WO2007116597A1 - 腫瘍マーカー、腫瘍診断キット、腫瘍マーカーの測定方法および腫瘍診断方法 - Google Patents

腫瘍マーカー、腫瘍診断キット、腫瘍マーカーの測定方法および腫瘍診断方法 Download PDF

Info

Publication number
WO2007116597A1
WO2007116597A1 PCT/JP2007/051621 JP2007051621W WO2007116597A1 WO 2007116597 A1 WO2007116597 A1 WO 2007116597A1 JP 2007051621 W JP2007051621 W JP 2007051621W WO 2007116597 A1 WO2007116597 A1 WO 2007116597A1
Authority
WO
WIPO (PCT)
Prior art keywords
sideroflexin
human
derived
tumor
cancer
Prior art date
Application number
PCT/JP2007/051621
Other languages
English (en)
French (fr)
Inventor
Yasuhito Abe
Ryuichi Murase
Hiroyuki Hamakawa
Original Assignee
Ehime University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ehime University filed Critical Ehime University
Priority to JP2008509701A priority Critical patent/JP5358808B2/ja
Publication of WO2007116597A1 publication Critical patent/WO2007116597A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/46Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates
    • C07K14/47Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates from mammals
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/574Immunoassay; Biospecific binding assay; Materials therefor for cancer
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/574Immunoassay; Biospecific binding assay; Materials therefor for cancer
    • G01N33/57484Immunoassay; Biospecific binding assay; Materials therefor for cancer involving compounds serving as markers for tumor, cancer, neoplasia, e.g. cellular determinants, receptors, heat shock/stress proteins, A-protein, oligosaccharides, metabolites

Definitions

  • Tumor marker tumor marker, tumor diagnostic kit, tumor marker measuring method and tumor diagnostic method
  • the present invention relates to a tumor marker, a tumor diagnostic kit, a method for measuring a tumor marker, and a tumor diagnostic method.
  • the tumor marker is generally a substance produced by cancer cells or a substance produced by normal cells in the body by a reaction with cancer cells, and among them, it is used for living body such as blood, tissue, excrement, etc. Detecting sample tension also serves as a marker for cancer diagnosis or treatment. So far, various biological substances have been reported to be effective as tumor markers (Patent Document 1, Non-Patent Document 1, Non-Patent Document 2, Non-Patent Document 3). For example, AFP and PIVKAII, etc. as tumor markers for liver cancer, CA19-9, etc. as tumor markers for spleen cancer, PSA, etc.
  • tumor markers for prostate cancer SCC, CYFRA, etc. as tumor markers for squamous cell carcinoma Is used. These tumor markers are measured indirectly by collecting serum from a patient to be diagnosed and measuring the protein amount or unit concentration of an autoantibody against the tumor marker in the serum. From this measurement result, positive and negative are determined for the tumor marker.
  • Patent Document 1 Japanese Patent Laid-Open No. 2003-240774
  • Non-Patent Literature 1 Jpn. Soc. Cancer Ther. 22 (9): 2182-2190, Oct., 1987
  • Non-Patent Literature 2 CANCER March 1, 1999 / Vol. 85 / No. 5 / 1018-1025
  • Non-Patent Literature 3 Clinical pathology 53: 5 ⁇ 2005, 437— 445
  • an object of the present invention is to provide a novel tumor marker having high sensitivity and specificity, a tumor diagnostic kit using the tumor marker, a method for measuring the tumor marker, and a tumor diagnostic method.
  • the tumor marker of the present invention is selected from the group consisting of human-derived Sideroflexin, anti-human-derived Sideroflexin antibody, human-derived Sideroflexin gene and human-derived Sideroflexin gene mRNA group. Including at least one.
  • the tumor diagnostic kit of the present invention is a tumor diagnostic kit using a serum immunoassay, comprising a tumor-specific antigen and a labeled secondary antibody, wherein the tumor-specific antigen is a human-derived sidero It is a flexin, and the labeled secondary antibody is an antibody that recognizes an autoantibody against the human-derived Sideroflexin.
  • the tumor marker is a marker containing an autoantibody in serum against human-derived Sideroflex, and comprises the following steps (a) and (b):
  • the diagnostic method of the present invention is a method for diagnosing a tumor of a patient, and includes the following steps (c) and (d).
  • the present inventors conducted a series of studies in order to obtain a novel tumor marker with high sensitivity and specificity.
  • the present inventors have found that at least one of the mRNAs of the Toro-derived Sideroflexin gene and the human-derived Sideroflexin gene can serve as a highly sensitive and specific tumor marker.
  • the tumor marker of the present invention has, for example, high sensitivity and high specificity. Therefore, according to the tumor marker of the present invention, for example, the false positive rate is low, and early cancer can be detected with high accuracy.
  • the tumor diagnostic kit, tumor measurement method and tumor diagnostic method of the present invention cancer can be measured with high sensitivity and specificity, so that highly accurate diagnosis and early diagnosis are possible. Become.
  • FIG. 1 is a graph showing a result of oral squamous cell carcinoma in one example of the present invention.
  • FIG. 2 is a graph showing other results of oral squamous cell carcinoma in the one example.
  • FIG. 3 is a graph showing still other results of oral squamous cell carcinoma in the example.
  • FIG. 4 is a graph showing a result of various cancers in other examples of the present invention.
  • FIG. 5 is another graph showing various cancers collectively in the one result.
  • FIG. 6 is a graph showing other results of various cancers in the other examples.
  • FIG. 7 is another graph summarizing various cancers in the other results.
  • FIG. 8 is a graph showing still other results of various cancers in the other examples.
  • FIG. 9 is another graph collectively showing various cancers in the above-mentioned other results.
  • FIG. 10 is a table showing the results of mass spectrometry in the example.
  • FIG. 11 is a graph showing the relationship between cancer and tumor markers in yet another example of the present invention.
  • Sideroflexin is generally said to be a protein involved in mitochondrial iron transport.
  • Mouse also has Sideroflexin Mutation of Sideroflex in has been confirmed in mice with iron deficiency anemia.
  • human Sideroflexin plays an important role in the differentiation of splenic j8 cells (Yoshikumi Y, Mashima H, Ueda N, Ohno H, Suzuki J, Tanaka S, Hayashi M, Sekine N, Ohnishi H , Yasuda H, I iri T, Omata M, Fujita T, Kojima I.
  • the tumor marker of the present invention includes at least one selected from the group force consisting of human-derived Sideroflexin, anti-human-derived Sider oflexin antibody, human-derived Sideroflexin gene, and human-derived Sideroflexin gene mRNA.
  • Particularly preferred tumor markers are human-derived Sideroflexin and anti-human-derived Sideroflexin antibodies.
  • the target tumor is not particularly limited, and examples thereof include spleen cancer, liver cancer, bile duct cancer, colon cancer, rectal cancer, stomach cancer, breast cancer and oral cancer. It is.
  • the oral cancer is preferably oral squamous cell carcinoma.
  • these cancers are also objects in the present invention. According to the tumor marker of the present invention, as described later, for example, the listed cancers and various other cancers can be diagnosed.
  • Human-derived Sideroflexin has five families from 1 to 5. Among these, human-derived Sideroflexin-1, human-derived Sideroflexin-2, and human-derived Sideroflexin-3 are preferable as the tumor marker of the present invention, and human-derived Sideroflexin-3 is particularly preferable. Any one type of human-derived Sideroflexin may be used, or two or more types may be detected as markers. When human-derived Sideroflexin is used as the tumor marker of the present invention, for example, the presence or absence thereof in a collected biological sample, as described later, Cancer can be diagnosed by measuring the amount.
  • the human-derived Sideroflexin may be either human Sideroflexin from which natural force has been separated or human Sideroflexin, which is a recombinant protein produced by genetic engineering.
  • the biological sample can be determined, for example, according to the type of cancer to be diagnosed as described above. That is, tissue cells to be diagnosed can be used as biological samples, and examples include spleen cells, liver cells, bile duct cells, colon cells, rectal cells, stomach cells, mammary cells, oral cells and the like.
  • Examples of human-derived Sideroflexin-1 include the following protein (A) or (B).
  • the amino acid sequence of the protein (B) below has a homology with the amino acid sequence (A) below of, for example, 50% or more, preferably 80% or more, more preferably 90% or more.
  • the number of amino acid residues substituted, added, inserted, or deleted is, for example, 1-161 residues, preferably 1-64 residues, more preferably. Is 1 to 32 residues.
  • (B) a protein comprising an amino acid sequence in which one or more amino acid residues are substituted, added, inserted or deleted in the amino acid sequence set forth in SEQ ID NO: 1 and having a function as human Sideroflexin-1
  • Examples of human-derived Sideroflexin-2 include the following protein (C) or (D).
  • the amino acid sequence of the protein of the following (D) has a homology with the amino acid sequence of the following (C) of, for example, 50% or more, preferably 80% or more, more preferably 90% or more.
  • the number of amino acid residues substituted, added, inserted or deleted is, for example, 1 to 161 residues, preferably 1 to 64 residues, more preferably 1 to 32 residues.
  • (D) a protein comprising an amino acid sequence in which one or more amino acid residues are substituted, appended, inserted or deleted in the amino acid sequence of SEQ ID NO: 2, and has a function as human Sideroflexin-2
  • Examples of human-derived Sideroflexin-3 include the following protein (E) or (F).
  • the amino acid sequence of the protein (F) below is homologous to the amino acid sequence (E) below.
  • the property is, for example, 50% or more, preferably 80% or more, and more preferably 90% or more.
  • the number of amino acid residues substituted, added, inserted, or deleted is, for example, 1-161 residues, preferably 1-64 residues, more preferably. Is 1 to 32 residues.
  • (F) a protein comprising an amino acid sequence in which one or more amino acid residues are substituted, added, inserted or deleted in the amino acid sequence shown in SEQ ID NO: 3, and having a function as human Sideroflexin-3
  • the anti-human-derived Sideroflexin antibody is an antibody against the aforementioned human-derived Sideroflexin.
  • the anti-human-derived Sideroflexin antibody is, for example, an autoantibody in a biological sample collected from a subject (patient).
  • An autoantibody generally means an antibody produced by a certain individual that reacts with an antigen component that is a constituent of the individual.
  • the biological sample include a serum sample. More preferably, the antibody is an autoantibody in a serum sample.
  • the serum sample only needs to contain serum. For example, it may be a serum fraction alone or a whole blood sample containing a serum fraction (hereinafter the same).
  • human-derived Sideroflexin has five families.
  • the human-derived Sideroflexin gene is a gene encoding the aforementioned human-derived Sideroflexin.
  • the tumor marker of the present invention may be either the human Sideroflexin gene and / or its mRNA.
  • a human-derived Sideroflexin gene and its mRNA are used as the tumor marker of the present invention, as described later, cancer can be diagnosed by measuring the presence or absence and expression level in a collected biological sample.
  • a tumor marker for example, human-derived Sideroflexin gene mRNA is preferred.
  • the gene and mRNA may be isolated from nature or may be a recombinant gene or recombinant RNA produced by genetic engineering. This is because, as will be described later, tumors can be detected using the gene expression or mRNA transcription as an index.
  • the biological sample can be determined, for example, according to the type of cancer to be diagnosed as described above. That is, tissue cells to be diagnosed can be used as biological samples, and examples include spleen cells, liver cells, bile duct cells, colon cells, rectal cells, gastric cells, mammary cells, and luminal cells.
  • human-derived Sideroflexin has five families. Therefore, as the aforementioned Sideroflexin gene and its mRNA, for example, human-derived Sideroflexin 1 gene and its mRNA, human-derived Sideroflexin-2 gene and its mRNA, human-derived Sideroflexin-3 gene and its mRNA are preferable. Of these, the human sideroflexin-3 gene and its mRNA are particularly preferred.
  • the human-derived Sidero flexin-1 gene and its mRNA include the gene and mRNA encoding the protein (A) or (B).
  • human-derived Sideroflexin-2 gene and mRNA thereof include genes and mRNAs that encode the protein (C) or (D).
  • human-derived Sideroflexin-3 gene and its mRNA examples include the gene and mRNA encoding the protein (E) or (F).
  • human-derived Sideroflexin-1 for example, gene (mRNA) is NCBI Accession No. BC063241
  • protein is NCBI Accession No. AAH63241
  • human-derived Sideroflexin-2 is, for example, gene (mRNA) N CBI Accession No. NM—178858
  • Protein is NCBI Accession No. CAI 40863
  • Human Sideroflexin-3 is, for example, gene (mRNA) is NCBI Accession No. NM 030971, Session No.
  • NP112233 human-derived Sideroflexin-4, for example, gene (mRNA) is NCBI Accession No. AL35 5598, protein is NCBI Accession No. CAI14130, human-derived Sideroflexin-5 is, for example, gene (MRNA) is NCBI Accession No. BC101313, protein Is registered with NCBI Session No. AAI01314. Any one of the human-derived Sideroflexin gene and mRNA may be used, or two or more may be detected as one!
  • the method for measuring a tumor marker of the present invention is not particularly limited.
  • the specific method can be appropriately determined according to, for example, the type of tumor marker.
  • human-derived Sideroflexin a conventionally known measurement method for detecting a specific protein can be employed.
  • the measurement method is not limited at all.
  • Specific examples include an immunoassay method using an antibody (Immunoassay method).
  • the immunoassay include, for example, enzyme immunoassay (ELISA), immunoagglutination such as latex immunoagglutination, immunocompatibility such as latex immunocompatibility, radioimmunoassay, and stamp stamping. Law.
  • ELISA enzyme immunoassay
  • ELISA enzyme immunoassay
  • immunocompatibility such as latex immunocompatibility
  • radioimmunoassay radioimmunoassay
  • examples of the antibody for detection include anti-human-derived Sideroflexin antibody.
  • the type of the anti-human-derived Sideroflexin antibody can usually be determined according to the type of human-derived Sideroflexin to be measured.
  • a reagent containing an anti-human Sideroflexin antibody can be used as a reagent for measuring a tumor marker.
  • the anti-human-derived Sideroflexin antibody can be prepared by, for example, a conventionally known method.
  • a polyclonal or monoclonal anti-human Sideroflexin antibody can be obtained by inoculating an animal with human Sideroflexin as an antigen and immunizing it.
  • the type of host cell animal to be immunized is not particularly limited.
  • mammals other than humans such as humans, rabbits, rats, mice, goats, hidges, horses, pigs, guinea pigs, etc.
  • Birds such as ducks and quails can be used.
  • the method of inoculating the animal with the antigen is not particularly limited, and intradermal administration, subdermal administration, intraperitoneal administration, intravenous administration, intramuscular administration, and the like can be employed.
  • the antibody thus obtained usually has an immunoglobulin class of IgM or IgG. Also obtained anti
  • the body itself can be used as an antibody, and an active fragment of an antibody such as Fab, Fab ′, F (ab ′) obtained by enzymatic treatment can also be used as an antibody.
  • the method for measuring a tumor marker of the present invention is a marker containing human-derived Sideroflexin in a biological sample, and includes the following steps (a ') and (b'): including.
  • a biological s3 ⁇ 4material is supplemented with f ⁇ human-derived Sideroflexinf / i body against human-derived Sideroflexin, and the anti-human-derived Sideroflexin antibody is bound to human-derived Siderflexin in the biological sample.
  • the human-derived Sideroflexin antibody is an antibody added to the biological sample, and is an antibody for detecting human-derived Sideroflexin in the biological sample. Also referred to as “antibody for detection of”.
  • the exogenous detection antibody is preferably immobilized (adsorbed) on a plate (eg, ELISA plate) prior to the step (a ′), for example.
  • a biological sample can be added to the plate to form the complex in the plate.
  • the method for measuring the complex is not particularly limited.
  • a specific example is a method in which a labeled anti-human sideroflexin antibody is further bound to an antigen of the complex (human-derived Sideroflexin in a biological sample) and the labeled antibody is measured (Sandy Tsuchi immunoassay).
  • the label is not particularly limited, and examples thereof include conventionally known labels such as enzyme labels, fluorescent labels, and radioactive labels.
  • an enzyme labeled antibody is preferable.
  • tissue cells to be diagnosed are collected from a patient.
  • oral cells are collected.
  • the tissue cell force protein is extracted to prepare an extracted fraction.
  • an anti-human-derived Sid eroflexin antibody against human-derived Sideroflexin for measurement is prepared, and this is immobilized on a measurement container.
  • Add the extracted fraction is added to the measurement container.
  • the immobilized antibody and the antigen in the extracted fraction (human origin)
  • the enzyme is not limited at all, and for example, peroxidase, alkaline phosphatase, 13 galactosidase and the like can be used.
  • the two types of antibodies used in this method preferably have different binding sites for the antigen, for example.
  • the measurement of the tumor marker by the immunoassay as described above, that is, the measurement method of human-derived Sideroflexin in a biological sample can be carried out, for example, with the following tumor diagnostic kit.
  • the tumor diagnostic kit is a tumor diagnostic kit using an immunoassay, and includes two types of antibodies that recognize tumor-specific antigens, and at least one of the antibodies is a labeled antibody,
  • the target tumor-specific antigen is human-derived Sideroflexin. If this tumor diagnostic kit is used in the above-described measurement method, human-derived sideroflexin present in a patient's biological sample can be easily measured. From the measurement results, for example, it is possible to diagnose the presence or absence of a tumor in a biological sample collection site (tissue) and whether or not the tumor is malignant (cancer).
  • the immunoassay method is not particularly limited, and examples thereof include the above-described assay methods. When the immunoassay is an ELISA method, the labeled antibody is, for example, an antibody labeled with an enzyme.
  • the tumor diagnostic kit may further contain various reagents and instruments necessary for immunoassays such as ELISA.
  • the conventionally known measurement method for detecting a specific antibody can be employed.
  • a specific example is an immunoassay using an antigen (Immunoassay method).
  • the immunoassay include the aforementioned Such a method can be adopted, and among them, ELISA is preferable.
  • examples of the antigen for detection include human-derived Sideroflexin.
  • the type of the human-derived Sideroflexin can usually be determined according to the type of the anti-human-derived Sideroflexin antibody to be measured.
  • a reagent containing human-derived Sideroflexin can be used as a reagent for measuring a tumor marker.
  • the human-derived Sideroflexin may be a deviation from, for example, human Sider oflexin from which natural force has been separated, and human Sideroflexin, which is a recombinant protein produced by genetic engineering.
  • the gene and mRNA used for the production of the recombinant protein may be, for example, a recombinant gene or recombinant RNA produced by genetic engineering, which may be isolated from natural moss.
  • the recombinant protein may be, for example, a fusion protein of another protein and human Sideroflexin without affecting the antigen antibody reaction. Examples of the other protein include GST (Dartathione S transferase).
  • the method for measuring a tumor marker of the present invention is a marker containing an autoantibody in serum against the sideroflexin derived from the above-mentioned tumor marker, and the following steps (a) and (b) including.
  • the human-derived Sideroflexin is an antigen added to the serum and is an antigen for detecting a self-antigen in a serum sample.
  • the human-derived Sideroflexin may be naturally derived or may be a recombinant protein.
  • anti-human-derived Sideroflexin-3 is particularly preferred! / Therefore, human-derived Sideroflexin-3 is particularly preferably human-derived Sideroflexin-3.
  • the exogenous detection antigen is excellent in handleability, for example, prior to the step (a), the exogenous antigen for detection may be prepared using a plate (for example, ELISA It is preferable to fix (adsorb) to (rate). In this case, a biological sample can be added to the plate to form the complex in the plate.
  • the method for measuring the complex is not particularly limited!
  • a specific example is a method in which a secondary antibody is bound to the autoantibody of the complex and the secondary antibody is measured.
  • a secondary antibody is an antibody against an autoantibody and is also called a second antibody.
  • the secondary antibody is preferably a labeled secondary antibody.
  • the complex can be measured by measuring the label (sandwich immunoassay).
  • the label is not particularly limited, and examples thereof include conventionally known labels such as enzyme labels, fluorescent labels, and radioactive labels. Among them, an enzyme-labeled antibody is preferable as the labeled secondary antibody.
  • the enzyme label is not limited at all, and for example, peroxidase, alkaline phosphatase, / 3 galactosidase, etc. can be used.
  • the secondary antibody is preferably, for example, an anti-human IgG antibody.
  • the anti-human IgG antibody can be prepared, for example, by immunizing an animal such as a rabbit or a mouse with human IgG, or a commercially available product can be used.
  • Examples of the labeled secondary antibody include, for example, peroxidase-labeled anti-human IgG antibody.
  • the blood sample may be a fraction containing an antibody.
  • the blood sample may be a fraction containing an antibody.
  • an antigen human-derived Sideroflexin
  • an anti-human-derived Sideroflexin antibody for measurement purpose is prepared, and this is fixed to a measurement container.
  • the blood sample is held in the measurement container.
  • the immobilized antigen reacts with the autoantibody (anti-human-derived Sideroflexin antibody) in the blood sample, and both bind to each other.
  • a secondary antibody labeled with an enzyme is further added.
  • the autoantibody bound to the immobilized antigen and the labeled secondary antibody react to bind to each other, and the autoantibody is sandwiched between the antigen and the secondary antibody. Is formed.
  • the activity of the label (enzyme) in the complex is measured. This enzyme activity is proportional to the amount of the complex and will indicate the amount of autoantibodies in the blood sample.
  • the tumor diagnostic kit of the present invention is a tumor diagnostic kit using an immunoassay method, comprising a tumor-specific antigen and a labeled secondary antibody, wherein the tumor-specific antigen is a human-derived sideroflex protein.
  • the labeled secondary antibody is an antibody that recognizes an autoantibody against the human-derived Sideroflexin. Since this tumor diagnostic kit measures an anti-human Sideroflexin antibody in serum, the immunoassay is a so-called serum immunoassay. If this tumor diagnostic kit is used in the above-described measurement method, the anti-human-derived Sideroflexin antibody present in the serum sample of the patient can be easily measured.
  • the immunoassay is not particularly limited, and examples include the above-described assay.
  • the immunoassay is the ELI SA method (serum ELISA method)
  • the labeled secondary antibody is, for example, a secondary antibody labeled with an enzyme.
  • the tumor diagnostic kit may further include various reagents and instruments necessary for immunoassay methods such as ELISA.
  • the expression of the gene, the transcription of mRNA, etc. may be measured, for example.
  • conventionally known measurement methods can be employed.
  • Specific examples include a nucleic acid amplification method using a specific primer and a method using a detection probe.
  • the former include PCR, reverse transcription PCR, and real-time PCR, and examples of the latter include Southern plot and Northern plot.
  • the sequences of specific primers and detection probes can be appropriately determined based on the sequences of human-derived Sideroflexin gene and mRNA.
  • the reverse transcription PCR method and the real-time PCR method are generally widely used.
  • this method for example, total RNA or mRNA expressed in a biological sample is used as a saddle, cDNA is synthesized by reverse transcription PCR, and the target sequence is amplified by real-time PCR using the cDNA as a saddle. Do. Thereby, the amount of the target mRNA expressed in the biological sample can be measured. Therefore, the present invention
  • cDNA synthesized by genetic engineering techniques such as PCR
  • amplified target sequences amplified DNA products
  • the cDNA synthesized using total RNA or mRNA as a saddle is not particularly limited, and may include, for example, the full-length cDNA of human-derived Siderofle xin gene or a partial sequence thereof.
  • the target sequence for amplifying cDNA as a truncated form may be, for example, a full-length cDNA sequence of human-derived Sideroflexin or a partial cDNA sequence.
  • the diagnostic method of the present invention is a method of diagnosing a patient's tumor, and includes the following steps (c) and (d).
  • the diagnostic method of the present invention only by measuring the tumor marker of the present invention, the presence or absence of cancer at the target diagnostic site and the progress of cancer (for example, highly advanced cancer or mildly advanced cancer) ) Can be determined.
  • cancer for example, highly advanced cancer or mildly advanced cancer
  • early cancer can be determined with high accuracy. Specifically, if a tumor marker is detected, it can be diagnosed that cancer is present, and if no tumor marker is detected, it can be diagnosed that cancer is absent. Furthermore, when combined with other clinical information and laboratory information, judgment can be made with higher accuracy.
  • the target tumor is, for example, spleen cancer, liver cancer, bile duct cancer, colon cancer, rectal cancer, gastric cancer Breast cancer and oral cancer. Other cancers are also targeted.
  • the oral cancer is preferably oral squamous cell carcinoma. Examples of the test subject in the method for measuring a tumor marker of the present invention and the method for diagnosing a tumor include various animals such as humans, mammals other than humans, and model animals.
  • the breakdown of patients with oral squamous cell carcinoma was 10 males, 8 females, 40-85 years of age, and an average age of 68.3 years.
  • the breakdown of patients with benign disease was 4 males, 5 females, age 24 to 69 years, and average age 49. 8 years.
  • the breakdown of benign diseases was cystic disease (4 cases), benign tumor (polymorphic adenoma) (2 cases), salivary disease (2 cases), and osteomyelitis (1 case).
  • the breakdown of healthy individuals was 10 males, 8 females, age 24-80 years, and average age 49.1 years.
  • the human fibroblast cell line MRC-5 was used as the cell line.
  • the cell line was prepared using a 10% fetal calf serum-containing RPMI medium 1640 (Invitrogen) in a CO incubator.
  • the cultured MRC-5 cell line was collected and mixed with the following solubilization buffer.
  • the obtained lysate of the MRC-5 cell line was used as a sample for two-dimensional electrophoresis. This sample was stored at -80 ° C until use.
  • the composition of the solubilization buffer was 8M urea, 4% CHAPS, 60 mM DTT, 2% IPG Buffer PI 3-10 and 0.002% Bromophenol blue.
  • Two-dimensional electrophoresis was performed on a soluble sample of the MRC-5 cell line.
  • isoelectric focusing was performed as a first-dimensional electrophoresis using a commercially available electrophoresis apparatus (trade name Ettan IPGphor II, Amersham Bioscience).
  • SDS-PAGE was performed as the second-dimensional electrophoresis.
  • the product name Real Gel Plate (10% gel, BIO CRAFT) was used as a gel for SDS-PAGE.
  • the gel after SDS-PAGE was stained with CBB (Kumasi-Brilliant Blue).
  • IgG antibody (Santacruz) was used. Then, the PVDF membrane after the incubation was washed with Wash Buffer, and then chemiluminescent was performed using a fluorescence detection reagent (trade name ECL, Amercham Bioscience). It should be noted that 0.5% bovine serum albumin3 ⁇ 4 a? ⁇ Phosphate Buffered saline (PBS) was used (the same applies hereinafter). As a result, the protein in the soluble sample of the MRC-5 cell line showed a more significant response to the sera of patients with oral squamous cell carcinoma than the sera of patients with benign diseases and normal subjects.
  • PBS Phosphate Buffered saline
  • Decolorization was performed. Thereafter, the decolorizing solution was removed by suction, and the same decoloring operation was repeated a total of 3 times. Subsequently, the gel sample after the decolorization treatment was immersed in 30 L of a 100% acetonitrile solution for 5 minutes. After sucking and removing the acetonitrile solution, the gel sample is centrifuged. (Speed Vac) was dried for about 15 minutes and completely dehydrated. Then, trypsin solution (10 / z gZml trypsin / 50 mM NH Bicarbonate, Promega) frozen at -80 ° C is added to each dehydrated gel sample and subjected to enzyme treatment at 37 ° C.
  • CDNA was synthesized from the MRC-5 cultured cell line.
  • the trade name First Strand cDNA Synthesis Kit (Fermentas) was used.
  • the cDNA encoding the DNA of interest, and using the specific primers for the genes of Sideroflexin-1, Sideroflexin-2, and Sideroflexin-3, respectively, the genes encoding each target protein are obtained by the following PCR method. I was crawling. PCR conditions are shown below.
  • Each gene (cDNA) obtained was incorporated into a vector (trade name pGEX-6P-2 vector, Amercham Bioscience) to prepare a recombinant vector, and E. coli was transformed. The E. coli used is shown below.
  • a GST fusion protein containing the target protein was expressed in E. coli as a recombinant protein.
  • the obtained recombinant protein was purified by gel chromatography using a genore carrier (trade name Glutathione Sepharose 4B (Amercham Bioscience)), specifically, the protein fraction recovered from the above-mentioned E. coli.
  • the gel carrier was added to the gel carrier, the recombinant protein contained in the fraction was fused to the gel carrier, and the gel carrier fused with the recombinant protein was recovered by centrifugation, and then the gel carrier was recovered.
  • the gel carrier was washed by adding 1 mL of Cleavage buffer and stirring, followed by centrifugation (2500 rpm ⁇ 5 minutes spin down), and this washing step was repeated 5 times. After washing, 500 ⁇ L of eluate (2% Precision Protease, Amercham Bioscience) was added to the genore carrier, mixed with water and stirred, and the supernatant was removed by centrifugation (2500 rpm x 5 minutes, spin down). The recombinant protein thus purified was used as an exogenous antigen protein for detection in the experiments described below. Sideroflexin—1, GST—S ideroflexin—2, and GST—Sideroflexin—3.
  • PCR was performed using the obtained PCR product as a saddle, using each primer set 2 having F and B forces, and each full-length gene (cDN A) of Sideroflexin-1, Sideroflexin-2, Sideroflexin-3 Crawled.
  • PCR conditions are 94 ° CX lmin
  • “94 ° CX 10 sec, annealing temperature X 15 sec, 72 ° CX 90 sec” was performed for a total of 35 cycles, and finally, the reaction was performed at 72 ° C for 7 min, and then stored at 4 ° C.
  • the prepared recombinant vector was introduced into Escherichia coli DH10B, and the recombinant vector was amplified by culturing Escherichia coli. Then, it was confirmed that the gene encoding Sideroflexin was inserted into the recovered recombinant vector, and the recombinant vector was further introduced into E. coli BL21 strain. This transformant was cultured to express a fusion protein containing each target protein.
  • Each of the aforementioned antigen proteins for detection was diluted in a carbonate buffer (Carbonate Buffer, 0.2M, pH 9.5) to prepare each antigen solution having a protein concentration of 10 ng / L.
  • 100 ⁇ L of these antigen solutions were placed in each well of a 96-well ELISA plate and allowed to stand at 4 ° C., and then each well was washed three times with a washing buffer.
  • the antigen protein was immobilized on a plate. Then, in the same manner as in “1. (1)”, the various sera diluted 1000 times were added to each well (50 LZ1 well) and allowed to react at room temperature for 1 hour.
  • a labeled secondary antibody diluted 4000 times was added and incubated at room temperature for 1 hour.
  • As the labeled secondary antibody Xidase-labeled anti-human IgG antibody (Santacruz) was used.
  • a coloring reaction solution was added to each well after the incubation so as to give 100 LZ wells, and the reaction was performed at room temperature for 30 minutes.
  • the composition of the reaction solution was 0.2 M sodium acetate trihydrate 10 mL, 10 mg / mL TMB100 L: HO 10 L. Then, 10% sulfur is added to the reaction solution.
  • FIG. 1 is a graph showing the results of using a Sideroflexin-1 recombinant protein as an antigen for detection and showing the relationship between anti-Sideroflexin-1 antibody and oral squamous cell carcinoma.
  • FIG. 2 is a graph showing the relationship between anti-Sideroflexin-2 antibody and oral squamous cell carcinoma as a result of using Sideroflexin-2 recombinant protein as an antigen for detection.
  • FIG. 3 shows the results of using a Sideroflex in-3 recombinant protein as a detection antigen, showing the relationship between anti-Sideroflexin-3 antibody and oral squamous cell carcinoma.
  • antigen protein for marker detection.
  • antigen protein three kinds of recombinant proteins (GST—Sideroflexin-1, GST—Sideroflexin-2, GST—Sideroflexin-3) prepared in Example 1 were used.
  • test samples sera from various cancer patients such as spleen cancer, liver and bile duct cancer, colon cancer, rectal cancer, stomach cancer, and breast cancer were used.
  • knee cancer patients 10 knee cancer patients, 1 liver cancer patient, 2 bile duct cancer patients, 6 colon cancer patients, 3
  • 4 gastric cancer patients 5 breast cancer patients, 9 benign disease patients, and 18 healthy subjects
  • serum from each patient was collected preoperatively.
  • the breakdown of knee cancer patients was 4 males, 6 females, 54-78 years of age, and an average age of 70. 4 years.
  • the patient with liver cancer was a 67-year-old man, and the patients with bile duct cancer were both 72-year-old and 83-year-old.
  • the patients with colon cancer were 4 males, 2 females, 72-83 years of age, with an average age of 79 years. For patients with rectal cancer.
  • FIG. 4 is a graph showing the results of using a Sideroflexin-1 recombinant protein as an antigen for detection and showing the relationship between the anti-Sideroflexin-1 antibody and each cancer.
  • FIG. 5 is a graph summing up the results of each cancer in FIG. FIG.
  • FIG. 6 is a graph showing the result of using Sideroflexin-2 recombinant protein as an antigen for detection and showing the relationship between Sideroflexin-2 and each cancer.
  • FIG. 7 is a graph summing up the results of each cancer in FIG.
  • FIG. 8 is a graph showing the results of using a recombinant protein of Sider oflexin-3 as a detection antigen, and showing the relationship between anti-Sideroflexin-3 antibody and each cancer.
  • FIG. 9 is a graph summing up the results of each cancer in FIG.
  • oral squamous cell carcinoma patients were treated with cancer, and changes in the autoantibody titer before and after treatment were confirmed.
  • a surgical procedure was performed to remove the affected area where cancer was present.
  • the first serum collection before treatment Is defined as day 0, and further after 1 week (1W), 1 month (1M), 3 months (3M), 8 months (8M) Went.
  • the surgical procedure was performed immediately after the first serum collection.
  • Chemotherapy was locally administered to the affected area via an artery, and recurrence was confirmed one year after the chemotherapy. Therefore, surgical treatment similar to that for patient A was further performed.
  • the first serum collection before treatment (PreChem.) was taken as day 0, and serum collection was performed 4 weeks later (4W) and 1 year later (1Y). The chemotherapy was given immediately after the first serum collection. Serum was collected 2 months after the surgical procedure (Op) (PostOp. 2M).
  • each well was washed three times with a washing buffer, and then a labeled antibody secondary antibody diluted 4000 times was added and incubated at room temperature for 1 hour.
  • a labeled antibody secondary antibody horseradish peroxidase-labeled anti-human IgG antibody (Santacruz) was used.
  • a reaction solution for color development was added to 100 LZ well, and the mixture was allowed to react at room temperature for 30 minutes.
  • the composition of the reaction solution was 0.2M sodium acetate trihydrate 10mL, 10mg / mL TMB100 / zL, H2O10 / zL. Then, 10% sulfuric acid (50%
  • the autoantibody titer of the autoantibodies (anti-Sideroflexin-3 antibody) in the serum samples was decreased by treatment, and an increase in autoantibody titers was confirmed upon recurrence.
  • autoantibodies (anti-sideroflexin-3 antibodies) in serum samples increase and decrease reflecting the disease state, and thus can be said to exhibit excellent reliability as tumor markers.
  • these autoantibodies can be said to be extremely useful as post-operative follow-up markers.
  • the tumor marker of the present invention has high sensitivity and high specificity to the tumor. Therefore, according to the tumor marker of the present invention, for example, early cancer can be detected with high accuracy. Therefore, the tumor marker of the present invention can be preferably used for cancer diagnosis, evaluation, etc., and can be widely used in all fields of clinical field, academic research field and new drug to therapeutic method research and development field. The use is not limited.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Immunology (AREA)
  • Molecular Biology (AREA)
  • Hematology (AREA)
  • Biomedical Technology (AREA)
  • Urology & Nephrology (AREA)
  • Medicinal Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Cell Biology (AREA)
  • Food Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Biotechnology (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Oncology (AREA)
  • Hospice & Palliative Care (AREA)
  • General Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Microbiology (AREA)
  • Toxicology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Biophysics (AREA)
  • Genetics & Genomics (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Zoology (AREA)
  • Peptides Or Proteins (AREA)

Abstract

 感度および特異性の双方が高い腫瘍マーカーを提供する。本発明の腫瘍マーカーは、ヒト由来Sideroflexin、抗ヒト由来Sideroflexin抗体、ヒト由来Sideroflexin遺伝子および前記遺伝子のmRNAの少なくとも一つを含むことを特徴とする。前記ヒト由来Sideroflexinは、Sideroflexin-3が好ましい。また、前記抗体は血清中の自己抗体が好ましい。例えば、組換えSideroflexin-3を抗原として、被験者の血清中の自己抗体をELISA法により測定すれば、図1のグラフに示すように、高感度かつ高特異性で癌を判定できる。

Description

腫瘍マーカー、腫瘍診断キット、腫瘍マーカーの測定方法および腫瘍診 断方法
技術分野
[0001] 本発明は、腫瘍マーカー、腫瘍診断キット、腫瘍マーカーの測定方法および腫瘍 診断方法に関する。
背景技術
[0002] 癌の診断にお!、ては、従来、 X線による画像診断が実施されてきたが、最近では、 血清中の腫瘍マーカーを利用した診断が多用されている。前記腫瘍マーカーとは、 一般的に、癌細胞が産生する物質または癌細胞との反応により体内の正常細胞が 産生する物質であって、その中でも、それらを、血液、組織、排泄物等の生体試料中 力も検出することが、癌の診断または治療の目印として役立つものをいう。これまでに 、種々の生体物質が腫瘍マーカーとして有効であることが報告されて 、る(特許文献 1、非特許文献 1、非特許文献 2、非特許文献 3)。例えば、肝臓癌の腫瘍マーカーと して、 AFPおよび PIVKAII等、脾癌の腫瘍マーカーとして、 CA19— 9等、前立腺 癌の腫瘍マーカーとして、 PSA等、扁平上皮癌の腫瘍マーカーとして、 SCCおよび CYFRA等が使用されている。これらの腫瘍マーカーの測定は、診断対象患者から 血清を採取し、前記血清中の前記腫瘍マーカーに対する自己抗体のタンパク質量も しくは単位濃度を測定することにより、間接的に実施される。この測定結果から、腫瘍 マーカーについて、陽性および陰性が判断される。
[0003] 特許文献 1:特開 2003— 240774号公報
非特許文献 1 : Jpn. Soc. Cancer Ther. 22 (9) : 2182~2190, Oct. , 1987 非特許文献 2 : CANCER March 1, 1999/Vol. 85/No. 5/1018- 1025 非特許文献 3 :臨床病理 53 : 5 · 2005, 437— 445
発明の開示
発明が解決しょうとする課題
[0004] し力しながら、従来の腫瘍マーカーは、感度の点で問題があり、良性疾患等で偽陽 性を示すことも少なくない。また、従来の腫瘍マーカーは、早期癌を検出することが 困難なもの、すなわち、陰性を示すものもあった。このため、感度および特異性の高 V、腫瘍マーカーの開発が望まれて 、る。
[0005] そこで、本発明は、感度および特異性の高い新規な腫瘍マーカー、前記腫瘍マー カーを利用した腫瘍診断キット、前記腫瘍マーカーの測定方法および腫瘍診断方法 を提供することを目的とする。
課題を解決するための手段
[0006] 前記目的を達成するために、本発明の腫瘍マーカーは、ヒト由来 Sideroflexin,抗 ヒト由来 Sideroflexin抗体、ヒト由来 Sideroflexin遺伝子およびヒト由来 Sideroflexi n遺伝子の mRNAカゝらなる群カゝら選択される少なくとも一つを含む。
[0007] 本発明の腫瘍診断キットは、血清免疫測定法を用いた腫瘍診断キットであって、腫 瘍特異的抗原と標識化二次抗体とを含み、前記腫瘍特異的抗原が、ヒト由来 Sidero flexinであり、前記標識化二次抗体が、前記ヒト由来 Sideroflexinに対する自己抗 体を認識する抗体である。
[0008] 本発明の腫瘍マーカーの測定方法は、前記腫瘍マーカーが、ヒト由来 Sideroflexi nに対する血清中の自己抗体を含むマーカーであり、下記工程 (a)および (b)を含む
{a) 血滑試料にヒト由来 Sideroflexinを添カロし、目 ij Sヒト由来 Siderflexinに刖記血 清試料中の前記自己抗体を結合させて複合体を形成させる工程
(b) 前記複合体を測定する工程
[0009] 本発明の診断方法は、患者の腫瘍を診断する方法であって、下記工程 (c)および( d)を含む。
(c)患者カゝら採取した生体試料における本発明の腫瘍マーカーを測定する工程
(d)前記測定した腫瘍マーカーの有無または量によって、癌 (悪性腫瘍)の有無を判 断する工程
発明の効果
[0010] 本発明者等は、感度および特異性の高い新規な腫瘍マーカーを得るために、一連 の研究を重ねた。その結果、ヒト由来 Sideroflexin、抗ヒト由来 Sideroflexin抗体、ヒ ト由来 Sideroflexin遺伝子およびヒト由来 Sideroflexin遺伝子の mRNAの少なくと も一つが、感度および特異性の高い腫瘍マーカーとなり得ることを見出し、本発明に 到達した。本発明の腫瘍マーカーは、例えば、感度が高ぐまた、特異性が高い。こ のため、本発明の腫瘍マーカーによれば、例えば、偽陽性率が低ぐまた、早期癌に ついて高精度で検出することも可能である。また、本発明の腫瘍診断キット、腫瘍マ 一力一の測定方法および腫瘍診断方法によれば、癌を高感度で特異的に測定でき るため、高精度な診断、また、早期診断が可能となる。
図面の簡単な説明
[図 1]図 1は、本発明の一実施例における口腔扁平上皮癌の一結果を示すグラフで ある。
[図 2]図 2は、前記一実施例における口腔扁平上皮癌のその他の結果を示すグラフ である。
[図 3]図 3は、前記一実施例における口腔扁平上皮癌のさらにその他の結果を示す グラフである。
[図 4]図 4は、本発明のその他の実施例における各種癌の一結果を示すグラフである
[図 5]図 5は、前記一結果において、各種癌をまとめて示す別のグラフである。
[図 6]図 6は、前記その他の実施例における各種癌のその他の結果を示すグラフであ る。
[図 7]図 7は、前記その他の結果において、各種癌をまとめ示す別のグラフである。
[図 8]図 8は、前記その他の実施例における各種癌のさらにその他の結果を示すダラ フである。
[図 9]図 9は、前記さらにその他の結果において、各種癌をまとめて示す別のグラフで ある。
[図 10]図 10は、前記一実施例における質量分析の一結果を示す表である。
[図 11]図 11は、本発明のさらにその他の実施例における癌と腫瘍マーカーとの関係 を示すグラフである。
発明を実施するための最良の形態 [0012] <腫瘍マーカー >
Sideroflexinは、一般に、ミトコンドリアの鉄輸送に関わるタンパク質といわれてい る。マウスも Sideroflexinを持つ力 鉄欠乏性貧血のマウスにおいては、 Sideroflex inの変異が確認されている。また、ヒトの Sideroflexinは、脾 j8細胞の分化に重要な 役割を果たすとの報告もある(Yoshikumi Y, Mashima H, Ueda N, Ohno H , Suzuki J, Tanaka S, Hayashi M, Sekine N, Ohnishi H, Yasuda H, I iri T, Omata M, Fujita T, Kojima I. "Roles of CTPL/Sfxn3 and Sf xn family members in pancreatic islet. "2005, 95, 上 157— 1168) (Yos hikumi Y, Mashima H, Ueda N, Ohno H, Suzuki J, Tanaka S, Hayas hi M, Sekine N, Ohnishi H, Yasuda H, Iiri T, Omata M, Fujita T, K ojima I. 'Roles of CTPL/ Sfxn3 and Sfxn family members in pane reatic islet. "2005, 95, 1157—1168)。
[0013] 本発明の腫瘍マーカーは、前述のように、ヒト由来 Sideroflexin、抗ヒト由来 Sider oflexin抗体、ヒト由来 Sideroflexin遺伝子およびヒト由来 Sideroflexin遺伝子の m RNAからなる群力 選択される少なくとも一つを含む。特に好ましい腫瘍マーカーは 、ヒト由来 Sideroflexinおよび抗ヒト由来 Sideroflexin抗体である。
[0014] 本発明の腫瘍マーカーにおいて、その対象となる腫瘍は、特に制限されないが、例 えば、脾癌、肝臓癌、胆管癌、結腸癌、直腸癌、胃癌、乳癌および口腔癌等があげら れる。前記口腔癌は、口腔扁平上皮癌であることが好ましい。なお、これらの癌以外 についても、本発明における対象となる。本発明の腫瘍マーカーによれば、後述する ように、例えば、列挙した癌やそれ以外の様々な癌を診断することができる。
[0015] (1)ヒト由来 Sideroflexin
ヒト由来 Sideroflexinは、 1から 5の五つのファミリーがある。これらの中でも、本発 明の腫瘍マーカーとして好ましいのは、ヒト由来 Sideroflexin— 1、ヒト由来 Siderofl exin— 2およびヒト由来 Sideroflexin— 3であり、特に好ましいのは、ヒト由来 Sidero flexin— 3である。前記ヒト由来 Sideroflexinは、いずれか一種類でもよいし、二種 類以上をマーカーとして検出してもよい。ヒト由来 Sideroflexinを本発明の腫瘍マー カーとする場合、例えば、後述するように、採取した生体試料中におけるその有無や 量を測定することによって、癌の診断を行うことができる。また、前記ヒト由来 Siderofl exinは、天然力も分離したヒト Sideroflexinおよび遺伝子工学により作製された組換 えタンパク質のヒト Sideroflexinのいずれでもよい。前記生体試料としては、例えば、 前述のような診断対象の癌の種類に応じて決定できる。すなわち、診断対象となる組 織細胞を生体試料とすることができ、一例として、脾臓細胞、肝臓細胞、胆管細胞、 結腸細胞、直腸細胞、胃細胞、乳腺細胞、口腔細胞等があげられる。
[0016] ヒト由来 Sideroflexin— 1としては、例えば、下記 (A)若しくは(B)のタンパク質があ げられる。下記(B)のタンパク質のアミノ酸配列は、下記 (A)のアミノ酸配列との相同 性が、例えば、 50%以上であり、好ましくは 80%以上であり、より好ましくは 90%以 上である。また、下記 (B)のタンパク質のアミノ酸配列において、置換、付加、挿入も しくは欠失したアミノ酸残基の数は、例えば、 1〜161残基、好ましくは、 1〜64残基 、より好ましくは、 1〜32残基である。
(A)配列番号 1に記載のアミノ酸配列力もなるタンパク質
(B)配列番号 1に記載のアミノ酸配列において、 1以上のアミノ酸残基が置換、付加、 挿入もしくは欠失したアミノ酸配列からなるタンパク質であって、ヒト Sideroflexin— 1 としての機能を有するタンパク質
[0017] ヒト由来 Sideroflexin— 2としては、例えば、下記(C)若しくは(D)のタンパク質が あげられる。下記(D)のタンパク質のアミノ酸配列は、下記(C)のアミノ酸配列との相 同性が、例えば、 50%以上であり、好ましくは 80%以上であり、より好ましくは 90% 以上である。また、下記 (D)のタンパク質のアミノ酸配列において、置換、付加、挿入 もしくは欠失したアミノ酸残基の数は、例えば、 1〜161残基、好ましくは、 1〜64残 基、より好ましくは、 1〜32残基である。
(C)配列番号 2に記載のアミノ酸配列からなるタンパク質
(D)配列番号 2に記載のアミノ酸配列において、 1以上のアミノ酸残基が置換、付カロ 、挿入もしくは欠失したアミノ酸配列からなるタンパク質であって、ヒト Sideroflexin— 2としての機能を有するタンパク質
[0018] ヒト由来 Sideroflexin— 3としては、例えば、下記(E)若しくは(F)のタンパク質があ げられる。下記 (F)のタンパク質のアミノ酸配列は、下記 (E)のアミノ酸配列との相同 性が、例えば、 50%以上であり、好ましくは 80%以上であり、より好ましくは 90%以 上である。また、下記 (F)のタンパク質のアミノ酸配列において、置換、付加、挿入も しくは欠失したアミノ酸残基の数は、例えば、 1〜161残基、好ましくは、 1〜64残基 、より好ましくは、 1〜32残基である。
(E)配列番号 3に記載のアミノ酸配列からなるタンパク質
(F)配列番号 3に記載のアミノ酸配列において、 1以上のアミノ酸残基が置換、付加、 挿入もしくは欠失したアミノ酸配列からなるタンパク質であって、ヒト Sideroflexin— 3 としての機能を有するタンパク質
[0019] (2)抗ヒト由来 Sideroflexin抗体
前記抗ヒト由来 Sideroflexin抗体は、前述のヒト由来 Sideroflexinに対する抗体 である。本発明において、抗ヒト由来 Sideroflexin抗体は、例えば、被検体 (患者)か ら採取した生体試料中の自己抗体である。自己抗体とは、一般に、ある個体に産生 された抗体で、前記個体自身の構成物である抗原成分と反応する抗体を意味する。 前記生体試料としては、例えば、血清試料があげられる。前記抗体は、血清試料中 の自己抗体であることがさらに好ましい。本発明において血清試料とは、血清を含ん でいればよぐ例えば、血清画分のみでもよいし、血清画分を含む全血試料等でもよ い(以下、同様)。また、前述のように、ヒト由来 Sideroflexinは、五つのファミリーがあ る。このため、前記抗ヒト由来 Sideroflexin抗体は、例えば、抗ヒト由来 Sideroflexin 1抗体、抗ヒト由来 Sideroflexin— 2抗体および抗ヒト由来 Sideroflexin— 3抗体 が好ましい。中でも特に好ましい抗体は、抗ヒト由来 Sideroflexin— 3抗体である。前 記抗ヒト由来 Sideroflexinは、いずれか一種類でもよいし、二種類以上をマーカーと して検出してちょい。
[0020] (3)ヒト由来 Sideroflexin遺伝子およびその mRNA
前記ヒト由来 Sideroflexin遺伝子は、前述のヒト由来 Sideroflexinをコードする遺 伝子である。本発明の腫瘍マーカーは、ヒト由来 Sideroflexin遺伝子およびその mR NAのいずれかでもよいし、双方であってもよい。ヒト由来 Sideroflexin遺伝子および その mRNAを本発明の腫瘍マーカーとする場合、後述するように、採取した生体試 料中におけるその有無や発現量の測定によって、癌の診断を行うことができる。前記 腫瘍マーカーとしては、例えば、ヒト由来 Sideroflexin遺伝子の mRNAが好ましぐ 後述する診断にお!、ては、前記 mRNAの転写の有無または転写量を測定すること が好ましい。前記遺伝子および mRNAは、天然から分離されたものでもよぐ遺伝子 工学により作製された組換え遺伝子または組換え RNAでもよい。後述するように、前 記遺伝子の発現、または、 mRNAの転写を指標にしても、腫瘍を検出できるからで ある。前記生体試料としては、例えば、前述のような診断対象の癌の種類に応じて決 定できる。すなわち、診断対象となる組織細胞を生体試料とすることができ、一例とし て、脾臓細胞、肝臓細胞、胆管細胞、結腸細胞、直腸細胞、胃細胞、乳腺細胞、口 腔細胞等があげられる。
また、前述のように、ヒト由来 Sideroflexinは、五つのファミリーがある。このため、前 記 Sideroflexin遺伝子およびその mRNAとしては、例えば、ヒト由来 Sideroflexin 1遺伝子およびその mRNA、ヒト由来 Sideroflexin— 2遺伝子およびその mRNA 、ヒト由来 Sideroflexin— 3遺伝子およびその mRNAが好ましい。中でも特に好まし いのは、ヒト由来 Sideroflexin— 3遺伝子およびその mRNAである。ヒト由来 Sidero flexin— 1遺伝子およびその mRNAとしては、例えば、前記 (A)または(B)のタンパ ク質をコードする遺伝子および mRNAがあげられる。前記ヒト由来 Sideroflexin— 2 遺伝子およびその mRNAとしては、例えば、前記 (C)または (D)のタンパク質をコー ドする遺伝子および mRNAがあげられる。ヒト由来 Sideroflexin— 3遺伝子およびそ の mRNAとしては、例えば、前記 (E)または (F)のタンパク質をコードする遺伝子お よび mRNAがあげられる。具体例として、ヒト由来 Sideroflexin— 1は、例えば、遺伝 子(mRNA)が NCBIァクセッション No. BC063241、タンパク質が NCBIァクセッシ ヨン No. AAH63241,ヒト由来 Sideroflexin— 2は、例えば、遺伝子(mRNA)が N CBIァクセッション No. NM— 178858、タンパク質が NCBIァクセッション No. CAI 40863、ヒト由来 Sideroflexin— 3は、例えば、遺伝子(mRNA)が NCBIァクセッシ ヨン No. NM 030971、タンノ ク質力 NCBIァクセッション No. NP112233,ヒト由 来 Sideroflexin— 4は、例えば、遺伝子(mRNA)が NCBIァクセッション No. AL35 5598、タンパク質が NCBIァクセッション No. CAI14130、ヒト由来 Sideroflexin— 5は、例えば、遺伝子(mRNA)が NCBIァクセッション No. BC101313、タンパク質 が NCBIァクセッション No. AAI01314〖こ、それぞれ登録されている。前記ヒト由来 S ideroflexin遺伝子および mRNAは、いずれか一種類でもよいし、二種類以上をマ 一力一として検出してもよ!/、。
[0022] <腫瘍マーカーの測定方法 >
本発明の腫瘍マーカーの測定方法は、特に制限されない。具体的な方法は、例え ば、腫瘍マーカーの種類に応じて適宜決定できる。
[0023] (1)ヒト由来 Sideroflexinの測定
前記本発明の腫瘍マーカー力 ヒト由来 Sideroflexinの場合、特定のタンパク質を 検出する従来公知の測定方法が採用できる。前記測定方法は何ら制限されない。具 体例としては、例えば、抗体を用いた免疫測定法 (ィムノアッセィ法)があげられる。 前記免疫測定法としては、例えば、酵素免疫測定法 (ELISA)、ラテックス免疫凝集 法等の免疫凝集法、ラテックス免疫比朧法等の免疫比朧法、ラジオィムノアツセィ、ゥ ヱスタンプロッテイング法等があげられる。前記免疫測定法としては、中でも、 ELISA が好ましい。前記 ELISAとしては、例えば、サンドイッチ ELISA法や競合 ELISA法 等があげられる。
[0024] 免疫測定法によりヒト由来 Sideroflexinを測定する場合、検出用抗体としては、例 えば、抗ヒト由来 Sideroflexin抗体があげられる。前記抗ヒト由来 Sideroflexin抗体 の種類は、通常、測定目的のヒト由来 Sideroflexinの種類に応じて決定できる。本 発明においては、抗ヒト由来 Sideroflexin抗体を含む試薬を、腫瘍マーカーの測定 用試薬として使用できる。前記抗ヒト由来 Sideroflexin抗体は、例えば、従来公知の 方法によって調製できる。具体例としては、例えば、動物に、ヒト由来 Sideroflexinを 抗原として接種し、免疫感作することによって、ポリクローナルまたはモノクローナル の抗ヒト由来 Sideroflexin抗体を得ることができる。免疫感作させる宿主細胞の動物 の種類は、特に制限されず、例えば、ヒト、ゥサギ、ラット、マウス、ャギ、ヒッジ、ゥマ、 ブタ、モルモット等のヒトを除く哺乳動物、 -ヮトリ、ハト、ァヒル、ゥズラ等の鳥類等が 使用できる。また、動物に対する抗原の接種方法も、特に制限されず、皮内投与、皮 下投与、腹腔内投与、静脈内投与、筋肉内投与等が採用できる。このようにして得ら れる抗体は、通常、免疫グロブリンクラスが IgMまたは IgGである。また、得られた抗 体は、それ自体を抗体として使用することもでき、さらに酵素処理して得られる Fab、 Fab '、 F (ab ' )等の抗体の活性フラグメントを、抗体として使用することもできる。
2
[0025] ヒト由来 Sideroflexinの測定について、一例をあげて説明する。なお、本発明は、 これには制限されない。
[0026] すなわち、本発明の腫瘍マーカーの測定方法は、前述のように、前記腫瘍マーカ 一力 生体試料中のヒト由来 Sideroflexinを含むマーカーであり、下記工程(a ' )お よび (b ' )を含む。
{a ) 生体 s¾料に、目 ij記ヒト由来 Sideroflexinに対する f几ヒト由来 Sideroflexinf/i 体を添カ卩し、前記生体試料中のヒト由来 Siderflexinに、前記抗ヒト由来 Sideroflexi n抗体を結合させて複合体を形成させる工程
(b ' ) 前記複合体を測定する工程
[0027] 前記(a' )工程において、前記ヒト由来 Sideroflexin抗体は、前記生体試料に添加 する抗体であり、生体試料中のヒト由来 Sideroflexinを検出するための抗体であるこ とから、以下、「外来の検出用抗体」ともいう。また、取り扱い性に優れることから、前記 外来検出用抗体は、例えば、前記 (a ' )工程に先立って、プレート(例えば、 ELISA プレート)に固定(吸着)させておくことが好ましい。この場合、前記プレートに生体試 料を添加し、前記プレート内で前記複合体を形成することができる。前記 (b ' )工程に おいて、前記複合体の測定方法は、特に制限されない。具体例として、前記複合体 の抗原(生体試料中のヒト由来 Sideroflexin)に、さらに標識ィ匕された抗ヒト由来 Sid eroflexin抗体を結合させ、前記標識ィ匕抗体を測定する方法があげられる(サンドィ ツチ免疫測定法)。前記標識としては、特に制限されず、例えば、酵素標識、蛍光標 識、放射能標識等の従来公知の標識があげられる。標識ィ匕抗体としては、中でも、酵 素標識ィ匕抗体が好ましい。
[0028] 標識ィ匕物質として酵素を使用した、サンドイッチ ELISA法の一例を説明する。まず 、患者から、診断対象となる組織細胞を採取する。例えば、口腔癌の診断を目的とす る場合は、口腔細胞を採取する。そして、前記組織細胞力 タンパク質を抽出し、抽 出画分を調製する。他方、測定目的のヒト由来 Sideroflexinに対する抗ヒト由来 Sid eroflexin抗体を準備し、これを測定容器に固定ィ匕する。そして、前記測定容器に前 記抽出画分を加える。これによつて、固定化抗体と前記抽出画分中の抗原 (ヒト由来
Sideroflexin)とが反応し、両者が結合する。前記測定容器を洗浄後、さらに、酵素 で標識ィ匕した抗体 (標識ィ匕抗ヒト由来 Sideroflexin抗体)をカ卩える。これによつて、前 記固定化抗体に結合した抗原と前記標識化抗体とが反応して、両者が結合し、前記 抗原を 2つの抗体が挟んだ形状の複合体が形成される。そして、前記抗原と結合し な力つた標識ィ匕抗体を除去した後、前記複合体における標識 (酵素)の活性を測定 する。この酵素活性は、前記複合体の量に比例し、前記抽出画分における測定目的 の抗原の量を示すこととなる。前記酵素としては、何ら制限されず、例えば、パーォキ シダーゼ、アルカリフォスファターゼ、 13 ガラクトシダーゼ等が使用できる。この方法 において使用する 2種類の抗体は、例えば、互いに、抗原に対して異なる結合部位 を持つことが好ましい。
[0029] 以上のような免疫測定法による腫瘍マーカーの測定、すなわち、生体試料中のヒト 由来 Sideroflexinの測定方法は、例えば、以下に示す腫瘍診断キットにより実施す ることがでさる。
[0030] 前記腫瘍診断キットは、免疫測定法を用いた腫瘍診断キットであって、腫瘍特異的 抗原を認識する 2種類の抗体を含み、少なくとも一方の抗体が、標識化抗体であり、 診断の目的である前記腫瘍特異的抗原がヒト由来 Sideroflexinである。この腫瘍診 断キットを前述の測定方法に使用すれば、患者の生体試料中に存在するヒト由来 Si deroflexinを簡便に測定できる。そして、測定結果から、例えば、生体試料の採取部 位 (組織)における腫瘍の有無ならびに前記腫瘍が悪性 (癌)か否かを診断すること ができる。前記免疫測定法は、特に制限されず、前述のような測定法があげられる。 前記免疫測定法が、 ELISA法の場合、前記標識化抗体は、例えば、酵素で標識ィ匕 された抗体である。また、前記腫瘍診断キットは、さらに、 ELISA法等の免疫測定法 に必要な各種試薬や器具を含んで ヽても良 、。
[0031] (2)抗ヒト由来 Sideroflexin抗体の測定
前記本発明の腫瘍マーカー力 抗ヒト由来 Sideroflexin抗体の場合、特定の抗体 を検出する従来公知の測定方法が採用できる。具体例としては、例えば、抗原を用 いた免疫測定法 (ィムノアッセィ法)があげられる。前記免疫測定法としては、前述の ような方法が採用でき、中でも、 ELISAが好ましい。
[0032] 免疫測定法により抗ヒト由来 Sideroflexin抗体を測定する場合、検出用抗原として は、例えば、ヒト由来 Sideroflexinがあげられる。前記ヒト由来 Sideroflexinの種類 は、通常、測定目的の抗ヒト由来 Sideroflexin抗体の種類に応じて決定できる。本 発明においては、ヒト由来 Sideroflexinを含む試薬を、腫瘍マーカーの測定用試薬 として使用できる。前記ヒト由来 Sideroflexinは、例えば、天然力も分離したヒト Sider oflexin、および、遺伝子工学により作製された組換えタンパク質のヒト Sideroflexin の 、ずれであってもよ ヽ。前記組換えタンパク質の作製に使用する遺伝子および m RNAは、例えば、天然カゝら分離されたものでもよぐ遺伝子工学により作製された組 換え遺伝子または組換え RNAでもよい。また、前記組換えタンパク質は、例えば、抗 原抗体反応に影響を与えな 、範囲で、他のタンパク質とヒト Sideroflexinとの融合タ ンパク質であってもよい。前記他のタンパク質としては、例えば、 GST (ダルタチオン S トランスフェラーゼ)等があげられる。
[0033] 体内で作られた自己抗体である抗ヒト由来 Sideroflexin抗体の測定について、一 例をあげて説明する。なお、本発明は、これには制限されない。
[0034] すなわち、本発明の腫瘍マーカーの測定方法は、前述のように、前記腫瘍マーカ 一力 ヒト由来 Sideroflexinに対する血清中の自己抗体を含むマーカーであり、下 記工程 (a)および (b)を含む。
{a) 血滑試料にヒト由来 Sideroflexinを添カロし、目 ij Sヒト由来 Siderflexinに刖記血 清試料中の前記自己抗体を結合させて複合体を形成させる工程
(b) 前記複合体を測定する工程
[0035] 前記(a)工程において、前記ヒト由来 Sideroflexinは、前記血清に添加する抗原 であり、血清試料中の自己抗原を検出するための抗原であることから、以下、「外来 の検出用抗原」ともいう。前記ヒト由来 Sideroflexinは、前述のように、例えば、天然 由来でもよいし、組換えタンパク質でもよい。また、測定対象としては、前述のように、 抗ヒト由来 Sideroflexin— 3が特に好まし!/、ことから、前記ヒト由来 Sideroflexinは、 ヒト由来 Sideroflexin— 3が特に好ましい。また、取り扱い性に優れることから、前記 外来検出用抗原は、例えば、前記 (a)工程に先立って、プレート(例えば、 ELISAプ レート)に固定(吸着)させておくことが好ましい。この場合、前記プレートに生体試料 を添加し、前記プレート内で前記複合体を形成することができる。
[0036] 前記 (b)工程にぉ 、て、前記複合体の測定方法は、特に制限されな!、。具体例と して、前記複合体の前記自己抗体に二次抗体を結合させ、前記二次抗体を測定す る方法があげられる。二次抗体とは、自己抗体に対する抗体であって、第二抗体とも 呼ばれる。前記二次抗体としては、標識ィ匕された二次抗体が好ましぐ例えば、この 標識を測定することによって、前記複合体を測定することができる(サンドイッチ免疫 測定法)。前記標識は、特に制限されず、例えば、酵素標識、蛍光標識、放射能標 識等の従来公知の標識があげられる。前記標識化二次抗体としては、中でも、酵素 標識ィ匕抗体が好ましい。前記酵素標識としては、何ら制限されず、例えば、パーォキ シダーゼ、アルカリフォスファターゼ、 /3 ガラクトシダーゼ等が使用できる。測定対 象がヒトの自己抗体であることから、前記二次抗体としては、例えば、抗ヒト IgG抗体 が好ましい。前記抗ヒト IgG抗体は、例えば、ゥサギやマウス等の動物にヒト IgGを免 疫することによって調製でき、また、市販品を使用することもできる。前記標識化二次 抗体の一例としては、例えば、パーォキシダーゼ標識ィ匕抗ヒト IgG抗体があげられる
[0037] 標識ィ匕物質として酵素を使用した、サンドイッチ ELISA法の一例を説明する。まず 、患者から、試料として血液を採取する。この際、血液試料は、抗体が含まれる画分 であればよぐ例えば、全血でもよいし、血清画分であってもよい。他方、測定目的の 抗ヒト由来 Sideroflexin抗体に対する抗原(ヒト由来 Sideroflexin)を準備し、これを 測定容器に固定ィ匕する。そして、前記測定容器に前記血液試料をカ卩える。これによ つて、固定化抗原と前記血液試料中の自己抗体 (抗ヒト由来 Sideroflexin抗体)とが 反応し、両者が結合する。前記測定容器を洗浄後、さらに、酵素で標識化した二次 抗体を加える。これによつて、前記固定化抗原に結合した自己抗体と前記標識化二 次抗体とが反応して、両者が結合し、前記自己抗体を抗原と二次抗体とが挟んだ形 状の複合体が形成される。そして、前記自己抗体と未結合の前記標識化二次抗体を 除去した後、前記複合体における標識 (酵素)の活性を測定する。この酵素活性は、 前記複合体の量に比例し、前記血液試料における自己抗体の量を示すこととなる。 [0038] このような免疫測定法による腫瘍マーカーの測定、すなわち、血清中の自己抗体の 測定方法は、例えば、以下に示す腫瘍診断キットにより実施することができる。
[0039] 本発明の腫瘍診断キットは、免疫測定法を用いた腫瘍診断キットであって、腫瘍特 異的抗原と標識化二次抗体とを含み、前記腫瘍特異的抗原が、ヒト由来 Sideroflexi nであり、前記標識化二次抗体が、前記ヒト由来 Sideroflexinに対する自己抗体を 認識する抗体である。この腫瘍診断キットは、血清中の抗ヒト Sideroflexin抗体の測 定を行うことから、前記免疫測定法は、いわゆる血清免疫測定法である。この腫瘍診 断キットを前述の測定方法に使用すれば、患者の血清試料中に存在する抗ヒト由来 Sideroflexin抗体を簡便に測定できる。そして、測定結果から、例えば、患者の腫瘍 の有無ならびに前記腫瘍が悪性 (癌)力否かを診断することができる。前記免疫測定 法は、特に制限されず、前述のような測定法があげられる。前記免疫測定法が、 ELI SA法 (血清 ELISA法)の場合、前記標識化二次抗体は、例えば、酵素で標識化さ れた二次抗体である。また、前記腫瘍診断キットは、さらに、 ELISA法等の免疫測定 法に必要な各種試薬や器具を含んで 、ても良 、。
[0040] (3)ヒト由来 Sideroflexin遺伝子およびその mRNAの測定
前記本発明の腫瘍マーカー力 ヒト由来 Sideroflexin遺伝子および mRNAの少な くともいずれかの場合、例えば、前記遺伝子の発現、 mRNAの転写等を測定すれば よい。これらの測定方法としては、従来公知の測定方法が採用できる。具体例として は、例えば、特異的なプライマーを用いた核酸増幅法や、検出プローブを用いた方 法があげられる。前者としては、例えば、 PCR法、逆転写 PCR法、リアルタイム PCR 法等があげられ、後者としては、例えば、サザンプロット法、ノーザンプロット法等があ げられる。なお、特異的プライマーや検出プローブの配列は、ヒト由来 Sideroflexin 遺伝子および mRNAの配列に基づ ヽて適宜決定できる。
[0041] mRNAの発現 (転写)を測定する場合、一般的に、逆転写 PCR法およびリアルタイ ム PCR法が広く利用されている。この手法は、例えば、生体試料中で発現したトータ ル RNAまたは mRNAを铸型として、逆転写 PCR法により cDNAを合成し、リアルタ ィム PCRによって、前記 cDNAを铸型として、目的配列の増幅を行う。これによつて、 前記生体試料中で発現した目的の mRNAの量が測定できる。したがって、本発明に おいては、例えば、生体試料中で発現したヒト由来 Sideroflexin遺伝子の mRNA以 外に、 PCR等の遺伝子工学的手法によって合成した cDNAや、増幅した目的配列( 増幅 DNA産物)を腫瘍マーカーということもできる。なお、トータル RNAまたは mRN Aを铸型として合成する cDNAは、特に制限されないが、例えば、ヒト由来 Siderofle xin遺伝子の全長 cDNAまたはその部分配列を含んでいればよい。また、 cDNAを 铸型として増幅させる目的配列は、例えば、ヒト由来 Sideroflexinの全長 cDNA配 列でもよ 、し、部分的な cDNA配列でもよ 、。
[0042] <腫瘍の診断方法 >
本発明の診断方法は、患者の腫瘍を診断する方法であって、下記工程 (c)および( d)を含む方法である。
(c)前記本発明の腫瘍マーカーの測定方法により、患者から採取した生体試料にお ける腫瘍マーカーを測定する工程
(d)前記測定した腫瘍マーカーの有無または量によって、癌 (悪性腫瘍)の有無を判 断する工程
[0043] 本発明の診断方法によれば、本発明の腫瘍マーカーを測定するのみで、目的の診 断部位における癌の有無や、癌の進行状況 (例えば、高度進行癌か軽度等度進行 癌か)を判断することができる。特に、本発明によれば、早期癌についても、高精度で 判断することができる。具体的には、腫瘍マーカーが検出されれば、癌が存在すると 診断でき、腫瘍マーカーが未検出であれば、癌が非存在と診断できる。また、さらに その他の臨床情報や検査情報と組み合わせることによって、より高い精度で判断が 可能となる。
[0044] 本発明の腫瘍マーカー、腫瘍診断キット、腫瘍マーカーの測定方法および腫瘍の 診断方法において、その対象となる腫瘍は、例えば、脾癌、肝臓癌、胆管癌、結腸癌 、直腸癌、胃癌、乳癌および口腔癌である。また、これら以外の癌も、その対象となる 。前記口腔癌は、口腔扁平上皮癌であることが好ましい。また、本発明の腫瘍マーカ 一の測定方法や、腫瘍の診断方法における被検対象は、例えば、ヒトや、ヒト以外の 哺乳類動物、モデル動物等、種々の動物があげられる。
[0045] つぎに、本発明の実施例について説明する。ただし、本発明は、下記の実施例に よってなんら制限されな!、。
実施例 1
[0046] 本実施例は、口腔扁平上皮癌患者の血清中に、前記癌の腫瘍マーカーであるヒト 由来 Sideroflexinに対する自己抗体が存在することを確認した例である。さらに、本 実施例では、組換えタンパク質であるヒト由来 Sideroflexinを用いて、被験者の血清 中の前記自己抗体を腫瘍マーカーとして、癌の判定を行った。
[0047] 1. 自己杭体の存在確認
(1)血清の調製
18人の口腔扁平上皮癌患者、 9人の良性疾患患者および 18人の健常者より同意 を得た上で、各患者の血清を術前時に採取した。これらを血清試料とした。口腔扁平 上皮癌患者の内訳は、男 10人、女 8人、年齢 40〜85歳、平均年齢 68. 3歳であつ た。良性疾患患者の内訳は、男 4人、女 5人、年齢 24〜69歳、平均年齢 49. 8歳で あった。良性疾患の内訳は、嚢胞性疾患 4例、良性腫瘍 (多形性腺腫) 2例、唾石症 2例、骨髄炎 1例であった。健常者の内訳は、男 10人、女 8人、年齢 24〜80歳、平 均年齢 49. 1歳であった。
[0048] (2)細胞株の可溶ィ匕サンプル
細胞株として、ヒト繊維芽細胞株 MRC— 5を用いた。前記細胞株は、 10%牛胎児 血清含有 RPMI medium 1640 (Invitrogen社)を用いて、 COインキュベータで
2
培養した。培養した前記 MRC— 5細胞株を回収し、下記可溶化バッファーと混和し た。得られた MRC— 5細胞株の可溶化物を 2次元電気泳動のサンプルとした。この サンプルは、使用時まで— 80°Cで保存した。前記可溶化バッファーの組成は、 8M 尿素、 4%CHAPS、 60mM DTT、 2%IPG Buffer PI 3— 10および 0. 002% Bromophenol blueとした。
[0049] (3) 2次元電気泳動
前記 MRC— 5細胞株の可溶ィ匕サンプルの 2次元電気泳動を行った。まず、 1次元 目の電気泳動として、市販の電気泳動装置(商品名 Ettan IPGphor II、 Amersh am Bioscience社)を用いて、等電点電気泳動を行った。前記等電点電気泳動用 のケノレとして、商品名 Immobiline Dry strip, 7cm, pi 3— 10 (Amersham Bio science社)を使用した。次に、 2次元目の電気泳動として、 SDS— PAGEを行った。 SDS— PAGEのゲルとして、商品名 Real Gel Plate (10% gel, BIO CRAFT 社)を使用した。 SDS— PAGE後のゲルについて、 CBB (クマシ一ブリリアントブルー )染色を行った。
[0050] (4) Western blotting
前記 SDS— PAGEを行ったゲル中のタンパク質を、セミドライ式ブロッテイング装置 (Semi- Dry blotter)を用いて、電気的に PVDF膜(MILLIPORE社)に転写し た。前記 PVDF膜を、下記ブロッキングバッファ一中、室温で一時間インキュベートし た。前記ブロッキングバッファーの組成は、 Phosphate Buffered Saline (PBS) , 5% nonfat dry milkおよび 0. 1% Tween20とした。インキュベート後、前記 P VDF膜を浸漬させたブロッキングバッファーに、さらに、 1000倍希釈した前述の各 種血清を添加し、室温で 1時間インキュベートした。続いて、前記ブロッキングバッフ ァ一に、さらに、 10000倍希釈した標識ィ匕二次抗体を添加して、室温で 1時間インキ ュペートした。前記標識化二次抗体としては、パーォキシダーゼ標識 anti— human
IgG antibody (Santacruz社)を使用した。そして、インキュベート後の前記 PVD F膜を Wash Bufferで洗浄し、ついで、蛍光検出試薬(商品名 ECL、 Amercham Bioscience社)を用いて化学発光させた。なお、血清および標識化二次抗体の希釈 に ίま、 0. 5% bovine serum albumin¾ a? ^Phosphate Buffered saline (P BS)を使用した(以下、同様)。この結果、前記 MRC— 5細胞株の可溶ィ匕サンプル中 のタンパク質は、良性疾患患者および健常者の血清よりも、口腔扁平上皮癌患者の 血清に対して顕著な反応を示した。
[0051] (5)タンパク質同定
前記 Western blottingにおいて、口腔扁平上皮癌患者血清と反応したスポットを 、前記 SDS— PAGEのゲルから切り取った。このゲルを、脱色液(50%ァセトニトリル Z25mM炭酸水素アンモ-ゥム(NH Bicarbonate) ) 100 μ Lに 15分間浸漬して
4
脱色を行った。その後、前記脱色液を吸引除去し、同じ脱色操作を合計 3回繰り返し 行った。続いて、脱色処理後のゲル試料を 100%ァセトニトリル溶液 30 Lに 5分間 浸した。前記ァセトニトリル溶液を吸引除去後、前記ゲル試料を、遠心エバポレータ 一(Speed Vac)によって約 15分間乾燥させ、完全に脱水を行った。そして、脱水し たゲル試料に、—80°Cで凍結保存したトリプシン溶液(10 /z gZml trypsin/50m M NH Bicarbonate、 Promega社)を ずつ入れ、 37°Cでー晚酵素処理を
4
行った。酵素処理後の溶液に、さらに、抽出液(50%ァセトニトリル Z5%トリフルォロ 酢酸)50 Lを添加し、 30分間、室温で振とうさせた。液体画分を回収した後、残存 する固体画分に、さらに新たな抽出液 25 Lを添加し、同様の処理を行うことによつ て、合計 75 Lの液体画分を抽出画分として回収した。この抽出画分を、遠心エバ ポレーターで 5〜10 Lまで濃縮し、濃縮液を分析用の試料液とした。そして、分析 用試料液について質量分析を行った。この質量分析は、 MALDI—TOF MS (商 品名 Voyager DE Pro、 Applied Biosystems社)を使用し、 MS Fit (UCSF) のサーバーを利用した Peptide mass fingerprinting (PMF)法により行った。そ の結果、前記癌患者血清と特異的に反応したタンパク質力 Sideroflexin (l, 2, 3 等)が同定された。この中で、 Sideroflexin— 3の質量分析の結果を、図 10に示す。 同図 (Result Summary)に示すように、前記血清と特異的に反応したタンパク質に ついて、 MOWSE Score 3. 204e + 04、 # Z32 (%) Masses Matched 6 (1 8)、 %Cov 18. 0、%TIC18. 8、 Mean Err ppm —43. 9、 Data Tol ppm 251、 MS— Digest Index# 2178568、 Protein MW(Da) /pi 35504/9. 3、Accession # 56462561 M、 Species HOMO SAPIENS、 Protein Na me Sideroflexin 3との結果が得られた。このように、口腔扁平上皮癌患者の血清 と反応した前記 MRC— 5細胞株のタンパク質は、 Sideroflexinであることから、前記 癌患者の血清には、 Sideroflexinに対する自己抗体が存在することが証明された。
2.癌の判定
(1)組換えタンパク質の作製
前記 MRC— 5培養細胞株より cDNAを合成した。 cDNAの合成には、商品名 Firs t Strand cDNA Synthesis Kit (Fermentas社)を使用した。そして、前記 cD NAを铸型 DNAとし、 Sideroflexin— 1、 Sideroflexin— 2、 Sideroflexin— 3の各 遺伝子に対する各特異的プライマーを用いて、下記 PCR法によって、各目的タンパ ク質をコードする遺伝子をそれぞれクローユングした。 PCRの条件は、以下に示す。 得られた各遺伝子(cDNA)をベクター(商品名 pGEX—6P— 2 vector, Amercha m Bioscience社)に組み込んで組換えベクターを作製し、大腸菌の形質転換を行 つた。使用した大腸菌は、以下に示す。そして、組換えタンパク質として、 目的タンパ ク質を含む GST融合タンパク質を前記大腸菌に発現させた。得られた組換えタンパ ク質は、ゲノレ担体 (商品名 Glutathione Sepharose 4B (Amercham bioscienc e社)を用いたゲルクロマトグラフィーによって常法により精製した。具体的には、前記 大腸菌から回収したタンパク質画分に前記ゲル担体を加え、前記ゲル担体に前記画 分に含まれる組換えタンパク質を融合させた。そして、遠心分離により前記組換えタ ンパク質が融合させたゲル担体を回収した後、前記ゲル担体に Cleavageバッファー lmLを添カ卩して攪拌した後、遠心分離(2500rpm X 5分 spin down)することによ つて、前記ゲル担体の洗浄を行った。この洗浄工程を 5回繰り返した。そして、洗浄 後の前記ゲノレ担体に、溶出液(2%Precision Protease 、 Amercham Bioscie nce社) 500 μ L入れ、ー晚、攪拌混合した。そして、遠心分離(2500rpmX 5分間、 spin down)により上清のみを回収し、これをリン酸バッファーでー晚透析した。この ようにして精製した組換えタンパク質を、外来の検出用抗原タンパク質として後述す る実験に使用した。得られた抗原タンパク質は、 GST— Sideroflexin— 1、 GST— S ideroflexin—2および GST—Sideroflexin—3の三種類である。
< PCR条件 >
Sideroflexin— 1、 Sideroflexin— 2、 Sideroflexin— 3の各遺伝子のクローニン グには、以下に示す custom primer (Sigma Genosys社) 臉入し、各々 10 μ M の濃度で使用した。各プライマーの配列を以下に示す。 WFおよび Fは、フォワードプ ライマーであり、 WBおよび Bは、バックプライマー(リバースプライマー)である。また、 Fは、 BamHIの認識配列を有するプライマーであり、 Bは、 EcoRIの認識配列を有す るプライマーである。 PCRの反応液には、商品名 TaKaRa LA Taq (Takara bio 社)を使用した、まず、 WFおよび WBからなる各プライマーセット 1を用いて nested PCRを行った。続いて、得られた PCR産物を铸型として、 Fおよび B力もなる各プライ マーセット 2を用いて PCRを行い、 Sideroflexin— 1、 Sideroflexin— 2、 Siderofle xin— 3の各全長遺伝子(cDN A)をクローユングした。 PCR条件は、 94°C X lminの 後、「94°C X 10sec、アニーリング温度 X 15sec、 72°C X 90sec」を 1サイクルとして 合計 35サイクル行い、最後に 72°Cで 7min反応させて、以後は 4°Cで保存した。
[0054] く Sideroflexin—l用〉
プライマーセット 1
WF (配列番号 4)
5, 一 GGGACCATGTCTGGAGAACTACC一 3 '
WB (配列番号 5)
5, 一 CGCCAGGTGCTCTGTTAAAGTAG一 3 '
アニーリング温度:59°C
プライマーセット 2
F BamHl (配列番号 6)
5' - CGCGGATCCATGTCTGGAGAA- 3 '
B EcoRl (配列番号 7)
5 ' 一 CCGGAATTCTTACAATCCCTT- 3 '
アニーリング温度:59°C
[0055] < Siderof lexin— 2用〉
プライマーセット 1
WF (配列番号 8)
5, - TGTAACTGGTGGC ATTTGTCC 3 '
WB (配列番号 9)
5, 一 GCTAAGGAGGAGCTGGTGAATATG一 3 '
アニーリング温度:55°C
プライマーセット 2
F BamHl (配列番号 10)
5' - CGCGGATCCATGGAGGCTGACCT- 3 '
B EcoRl (配列番号 11)
5' - CCGGAATTCTTAGAGACCCTTA- 3 '
アニーリング温度:55°C [0056] く Siderof lexin— 3用〉
プライマーセット 1
WF (配列番号 12)
5' - ACAGCGGAGGCAGAGAGGAAGG - 3 '
WB (配列番号 13)
5 ' 一 CCACCCTAATAGGTTGCTACCCTC一 3 '
アニーリング温度:61°C
プライマーセット 2
F BamHl (配列番号 14)
5, 一 CGCGGATCCATGGAAAGCAA- 3 '
B EcoRl (配列番号 15)
5' -CCGGAATTCTCAAAGCCCCTT- 3'
アニーリング温度:57°C
[0057] <使用した大腸菌株 >
まず、作製した組換えベクターを大腸菌 DH10B株に導入し、大腸菌の培養によつ て、前記組換えベクターを増幅させた。そして、回収した組換えベクターについて、 前記 Sideroflexinをコードする遺伝子が挿入されていることを確認し、さらに、前記 組換えベクターを大腸菌 BL21株に導入した。この形質転換体を培養して、それぞれ の目的タンパク質を含む融合タンパク質を発現させた。
[0058] (2)血清 ELISA
前述の各検出用抗原タンパク質を、炭酸バッファー(Carbonate Buffer, 0. 2M 、 pH9. 5)に希釈し、タンパク質濃度 10ng / Lの各抗原溶液を調製した。これらの 抗原溶液を 96穴 ELISAプレートの各ゥエルに 100 μ Lずつ入れ、 4°Cでー晚放置し た後、前記各ゥエルを洗浄バッファーで 3回洗った。これによつて、前記抗原タンパク 質をプレートに固定ィ匕した。そして、前記「1. (1)」と同様に、 1000倍希釈した前記 各種血清を前記各ゥエルに添加し(50 LZ1ゥエル)、室温で 1時間反応させた。つ ぎに、各ゥエルを洗浄バッファーで 3回洗った後、 4000倍希釈した標識化二次抗体 を添加して、室温で 1時間インキュベートした。前記標識化二次抗体としては、バーオ キシダーゼ標識 anti— human IgG antibody (Santacruz社)を使用した。インキ ュペート後の各ゥエルに、 100 LZゥエルとなるように、発色用反応液を添加し、室 温で 30分反応させた。前記反応液の組成は、 0. 2M 酢酸ナトリウム三水和物 10m L、 lOmg/mL TMB100 L、: H O 10 Lとした。そして、前記反応液に 10%硫
2 2
酸 (50 LZゥエル)を添加して、反応を停止させた。その後、速やかに、測定装置( 商品名 ELISAリーダー Multiskan Bichromatic、: Labsystems社)により、前記 反応液の吸光度(Dual wave mode 450nm、 620nm)を測定した。
[0059] 前記血清 ELISAの結果を、図 1から図 3のグラフに示す。図 1は、検出用抗原とし て Sideroflexin— 1の組換えタンパク質を使用した結果であり、抗 Sideroflexin— 1 抗体と口腔扁平上皮癌との関係を示すグラフである。図 2は、検出用抗原として Side roflexin— 2の組換えタンパク質を使用した結果であり、抗 Sideroflexin— 2抗体と 口腔扁平上皮癌との関係を示すグラフである。図 3は、検出用抗原として Sideroflex in— 3の組換えタンパク質を使用した結果であり、抗 Sideroflexin— 3抗体と口腔扁 平上皮癌との関係を示す結果である。また、二項検定により癌患者の結果と健常者 の結果との間における P ( * 1)、癌患者の結果と良性疾患患者の結果との間におけ る P ( * 2)を求めた。これらの結果を各図にあわせて示す (他の図にぉ 、ても同様)。 pく 0. 05であれば、有意差があると判断できる。
[0060] 図示のように、 Sideroflexin— 1、 Sideroflexin— 2および Sideroflexin— 3に対 する各自己抗体は、健常者および良性疾患患者の血清と比較して、癌患者血清に おいて極めて顕著に存在することが明ら力となった。この結果から、抗ヒト由来 Sider oflexin抗体のうちいずれの自己抗体を検出しても、癌患者と、健常者および良性疾 患患者とを、明確に区別できることがわ力つた。特に、検出用抗原として Sideroflexi n— 3の組換えタンパク質を用いた場合に、閾値 (カットオフ値)を吸光度 0. 3にする と、より明瞭に陽性患者および陰性患者を区別することができた。この内訳を下記表 1に示す。
[0061] [表 1] 検出用抗原 S i d e r o f l e x i n— 3
対象人数 (名) 陽性例 (名) 陽性率 (%)
者 1 8 2 6 6 . 7 健常者 1 8 2 1 1 . 1
良性疾患患者 9 2 2 2 . 2
[0062] つぎに、マーカー検出用の抗原タンパク質として Sideroflexin— 3の組換えタンパ ク質を用いた場合における、早期癌患者の判別について、検討した。癌の進行度は 、 Tl、 Τ2、 Τ3および Τ4の 4つのグループに分類でき、 T1が最も早期の癌であり、 Τ 2、 Τ3および Τ4の順で癌の症状が進んでいる。前記口腔扁平上皮癌患者 18名は、 T1 (5人)、 Τ2 (5人)、 Τ3 (4人)および Τ4 (4人)に分類できる。そこで、口腔扁平上 皮癌患者のうち T1 (5人)の早期癌患者について、前述と同様の血清 ELISAにより、 陽性率を調べた。下記表 2に示すように、検出用抗原として Sideroflexin (特に、 Sid eroflexin— 3)を用いて、 Sideroflexinに対する血清中の自己抗体の測定を行えば 、従来困難であった早期癌であっても、高精度で判定できる。
[0063] [表 2] 検出用抗原 S i d e r o f I - 3
対象人数 (名) 陽性例 (名) 陽性率 (%)
T 1癌患者 5 4 8 0 0 健常者 8 2 1 1 1 良性疾患患者 9 2 2 2 2 実施例 2
[0064] 本実施例は、マーカー検出用の抗原タンパク質を使用して、各種癌の判定を行つ た例である。前記抗原タンパク質としては、実施例 1で調製した 3種の組換えタンパク 質(GST— Sideroflexin— 1、 GST— Sideroflexin— 2、 GST— Sideroflexin— 3 )を使用した。また、被検試料としては、脾癌、肝'胆管癌、結腸癌、直腸癌、胃癌、乳 癌の各種癌患者の血清を用いた。
[0065] (1)血清の調製
10人の膝癌患者、 1人の肝癌患者、 2人の胆管癌患者、 6人の結腸癌患者、 3人の 直腸癌患者、 4人の胃癌患者、 5人の乳癌患者、 9人の良性疾患患者および 18人の 健常者より同意を得た上で、各患者の血清を術前時に採取した。膝癌患者の内訳は 、男 4人、女 6人、年齢 54〜78歳、平均年齢 70. 4歳であった。肝癌患者は、 67歳 男、胆管癌患者は 72歳と 83歳のいずれも男であった。結腸癌患者は、男 4人、女 2 人、年齢 72〜83歳で、平均年齢 79歳であった。直腸癌患者は。全て男、年齢 55〜 78歳、平均年齢 61. 7歳であった。胃癌患者は、男 2人、女 2人、年齢 54〜74歳、 平均年齢 62歳であった。乳癌患者は、全て女、年齢 38〜77歳、平均年齢 58. 4歳 であった。良性疾患の内訳は、胆石症 5例、慢性胆嚢炎 1例、慢性胆管炎 1例、慢性 脾炎 2例、男 5人、女 4人、年齢 41〜86歳、平均年齢 78. 2歳であった。健常者の内 訳は、男 10人、女 8人、年齢 24〜80歳、平均年齢 49. 1歳であった。
[0066] (2)血清 ELISA
マーカー検出用の抗原タンパク質として、前記実施例 1で調製した 3種類の組換え タンパク質(GST—Sideroflexin—l、 GST— Sideroflexin— 2、 GST— Siderofle xin— 3)を使用した。そして、前述の各種血清および各種組換えタンパク質を用いて 、前記実施例 1の「2. (2)」と同様にして、血清 ELISAを実施した。これらの結果を、 図 4から図 9の各グラフに示す。図 4は、検出用抗原として Sideroflexin— 1の組換え タンパク質を使用した結果であり、抗 Sideroflexin— 1抗体と各癌とのそれぞれの関 係を示すグラフである。図 5は、前記図 4における各癌の結果を合計して表したグラフ である。図 6は、検出用抗原として Sideroflexin— 2の組換えタンパク質を使用した 結果であり、 Sideroflexin— 2と各癌との関係を示すグラフである。図 7は、前記図 6 における各癌の結果を合計して表したグラフである。図 8は、検出用抗原として Sider oflexin- 3の組換えタンパク質を使用した結果であり、抗 Sideroflexin— 3抗体と各 癌との関係を示すグラフである。図 9は、前記図 8における各癌の結果を合計して表 したグラフである。
[0067] 図 4から図 9の各グラフに示すように、実施例 1における口腔扁平上皮癌以外の他 の各種癌についても、実施例 1と同様に、抗 Sideroflexin抗体の検出により、癌患者 と、健常者および良性疾患患者とを明確に判定できた。特に、図 8および図 9の各グ ラフに示すように、検出用抗原として GST— Sideroflexin— 3を用いた場合に、より 明確に癌の陽性および陰性を判定することができた。
実施例 3
[0068] 本実施例は、口腔扁平上皮癌患者に癌治療を施し、治療前後における自己抗体 価の変移を確認した例である。
[0069] (1)血清試料の調製
口腔扁平上皮癌患者 4名(A〜D)に対し、下記に示す治療を施し、且つ、適宜、血 清の採取を行った。
[0070] <患者 Aおよび患者 B >
,治療
癌の存在する患部を切除する外科的処置を施した。
•血清採取
治療前 (PreOp.)における一回目の血清採取を 0日とし、さらに、 1週間後(1W)、 1 ヶ月後(1M)、 3ヶ月後(3M)、 8ヶ月後(8M)に、血清採取を行った。なお、一回目 の血清採取の直後に前記外科的処置を施した。
<患者 C>
,治療
患部に対して動脈を経由して抗癌剤を局所投与する化学療法を施し、化学療法か ら 1年後に再発が確認されたことから、さらに、前記患者 Aと同様の外科的処置を施 した。
•血清採取
治療前 (PreChem.)における一回目の血清採取を 0日とし、さらに、 4週間後(4W )、 1年後(1Y)に血清採取を行った。なお、一回目の血清採取の直後に前記化学療 法を施した。また、外科的処置 (Op)から 2ヶ月後(PostOp. 2M)にも血清採取を行 つた o
<患者 D>
,治療
患部に対して前記患者 Aと同様に外科的処置を施した。前記外科的処置から 8ケ 月後に再発が確認されたことから、さら〖こ、前記患者 Cと同様の化学療法を施した。 •血清採取
治療前 (PreOp.)における一回目の血清採取を 0日とし、さらに、 1週間後(1W)、 1 ヶ月後(1M)、 8ヶ月後(8M)に血清採取を行った。なお、一回目の血清採取の直後 に前記外科的処置を施した。また、化学療法から 16ヶ月後(16M)にも血清採取を 行った。
[0071] (2)血清 ELISA
マーカー検出用の抗原タンパク質として、前記実施例 1で作製した組換えタンパク 質(GST— Sideroflexin— 3)を使用した。まず、この抗原タンパク質を炭酸バッファ 一(Carbonate Buffer, 0. 1M、 pH9. 5)に希釈し、タンパク質濃度 1 μ gZmLの 抗原溶液を調製した。この抗原用液を 96穴 ELISAプレート(# 3369、 Corning, T okyo, Japan)の各ゥエルに 100 Lずつ入れ、 4°Cでー晚放置した後、前記各ゥェ ルを洗浄バッファーで 3回洗った。これによつて、前記抗原をプレートに固定ィ匕した。 そして、血清試料を、前記実施例 1と同様に 1000倍希釈して、前記各ゥエルに添加 し(150 LZ1ゥエル)、室温で 1時間反応させた。つぎに、各ゥエルを洗浄バッファ 一で 3回洗った後、 4000倍希釈した標識ィ匕二次抗体を添加して、室温で 1時間イン キュペートした。前記標識化二次抗体としては、ホースラディッシュパーォキシダーゼ 標識 anti— human IgG antibody (Santacruz社)を使用した。インキュベート後 の各ゥエルに、 100 LZゥエルとなるよう〖こ、発色用反応液を添加し、室温で 30分 反応させた。前記反応液の組成は、 0. 2M 酢酸ナトリウム三水和物 10mL、 10mg /mL TMB100 /z L、 H O 10 /z Lとした。そして、前記反応液に 10%硫酸(50
2 2
LZゥエル)を添加して、反応を停止させた。その後、速やかに、測定装置 (商品名 E LISAリーダー Multiskan Bichromaticゝ Labsystems社)により、前記反応液の 吸光度(Dual wave mode 450nm、 620nm)を測定した。また、血清 ELISAに ついて、再現性と定量性を向上するため、基準血清を 1. O X 105unitZmLに設定 し、その希釈系列(1Z16, 000〜1Z1000)を調製し、標準単位 (unitZmL)で表 して、上記の実験に使用した。
[0072] 各患者における自己抗体価の結果を、図 11に示す。同図において、 Aは患者 A、 Bは患者 B、 Cは患者 C、 Dは患者 Dの結果である。各図において、縦軸は、自己抗 体価に相当するペルォキシダーゼ活性 (U/mL)であり、所定の時期に採取した血 清の活性を示す。
[0073] 同図 Aおよび Bに示すように、外科的処置(Op)を単独で施した症例 Aおよび Bに ついては、術後に抗体価の低下が確認できた。そして、両症例では、術後に再発は 確認されなかった。この結果と対応して、術後のフォローアップ期間において、抗体 価の上昇も見られなカゝつた。同図 Cに示す化学療法 (ChemTx)を施した症例 Cでは 、治療終了後、臨床的に Complete Response(CR)が得られた。そして、これと対 応して、治療終了時に抗体価の低下が確認された。この症例 Cは、治療から 1年後に 再発 (Rec ( + ) )が見られたが、これと対応して、抗体価の上昇が確認された。再発 後の外科的処置 (Op)の結果、術後に抗体価は低下した。同図 Dに示す症例 Dは、 外科的処置 (Op)により、術後に抗体価の低下が確認できた。この症例は、術後 8ケ 月で再発 (Rec ( + ) )が見られたが、これと対応して、抗体価の上昇が確認された。再 発後、さらに化学療法 (ChemTx)を施すことによって、臨床的に CRが認められた。 そして、この結果と対応して、抗体価の低下が確認された。
[0074] 以上のように、血清試料中の自己抗体 (抗 Sideroflexin— 3抗体)は、治療によつ て自己抗体価が低下し、再発時には自己抗体価の上昇が確認された。このように、 血清試料中の自己抗体 (抗 Sideroflexin- 3抗体)は、病勢を反映して増減している ことから、腫瘍マーカーとして優れた信頼性を示すといえる。また、これらの自己抗体 は、術後のフォローアップマーカーとしても、極めて有用であるといえる。
産業上の利用可能性
[0075] 本発明の腫瘍マーカーは、感度が高ぐまた、腫瘍に対する特異性が高い。このた め、本発明の腫瘍マーカーによれば、例えば、早期癌であっても高精度に検出でき る。したがって、本発明の腫瘍マーカーは、癌の診断、評価等に好ましく使用すること ができ、臨床分野、学術研究分野および新薬から治療方法の研究開発の分野の全 ての分野に広く用いることができ、その用途は制限されない。

Claims

請求の範囲
[1] 腫瘍マーカーであって、
ヒト由来 Sideroflexin、 f几'ヒト由来 SideroflexiniHi体、ヒト由来 Sideroflexin¾伝 子およびヒト由来 Sideroflexin遺伝子の mRN Aからなる群から選択される少なくとも 一つを含む腫瘍マーカー。
[2] 前記腫瘍マーカーが前記抗ヒト由来 Sideroflexin抗体を含み、前記抗体が血清中 の自己抗体である、請求の範囲 1記載の腫瘍マーカー。
[3」 目 ij cヒト由来 Sideroflexin;^、ヒト由来 Sideroflexin— 1、ヒト由来 Sideroflexin—
2およびヒト由来 Sideroflexin - 3の少なくとも一つである、請求の範囲 1記載の腫瘍 マ1 ~~力' ~~。
[4] 前記ヒト由来 Sideroflexinが、ヒト由来 Sideroflexin— 3である、請求の範囲 1記載 の腫瘍マーカー。
[5] 前記腫瘍マーカーが、脾癌、肝臓癌、胆管癌、結腸癌、直腸癌、胃癌、乳癌および 口腔癌力 なる群力 選択される少なくとも一つの癌の診断のためのマーカーである 、請求の範囲 1記載の腫瘍マーカー。
[6] 血清免疫測定法を用いた腫瘍診断キットであって、
腫瘍特異的抗原と標識化二次抗体とを含み、
前記腫瘍特異的抗原が、ヒト由来 Sideroflexinであり、前記標識化二次抗体が、 前記ヒト由来 Sideroflexinに対する自己抗体を認識する標識化抗体である、腫瘍診 断キット。
[7」 目 ij cヒト由来 Sideroflexin;^、ヒト由来 Sideroflexin— 1、ヒト由来 Sideroflexin—
2およびヒト由来 Sideroflexin— 3の少なくとも一つである、請求の範囲 6記載の腫瘍 診断キット。
[8] 前記ヒト由来 Sideroflexinが、ヒト由来 Sideroflexin— 3である、請求の範囲 6記載 の腫瘍診断キット。
[9] 前記ヒト由来 Sideroflexin力 組換タンパク質である、請求の範囲 6記載の腫瘍診 断キット。
[10] 前記腫瘍診断キットが、脾癌、肝臓癌、胆管癌、結腸癌、直腸癌、胃癌、乳癌およ び口腔癌力もなる群力も選択される少なくとも一つの癌の診断のためのキットである、 請求の範囲 6記載の腫瘍診断キット。
[11] 血清免疫測定法が、血清 ELISA法であり、前記標識化二次抗体が、酵素で標識さ れた二次抗体である、請求の範囲 6記載の腫瘍診断キット。
[12] 前記標識化二次抗体が、標識された抗ヒト由来 IgG抗体である、請求の範囲 6記載 の腫瘍診断キット。
[13] 腫瘍マーカーの測定方法であって、
前記腫瘍マーカーが、ヒト由来 Sideroflexinに対する血清中の自己抗体を含むマ 一力一であり、下記工程 (a)および (b)を含む、腫瘍マーカーの測定方法。
{a) 血滑試料にヒト由来 Sideroflexinを添カロし、目 ij Sヒト由来 Siderflexinに刖記血 清試料中の前記自己抗体を結合させて複合体を形成させる工程
(b) 前記複合体を測定する工程
[14] 前記 (b)工程にお 、て、前記複合体の測定方法が、前記複合体の前記自己抗体 に二次抗体を結合させ、前記二次抗体を測定する方法である、請求の範囲 13記載 の腫瘍マーカーの測定方法。
[15] 前記 (b)工程において、前記二次抗体が標識化二次抗体であり、前記標識を測定 することにより前記複合体を測定する、請求の範囲 14記載の腫瘍マーカーの測定方 法。
[16] 前記標識化二次抗体が、酵素で標識された抗ヒト由来 IgG抗体である、請求の範 囲 15記載の腫瘍マーカーの測定方法。
[17] 目 ij cヒト由来 Sideroflexin;^、ヒト由来 Sideroflexin— 1、ヒト由来 Sideroflexin—
2およびヒト由来 Sideroflexin— 3の少なくとも一つである、請求の範囲 13記載の腫 瘍マーカーの測定方法。
[18] 前記ヒト由来 Sideroflexinが、ヒト由来 Sideroflexin— 3である、請求の範囲 13記 載の腫瘍マーカーの測定方法。
[19] 前記ヒト由来 Sideroflexin力 組換えタンパク質である、請求の範囲 13記載の腫 瘍マーカーの測定方法。
[20] 前記腫瘍マーカーが、脾癌、肝臓癌、胆管癌、結腸癌、直腸癌、胃癌、乳癌および 口腔癌力 なる群力 選択される少なくとも一つの癌の診断のための腫瘍マーカー である、請求の範囲 13記載の腫瘍マーカーの測定方法。
[21] 患者の腫瘍を診断する方法であって、下記工程 (c)および (d)を含む腫瘍診断方 法。
(c)患者力 採取した生体試料における請求の範囲 1記載の腫瘍マーカーを測定す る工程
(d)前記測定した腫瘍マーカーの有無または量によって、癌の有無を判断する工程
[22] 前記(c)工程において、前記腫瘍マーカーが、ヒト由来 Sideroflexinに対する血清 中の自己抗体を含むマーカーであり、前記腫瘍マーカーを測定する方法力 請求の 範囲 13記載の腫瘍マーカーの測定方法である、請求の範囲 21記載の診断方法。
PCT/JP2007/051621 2006-03-31 2007-01-31 腫瘍マーカー、腫瘍診断キット、腫瘍マーカーの測定方法および腫瘍診断方法 WO2007116597A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008509701A JP5358808B2 (ja) 2006-03-31 2007-01-31 腫瘍マーカー、腫瘍診断キット、腫瘍マーカーの測定方法および腫瘍診断方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006096772 2006-03-31
JP2006-096772 2006-03-31

Publications (1)

Publication Number Publication Date
WO2007116597A1 true WO2007116597A1 (ja) 2007-10-18

Family

ID=38580900

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/051621 WO2007116597A1 (ja) 2006-03-31 2007-01-31 腫瘍マーカー、腫瘍診断キット、腫瘍マーカーの測定方法および腫瘍診断方法

Country Status (2)

Country Link
JP (1) JP5358808B2 (ja)
WO (1) WO2007116597A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018019990A1 (en) * 2016-07-28 2018-02-01 INSERM (Institut National de la Santé et de la Recherche Médicale) Methods of treatement of cancer disease by targetting tumor associated macrophage
JP2019531703A (ja) * 2016-07-29 2019-11-07 アンスティチュ ナショナル ドゥ ラ サンテ エ ドゥ ラ ルシェルシュ メディカル 腫瘍関連マクロファージを標的化する抗体及びその使用

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
MURASE ET AL.: "Proteome Kaisekiho ni yotte Miidasareta Shinki Shuyo Maker Kecchu ko sideroflexin3 Jiko Kotai", ANNUAL MEETING OF THE JAPAN CANCER ASSOCIATION KIJI, 65TH, 28 August 2006 (2006-08-28), pages 390 + ABSTR. NO . P-994, XP003018097 *
YE X. ET AL.: "Isolation and characterization of a novel human putative anemia-related gene homologous to mouse sideroflexin", BIOCHEMICAL GENETICS, vol. 41, no. 3/4, 2003, pages 119 - 125, XP019274259 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018019990A1 (en) * 2016-07-28 2018-02-01 INSERM (Institut National de la Santé et de la Recherche Médicale) Methods of treatement of cancer disease by targetting tumor associated macrophage
JP2019531703A (ja) * 2016-07-29 2019-11-07 アンスティチュ ナショナル ドゥ ラ サンテ エ ドゥ ラ ルシェルシュ メディカル 腫瘍関連マクロファージを標的化する抗体及びその使用
JP7219207B2 (ja) 2016-07-29 2023-02-07 アンスティチュ ナショナル ドゥ ラ サンテ エ ドゥ ラ ルシェルシュ メディカル 腫瘍関連マクロファージを標的化する抗体及びその使用

Also Published As

Publication number Publication date
JPWO2007116597A1 (ja) 2009-08-20
JP5358808B2 (ja) 2013-12-04

Similar Documents

Publication Publication Date Title
JP2021167805A (ja) SARS−CoV−2感染症を診断するための方法および試薬
KR101051435B1 (ko) 대장암 관련 마커를 이용한 대장암 진단 키트 및 이를 이용한 대장암 진단 방법
CN101014862A (zh) 用于检测卵巢疾病的方法和组合物
JP5998318B2 (ja) 新規血管炎の検査方法および検査用試薬
US20230408520A1 (en) Arteriosclerosis and cancer detection method using deoxyhypusine synthase gene as indicator
EP2620772A1 (en) Gastric cancer biomarkers and methods of use thereof
US6759204B2 (en) Method and kit for early diagnosis of cancer
JP5358808B2 (ja) 腫瘍マーカー、腫瘍診断キット、腫瘍マーカーの測定方法および腫瘍診断方法
JP6122779B2 (ja) 抗wt1抗体の測定方法
JP7432578B2 (ja) がんマーカーおよびその用途
US20100047830A1 (en) Compositions and methods for detecting cancers in a subject
CN110049996B (zh) En2蛋白的免疫原性片段肽或特异性识别其的抗体组合物
JP5211315B2 (ja) 腫瘍マーカ、腫瘍診断キットおよび腫瘍マーカの測定方法
JP5087767B2 (ja) βカゼインによって認識される複合体とその癌診断への応用
KR20230165283A (ko) 암을 위한 바이오마커 및 요법 표적으로서의 시트룰린화된 단백질
JP2024066398A (ja) がんの検査方法、試薬、キット及び装置
JP2023131930A (ja) 炎症性腸疾患を検査する方法
CN115925846A (zh) 用于检测针对Ses iPR-10变应原的抗体的方法和试剂
JP2014240771A (ja) Ku70/Ku86ヘテロダイマーに対する自己抗体の免疫測定方法、それに用いるキットおよびそれを用いた癌判定方法
JP2019190883A (ja) 新規肺がんマーカー
JPWO2011090017A1 (ja) Ku86に対する自己抗体の免疫測定方法、それに用いるキット、及びそれを用いた原発性肝細胞癌の判定方法
MX2008004723A (en) Non-invasive in vitro method to detect transitional cell carcinoma of the bladder
JP2014240772A (ja) Ku70に対する自己抗体の免疫測定方法、それに用いるキットおよびそれを用いた癌判定方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07707807

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2008509701

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07707807

Country of ref document: EP

Kind code of ref document: A1