒子径
記号 メーカー 種別
( ) (%) (jU m)
X C社 97 2 5 天然黒鉛
Y D社 95 5 11 天然黒鉛 ζ E社 95 4 8 天然黒鉛
3]
炭素供給成分 (S合比率〕 特 性
カーボンブラック *松粉末 ;虔合粉米 圧粉体
実験 総合 比 * 比率 見掛密度 流勦度 遊 ίϊカーボ 密度 * ラ卜ラ fit* 記号 記号 ン暈 評価
(部) (部) (sec/50g) (%) (g/cm3) (MPa)
1 0.5 99.5 3.13 28.5 4£> 6.91 0.85 B
2 15 85 3.13 28.0 28 6.90 0.86 A
3 20 80 3.13 27.5 21 6.89 0.88 A
4 40 60 3.12 25.4 11 6.88 0.85 A
X
5 60 40 3.12 23.9 4 6.85 0.96 A
6 80 20 3.14 23.6 4 6.81 1.12 A
7 90 10 3.14 22.3 4 6.80 1.15 A
8 100 0 3.13 21.8 4 6.79 1.12 A
9 10 90 2.98 26.5 4Q 6.87 0.75 B
10 15 85 2.92 24.5 30 6.85 0.73 A
1 1 20 80 2.91 23.9 20 6.84 0.72 A b X
12 50 50 3.05 23.0 10 6.80 1.02 A
13 80 20 3.09 21.7 6 6.68 1.98 B
14 100 0 3.02 23.0 8 6.53 100.0 B
15 10 90 3.02 32.3 4Q 6.86 0.94 B
16 20 80 3.02 30.6 27 6.85 0.96 A
17 c 60 X 40 3.00 27.0 5 6.80 0.98 A
18 80 20 3.04 26.6 6 6.76 1.17 A
19 100 0 3.11 22.6 2 6.76 1.16 A
20 - 0 X 100 3.13 28.8 ≥ 6.92 0.84 B
21 a 60 40 3.13 25.0 12 6.81 1.06 A
Y
22 - 0 100 3.08 29.6 S3 6.89 0.91 B
23 a 60 40 3.12 27.5 1 1 6.88 0.91 A
Z
24 - 0 100 3.08 29.2 5 6.92 0.81 B
* :成形圧力 490MPa
注:下線部は、本発明の要件を ¾足しないものである。
[0107] 表 3より、以下のように考察することができる。
[0108] (カーボンブラック aについて)
まず、炭素供給成分として、カーボンブラック a (DBP吸収量 38mL/100g、窒素 吸着比表面積 8m2/g)および黒鉛粉末 Xを用い、これらの混合比率を変化させたと きの結果(実験:!〜 8、 20)について考察する。
[0109] 炭素供給成分として黒鉛粉末 Xのみを用いたときは、実験 20に示すように、高密度 の圧粉体は得られる力 混合粉末の遊離カーボン量が多くなつた。また、カーボンブ ラック aの比率が小さい実験 1においても、混合粉末の遊離カーボン量が多くなつた。
[0110] これに対し、実験 2〜5では、遊離カーボン量、圧粉体の密度とも良好な範囲内で ある。特にカーボンブラック aと黒鉛粉末 Xとの混合比率が本発明の好ましい範囲(力 一ボンブラックの比率: 15〜75重量部)を満足する実験 2〜5では、表 3に示すように 、良好な混合粉末が得られた。
[0111] 上記は、カーボンブラック aに黒鉛粉末 Xを用いたときの結果であるが、黒鉛粉末 X の代わりに黒鉛粉末 γを用いたとき(実験 21および 22を参照)、あるいは、黒鉛粉末 Xの代わりに黒鉛粉末 Zを用いたとき(実験 23および 24を参照)も、上記と同様の結 果が得られた。なお、表 3には、カーボンブラック aの比率を 60重量部としたときの結 果(実験 21、実験 23)のみ示しているが、カーボンブラック aの比率を前述した実験 1 〜7のように種々変化させたときも、上記と同様の実験結果が得られることを実験によ り確認している(表 3には示さず)。
[0112] また、上記の一連の結果は、カーボンブラック aのみならず、カーボンブラック A群に 属するカーボンブラックを用いたときであっても、同様の傾向が得られることを実験に より確認している(表 3には示さず)。
[0113] (カーボンブラック bについて)
次に、炭素供給成分として、カーボンブラック b (DBP吸収量 113mL/100g、窒素 吸着比表面積 130m2/g)および黒鉛粉末 Xを用い、これらの混合比率を変化させ たときの結果(実験 9〜14、 20)について考察する。
[0114] 炭素供給成分として黒鉛粉末 Xのみを用いたときは、実験 20に示すように、高密度 の圧粉体は得られるが、混合粉末の遊離カーボン量が多くなり、一方、カーボンブラ ック bのみを用いたときは、実験 14に示すように、混合粉末の遊離カーボン量は少な いが、圧粉体の密度が低下した。
[0115] これに対し、カーボンブラック bと黒鉛粉末 Xとの混合比率が本発明の好ましい範囲
(カーボンブラックの比率: 15〜75重量部)を満足する実験 10〜: 12では、表 3に示 すように、所望とする混合粉末が得られた。なお、実験 9は、カーボンブラック bの比 率が小さい例であり、遊離カーボン量が多くなつた。また、実験 13は、カーボンブラッ ク bの比率が多い例であり、圧粉体の密度が低下した。 [0116] 上記は、カーボンブラック bに黒鉛粉末 Xを用いたときの結果である力 黒鉛粉末 X の代わりに黒鉛粉末 Yまたは Zを用いたときも、上記と同様の結果が得られたことを実 験により確認している(表 3には示さず)。
[0117] また、上記の一連の結果は、カーボンブラック bのみならず、カーボンブラック B群に 属するカーボンブラックを用いたときであっても、同様の傾向が得られることを実験に より確認している(表 3には示さず)。
[0118] (カーボンブラック cについて)
次に、炭素供給成分として、カーボンブラック c (DBP吸収量 22mL/l00g、窒素 吸着比表面積 80m2/g)および黒鉛粉末 Xを用い、これらの混合比率を変化させた ときの結果(実験 15〜20)について考察する。
[0119] 炭素供給成分として黒鉛粉末 Xのみを用いたときは、実験 20に示すように、高密度 の圧粉体は得られるが、混合粉末の遊離カーボン量が多くなつた。
[0120] これに対し、実験 16〜19は、遊離カーボン量、圧粉体の密度とも良好な範囲内で ある。特に、カーボンブラック cと黒鉛粉末 Xとの混合比率が本発明の好ましい範囲( カーボンブラックの比率:15〜75重量部)を満足する実験 16〜: 17では、表 3に示す ように、所望とする混合粉末が得られた。なお、実験 15は、カーボンブラック cの比率 力 S小さい例であり、遊離カーボン量が多くなつた。
[0121] 上記は、カーボンブラック cに黒鉛粉末 Xを用いたときの結果である力 黒鉛粉末 X の代わりに黒鉛粉末 Yまたは Zを用いたときも、上記と同様の結果が得られたことを実 験により確認している(表 3には示さず)。
[0122] また、上記の一連の結果は、カーボンブラック cのみならず、カーボンブラック C群に 属するカーボンブラックを用いたときであっても、同様の傾向が得られることを実験に より確認している(表 3には示さず)。
[0123] 実施例 2 (焼結体の特性の検討)
本実施例では、前述した実施例 1において、炭素供給成分として、カーボンブラック および黒鉛粉末の混合物を用いたときの焼結体の特性を、黒鉛粉末と対比して検討 した。ここでは、焼結体の密度は 6. 80g/cm3とした。
[0124] 具体的には、前述した実施例 1の実験 3〜8 (カーボンブラック aを使用)、実験 11 , 13 (カーボンブラック bを使用)、実験 16、 18〜: 19 (カーボンブラック cを使用)と、実 験 20、 22、 24 (カーボンブラックを添加せず黒鉛粉末のみを使用)の従来例につい て、各混合粉末を粉末圧縮成形機に入れ、 400〜600MPaの圧力下で圧縮成形し 、外径 30mm、内径 10mm、高さ 10mmのリング状の圧粉体を得た。
[0125] 上記の圧粉体を、 N -10vol%Hガス雰囲気下、プッシャ式焼結炉を用いて 1120
2 2
°Cで 20分間焼結し、焼結体 (密度 6. 80gZcm3)を得た。
[0126] このようにして得られた焼結体の圧環強度および硬さを以下のようにして測定し、評 価した。
[0127] (焼結体の特性)
1.圧環強度の測 ¾JIS Z2507に記載の圧環試験を実施し、圧環強度(NZmm2) を測定した。
[0128] 2.硬さの測 IS Z 2245のロックウェル硬さ試験-試験方法に基づき、ロックゥエ ノレ硬さ(HRB)を測定した。
[0129] これらの結果を表 4にまとめて示す。
[0130] [表 4]
炭素供給成分 (混合比率) 焼結体の持性
カーボンブラック (焼結体の密度 =6. 80g/cm3) 表 3の
No.
No. 比率 比率 圧壊強度 硬さ
記号 記号
(部) (部) (N/mm2) (HRB)
1 3 20 80 815.9 76.4
2 4 40 60 814.9 76.3
3 5 a 60 X 40 815.0 75.9
4 6 80 20 81 3.4 76.0
5 8 100 0 813.9 76.1
6 1 1 20 80 810.4 75.6
b X
7 13 80 20 806.8 75.6
8 16 20 80 814.2 76.3
9 18 c 80 X 20 81 1 .4 76.1
10 19 100 0 81 1.1 76.0
1 1 20 - 0 X 100 816.3 76.3
12 21 a 60 40 789.4 74.2
Y
13 22 - 0 100 796.3 74.7
14 23 a 60 40 801 .4 75.5
Z
15 24 - 0 100 81 1 .4 75.7
[0131] 表 4より、以下のように考察することができる。
[0132] 表 4より、焼結密度が 6. 80gZcm3のときの特性を比較すると、いずれのカーボン ブラック a〜cを用いたときでも、カーボンブラックと黒鉛粉末とを混合して用いると、力 一ボンブラックの混合比率にかかわらず、黒鉛粉末のみを用いたときと同程度の機械 的特性 (圧環強度および硬さ)が得られることが分力、つた。また、焼結体のミクロ組織 を観察した結果、全てのサンプルにパーライト組織が観察された。これは、カーボン ブラックが黒鉛と同様に鉄基粉末に浸炭してレ、ることを示して 、る。
[0133] なお、表 4には、表 3に示す実験例のうち、一部のものについての結果を示している 、表 3に示す他の実験においても、上記と同様の実験結果が得られることを、実験 により確認してレ、る(表 4には示さず)。 [0134] また、上記の一連の結果は、カーボンブラック a、 b、 cのみならず、カーボンブラック A群、 B群、 C群に属するカーボンブラックを用いたときであっても、同様の傾向が得 られることを実験により確認している(表 4には示さず)。
[0135] 実施例 3 (混合粉末および圧粉体の特性の検討)
本実施例では、種々のカーボンブラックを用いたときの混合粉末および圧粉体の特 性を検討した。
[0136] 具体的には、表 5に示す d〜oのカーボンブラック(市販品)を用レ、、以下のようにし て粉末冶金用混合粉末および圧粉体を得た(実験 25〜36)。上記のカーボンブラッ クのうち、 c!〜 iは本発明の要件を満足する例であり、 j〜oは本発明の要件を満足しな い例である。表 5には、市販品のカタログに記載された数値を転記している。また、比 較のため、カーボンブラックの代わりに黒鉛粉末を用レ、、粉末冶金用混合粉末およ び圧粉体を得た (実験 37)。
[0137] 各実験で得られた混合粉末および圧粉体の特性は実施例 1に記載の方法で測定 し、評価した。
[0138] (実験 25)
まず、鉄基粉末として、市販の純鉄粉 (神戸製鋼所製「アトメル 300M」)を用意し、 この純鉄粉に対し、市販のアトマイズ銅粉 (平均粒径 48 μ ΐη)を 2. 0%、炭素供給成 分として、表 4に記載のカーボンブラック aを 0. 80%、潤滑剤としてエチレンビスステ ァリルアミドを 0. 75%の比率で添加した後、羽根付ミキサーを用いて 2分間高速撹 拌し (羽根の回転速度 5m/s)、混合粉末を得た。ここでは、バインダは使用していな レ、。
[0139] 次に、上記の混合粉末を粉末圧縮成形機に入れ、 490MPaの圧力下で圧縮成形 し、外径 11. 3mm、高さ 10mmの円柱状の圧粉体を得た。
[0140] (実験 26〜36)
実験 25において、炭素供給成分として、表 5に記載のカーボンブラック d〜。を用い たこと以外は、実験 25と同様にして、実験 26〜36の混合粉末および圧粉体をそれ ぞれ作製した。
[0141] (実験 37) 実験 25において、炭素供給成分として、カーボンブラックの代わりに市販の黒鉛粉 末(平均粒径 5 μ m)を用いたこと以外は、実験 25と同様にして混合粉末および圧粉 体を作製した。
これらの結果を表 6にまとめて示す。表 6には、参考のため、使用した炭素供給成分 の種類および特性も併記してレ、る。
[表 5]
Figure imgf000024_0001
注:下線部は、本発明の要件を ¾足しないものである。
[表 6]
Figure imgf000025_0001
[0144] 表 6より、以下のように考察することができる。
[0145] 実験 25 30は、それぞれ、本発明の要件を満足するカーボンブラック d iを用い た本発明例であり、混合粉末の各特性に優れているだけでなぐ圧粉体の特性にも 優れている。
[0146] これに対し、実験 31〜36は、本発明の要件を満足しないカーボンブラックを用いた 比較例であり、混合粉末の遊離カーボン量、圧粉体の密度およびラトラ値が本発明 で規定する基準値に到達しなかった。
[0147] なお、実験 35および 36では、混合粉末の遊離カーボン量が増加し、流動度が低 下している力 これは、 DBP吸収量および窒素吸着比表面積が極端に大きいカーボ ンブラック n、 oを用いたため、混合工程で鉄基粉末と混ざる(鉄基粉末に付着する) 前に、当該カーボンブラックが大きなストラクチャーを形成してしまうためと考えられる
[0148] 実験 37は、炭素供給成分として黒鉛粉末のみを用いた従来例であり、混合粉末の 遊離カーボン量が多くなつた。
[0149] 実施例 4 (焼結体の特性の検討)
本実施例では、本発明の要件を満足するカーボンブラックを用いたときの焼結体の 特性を、黒鉛粉末と対比して検討した。ここでは、焼結体の密度は 6. 80g/cm3とし た。
[0150] 具体的には、前述した実験 25〜30 (表 5のカーボンブラック d〜iを使用)、および実 験 38 (黒鉛粉末を使用)の混合粉末を粉末圧縮成形機に入れ、 400〜600MPaの 圧力下で圧縮成形し、外径 30mm、内径 10mm、高さ 10mmのリング状の圧粉体を 得た。
[0151] 上記の圧粉体を、 N -10vol%Hガス雰囲気下、プッシャ式焼結炉を用いて 1 120
2 2
°Cで 20分間焼結し、焼結体 (密度 6. 80gZcm3)を得た。
[0152] このようにして得られた焼結体の圧環強度および硬さを以下のようにして測定し、評 価した。
[0153] (焼結体の特性)
1.圧環強度の測 ¾JIS Z2507に記載の圧環試験を実施し、圧環強度(NZmm2) を測定した。
[0154] 2.硬さの測 IS Z 2245のロックウェル硬さ試験-試験方法に基づき、ロックゥエ ル硬さ(HRB)を測定した。
[0155] これらの結果を表 7にまとめて示す。
[0156] [表 7]
Figure imgf000027_0001
注:記号 は、表 5に示すカーポンプラックを意味する。
[0157] 表 7より、焼結密度が 6. 80gノ cm3のときの特性を比較すると、いずれのカーボン ブラックを用いたときも、黒鉛粉末を用いたときと同程度の機械的特性 (圧環強度お よび硬さ)を有していることが分かる。従って、カーボンブラックは、黒鉛粉末に代わる 炭素供給成分として極めて有用であることが確認された。
[0158] 本発明を特定の態様を参照して詳細に説明したが、本発明の精神と範囲を離れる ことなく様々な変更および修正が可能であることは、当業者にとって明らかである。 なお、本出願は、 2006年 3月 14日付けで出願された日本特許出願(特願 2006— 069731)及び 2006年 3月 14日付けで出願された日本特許出願(特願 2006— 069 732)に基づいており、その全体が引用により援用される。
また、ここに引用されるすべての参照は全体として取り込まれる。
産業上の利用可能性
[0159] 本発明によれば、バインダを使用しなくても、炭素供給成分の発塵や偏析を低減可 能な混合粉末が得られるため、生産性に優れている。 また、本発明の粉末冶金用混合粉末を用いれば、高密度で形状保持性が良好な圧 粉体が得られるため、最終的に、機械的特性に優れた焼結体が得られる。

Claims

請求の範囲
[1] 鉄基粉末および炭素供給成分を含む粉末冶金用混合粉末であって、
前記炭素供給成分は、黒鉛粉末およびカーボンブラックを含み、
黒鉛粉末とカーボンブラックの混合比率力 黒鉛粉末:カーボンブラック = 25〜85 重量部: 75〜: 15重量部の範囲内である粉末冶金用混合粉末。
[2] 前記カーボンブラックのフタル酸ジブチル吸収量が 60mL/l00g以下で、且つ、 窒素吸着比表面積が 50m2/g以下である請求項 1に記載の粉末冶金用混合粉末。
[3] 鉄基粉末および炭素供給成分を含む粉末冶金用混合粉末であって、
前記炭素供給成分が、フタル酸ジブチル吸収量が 60mL/100g以下で、且つ、窒 素吸着比表面積が 50m2/g以下であるカーボンブラックを主成分として含む粉末冶 金用混合粉末。
[4] 前記鉄基粉末 100重量部に対し、前記炭素供給成分を 4重量部以下の範囲で含 有する請求項:!〜 3に記載の粉末冶金用混合粉末。
[5] 更に、物性改善成分を含有する請求項:!〜 4に記載の粉末冶金用混合粉末。
[6] 更に、潤滑剤を含有する請求項:!〜 5のいずれかに記載の粉末冶金用混合粉末。
[7] 請求項:!〜 6のいずれかに記載の粉末冶金用混合粉末を用いて得られる圧粉体。
[8] 請求項 7に記載の圧粉体を焼結して得られる焼結体。
PCT/JP2007/054991 2006-03-14 2007-03-13 粉末冶金用混合粉末、その圧粉体、および焼結体 WO2007119346A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1020087019698A KR101061346B1 (ko) 2006-03-14 2007-03-13 분말 야금용 혼합 분말, 그 압분체 및 소결체
US12/087,856 US7645317B2 (en) 2006-03-14 2007-03-13 Mixed power for powder metallurgy, green compact thereof, and sintered body
CA002632409A CA2632409A1 (en) 2006-03-14 2007-03-13 Mixed powder for powder metallurgy, green compact thereof and sintered body
CN200780001798XA CN101360575B (zh) 2006-03-14 2007-03-13 粉末冶金用混合粉末,其压粉体和烧结体
EP07738463.4A EP1995004B1 (en) 2006-03-14 2007-03-13 Mixed powder for powder metallurgy, green compact thereof and sintered compact

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2006-069731 2006-03-14
JP2006069731 2006-03-14
JP2006069732 2006-03-14
JP2006-069732 2006-03-14

Publications (1)

Publication Number Publication Date
WO2007119346A1 true WO2007119346A1 (ja) 2007-10-25

Family

ID=38609146

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/054991 WO2007119346A1 (ja) 2006-03-14 2007-03-13 粉末冶金用混合粉末、その圧粉体、および焼結体

Country Status (8)

Country Link
US (1) US7645317B2 (ja)
EP (2) EP2586547A1 (ja)
KR (1) KR101061346B1 (ja)
CN (1) CN101360575B (ja)
CA (1) CA2632409A1 (ja)
MY (1) MY140046A (ja)
TW (1) TW200800441A (ja)
WO (1) WO2007119346A1 (ja)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009075042A1 (ja) * 2007-12-13 2009-06-18 Jfe Steel Corporation 粉末冶金用鉄基粉末
JP2010285633A (ja) * 2009-06-09 2010-12-24 Kobe Steel Ltd 粉末冶金用混合粉末の製造方法、及び焼結体の製造方法
JP5552031B2 (ja) * 2010-11-09 2014-07-16 株式会社神戸製鋼所 粉末冶金用混合粉末
WO2014103287A1 (ja) 2012-12-28 2014-07-03 Jfeスチール株式会社 粉末冶金用鉄基粉末
CN103447521B (zh) * 2013-07-26 2016-02-03 安庆市德奥特汽车零部件制造有限公司 一种高气密粉末冶金活塞环材料及其制备方法
CN104328344A (zh) * 2014-10-23 2015-02-04 苏州莱特复合材料有限公司 一种铁基防锈粉末冶金材料及其制备方法
CN104325131B (zh) * 2014-10-23 2016-06-29 苏州莱特复合材料有限公司 一种铁基粉末冶金材料及其制备方法
CN105154749A (zh) * 2015-08-28 2015-12-16 苏州莱特复合材料有限公司 一种铁基合金材料及其制备方法
JP6844225B2 (ja) * 2016-11-30 2021-03-17 セイコーエプソン株式会社 焼結用粉末および焼結体の製造方法
JP6849460B2 (ja) * 2017-02-03 2021-03-24 株式会社神戸製鋼所 粉末冶金用混合粉末及びその製造方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05271851A (ja) * 1992-03-27 1993-10-19 Mitsubishi Materials Corp 高強度および高靱性を有するFe基焼結合金部材の製造法
JPH07157838A (ja) * 1993-12-06 1995-06-20 Daido Steel Co Ltd 焼結磁性合金の製造方法及び焼結磁性合金用粉末
JP2003105405A (ja) 2001-09-28 2003-04-09 Kobe Steel Ltd 粉末冶金用混合粉末およびその粉末焼結製品
JP2004115882A (ja) 2002-09-27 2004-04-15 Seiko Epson Corp 焼結体の製造方法及び焼結体
JP2004162170A (ja) 2002-09-25 2004-06-10 Jfe Steel Kk 粉末冶金用アトマイズ鉄粉およびその製造方法
JP2004256899A (ja) 2003-02-27 2004-09-16 Kobe Steel Ltd 粉末冶金用バインダー、粉末冶金用混合粉末およびその製造方法
JP2004360008A (ja) 2003-06-04 2004-12-24 Kobe Steel Ltd 粉末冶金用バインダー、粉末冶金用混合粉末およびその製造方法
JP2006069731A (ja) 2004-09-01 2006-03-16 Nippon Signal Co Ltd:The 物品管理装置
JP2006069732A (ja) 2004-09-01 2006-03-16 Canon Inc 画像形成装置

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3853572A (en) * 1972-02-28 1974-12-10 Bethlehem Steel Corp Powder metal mix containing carbonaceous binder and green compacts made therefrom
JP3400027B2 (ja) * 1993-07-13 2003-04-28 ティーディーケイ株式会社 鉄系軟磁性焼結体の製造方法およびその方法により得られた鉄系軟磁性焼結体
US6280683B1 (en) * 1997-10-21 2001-08-28 Hoeganaes Corporation Metallurgical compositions containing binding agent/lubricant and process for preparing same
US6827757B2 (en) * 2001-11-30 2004-12-07 Jfe Steel Corporation Magnetite-iron based composite powder, magnetite-iron based powder mixture, method for producing the same, method for remedying polluted soil, water or gases and electromagnetic wave absorber
CN1485450A (zh) * 2003-04-11 2004-03-31 自贡硬质合金有限责任公司 用钨合金废料生产超细晶粒碳化钨——铁系复合粉的方法
SE0401778D0 (sv) 2004-07-02 2004-07-02 Hoeganaes Ab Powder additive
US7390345B2 (en) * 2004-07-02 2008-06-24 Höganäs Ab Powder additive

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05271851A (ja) * 1992-03-27 1993-10-19 Mitsubishi Materials Corp 高強度および高靱性を有するFe基焼結合金部材の製造法
JPH07157838A (ja) * 1993-12-06 1995-06-20 Daido Steel Co Ltd 焼結磁性合金の製造方法及び焼結磁性合金用粉末
JP2003105405A (ja) 2001-09-28 2003-04-09 Kobe Steel Ltd 粉末冶金用混合粉末およびその粉末焼結製品
JP2004162170A (ja) 2002-09-25 2004-06-10 Jfe Steel Kk 粉末冶金用アトマイズ鉄粉およびその製造方法
JP2004115882A (ja) 2002-09-27 2004-04-15 Seiko Epson Corp 焼結体の製造方法及び焼結体
JP2004256899A (ja) 2003-02-27 2004-09-16 Kobe Steel Ltd 粉末冶金用バインダー、粉末冶金用混合粉末およびその製造方法
JP2004360008A (ja) 2003-06-04 2004-12-24 Kobe Steel Ltd 粉末冶金用バインダー、粉末冶金用混合粉末およびその製造方法
JP2006069731A (ja) 2004-09-01 2006-03-16 Nippon Signal Co Ltd:The 物品管理装置
JP2006069732A (ja) 2004-09-01 2006-03-16 Canon Inc 画像形成装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1995004A4

Also Published As

Publication number Publication date
KR20080085907A (ko) 2008-09-24
US20090007725A1 (en) 2009-01-08
MY140046A (en) 2009-11-30
CA2632409A1 (en) 2007-10-25
EP1995004B1 (en) 2014-12-31
EP1995004A1 (en) 2008-11-26
CN101360575A (zh) 2009-02-04
TWI317665B (ja) 2009-12-01
EP2586547A1 (en) 2013-05-01
US7645317B2 (en) 2010-01-12
CN101360575B (zh) 2011-07-20
EP1995004A4 (en) 2012-09-12
TW200800441A (en) 2008-01-01
KR101061346B1 (ko) 2011-08-31

Similar Documents

Publication Publication Date Title
WO2007119346A1 (ja) 粉末冶金用混合粉末、その圧粉体、および焼結体
JP5552031B2 (ja) 粉末冶金用混合粉末
JP4379535B1 (ja) 粉末冶金用鉄基粉末およびその流動性改善方法
JP2005154847A (ja) 焼結用原料粉末又は焼結用造粒粉末およびそれらの焼結体
EP2778243B1 (en) Iron based sintered sliding member and method for producing the same
CA2766042C (en) Iron-based mixed powder for powder metallurgy
TW201244852A (en) Iron-based powder mixture and method of manufacturing iron-based compacted body and iron-based sintered body
TW201033375A (en) A method of producing a diffusion alloyed iron or iron-based powder, a diffusion alloyed powder, a composition including the diffusion alloyed powder, and a compacted and sintered part produced from the composition
WO2009075042A1 (ja) 粉末冶金用鉄基粉末
US9744591B2 (en) Iron base sintered sliding member and method for producing same
SE530156C2 (sv) Blandat pulver för pulvermetallurgi
JP2007031744A (ja) 粉末冶金用混合粉末
JP6431012B2 (ja) 耐摩耗性鉄基焼結合金の製造方法および耐摩耗性鉄基焼結合金
JP2012052167A (ja) 焼結用鉄基混合粉末及び鉄基焼結合金
JP6741153B2 (ja) 部分拡散合金鋼粉
JP5750076B2 (ja) 成形用粉末およびその製造方法
JP4912188B2 (ja) 粉末冶金用混合粉末、その圧粉体、および焼結体
JP2021188072A (ja) 粉末冶金用鉄基混合物、成形体及び焼結体
JPH07228901A (ja) 粉末冶金用混合粉末の見掛密度調整法および粉末冶金用混合粉末
JPH0649503A (ja) 粉末冶金用偏析防止混合粉末

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200780001798.X

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07738463

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2632409

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 2007738463

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 12087856

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1020087019698

Country of ref document: KR

NENP Non-entry into the national phase

Ref country code: DE