WO2007116001A2 - Flüssig-kristalline rylentetracarbonsäurederivate und deren verwendung - Google Patents

Flüssig-kristalline rylentetracarbonsäurederivate und deren verwendung Download PDF

Info

Publication number
WO2007116001A2
WO2007116001A2 PCT/EP2007/053330 EP2007053330W WO2007116001A2 WO 2007116001 A2 WO2007116001 A2 WO 2007116001A2 EP 2007053330 W EP2007053330 W EP 2007053330W WO 2007116001 A2 WO2007116001 A2 WO 2007116001A2
Authority
WO
WIPO (PCT)
Prior art keywords
formula
radicals
compounds
alkyl
tri
Prior art date
Application number
PCT/EP2007/053330
Other languages
English (en)
French (fr)
Other versions
WO2007116001A3 (de
Inventor
Martin KÖNEMANN
Neil Gregory Pschirer
Klaus MÜLLEN
Fabian Nolde
Wojciech Pisula
Sibylle MÜLLER
Christopher Kohl
Original Assignee
Basf Se
MAX-PLANCK-Gesellschaft zur Förderung der Wissenschaften e.V.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Basf Se, MAX-PLANCK-Gesellschaft zur Förderung der Wissenschaften e.V. filed Critical Basf Se
Priority to EP07727799A priority Critical patent/EP2008319A2/de
Priority to US12/296,312 priority patent/US8481736B2/en
Priority to JP2009503588A priority patent/JP2009532436A/ja
Priority to AU2007235952A priority patent/AU2007235952C1/en
Publication of WO2007116001A2 publication Critical patent/WO2007116001A2/de
Publication of WO2007116001A3 publication Critical patent/WO2007116001A3/de
Priority to ZA2008/09444A priority patent/ZA200809444B/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/06Non-steroidal liquid crystal compounds
    • C09K19/34Non-steroidal liquid crystal compounds containing at least one heterocyclic ring
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D221/00Heterocyclic compounds containing six-membered rings having one nitrogen atom as the only ring hetero atom, not provided for by groups C07D211/00 - C07D219/00
    • C07D221/02Heterocyclic compounds containing six-membered rings having one nitrogen atom as the only ring hetero atom, not provided for by groups C07D211/00 - C07D219/00 condensed with carbocyclic rings or ring systems
    • C07D221/04Ortho- or peri-condensed ring systems
    • C07D221/06Ring systems of three rings
    • C07D221/14Aza-phenalenes, e.g. 1,8-naphthalimide
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D221/00Heterocyclic compounds containing six-membered rings having one nitrogen atom as the only ring hetero atom, not provided for by groups C07D211/00 - C07D219/00
    • C07D221/02Heterocyclic compounds containing six-membered rings having one nitrogen atom as the only ring hetero atom, not provided for by groups C07D211/00 - C07D219/00 condensed with carbocyclic rings or ring systems
    • C07D221/04Ortho- or peri-condensed ring systems
    • C07D221/18Ring systems of four or more rings
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B5/00Dyes with an anthracene nucleus condensed with one or more heterocyclic rings with or without carbocyclic rings
    • C09B5/62Cyclic imides or amidines of peri-dicarboxylic acids of the anthracene, benzanthrene, or perylene series
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
    • H10K85/621Aromatic anhydride or imide compounds, e.g. perylene tetra-carboxylic dianhydride or perylene tetracarboxylic di-imide
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/731Liquid crystalline materials
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K10/00Organic devices specially adapted for rectifying, amplifying, oscillating or switching; Organic capacitors or resistors having potential barriers
    • H10K10/40Organic transistors
    • H10K10/46Field-effect transistors, e.g. organic thin-film transistors [OTFT]
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K10/00Organic devices specially adapted for rectifying, amplifying, oscillating or switching; Organic capacitors or resistors having potential barriers
    • H10K10/40Organic transistors
    • H10K10/46Field-effect transistors, e.g. organic thin-film transistors [OTFT]
    • H10K10/462Insulated gate field-effect transistors [IGFETs]
    • H10K10/466Lateral bottom-gate IGFETs comprising only a single gate
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/20Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation comprising organic-organic junctions, e.g. donor-acceptor junctions
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/50Photovoltaic [PV] devices
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to liquid-crystalline rylenetetracarboxylic acid derivatives, processes for their preparation and their use as n-type organic semiconductors for the production of organic field-effect transistors and of solar cells.
  • organic semiconductors based on low-molecular or polymeric materials will increasingly be used in addition to the classical inorganic semiconductors.
  • These have many advantages over the classical inorganic semiconductors, for example a better substrate compatibility and a better processability of the semiconductor components based on them. They allow processing on flexible substrates and make it possible to precisely adapt their frontier orbital energies to the respective field of application using the methods of modular modeling. The significantly reduced cost of such components has brought a renaissance to the field of organic electronics research.
  • Organic Electronics focuses on the development of new materials and manufacturing processes for the production of electronic components based on organic semiconductor layers.
  • organic field-effect transistors OFET
  • organic light-emitting diodes OLEDs
  • organic photovoltaics OLEDs
  • OFET organic field-effect transistors
  • OLEDs organic light-emitting diodes
  • organic photovoltaics OLEDs
  • OFET organic field-effect transistors
  • OLEDs organic light-emitting diodes
  • organic photovoltaics organic field effect transistors are attributed a great development potential, for example in memory elements and integrated optoelectronic devices. There is therefore a great need for organic compounds which are suitable as organic semiconductors, in particular n-type semiconductors and especially for use in organic field-effect transistors and solar cells.
  • Direct conversion of solar energy into electrical energy in solar cells relies on the internal photoelectric effect of a semiconductor material, i. H. the generation of electron-hole pairs by absorption of photons and the separation of the negative and positive charge carriers at a p-n junction or a Schottky contact.
  • the photovoltage generated in this way can cause a photocurrent in an external circuit, by means of which the solar cell gives off its power.
  • Solar cells usually consist of two absorbing materials with different band gaps to use the solar energy as effectively as possible.
  • the first organic solar cells consisted of a two-layer system consisting of a copper phthalocyanine as the p-type conductor and PTCBI as the n-type conductor and exhibited an efficiency of 1%.
  • relatively high layer thicknesses are used (eg 100 nm).
  • the excited state created by the absorbed photons must reach a p-n junction to create a hole and an electron, which then flows to the anode and cathode.
  • most organic semiconductors only have excited state diffusion lengths of up to 10 nm. Even by the best known fabrication methods, the distance over which the excited state must be propagated can be reduced to at least 10 to 30 nm.
  • WO 2005/076383 describes phthalocyanine derivatives, their use as homeotropically oriented layers in electronic components and a process for their preparation.
  • DE-A-10212358 describes bichromophoric perylene derivatives in which an imide nitrogen is reacted with an acceptor chromophore, e.g. A dovetail residue, and the other amide nitrogen with a donor chromophore, e.g. As an aromatic, is substituted and their use. It is also a use as a dye in fluorescence solar collectors, for material testing, eg. As in the manufacture of semiconductor circuits, and to investigate microstructures of integrated semiconductor devices mentions.
  • an acceptor chromophore e.g. A dovetail residue
  • a donor chromophore e.g. As an aromatic
  • DE-A-10233179 describes perylenetetracarboxylic bisimides in which one of the imide nitrogens carries one dovetail radical and the other carries an ethylenically unsaturated radical.
  • DE-A-102004024909 describes perylenetetracarboxylic diimides having higher branched, optionally substituted alkyl substituents on the imide nitrogen atoms. These should be suitable, inter alia, as dyes or fluorescent dyes as part of a semiconductor integrated circuit, the dyes as such or in conjunction with other semiconductors, for. In the form of an epithelium. A concrete ability of these compounds for use as n-type semiconductors in organic field-effect transistors and solar cells is neither described, let alone proven.
  • JP-2003138154 describes terrylene tetracarboxylic diimides having n-alkyl substituents on the imide nitrogens. However, such compounds are usually not liquid-crystalline.
  • EP-A-071 1812 describes multiple chromophoric perylene imides in which at least two perylenetetracarboxylic acid diimide units are bonded to a bridging group via one of their imide nitrogens and their use inter alia in solar collectors.
  • DE-A-10225595 describes 1, 6,9,14-tetrasubstituted Terrylentetracarbonklare- diimides and their use inter alia in photovoltaics. A use as n-type semiconductor for the production of solar cells is not described.
  • the aromatic nucleus substituted with chlorine or bromine is not described.
  • DE-A-34 34 059 describes chlorinated perylenetetracarboxylic diimides, the aromatic nucleus carrying 2, 3, 5 or 6 chlorine atoms.
  • the substituents on the imide nitrogens are selected from a) straight-chain or branched C 1 -C 18 -alkyl which is unsubstituted or substituted by cyano, hydroxyl, cycloalkyl, alkylcarbonyloxy, alkenylcarbonyloxy or cycloalkylcarbonyloxy and where the alkyl chain is interrupted by O or S. or b) Cs-Cis-cycloalkyl which is unsubstituted or substituted by alkyl, carboalkoxy or trifluoromethyl.
  • a use as n-type semiconductor in organic field effect transistors and solar cells is not described.
  • DE-A-195 47 209 describes 1, 7-disubstituted perylenes-3,4,9,10-tetracarboxylic dianhydrides and perylenes-3,4,9,10-tetracarboxylic diimides in which the aromatic see core with at least one group , selected from unsubstituted or substituted aryloxy, arylthio, hetaryloxy or hetarylthio, is substituted.
  • a use as n-type semiconductor in organic field effect transistors and solar cells is not described.
  • US 2005/0176970 A1 describes the use of perylene-3,4-dicarboximides and perylene-3,4,9,10-bis (dicarboxi) imides with one or more electron-withdrawing groups as n-type semiconductors. Concrete compounds which have branched groups on both imide nitrogens and which are liquid crystalline are not described. US Pat. No. 6,806,368 describes perylenetetracarboxylic diimides with radicals which give the compounds liquid crystalline properties. Their use in electronic components, in transistors is mentioned, the explicit use as n-type semiconductor for the production of organic field effect transistors and solar cells is not described.
  • ChemPhysChem 2004, 5, 137-140 describes studies of the structural, electrochemical and charge transport properties of compounds of the formula
  • R n-Ci2H25, 4- (n-Ci2H25) C6H4, 2,6- (i-C3H 7) 2C6H3.
  • Organic field effect transistors and solar cells are not described.
  • R 1 , R 2 , R 3 and R 4 are independently hydrogen, chlorine, bromine, substituted or unsubstituted aryloxy, arylthio, arylamino, hetaryloxy or hetarylthio, R 5 , R 6 , R 7 , R 8 , R 9 and R 10 are independently hydrogen or long chain alkyl, alkoxy or alkylthio provided that at least four of these radicals are not hydrogen.
  • WO 2005/124453 describes the use of substituted perylenetetracarboxylic diimides as semiconductor material.
  • the amide nitrogen atoms may be substituted with a wide variety of different groups.
  • a concrete embodiment is a perylenetetracarboxylic diimide having an unsubstituted aromatic backbone, wherein the amide nitrogens are substituted with (3,4,5-tridodecyloxy) benzyl groups.
  • Further concrete embodiments are perylenetetracarboxylic diimides having substituents bonded via acetylene groups in the 1- and 7-position of the aromatic skeleton, wherein the amide nitrogens are substituted by (2,5-diisopropyl) phenyl) groups.
  • R 1 and R 2 together with the nitrogen atoms to which they are attached form a carbocyclic or heterocycle, as a semiconductor.
  • R and R ' are independently hydrogen or optionally substituted Ci-C3o-alkyl, Cs-C ⁇ -cycloalkyl, aryl or hetaryl, by Suzuki coupling reaction.
  • the synthesis of N- (2,6-diisopropylphenyl) -N'-cyclohexylterrylene-3,4: 11,12-tetracarboxylic diimide is disclosed.
  • WO 2005/070895 describes a process for the preparation of compounds of the formula
  • Organic Electronics 5 (2004), 237-249 compares the electrical properties of thin films of 1,6,7,12-tetrachloro-N, N'-dimethylperylene-3,4,9,10-biscarboximide with the non-chlorinated compound.
  • Th. B. Singh et al describe in a non-prepublished article in Organic Electronics 7 (2006), 480-489 the use of perylenetetracarboxylic diimides with branched alkyl radicals on the imide nitrogens as n-type semiconductors for organic field-effect transistors.
  • K. Müllen et al. describe in a non-prepublished article in Chem. Mater. 2006, 18, 3715-3725 describe the use of rylenetetracarboximides and coronetetracarboxylic diimides with branched alkyl radicals on the imide nitrogens as n-type semiconductors for organic field-effect transistors and in photovoltaic cells.
  • the present invention is based on the object to provide compounds that can be used as n-type semiconductors, for. B. for use in organic field effect transistors and solar cells, are suitable. These should preferably be processed in the form of a solution, so that expensive procedures for transferring into the gas phase omitted.
  • n 1, 2, 3 or 4
  • radicals R a and R b are independently selected from hydrogen and alkyl
  • radicals R c and R d are independently selected from groups of the formulas 11.1 to II.5: # (A) p - C (RO x
  • p 0 or 1
  • x stands for 2 or 3
  • A if present, is a Ci-Cio-alkylene group which may be interrupted by one or more non-adjacent groups selected from -O- and -S-,
  • radicals R 1 are each independently selected from C 4 -C 30 -alkyl which may be interrupted by one or more nonadjacent oxygen atom (s), where in the compounds of the formula 11.1 at least one of the radicals R 1 is also C 4 -C 30 Alkyloxy or C4-C3o-alkylthio can hen,
  • n-type semiconductor for organic field-effect transistors or solar cells excluding the use of compounds of the formula (I) in which n is 2, the radicals R n1 , R n2 , R n3 and R n4 are all hydrogen and the radicals R c and R d are (C 9 HIg) 2 CH - (ie of N, N'-di ((1-nonyl) decyl) -perylene-3,4: 9,10-tetracarboxylic acid diimide).
  • the compounds used in the invention are generally liquid crystalline. Due to the associated ability to form ordered phases (liquid crystalline phases, also referred to as mesophases), which are between liquid and solid, and thus the basic ability to self-organize, they are particularly advantageous for the intended use.
  • the compounds according to the invention have, for example, a disk-shaped (discotic) structure which can have a nematic or columnar arrangement. They are usually characterized by a high thermal stability and high phase transition temperatures for the transition from ordered to isotropic state, with increasing the size of the aromatic nucleus, the phase transition temperature increases. They are thus suitable, for example, for use in electronic components, such as displays that are operated under adverse climatic conditions, eg. B. in an outdoor use.
  • the compounds used according to the invention may adopt a so-called “edge-on” arrangement, which has a particularly advantageous effect on field-effect transistors, or a so-called “face-on” arrangement particularly advantageous for use in photovoltaics.
  • the organic semiconductor materials used according to the invention are particularly advantageous for use in solar cells. They are particularly suitable for the production of self-organizing two- and multi-phase photovoltaic cells with very good performance properties. With solar cells based on these semiconductors, very good quantum yields can generally be achieved.
  • n denotes the number of naphthalene units linked in the peri-position, which form the skeleton of the rylene compounds according to the invention.
  • n denotes the particular naphthalene group of the rylene skeleton to which the radicals are bonded.
  • Radicals R n1 to R n4 which are bonded to different naphthalene groups may each have the same or different meanings. Accordingly, it may be in the compounds of general formula I are naphthalene diimides, perylene diimides, terrylene diimides or quaterrylene diimides of the following formula:
  • the rylenes according to the invention are compounds in which two or more alkyl chains originate from two branching centers which are bonded directly or indirectly to the imide nitrogens.
  • One embodiment is the use of compounds of formula I, wherein the radicals R n1 , R n2 , R n3 and R n4 are all hydrogen.
  • Another embodiment is the use of compounds of formula I, wherein at least one of R ⁇ 1 , R ⁇ 2 , R ⁇ 3 and R ⁇ 4 is a radical other than hydrogen.
  • a preferred embodiment is the use of compounds of the formula I, wherein n is 1, 3 or 4, in particular 3 or 4.
  • the groups R c and R d may have the same or different meanings.
  • the groups R c and R d in a compound of the formula I or II preferably have the same meaning.
  • One embodiment of the invention is the use of compounds of the formula (I), where the groups R c and R d are groups of the formula (11.1) (so-called dovetail radicals).
  • the radicals R 1 are preferably selected from C 4 -Cs-Al kVl, preferably Cs-Cz-alkyl.
  • the groups R c and R d then both represent a group of the formula
  • radicals R 1 are selected from C 4 -Cs-AIkYl, preferably Cs-Cz-alkyl.
  • the radicals R 1 are then in particular linear alkyl radicals which are not interrupted by oxygen atoms.
  • Another embodiment of the invention is the use of compounds of formula (I) wherein the groups R c and R d are independently selected from groups of formulas 11.2 to 11.5.
  • a preferred embodiment is the use of compounds of formula (I) wherein the groups R c and R d are independently selected from groups of formula 11.2 and x in the groups of formula 11.2 is 3.
  • radicals R 1 may each have the same or different meanings. Preferably, all radicals R 1 have the same meaning in a compound of formula I or II.
  • the radicals R 1 are each independently selected from linear or branched C 4 -C 30 -alkyl which may be interrupted by one or more nonadjacent oxygen atoms (e). Preference is given to linear alkyl radicals. Also preferred are C 4 -Cis-alkyl, in particular C 5 -C 12 -alkyl. In the compounds of the formulas II.2 to II.5, the radicals R 1 are not C 4 -C 30 -alkyloxy or C 4 -C 30 -alkylthio (ie the radicals R 1 are bonded via a carbon atom to the aromatic or heteroaromatic ring).
  • one of the radicals R 1 may also be C 4 -C 30 -alkyloxy or C 4 -C 30 -alkylthio. In the compounds of the formula 11.1, however, the radicals R 1 are preferably C 4 -C 30 -alkyl which is also not interrupted by oxygen atom (e).
  • the abovementioned groups R c and R d have no alkylene group A. In a further preferred embodiment, the abovementioned groups R c and R d have a C 1 -C 4 -alkylene group A which is interrupted by 1, 2 or 3 nonadjacent groups which are selected from -O- and -S- can.
  • alkyl includes straight-chain or branched alkyl. It is preferably straight-chain or branched C 1 -C 30 -alkyl, in particular C 1 -C 20 -alkyl and very particularly preferably C 1 -C 12 -alkyl. Examples of alkyl groups are in particular methyl, ethyl, n-propyl,
  • alkyl also includes alkyl radicals whose carbon chains may be interrupted by one or more nonadjacent groups selected from -O-, -S-, -NR e -, -CO- and / or -SO 2 -.
  • R e is preferably hydrogen, alkyl, cycloalkyl, heterocycloalkyl, aryl or hetaryl.
  • alkyl also includes substituted alkyl radicals.
  • alkyl also apply to the alkyl moieties in alkoxy, alkylamino, alkylthio, etc.
  • Alkylene represents a linear saturated hydrocarbon chain having 1 to 10 and in particular 1 to 4 carbon atoms such as ethane-1, 2-diyl, propane-1, 3-diyl, butane-1, 4-diyl, pentane-1, 5-diyl or hexane-1, 6-diyl.
  • Halogen is fluorine, chlorine, bromine or iodine.
  • R c or R d may be mentioned in detail:
  • # is the point of attachment to the imide nitrogen atom of the rylenetetracarboxylic diimide
  • q is an integer 0, 1, 2, 3 or 4
  • R is C4-C30-alkyl
  • Radicals of the formula A include those in which q is 0, such as. B.
  • # is the point of attachment to the imide nitrogen atom of the rylenetetracarboxylic diimide
  • q is an integer 0, 1, 2, 3 or 4
  • R is C4-C30-alkyl
  • radicals of the formula B include those in which q is 0, such as. B.
  • # is the point of attachment to the imide nitrogen atom of the rylenetetracarboxylic diimide
  • q is an integer 0, 1, 2, 3 or 4
  • R is C4-C30-alkyl
  • Radicals of the formula C include those in which q is 0, such as. B.
  • # is the point of attachment to the imide nitrogen atom of the rylenetetracarboxylic diimide
  • q is an integer 0, 1, 2, 3 or 4
  • R is C4-C30-alkyl
  • Radicals of the formula D include those in which q is 0, such as. B.
  • # is the point of attachment to the imide nitrogen atom of the rylenetetracarboxylic diimide
  • q is an integer 0, 1, 2, 3 or 4
  • R is C4-C30-alkyl
  • Radicals of the formula E include those in which q is 0, such as. B.
  • 4,5,6-tri (n-butyl) -pyrimidin-2-yl, 4,5,6-tri (n-pentyl) -pyrimidin-2-yl, 4,5,6-tri (n-hexyl) -pyrimidin-2-yl, 4,5,6-tri (n-heptyl) -pyrimidin-2-yl, 4,5,6-tri (n-octyl) -pyrimidin-2-yl, 4,5,6 Tri (n-nonyl) -pyrimidin-2-yl, 4,5,6-trii (n-decyl) -pyrimidin-2-yl, 4,5,6-tri (n-undecy) -pyrimidine-2-yl yl, 4,5,6-tri (n-dodecyl) -pyrimidin-2-yl, 4,5,6-tri (n-tridecyl) -pyrimidin-2-yl,
  • 4,5,6-tri (n-tetradecyl) -pyrimidin-2-yl, 4,5,6-tri (n-pentadecyl) -pyrimidin-2-yl, 4,5,6-tri (n-hexadecyl) -pyrimidin-2-yl, 4,5,6-tri (n-heptadecyl) -pyrimidin-2-yl, 4,5,6-tri (n-octadecyl) -pyrimidin-2-yl, 4,5,6 Tri (nonadecyl) pyrimidin-2-yl, 4,5,6-tri (eicosyl) -pyrimidin-2-yl, 4,5,6-tri (docosanyl) -pyrimidin-2-yl, 4,5, 6-tri (tricosanyl) -pyrimidin-2-yl, 4,5,6-tri (tetracosanyl) -pyrimidin-2-yl, 4,5,6
  • q is 1, such as B. 4,5,6-tri (n-butyl) pyrimidin-2-ylmethyl, 4,5,6-tri (n-pentyl) pyrimidin-2-ylmethyl, 4,5,6-tri ( n-hexyl) -pyrimidin-2-ylmethyl, 4,5,6-tri (n-heptyl) -pyrimidin-2-ylmethyl, 4,5,6-tri (n-octyl) -pyrimidine-2 -yl-methyl, 4,5,6-tri (n-nonyl) -pyrimidin-2-ylmethyl, 4,5,6-trii (n-decyl) -pyrimidin-2-ylmethyl, 4.5 , 6-Tri (n-undecy) -pyrimidin-2-ylmethyl, 4,5,6-tri (n-dodecyl) -pyrimidin-2-ylmethyl, 4,5,6-tri (n-tridecyl )
  • 4,5,6-tri (tricosanyl) -pyrimidin-2-yl-ethyl, 4,5,6-tri (tetracosanyl) -pyrimidin-2-yl-ethyl, 4,5,6-tri (octacosanyl) -pyrimidine -2-yl-ethyl;
  • # is the point of attachment with the imide nitrogen atom of the rylenetetracarboxylic diimide
  • q is an integer 0, 1, 2, 3, 4, 5 or 8 and R is C4-C30-alkyl.
  • suitable radicals of the formula G include the formulas GO. a, GO. b, GO. c, G-La 1 G-Lb 1 G-Lc 1 G-2.a, G-2.b, G-2.c, G-3.a, G-3.b, G-3.C, G-4.a, G-4.b, G-4.c, G-5.a, G-5.b, G-5.C, G-6.a, G-6.b, G- 6.C.
  • # is the point of attachment to the imide nitrogen atom of the rylenetetracarboxylic diimide
  • R independently of one another are n-butyl, n-pentyl, n-hexyl, n-heptyl, n-octyl, n-nonyl, n-decyl, n-undecyl, n-dodecyl, n-tridecyl, n-tetradecyl, n-pentadecyl, n-hexadecyl, n-heptadecyl, n-octadecyl, n-nonadecyl, n-eicosyl, n-dorosanyl, n-tricosanyl, n-tetracosanyl, n-octacosanyl is
  • # is the linkage site to the imide nitrogen atom of the Rylentetracarbonklare- diimide
  • q is an integer 0, 1, 2, 3, 4, oderö is 5 and R is C4-C3o-alkyl, C 4 -C 3 o-alkylthio or C 4 -C 3 O-alkoxy stands.
  • Radicals of the formula H include those in which q is 0, such as. B.
  • 3-undecyldocosanyl 3-decyldocosanyl, 3-nonyldocosanyl, 3-octyldocosanyl, 3-heptyldocosanyl, 3-hexyldocosanyl, 3-pentyldocosanyl, 3-butyldocosanyl, 3-propyldocosanyl, 3-ethyldocosanyl, 3-methyldocosanyl, 3-tricosanyltetracosanyl, 3-docosanyltetracosanyl , 3-nonadecyltetracosanyl, 3-octadecyltetracosanyl, 3-heptadecyltetracosanyl, 3-hexadecyltetracosanyl, 3-pentadecyltetracosanyl, 3-pentadecyltetracosanyl, 3-tetradecyltetraco
  • 6-dodecyltetracosanyl 6-undecyltetracosanyl, 6-decyltetracosanyl, 6-nonyltetracosanyl, 6-octyltetracosanyl, 6-heptyltetracosanyl, 6-hexyltetracosanyl, 6-pentyltetracosanyl, 6-butyltetracosanyl, 6-propyltetracosanyl, 6-ethyltetracosanyl, 6-methyltetracosanyl ö-heptacosanyloctacosanyl , ö-Hexacosanyloctacosanyl, ö-Pentcosanyloctacosanyl, ö-Tetracosanyloctcosanyl, ö-Tricosanyloctacosanyl, ö-Docosanyloctacosanyl, ö-N
  • Preferred compounds are:
  • R and R ' are C4-Ci8-alkyl, preferably C5-Ci2-alkyl.
  • R ' is C 4 -Cs-AIkVl, more preferably Cs-Cz-alkyl.
  • FIG. 1 shows the thermal behavior of compounds 1 to 4, determined by means of DSC (differential scanning calorimetry).
  • 1 shows a direct transition from the columnar ordered state to the isotropic state at 130 ° C.
  • the isotropization temperature for 2 is 278 ° C. and for 3 is above 500 ° C.
  • FIG. 3 shows a further liquid-crystalline addition. stood at 188 0 C.
  • Corronen 4 undergoes a direct transition from the columnar ordered state to the isotropic state at 285 0 C.
  • TDI (2) and PDI (1) were placed between two glass slides and cooled from the isotropic phase.
  • Figure 2 shows the TDI film under a polarizing microscope.
  • TDI showed self-organization in large domains with sizes of hundreds of microns. Birefringence and high optical anisotropy indicate a pronounced uniaxial columnar arrangement with edge-on oriented discs. This arrangement is also confirmed by "large area X-ray scattering" in reflection The presence of a large number of sharp reflections in Figure 3 confirms the high crystallinity of the film of TDI 2.
  • the edge on array observed here is advantageously useful for semiconductors
  • the molecules can arrange in edge on alignment on the dielectric and transport charge carriers through the ⁇ planes of the rylene skeletons CDI molecules (4) were also sandwiched between two glass plates and cooled from the isotropic phase ,
  • Figure 4 the photograph is shown under a polarizing microscope showing negligible birefringence.
  • a WAXS wide angle XRay scattering transmission recording (FIG. 5) shows that there is a hexagonal arrangement of the molecules in the direction of the incident beam.
  • the molecules thus arrange themselves parallel to the surface normal. This face-on orientation is particularly advantageous for use in such solar cells, in which the absorber molecules must have semiconducting properties.
  • Such arranged absorbers can interact very well with the incident light and they direct the charge carriers directly in the direction of the substrates, or electrodes, on which they are arranged.
  • the two arrangements can be set in a targeted manner and depending on the application in an OFET or in a solar cell either face on (homeotropic) or edge on arrangements can be adjusted.
  • face on (homeotropic) or edge on arrangements can be adjusted.
  • the Terrylendiimiden, Perrylendiimiden and Quatrendendiimiden described above good OFETs should be able to be built and with the Corronen good solar cells.
  • Variant 1 (imidation of rylenetetracarboxylic dianhydrides):
  • the preparation of the compounds of the general formula I according to the invention can be based on known rylenetetracarboxylic dianhydrides.
  • the rylenecarboxylic acid imides can be prepared by imidization of the appropriately substituted or unsubstituted anhydrides as far as they are available.
  • n 1 (naphthalenetetracarboxylic dianhydrides), these are in any case unsubstituted, 2- to 4-brominated, 2- to 4-fluorinated and 2 to 4-fold cyanated and 2-chlorinated.
  • Another object of the invention is therefore a process for the preparation of compounds of formula I.
  • n 1 or 2
  • radicals R n1 , R n2 , R n3 and R n4 are independently selected from hydrogen, F, Cl, Br and CN,
  • radicals R c and R d are independently selected from groups of the formulas 11.1 to II.5: # (A) p - C (RO x
  • p 0 or 1
  • x stands for 2 or 3
  • A if present, is a Ci-Cio-alkylene group represented by one or more non-adjacent groups selected from -O- and
  • -S- can be interrupted
  • Carbon atom carrying the radicals R 1 additionally carries an H atom
  • radicals R 1 are each independently selected from C 4 -C 30 -alkyl which may be interrupted by one or more non-adjacent oxygen atom (s),
  • the imidation of carboxylic anhydride groups is known in principle.
  • the reaction of the dianhydride with the primary amine in the presence of a high-boiling solvent is known in principle.
  • the reaction of the dianhydride with the primary amine in the presence of a high-boiling solvent.
  • Suitable solvents for the imidation are non-polar aprotic solvents, such as hydrocarbons, eg. Benzene, toluene, xylene, mesitylene, petroleum ether, decalin, etc.
  • polar aprotic solvents such as trialkylamines, nitrogen-containing heterocycles, N, N-disubstituted aliphatic carboxamides (preferably N, N-di (C 1 -C 4 -alkyl) - ( C 1 -C 4) carboxamides) and N-alkyl lactams, such as dimethylformamide, diethylformamide, dimethylacetamide, dimethylbutyramide and N-methylpyrrolidone, preference being given to N-methylpyrrolidone.
  • solvents examples include: quinoline, isoquinoline, quinaldine, pyrimidine, N-methylpiperidine and pyridine; Dimethylformamide, diethylformamide, dimethylacetamide and dimethylbutyramide; N-methylpyrrolidone.
  • Preferred solvent of this group is quinoline.
  • Suitable solvents are also protic solvents, in particular aliphatic carboxylic acids, preferably C 2 -C 12 -carboxylic acids, such as acetic acid, propionic acid, butanoic acid and hexanoic acid, with acetic acid and propionic acid being preferred protic solvents.
  • protic solvents in particular aliphatic carboxylic acids, preferably C 2 -C 12 -carboxylic acids, such as acetic acid, propionic acid, butanoic acid and hexanoic acid, with acetic acid and propionic acid being preferred protic solvents.
  • the aprotic or protic solvents are preferred.
  • the aprotic solvents are preferable for the reaction of unsubstituted Rylencarbonklareanhydriden, while the protic solvents in the reaction of the more reactive substituted Rylencarbonklarean- hydrides are preferred.
  • the reaction can be carried out in the presence of an imidation catalyst.
  • Suitable imidation catalysts are Lewis and Brönstedt acids, for.
  • organic and inorganic acids eg. For example, formic acid, acetic acid, propionic acid and phosphoric acid.
  • Lewis acid are especially zinc, copper and iron salts, in the case of copper, the oxides can be used.
  • Preferred are the zinc and copper compounds, with the zinc compounds being particularly preferred.
  • Lewis acids examples include zinc acetate, zinc propionate, copper (I) oxide, copper (II) oxide, copper (I) chloride, copper (I) acetate and iron (III) chloride, with zinc acetate being most preferred.
  • a Lewis acid 0.5 to 3, preferably 0.5 to 1.5, equivalents per mole of anhydride group to be reacted in the rylenecarboxylic anhydride (Ia) are generally used.
  • the reaction temperature also depends on the reactivity of the educts and is generally in the range of 50 to 250 ° C. Temperatures of 150 to 230 ° C are preferred in the reaction-carrier unsubstituted Rylencarbonklareanhydriden, the reaction of the more reactive substituted Rylencarbonklareanhydride (Ia) is preferably carried out at 1 10 to 170 ° C.
  • the water of reaction formed and any water introduced by the auxiliaries can be distilled off during the reaction.
  • the reaction can be carried out under protective gas, for. As nitrogen or argon, take place.
  • the desired compounds are prepared by cooling and adding a protic solvent, such as water or a lower aliphatic alcohol, e.g. Example, a Ci-C4-alkanol, precipitated or crystallized, filtered off, washed with one of the above solvents and optionally a dilute mineral acid to remove residues of Rylendicarbonklareimidderivaten and / or inorganic salts and dried.
  • a protic solvent such as water or a lower aliphatic alcohol, e.g. Example, a Ci-C4-alkanol, precipitated or crystallized, filtered off, washed with one of the above solvents and optionally a dilute mineral acid to remove residues of Rylendicarbonklaten and / or inorganic salts and dried.
  • the resulting liquid-crystalline compounds may be subjected to column chromatography or column filtration or recrystallization or fractional crystallization for further purification.
  • perylene, terrylene and quaterrylene compounds according to the invention of general formula I in which the aromatic nucleus is unsubstituted can also be effected by Suzuki coupling reaction, preference is given to this process for the preparation of terrylene and quaterrylene compounds of general formula I. used.
  • a suitable method for the preparation of Terrylentetracarbonklare- diimides by Suzuki coupling is z. As described in WO 2005/070894.
  • Another object of the invention is therefore a process for the preparation of compounds of formula I.
  • n 2, 3 or 4
  • radicals R c and R d are independently selected from groups of the formulas 11.1 to II.5:
  • p 0 or 1
  • x stands for 2 or 3
  • A if present, is a Ci-Cio-alkylene group represented by one or more non-adjacent groups selected from -O- and
  • -S- can be interrupted
  • Carbon atom carrying the radicals R 1 additionally carries an H atom
  • radicals R 1 are each independently selected from C 4 -C 30 -alkyl which may be interrupted by one or more non-adjacent oxygen atom (s),
  • n ' is 1 or 2
  • R ⁇ are identical or different and independently of one another are hydrogen, C 1 -C 30 -alkyl, C 6 -C -cycloalkyl, aryl or hetaryl, where the radicals R ⁇ are also formed to form a five-membered ring containing the two oxygen atoms and the boron atom may be substituted by up to four Ci-C3o-alkyl, Cs-Cs-cycloalkyl, aryl or Hetaryl phenomenon may be substituted,
  • the bromination of perylene monoanhydride is preferably carried out in H2SO4.
  • the bromination of the Rylenmonoimide is preferably carried out in a carboxylic acid such as. As acetic acid, propionic acid or butyric acid.
  • the reaction temperature is preferably 20 to 100 ° C., more preferably 20 to 50 ° C. It is preferably 1 to 10 molar equivalents, preferably 1 to 5 molar equivalents of bromine, based on the compound to be brominated.
  • the reaction takes place for. B. with stirring for 1 to 24 hours.
  • the amount of carboxylic acid used is preferably from 10 to 100, preferably from 15 to 50 ml of carboxylic acid per gram of rylene derivative. 1 to 5 wt .-%, particularly preferably 1 to 2 wt .-% iodine, based on bromine, are preferably added as catalyst for bromination.
  • the reaction of the diborane IV with the starting material IMa in step ⁇ ) is preferably carried out in the presence of an aprotic organic solvent, a transition metal catalyst and a base.
  • the molar ratio of diborane IV to educt MIa is generally from 0.8: 1 to 3: 1, in particular from 1, 5: 1 to 2: 1.
  • Suitable solvents for step a) are in principle all aprotic solvents which are stable under the reaction conditions to bases having a boiling point above the selected reaction temperature in which the educts IMa completely dissolve at reaction temperature and the catalysts and bases used at least partially dissolve, so that substantially homogeneous reaction conditions are present.
  • Both nonpolar aprotic and polar aprotic solvents can be used, the nonpolar aprotic solvents being preferred.
  • Examples of preferred non-polar aprotic solvents are solvents boiling at> 100 ° C.
  • aliphatics in particular Cs-cis-alkanes
  • unsubstituted alkyl-substituted and condensed cycloaliphates
  • C 7 -C 10 -cycloalkanes C 6 -C -sol
  • Cycloalkanes which are substituted by one to three C 1 -C 6 -alkyl groups, polycyclic saturated hydrocarbons having 10 to 18 C atoms
  • alkyl- and cycloalkyl-substituted aromatics in particular benzene which is substituted by one to three C 1 -C 6 -alkyl groups or one Cs -Cs-cycloalkyl
  • fused aromatics which may be alkyl-substituted and / or partially hydrogenated (in particular naphthalene, which is substituted by one to four Ci-C ⁇ -alkyl groups) and mixtures of these solvents.
  • particularly preferred solvents include: octane, isooctane, nonane, isononane, decane, isodecane, undecane, dodecane, hexadecane and octadecane; Cycloheptane, cyclooctane, methylcyclohexane, dimethylcyclohexane, trimethylcyclohexane, ethylcyclohexane, diethylcyclohexane, propylcyclohexane, isopropylcyclohexane, dipropylcyclohexane, butylcyclohexane, tert-butylcyclohexane, methylcycloheptane and methylcyclooctane; Toluene, o-, m- and p-xylene, 1, 3,5-trimethylbenzene (mesitylene), 1, 2,4- and 1,2,3-
  • Very particularly preferred solvents are xylene (all isomers), mesitylene and especially toluene.
  • Suitable polar aprotic solvents are N, N-disubstituted aliphatic carboxylic acid amides (in particular N, N-di-C 1 -C 4 -alkyl-C 1 -C 4 -carboxamides), nitrogen-containing heterocycles and aprotic ethers (in particular cyclic ethers, diamines). aryl ethers and di-C 1 -C 6 -alkyl ethers of monomeric and oligomeric C 2 -C 3 -alkylene glycols which may contain up to 6 alkylene oxide units, especially diethylene glycol-C 1 -C 4 -alkyl ether).
  • solvents are: N, N-dimethylformamide, N, N-diethylformamide, N, N-dimethylacetamide and N, N-dimethylbutyramide; N-methyl-2-pyrrolidone, quinoline, isoquinoline, quinaldine, pyrimidine, N-methylpiperidine and pyridine; Tetrahydrofuran, dioxane, diphenyl ether, diethylene glycol di-methyl, diethyl, dipropyl, diisopropyl, di-n-butyl, di-sec-butyl and di-tert-butyl ethers, diethylene glycol methyl ethyl ether, triethylene glycol dimethyl and diethyl ether and triethylene glycol methyl ethyl ether.
  • nonpolar-aprotic solvents especially toluene
  • MIa polar aprotic solvents, in particular dioxane, being particularly preferred.
  • the amount of solvent is generally 10 to 1000 ml, preferably 20 to 300 ml, per g of educt IMa.
  • transition metal catalysts are palladium complexes, such as tetrakis (triphenylphosphine) palladium (0), tetrakis (tris-o-tolylphosphine) palladium (0), [1,2-bis (diphenylphosphino) ethane] palladium (M) chloride, [1, 1 'bis (diphenylphosphino) ferrocene] palladium (II) chloride, bis (triethylphosphine) palladium (II) chloride, bis (tricyclohexylphosphine) palladium (II) acetate, (2,2'-bipyridyl) palladium (M) chloride, bis (triphenylphosphine) palladium (II) chloride, tris (dibenzylideneacetone) dipalladium (0), 1,5-cyclooctadialpalladium (II) chloride, bis, bis
  • the transition metal catalyst is used in an amount of 1 to 20 mol%, especially 2 to 10 mol%, based on the starting material IMa.
  • the bases used are preferably the alkali metal salts, in particular the sodium and especially the potassium salts, weak organic and inorganic acids, such as sodium acetate, potassium acetate, sodium carbonate, sodium bicarbonate, potassium carbonate and potassium bicarbonate.
  • Preferred bases are the acetates, especially potassium acetate.
  • the reaction temperature is usually from 20 to 180 ° C, especially at 60 to 120 0 C.
  • the reaction time is usually 0.5 to 30 hours, in particular 1 to 20 hours.
  • the starting material is IMa and solvent are added, diborane IV, the transition metal catalyst and the base are added in succession and the mixture is heated for 0.5 to 30 h under protective gas to the desired reaction temperature. After cooling to room temperature, the solid constituents are filtered off from the reaction mixture and the solvent is distilled off under reduced pressure.
  • the purity of the Dioxaborolanylderivate V thus prepared is generally sufficient for further processing.
  • the crude product can be further purified by washing with a solvent which dissolves the impurities, such as water, or by column chromatography on silica gel with a mixture of methylene chloride and hexane or pentane or with toluene as the eluent.
  • reaction of the dioxaborolanyl derivative V with a compound MIb is preferably carried out in the presence of an organic solvent, if desired mixed with water.
  • the molar ratio of V to MIb is generally 0.8: 1 to 3: 1.
  • the molar ratio of V to IMb is generally 0.8: 1 to 3: 1, preferably 0.9: 1 to 2: 1.
  • the molar ratio of V to IMb is generally 0.8: 1 to 3: 1, preferably 1: 5: 1 to 2.5: 1.
  • Suitable solvents for step ⁇ ) are all solvents in which the dioxaborolanyl derivatives V and the educts IMb are completely soluble at reaction temperature and the catalysts and bases used at least partially, so that substantially homogeneous reaction conditions are present. Particularly suitable are the solvents already mentioned for step ⁇ ), whereby the alkyl-substituted benzenes are also preferred here.
  • the amount of solvent is usually from 10 to 1000 ml, preferably from 20 to 100 ml per g of dioxaborolanyl derivative V.
  • step ⁇ water is used as additional solvent.
  • 10 to 1000 ml, in particular 250 to 500 ml, of water per I of organic solvent are generally used.
  • Palladium complexes are also preferably used as transition metal catalysts in step ⁇ ), the same preferences apply here as in step a).
  • the amount of catalyst used is usually 1 to 20 mol%, in particular 1.5 to 5 mol%, based on the Dioxaborolanylderivat V.
  • the alkali metal salts of weak acids are preferred, the carbonates, such as sodium carbonate and especially potassium carbonate are particularly preferred.
  • the amount of base is from 0.1 to 10 mol, in particular from 0.2 to 5 mol, per mole of dioxaborolanyl derivative V.
  • the reaction temperature is generally 20 to 180 ° C, preferably 60 to 120 ° C. If water is used in step ⁇ ), it is advisable not to carry out the reaction at temperatures above 100 ° C., since otherwise it would be necessary to work under pressure.
  • the reaction is usually completed in 0.5 to 48 hours, especially in 5 to 20 hours.
  • step ⁇ it is expedient to proceed as follows in step ⁇ ):
  • Dioxaborolanyl derivative V and Edukt IMb and solvent are added, transition metal catalyst and the base, preferably dissolved in water or a water / alcohol mixture, are added, and the mixture is heated for 0.5 to 48 h under protective gas to the desired reaction temperature. After cooling to room temperature, the organic phase is separated from the reaction mixture and the solvent is distilled off under reduced pressure.
  • the purity of the coupling product VI thus produced is generally sufficient for further processing.
  • the crude product can be further purified by washing with water and, if desired, a suitable organic solvent, in particular a chlorinated aliphatic or aromatic hydrocarbon, or by column chromatography on silica gel with a mixture of methylene chloride and hexane or pentane or with toluene as the eluent.
  • a suitable organic solvent in particular a chlorinated aliphatic or aromatic hydrocarbon
  • the cyclodehydration can be either organic hydroxyl-containing and amino-functional and containing substantially undissolved base organic reactants. onsmedium or in the presence of a base-stable, high-boiling, organic solvent and an alkali or alkaline earth metal-containing base and a nitrogen-containing auxiliary base are made.
  • Suitable organic reaction medium are, in particular, amino alcohols which have 2 to 20, preferably 2 to 10, carbon atoms.
  • the carbon chain of these alcohols may be interrupted by oxygen atoms in ether function.
  • particularly suitable solvents are ethanolamine, triethanolamine and diethanolamine, with ethanolamine being preferred. It is also possible to use mixtures of alcohols and amines, each having a boiling point of at least 70 ° C and are liquid at the reaction temperature.
  • Suitable alkali metal salts in the reaction medium are in particular the alkali metal salts, in particular the sodium salts and, in particular, the potassium salts, weak organic and preferably weak inorganic acids, such as formates, acetates, propionates, bicarbonates and particularly preferably carbonates, in particular sodium carbonate and especially potassium carbonate.
  • the amount of base is 1 to 10 mol, preferably 2 to 5 mol, per mol of coupling product VI.
  • the reaction temperature is generally from 40 to 200 ° C, in particular from 80 to 160 0 C.
  • the reaction time is usually 0.5 to 24 hours, preferably 1 to 12 hours.
  • process ⁇ it is expedient to proceed by stirring a mixture of coupling product VI, solvent and base under inert gas at the desired reaction temperature for 0.5 to 24 h and cooling the product I to ambient temperature by adding an alcohol, such as ethanol, or precipitates from water from the reaction mixture, filtered off and washed with water.
  • an alcohol such as ethanol
  • the purification of the obtained product I can be carried out as follows: Catalyst residues can be washed by rapid filtration over silica gel with a halogenated aliphatic hydrocarbon such as methylene chloride. Residues of unreacted perylene and terrylene educts can be removed by column chromatography on silica gel with methylene chloride as eluent or by repeated washing with hexane or pentane.
  • the preparation of Terrylen- and Quaterrylen compounds of the general formula I according to the invention can also be carried out by direct synthesis.
  • a suitable process for the preparation of Terrylentetracarbonklarediimiden by direct synthesis is z.
  • a suitable method for the preparation of Quaterrylentetracarbon Acidiimiden by direct synthesis is z.
  • Another object of the invention is therefore a process for the preparation of compounds of formula I.
  • n 3 or 4
  • radicals R c and R d are independently selected from groups of the formulas 11.1 to II.5:
  • # represents the point of attachment to the imide nitrogen atom
  • p is O or 1
  • x stands for 2 or 3
  • A if present, is a Ci-Cio-alkylene group which may be interrupted by one or more non-adjacent groups selected from -O- and -S-,
  • radicals R 1 are each independently selected from C 4 -C 30 -alkyl which may be interrupted by one or more non-adjacent oxygen atom (s),
  • n "' is 0 or 1 and Z is hydrogen, bromine or chlorine.
  • non-halogenated educts VIII are used, it is generally advisable to carry out the reaction under more severe reaction conditions, ie. H. larger excesses of compound VIII and optionally in addition to a strong alkali metal-containing base to use a nitrogen-containing auxiliary base and polar aprotic solvents.
  • the molar ratio of compound VIII to perylene-3,4-dicarboximide VII when using halogenated educt VIII is usually 4 to 1: 1 and preferably 2 to 1: 1, while it is not halo educt VIII is generally from 8 to 1: 1 and preferably from 6 to 2: 1.
  • solvents which are stable to bases under the reaction conditions are suitable as solvents.
  • aprotic solvents Preference is given to aprotic solvents.
  • solvents having a boiling point above the selected reaction temperature in which the perylene-3,4-dicarboximides VII and the compounds fertilize VIII completely at reaction temperature and at least partially dissolve the bases used, so that substantially homogeneous reaction conditions are present. It is possible to use both nonpolar aprotic and polar aprotic solvents, preference being given to nonpolar aprotic solvents and ether-based aprotic solvents when using halogenated educts VIII and the polar aprotic solvents when using nonhalogenated educts VIII.
  • non-polar aprotic solvents are solvents boiling at> 100 ° C. from the following groups: aliphatics (in particular Cs-C-alkanes), unsubstituted, alkyl-substituted and condensed cycloaliphatics (in particular unsubstituted C 7 -C 10 -cycloalkanes, C 6 -C 10) Cs-cycloalkanes which are substituted by one to three C 1 -C 6 -alkyl groups, polycyclic saturated hydrocarbons having 10 to 18 C atoms), alkyl- and cycloalkyl-substituted aromatics (in particular benzene which is substituted by one to three C 1 -C 6 -alkyl groups or a Cs-C ⁇ -cycloalkyl radical is substituted) and fused aromatics which may be alkyl-substituted and / or partially hydrogenated (in particular naphthalene which is substituted by one to four
  • non-polar aprotic solvents are: octane, isooctane, nonane, isononane, decane, isodecane, undecane, dodecane, hexadecane and octadecane; Cycloheptane, cyclooctane, methylcyclohexane, dimethylcyclohexane, trimethylcyclohexane, ethylcyclohexane, diethylcyclohexane, propylcyclohexane, isopropylcyclohexane, dipropylcyclohexane, butylcyclohexane, tert-butylcyclohexane, methylcycloheptane and methylcyclooctane; Toluene, o-, m- and p-xylene, 1, 3,5-trimethylbenzene (mesitylene), 1, 2,4
  • non-polar aprotic solvents are xylene (all isomers), mesitylene and especially toluene and decalin.
  • polar aprotic solvents examples include N, N-disubstituted aliphatic carboxylic acid amides (in particular N, N-di-C 1 -C 4 -alkyl-C 1 -C 4 -carboxamides), nitrogen-containing heterocycles and aprotic ethers (in particular cyclic ethers, diaryl ethers and di-C 1 -C 6 -alkyl ethers of monomeric and oligomeric C 2 -C 3 -alkylene glycols which may contain up to 6 alkylene oxide units, especially diethylene glycol di-C 1 -C 4 -alkyl ethers).
  • preferred polar aprotic solvents are: N, N-dimethylformamide, N, N-diethylformamide, N, N-dimethylacetamide and N, N-dimethylbutyramide; N-methyl-2-pyrrolidone, quinoline, isoquinoline, quinaldine, pyrimidine, N-methylpiperidine and pyridine; Tetrahydrofuran, dioxane, diphenyl ether, diethylene glycol dimethyl, diethyl, dipropyl, diisopropyl, di-n-butyl, di-sec-butyl and di-tert-butyl ether, diethylene glycol methyl ethyl ether, Triethylene glycol dimethyl and
  • diethyl ether and triethylene glycol methyl ethyl ether with diethylene glycol diethyl ether, diphenyl ether and especially diethylene glycol dimethyl ether being particularly preferred.
  • the amount of solvent is generally 50 to 250 ml of non-polar aprotic solvent or 10 to 50 ml of polar aprotic solvent per g of perylene-3,4-dicarboxylic acid imide VII.
  • strong inorganic and organic alkali or alkaline earth metal-containing bases are suitable, wherein the alkali metal-containing bases are particularly suitable.
  • Preferred inorganic bases are alkali metal hydroxides and alkaline earth metal hydroxides and amides
  • preferred organic bases are alkali metal and alkaline earth metal alkoxides (in particular the C 1 -C 6 alkoxides, especially tert-C 4 -C 6 alkoxides), alkali metal and alkaline earth metal (phenyl ) Alkylamides (especially the bis (Ci-C4-alkyl) amides) and Triphenylmethylme- tallate.
  • Particularly preferred are the alkali metal alcoholates.
  • Preferred alkali metals are lithium, sodium and potassium, with potassium being most preferred.
  • Particularly suitable alkaline earth metals are magnesium and calcium.
  • particularly preferred bases include: lithium hydroxide, sodium hydroxide and potassium hydroxide; Lithium amide, sodium amide and potassium amide; Lithium methylate, sodium methoxide, potassium methoxide, lithium ethylate, sodium ethoxide, potassium ethylate, sodium isopropylate, potassium isopropylate, sodium tert-butoxide and potassium tert-butoxide; Lithium dimethylamide, lithium diethylamide, lithium diisopropylamide, sodium diisopropylamide, triphenylmethyllithium, triphenylmethylsodium and triphenylmethylpotassium.
  • Very particularly preferred bases are lithium diisopropylamide, sodium methoxide, sodium tert-butoxide, especially potassium methoxide and potassium hydroxide and in particular potassium tert-butoxide.
  • Suitable bases are alkylamines which are liquid at the reaction temperatures, in particular tri-C 3 -C 6 -alkylamines, such as tripropylamine and tributylamine, alcoholamines, in particular mono-, di- and tri-C 2 -C 4 -alcoholamines, such as mono-, di- and triethanolamine and in particular heterocyclic bases, such as pyridine, N-methylpiperidine, N-methyl-piperidone, N-methylmorpholine, N-methyl-2-pyrrolidone, pyrimidine, quinoline, isoquinoline, quinaldine and especially diazabicyclononene (DBN) and diazabicycloundecene ( DBU).
  • DBN diazabicyclononene
  • DBU diazabicycloundecene
  • Suitable quantities for the auxiliary base in the case of the halogenated educts VIII are generally from 1 to 15 g, preferably from 1 to 5 g, per g of perylene-3,4-dicarboxylic acid imide VII and in the case of the nonhalogenated educts IM in the Usually from 1 to 60 g, preferably from 5 to 20 g, per g of perylene-3,4-dicarboximide II.
  • halogenated starting materials VIII are usually 2 to 10 mol, in particular 2 to 4 mol, per mol of perylene-3 , 4-dicarboximide VII and generally non-halogenated Edukten VIII generally 2 to 20 mol, preferably 8 to 20 mol, per mole of perylene-3,4-dicarboximide VII used.
  • the alkali metal base can be used in solid or in dissolved form.
  • the alkali metal base can be used in combination with a non-polar aprotic reaction solvent in which it is not sufficiently soluble, it can be dissolved in an alcohol having a higher base strength than the alkali metal base.
  • Particularly suitable are tertiary aliphatic alcohols which may contain aryl substituents and have a total of four to twelve carbon atoms, z.
  • tert-butanol 2-methyl-2-butanol (tert-amyl alcohol), 3-methyl-3-pentanol, 3-ethyl-3-pentanol, 2-phenyl-2-pentanol, 2,3-di methyl 3-pentanol, 2,4,4-trimethyl-2-pentanol and 2,2,3,4,4-pentamethyl-3-pentanol.
  • the reaction temperature is usually 50 to 210 ° C, preferably 70 to 180 0 C.
  • reaction temperature in the upper region in order to deprotonate the perylene-3,4-dicarboxylic acid imide VII in the 9-position.
  • the subsequent coupling reaction with the starting material VIII can then generally be carried out at a lower temperature, which is particularly recommended for educts VIII with base-labile substituents on the imide nitrogen atom.
  • the reaction time is generally 1 to 3 hours for halogenated educts VIII and 2 to 8 hours for non-halogenated educts VIII.
  • non-halogenated reactants VIII is expediently carried out as follows:
  • Perylene-3,4-dicarboximide VII, compound VIII and base are added, solvent and optionally auxiliary base are added under protective gas and the mixture is heated to the desired reaction temperature with stirring and under protective gas for the desired time.
  • the compounds I are precipitated by adding a protic solvent which dissolves the other components, e.g. As of Ci-C3-alcohols and especially water, from. It is filtered off and washed with one of the solvents mentioned, in particular with one of the alcohols.
  • halogenated Edukte VIII can proceed analogously. However, it is also possible initially to heat only a mixture of perylene-3,4-dicarboximide VII, base, optionally auxiliary base and solvent with stirring and protective gas to a temperature in the range from 120 to 210 ° C. (deprotonation) and then to react the starting material VIII, if appropriate After lowering the temperature to 50 to 120 ° C, add.
  • the products I z. B. from a mixture of halogenated solvents such as chloroform and methylene chloride, and alcohols such as methanol, ethanol and isopropanol, recrystallization.
  • halogenated solvents such as chloroform and methylene chloride
  • alcohols such as methanol, ethanol and isopropanol
  • the quaterrylene-3,4: 13,14-tetracarboxylic diimides I can be prepared in one step by reacting a perylene-3,4-dicarboxylic acid imide VIII (referred to below as imide VIII) with a perylene-3, 4-dicarboxylic acid imide VII (referred to below as imide VII) in the presence of a base-stable, high-boiling, organic solvent and an alkali metal or alkaline earth metal-containing base.
  • imide VIII perylene-3,4-dicarboxylic acid imide VIII
  • imide VII referred to below as imide VII
  • imide VIII it is possible to use both a halogenated in the 9-position, ie chlorinated or in particular brominated, and a non-halogenated imide, the atom at Imidstickstoff- atom X 1 (R ') X , which with the radical X 2 (R ") y matches or differs from the imide nitrogen atom of imide VII.
  • halogenated imide VIII allows the targeted synthesis of unsymmetrical quaterrylene-3, 4: 13,14-tetracarboxylic diimides I (R ⁇ R '). In this case, it is advantageous to use a VIII to VII VII to VI ratio of 1: 1, especially 2 to 1: 1.
  • non-halogenated imide VIII it is generally advisable to carry out the reaction under more severe reaction conditions, ie. H. in addition to a strong alkali metal-containing base to use a nitrogen-containing auxiliary base.
  • Suitable solvents are in principle all high-boiling solvents which are stable under the reaction conditions (boiling point> 100 ° C. and above the selected reaction temperature) in which the bases used are completely soluble at reaction temperature and the imides VII and VIII at least partially, preferably completely, so that largely homogeneous reaction conditions are present.
  • aprotic nonpolar-aprotic and polar-aprotic
  • protic solvents can be used.
  • solvent mixtures can also be used.
  • non-polar aprotic solvents are hydrocarbons boiling at> 100 ° C. from the following groups: aliphatics (in particular Ce-C 18 -alkanes), unsubstituted, alkyl-substituted and condensed cycloaliphatics (in particular unsubstituted C 7 -C 10 -cycloalkanes, C 6 -C 8).
  • Cycloalkanes which are substituted by one to three C 1 -C 6 -alkyl groups, polycyclic saturated hydrocarbons having 10 to 18 C atoms), alkyl- and cycloalkyl-substituted aromatics (in particular benzene, which is substituted by one to three C 1 -C 6 -alkyl groups or Substituted Cs-cycloalkyl) and fused aromatics which may be alkyl-substituted and / or partially hydrogenated (in particular naphthalene, which is substituted by one to four Ci-C ⁇ -alkyl groups) and mixtures of these solvents.
  • Octane isooctane, nonane, isononane, decane, isodecane, undecane, dodecane, hexadecane and octadecane; Cycloheptane, cyclooctane, methylcyclohexane, dimethylcyclohexane, trimethylcyclohexane, ethylcyclohexane, diethylcyclohexane, propylcyclohexane, isopropylcyclohexane, dipropylcyclohexane, butylcyclohexane, tert-butylcyclohexane, methylcycloheptane and methylcyclooctane;
  • Butylbenzene and cyclohexylbenzene Naphthalene, decahydronaphthalene (decalin), 1- and 2-methylnaphthalene, 1- and 2-ethylnaphthalene; Combinations of the abovementioned solvents, as can be obtained from the high-boiling, partly or fully hydrogenated fractions of thermal and catalytic cracking processes in the crude oil or naphtha processing, for.
  • non-polar aprotic solvents are xylene (all isomers), mesitylene and especially decalin.
  • Suitable polar aprotic solvents are nitrogen-containing heterocycles and aprotic ethers (in particular cyclic ethers, diaryl ethers and di-C 1 -C 6 -alkyl ethers of monomeric and oligomeric C 2 -C 3 -alkylene glycols which may contain up to 6 alkylene oxide units especially diethylene glycol di-Ci-C4-alkyl ether).
  • nitrogen-containing heterocycles and aprotic ethers in particular cyclic ethers, diaryl ethers and di-C 1 -C 6 -alkyl ethers of monomeric and oligomeric C 2 -C 3 -alkylene glycols which may contain up to 6 alkylene oxide units especially diethylene glycol di-Ci-C4-alkyl ether).
  • diphenyl ether Ethylene glycol diethyl, dipropyl, diisopropyl, di-n-butyl, di-sec-butyl and di-tert-butyl ethers and ethylene glycol methyl ethyl ether, di- and triethylene glycol di-ethylene glycol. methyl, diethyl, dipropyl, diisopropyl, di-n-butyl, di-sec-butyl and di-tert-butyl ethers and di- and triethylene glycol methyl ethyl ether.
  • Diethylene glycol diethyl ether, diphenyl ether and above all diethylene glycol dimethyl ether are particularly preferred.
  • suitable protic solvents are monohydric and polyhydric, aliphatic and aromatic alcohols boiling at> 100 ° C. (in particular monohydric C 4 -C 18 -alkanols, polyhydric C 2 -C 4 -alcohols and their oligomers, such as C 2 -C 3 -alkylene glycols, bis to contain 6 alkylene oxide units, and phenols), ether alcohols (in particular mono-C 1 -C 6 -alkyl and phenyl ethers of monomeric and oligomeric C 2 -C 3 -alkylene glycols which may contain up to 6 alkylene oxide units, especially ethylene glycol mono- C4-C6-alkyl ethers) and amino alcohols (in particular mono-, di- and tri-C2-C4-alcoholamines).
  • monohydric C 4 -C 18 -alkanols polyhydric C 2 -C 4 -alcohols and their oligomers, such as
  • protic solvents are:
  • n-butanol isobutanol, tert-butanol, n-pentanol, isopentanol, 2-methylbutanol, 2-methyl-2-butanol (tert-amyl alcohol), hexanol, 2-methylpentanol, 3-methyl-3-pentanol, heptanol , 1-ethylpentanol, 3-ethyl-3-pentanol,
  • Ethylene glycol diethylene glycol, triethylene glycol, tetraethylene glycol, pentaethylene glycol and hexaethylene glycol, propylene glycol, 1, 3-propanediol, glycerol and 1, 2, 1, 3, and 1, 4-butanediol;
  • Particularly preferred protic solvents are ethylene glycol and ethanolamine.
  • the amount of solvent is generally 1 to 20 g, preferably 2 to 10 g and more preferably 2 to 5 g per g of imide VII and VIII.
  • strong inorganic and organic alkali or alkaline earth metal-containing bases are suitable, wherein the alkali metal-containing bases are particularly suitable.
  • Preferred inorganic bases are alkali metal and alkaline earth metal hydroxides and amides
  • preferred organic bases are alkali metal and alkaline earth metal alcoholates (in particular the C 1 -C 10 alcoholates, especially tert-C 4 -C 10 alcoholates), alkali metal and alkaline earth metal (phenyl) alkylamides (In particular the bis (Ci-C4-alkyl) amides) and Triphenylmethylme- tallate.
  • Particularly preferred are the alkali metal alcoholates.
  • Preferred alkali metals are lithium, sodium and potassium, with potassium being most preferred.
  • Particularly suitable alkaline earth metals are magnesium and calcium.
  • lithium hydroxide, sodium hydroxide and potassium hydroxide Lithium amide, sodium amide and potassium amide; Lithium methylate, sodium methoxide, potassium methoxide, lithium ethylate, sodium ethoxide, potassium ethylate, sodium isopropylate, potassium isopropylate, sodium tert-butoxide and potassium tert-butoxide; Lithium (1, 1-dimethyl) octylact, sodium (1, 1-dimethyl) octylate, quinium (1, 1-dimethyl) octylate, lithium dimethylamide, lithium diethylamide, lithium diisopropylamide, sodium diisopropylamide, triphenylmethyllithium, triphenylmethylsodium and triphenylmethylpotassium ,
  • Very particularly preferred bases are lithium diisopropylamide, sodium methoxide, sodium tert-butoxide, especially potassium methoxide and potassium hydroxide and in particular potassium tert-butoxide.
  • Suitable bases are alkylamines which are liquid at the reaction temperatures, in particular tri-C 3 -C 6 -alkylamines, such as tripropylamine and tributylamine, alcoholamines, in particular mono-, di- and tri-C 2 -C 4 -alcoholamines, such as mono-, di- and triethanolamine, and in particular heterocyclic bases, such as pyridine, N-methylpiperidine, N-methylpiperidone, N-methylmorpholine, N-methyl-2-pyrrolidone, pyrimidine, quinoline, isoquinoline, quinaldine and especially diazabicyclononene (DBN) and diazabicycloundecene (DBU).
  • DBN diazabicyclononene
  • DBU diazabicycloundecene
  • Suitable amounts used for the auxiliary base are generally 0.5 to 25 g, preferably 1 to 10 g, particularly preferably 1 to 3 g, per g of imide VII and VIII.
  • the alkali metal or alkaline earth metal base is generally used in amounts of from 2 to 20 mol, in particular from 2 to 10 mol, per mole of imide VII and VIII.
  • the alkali metal base can be used in solid or in dissolved form.
  • the alkali metal base can be used in combination with a non-polar aprotic reaction solvent in which it is not sufficiently soluble, it can be dissolved in an alcohol having a higher base strength than the alkali metal base.
  • Particularly suitable are tertiary aliphatic alcohols which may contain aryl substituents and have a total of four to twelve C atoms, z.
  • the reaction temperature is usually 70 to 210 ° C, preferably 120 to 180 0 C.
  • unsymmetrical quaterrylene-3,4: 13,14-tetracarboxylic diimides it may be advantageous for the preparation of unsymmetrical quaterrylene-3,4: 13,14-tetracarboxylic diimides to first select a reaction temperature in the upper region in order to deprotonate the imide VII in the 9-position.
  • the subsequent coupling reaction with the halogenated imide VIII can then be carried out usually at lower temperature, which is particularly recommended in the presence of base labile substituents (eg., Cyclohexyl) on imide nitrogen atom.
  • the reaction time is generally 1 to 3 h when using halogenated imides VIII and 2 to 12 h when using non-halogenated imides VIII.
  • reaction product may be desirable to subject the reaction product to oxidation. This can most easily be done by blowing atmospheric oxygen into the still warm reaction mixture.
  • oxidizing agents such as preferably hydrogen peroxide, but also aldehyde group-containing sugars, for. As glucose, especially after the reaction.
  • Another object of the invention is a process for the preparation of compounds of formula I.
  • n 1 or 2
  • At least one of the radicals R n1 , R n2 , R n3 and R n4 is CN and the radicals R n1 , R n2 , R n3 and R n4 , which are not CN, are hydrogen,
  • R a and R b are independently selected from hydrogen and alkyl
  • R c and R d are independently selected from groups of formulas 11.1 to II.5:
  • p 0 or 1
  • x stands for 2 or 3
  • A if present, is a Ci-Cio-alkylene group represented by one or more non-adjacent groups selected from -O- and
  • -S- can be interrupted
  • Carbon atom carrying the radicals R 1 additionally carries an H atom
  • the radicals R 1 are each independently selected from C 4 -C 30 -alkyl which may be interrupted by one or more nonadjacent oxygen atoms, where in the compounds of the formula 11.1 at least one of the radicals R 1 is also C3o-alkyloxy or C4-C3o-alkylthio can stand, in which a compound of the formula I in which at least one of R ⁇ 1 , R n2 , R n3 and R n4 is Br or Cl and the radicals R n1 , R n2 , R n3 and R n4 , which are not Br or Cl, stand for hydrogen, a substitution of the bromine or chlorine by cyano groups in an aromatic hydrocarbon as a solvent undergo.
  • Suitable halogen exchangers are alkali metal cyanides, such as KCN and NaCN, and especially zinc cyanide.
  • the reaction is preferably carried out in the presence of at least one transition metal catalyst.
  • Palladium complexes such as tetrakis (triphenylphosphine) palladium (0), tetrakis (tris-o-tolylphosphine) palladium (O), [1,2-bis (diphenylphosphino) ethane] palladium (II) chloride, are particularly suitable transition metal catalysts.
  • the products I z. B. from a mixture of halogenated solvents such as chloroform and methylene chloride, and alcohols such as methanol, ethanol and isopropanol, recrystallization.
  • halogenated solvents such as chloroform and methylene chloride
  • alcohols such as methanol, ethanol and isopropanol
  • N, N-disubstituted aliphatic carboxylic acid amides such as N, N-dimethylformamide and N, N-dimethylacetamide, or nitrogen-containing heterocycles, such as N-methylpyrrolidone, or mixtures thereof with alcohols, such as methanol , Ethanol and isopropanol, recrystallize or wash with these solvents.
  • the products I can also be fractionated from sulfuric acid.
  • the quaterrylene-3,4: 13,14-tetracarboxylic diimides I can be obtained in good yields (generally from 30 to 60%) and high purities (usually from 90 to 99%) in an economical manner in one step manufacturing be put. Both symmetrically and asymmetrically substituted quaterrylene-3,4: 13,14-tetracarboxylic diimides I are accessible to the imide nitrogen atoms in an advantageous manner.
  • the compounds according to the invention and obtainable by the process according to the invention are particularly advantageously suitable as organic semiconductors. They act as n-semiconductors and are characterized by their air stability. Furthermore, they have a high charge transport mobility and have a high on / off ratio. They are particularly suitable for organic field effect transistors.
  • the compounds according to the invention are advantageously suitable for the production of integrated circuits (ICs) for which hitherto customary n-channel MOSFETs (metal oxide semiconductor field-effect transistors (MOSFETs) are used, which are then CMOS-analog semiconductor components.
  • ICs integrated circuits
  • MOSFETs metal oxide semiconductor field-effect transistors
  • the processes according to the invention can be further processed by one of the following methods: printing (offset, flexo, engraving, screen, inkjet, electrophotography), evaporation , Laser transfer, photolithography, dropcasting, and are particularly suitable for use in displays and RFID tags.
  • the deposition of compounds which can be converted into the gas phase of the general formulas I and II is effected by a vapor deposition method (Physical Vapor Deposition PVD).
  • PVD processes are performed under high vacuum conditions and include the following steps: evaporation, transport, deposition.
  • the resulting semiconductor layers generally have a thickness sufficient for an ohmic contact between the source and drain electrodes.
  • the deposition may be carried out under an inert atmosphere, e.g. B. under nitrogen, argon or helium.
  • the deposition is usually carried out at ambient pressure or under reduced pressure.
  • a suitable pressure range is from about 10 "7-1, 5 bar.
  • the compound of formula I or II on the substrate in a thickness of 10 to
  • the compound of formula I or II is deposited at least partially in crystalline form.
  • the deposition of at least one compound of general formula I or II (and optionally other semiconductor materials) by a wet deposition process (wet processing). These include z. B. Rotating coating (spin coating) and evaporation from solutions (drop casting).
  • the wet-processable compounds of the formulas (I) and (II) should therefore also be suitable for the production of semiconductor elements, especially OFETs or based on OFETs, by a printing process. Standard printing processes (inkjet, felo, offset, gravure, gravure, nano print) can be used.
  • Preferred solvents for the use of the compounds of the formulas (I) and (II) in a printing process are aromatic solvents such as toluene, xylene, etc. It is possible to add to these "semiconductor inks" thickening substances, such as polymers, for. As polystyrene, etc. It uses as a dielectric, the aforementioned compounds.
  • Organic solar cells based on the compounds of the formulas (I) and (II) according to the invention and used according to the invention are generally of layered construction and generally comprise at least the following layers: anode, photoactive layer and cathode. These layers are usually on a conventional substrate. Suitable substrates are for. As oxidic materials (such as glass, quartz, ceramic, SiO 2, etc.), polymers (eg., Polyvinyl chloride, polyolefins such as polyethylene and polypropylene, polyesters, fluoropolymers, polyamides, polyurethanes, polyalkyl (meth) acrylates , Polystyrene and mixtures and composites thereof) and combinations thereof.
  • oxidic materials such as glass, quartz, ceramic, SiO 2, etc.
  • polymers eg., Polyvinyl chloride, polyolefins such as polyethylene and polypropylene, polyesters, fluoropolymers, polyamides, polyurethanes, polyalkyl (meth
  • metals preferably groups 8, 9, 10 or 11 of the Periodic Table, eg Pt, Au, Ag, Cu, Al, In, Mg, Ca
  • semiconductors eg. Doped Si, doped Ge, indium tin oxide (ITO), gallium indium tin oxide (GITO), zinc indium tin oxide (ZITO), etc.
  • metal alloys eg Based on Pt, Au, Ag, Cu, etc., especially Mg / Ag alloys
  • the anode used is a material that is substantially transparent to incident light. This includes z. ITO, doped ITO, ZnO, TiO 2 , Ag, Au, Pt.
  • the cathode used is preferably a material that essentially reflects the incident light. These include z. As metal films, z. B. from Al, Ag, Au, In, Mg, Mg / Al, Ca, etc.
  • the photoactive layer in turn comprises at least one or at least one layer containing, as organic semiconductor material, at least one compound selected from compounds of formulas I and II as defined above.
  • the photoactive layer comprises at least one layer containing an organic acceptor material (ETL) and at least one Layer containing an organic donor material (hole transport layer, HTL). These two layers may be mixed in whole or in part.
  • ETL organic acceptor material
  • HTL organic donor material
  • ETL, HTL (which need not absorb), blocking layers (eg, exciton blocking layers, EBLs) (which should not absorb), multiplication layers.
  • the compounds of the formula (I) and (II) are particularly advantageous for use in organic photovoltaics (OPV). Preference is given to their use in solar cells, which are characterized by a diffusion of excited states (exciton diffusion).
  • solar cells which are characterized by a diffusion of excited states.
  • One or both of the semiconductor materials used is characterized by a diffusion of excited states.
  • Also suitable is the combination of at least one semiconductor material, which is characterized by a diffusion of excited states, with polymers that allow a conduction of the excited states along the polymer chain.
  • Such solar cells are referred to as excitonic solar cells within the meaning of the invention.
  • the direct conversion of solar energy into electrical energy in solar cells is based on the internal photoelectric effect of a semiconductor material, ie the generation of electron-hole pairs by absorption of photons and the separation of the negative and positive charge carriers at a pn junction or a Schottky contact .
  • An exciton can z. B. arise when a photon penetrates into a semiconductor and an electron to excite the transition from the valence band in the conduction band.
  • the excited state created by the absorbed photons must reach a pn junction to create a hole and an electron, which then flows to the anode and cathode.
  • the photovoltaic voltage thus generated can cause a photocurrent in an external circuit, through which the solar cell gives off its power.
  • Suitable organic solar cells are generally layered and generally comprise at least the following layers: anode, photoactive layer and cathode. These layers are usually on a conventional substrate.
  • the structure of organic solar cells is z. As described in US 2005/0098726 A1 and US 2005/0224905 A1, which is incorporated herein by reference in its entirety.
  • the photoactive layer in turn comprises at least one or consists of at least one layer which contains as organic semiconductor material at least one compound which is selected from compounds of the formulas I and II, as defined above.
  • the photoactive layer comprises at least one organic acceptor material.
  • there may be one or more further layers e.g. for example, a layer with electron-conducting properties (ETL) and a layer containing a hole-transporting material (HTL) that need not absorb, excitons and hole-blocking layers (eg excitation blocking layers, EBL) that are not to absorb, multiplication layers. Suitable excitons and holes blocking layers are for. As described in US 6,451, 415.
  • Suitable Excitonenblocker für z. B. Bathocuproine (BCP), 4,4 ', 4 "-Tris (N- (3-methylphenyl) -N-phenylamino) triphenylamine (m-MTDATA) or polyethylenedioxithiophene (PEDOT), as described in US 7,026,041.
  • the excitonic solar cells according to the invention are based on photoactive donor-acceptor heterojunctions. If at least one compound of the formula (I) is used as HTM, the corresponding ETM must be selected such that a rapid electron transfer to the ETM takes place after excitation of the compounds. Suitable ETMs are z. B. C60 and other fullerenes, perylene-3,4: 9,10-bis (dicarboximide) PTCDI, etc. If at least one compound of formula (I) is used as ETM, the complementary HTM must be chosen so that after excitation of the Connecting a fast hole transfer to the HTM takes place.
  • the heterojunction can be carried out flat (see Two layer organic photovoltaic cell, CW Tang, Appl. Phys.
  • Thin layers of the compounds and of all other layers can be obtained by vacuum evaporation or in an inert gas atmosphere, by laser ablation or by solution or dispersion processable methods such as spin coating, knife coating, casting, spraying, dip coating or printing (eg InkJet , Flexo, offset, gravure, gravure, nanoimprint).
  • the layer thicknesses of the M, n, i and p layers are typically 10 to 1000 nm, preferably 10 to 400 nm.
  • a substrate z As a substrate z.
  • metal or polymer films are used, which are usually coated with a transparent, conductive layer (such as Sn ⁇ 2: F, Sn ⁇ 2: In, ZnO: Al, carbon nanotubes, thin metal layers).
  • a transparent, conductive layer such as Sn ⁇ 2: F, Sn ⁇ 2: In, ZnO: Al, carbon nanotubes, thin metal layers.
  • Acenes such as anthracene, tetracene, pentacene, which may each be unsubstituted or substituted.
  • Substituted acenes preferably comprise at least one substituent selected from electron-donating substituents (eg, alkyl, alkoxy, ester, carboxylate or thioalkoxy), electron-withdrawing substituents (eg, halogen, nitro, or cyano), and combinations thereof.
  • electron-donating substituents eg, alkyl, alkoxy, ester, carboxylate or thioalkoxy
  • electron-withdrawing substituents eg, halogen, nitro, or cyano
  • Suitable substituted pentacenes are described in US 2003/0100779 and US 6,864,396, which is incorporated herein by reference.
  • a preferred acene is rubrene (5,6,11,12-tetraphenylnaphthacene);
  • Phthalocyanines for example phthalocyanines which carry at least one halogen substituent, such as hexadecachlorophthalocyanines and hexadecafluorophthalocyanines, phthalocyanines containing metal-free or divalent metals or metal atom-containing groups, in particular those of titanyloxy, vanadyloxy, iron, copper, zinc, etc.
  • Suitable phthalocyanines are in particular copper phthalocyanine, zinc phthalocyanine, metal-free phthalocyanine, hexadecachloro copper phthalocyanine, hexadecochlorozinc phthalocyanine, metal-free hexadecachlorophatho-cyanine, hexadecafluoro copper phthalocyanine, hexadecafluorophthalocyanine or metal-free hexafluorophthalocyanine;
  • Porphyrins such as. 5,10,15,20-tetra (3-pyridyl) porphyrin (TpyP);
  • Liquid crystalline (LC) materials for example, coronene such as hexabenzocoronene (HBC-PhC12), coronene diimide, or triphenylene such as 2,3,6,7,10,11-hexahexylthiotriphenylene (HTT6), 2,3,6,7,10 , 11-hexakis- (4-n-nonylphenyl) -triphenylene (PTP9) or 2,3,6,7,10,11-hexakis- (undecyloxy) -triphenylene (HAT11).
  • coronene such as hexabenzocoronene (HBC-PhC12
  • coronene diimide or triphenylene such as 2,3,6,7,10,11-hexahexylthiotriphenylene (HTT6), 2,3,6,7,10 , 11-hexakis- (4-nonylphenyl) -triphenylene (PTP9)
  • oligothiophenes are quaterthiophenes, quinquethiophenes, sexithiophenes, ⁇ , ⁇ -di (C 1 -C 8) -alkyloligothiophenes, such as ⁇ , ⁇ -dihexylquaterthiophenes, ⁇ , ⁇ -dihexylquinquethiophenes and ⁇ , ⁇ -dihexylsexithiophenes, poly (alkylthiophenes), such as poly (3-hexylthiophene), bis (dithienothiophenes), anthradithiophenes, and dialkylanthra-dithiophenes such as dihexylanthradithiophene, phenylene-thiophene (PT) oligomers, and derivatives thereof, especially ⁇ ,
  • DCV5T compounds of the type ⁇ , ⁇ '-bis (2,2-dicyanovinyl) quinquethiophene
  • POPT (3- (4-octylphenyl) -2,2'-bithiophene)
  • POPT poly (3- (4 '- (1, 4,7-trioxaoctyl) phenyl) thiophene
  • Paraphenylenevinylene and paraphenylenevinylene containing oligomers or polymers such.
  • Phenylenethinylene / phenylenevinylene hybrid polymers (PPE-PPV);
  • Polycarbazoles d. H. Carbazole containing oligomers and polymers such as (2,7) and (3,6).
  • Polyanilines d. H. Aniline-containing oligomers and polymers such as (2,7) and (3,6).
  • Triarylamines polytriarylamines, polycyclopentadienes, polypyrroles, polyfurans, polysiols, polyphospholes, TPD, CBP, spiro-MeOTAD.
  • the fullerene derivative is a hole conductor.
  • p-n mixed materials d. H. Donor and acceptor in one material, polymer, block polymer, polymers with C60s, C60 azo dyes, triads carotenoid porphyrin quinode LC donor / acceptor systems as described by Kelly in S. Adv. Mater. 2006, 18, 1754.
  • All of the aforementioned semiconductor materials may also be doped.
  • Examples of dopants for p-type semiconductor 2,3,5,6-tetrafluoro-7,7,8,8-tetracyanoquinodimethane (F 4 -TCNQ), etc.
  • the (novel) compounds (I) according to the invention are also particularly advantageously suitable as organic semiconductors. They usually act as n-semiconductors. If the compounds of the formula (I) used in accordance with the invention are combined with other semiconductor conductors and if the position of the energy levels results in the other semiconductors functioning as n-type semiconductors, the compounds (I) can also function as p-type semiconductors by way of exception. This is z. As in the combination with cyano-substituted perylenetetracarboximides the case.
  • the compounds of the formula (I) are distinguished by their air stability. Furthermore, they have a high charge trans- portmobility and have a high on / off ratio. They are particularly suitable for organic field effect transistors.
  • the compounds according to the invention are advantageously suitable for the production of integrated circuits (ICs), for which hitherto customary n-channel MOSFETs (MOSFETs) are used, which are then CMOS-analog semiconductor components, eg
  • ICs integrated circuits
  • MOSFETs metal-oxide-semiconductor
  • CMOS-analog semiconductor components eg
  • the processes according to the invention can be further processed by one of the following processes: printing (offset, flexo, engraving, screen, inkjet, electrophotography), evaporation, laser transfer , Photolithography, dropcasting, they are particularly suitable for one
  • the compounds according to the invention are furthermore particularly advantageously suitable for data storage in diodes, especially in OLEDs, in photovoltaics, as UV absorbers, as optical brighteners, as invisible labels and as fluorescent labels for biomolecules, such as proteins, DNA, sugars and combinations thereof.
  • the compounds according to the invention are furthermore particularly advantageously suitable as fluorescent dye in a display based on fluorescence conversion; in a light-collecting plastic part, which is optionally combined with a solar cell; as a pigment in electrophoretic displays; as a fluorescent dye in a chemiluminescence-based application (eg in glow sticks).
  • the compounds according to the invention are furthermore particularly advantageously suitable as fluorescent dye in a display based on fluorescence conversion.
  • Such displays generally include a transparent substrate, a fluorescent dye on the substrate, and a radiation source.
  • Common sources of radiation emit blue (color-by-blue) or UV light (color-by-uv).
  • the dyes absorb either the blue or the UV light and are used as green emitters.
  • z. B. the red light is generated by the red emitter is excited by a blue or UV light-absorbing green emitter.
  • Suitable color-by-blue displays are z.
  • Suitable color-by-uv displays are z.
  • the compounds of the invention are also particularly suitable as fluorescence emitters in OLEDs, in which they either by electroluminescence or by a corresponding phosphorescence emitter via Förster energy transfer (FRET) are excited.
  • FRET Förster energy transfer
  • the compounds according to the invention are furthermore particularly suitable in displays which turn colors on and off based on an electrophoretic effect via charged pigment dyes.
  • Such electrophoretic displays are z. As described in US 2004/0130776.
  • the compounds according to the invention are furthermore particularly suitable for use in a light-collecting plastic part which absorbs light over a large area and emits the light at its edges after repeated refraction (so-called LISAs).
  • LISAs can be used on the edges of solar cells such.
  • silicon solar cells or organic solar cells which convert the concentrated light into electrical energy.
  • a combination of light-collecting plastics with solar cells is z. As described in US 4,110,123.
  • the compounds according to the invention are furthermore particularly suitable in chemoluminescence applications. These include so-called "Glow Sticks".
  • Glow Sticks For their preparation, at least one compound of formula (I) z. B. dissolved in an alkyl phthalate solves.
  • An excitation of chemiluminescence can be done by mixing an oxalic acid ester with hydrogen peroxide, for. B. after these two initially separate components are mixed by breaking a glass. The resulting reaction energy leads to the excitation and fluorescence of the dyes.
  • glow sticks can be used as emergency light, z. B. used in fishing, life-saving vests or other security applications.
  • the invention furthermore relates to organic field-effect transistors, comprising a substrate having at least one gate structure, a source electrode and a drain electrode and at least one compound of the formula I, as defined above, as n-type semiconductor.
  • the invention further substrates with a plurality of organic field effect transistors, wherein at least a portion of the field effect transistors contains at least one compound of formula I, as defined above, as n-type semiconductor.
  • the invention also relates to semiconductor devices which comprise at least such a substrate.
  • a particular embodiment is a substrate having a pattern (topography) of organic field effect transistors, each transistor
  • an organic semiconductor on the substrate a gate structure for controlling the conductivity of the conductive channel; and conductive source and drain electrodes at both ends of the channel
  • the organic semiconductor consists of at least one compound of the formula (I) or comprises a compound of the formula (I). Furthermore, the organic field effect transistor usually comprises a dielectric.
  • Another specific embodiment is a substrate having a pattern of organic field effect transistors, wherein each transistor forms an integrated circuit or is part of an integrated circuit and wherein at least a part of the transistors comprises at least one compound of the formula (I).
  • Suitable substrates are in principle the known materials.
  • Suitable substrates include, for. Metals (preferably metals of Groups 8, 9, 10 or 11 of the Periodic Table, such as Au, Ag, Cu), oxidic materials (such as glass, quartz, ceramics, SiO 2), semiconductors (eg doped Si, doped Ge), metal alloys (eg based on Au, Ag, Cu, etc.), semiconductor alloys, polymers (eg polyvinyl chloride, polyolefins, such as polyethylene and polypropylene, polyesters, fluoropolymers, polyamides, polyimides , Polyurethanes, polyalkyl (meth) acrylates, polystyrene, and mixtures and composites thereof), inorganic solids (eg, ammonium chloride), paper, and combinations thereof.
  • the substrates can be flexible or inflexible solid, with curved or planar geometry, depending on the desired application.
  • a typical substrate for semiconductor devices comprises a matrix (eg, a quartz or polymer matrix) and, optionally, a dielectric capping layer.
  • a matrix eg, a quartz or polymer matrix
  • a dielectric capping layer e.g., a dielectric capping layer
  • Suitable dielectrics are SiO 2, polystyrene, poly- ⁇ -methylstyrene, polyolefins (such as polypropylene, polyethylene, polyisobutene) polyvinylcarbazole, fluorinated polymers (eg Cytop, CYMM) cyanopullanes, polyvinylphenol, poly-p-xylene, polyvinylchloride or thermally or by Humidity crosslinkable polymers.
  • Special dielectrics are "seif assembled nanodielectrics", ie polymers derived from SiCI functionalities containing monomers such.
  • CI 3 SiOSiCl 3 CI 3 Si (CH 2 ) G-SiCl 3 , CI 3 Si (CH 2 ) i2-SiCl 3 and / or which are crosslinked by atmospheric moisture or by the addition of water in dilution with solvents (see, for example, Faccietti Adv. Mat. 2005, 17, 1705-1725).
  • water it is also possible to use hydroxyl-containing polymers such as polyvinylphenol or polyvinyl alcohol or copolymers of vinylphenol and styrene as crosslinking components.
  • the substrate may additionally include electrodes, such as gate, drain, and source electrodes of OFETs, which are normally located on the substrate (eg, deposited on or embedded in a nonconductive layer on the dielectric).
  • the substrate may additionally include conductive gate electrodes of the OFETs, which are usually disposed below the dielectric capping layer (ie, the gate dielectric).
  • an insulator layer (gate insulating layer) is located on at least one part of the substrate surface.
  • the insulator layer comprises at least one insulator which is preferably selected from inorganic insulators such as SiO 2, SiN, etc., ferroelectric insulators such as Al 2 O 3, Ta 2 O, La 2 O, TiO 2, Y 2 O 3, etc., organic insulators such as polyimides, benzocyclobutene (BCB). , Polyvinyl alcohols, polyacrylates, etc., and combinations thereof.
  • drain and source electrodes are located at least partially on the organic semiconductor material.
  • the substrate may include other components commonly used in semiconductor materials or ICs, such as insulators, resistors, capacitors, traces, etc.
  • the electrodes can be applied by conventional methods such as evaporation, lithographic methods or another patterning process.
  • the semiconductor materials can also be processed with suitable auxiliaries (polymers, surfactants) in disperse phase by printing.
  • the deposition of at least one compound of general formula I (and optionally other semiconductor materials) by a vapor deposition method Physical Vapor Deposition PVD.
  • PVD processes are carried out under high vacuum conditions and include the following steps: evaporation, transport, deposition.
  • the compounds of general formula I are particularly advantageous for use in a PVD process, since they do not decompose substantially and / or form undesired by-products.
  • the deposited material is obtained in high purity. In a specific embodiment, the deposited material is obtained in the form of crystals or contains a high crystalline content.
  • At least one compound of general formula I is heated to a temperature above its vaporization temperature for PVD and deposited on a substrate by cooling below the crystallization temperature.
  • the temperature of the substrate during the deposition is preferably in a range from about 20 to 250 ° C., particularly preferably 50 to 200 ° C.
  • the resulting semiconductor layers generally have a thickness sufficient for an ohmic contact between the source and drain electrodes.
  • the deposition may be carried out under an inert atmosphere, e.g. B. under nitrogen, argon or helium.
  • the deposition is usually carried out at ambient pressure or under reduced pressure.
  • a suitable pressure range is about 10 " 7 to 1, 5 bar.
  • the compound of formula (I) is deposited on the substrate in a thickness of 10 to 1000 nm, more preferably 15 to 250 nm.
  • the compound of the formula I is deposited at least partially in crystalline form.
  • the PVD method described above is suitable.
  • R n1 , R n2 , R n3 and R n4 has an aryl group or hetaryl group carrying at least two substituents, each of which is independently selected from C 4 -C 30 -alkyl , C 4 -C 30 -alkoxy and C 4 -C 30 -alkylthio, where the alkyl radicals of the alkyl, alkoxy and alkylthio substituents can be interrupted by one or more nonadjacent oxygen atoms, can also be processed particularly advantageously from solution. the.
  • the deposition of at least one such compound of general formula (I) (and optionally further semiconductor materials) is therefore carried out by spin coating.
  • These compounds of the formula (I) should also be suitable for the production of semiconductor elements, especially OFETs or based on OFETs, by a printing process. Standard printing processes (inkjet, flexo, offset, gravure, rotogravure, noprint) can be used.
  • Preferred solvents for the use of the compounds of the formula (I) in a printing process are aromatic solvents such as toluene, xylene, etc. It is possible to add to these "semiconductor inks" thickening substances, such as polymers, for. As polystyrene, etc. It uses as a dielectric, the aforementioned compounds.
  • the field effect transistor according to the invention is a thin film transistor (TFT).
  • TFT thin film transistor
  • a thin film transistor has a gate electrode disposed on the substrate, a gate insulating layer disposed thereon and the substrate, a semiconductor layer disposed on the gate insulating layer, an ohmic contact layer on the semiconductor layer, and a source electrode and a drain electrode on the ohmic contact layer.
  • the surface of the substrate is subjected to a modification prior to the deposition of at least one compound of the general formula (I) (and optionally at least one further semiconductor material).
  • This modification serves to form regions that bond the semiconductor materials and / or areas where no semiconductor materials can be deposited.
  • the surface of the substrate is modified with at least one compound (C1) which is suitable for bonding to the surface of the substrate as well as the compounds of the formula (I).
  • a part of the surface or the complete surface of the substrate is coated with at least one compound (C1) in order to enable an improved deposition of at least one compound of the general formula (I) (and optionally other semiconducting compounds).
  • Another embodiment comprises depositing a pattern of compounds of the general formula (C1) on the substrate according to a corresponding production method.
  • These include the well-known mask processes as well as so-called “patterning” methods, as described, for example, in US Pat. B. in the
  • Suitable compounds of the formula (C1) are capable of binding interaction both with the substrate and with at least one semiconductor compound of the general qualified formula I.
  • binding interaction includes the formation of a chemical bond (covalent bond), ionic bond, coordinate interaction, Van der Waals interactions, e.g. Dipole-dipole interactions) etc. and combinations thereof.
  • Suitable compounds of the general formula (C1) are:
  • Silanes phosphonic acids, carboxylic acids, hydroxamic acids, such as Alkyltrichlorsila- ne, z. B. n- (octadecyl) trichlorosilane; Compounds with trialkoxysilane groups, e.g. B.
  • alkyltrialkoxysilanes such as n-octadecyltrimethoxysilane, n-octadecyltriethoxysilane, n-octadecyltri- (n-propyl) oxysilane, n-octadecyltri- (isopropyl) oxysilane; Tri- alkoxyaminoalkylsilanes such as triethoxyaminopropylsilane and N [(3-triethoxysilyl) -propyl] -ethylenediamine; Trialkoxyalkyl-3-glycidyl ether silanes, such as triethoxypropyl-3-glycidyl ether silane; Trialkoxyallylsilanes such as allyltrimethoxysilane; Trialkoxy (isocyanatoalkyl) silanes; Trialkoxysilyl (meth) acryloxyalkan
  • Amines, phosphines and sulfur-containing compounds especially thiols.
  • the compound (C1) is selected from alkyltrialkoxysilanes, especially n-octadecyltrimethoxysilane, n-octadecyltriethoxysilane; Hexaalkyldisilazanes, and especially hexamethyldisilazanes (HMDS); C ⁇ -Cao-alkylthiols, especially hexadecanethiol; Mercaptocarboxylic acids and mercaptosulfonic acids especially mercaptoacetic acid, 3-mercaptopropionic acid, mercaptosuccinic acid, 3-mercapto-1-propanesulfonic acid and the alkali metal and ammonium salts thereof.
  • alkyltrialkoxysilanes especially n-octadecyltrimethoxysilane, n-octadecyltriethoxysilane
  • Hexaalkyldisilazanes and especially
  • the layer thicknesses are in semiconductors z. B. 10 nm to 5 microns, the dielectric 50 nm to 10 microns, the electrodes may, for. B. 20 nm to 1 micron thick.
  • the OFETs can also be combined to other components such as ring oscillators or inverters.
  • Another aspect of the invention is the provision of electronic components comprising a plurality of semiconductor components, which may be n- and / or p-type semiconductors.
  • semiconductor components which may be n- and / or p-type semiconductors.
  • FETs field effect transistors
  • BJTs bipolar junction transistors
  • tunnel diodes inverters
  • light-emitting components biological and chemical detectors or sensors
  • temperature-dependent detectors photodetectors such as polarization-sensitive photodetectors, gates, AND, NAND, NOT, OR, TOR, and NOR gates, registers, switches, time blocks, static or dynamic memories and other dynamic or sequential logical or other digital components including programmable circuits.
  • a special semiconductor element is an inverter.
  • the inverter In digital logic, the inverter is a gate that inverts an input signal.
  • the inverter is also called NOT-Gate.
  • Real inverter circuits have an output current that is the opposite of the input current. Usual values are z. (0, + 5V) for TTL circuits.
  • the performance of a digital inverter reflects the Voltage Transfer Curve (VTC); H. the order of input current versus output current. Ideally, it is a step function, and the closer the real measured curve approaches to such a step, the better the inverter.
  • the compounds of the formula (I) are used as organic n-semiconductors in an inverter.
  • IR (NaCl): v (cm- 1 ) 2924, 2854, 2362, 1704, 1663, 1619, 1588, 1508, 1461, 1400, 1342, 1239, 783
  • v (cm- 1 ) 2924, 2853, 2365, 1697, 1653, 1594, 1572, 1450, 1460, 1408, 1355, 1292, 1244, 1172, 1 136, 1109, 840, 754.
  • IR (KBr): v (cm- 1 ) 2923, 2852, 1694, 1652, 1585, 1379, 1353, 1323, 807.
  • the precipitate was filtered off, washed with water, dried under reduced pressure and purified by column chromatography on silica gel with dichloromethane as eluent to give a blue-green product (0.165 g, 83%) with a melting point above 350 ° C.
  • v (cm- 1 ) 2958, 2925, 2856, 2214, 1699, 1657, 1601, 1589, 1466, 1410, 1342, 1327, 1259, 1246, 812, 756, 706
  • IR (KBr): v (cm- 1 ) 2960, 2927, 2856, 1703, 1660, 1606, 1469, 1335, 926, 810.
  • Example 5 N, N'-Di (1-Heptyloctyl) terrylene-3,4: 1 1, 12-tetracarboxylic acid diimide by single-step base-induced dimerization To a heated to 60 ° C mixture of 7 ml diethylene glycol diethyl ether, 2.79 g (29 mmol) of sodium tert-butylate and 13.7 g (90 mmol) of 1, 8-diazabicyclo [5.4.0] undec-7-ene (DBU) 0.77 g (1.45 mmol) of N-1-heptyloctylperylene-3,4-dicarboxylic acid monoimide and 2.36 (5.8 mmol) of N-1-heptyloctyl-naphthalene-1,8-dicarboxylic acid monoimide.
  • DBU 1, 8-diazabicyclo [5.4.0] undec-7-ene
  • reaction mixture is heated for 6 hours at 130 ° C and then cooled to room temperature, diluted with ethyl acetate and washed several times with dilute hydrochloric acid. After drying the ethyl acetate phase over magnesium sulfate, the ethyl acetate is removed in vacuo. The residue is chromatographed with a gradient of toluene and petroleum ether. 0.13 g (10%) of a blue solid is obtained. The formation of a quaterrylene diimide is not observed.
  • Example 9 N, N '- (1-Heptylocytl) -1, 6-dibromoperylene-3,4; 9,19-tetracarboxylic diimide and N, N' - (1-heptylocytl) -1, 7-dibromoperylene-3,4; 9, 19-tetracarboxylic diimide (15:85)
  • a mixture of 20 ml of toluene, 1.17 g (10 mmol) of zinc cyanide, 242 mg (0.25 mmol) of the dibromoperylene compound from Example 8.69 mg (0.125 mmol) of 1,1'-bis (diphenylphosphinoferrocene) and 1 14 mg (0.125 mmol) of tris (dibenzylideneacetone) dipalladium are heated 6.5 hours at 100 0 C.
  • the reaction mixture is allowed to cool to room temperature, the residue is filtered off, washed with toluene and dried under vacuum.
  • 9-Bromo-perylene-3,4-dicarboxylic monoanhydride is prepared according to WO2004 / 029028.
  • a mixture of 10 ml of quinoline, 0.53 g (0.83 mmol) of 3,4,5-tridodecylaniline, 0.66 g (3 mmol) of zinc acetate dihydrate and 0.401 g (1 mmol) of 9-bromo-perylene-3,4 - dicarboxylic monoanhydride are heated to 180 ° C for 2 hours. After cooling to room temperature, dilute hydrochloric acid is added to extract the desired product with dichloromethane. The product is purified by chromatography in toluene petroleum ether 1: 1. This gives 0.71 g (72%) of an orange solid.
  • Rf (toluene) 0.55
  • ⁇ m ax (THF) 701 nm (78 l / g cm), 748 nm (44 l / g cm)
  • ITO indium-doped tin oxide
  • PEDOT poly (3,4-ethylenedioxythiophene
  • a strip of polyimide (Pyrolin Polyimide Coating, Supelco) was applied longitudinally to the PEDOT layer at the edges and cured in a drying oven at 200 ° C. for 15 minutes.
  • the active organic layers were deposited in the following order. First, as a donor, copper phthalocyanine (CuPc, simply gradient-sublimed) was vapor-deposited, then the compound A) was spin-coated as an acceptor, and finally applied to the PEDOT / polyimide layer as a buffer layer bathocuproine (BCP) with a thermal evaporation in vacuo. was carried out at a pressure of 2 x 10 "6 mbar. Evaporation of the CuPc took place at a temperature-temperature of 360 ° C and an evaporation rate of 0.2 to 1, 0 nm / s instead. The layer thicknesses were 35 formed to 40 nm for the CuPc, about 40 nm for the Spincoating spun layer of compound C) and 20 nm for the BCP layer.
  • CuPc copper phthalocyanine
  • BCP buffer layer bathocuproine
  • the metal back electrode was applied by thermal metal evaporation in vacuo.
  • the sample was masked to evaporate eight separate round back electrodes of 1 mm in diameter onto the active region, each connected to an approximately 3 mm x 2 mm contact area over the polyimide layer.
  • the metal used was Ag, which was evaporated at a rate of 0.5 to 1.5 nm / s at a pressure of approximately 4.times.10.sup.- 5 mbar, resulting in a layer thickness of 100 nm.
  • the structure of the solar cell is shown in FIG.
  • the respective current / voltage characteristic was ⁇ To determine the efficiency with a source meter Model 2400 (Keithley Instruments Inc.) under irradiation with a halogen lamp box (Xenophot ® 64629; Osram) measured as a solar simulator.
  • FIG. 9 shows the current-voltage characteristic of compound B
  • FIG. 10 shows the power-voltage characteristic of compound B
  • FIG. 11 shows the current-voltage characteristic of compound C
  • FIG. 12 shows the power-voltage characteristic of compound C
  • a 60 nm gold layer was deposited on 4 nm chromium by means of photolithography and vapor deposition.
  • the surfaces of the substrates were modified by treatment with hexamethyldisilazane (HMDS) at 120 ° C. for two hours.
  • the semiconductor compounds were deposited by evaporation of a toluene solution (10 mg / ml) on the substrate.
  • the electrical properties of the OFETs were determined using a Keithley 4200-SCS semiconductor parameter analyzer under a dry nitrogen atmosphere.
  • FIG. 13 shows the current-voltage characteristics of FIG
  • FIG. 14 shows the transfer characteristic of the corresponding field effect transistor.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Thin Film Transistor (AREA)
  • Photovoltaic Devices (AREA)
  • Nitrogen Condensed Heterocyclic Rings (AREA)
  • Heterocyclic Carbon Compounds Containing A Hetero Ring Having Oxygen Or Sulfur (AREA)
  • Liquid Crystal Substances (AREA)

Abstract

Die vorliegende Erfindung betrifft flüssig-kristalline Rylentetracarbonsäurederivate, Verfahren zu ihrer Herstellung und deren Verwendung als organische Halbleiter vom n-Typ zur Herstellung von organischen Feldeffekttransistoren und von Solarzellen.

Description

Flüssig-kristalline Rylentetracarbonsäurederivate und deren Verwendung
Beschreibung
Die vorliegende Erfindung betrifft flüssig-kristalline Rylentetracarbonsäurederivate, Verfahren zu ihrer Herstellung und deren Verwendung als organische Halbleiter vom n-Typ zur Herstellung von organischen Feldeffekttransistoren und von Solarzellen.
Es wird erwartet, dass zukünftig in vielen Bereichen der Elektronikindustrie neben den klassischen anorganischen Halbleitern zunehmend auch organische Halbleiter auf Basis von niedermolekularen oder polymeren Materialien eingesetzt werden. Diese weisen vielfach Vorteile gegenüber den klassischen anorganischen Halbleitern auf, beispielsweise eine bessere Substratkompatibilität und eine bessere Verarbeitbarkeit der auf ihnen basierenden Halbleiterbauteile. Sie erlauben die Verarbeitung auf flexiblen Substraten und ermöglichen es, ihre Grenzorbitalenergien mit den Methoden des Mo- lecular Modellings auf den jeweiligen Anwendungsbereich genau anzupassen. Die deutlich verringerten Kosten derartiger Bauteile haben dem Forschungsgebiet der organischen Elektronik eine Renaissance gebracht. Die "Organische Elektronik" beschäftigt sich schwerpunktmäßig mit der Entwicklung neuer Materialien und Fertigungspro- zesse für die Herstellung elektronischer Bauelemente auf der Basis organischer Halbleiterschichten. Dazu zählen vor allem organische Feldeffekttransistoren (Organic Field-Effect Transistors, OFET) sowie organische Leuchtdioden (Organic Light Emitting Diodes, OLED; z. B. für einen Einsatz in Displays) und die organische Photovoltaik. Organischen Feldeffekttransistoren wird ein großes Entwicklungspotential, beispiels- weise in Speicherelementen und integrierten optoelektronischen Vorrichtungen zugeschrieben. Es besteht daher ein großer Bedarf an organischen Verbindungen, die sich als organische Halbleiter, insbesondere Halbleiter vom n-Typ und speziell für einen Einsatz in organischen Feldeffekttransistoren und Solarzellen eignen.
Die Direktumwandlung von Solarenergie in elektrische Energie in Solarzellen beruht auf dem inneren Photoeffekt eines Halbleitermaterials, d. h. der Erzeugung von Elektron-Loch-Paaren durch Absorption von Photonen und der Trennung der negativen und positiven Ladungsträger an einem p-n-Übergang oder einem Schottky-Kontakt. Die so erzeugte Photospannung kann in einem äußeren Stromkreis einen Photostrom bewir- ken, durch den die Solarzelle ihre Leistung abgibt.
Von dem Halbleiter können dabei nur solche Photonen absorbiert werden, die eine Energie aufweisen, die größer als seine Bandlücke ist. Die Größe der Halbleiterbandlücke bestimmt also den Anteil des Sonnenlichts, der in elektrische Energie umgewan- delt werden kann. Es wird zukünftig erwartet, dass organische Solarzellen die klassischen Solarzellen auf Siliziumbasis aufgrund geringerer Kosten, eines geringeren Gewichts, der Möglichkeit zur Herstellung flexibler und/oder farbiger Zellen, der besseren Möglichkeit zur Feinabstimmung des Bandabstands übertreffen werden. Es besteht somit ein großer Bedarf an organischen Halbleitern, die sich zur Herstellung organischer Solarzellen eignen.
Solarzellen bestehen normalerweise aus zwei absorbierenden Materialien mit unterschiedlichen Bandlücken, um die Sonnenenergie möglichst effektiv zu nutzen. Die ers- ten organischen Solarzellen bestanden aus einem zweilagigen System aus einem Kup- fer-Phthalocyanin als p-Leiter und PTCBI als n-Leiter und zeigten einen Wirkungsgrad von 1 %. Um möglichst alle auftreffenden Photonen zu nutzen, werden relativ hohe Schichtdicken eingesetzt (z. B. 100 nm). Um Strom zu erzeugen, muss der durch die absorbierten Photonen erzeugte angeregte Zustand jedoch eine p-n junction erreichen, um ein Loch und ein Elektron zu erzeugen, welches dann zur Anode und Kathode fließt. Die meisten organischen Halbleiter haben jedoch nur Diffusionslängen für den angeregten Zustand von bis zu 10 nm. Selbst durch die besten bisher bekannten Herstellverfahren kann die Distanz, über die der angeregte Zustand weitergeleitet werden muss auf mindestens 10 bis 30 nm verringert werden.
US 2005/0224905 beschreibt organische Photovoltaikzellen mit zwei organischen Lagen, wobei die Dicke der Lagen herstellungsbedingt maximal 0.8 charakteristische Transportlängen beträgt.
WO 2005/076383 beschreibt Phthalocyanin-Derivate, deren Verwendung als homö- otrop orientierte Lagen in elektronischen Bauteilen und ein Verfahren zu ihrer Herstellung.
Die DE-A-19512773 beschreibt Quaterrylentetracarbonsäurediimide, die an den Imid- Stickstoffen so genannte „Schwalbenschwanz"-Substituenten aufweisen und deren Verwendung als Fluoreszenzfarbstoffe. Konkret wird die Synthese von N,N'-di-(1-Hexylheptyl)-bis(dicarboximid) beschrieben. Unter einer Vielzahl von möglichen Anwendungsgebieten, die allesamt nicht durch Ausführungsbeispiele belegt sind, wird auch eine Verwendung als Farbstoffe zur Materialprüfung, z. B. bei der Herstel- lung von Halbleiterschaltungen, zur Untersuchung von Mikrostrukturen von integrierten Halbleiterbausteinen sowie in Fluoreszenz-Solarkollektoren beschrieben. Bezüglich der letztgenannten Anwendung wird auf H. Langhals, Nachr. Chem. Tech. Lab. 28 (1980) Seite 716 Bezug genommen. Danach ist ein Fluoreszenz-Solarkollektor eine Vorrichtung, die in der Lage ist diffuse Lichtstrahlung durch überwiegende Total reflektion in der Vorrichtung zu konzentrieren. Eine mögliche Verwendung der genannten Verbindungen als n-Halbleiter ist nicht offenbart.
Die DE-A-10212358 beschreibt bichromophore Perylenderivate bei denen ein Imid- Stickstoff mit einem Akzeptor-Chromophor, z. B. einem Schwalbenschwanzrest, und der andere Amidstickstoff mit einem Donor-Chromophor, z. B. einem Aromaten, substituiert ist und deren Verwendung. Dabei ist auch ein Einsatz als Farbstoff in Fluores- zenz-Solakollektoren, zur Materialprüfung, z. B. bei der Herstellung von Halbleiterschaltungen, und zur Untersuchung von Mikrostrukturen von integrierten Halbleiter- bausteinen erwähnt.
Die DE-A-10233179 beschreibt Perylentetracarbonsäurebisimide, bei denen einer der Imidstickstoffe einen Schwalbenschwanzrest und der andere einen ethylenisch ungesättigten Rest trägt.
Die DE-A-102004024909 beschreibt Perylentetracarbonsäurediimide mit höher verzweigten, gegebenenfalls substituierten Alkylsubstituenten an den Imidstickstoffato- men. Diese sollen sich unter anderem als Farbstoffe oder Fluoreszenzfarbstoffe als Teil einer integrierten Halbleiterschaltung eignen, die die Farbstoffe als solche oder in Verbindung mit anderen Halbleitern, z. B. in Form einer Epithaxie, enthält. Eine konkrete Befähigung dieser Verbindungen zum Einsatz als n-Halbleiter in organischen Feldeffekttransistoren und Solarzellen wird weder beschrieben, geschweige denn belegt.
In JP-2003138154 werden Terrylentetracarbonsäurediimide mit n-Alkylsubstituenten an den Imidstickstoffen beschrieben. Derartige Verbindungen sind jedoch in der Regel nicht flüssig-kristallin.
Die EP-A-071 1812 beschreibt mehrfach chromophore Perylenimide, bei denen wenigstens zwei Perylentetracarbonsäurediimideinheiten über eines ihrer Imidstickstoffe an eine verbrückende Gruppe gebunden sind sowie ihre Verwendung unter anderem in Solarkollektoren.
Die DE-A-10225595 beschreibt 1 ,6,9,14-tetrasubstituierte Terrylentetracarbonsäure- diimide und deren Verwendung unter anderem in der Photovoltaik. Ein Einsatz als n-Halbleiter zur Herstellung von Solarzellen ist nicht beschrieben.
DE-A-32 35 526 beschreibt Perylene-3,4,9,10-tetracarbonsäurediimide, bei denen der aromatische Kern mit wenigstens einer Gruppe, ausgewählt unter Alkoxy, Alkylthio, Aryloxy, Arylthio, =SO2 und -SO2-R Gruppen substituiert sein kann. Zusätzlich kann der aromatische Kern mit Chlor oder Brom substituiert sein. Ein Einsatz als n-Halbleiter in organischen Feldeffekttransistoren und Solarzellen ist nicht beschrieben.
DE-A-34 34 059 beschreibt chlorierte Perylenetetracarbonsäurediimide, wobei der aro- matische Kern 2, 3, 5 oder 6 Chloratome trägt. Die Substituenten an den Imidstick- stoffen sind ausgewählt unter a) geradkettigem oder verzweigtem Ci-Cis-Alkyl, das unsubstituiert oder mit Cyano, Hydroxyl, Cycloalkyl, Alkylcarbonyloxy, Alkenylcarbonyl- oxy oder Cycloalkylcarbonyloxy substituiert ist und wobei die Alkylkette durch O oder S unterbrochen sein kann, oder b) Cs-Cis-Cycloalkyl, das unsubstituiert oder mit Alkyl, Carboalkoxy oder Trifluormethyl substituiert ist. Ein Einsatz als n-Halbleiter in organischen Feldeffekttransistoren und Solarzellen ist nicht beschrieben.
DE-A-195 47 209 Beschreibt 1 ,7-disubstituierte Perylene-3,4,9,10-tetracarbonsäure- dianhydride und Perylene-3,4,9,10-tetracarbonsäurediimide, bei denen der aromati- sehe Kern mit wenigstens einer Gruppe, ausgewählt unter unsubstituiertem oder substituiertem Aryloxy, Arylthio, Hetaryloxy oder Hetarylthio, substituiert ist. Ein Einsatz als n-Halbleiter in organischen Feldeffekttransistoren und Solarzellen ist nicht beschrieben.
H. Langhals and S. Kirner beschreiben in Eur. J. Org. Chem. 2000, 365-380 Fluores- zenzfarbstoffe auf Basis Kern-erweiterter Perylentetracarbonsäurebisimiden. Ein Einsatz als n-Halbleiter in organischen Feldeffekttransistoren und Solarzellen ist nicht beschrieben.
M. J. Ahrens, M. J. Füller und M. R. Wasielewski beschreiben in Chem. Mater. 2003, 15, Seiten 2684 - 2686, cyanierte Perylen-3,4-dicarboximide und Perylen-3,4,9,10- bis(dicarboximide) als chromophore Oxidationsmittel für "Organic photonics and elec- tronics". Konkrete Verbindungen, die an beiden Imidstickstoffen verzweigte Gruppen aufweisen und die flüssig kristallin sind, sind nicht beschrieben.
B. A. Jones et al. beschreiben in Angew. Chem. 2004, 1 16, Seiten 6523 - 6526, Dicy- ano-perylen-3,4,9,10-bis(dicarboximide) als luftstabile n-Halbleiter. Die Reste an den Imidstickstoffen sind Cyclohexyl und n-CH2C3F7.
US 2005/0176970 A1 beschreibt die Verwendung von Perylen-3,4-dicarboximiden und Perylen-3,4,9,10-bis(dicarboxi)imiden mit einer oder mehreren elektronenziehenden Gruppen als n-Halbleiter. Konkrete Verbindungen, die an beiden Imidstickstoffen verzweigte Gruppen aufweisen und die flüssig kristallin sind, sind nicht beschrieben. In US 6,806,368 werden Perylentetracarbonsäurediimide mit Resten beschrieben, welche den Verbindungen flüssig kristalline Eigenschaften verleihen. Deren Verwendung in elektronischen Bauteilen, in Transistoren wird erwähnt, die explizite Verwendung als n-Halbleiter zur Herstellung von organischen Feldeffekttransistoren und Solarzellen ist jedoch nicht beschrieben.
ChemPhysChem 2004, 5, 137 - 140 beschreibt Studien der strukturellen, elektrochemischen und Ladungstransporteigenschaften von Verbindungen der Formel
R
Figure imgf000006_0001
R
wobei R = n-Ci2H25, 4-(n- Ci2H25)C6H4, 2,6-(i-C3H7)2C6H3. Organische Feldeffekttransistoren und Solarzellen sind nicht beschrieben.
J. Mater. Chem., 2005, 15, 1270 - 1276, isotrope Mobilitäten von flüssigkristallinen Rylencarbonsäureimiden der Formel
OC12H25
Figure imgf000007_0001
Organische Feldeffekttransistoren und Solarzellen sind nicht beschrieben.
US 2003/0181721 A1 beschreibt tetrasubstituierte Perylentetracarbonsäurediimide der Formel
Figure imgf000007_0002
worin
R1, R2, R3 and R4 unabhängig Wasserstoff, Chlor, Brom, substituiertes oder unsubsti- tuiertes Aryloxy, Arylthio, Arylamino, Hetaryloxy oder Hetarylthio sind, R5, R6, R7, R8, R9 and R10 unabhängig Wasserstoff oder langkettiges Alkyl, Alkoxy oder Alkylthio sind mit der Maßgabe, dass wenigstens vier dieser Reste nicht Wasserstoff sind.
Organische Feldeffekttransistoren und Solarzellen sind nicht beschrieben.
WO 2005/124453 beschreibt die Verwendung substituierter Perylentetracarbonsäure- diimide als Halbleitermaterial. Dabei können die Amidstickstoffatome mit einer großen Vielzahl verschiedener Gruppen substituiert sein. Eine konkrete Ausführungsform ist ein Perylentetracarbonsäurediimid mit unsubstituiertem Aromatengrundgerüst, wobei die Amidstickstoffe mit (3,4,5-Tridodecyloxy)benzyl-Gruppen substituiert sind. Weitere konkrete Ausführungsformen sind Perylentetracarbonsäurediimide mit über Acetylen- gruppen gebundenen Substituenten in 1- und 7-Position des Aromatengrundgerüsts, wobei die Amidstickstoffe mit (2,5-Diisopropyl)phenyl)-Gruppen substituiert sind.
Die nachveröffentlichte WO 2006/093965 beschreibt Coronendiimide als Halbleitermaterial.
Die DE 102 33 955 A1 beschreibt ein Verfahren zur Herstellung von an den Amid- stickstoffen substituierten Quaterrylentetracarbonsäurebisimiden. Als einzig konkreter Substituent ist (I-Hexyl)heptyl offenbart. Sie dienen der Verwendung als Farbstoffe oder Fluoreszenzfarbstoffe. Ein Einsatz als Teil einer integrierten Halbleiterschaltung ist zwar ganz allgemein offenbart, es bleibt jedoch völlig unklar, welchem Zweck die Verbindungen dabei dienen sollen.
K. Petritsch et al beschreiben in Synthetic Metals 102 (1999), 1776 - 1777 die Verwendung von Perylenen der Formel
Figure imgf000009_0001
in organischen Solarzellen. Nachteilig an diesen Verbindungen ist ihre völlige Unlöslichkeit in organischen Lösungsmitteln, so dass Sie nur unter Überführen in die Gas- phase verarbeitet werden können.
Die US 2005/0017237 beschreibt die Verwendung von Verbindungen der Formel
N
N N
FT
N
wobei R1 und R2 zusammen mit den Stickstoffatomen, an die sie gebunden sind, einen Carbo- oder Heterocyclus bilden, als Halbleiter.
Die DE 10 2004 003 735 A1 beschreibt ein Verfahren zur Herstellung von Verbindun- gen der Formel
Figure imgf000009_0002
worin R und R' unabhängig voneinander für Wasserstoff oder gegebenenfalls substituiertes Ci-C3o-Alkyl, Cs-Cδ-Cycloalkyl, Aryl oder Hetaryl stehen, durch Suzuki- Kupplungsreaktion. Konkret ist die Synthese von N-(2,6-Diisopropylphenyl)-N'- cyclohexylterrylen-3,4:11 ,12-tetracarbonsäurediimid offenbart. Die WO 2005/070895 beschreibt ein Verfahren zur Herstellung von Verbindungen der Formel
Figure imgf000010_0001
durch basenkatalysierte einstufige Kupplung. Konkret ist die Synthese von N-(2,6-Diisopropylphenyl)-N'-cyclohexylterrylen-3,4:11 ,12-tetracarbonsäurediimid offenbart.
Organic Electronics 5 (2004), 237 - 249 vergleicht die elektrischen Eigenschaften dünner Filme von 1 ,6,7,12-Tetrachloro-N,N'-dimethylperylen-3,4,9,10-biscarboximid mit der nicht chlorierten Verbindung.
W. S. Shin et al. beschreiben in J. Mater. Chem. 2006, 16, 384 - 390 Effekte der Funk- tionalisierung von Perylendiimiden auf ihre Anwendung in der organischen Photovol- taik. Unter Anderem wird N,N'-Di((1-nonyl)decyl)-perylen-3,4:9,10-tetracarbonsäure- diimid eingesetzt.
Th. B. Singh et al beschreiben in einem nicht vorveröffentlichten Artikel in Organic Electronics 7 (2006), 480 - 489 die Verwendung von Perylentetracarbonsäurediimiden mit verzweigten Alkylresten an den Imidstickstoffen als n-Halbleiter für organische Feldeffekttransistoren.
K. Müllen et al. beschreiben in einem nicht vorveröffentlichten Artikel in Chem. Mater. 2006, 18, 3715 - 3725 die Verwendung von Rylentetracarbonsäurediimiden und Coro- nentetracarbonsäurediimiden mit verzweigten Alkylresten an den Imidstickstoffen als n-Halbleiter für organische Feldeffekttransistoren und in photovoltaischen Zellen.
Der vorliegenden Erfindung liegt die Aufgabe zu Grunde, Verbindungen zur Verfügung zu stellen, die sich als n-Halbleiter, z. B. für einen Einsatz in organischen Feldeffekttransistoren und Solarzellen, eignen. Diese sollen sich vorzugsweise in Form einer Lösung verarbeiten lassen, so dass aufwendige Verfahren zur Überführung in die Gasphase entfallen.
In allen genannten Schriften werden keine Aussagen über die Anordnung der Verbindungen auf den Substraten gemacht. Für die Eignung in OFETs und in Solarzellen ist die richtige Anordnung der Moleküle jedoch wichtig. Überraschenderweise wurde jetzt gefunden, dass die erfindungsgemäßen Verbindungen sowohl in der für Solarzellen günstigen "face on-", als auch in der für OFETs günstigen "edge on"-Anordnung sich selbst organisieren können. Die Art der Anordnung kann gegebenenfalls dadurch be- einflusst werden, wie die Substratoberflächen vorbehandelt werden. Somit wird erstmals deutlich, dass die (im Allgemeinen flüssigkristallinen) Verbindungen auch tatsächlich für OFETs und in der Photovoltaik eingesetzt werden können.
Gelöst wird diese Aufgabe durch die Verwendung von Verbindungen der allgemeinen Formeln I und Il
Figure imgf000011_0001
wobei
n für 1 , 2, 3 oder 4 steht,
die Reste Rn1, Rn2, Rn3 und Rn4 für n = 1 oder 2 unabhängig voneinander ausgewählt sind unter Wasserstoff, F, Cl, Br und CN, für n = 3 oder 4 unabhängig voneinan- der ausgewählt sind unter Wasserstoff, F, Cl und Br,
die Reste Ra und Rb unabhängig voneinander ausgewählt sind unter Wasserstoff und Alkyl,
die Reste Rc und Rd unabhängig voneinander ausgewählt sind unter Gruppen der Formeln 11.1 bis II.5: # (A)p— C(ROx
(11.1 )
Figure imgf000012_0001
(H.2) (II.3)
Figure imgf000012_0002
(II.4) (II-5)
worin
# für die Verknüpfungsstelle zum Imidstickstoffatom steht,
p für 0 oder 1 steht,
x für 2 oder 3 steht,
A soweit vorhanden, für eine Ci-Cio-Alkylengruppe steht, die durch eine oder mehrere nicht benachbarte Gruppen, die ausgewählt sind unter -O- und -S-, unterbrochen sein kann,
wobei für den Fall, dass in den Verbindungen der Formel 11.1 x für 2 steht, das Kohlenstoffatom, das die Reste R1 trägt, zusätzlich ein H-Atom trägt,
wobei in den Verbindungen der Formel 11.5 x für 2 steht,
die Reste R1 jeweils unabhängig voneinander ausgewählt sind unter C4-C3o-Alkyl, welche durch ein oder mehrere nicht benachbarte Sauerstoffatom(e) unterbrochen sein können, wobei in den Verbindungen der Formel 11.1 wenigstens einer der Reste R1 auch für C4-C3o-Alkyloxy oder C4-C3o-Alkylthio ste- hen kann,
als n-Halbleiter für organische Feldeffekttransistoren oder Solarzellen, ausgenommen die Verwendung von Verbindungen der Formel (I), worin n für 2 steht, die Reste Rn1, Rn2, Rn3 und Rn4 alle für Wasserstoff stehen und die Reste Rc und Rd für (C9HIg)2CH- stehen (d. h. von N,N'-Di((1-nonyl)decyl)-perylen-3,4:9,10-tetracarbon- säurediimid).
Die erfindungsgemäß verwendeten Verbindungen sind im Allgemeinen flüssig-kristallin. Aufgrund der damit verbundenen Fähigkeit geordnete Phasen auszubilden (flüssigkristalline Phasen, auch als Mesophasen bezeichnet), die zwischen Flüssigkeit und Feststoff liegen, und somit der prinzipiellen Befähigung zur Selbstorganisation eignen sie sich besonders vorteilhaft für die angestrebte Verwendung. Die erfindungsgemäßen Verbindungen weisen beispielsweise einen scheibenförmigen (diskotischen) Aufbau auf, der eine nematische oder kolumnare Anordnung haben kann. Sie zeichnen sich in der Regel durch eine hohe thermische Stabilität und hohe Phasenübergangstemperaturen für den Übergang vom geordneten zum isotropen Zustand aus, wobei mit zu- nehmender Größe des aromatischen Kerns die Phasenübergangstemperatur ansteigt. Sie eignen sich somit beispielsweise auch für einen Einsatz in elektronischen Bauteilen, wie Displays, die unter klimatisch ungünstigen Bedingungen betrieben werden, z. B. bei einem Außeneinsatz. In Abhängigkeit von ihrer Art (Rylen oder Corronen) und gegebenenfalls ihrem Substitutionsmuster können die erfindungsgemäß eingesetzten Verbindungen eine sogenannte „edge-on"-Anordnung annehmen, die sich besonders vorteilhaft bei Feldeffekttransistoren auswirkt, oder eine sogenannte „face-on"- Anordnung, die sich besonders vorteilhaft bei einem Einsatz in der Photovoltaik auswirkt.
Aufgrund ihrer hohen Ordnung und den damit im Allgemeinen verbundenen höheren charakteristischen Transportweiten für angeregte Zustände sowie höheren Ladungsmobilitäten, eignen sich die erfindungsgemäß eingesetzten organischen Halbleitermaterialien besonders vorteilhaft für einen Einsatz in Solarzellen. Sie eignen sich insbesondere zur Herstellung selbstorganisierender zwei- und mehrphasiger photovoltai- scher Zellen mit sehr guten anwendungstechnischen Eigenschaften. Mit Solarzellen auf Basis dieser Halbleiter lassen sich in der Regel sehr gute Quantenausbeuten erzielen.
In den Verbindungen der Formel I bezeichnet n die Anzahl der in der peri-Position ver- knüpften Naphthalineinheiten, die das Grundgerüst der erfindungsgemäßen Rylenver- bindungen bilden. In den einzelnen Resten Rn1 bis Rn4 bezeichnet n die jeweilige Naphthalingruppe des Rylengerüsts, an das die Reste gebunden sind. Reste Rn1 bis Rn4, die an unterschiedliche Naphthalingruppen gebunden sind, können jeweils gleiche oder verschiedene Bedeutungen aufweisen. Demgemäß kann es sich bei den Verbindungen der allgemeinen Formel I um Naphthalindiimide, Perylendiimide, Terrylendiimide oder Quaterrylendiimide der folgenden Formel handeln:
Figure imgf000014_0001
(n = 2)
Figure imgf000014_0002
(n = 4)
Bei den erfindungsgemäßen Rylenen handelt es sich um Verbindungen, bei denen von zwei unmittelbar oder mittelbar an die Imidstickstoffe gebundenen Verzweigungszentren zwei oder mehr Alkylketten ausgehen. Eine Ausführungsform ist die Verwendung von Verbindungen der Formel I, wobei die Reste Rn1, Rn2, Rn3 und Rn4 alle für Wasserstoff stehen. Eine weitere Ausführungsform ist die Verwendung von Verbindungen der Formel I, wobei wenigstens einer der Reste Rπ1, Rπ2, Rπ3 und Rπ4 für einen von Wasserstoff verschiedenen Rest steht. Eine bevorzugte Ausführungsform ist die Verwendung von Verbindungen der Formel I, wobei n für 1 , 3 oder 4, insbesondere für 3 oder 4, steht.
In einer Verbindung der Formel I oder Il können die Gruppen Rc und Rd gleiche oder verschiedene Bedeutungen besitzen. Bevorzugt besitzen die Gruppen Rc und Rd in einer Verbindung der Formel I oder Il die gleiche Bedeutung.
Eine Ausführungsform der Erfindung ist die Verwendung von Verbindungen der Formel (I), wobei die Gruppen die Gruppen Rc und Rd für Gruppen der Formel (11.1 ) stehen (sogenannte Schwalbenschwanzreste). Bevorzugt sind in den Gruppen der Formel (11.1 ) die Reste R1 ausgewählt sind unter C4-Cs-AIkVl, bevorzugt Cs-Cz-Alkyl. Bevorzugt stehen die Gruppen Rc und Rd dann beide für eine Gruppe der Formel
# — (CH) \R| C-1 ) worin
# für die Verknüpfungsstelle zum Imidstickstoffatom steht, und
die Reste R1 ausgewählt sind unter C4-Cs-AIkYl, bevorzugt Cs-Cz-Alkyl. Bei den Resten R1 handelt es sich dann speziell um lineare Alkylreste, die nicht durch Sauerstoffatome unterbrochen sind.
Eine weitere Ausführungsform der Erfindung ist die Verwendung von Verbindungen der Formel (I), wobei die Gruppen Rc und Rd unabhängig voneinander ausgewählt sind unter Gruppen der Formeln 11.2 bis 11.5. Eine bevorzugte Ausführungsform ist die Verwendung von Verbindungen der Formel (I), wobei die Gruppen Rc und Rd unabhängig voneinander ausgewählt sind unter Gruppen der Formel 11.2 und x in den Gruppen der Formel 11.2 für 3 steht.
Die verschiedenen Reste R1 können jeweils gleiche oder verschiedene Bedeutungen aufweisen. Bevorzugt weisen alle Reste R1 in einer Verbindung der Formel I oder Il die gleiche Bedeutung auf.
Die Reste R1 sind jeweils unabhängig voneinander ausgewählt unter linearem oder verzweigtem C4-C3o-Alkyl, welches durch ein oder mehrere nicht benachbarte Sauer- stoffatom(e) unterbrochen sein kann. Bevorzugt sind lineare Alkylreste. Bevorzugt sind weiterhin C4-Cis-Alkyl, insbesondere C5-Ci2-Alkyl. In den Verbindungen der Formeln II.2 bis II.5 stehen die Reste R1 nicht für C4-C30- Alkyloxy oder C4-C3o-Alkylthio (d. h. die Reste R1 sind über ein Kohlenstoffatom an den aromatischen oder heteroaromatischen Ring gebunden).
In den Verbindungen der Formel 11.1 kann einer der Reste R1 auch für C4-C3o-Alkyloxy oder C4-C3o-Alkylthio stehen. Bevorzugt stehen jedoch in den Verbindungen der Formel 11.1 die Reste R1 für C4-C3o-Alkyl, welches auch nicht durch Sauerstoffatom(e) unterbrochen ist.
In einer bevorzugten Ausführung weisen die zuvor genannten Gruppen Rc bzw. Rd keine Alkylengruppe A auf. In einer weiteren bevorzugten Ausführung weisen die zuvor genannten Gruppen Rc bzw. Rd eine Ci-C4-Alkylengruppe A auf, die durch 1 , 2 oder 3 nicht benachbarte Gruppen, die ausgewählt sind unter -O- und -S-, unterbrochen sein kann.
Im Rahmen der vorliegenden Erfindung umfasst der Ausdruck "Alkyl" geradkettiges oder verzweigtes Alkyl. Vorzugsweise handelt es sich um geradkettiges oder verzweigtes Ci-C3o-Alkyl, insbesondere um Ci-C2o-Alkyl und ganz besonders bevorzugt Ci-Ci2-Alkyl. Beispiele für Alkylgruppen sind insbesondere Methyl, Ethyl, n-Propyl,
Isopropyl, n-Butyl, Isobutyl, sec.-Butyl, tert.-Butyl, n-Pentyl, n-Hexyl, n-Heptyl, n-Octyl, n-Nonyl, n-Decyl, n-Undecyl, n-Dodecyl, n-Tridecyl, n-Tetradecyl, n-Hexadecyl, n-Octadecyl und n-Eicosyl.
Der Ausdruck Alkyl umfasst auch Alkylreste, deren Kohlenstoffketten durch eine oder mehrere nicht benachbarte Gruppen, die ausgewählt sind unter -O-, -S-, -NRe-, -CO- und/oder -SO2- unterbrochen sein kann. Re steht vorzugsweise für Wasserstoff, Alkyl, Cycloalkyl, Heterocycloalkyl, Aryl oder Hetaryl. Der Ausdruck Alkyl umfasst auch substituierte Alkylreste.
Die vorstehenden Ausführungen zu Alkyl gelten auch für die Alkylteile in Alkoxy, Alkyl- amino, Alkylthio, etc.
Alkylen steht für eine lineare gesättigte Kohlenwasserstoffkette mit 1 bis 10 und insbe- sondere 1 bis 4 C-Atomen wie Ethan-1 ,2-diyl, Propan-1 ,3-diyl, Butan-1 ,4-diyl, Pentan-1 ,5-diyl oder Hexan-1 ,6-diyl.
Halogen steht für Fluor, Chlor, Brom oder lod. Als Beispiele für geeignete Gruppen Rc bzw. Rd seien im Einzelnen genannt:
Reste der Formel A
Figure imgf000017_0001
worin # die Verknüpfungsstelle mit dem Imidstickstoffatom des Rylentetracarbonsäure- diimids ist, q für eine ganze Zahl 0, 1 , 2, 3 oder 4 steht und R für C4-C3o-Alkyl steht.
Reste der Formel A umfassen solche, in denen q für 0 steht, wie z. B.
3,4,5-Tri(n-butyl)phenyl, 3,4,5-Tri(n-pentyl)phenyl, 3,4,5-Tri(n-hexyl)phenyl, 3,4,5-Tri(n-heptyl)phenyl, 3,4,5-Tri(n-octyl)phenyl, 3,4,5-Tri(n-nonyl)phenyl, 3,4,5-Tri(n-decyl)phenyl, 3,4,5-Tri(n-undecy)phenyl, 3,4,5-Tri(n-dodecyl)phenyl,
3,4,5-Tri(n-tridecyl)phenyl, 3,4,5-Tri(n-tetradecyl)phenyl, 3,4,5-Tri(n-pentadecyl)phenyl, 3,4,5-Tri(n-hexadecyl)phenyl, 3,4,5-Tri(n-heptadecyl)phenyl, 3,4,5-Tri(n-octadecyl)phenyl, 3,4,5-Tri(nonadecyl)phenyl, 3,4,5-Tri(eicosyl)phenyl, 3,4,5-Tri(docosanyl)phenyl, 3,4,5-Tri(tricosanyl)phenyl, 3,4,5-Tri(tetracosanyl)phenyl, 3,4,5-Tri(octacosanyl)phenyl;
in denen q für 1 steht, wie z. B.
3,4,5-Tri(n-butyl)benzyl, 3,4,5-Tri(n-pentyl)benzyl, 3,4,5-Tri(n-hexyl)benzyl, 3,4,5-Tri(n-heptyl)benzyl, 3,4,5-Tri(n-octyl)benzyl, 3,4,5-Tri(n-nonyl)benzyl,
3,4,5-Tri(n-decyl)benzyl, 3,4,5-Tri(n-undecy)benzyl, 3,4,5-Tri(n-dodecyl)benzyl, 3,4,5-Tri(n-tridecyl)benzyl, 3,4,5-Tri(n-tetradecyl)benzyl, 3,4,5-Tri(n-pentadecyl)benzyl, 3,4,5-Tri(n-hexadecyl)benzyl, 3,4,5-Tri(n-heptadecyl)benzyl, 3,4,5-Tri(n-octadecyl)benzyl, 3,4,5-Tri(nonadecyl)benzyl, 3,4,5-Tri(eicosyl)benzyl, 3,4,5-Tri(docosanyl)benzyl, 3,4,5-Tri(tricosanyl)benzyl, 3,4,5-Tri(tetracosanyl)benzyl, 3,4,5-Tri(octacosanyl)benzyl;
in denen q für 2 steht, wie z. B. 3,4,5-Tιϊ(n-butyl)phenethyl, 3,4,5-Tιϊ(n-pentyl)phenethyl, 3,4,5-Tri(n-hexyl)phenethyl, 3,4,5-Tri(n-heptyl)phenethyl, 3,4,5-Tri(n-octyl)phenethyl, 3,4,5-Tri(n-nonyl)phenethyl, 3,4,5-Tιϊ(n-decyl)phenethyl, 3,4,5-Tri(n-undecy)phenethyl, 3,4,5-Tri(n-dodecyl)phenethyl, 3,4,5-Tri(n-tridecyl)phenethyl, 3,4,5-Tιϊ(n-tetradecyl)phenethyl, 3,4,5-Tri(n-pentadecyl)phenethyl, 3,4,5-Tri(n-hexadecyl)phenethyl, 3,4,5-Tri(n-heptadecyl)phenethyl, 3,4,5-Tri(n-octadecyl)phenethyl, 3,4,5-Tιϊ(nonadecyl)phenethyl, 3,4,5-Tri(eicosyl)phenethyl, 3,4,5-Tri(docosanyl)phenethyl, 3,4,5-Tri(tricosanyl)phenethyl, 3,4,5-Tri(tetracosanyl)phenethyl, 3,4,5-Tri(octacosanyl)phenethyl;
in denen q für 3 steht, wie z. B.
3-(3,4,5-Tri(n-butyl)phenyl)propyl, 3-(3,4,5-Tri(n-pentyl)phenyl)propyl, 3-(3,4,5-Tri(n-hexyl)phenyl)propyl, 3-(3,4,5-Tri(n-heptyl)phenyl)propyl, 3-(3,4,5-Tri(n-octyl)phenyl)propyl, 3-(3,4,5-Tri(n-nonyl)phenyl)propyl, 3-(3,4,5-Tri(n-decyl)phenyl)propyl, 3-(3,4,5-Tri(n-undecy)phenyl)propyl, 3-(3,4,5-Tri(n-dodecyl)phenyl)propyl, 3-(3,4,5-Tri(n-tridecyl)phenyl)propyl, 3-(3,4,5-Tri(n-tetradecyl)phenyl)propyl, 3-(3,4,5-Tri(n-pentadecyl)phenyl)propyl, 3-(3,4,5-Tri(n-hexadecyl)phenyl)propyl, 3-(3,4,5-Tri(n-heptadecyl)phenyl)propyl, 3-(3,4,5-Tri(n-octadecyl)phenyl)propyl, 3-(3,4,5-Tri(nonadecyl)phenyl)propyl, 3-(3,4,5-Tri(eicosyl)phenyl)propyl, 3-(3,4,5-Tri(docosanyl)phenyl)propyl, 3-(3,4,5-Tri(tricosanyl)phenyl)propyl, 3-(3,4,5-Tri(tetracosanyl)phenyl)propyl, 3-(3,4,5-Tri(octacosanyl)phenyl)propyl;
in denen q für 4 steht, wie z. B.
4-(3,4,5-Tri(n-butyl)phenyl)butyl, 4-(3,4,5-Tri(n-pentyl)phenyl)butyl, 4-(3,4,5-Tri(n-hexyl)phenyl)butyl, 4-(3,4,5-Tri(n-heptyl)phenyl)butyl, 4-(3,4,5-Tri(n-octyl)phenyl)butyl, 4-(3,4,5-Tri(n-nonyl)phenyl)butyl, 4-(3,4,5-Tri(n-decyl)phenyl)butyl, 4-(3,4,5-Tri(n-undecy)phenyl)butyl, 4-(3,4,5-Tri(n-dodecyl)phenyl)butyl, 4-(3,4,5-Tri(n-tridecyl)phenyl)butyl, 4-(3,4,5-Tri(n-tetradecyl)phenyl)butyl, 4-(3,4,5-Tri(n-pentadecyl)phenyl)butyl, 4-(3,4,5-Tri(n-hexadecyl)phenyl)butyl, 4-(3,4,5-Tri(n-heptadecyl)phenyl)butyl, 4-(3,4,5-Tri(n-octadecyl)phenyl)butyl, 4-(3,4,5-Tri(nonadecyl)phenyl)butyl, 4-(3,4,5-Tri(eicosyl)phenyl)butyl, 4-(3,4,5-Tri(docosanyl)phenyl)butyl, 4-(3,4,5-Tri(tricosanyl)phenyl)butyl, 4-(3,4,5-Tri(tetracosanyl)phenyl)butyl, 4-(3,4,5-Tri(octacosanyl)phenyl)butyl; des Weiteren Reste der Formel B
Figure imgf000019_0001
worin # die Verknüpfungsstelle mit dem Imidstickstoffatom des Rylentetracarbonsäure- diimids ist, q für eine ganze Zahl 0, 1 , 2, 3 oder 4 steht und R für C4-C3o-Alkyl steht.
Beispiele für Reste der Formel B umfassen solche, in denen q für 0 steht, wie z. B.
3,5-Di(n-butyl)phenyl, 3,5-Di(n-pentyl)phenyl, 3,5-Di(n-hexyl)phenyl, 3,4,5-Di(n-heptyl)phenyl, 3,5-Di(n-octyl)phenyl, 3,5-Di(n-nonyl)phenyl, 3,5-Dii(n-decyl)phenyl, 3,5-Di(n-undecy)phenyl, 3,5-Di(n-dodecyl)phenyl, 3,5-Di(n-tridecyl)phenyl, 3,5-Di(n-tetradecyl)phenyl, 3,5-Di(n-pentadecyl)phenyl, 3,5-Di(n-hexadecyl)phenyl, 3,5-Di(n-heptadecyl)phenyl, 3,5-Di(n-octadecyl)phenyl, 3,5-Di(nonadecyl)phenyl, 3,5-Di(eicosyl)phenyl, 3,5-Di(docosanyl)phenyl,
3,5-Di(tricosanyl)phenyl, 3,5-Di(tetracosanyl)phenyl, 3,5-Di(octacosanyl)phenyl;
in denen q für 1 steht, wie beispielsweise
3,5-Di(n-butyl)benzyl, 3,5-Di(n-pentyl)benzyl, 3,5-Di(n-hexyl)benzyl, 3,4,5-Di(n-heptyl)benzyl, 3,5-Di(n-octyl)benzyl, 3,5-Di(n-nonyl)benzyl, 3,5-Dii(n-decyl)benzyl, 3,5-Di(n-undecy)benzyl, 3,5-Di(n-dodecyl)benzyl, 3,5-Di(n-tridecyl)benzyl, 3,5-Di(n-tetradecyl)benzyl, 3,5-Di(n-pentadecyl)benzyl, 3,5-Di(n-hexadecyl)benzyl, 3,5-Di(n-heptadecyl)benzyl, 3,5-Di(n-octadecyl)benzyl, 3,5-Di(nonadecyl)benzyl, 3,5-Di(eicosyl)benzyl, 3,5-Di(docosanyl)benzyl,
3,5-Di(tricosanyl)benzyl, 3,5-Di(tetracosanyl)benzyl, 3,5-Di(octacosanyl)benzyl;
in denen q für 2 steht, wie z. B.
3,5-Di(n-butyl)phenethyl, 3,5-Di(n-pentyl)phenethyl, 3,5-Di(n-hexyl)phenethyl, 3,4,5-Di(n-heptyl)phenethyl, 3,5-Di(n-octyl)phenethyl, 3,5-Di(n-nonyl)phenethyl, 3,5-Dii(n-decyl)phenethyl, 3,5-Di(n-undecy)phenethyl, 3,5-Di(n-dodecyl)phenethyl, 3,5-Di(n-tridecyl)phenethyl, 3,5-Di(n-tetradecyl)phenethyl, 3,5-Di(n-pentadecyl)phenethyl, 3,5-Di(n-hexadecyl)phenethyl, 3,5-Di(n-heptadecyl)phenethyl, 3,5-Di(n-octadecyl)phenethyl, 3,5-Di(nonadecyl)phenethyl, 3,5-Di(eicosyl)phenethyl, 3,5-Di(docosanyl)phenethyl, 3,5-Di(tricosanyl)phenethyl, 3,5-Di(tetracosanyl)phenethyl, 3,5-Di(octacosanyl)phenethyl;
in denen q für 3 steht, wie z. B.
4-(3,5-Di(n-butyl)phenyl)propyl, 4-(3,5-Di(n-pentyl)phenyl)propyl, 4-(3,5-Di(n-hexyl)phenyl)propyl, 4-(3,5-Di(n-heptyl)phenyl)propyl, 4-(3,5-Di(n-octyl)phenyl)propyl, 4-(3,5-Di(n-nonyl)phenyl)propyl, 4-(3,5-Dii(n-decyl)phenyl)propyl, 4-(3,5-Di(n-undecy)phenyl)propyl, 4-(3,5-Di(n-dodecyl)phenyl)propyl, 4-(3,5-Di(n-tridecyl)phenyl)propyl, 4-(3,5-Di(n-tetradecyl)phenyl)propyl, 4-(3,5-Di(n-pentadecyl)phenyl)propyl, 4-(3,5-Di(n-hexadecyl)phenyl)propyl, 4-(3,5-Di(n-heptadecyl)phenyl)propyl, 4-(3,5-Di(n-octadecyl)phenyl)propyl, 4-(3,5-Di(nonadecyl)phenyl)propyl, 4-(3,5-Di(eicosyl)phenyl)propyl, 4-(3,5-Di(docosanyl)phenyl)propyl, 4-(3,5-Di(tricosanyl)phenyl)propyl, 4-(3,5-Di(tetracosanyl)phenyl)propyl, 4-(3,5-Di(octacosanyl)phenyl)propyl;
in denen q für 4 steht, wie z. B.
4-(3,5-Di(n-butyl)phenyl)butyl, 4-(3,5-Di(n-pentyl)phenyl)butyl, 4-(3,5-Di(n-hexyl)phenyl)butyl, 4-(3,5-Di(n-heptyl)phenyl)butyl, 4-(3,5-Di(n-octyl)phenyl)butyl, 4-(3,5-Di(n-nonyl)phenyl)butyl, 4-(3,5-Dii(n-decyl)phenyl)butyl, 4-(3,5-Di(n-undecy)phenyl)butyl, 4-(3,5-Di(n-dodecyl)phenyl)butyl, 4-(3,5-Di(n-tridecyl)phenyl)butyl, 4-(3,5-Di(n-tetradecyl)phenyl)butyl, 4-(3,5-Di(n-pentadecyl)phenyl)butyl, 4-(3,5-Di(n-hexadecyl)phenyl)butyl, 4-(3,5-Di(n-heptadecyl)phenyl)butyl, 4-(3,5-Di(n-octadecyl)phenyl)butyl, 4-(3,5-Di(nonadecyl)phenyl)butyl, 4-(3,5-Di(eicosyl)phenyl)butyl, 4-(3,5-Di(docosanyl)phenyl)butyl,
4-(3,5-Di(tricosanyl)phenyl)butyl, 4-(3,5-Di(tetracosanyl)phenyl)butyl, 4-(3,5-Di(octacosanyl)phenyl)butyl;
des Weiteren Reste der Formel C
Figure imgf000021_0001
worin # die Verknüpfungsstelle mit dem Imidstickstoffatom des Rylentetracarbonsäure- diimids ist, q für eine ganze Zahl 0, 1 , 2, 3 oder 4 steht und R für C4-C3o-Alkyl steht.
Reste der Formel C umfassen solche, in denen q für 0 steht, wie z. B.
2,6-Di(n-butyl)-pyridin-4-yl, 2,6-Di(n-pentyl)-pyridin-4-yl, 2,6-Di(n-hexyl)-pyridin-4-yl, 2,6-Di(n-heptyl)-pyridin-4-yl, 2,6-Di(n-octyl)-pyridin-4-yl, 2,6-Di(n-nonyl)-pyridin-4-yl, 2,6-Dii(n-decyl)-pyridin-4-yl, 2,6-Di(n-undecy)-pyridin-4-yl, 2,6-Di(n-dodecyl)-pyridin-4-yl, 2,6-Di(n-tridecyl)-pyridin-4-yl, 2,6-Di(n-tetradecyl)-pyridin-4-yl, 2,6-Di(n-pentadecyl)-pyridin-4-yl, 2,6-Di(n-hexadecyl)-pyridin-4-yl, 2,6-Di(n-heptadecyl)-pyridin-4-yl, 2,6-Di(n-octadecyl)-pyridin-4-yl, 2,6-Di(nonadecyl)-pyridin-4-yl, 2,6-Di(eicosyl)-pyridin-4-yl, 2,6-Di(docosanyl)-pyridin-4-yl,
2,6-Di(tricosanyl)-pyridin-4-yl, 2,6-Di(tetracosanyl)-pyridin-4-yl, 2,6-Di(octacosanyl)-pyridin-4-yl;
in denen q für 1 steht, wie z. B.
2,6-Di(n-butyl)-pyridin-4-yl-methyl, 2,6-Di(n-pentyl)-pyridin-4-yl-methyl, 2,6-Di(n-hexyl)-pyridin-4-yl-methyl, 2,6-Di(n-heptyl)-pyridin-4-yl-methyl, 2,6-Di(n-octyl)-pyridin-4-yl-methyl, 2,6-Di(n-nonyl)-pyridin-4-yl-methyl, 2,6-Dii(n-decyl)-pyridin-4-yl-methyl, 2,6-Di(n-undecy)-pyridin-4-yl-methyl, 2,6-Di(n-dodecyl)-pyridin-4-yl-methyl, 2,6-Di(n-tridecyl)-pyridin-4-yl-methyl,
2,6-Di(n-tetradecyl)-pyridin-4-yl-methyl, 2,6-Di(n-pentadecyl)-pyridin-4-yl-methyl, 2,6-Di(n-hexadecyl)-pyridin-4-yl-methyl, 2,6-Di(n-heptadecyl)-pyridin-4-yl-methyl, 2,6-Di(n-octadecyl)-pyridin-4-yl-methyl, 2,6-Di(nonadecyl)-pyridin-4-yl-methyl, 2,6-Di(eicosyl)-pyridin-4-yl-methyl, 2,6-Di(docosanyl)-pyridin-4-yl-methyl, 2,6-Di(tricosanyl)-pyridin-4-yl-methyl, 2,6-Di(tetracosanyl)-pyridin-4-yl-methyl, 2,6-Di(octacosanyl)-pyridin-4-yl-methyl;
in denen q für 2 steht, wie z. B. 2,6-Di(n-butyl)-pyτidin-4-yl-ethyl, 2,6-Di(n-pentyl)-pyτidin-4-yl-ethyl, 2,6-Di(n-hexyl)-pyridin-4-yl-ethyl, 2,6-Di(n-heptyl)-pyridin-4-yl-ethyl, 2,6-Di(n-octyl)-pyridin-4-yl-ethyl, 2,6-Di(n-nonyl)-pyridin-4-yl-ethyl, 2,6-Dii(n-decyl)-pyridin-4-yl-ethyl, 2,6-Di(n-undecy)-pyridin-4-yl-ethyl, 2,6-Di(n-dodecyl)-pyridin-4-yl-ethyl, 2,6-Di(n-tridecyl)-pyridin-4-yl-ethyl,
2,6-Di(n-tetradecyl)-pyridin-4-yl-ethyl, 2,6-Di(n-pentadecyl)-pyridin-4-yl-ethyl, 2,6-Di(n-hexadecyl)-pyridin-4-yl-ethyl, 2,6-Di(n-heptadecyl)-pyridin-4-yl-ethyl, 2,6-Di(n-octadecyl)-pyridin-4-yl-ethyl, 2,6-Di(nonadecyl)-pyridin-4-yl-ethyl, 2,6-Di(eicosyl)-pyridin-4-yl-ethyl, 2,6-Di(docosanyl)-pyridin-4-yl-ethyl, 2,6-Di(tricosanyl)-pyτidin-4-yl-ethyl, 2,6-Di(tetracosanyl)-pyridin-4-yl-ethyl, 2,6-Di(octacosanyl)-pyridin-4-yl-ethyl;
in denen q für 3 steht, wie z. B.
3-(2,6-Di(n-butyl)-pyridin-4-yl)-propyl, 3-(2,6-Di(n-pentyl)-pyridin-4-yl)-propyl, 3-(2,6-Di(n-hexyl)-pyridin-4-yl)-propyl, 3-(2,6-Di(n-heptyl)-pyridin-4-yl)-propyl, 3-(2,6-Di(n-octyl)-pyridin-4-yl)-propyl, 3-(2,6-Di(n-nonyl)-pyridin-4-yl)-propyl, 3-(2,6-Dii(n-decyl)-pyridin-4-yl)-propyl, 3-(2,6-Di(n-undecy)-pyridin-4-yl)-propyl, 3-(2,6-Di(n-dodecyl)-pyridin-4-yl)-propyl, 3-(2,6-Di(n-tridecyl)-pyridin-4-yl)-propyl, 3-(2,6-Di(n-tetradecyl)-pyridin-4-yl)-propyl, 3-(2,6-Di(n-pentadecyl)-pyridin-4-yl)-propyl, 3-(2,6-Di(n-hexadecyl)-pyridin-4-yl)-propyl, 3-(2,6-Di(n-heptadecyl)-pyridin-4-yl)-propyl, 3-(2,6-Di(n-octadecyl)-pyridin-4-yl)-propyl, 3-(2,6-Di(nonadecyl)-pyridin-4-yl)-propyl, 3-(2,6-Di(eicosyl)-pyridin-4-yl)-propyl, 3-(2,6-Di(docosanyl)-pyridin-4-yl)-propyl, 3-(2,6-Di(tricosanyl)-pyridin-4-yl)-propyl, 3-(2,6-Di(tetracosanyl)-pyridin-4-yl)-propyl, 3-(2,6-Di(octacosanyl)-pyridin-4-yl)-propyl;
in denen q für 4 steht, wie z. B.
4-(2,6-Di(n-butyl)-pyridin-4-yl)-butyl, 4-(2,6-Di(n-pentyl)-pyridin-4-yl)-butyl, 4-(2,6-Di(n-hexyl)-pyridin-4-yl)-butyl, 4-(2,6-Di(n-heptyl)-pyridin-4-yl)-butyl, 4-(2,6-Di(n-octyl)-pyridin-4-yl)-butyl, 4-(2,6-Di(n-nonyl)-pyridin-4-yl)-butyl, 4-(2,6-Dii(n-decyl)-pyridin-4-yl)-butyl, 4-(2,6-Di(n-undecy)-pyridin-4-yl)-butyl, 4-(2,6-Di(n-dodecyl)-pyridin-4-yl)-butyl, 4-(2,6-Di(n-tridecyl)-pyridin-4-yl)-butyl, 4-(2,6-Di(n-tetradecyl)-pyridin-4-yl)-butyl, 4-(2,6-Di(n-pentadecyl)-pyridin-4-yl)-butyl, 4-(2,6-Di(n-hexadecyl)-pyridin-4-yl)-butyl, 4-(2,6-Di(n-heptadecyl)-pyridin-4-yl)-butyl, 4-(2,6-Di(n-octadecyl)-pyridin-4-yl)-butyl, 4-(2,6-Di(nonadecyl)-pyridin-4-yl)-butyl, 4-(2,6-Di(eicosyl)-pyridin-4-yl)-butyl, 4-(2,6-Di(docosanyl)-pyridin-4-yl)-butyl, 4-(2,6-Di(tricosanyl)-pyridin-4-yl)-butyl, 4-(2,6-Di(tetracosanyl)-pyridin-4-yl)-butyl, 4-(2,6-Di(octacosanyl)-pyridin-4-yl)-butyl; des Weiteren Reste der Formel D
Figure imgf000023_0001
worin # die Verknüpfungsstelle mit dem Imidstickstoffatom des Rylentetracarbonsäure- diimids ist, q für eine ganze Zahl 0, 1 , 2, 3 oder 4 steht und R für C4-C3o-Alkyl steht.
Reste der Formel D umfassen solche, in denen q für 0 steht, wie z. B.
4,6-Di(n-butyl)-pyrimidin-2-yl, 4,6-Di(n-pentyl)-pyrimidin-2-yl,
4,6-Di(n-hexyl)-pyrimidin-2-yl, 4,6-Di(n-heptyl)-pyrimidin-2-yl,
4,6-Di(n-octyl)-pyrimidin-2-yl, 4,6-Di(n-nonyl)-pyrimidin-2-yl,
4,6-Dii(n-decyl)-pyrimidin-2-yl, 4,6-Di(n-undecy)-pyrimidin-2-yl, 4,6-Di(n-dodecyl)-pyrimidin-2-yl, 4,6-Di(n-tridecyl)-pyrimidin-2-yl,
4,6-Di(n-tetradecyl)-pyrimidin-2-yl, 4,6-Di(n-pentadecyl)-pyrimidin-2-yl,
4,6-Di(n-hexadecyl)-pyrimidin-2-yl, 4,6-Di(n-heptadecyl)-pyrimidin-2-yl,
4,6-Di(n-octadecyl)-pyrimidin-2-yl, 4,6-Di(nonadecyl)-pyrimidin-2-yl,
4,6-Di(eicosyl)-pyrimidin-2-yl, 4,6-Di(docosanyl)-pyrimidin-2-yl, 4,6-Di(tricosanyl)-pyrimidin-2-yl, 4,6-Di(tetracosanyl)-pyrimidin-2-yl,
4,6-Di(octacosanyl)-pyrimidin-2-yl;
in denen q für 1 steht, wie z. B.
4,6-Di(n-butyl)-pyrimidin-2-yl-methyl, 4,6-Di(n-pentyl)-pyrimidin-2-yl-methyl, 4,6-Di(n-hexyl)-pyrimidin-2-yl-methyl, 4,6-Di(n-heptyl)-pyrimidin-2-yl-methyl, 4,6-Di(n-octyl)-pyrimidin-2-yl-methyl, 4,6-Di(n-nonyl)-pyrimidin-2-yl-methyl, 4,6-Dii(n-decyl)-pyrimidin-2-yl-methyl, 4,6-Di(n-undecy)-pyrimidin-2-yl-methyl, 4,6-Di(n-dodecyl)-pyrimidin-2-yl-methyl, 4,6-Di(n-tridecyl)-pyrimidin-2-yl-methyl, 4,6-Di(n-tetradecyl)-pyrimidin-2-yl-methyl, 4,6-Di(n-pentadecyl)-pyrimidin-2-yl-methyl, 4,6-Di(n-hexadecyl)-pyrimidin-2-yl-methyl, 4,6-Di(n-heptadecyl)-pyrimidin-2-yl-methyl, 4,6-Di(n-octadecyl)-pyrimidin-2-yl-methyl, 4,6-Di(nonadecyl)-pyrimidin-2-yl-methyl, 4,6-Di(eicosyl)-pyrimidin-2-yl-methyl, 4,6-Di(docosanyl)-pyrimidin-2-yl-methyl, 4,6-Di(tricosanyl)-pyrimidin-2-yl-methyl, 4,6-Di(tetracosanyl)-pyrimidin-2-yl-methyl, 4,6-Di(octacosanyl)-pyrimidin-2-yl-methyl;
in denen q für 2 steht, wie z. B.
4,6-Di(n-butyl)-pyrimidin-2-yl-ethyl, 4,6-Di(n-pentyl)-pyrimidin-2-yl-ethyl, 4,6-Di(n-hexyl)-pyrimidin-2-yl-ethyl, 4,6-Di(n-heptyl)-pyrimidin-2-yl-ethyl, 4,6-Di(n-octyl)-pyrimidin-2-yl-ethyl, 4,6-Di(n-nonyl)-pyrimidin-2-yl-ethyl, 4,6-Dii(n-decyl)-pyrimidin-2-yl-ethyl, 4,6-Di(n-undecy)-pyrimidin-2-yl-ethyl, 4,6-Di(n-dodecyl)-pyrimidin-2-yl-ethyl, 4,6-Di(n-tridecyl)-pyrimidin-2-yl-ethyl,
4,6-Di(n-tetradecyl)-pyrimidin-2-yl-ethyl, 4,6-Di(n-pentadecyl)-pyrimidin-2-yl-ethyl, 4,6-Di(n-hexadecyl)-pyrimidin-2-yl-ethyl, 4,6-Di(n-heptadecyl)-pyrimidin-2-yl-ethyl, 4,6-Di(n-octadecyl)-pyrimidin-2-yl-ethyl, 4,6-Di(nonadecyl)-pyrimidin-2-yl-ethyl, 4,6-Di(eicosyl)-pyrimidin-2-yl-ethyl, 4,6-Di(docosanyl)-pyrimidin-2-yl-ethyl, 4,6-Di(tricosanyl)-pyrimidin-2-yl-ethyl, 4,6-Di(tetracosanyl)-pyrimidin-2-yl-ethyl, 4,6-Di(octacosanyl)-pyrimidin-2-yl-ethyl;
in denen q für 3 steht, wie z. B.
3-(4,6-Di(n-butyl)-pyrimidin-2-yl)-propyl, 3-(4,6-Di(n-pentyl)-pyrimidin-2-yl)-propyl, 3-(4,6-Di(n-hexyl)-pyrimidin-2-yl)-propyl, 3-(4,6-Di(n-heptyl)-pyrimidin-2-yl)-propyl, 3-(4,6-Di(n-octyl)-pyrimidin-2-yl)-propyl, 3-(4,6-Di(n-nonyl)-pyrimidin-2-yl)-propyl, 3-(4,6-Dii(n-decyl)-pyrimidin-2-yl)-propyl, 3-(4,6-Di(n-undecy)-pyrimidin-2-yl)-propyl, 3-(4,6-Di(n-dodecyl)-pyrimidin-2-yl)-propyl, 3-(4,6-Di(n-tridecyl)-pyrimidin-2-yl)-propyl, 3-(4,6-Di(n-tetradecyl)-pyrimidin-2-yl)-propyl, 3-(4,6-Di(n-pentadecyl)-pyrimidin-2-yl)-propyl, 3-(4,6-Di(n-hexadecyl)-pyrimidin-2-yl)-propyl, 3-(4,6-Di(n-heptadecyl)-pyrimidin-2-yl)-propyl, 3-(4,6-Di(n-octadecyl)-pyrimidin-2-yl)-propyl, 3-(4,6-Di(nonadecyl)-pyrimidin-2-yl)-propyl, 3-(4,6-Di(eicosyl)-pyrimidin-2-yl)-propyl, 3-(4,6-Di(docosanyl)-pyrimidin-2-yl)-propyl, 3-(4,6-Di(tricosanyl)-pyrimidin-2-yl)-propyl, 3-(4,6-Di(tetracosanyl)-pyrimidin-2-yl)-propyl, 3-(4,6-Di(octacosanyl)-pyrimidin-2-yl)-propyl;
in denen q für 4 steht, wie z. B.
4-(4,6-Di(n-butyl)-pyrimidin-2-yl)-butyl, 4-(4,6-Di(n-pentyl)-pyrimidin-2-yl)-butyl, 4-(4,6-Di(n-hexyl)-pyrimidin-2-yl)-butyl, 4-(4,6-Di(n-heptyl)-pyrimidin-2-yl)-butyl, 4-(4,6-Di(n-octyl)-pyrimidin-2-yl)-butyl, 4-(4,6-Di(n-nonyl)-pyrimidin-2-yl)-butyl, 4-(4,6-Dii(n-decyl)-pyrimidin-2-yl)-butyl, 4-(4,6-Di(n-undecy)-pyrimidin-2-yl)-butyl, 4-(4,6-Di(n-dodecyl)-pyrimidin-2-yl)-butyl, 4-(4,6-Di(n-tridecyl)-pyrimidin-2-yl)-butyl, 4-(4,6-Di(n-tetradecyl)-pyrimidin-2-yl)-butyl, 4-(4,6-Di(n-pentadecyl)-pyrimidin-2-yl)-butyl, 4-(4,6-Di(n-hexadecyl)-pyrimidin-2-yl)-butyl, 4-(4,6-Di(n-heptadecyl)-pyrimidin-2-yl)-butyl,
4-(4,6-Di(n-octadecyl)-pyrimidin-2-yl)-butyl, 4-(4,6-Di(nonadecyl)-pyrimidin-2-yl)-butyl, 4-(4,6-Di(eicosyl)-pyrimidin-2-yl)-butyl, 4-(4,6-Di(docosanyl)-pyrimidin-2-yl)-butyl, 4-(4,6-Di(tricosanyl)-pyrimidin-2-yl)-butyl, 4-(4,6-Di(tetracosanyl)-pyrimidin-2-yl)-butyl, 4-(4,6-Di(octacosanyl)-pyrimidin-2-yl)-butyl;
des Weiteren Reste der Formel E
Figure imgf000025_0001
worin # die Verknüpfungsstelle mit dem Imidstickstoffatom des Rylentetracarbonsäure- diimids ist, q für eine ganze Zahl 0, 1 , 2, 3 oder 4 steht und R für C4-C3o-Alkyl steht.
Reste der Formel E umfassen solche, in denen q für 0 steht, wie z. B.
4,5,6-Tri(n-butyl)-pyrimidin-2-yl, 4,5,6-Tri(n-pentyl)-pyrimidin-2-yl, 4,5,6-Tri(n-hexyl)-pyrimidin-2-yl, 4,5,6-Tri(n-heptyl)-pyrimidin-2-yl, 4,5,6-Tri(n-octyl)-pyrimidin-2-yl, 4,5,6-Tri(n-nonyl)-pyrimidin-2-yl, 4,5,6-Trii(n-decyl)-pyrimidin-2-yl, 4,5,6-Tri(n-undecy)-pyrimidin-2-yl, 4,5,6-Tri(n-dodecyl)-pyrimidin-2-yl, 4,5,6-Tri(n-tridecyl)-pyrimidin-2-yl,
4,5,6-Tri(n-tetradecyl)-pyrimidin-2-yl, 4,5,6-Tri(n-pentadecyl)-pyrimidin-2-yl, 4,5,6-Tri(n-hexadecyl)-pyrimidin-2-yl, 4,5,6-Tri(n-heptadecyl)-pyrimidin-2-yl, 4,5,6-Tri(n-octadecyl)-pyrimidin-2-yl, 4,5,6-Tri(nonadecyl)-pyrimidin-2-yl, 4,5,6-Tri(eicosyl)-pyrimidin-2-yl, 4,5,6-Tri(docosanyl)-pyrimidin-2-yl, 4,5,6-Tri(tricosanyl)-pyrimidin-2-yl, 4,5,6-Tri(tetracosanyl)-pyrimidin-2-yl, 4,5,6-Tri(octacosanyl)-pyrimidin-2-yl;
in denen q für 1 steht, wie z. B. 4,5,6-Tri(n-butyl)-pyrimidin-2-yl-methyl, 4,5,6-Tri(n-pentyl)-pyrimidin-2-yl-methyl, 4,5,6-Tri(n-hexyl)-pyrimidin-2-yl-methyl, 4,5,6-Tri(n-heptyl)-pyrimidin-2-yl-methyl, 4,5,6-Tri(n-octyl)-pyrimidin-2-yl-methyl, 4,5,6-Tri(n-nonyl)-pyrimidin-2-yl-methyl, 4,5,6-Trii(n-decyl)-pyrimidin-2-yl-methyl, 4,5,6-Tri(n-undecy)-pyrimidin-2-yl-methyl, 4,5,6-Tri(n-dodecyl)-pyrimidin-2-yl-methyl, 4,5,6-Tri(n-tridecyl)-pyrimidin-2-yl-methyl, 4,5,6-Tri(n-tetradecyl)-pyrimidin-2-yl-methyl, 4,5,6-Tri(n-pentadecyl)-pyrimidin-2-yl-methyl, 4,5,6-Tri(n-hexadecyl)-pyπmidin-2-yl-methyl, 4,5,6-Tri(n-heptadecyl)-pyπmidin-2-yl-methyl, 4,5,6-Tri(n-octadecyl)-pyrimidin-2-yl-methyl, 4,5,6-Tri(nonadecyl)-pyπmidin-2-yl-methyl, 4,5,6-Tri(eicosyl)-pyπmidin-2-yl-methyl, 4,5,6-Tri(docosanyl)-pyπmidin-2-yl-methyl, 4,5,6-Tri(tricosanyl)-pyrimidin-2-yl-methyl, 4,5,6-Tri(tetracosanyl)-pyπmidin-2-yl-methyl, 4,5,6-Tri(octacosanyl)-pyπmidin-2-yl-methyl;
in denen q für 2 steht, wie z. B.
4,5,6-Tri(n-butyl)-pyrimidin-2-yl-ethyl, 4,5,6-Tri(n-pentyl)-pyrimidin-2-yl-ethyl, 4,5,6-Tri(n-hexyl)-pyrimidin-2-yl-ethyl, 4,5,6-Tri(n-heptyl)-pyrimidin-2-yl-ethyl, 4,5,6-Tri(n-octyl)-pyrimidin-2-yl-ethyl, 4,5,6-Tri(n-nonyl)-pyrimidin-2-yl-ethyl, 4,5,6-Trii(n-decyl)-pyrimidin-2-yl-ethyl, 4,5,6-Tri(n-undecy)-pyrimidin-2-yl-ethyl, 4,5,6-Tri(n-dodecyl)-pyrimidin-2-yl-ethyl, 4,5,6-Tri(n-tridecyl)-pyrimidin-2-yl-ethyl, 4,5,6-Tri(n-tetradecyl)-pyrimidin-2-yl-ethyl, 4,5,6-Tri(n-pentadecyl)-pyrimidin-2-yl-ethyl, 4,5,6-Tri(n-hexadecyl)-pyrimidin-2-yl-ethyl, 4,5,6-Tri(n-heptadecyl)-pyrimidin-2-yl-ethyl, 4,5,6-Tri(n-octadecyl)-pyrimidin-2-yl-ethyl, 4,5,6-Tri(nonadecyl)-pyrimidin-2-yl-ethyl, 4,5,6-Tri(eicosyl)-pyrimidin-2-yl-ethyl, 4,5,6-Tri(docosanyl)-pyrimidin-2-yl-ethyl,
4,5,6-Tri(tricosanyl)-pyrimidin-2-yl-ethyl, 4,5,6-Tri(tetracosanyl)-pyrimidin-2-yl-ethyl, 4,5,6-Tri(octacosanyl)-pyrimidin-2-yl-ethyl;
in denen q für 3 steht, wie z. B.
3-(4,5,6-Tri(n-butyl)-pyrimidin-2-yl)-propyl, 3-(4,5,6-Tri(n-pentyl)-pyrimidin-2-yl)-propyl,
3-(4,5,6-Tri(n-hexyl)-pyrimidin-2-yl)-propyl, 3-(4,5,6-Tri(n-heptyl)-pyrimidin-2-yl)-propyl,
3-(4,5,6-Tri(n-octyl)-pyrimidin-2-yl)-propyl, 3-(4,5,6-Tri(n-nonyl)-pyrimidin-2-yl)-propyl,
3-(4,5,6-Trii(n-decyl)-pyrimidin-2-yl)-propyl, 3-(4,5,6-Tri(n-undecy)-pyrimidin-2-yl)-propyl,
3-(4,5,6-Tri(n-dodecyl)-pyrimidin-2-yl)-propyl,
3-(4,5,6-Tri(n-tridecyl)-pyrimidin-2-yl)-propyl,
3-(4,5,6-Tri(n-tetradecyl)-pyrimidin-2-yl)-propyl,
3-(4,5,6-Tri(n-pentadecyl)-pyrimidin-2-yl)-propyl, 3-(4,5,6-Tri(n-hexadecyl)-pyrimidin-2-yl)-propyl, 3-(4,5,6-Tri(n-heptadecyl)-pyrimidin-2-yl)-propyl, 3-(4,5,6-Tri(n-octadecyl)-pyrimidin-2-yl)-propyl, 3-(4,5,6-Tri(nonadecyl)-pyrimidin-2-yl)-propyl, 3-(4,5,6-Tri(eicosyl)-pyrimidin-2-yl)-propyl, 3-(4,5,6-Tri(docosanyl)-pyrimidin-2-yl)-propyl, 3-(4,5,6-Tri(tricosanyl)-pyrimidin-2-yl)-propyl, 3-(4,5,6-Tri(tetracosanyl)-pyrimidin-2-yl)-propyl, 3-(4,5,6-Tri(octacosanyl)-pyrimidin-2-yl)-propyl;
in denen q für 4 steht, wie z. B.
4-(4,5,6-Tri(n-butyl)-pyrimidin-2-yl)-butyl, 4-(4,5,6-Tri(n-pentyl)-pyrimidin-2-yl)-butyl,
4-(4,5,6-Tri(n-hexyl)-pyrimidin-2-yl)-butyl, 4-(4,5,6-Tri(n-heptyl)-pyrimidin-2-yl)-butyl, 4-(4,5,6-Tri(n-octyl)-pyrimidin-2-yl)-butyl, 4-(4,5,6-Tri(n-nonyl)-pyrimidin-2-yl)-butyl,
4-(4,5,6-Trii(n-decyl)-pyrimidin-2-yl)-butyl, 4-(4,5,6-Tri(n-undecy)-pyrimidin-2-yl)-butyl,
4-(4,5,6-Tri(n-dodecyl)-pyrimidin-2-yl)-butyl, 4-(4,5,6-Tri(n-tridecyl)-pyrimidin-2-yl)-butyl,
4-(4,5,6-Tri(n-tetradecyl)-pyrimidin-2-yl)-butyl,
4-(4,5,6-Tri(n-pentadecyl)-pyrimidin-2-yl)-butyl, 4-(4,5,6-Tri(n-hexadecyl)-pyrimidin-2-yl)-butyl,
4-(4,5,6-Tri(n-heptadecyl)-pyrimidin-2-yl)-butyl,
4-(4,5,6-Tri(n-octadecyl)-pyrimidin-2-yl)-butyl,
4-(4,5,6-Tri(nonadecyl)-pyrimidin-2-yl)-butyl, 4-(4,5,6-Tri(eicosyl)-pyrimidin-2-yl)-butyl,
4-(4,5,6-Tri(docosanyl)-pyrimidin-2-yl)-butyl, 4-(4,5,6-Tri(tricosanyl)-pyrimidin-2-yl)-butyl,
4-(4,5,6-Tri(tetracosanyl)-pyrimidin-2-yl)-butyl,
4-(4,5,6-Tri(octacosanyl)-pyrimidin-2-yl)-butyl;
des Weiteren Reste der Formel F
H H
NγN (F)
R
worin # die Verknüpfungsstelle mit dem Imidstickstoffatom des Rylentetracarbonsäure- diimids ist, q für eine ganze Zahl 0, 1 , 2, 3 oder 4 steht und R für C4-C3o-Alkyl steht. Reste der Formel F umfassen solche, in denen q für 0 steht, wie z. B.
4,6-Di(n-butyl)-1 ,3,5-triazin-2-yl, 4,6-Di(n-pentyl)-1 ,3,5-triazin-2-yl, 4,6-Di(n-hexyl)-1 ,3,5-triazin-2-yl, 4,6-Di(n-heptyl)-1 ,3,5-triazin-2-yl, 4,6-Di(n-octyl)-1 ,3,5-triazin-2-yl, 4,6-Di(n-nonyl)-1 ,3,5-triazin-2-yl, 4,6-Dii(n-decyl)-1 ,3,5-triazin-2-yl, 4,6-Di(n-undecy)-1 ,3,5-triazin-2-yl, 4,6-Di(n-dodecyl)-1 ,3,5-triazin-2-yl, 4,6-Di(n-tridecyl)-1 ,3,5-triazin-2-yl, 4,6-Di(n-tetradecyl)-1 ,3,5-triazin-2-yl, 4,6-Di(n-pentadecyl)-1 ,3,5-triazin-2-yl, 4,6-Di(n-hexadecyl)-1 ,3,5-triazin-2-yl, 4,6-Di(n-heptadecyl)-1 ,3,5-triazin-2-yl, 4,6-Di(n-octadecyl)-1 ,3,5-triazin-2-yl, 4,6-Di(nonadecyl)-1 ,3,5-triazin-2-yl, 4,6-Di(eicosyl)-1 ,3,5-triazin-2-yl, 4,6-Di(docosanyl)-1 ,3,5-triazin-2-yl, 4,6-Di(tricosanyl)-1 ,3,5-triazin-2-yl, 4,6-Di(tetracosanyl)-1 ,3,5-triazin-2-yl, 4,6-Di(octacosanyl)-1 ,3,5-triazin-2-yl;
in denen q für 1 steht, wie z. B.
4,6-Di(n-butyl)-1 ,3,5-triazin-2-yl-methyl, 4,6-Di(n-pentyl)-1 ,3,5-triazin-2-yl-methyl,
4,6-Di(n-hexyl)-1 ,3,5-triazin-2-yl-methyl, 4,6-Di(n-heptyl)-1 ,3,5-triazin-2-yl-methyl, 4,6-Di(n-octyl)-1 ,3,5-triazin-2-yl-methyl, 4,6-Di(n-nonyl)-1 ,3,5-triazin-2-yl-methyl,
4,6-Dii(n-decyl)-1 ,3,5-triazin-2-yl-methyl, 4,6-Di(n-undecy)-1 ,3,5-triazin-2-yl-methyl,
4,6-Di(n-dodecyl)-1 ,3,5-triazin-2-yl-methyl, 4,6-Di(n-tridecyl)-1 ,3,5-triazin-2-yl-methyl,
4,6-Di(n-tetradecyl)-1 ,3,5-triazin-2-yl-methyl,
4,6-Di(n-pentadecyl)-1 ,3,5-triazin-2-yl-methyl, 4,6-Di(n-hexadecyl)-1 ,3,5-triazin-2-yl-methyl,
4,6-Di(n-heptadecyl)-1 ,3,5-triazin-2-yl-methyl,
4,6-Di(n-octadecyl)-1 ,3,5-triazin-2-yl-methyl,
4,6-Di(nonadecyl)-1 ,3,5-triazin-2-yl-methyl, 4,6-Di(eicosyl)-1 ,3,5-triazin-2-yl-methyl,
4,6-Di(docosanyl)-1 ,3,5-triazin-2-yl-methyl, 4,6-Di(tricosanyl)-1 ,3,5-triazin-2-yl-methyl, 4,6-Di(tetracosanyl)-1 ,3,5-triazin-2-yl-methyl,
4,6-Di(octacosanyl)-1 ,3,5-triazin-2-yl-methyl;
in denen q für 2 steht, wie z. B.
4,6-Di(n-butyl)-1 ,3,5-triazin-2-yl-ethyl, 4,6-Di(n-pentyl)-1 ,3,5-triazin-2-yl-ethyl, 4,6-Di(n-hexyl)-1 ,3,5-triazin-2-yl-ethyl, 4,6-Di(n-heptyl)-1 ,3,5-triazin-2-yl-ethyl, 4,6-Di(n-octyl)-1 ,3,5-triazin-2-yl-ethyl, 4,6-Di(n-nonyl)-1 ,3,5-triazin-2-yl-ethyl, 4,6-Dii(n-decyl)-1 ,3,5-triazin-2-yl-ethyl, 4,6-Di(n-undecy)-1 ,3,5-triazin-2-yl-ethyl, 4,6-Di(n-dodecyl)-1 ,3,5-triazin-2-yl-ethyl, 4,6-Di(n-tridecyl)-1 ,3,5-triazin-2-yl-ethyl, 4,6-Di(n-tetradecyl)-1 ,3,5-triazin-2-yl-ethyl, 4,6-Di(n-pentadecyl)-1 ,3,5-triazin-2-yl-ethyl, 4,6-Di(n-hexadecyl)-1 ,3,5-tιϊazin-2-yl-ethyl, 4,6-Di(n-heptadecyl)-1 ,3,5-triazin-2-yl-ethyl, 4,6-Di(n-octadecyl)-1 ,3,5-tιϊazin-2-yl-ethyl, 4,6-Di(nonadecyl)-1 ,3,5-triazin-2-yl-ethyl, 4,6-Di(eicosyl)-1 ,3,5-triazin-2-yl-ethyl, 4,6-Di(docosanyl)-1 ,3,5-triazin-2-yl-ethyl, 4,6-Di(tricosanyl)-1 ,3,5-triazin-2-yl-ethyl, 4,6-Di(tetracosanyl)-1 ,3,5-triazin-2-yl-ethyl, 4,6-Di(octacosanyl)-1 ,3,5-triazin-2-yl-ethyl;
in denen q für 3 steht, wie z. B.
3-(4,6-Di(n-butyl)-1 ,3,5-triazin-2-yl)-propyl, 3-(4,6-Di(n-pentyl)-1 ,3,5-triazin-2-yl)-propyl,
3-(4,6-Di(n-hexyl)-1 ,3,5-triazin-2-yl)-propyl, 3-(4,6-Di(n-heptyl)-1 ,3,5-triazin-2-yl)-propyl,
3-(4,6-Di(n-octyl)-1 ,3,5-triazin-2-yl)-propyl, 3-(4,6-Di(n-nonyl)-1 ,3,5-triazin-2-yl)-propyl,
3-(4,6-Dii(n-decyl)-1 ,3,5-triazin-2-yl)-propyl,
3-(4,6-Di(n-undecy)-1 ,3,5-triazin-2-yl)-propyl, 3-(4,6-Di(n-dodecyl)-1 ,3,5-triazin-2-yl)-propyl,
3-(4,6-Di(n-tridecyl)-1 ,3,5-triazin-2-yl)-propyl,
3-(4,6-Di(n-tetradecyl)-1 ,3,5-triazin-2-yl)-propyl,
3-(4,6-Di(n-pentadecyl)-1 ,3,5-triazin-2-yl)-propyl,
3-(4,6-Di(n-hexadecyl)-1 ,3,5-triazin-2-yl)-propyl, 3-(4,6-Di(n-heptadecyl)-1 ,3,5-triazin-2-yl)-propyl,
3-(4,6-Di(n-octadecyl)-1 ,3,5-triazin-2-yl)-propyl,
3-(4,6-Di(nonadecyl)-1 ,3,5-triazin-2-yl)-propyl,
3-(4,6-Di(eicosyl)-1 ,3,5-triazin-2-yl)-propyl,
3-(4,6-Di(docosanyl)-1 ,3,5-triazin-2-yl)-propyl, 3-(4,6-Di(tιϊcosanyl)-1 ,3,5-triazin-2-yl)-propyl,
3-(4,6-Di(tetracosanyl)-1 ,3,5-triazin-2-yl)-propyl,
3-(4,6-Di(octacosanyl)-1 ,3,5-triazin-2-yl)-propyl;
in denen q für 4 steht, wie z. B.
4-(4,6-Di(n-butyl)-1 ,3,5-triazin-2-yl)-butyl, 4-(4,6-Di(n-pentyl)-1 ,3,5-triazin-2-yl)-butyl, 4-(4,6-Di(n-hexyl)-1 ,3,5-triazin-2-yl)-butyl, 4-(4,6-Di(n-heptyl)-1 ,3,5-triazin-2-yl)-butyl, 4-(4,6-Di(n-octyl)-1 ,3,5-triazin-2-yl)-butyl, 4-(4,6-Di(n-nonyl)-1 ,3,5-triazin-2-yl)-butyl, 4-(4,6-Dii(n-decyl)-1 ,3,5-triazin-2-yl)-butyl, 4-(4,6-Di(n-undecy)-1 ,3,5-triazin-2-yl)-butyl, 4-(4,6-Di(n-dodecyl)-1 ,3,5-triazin-2-yl)-butyl, 4-(4,6-Di(n-tridecyl)-1 ,3,5-triazin-2-yl)-butyl, 4-(4,6-Di(n-tetradecyl)-1 ,3,5-triazin-2-yl)-butyl, 4-(4,6-Di(n-pentadecyl)-1 ,3,5-triazin-2-yl)-butyl, 4-(4,6-Di(n-hexadecyl)-1 ,3,5-triazin-2-yl)-butyl, 4-(4,6-Di(n-heptadecyl)-1 ,3,5-triazin-2-yl)-butyl,
4-(4,6-Di(n-octadecyl)-1 ,3,5-triazin-2-yl)-butyl,
4-(4,6-Di(nonadecyl)-1 ,3,5-triazin-2-yl)-butyl, 4-(4,6-Di(eicosyl)-1 ,3,5-triazin-2-yl)-butyl,
4-(4,6-Di(docosanyl)-1 ,3,5-triazin-2-yl)-butyl,
4-(4,6-Di(tricosanyl)-1 ,3,5-triazin-2-yl)-butyl,
4-(4,6-Di(tetracosanyl)-1 ,3,5-triazin-2-yl)-butyl,
4-(4,6-Di(octacosanyl)-1 ,3,5-triazin-2-yl)-butyl;
des Weiteren Reste der Formel G
Figure imgf000030_0001
worin # die Verknüpfungsstelle mit dem Imidstickstoffatom des Rylentetracarbonsäure- diimids ist, q für eine ganze Zahl 0, 1 , 2, 3, 4, 5 oderö steht und R für C4-C3o-Alkyl steht.
Beispiele für geeignete Reste der Formel G umfassen die Formeln G-O. a, G-O. b, G-O. c, G-La1 G-Lb1 G-Lc1 G-2.a, G-2.b, G-2.c, G-3.a, G-3.b, G-3.C, G-4.a, G-4.b, G-4.c, G- 5.a, G-5.b, G-5.C, G-6.a, G-6.b, G-6.C
Figure imgf000030_0002
G-O.c
G-0.a G-O.b R
# R ~^OR R VR R VR R
G-1.a G-1.b G-1 .C
Figure imgf000030_0003
G-2.C
G-2.a G-2.b
Figure imgf000031_0001
G-5.C
G-5.a G-5.b
Figure imgf000031_0002
G-6.C
G-6.a G-6.b
worin # die Verknüpfungsstelle mit dem Imidstickstoffatom des Rylentetracarbonsäure- diimids ist, und R unabhängig voneinander für n-Butyl, n-Pentyl, n-Hexyl, n-Heptyl, n-Octyl, n-Nonyl, n-Decyl, n-Undecyl, n-Dodecyl, n-Tridecyl, n-Tetradecyl, n-Pentadecyl, n-Hexadecyl, n-Heptadecyl, n-Octadecyl, n-Nonadecyl, n-Eicosyl, n-Do- cosanyl, n-Tricosanyl, n-Tetracosanyl, n-Octacosanyl steht,
des Weiteren Verbindungen der Formel H
Figure imgf000031_0003
worin # die Verknüpfungsstelle mit dem Imidstickstoffatom des Rylentetracarbonsäure- diimids ist, q für eine ganze Zahl 0, 1 , 2, 3, 4, 5 oderö steht und R für C4-C3o-Alkyl, C4-C3o-Alkylthio oder C4-C3O-AIkOXy steht.
Reste der Formel H umfassen solche, in denen q für 0 steht, wie z. B.
1-Ethylpropyl, 1-Methylpropyl, 1-Propylbutyl, 1-Ethylbutyl, 1-Methylbutyl, 1-Butylpentyl, 1-Propylpentyl, 1-Ethylpentyl, 1-Methylpentyl, 1-Pentylhexyl, 1-Butylhexyl, 1-Propylhexyl, 1-Ethylhexyl, 1-Methylhexyl, 1-Hexylheptyl, 1-Pentylheptyl, 1-Butylheptyl, 1-Propylheptyl, 1-Ethylheptyl, 1 -Methyl heptyl, 1-Heptyloctyl, 1-Hexyloctyl, 1-Pentyloctyl, 1-Butyloctyl, 1-Propyloctyl, 1-Ethyloctyl, 1-Methyloctyl, 1-Octylnonyl, 1-Heptylnonyl, 1-Hexylnonyl, 1-Pentylnonyl, 1-Butylnonyl, 1-Propylnonyl, 1-Ethylnonyl, 1-Methylnonyl, 1-Nonyldecyl, 1-Octyldecyl, 1-Heptyldecyl, 1-Hexyldecyl, 1-Pentyldecyl, 1-Butyldecyl, 1-Propyldecyl, 1-Ethyldecyl, 1-Methyldecyl, 1-Decylundecyl, 1-Nonylundecyl, 1-Octylundecyl, 1-Heptylundecyl, 1-Hexylundecyl, 1-Pentylundecyl, 1-Butylundecyl, 1-Propylundecyl, 1-Ethylundecyl, 1-Methylundecyl, 1-Undecyldodecyl, 1-Decyldodecyl, 1-Nonyldodecyl, 1-Octyldodecyl, 1-Heptyldodecyl, 1-Hexyldodecyl, 1-Pentyldodecyl, 1-Butyldodecyl, 1-Propyldodecyl, 1-Ethyldodecyl, 1-Methyldodecyl, 1-Dodecyltιϊdecyl, 1-Undecyltridecyl, 1-Decyltridecyl, 1-Nonyltridecyl, 1-Octyltridecyl, 1-Heptyltιϊdecyl, 1-Hexyltridecyl, 1-Pentyltridecyl, 1-Butyltridecyl, 1-Propyltridecyl, 1-Ethyltιϊdecyl, 1-Methyltridecyl, 1-Tridecyltetrdecyl, 1-Undecyltetradecyl, 1-Decyltetradecyl, 1-Nonyltetradecyl, 1-Octyltetradecyl, 1-Hetyltetradecyl, 1-Hexyltetradecyl, 1-Pentytetradecyl, 1-Butyltetradecyl,
1-Propyltetradecyl, 1-Ethyltetradecyl, 1-Methyltetradecyl, 1-Pentadecylhexadecyl, 1-Tetradecylhexadecyl, 1-Tridecylhexadecyl, 1-Dodecylhexadecyl, 1-Undecylhexadecyl, 1-Decylhexadecyl, 1-Nonylhexadecyl, 1-Octylhexadecyl, 1-Heptylhexadecyl, 1-Hexylhexadecyl, 1-Pentylhexadecyl, 1-Butylhexadecyl, 1-Propylhexadecyl, 1-Ethylhexadecyl, 1-Methylhexadecyl, 1-Hexadecyloctadecyl, 1 -Pentadecyloctadecyl, 1 -Tetradecyloctadecyl, 1 -Tridecyloctadecyl, 1-Dodecyloctadecyl, 1-Undecyloctadecyl, 1-Decyloctadecyl, 1-Nonyloctadecyl, 1-Octylocatedecyl, 1-Heptyloctadecyl, 1-Hexyloctadecyl, 1-Pentyloctadecyl, 1-Butyloctaedecyl, 1-Propyloctadecyl, 1-Ethyloctadecyl, 1-Methyloctadecyl 1-Nonadecyleicosanyl, 1-Octadecyleicosanyl, 1-Heptadecyleicosanyl, 1 -Hexadecyleicosanyl, 1 -Pentadecyleicosanyl, 1 -Tetradecyleicosanyl, 1-Tιϊdecyleicosanyl, 1-Dodecyleicosanyl, 1-Undecyleicosanyl, 1-Decyleicosanyl, 1-Nonyleicosanyl, 1-Octyleicosanyl, 1-Heptyleicosanyl, 1-Hexyleicosanyl, 1-Pentyleicosanyl, 1-Butyleicosanyl, 1-Propyleicosanyl, 1-Ethyleicosanyl, 1-Methyeicosanyl 1-Eicosanyldocosanyl, 1-Nonadecyldocosanyl,
1 -Octadecyldocosanyl, 1 -Heptadecyldocosanyl, 1 -Hexadecyldocosanyl, 1-Pentadecyldocosanyl, 1-Tetradecyldocosanyl, 1-Tridecyldocosanyl, 1-Undecyldocosanyl, 1-Decyldocosanyl, 1-Nonyldocosanyl, 1-Octyldocosanyl, 1-Heptyldocosanyl, 1-Hexyldocosanyl, 1-Pentyldocosanyl, 1-Butyldocosanyl, 1-Propyldocosanyl, 1-Ethyldocosanyl, 1-Methyldocosanyl 1-Tricosanyltetracosanyl, 1 -Docosanyltetracosanyl, 1 -Nonadecyltetracosanyl, 1 -Octadecyltetracosanyl, 1 -Heptadecyltetracosanyl, 1 -Hexadecyltetracosanyl, 1 -Pentadecyltetracosanyl, 1 -Pentadecyltetracosanyl, 1 -Tetradecyltetracosanyl, 1 -Tridecyltetracosanyl, 1 -Dodecyltetracosanyl, 1 -Undecyltetracosanyl, 1 -Decyltetracosanyl, 1-Nonyltetracosanyl, 1-Octyltetracosanyl, 1-Heptyltetracosanyl, 1-Hexyltetracosanyl, 1-Pentyltetracosanyl, 1-Butyltetracosanyl, 1-Propyltetracosanyl, 1-Ethyltetracosanyl, 1 -Methyltetracosanyl 1 -Heptacosanyloctacosanyl, 1 -Hexacosanyloctacosanyl, 1 -Pentcosanyloctacosanyl, 1 -Tetracosanyloctcosanyl, 1 -Tricosanyloctacosanyl, I-Docosanyloctacosanyl, I-Nonadecyloctacosanyl, 1-Octadecyloctacosanyl, 1 -Heptadecyloctacosanyl, 1 -Hexadecyloctacosanyl, 1 -Hexadecyloctacosanyl, 1 -Pentadecyloctacosanyl, 1 -Tetradecyloctacosanyl, 1 -Tridecyloctacosanyl, 1-Dodecyloctacosanyl, I-Undecyloctacosanyl, 1-Decyloctacosanyl, 1-Nonyloctacosanyl, 1-Octyloctacosanyl, 1-Heptyloctacosanyl, 1-Hexyloctacosanyl, 1-Pentyloctacosanyl, 1-Butyloctacosanyl, 1-Propyloctacosanyl, 1-Ethyloctacosanyl, 1 -Methyloctacosanyl;
1-Ethyloxypropyl, 1-Methyloxypropyl, 1-Propylbutyl, 1-Ethyloxybutyl, 1-Methyloxybutyl, 1-Butyloxypentyl, 1-Propylpentyl, 1-Ethyloxypentyl, 1-Methyloxypentyl, 1-Pentyloxyhexyl, 1-Butyloxyhexyl, 1-Propylhexyl, 1-Ethyloxyhexyl, 1-Methyloxyhexyl, 1-Hexyloxyheptyl, 1-Pentyloxyheptyl, 1-Butyloxyheptyl, 1-Propylheptyl, 1-Ethyloxyheptyl, 1-Methyloxyheptyl, 1-Heptyloctyl, 1-Hexyloxyoctyl, 1-Pentyloxyoctyl, 1-Butyloxyoctyl, 1-Propyloctyl, 1-Ethyloxyoctyl, 1-Methyloxyoctyl, 1-Octyloxynonyl, 1-Heptylnonyl, 1-Hexyloxynonyl, 1-Pentyloxynonyl, 1-Butyloxynonyl, 1-Propylnonyl, 1-Ethyloxynonyl, 1-Methyloxynonyl, 1-Nonyloxydecyl, 1-Octyloxydecyl, 1-Heptyldecyl, 1-Hexyloxydecyl, 1-Pentyloxydecyl, 1-Butyloxydecyl, 1-Propyldecyl, 1-Ethyloxydecyl, 1-Methyloxydecyl, 1-Decyloxyundecyl, 1-Nonyloxyundecyl, 1-Octyloxyundecyl, 1-Heptylundecyl, 1-Hexyloxyundecyl, 1-Pentyloxyundecyl, 1-Butyloxyundecyl, 1-Propylundecyl, 1-Ethyloxyundecyl, 1-Methyloxyundecyl, 1-Undecyloxydodecyl, 1-Decyloxydodecyl, 1-Nonyloxydodecyl, 1-Octyloxydodecyl, 1-Heptyldodecyl, 1-Hexyloxydodecyl, 1-Pentyloxydodecyl, 1-Butyloxydodecyl, 1-Propyldodecyl, 1-Ethyloxydodecyl, 1-Methyloxydodecyl, 1-Dodecyloxytridecyl, 1-Undecyloxytridecyl, 1-Decyloxytridecyl, 1-Nonyloxytridecyl, 1-Octyloxytridecyl, 1-Heptyltridecyl, 1-Hexyloxytridecyl, 1-Pentyloxytridecyl, 1-Butyloxytridecyl, 1-Propyltridecyl, 1-Ethyloxytridecyl, 1-Methyloxytridecyl, 1-Tridecyloxytetrdecyl, 1-Undecyloxytetradecyl, 1-Decyloxytetradecyl, 1-Nonyloxytetradecyl, 1-Octyloxytetradecyl, 1-Hetyltetradecyl, 1-Hexyloxytetradecyl, 1-Pentytetradecyl, 1-Butyloxytetradecyl, 1-Propyltetradecyl, 1 -Ethyloxytetradecyl, 1 -Methyloxytetradecyl, 1 -Pentadecyloxyhexadecyl, 1 -Tetradecyloxyhexadecyl, 1 -Tridecyloxyhexadecyl, 1 -Dodecyloxyhexadecyl, 1-Undecyloxyhexadecyl, 1-Decyloxyhexadecyl, 1-Nonyloxyhexadecyl,
1-Octyloxyhexadecyl, 1-Heptylhexadecyl, 1-Hexyloxyhexadecyl, 1-Pentyloxyhexadecyl, 1-Butyloxyhexadecyl, 1-Propylhexadecyl, 1-Ethyloxyhexadecyl, 1-Methyloxyhexadecyl, 1 -Hexadecyloxyoctadecyl, 1 -Pentadecyloxyoctadecyl, 1 -Tetradecyloxyoctadecyl, 1-Tridecyloxyoctadecyl, I-Dodecyloxyoctadecyl, 1-Undecyloxyoctadecyl, 1-Decyloxyoctadecyl, 1-Nonyloxyoctadecyl, I-Octyloxyocatedecyl, 1-Heptyloctadecyl, 1-Hexyloxyoctadecyl, 1-Pentyloxyoctadecyl, 1-Butyloxyoctaedecyl, 1-Propyloctadecyl, 1 -Ethyloxyoctadecyl, 1 -Methyloxyoctadecyl, 1 -Nonadecyloxyeicosanyl, 1 -Octadecyloxyeicosanyl, 1 -Heptadecyloxyeicosanyl, 1 -Hexadecyloxyeicosanyl, 1-Pentadecyloxyeicosanyl, 1-Tetradecyloxyeicosanyl, 1-Tridecyloxyeicosanyl, 1-Dodecyloxyeicosanyl, 1-Undecyloxyeicosanyl, 1-Decyloxyeicosanyl, 1-Nonyloxyeicosanyl, 1-Octyloxyeicosanyl, 1-Heptyleicosanyl, 1-Hexyloxyeicosanyl, 1-Pentyloxyeicosanyl, 1-Butyloxyeicosanyl, 1-Propyleicosanyl, 1-Ethyloxyeicosanyl, 1 -Methyeicosanyl, 1 -Eicosanyloxydocosanyl, 1 -nonadecyloxydocosanyl, I-Octadecyloxydocosanyl, 1-Heptadecyloxydocosanyl, 1-Hexadecyloxydocosanyl, 1 -Pentadecyloxydocosanyl, 1 -Tetradecyloxydocosanyl, 1 -Tridecyloxydocosanyl, 1 -Undecyloxydocosanyl, 1 -Decyloxydocosanyl, 1 -Nonyloxydocosanyl, 1-Octyloxydocosanyl, 1-Heptyldocosanyl, 1-Hexyloxydocosanyl, 1-Pentyloxydocosanyl, 1-Butyloxydocosanyl, 1-Propyldocosanyl, 1-Ethyloxydocosanyl, 1-Methyloxydocosanyl, 1-Tιϊcosanyloxytetracosanyl, 1-Docosanyloxytetracosanyl, 1 -nonadecyloxytetracosanyl, 1 -Octadecyloxytetracosanyl, 1 -Heptadecyloxytetracosanyl, 1 -Hexadecyloxytetracosanyl, 1 -Pentadecyloxytetracosanyl, 1 -Pentadecyloxytetracosanyl, 1 -Tetradecyloxytetracosanyl, 1 -Tridecyloxytetracosanyl, 1 -Dodecyloxytetracosanyl, 1-Undecyloxytetracosanyl, 1-Decyloxytetracosanyl, 1-Nonyloxytetracosanyl, 1 -Octyloxytetracosanyl, 1 -Heptyltetracosanyl, 1 -Hexyloxytetracosanyl, 1 -Pentyloxytetracosanyl, 1 -Butyloxytetracosanyl, 1 -Propyltetracosanyl, 1-Ethyloxytetracosanyl, 1 -Methyloxytetracosanyl 1-Heptacosanyloxyoctacosanyl, 1 -Hexacosanyloxyoctacosanyl, 1 -Pentcosanyloxyoctacosanyl, I-Tetracosanyloxyoctcosanyl, 1-Tricosanyloxyoctacosanyl,
1 -Docosanyloxyoctacosanyl, 1 -Nonadecyloxyoctacosanyl, 1 -Octadecyloxyoctacosanyl,
1 -Heptadecyloxyoctacosanyl, 1 -Hexadecyloxyoctacosanyl,
1 -Hexadecyloxyoctacosanyl, 1 -Pentadecyloxyoctacosanyl,
1 -Tetradecyloxyoctacosanyl, 1 -Tridecyloxyoctacosanyl, 1 -Dodecyloxyoctacosanyl, 1-Undecyloxyoctacosanyl, 1-Decyloxyoctacosanyl, 1-Nonyloxyoctacosanyl, 1 -Octyloxyoctacosanyl, 1 -Heptyloctacosanyl, 1 -Hexyloxyoctacosanyl, 1-Pentyloxyoctacosanyl, 1-Butyloxyoctacosanyl, 1-Propyloxyoctacosanyl, 1 -Ethyloxyoctacosanyl, 1 -Methyloxyoctacosanyl;
1-Ethylthiopropyl, 1-Methylthiopropyl, 1-Propylbutyl, 1 -Ethylthiobutyl, 1-Methylthiobutyl, 1-Butylthiopentyl, 1-Propylpentyl, 1-Ethylthiopentyl, 1-Methylthiopentyl, 1-Pentylthiohexyl, 1-Butylthiohexyl, 1-Propylhexyl, 1-Ethylthiohexyl, 1-Methylthiohexyl, 1-Hexylthioheptyl, 1-Pentylthioheptyl, 1-Butylthioheptyl, 1-Propylheptyl, 1-Ethylthioheptyl, 1-Methylthioheptyl, 1-Heptyloctyl, 1-Hexylthiooctyl, 1-Pentylthiooctyl, 1-Butylthiooctyl, 1-Propyloctyl, 1-Ethylthiooctyl, 1-Methylthiooctyl, 1-Octylthiononyl, 1-Heptylnonyl, 1-Hexylthiononyl, 1-Pentylthiononyl, 1-Butylthiononyl, 1-Propylnonyl, 1-Ethylthiononyl, 1-Methylthiononyl, 1-Nonylthiodecyl, 1-Octylthiodecyl, 1-Heptyldecyl, 1-Hexylthiodecyl, 1-Pentylthiodecyl, 1-Butylthiodecyl, 1-Propyldecyl, 1-Ethylthiodecyl, 1-Methylthiodecyl, 1-Decylthioundecyl, 1-Nonylthioundecyl, 1-Octylthioundecyl, 1-Heptylundecyl, 1-Hexylthioundecyl, 1-Pentylthioundecyl, 1-Butylthioundecyl, 1-Propylundecyl, 1-Ethylthioundecyl, 1-Methylthioundecyl, 1-Undecylthiododecyl, 1-Decylthiododecyl, 1-Nonylthiododecyl, 1-Octylthiododecyl, 1-Heptyldodecyl, 1-Hexylthiododecyl, 1-Pentylthiododecyl, 1-Butylthiododecyl, 1-Propyldodecyl, 1-Ethylthiododecyl, 1-Methylthiododecyl, 1-Dodecylthiotridecyl, 1-Undecylthiotridecyl, 1-Decylthiotιϊdecyl, 1-Nonylthiotridecyl, 1-Octylthiotridecyl, 1-Heptyltridecyl, 1-Hexylthiotridecyl, 1-Pentylthiotιϊdecyl, 1-Butylthiotridecyl, 1-Propyltridecyl, 1 -Ethylthiotridecyl, 1 -Methylthiotridecyl, 1 -Tridecylthiotetrdecyl, 1 -Undecylthiotetradecyl, 1 -Decylthiotetradecyl, 1 -Nonylthiotetradecyl, 1-Octylthiotetradecyl, 1-Hetyltetradecyl, 1-Hexylthiotetradecyl, 1-Pentytetradecyl,
1-Butylthiotetradecyl, 1-Propyltetradecyl, 1-Ethylthiotetradecyl, 1-Methylthiotetradecyl, 1 -Pentadecylthiohexadecyl, 1 -Tetradecylthiohexadecyl, 1 -Tridecylthiohexadecyl, 1 -Dodecylthiohexadecyl, 1 -Undecylthiohexadecyl, 1 -Decylthiohexadecyl, 1-Nonylthiohexadecyl, 1-Octylthiohexadecyl, 1-Heptylhexadecyl, 1-Hexylthiohexadecyl, 1-Pentylthiohexadecyl, 1-Butylthiohexadecyl, 1-Propylhexadecyl, 1-Ethylthiohexadecyl, 1 -Methylthiohexadecyl, 1 -Hexadecylthiooctadecyl, 1 -Pentadecylthiooctadecyl, 1 -Tetradecylthiooctadecyl, 1 -Tridecylthiooctadecyl, 1 -Dodecylthiooctadecyl, 1 -Undecylthiooctadecyl, 1 -Decylthiooctadecyl, 1 -Nonylthiooctadecyl, I-Octylthioocatedecyl, 1-Heptyloctadecyl, 1-Hexylthiooctadecyl, 1-Pentylthiooctadecyl, 1-Butylthiooctaedecyl, 1-Propyloctadecyl, 1-Ethylthiooctadecyl, 1-Methylthiooctadecyl, 1 -Nonadecylthioeicosanyl, 1 -Octadecylthioeicosanyl, 1 -Heptadecylthioeicosanyl, 1 -Hexadecylthioeicosanyl, 1 -Pentadecylthioeicosanyl, 1 -Tetradecylthioeicosanyl, 1-Tridecylthioeicosanyl, 1-Dodecylthioeicosanyl, 1-Undecylthioeicosanyl, 1-Decylthioeicosanyl, 1-Nonylthioeicosanyl, 1-Octylthioeicosanyl, 1-Heptyleicosanyl, 1-Hexylthioeicosanyl, 1-Pentylthioeicosanyl, 1-Butylthioeicosanyl, 1-Propyleicosanyl, 1 -Ethylthioeicosanyl, 1 -Methyeicosanyl, 1 -Eicosanylthiodocosanyl, 1 -Nonadecylthiodocosanyl, 1 -Octadecylthiodocosanyl, 1 -Heptadecylthiodocosanyl, 1 -Hexadecylthiodocosanyl, 1 -Pentadecylthiodocosanyl, 1 -Tetradecylthiodocosanyl, 1 -Tridecylthiodocosanyl, 1 -Undecylthiodocosanyl, 1 -Decylthiodocosanyl, 1-Nonylthiodocosanyl, 1-Octylthiodocosanyl, 1-Heptyldocosanyl, 1-Hexylthiodocosanyl, 1-Pentylthiodocosanyl, 1-Butylthiodocosanyl, 1-Propyldocosanyl, 1-Ethylthiodocosanyl, 1 -Methylthiodocosanyl, 1 -Tricosanylthiotetracosanyl, 1 -Docosanylthiotetracosanyl, 1 -Nonadecylthiotetracosanyl, 1 -Octadecylthiotetracosanyl, 1 -Heptadecylthiotetracosanyl, 1 -Hexadecylthiotetracosanyl, 1 -Pentadecylthiotetracosanyl, 1 -Pentadecylthiotetracosanyl,
1 -Tetradecylthiotetracosanyl, 1 -Tridecylthiotetracosanyl, 1 -Dodecylthiotetracosanyl,
1 -Undecylthiotetracosanyl, 1 -Decylthiotetracosanyl, 1 -Nonylthiotetracosanyl,
1 -Octylthiotetracosanyl, 1 -Heptyltetracosanyl, 1 -Hexylthiotetracosanyl, 1-Pentylthiotetracosanyl, 1-Butylthiotetracosanyl, 1-Propyltetracosanyl,
1 -Ethylthiotetracosanyl, 1 -Methylthiotetracosanyl 1 -Heptacosanylthiooctacosanyl,
1 -Hexacosanylthiooctacosanyl, 1 -Pentcosanylthiooctacosanyl,
1 -Tetracosanylthiooctcosanyl, 1 -Tricosanylthiooctacosanyl,
1 -Docosanylthiooctacosanyl, 1 -Nonadecylthiooctacosanyl, 1 -Octadecylthiooctacosanyl, I-Heptadecylthiooctacosanyl, 1-Hexadecylthiooctacosanyl,
1 -Hexadecylthiooctacosanyl, 1 -Pentadecylthiooctacosanyl,
1 -Tetradecylthiooctacosanyl, 1 -Tridecylthiooctacosanyl, 1 -Dodecylthiooctacosanyl,
1 -Undecylthiooctacosanyl, 1 -Decylthiooctacosanyl, 1 -Nonylthiooctacosanyl,
1 -Octylthiooctacosanyl, 1 -Heptyloctacosanyl, 1 -Hexylthiooctacosanyl, 1-Pentylthiooctacosanyl, 1-Butylthiooctacosanyl, 1-Propylthiooctacosanyl,
1 -Ethylthiooctacosanyl, 1 -Methylthiooctacosanyl;
in denen q für 1 steht, wie z. B.
2-Ethylpropyl, 2-Methylpropyl, 2-Propylbutyl, 2-Ethylbutyl, 2-Methylbutyl, 2-Butylpentyl, 2-Propylpentyl, 2-Ethylpentyl, 2-Methylpentyl, 2-Pentylhexyl, 2-Butylhexyl, 2-Propylhexyl, 2-Ethylhexyl, 2-Methylhexyl, 2-Hexylheptyl, 2-Pentylheptyl, 2-Butylheptyl, 2-Propylheptyl, 2-Ethylheptyl, 2-Methylheptyl, 2-Heptyloctyl, 2-Hexyloctyl, 2-Pentyloctyl, 2-Butyloctyl, 2-Propyloctyl, 2-Ethyloctyl, 2-Methyloctyl, 2-Octylnonyl, 2-Heptylnonyl, 2-Hexylnonyl, 2-Pentylnonyl, 2-Butylnonyl, 2-Propylnonyl, 2-Ethylnonyl, 2-Methylnonyl, 2-Nonyldecyl, 2-Octyldecyl, 2-Heptyldecyl, 2-Hexyldecyl, 2-Pentyldecyl, 2-Butyldecyl, 2-Propyldecyl, 2-Ethyldecyl, 2-Methyldecyl, 2-Decylundecyl, 2-Nonylundecyl, 2-Octylundecyl, 2-Heptylundecyl, 2-Hexylundecyl, 2-Pentylundecyl, 2-Butylundecyl, 2-Propylundecyl, 2-Ethylundecyl, 2-Methylundecyl, 2-Undecyldodecyl, 2-Decyldodecyl, 2-Nonyldodecyl, 2-Octyldodecyl, 2-Heptyldodecyl, 2-Hexyldodecyl, 2-Pentyldodecyl, 2-Butyldodecyl, 2-Propyldodecyl, 2-Ethyldodecyl, 2-Methyldodecyl, 2-Dodecyltιϊdecyl, 2-Undecyltridecyl, 2-Decyltridecyl, 2-Nonyltridecyl, 2-Octyltridecyl, 2-Heptyltιϊdecyl, 2-Hexyltridecyl, 2-Pentyltridecyl, 2-Butyltridecyl, 2-Propyltridecyl, 2-Ethyltιϊdecyl, 2-Methyltridecyl, 2-Tridecyltetrdecyl, 2-Undecyltetradecyl, 2-Decyltetradecyl, 2-Nonyltetradecyl, 2-Octyltetradecyl, 2-Hetyltetradecyl, 2-Hexyltetradecyl, 2-Pentytetradecyl, 2-Butyltetradecyl, 2-Propyltetradecyl, 2-Ethyltetradecyl, 2-Methyltetradecyl, 2-Pentadecylhexadecyl, 2-Tetradecylhexadecyl, 2-Tridecylhexadecyl, 2-Dodecylhexadecyl, 2-Undecylhexadecyl, 2-Decylhexadecyl, 2-Nonylhexadecyl, 2-Octylhexadecyl, 2-Heptylhexadecyl, 2-Hexylhexadecyl, 2-Pentylhexadecyl, 2-Butylhexadecyl, 2-Propylhexadecyl, 2-Ethylhexadecyl, 2-Methylhexadecyl, 2-Hexadecyloctadecyl, 2-Pentadecyloctadecyl, 2-Tetradecyloctadecyl, 2-Tridecyloctadecyl, 2-Dodecyloctadecyl, 2-Undecyloctadecyl, 2-Decyloctadecyl, 2-Nonyloctadecyl, 2-Octylocatedecyl, 2-Heptyloctadecyl, 2-Hexyloctadecyl, 2-Pentyloctadecyl, 2-Butyloctaedecyl, 2-Propyloctadecyl, 2-Ethyloctadecyl, 2-Methyloctadecyl 2-Nonadecyleicosanyl, 2-Octadecyleicosanyl, 2-Heptadecyleicosanyl, 2-Hexadecyleicosanyl, 2-Pentadecyleicosanyl, 2-Tetradecyleicosanyl, 2-Tridecyleicosanyl, 2-Dodecyleicosanyl, 2-Undecyleicosanyl, 2-Decyleicosanyl, 2-Nonyleicosanyl, 2-Octyleicosanyl, 2-Heptyleicosanyl, 2-Hexyleicosanyl, 2-Pentyleicosanyl, 2-Butyleicosanyl, 2-Propyleicosanyl, 2-Ethyleicosanyl, 2-Methyeicosanyl 2-Eicosanyldocosanyl, 2-Nonadecyldocosanyl, 2-Octadecyldocosanyl, 2-Heptadecyldocosanyl, 2-Hexadecyldocosanyl, 2-Pentadecyldocosanyl, 2-Tetradecyldocosanyl, 2-Tridecyldocosanyl, 2-Undecyldocosanyl, 2-Decyldocosanyl, 2-Nonyldocosanyl, 2-Octyldocosanyl, 2-Heptyldocosanyl, 2-Hexyldocosanyl, 2-Pentyldocosanyl, 2-Butyldocosanyl, 2-Propyldocosanyl, 2-Ethyldocosanyl, 2-Methyldocosanyl 2-Tricosanyltetracosanyl, 2-Docosanyltetracosanyl, 2-Nonadecyltetracosanyl, 2-Octadecyltetracosanyl, 2-Heptadecyltetracosanyl, 2-Hexadecyltetracosanyl, 2-Pentadecyltetracosanyl, 2-Pentadecyltetracosanyl, 2-Tetradecyltetracosanyl, 2-Tridecyltetracosanyl, 2-Dodecyltetracosanyl, 2-Undecyltetracosanyl, 2-Decyltetracosanyl, 2-Nonyltetracosanyl, 2-Octyltetracosanyl, 2-Heptyltetracosanyl, 2-Hexyltetracosanyl, 2-Pentyltetracosanyl, 2-Butyltetracosanyl, 2-Propyltetracosanyl, 2-Ethyltetracosanyl, 2-Methyltetracosanyl 2-Heptacosanyloctacosanyl, 2-Hexacosanyloctacosanyl, 2-Pentcosanyloctacosanyl, 2-Tetracosanyloctcosanyl, 2-Tricosanyloctacosanyl, 2-Docosanyloctacosanyl, 2-Nonadecyloctacosanyl, 2-Octadecyloctacosanyl, 2-Heptadecyloctacosanyl, 2-Hexadecyloctacosanyl, 2-Hexadecyloctacosanyl, 2-Pentadecyloctacosanyl, 2-Tetradecyloctacosanyl, 2-Tridecyloctacosanyl, 2-Dodecyloctacosanyl, 2-Undecyloctacosanyl, 2-Decyloctacosanyl, 2-Nonyloctacosanyl, 2-Octyloctacosanyl, 2-Heptyloctacosanyl, 2-Hexyloctacosanyl, 2-Pentyloctacosanyl, 2-Butyloctacosanyl, 2-Propyloctacosanyl, 2-Ethyloctacosanyl, 2-Methyloctacosanyl;
in denen q für 2 steht, wie z. B.
3-Ethylpropyl, 3-Methylpropyl, 3-Propylbutyl, 3-Ethylbutyl, 3-Methylbutyl, 3-Butylpentyl, 3-Propylpentyl, 3-Ethylpentyl, 3-Methylpentyl, 3-Pentylhexyl, 3-Butylhexyl, 3-Propylhexyl, 3-Ethylhexyl, 3-Methylhexyl, 3-Hexylheptyl, 3-Pentylheptyl, 3-Butylheptyl, 3-Propylheptyl, 3-Ethylheptyl, 3-Methylheptyl, 3-Heptyloctyl, 3-Hexyloctyl, 3-Pentyloctyl, 3-Butyloctyl, 3-Propyloctyl, 3-Ethyloctyl, 3-Methyloctyl, 3-Octylnonyl, 3-Heptylnonyl, 3-Hexylnonyl, 3-Pentylnonyl, 3-Butylnonyl, 3-Propylnonyl, 3-Ethylnonyl, 3-Methylnonyl, 3-Nonyldecyl, 3-Octyldecyl, 3-Heptyldecyl, 3-Hexyldecyl, 3-Pentyldecyl, 3-Butyldecyl, 3-Propyldecyl, 3-Ethyldecyl, 3-Methyldecyl, 3-Decylundecyl, 3-Nonylundecyl, 3-Octylundecyl, 3-Heptylundecyl, 3-Hexylundecyl, 3-Pentylundecyl, 3-Butylundecyl, 3-Propylundecyl, 3-Ethylundecyl, 3-Methylundecyl, 3-Undecyldodecyl, 3-Decyldodecyl, 3-Nonyldodecyl, 3-Octyldodecyl, 3-Heptyldodecyl, 3-Hexyldodecyl, 3-Pentyldodecyl, 3-Butyldodecyl, 3-Propyldodecyl, 3-Ethyldodecyl, 3-Methyldodecyl, 3-Dodecyltridecyl, 3-Undecyltιϊdecyl, 3-Decyltridecyl, 3-Nonyltridecyl, 3-Octyltridecyl, 3-Heptyltιϊdecyl, 3-Hexyltridecyl, 3-Pentyltridecyl, 3-Butyltridecyl, 3-Propyltridecyl, 3-Ethyltιϊdecyl, 3-Methyltridecyl, 3-Tridecyltetrdecyl, 3-Undecyltetradecyl, 3-Decyltetradecyl, 3-Nonyltetradecyl, 3-Octyltetradecyl, 3-Hetyltetradecyl, 3-Hexyltetradecyl, 3-Pentytetradecyl, 3-Butyltetradecyl, 3-Propyltetradecyl, 3-Ethyltetradecyl, 3-Methyltetradecyl, 3-Pentadecylhexadecyl, 3-Tetradecylhexadecyl, 3-Tridecylhexadecyl, 3-Dodecylhexadecyl,
3-Undecylhexadecyl, 3-Decylhexadecyl, 3-Nonylhexadecyl, 3-Octylhexadecyl, 3-Heptylhexadecyl, 3-Hexylhexadecyl, 3-Pentylhexadecyl, 3-Butylhexadecyl, 3-Propylhexadecyl, 3-Ethylhexadecyl, 3-Methylhexadecyl, 3-Hexadecyloctadecyl, 3-Pentadecyloctadecyl, 3-Tetradecyloctadecyl, 3-Tridecyloctadecyl, 3-Dodecyloctadecyl, 3-Undecyloctadecyl, 3-Decyloctadecyl, 3-Nonyloctadecyl, 3-Octylocatedecyl, 3-Heptyloctadecyl, 3-Hexyloctadecyl, 3-Pentyloctadecyl, 3-Butyloctaedecyl, 3-Propyloctadecyl, 3-Ethyloctadecyl, 3-Methyloctadecyl, 3-Nonadecyleicosanyl, 3-Octadecyleicosanyl, 3-Heptadecyleicosanyl, 3-Hexadecyleicosanyl, 3-Pentadecyleicosanyl, 3-Tetradecyleicosanyl, 3-Tridecyleicosanyl, 3-Dodecyleicosanyl, 3-Undecyleicosanyl, 3-Decyleicosanyl, 3-Nonyleicosanyl, 3-Octyleicosanyl, 3-Heptyleicosanyl, 3-Hexyleicosanyl, 3-Pentyleicosanyl, 3-Butyleicosanyl, 3-Propyleicosanyl, 3-Ethyleicosanyl, 3-Methyeicosanyl, 3-Eicosanyldocosanyl, 3-Nonadecyldocosanyl, 3-Octadecyldocosanyl, 3-Heptadecyldocosanyl, 3-Hexadecyldocosanyl, 3-Pentadecyldocosanyl, 3-Tetradecyldocosanyl, 3-Tιϊdecyldocosanyl,
3-Undecyldocosanyl, 3-Decyldocosanyl, 3-Nonyldocosanyl, 3-Octyldocosanyl, 3-Heptyldocosanyl, 3-Hexyldocosanyl, 3-Pentyldocosanyl, 3-Butyldocosanyl, 3-Propyldocosanyl, 3-Ethyldocosanyl, 3-Methyldocosanyl 3-Tricosanyltetracosanyl, 3-Docosanyltetracosanyl, 3-Nonadecyltetracosanyl, 3-Octadecyltetracosanyl, 3-Heptadecyltetracosanyl, 3-Hexadecyltetracosanyl, 3-Pentadecyltetracosanyl, 3-Pentadecyltetracosanyl, 3-Tetradecyltetracosanyl, 3-Tridecyltetracosanyl, 3-Dodecyltetracosanyl, 3-Undecyltetracosanyl, 3-Decyltetracosanyl, 3-Nonyltetracosanyl, 3-Octyltetracosanyl, 3-Heptyltetracosanyl, 3-Hexyltetracosanyl, 3-Pentyltetracosanyl, 3-Butyltetracosanyl, 3-Propyltetracosanyl, 3-Ethyltetracosanyl, 3-Methyltetracosanyl, S-Heptacosanyloctacosanyl, S-Hexacosanyloctacosanyl, S-Pentcosanyloctacosanyl, S-Tetracosanyloctcosanyl, S-Tricosanyloctacosanyl, S-Docosanyloctacosanyl, S-Nonadecyloctacosanyl, 3-Octadecyloctacosanyl, S-Heptadecyloctacosanyl, 3-Hexadecyloctacosanyl, 3-Hexadecyloctacosanyl, S-Pentadecyloctacosanyl, S-Tetradecyloctacosanyl, 3-Tridecyloctacosanyl, 3-Dodecyloctacosanyl, 3-Undecyloctacosanyl, 3-Decyloctacosanyl, 3-Nonyloctacosanyl, 3-Octyloctacosanyl, 3-Heptyloctacosanyl, 3-Hexyloctacosanyl, 3-Pentyloctacosanyl, 3-Butyloctacosanyl, 3-Propyloctacosanyl, 3-Ethyloctacosanyl, 3-Methyloctacosanyl,
in denen q für 3 steht, wie
4-Butylpentyl, 4-Propylpentyl, 4-Ethylpentyl, 4-Methylpentyl, 4-Pentylhexyl, 4-Butylhexyl, 4-Propylhexyl, 4-Ethylhexyl, 4-Methylhexyl, 4-Hexylheptyl, 4-Pentylheptyl, 4-Butylheptyl, 4-Propylheptyl, 4-Ethylheptyl, 4-Methylheptyl, 4-Heptyloctyl,
4-Hexyloctyl, 4-Pentyloctyl, 4-Butyloctyl, 4-Propyloctyl, 4-Ethyloctyl, 4-Methyloctyl, 4-Octylnonyl, 4-Heptylnonyl, 4-Hexylnonyl, 4-Pentylnonyl, 4-Butylnonyl, 4-Propylnonyl, 4-Ethylnonyl, 4-Methylnonyl, 4-Nonyldecyl, 4-Octyldecyl, 4-Heptyldecyl, 4-Hexyldecyl, 4-Pentyldecyl, 4-Butyldecyl, 4-Propyldecyl, 4-Ethyldecyl, 4-Methyldecyl, 4-Decylundecyl, 4-Nonylundecyl, 4-Octylundecyl, 4-Heptylundecyl, 4-Hexylundecyl, 4-Pentylundecyl, 4-Butylundecyl, 4-Propylundecyl, 4-Ethylundecyl, 4-Methylundecyl, 4-Undecyldodecyl, 4-Decyldodecyl, 4-Nonyldodecyl, 4-Octyldodecyl, 4-Heptyldodecyl, 4-Hexyldodecyl, 4-Pentyldodecyl, 4-Butyldodecyl, 4-Propyldodecyl, 4-Ethyldodecyl, 4-Methyldodecyl, 4-Dodecyltridecyl, 4-Undecyltridecyl, 4-Decyltridecyl, 4-Nonyltιϊdecyl, 4-Octyltridecyl, 4-Heptyltridecyl, 4-Hexyltridecyl, 4-Pentyltridecyl, 4-Butyltridecyl, 4-Propyltridecyl, 4-Ethyltridecyl, 4-Methyltridecyl, 4-Tιϊdecyltetrdecyl, 4-Undecyltetradecyl, 4-Decyltetradecyl, 4-Nonyltetradecyl, 4-Octyltetradecyl, 4-Hetyltetradecyl, 4-Hexyltetradecyl, 4-Pentytetradecyl, 4-Butyltetradecyl, 4-Propyltetradecyl, 4-Ethyltetradecyl, 4-Methyltetradecyl, 4-Pentadecylhexadecyl, 4-Tetradecylhexadecyl, 4-Tιϊdecylhexadecyl, 4-Dodecylhexadecyl,
4-Undecylhexadecyl, 4-Decylhexadecyl, 4-Nonylhexadecyl, 4-Octylhexadecyl, 4-Heptylhexadecyl, 4-Hexylhexadecyl, 4-Pentylhexadecyl, 4-Butylhexadecyl, 4-Propylhexadecyl, 4-Ethylhexadecyl, 4-Methylhexadecyl, 4-Hexadecyloctadecyl, 4-Pentadecyloctadecyl, 4-Tetradecyloctadecyl, 4-Tridecyloctadecyl, 4-Dodecyloctadecyl, 4-Undecyloctadecyl, 4-Decyloctadecyl, 4-Nonyloctadecyl, 4-Octylocatedecyl, 4-Heptyloctadecyl, 4-Hexyloctadecyl, 4-Pentyloctadecyl, 4-Butyloctaedecyl, 4-Propyloctadecyl, 4-Ethyloctadecyl, 4-Methyloctadecyl 4-Nonadecyleicosanyl, 4-Octadecyleicosanyl, 4-Heptadecyleicosanyl, 4-Hexadecyleicosanyl, 4-Pentadecyleicosanyl, 4-Tetradecyleicosanyl, 4-Tridecyleicosanyl, 4-Dodecyleicosanyl, 4-Undecyleicosanyl, 4-Decyleicosanyl, 4-Nonyleicosanyl, 4-Octyleicosanyl, 4-Heptyleicosanyl, 4-Hexyleicosanyl, 4-Pentyleicosanyl, 4-Butyleicosanyl, 4-Propyleicosanyl, 4-Ethyleicosanyl, 4-Methyeicosanyl, 4-Eicosanyldocosanyl, 4-Nonadecyldocosanyl, 4-Octadecyldocosanyl, 4-Heptadecyldocosanyl, 4-Hexadecyldocosanyl, 4-Pentadecyldocosanyl, 4-Tetradecyldocosanyl, 4-Tιϊdecyldocosanyl, 4-Undecyldocosanyl, 4-Decyldocosanyl, 4-Nonyldocosanyl, 4-Octyldocosanyl, 4-Heptyldocosanyl, 4-Hexyldocosanyl, 4-Pentyldocosanyl, 4-Butyldocosanyl, 4-Propyldocosanyl, 4-Ethyldocosanyl, 4-Methyldocosanyl, 4-Tricosanyltetracosanyl, 4-Docosanyltetracosanyl, 4-Nonadecyltetracosanyl, 4-Octadecyltetracosanyl, 4-Heptadecyltetracosanyl, 4-Hexadecyltetracosanyl, 4-Pentadecyltetracosanyl, 4-Pentadecyltetracosanyl, 4-Tetradecyltetracosanyl, 4-Tridecyltetracosanyl, 4-Dodecyltetracosanyl, 4-Undecyltetracosanyl, 4-Decyltetracosanyl, 4-Nonyltetracosanyl, 4-Octyltetracosanyl, 4-Heptyltetracosanyl, 4-Hexyltetracosanyl, 4-Pentyltetracosanyl, 4-Butyltetracosanyl, 4-Propyltetracosanyl, 4-Ethyltetracosanyl, 4-Methyltetracosanyl 4-Heptacosanyloctacosanyl, 4-Hexacosanyloctacosanyl, 4-Pentcosanyloctacosanyl, 4-Tetracosanyloctcosanyl, 4-Tιϊcosanyloctacosanyl, 4-Docosanyloctacosanyl, 4-Nonadecyloctacosanyl, 4-Octadecyloctacosanyl, 4-Heptadecyloctacosanyl, 4-Hexadecyloctacosanyl, 4-Hexadecyloctacosanyl, 4-Pentadecyloctacosanyl, 4-Tetradecyloctacosanyl, 4-Tιϊdecyloctacosanyl, 4-Dodecyloctacosanyl, 4-Undecyloctacosanyl, 4-Decyloctacosanyl, 4-Nonyloctacosanyl, 4-Octyloctacosanyl, 4-Heptyloctacosanyl, 4-Hexyloctacosanyl, 4-Pentyloctacosanyl, 4-Butyloctacosanyl, 4-Propyloctacosanyl, 4-Ethyloctacosanyl, 4-Methyloctacosanyl,
in denen q für 4 steht, wie
5-Pentylhexyl, 5-Butylhexyl, 5-Propylhexyl, 5-Ethylhexyl, 5-Methylhexyl, 5-Hexylheptyl, 5-Pentylheptyl, 5-Butylheptyl, 5-Propylheptyl, 5-Ethylheptyl, 5-Methylheptyl, 5-Heptyloctyl, 5-Hexyloctyl, 5-Pentyloctyl, 5-Butyloctyl, 5-Propyloctyl, 5-Ethyloctyl,
5-Methyloctyl, 5-Octylnonyl, 5-Heptylnonyl, 5-Hexylnonyl, 5-Pentylnonyl, 5-Butylnonyl, 5-Propylnonyl, 5-Ethylnonyl, 5-Methylnonyl, 5-Nonyldecyl, 5-Octyldecyl, 5-Heptyldecyl, 5-Hexyldecyl, 5-Pentyldecyl, 5-Butyldecyl, 5-Propyldecyl, 5-Ethyldecyl, 5-Methyldecyl, 5-Decylundecyl, 5-Nonylundecyl, 5-Octylundecyl, 5-Heptylundecyl, 5-Hexylundecyl, 5-Pentylundecyl, 5-Butylundecyl, 5-Propylundecyl, 5-Ethylundecyl, 5-Methylundecyl, 5-Undecyldodecyl, 5-Decyldodecyl, 5-Nonyldodecyl, 5-Octyldodecyl, 5-Heptyldodecyl, 5-Hexyldodecyl, 5-Pentyldodecyl, 5-Butyldodecyl, 5-Propyldodecyl, 5-Ethyldodecyl, 5-Methyldodecyl, 5-Dodecyltridecyl, 5-Undecyltιϊdecyl, 5-Decyltridecyl, 5-Nonyltridecyl, 5-Octyltridecyl, 5-Heptyltridecyl, 5-Hexyltιϊdecyl, 5-Pentyltridecyl, 5-Butyltridecyl, 5-Propyltridecyl, 5-Ethyltιϊdecyl, 5-Methyltridecyl, 5-Tridecyltetrdecyl, 5-Undecyltetradecyl, 5-Decyltetradecyl, 5-Nonyltetradecyl, 5-Octyltetradecyl, 5-Hetyltetradecyl, 5-Hexyltetradecyl, 5-Pentytetradecyl, 5-Butyltetradecyl, 5-Propyltetradecyl, 5-Ethyltetradecyl, 5-Methyltetradecyl, 5-Pentadecylhexadecyl, 5-Tetradecylhexadecyl, 5-Tridecylhexadecyl, 5-Dodecylhexadecyl,
5-Undecylhexadecyl, 5-Decylhexadecyl, 5-Nonylhexadecyl, 5-Octylhexadecyl, 5-Heptylhexadecyl, 5-Hexylhexadecyl, 5-Pentylhexadecyl, 5-Butylhexadecyl, 5-Propylhexadecyl, 5-Ethylhexadecyl, 5-Methylhexadecyl, 5-Hexadecyloctadecyl, 5-Pentadecyloctadecyl, 5-Tetradecyloctadecyl, 5-Tridecyloctadecyl, 5-Dodecyloctadecyl, 5-Undecyloctadecyl, 5-Decyloctadecyl, 5-Nonyloctadecyl, 5-Octylocatedecyl, 5-Heptyloctadecyl, 5-Hexyloctadecyl, 5-Pentyloctadecyl, 5-Butyloctaedecyl, 5-Propyloctadecyl, 5-Ethyloctadecyl, 5-Methyloctadecyl 5-Nonadecyleicosanyl, 5-Octadecyleicosanyl, 5-Heptadecyleicosanyl, 5-Hexadecyleicosanyl, 5-Pentadecyleicosanyl, 5-Tetradecyleicosanyl, 5-Tridecyleicosanyl, 5-Dodecyleicosanyl, 5-Undecyleicosanyl, 5-Decyleicosanyl, 5-Nonyleicosanyl, 5-Octyleicosanyl, 5-Heptyleicosanyl, 5-Hexyleicosanyl, 5-Pentyleicosanyl, 5-Butyleicosanyl, 5-Propyleicosanyl, 5-Ethyleicosanyl, 5-Methyeicosanyl, 5-Eicosanyldocosanyl, 5-Nonadecyldocosanyl, δ-Octadecyldocosanyl, 5-Heptadecyldocosanyl, 5-Hexadecyldocosanyl, 5-Pentadecyldocosanyl, 5-Tetradecyldocosanyl, 5-Tιϊdecyldocosanyl,
5-Undecyldocosanyl, 5-Decyldocosanyl, 5-Nonyldocosanyl, 5-Octyldocosanyl, 5-Heptyldocosanyl, 5-Hexyldocosanyl, 5-Pentyldocosanyl, 5-Butyldocosanyl, 5-Propyldocosanyl, 5-Ethyldocosanyl, 5-Methyldocosanyl 5-Tricosanyltetracosanyl, 5-Docosanyltetracosanyl, 5-Nonadecyltetracosanyl, δ-Octadecyltetracosanyl, 5-Heptadecyltetracosanyl, 5-Hexadecyltetracosanyl, 5-Pentadecyltetracosanyl, 5-Pentadecyltetracosanyl, 5-Tetradecyltetracosanyl, 5-Tridecyltetracosanyl, 5-Dodecyltetracosanyl, 5-Undecyltetracosanyl, 5-Decyltetracosanyl, 5-Nonyltetracosanyl, 5-Octyltetracosanyl, 5-Heptyltetracosanyl, 5-Hexyltetracosanyl, 5-Pentyltetracosanyl, 5-Butyltetracosanyl, 5-Propyltetracosanyl, 5-Ethyltetracosanyl, 5-Methyltetracosanyl δ-Heptacosanyloctacosanyl, 5-Hexacosanyloctacosanyl, δ-Pentcosanyloctacosanyl, δ-Tetracosanyloctcosanyl, δ-Tricosanyloctacosanyl, δ-Docosanyloctacosanyl, δ-Nonadecyloctacosanyl, 5-Octadecyloctacosanyl, δ-Heptadecyloctacosanyl, 5-Hexadecyloctacosanyl, δ-Hexadecyloctacosanyl, δ-Pentadecyloctacosanyl, 5-Tetradecyloctacosanyl, δ-Tridecyloctacosanyl, 5-Dodecyloctacosanyl, δ-Undecyloctacosanyl, 5-Decyloctacosanyl,
5-Nonyloctacosanyl, 5-Octyloctacosanyl, 5-Heptyloctacosanyl, 5-Hexyloctacosanyl, 5-Pentyloctacosanyl, 5-Butyloctacosanyl, 5-Propyloctacosanyl, 5-Ethyloctacosanyl, 5-Methyloctacosanyl in denen q für 5 steht, wie z. B.
6-Hexylheptyl, 6-Pentylheptyl, 6-Butylheptyl, 6-Propylheptyl, 6-Ethylheptyl, 6-Methylheptyl, 6-Heptyloctyl, 6-Hexyloctyl, 6-Pentyloctyl, 6-Butyloctyl, 6-Propyloctyl, 6-Ethyloctyl, 6-Methyloctyl, 6-Octylnonyl, 6-Heptylnonyl, 6-Hexylnonyl, 6-Pentylnonyl, 6-Butylnonyl, 6-Propylnonyl, 6-Ethylnonyl, 6-Methylnonyl, 6-Nonyldecyl, 6-Octyldecyl, 6-Heptyldecyl, 6-Hexyldecyl, 6-Pentyldecyl, 6-Butyldecyl, 6-Propyldecyl, 6-Ethyldecyl, 6-Methyldecyl, 6-Decylundecyl, 6-Nonylundecyl, 6-Octylundecyl, 6-Heptylundecyl, 6-Hexylundecyl, 6-Pentylundecyl, 6-Butylundecyl, 6-Propylundecyl, 6-Ethylundecyl, 6-Methylundecyl, 6-Undecyldodecyl, 6-Decyldodecyl, 6-Nonyldodecyl, 6-Octyldodecyl, 6-Heptyldodecyl, 6-Hexyldodecyl, 6-Pentyldodecyl, 6-Butyldodecyl, 6-Propyldodecyl, 6-Ethyldodecyl, 6-Methyldodecyl, 6-Dodecyltridecyl, 6-Undecyltridecyl, 6-Decyltridecyl, 6-Nonyltridecyl, 6-Octyltridecyl, 6-Heptyltridecyl, 6-Hexyltridecyl, 6-Pentyltridecyl, 6-Butyltridecyl, 6-Propyltridecyl, 6-Ethyltridecyl, 6-Methyltridecyl, 6-Tridecyltetrdecyl, 6-Undecyltetradecyl, 6-Decyltetradecyl, 6-Nonyltetradecyl, 6-Octyltetradecyl, 6-Hetyltetradecyl, 6-Hexyltetradecyl, 6-Pentytetradecyl, 6-Butyltetradecyl, 6-Propyltetradecyl, 6-Ethyltetradecyl, 6-Methyltetradecyl, 6-Pentadecylhexadecyl, 6-Tetradecylhexadecyl, 6-Tridecylhexadecyl, 6-Dodecylhexadecyl, 6-Undecylhexadecyl, 6-Decylhexadecyl, 6-Nonylhexadecyl, 6-Octylhexadecyl, 6-Heptylhexadecyl, 6-Hexylhexadecyl, 6-Pentylhexadecyl, 6-Butylhexadecyl,
6-Propylhexadecyl, 6-Ethylhexadecyl, 6-Methylhexadecyl, 6-Hexadecyloctadecyl, 6-Pentadecyloctadecyl, 6-Tetradecyloctadecyl, 6-Tιϊdecyloctadecyl, 6-Dodecyloctadecyl, 6-Undecyloctadecyl, 6-Decyloctadecyl, 6-Nonyloctadecyl, 6-Octylocatedecyl, 6-Heptyloctadecyl, 6-Hexyloctadecyl, 6-Pentyloctadecyl, 6-Butyloctaedecyl, 6-Propyloctadecyl, 6-Ethyloctadecyl, 6-Methyloctadecyl 6-Nonadecyleicosanyl, 6-Octadecyleicosanyl, 6-Heptadecyleicosanyl, 6-Hexadecyleicosanyl, 6-Pentadecyleicosanyl, 6-Tetradecyleicosanyl, 6-Tridecyleicosanyl, 6-Dodecyleicosanyl, 6-Undecyleicosanyl, 6-Decyleicosanyl, 6-Nonyleicosanyl, 6-Octyleicosanyl, 6-Heptyleicosanyl, 6-Hexyleicosanyl, 6-Pentyleicosanyl, 6-Butyleicosanyl, 6-Propyleicosanyl, 6-Ethyleicosanyl, 6-Methyeicosanyl, 6-Eicosanyldocosanyl, 6-Nonadecyldocosanyl, 6-Octadecyldocosanyl, 6-Heptadecyldocosanyl, 6-Hexadecyldocosanyl, 6-Pentadecyldocosanyl, 6-Tetradecyldocosanyl, 6-Tridecyldocosanyl, 6-Undecyldocosanyl, 6-Decyldocosanyl, 6-Nonyldocosanyl, 6-Octyldocosanyl, 6-Heptyldocosanyl, 6-Hexyldocosanyl, 6-Pentyldocosanyl, 6-Butyldocosanyl,
6-Propyldocosanyl, 6-Ethyldocosanyl, 6-Methyldocosanyl 6-Tricosanyltetracosanyl, 6-Docosanyltetracosanyl, 6-Nonadecyltetracosanyl, 6-Octadecyltetracosanyl, 6-Heptadecyltetracosanyl, 6-Hexadecyltetracosanyl, 6-Pentadecyltetracosanyl, 6-Pentadecyltetracosanyl, 6-Tetradecyltetracosanyl, 6-Tridecyltetracosanyl, 6-Dodecyltetracosanyl, 6-Undecyltetracosanyl, 6-Decyltetracosanyl, 6-Nonyltetracosanyl, 6-Octyltetracosanyl, 6-Heptyltetracosanyl, 6-Hexyltetracosanyl, 6-Pentyltetracosanyl, 6-Butyltetracosanyl, 6-Propyltetracosanyl, 6-Ethyltetracosanyl, 6-Methyltetracosanyl ö-Heptacosanyloctacosanyl, ö-Hexacosanyloctacosanyl, ö-Pentcosanyloctacosanyl, ö-Tetracosanyloctcosanyl, ö-Tricosanyloctacosanyl, ö-Docosanyloctacosanyl, ö-Nonadecyloctacosanyl, 6-Octadecyloctacosanyl, δ-Heptadecyloctacosanyl, 6-Hexadecyloctacosanyl, ö-Hexadecyloctacosanyl, ö-Pentadecyloctacosanyl, 6-Tetradecyloctacosanyl, ö-Tridecyloctacosanyl, ö-Dodecyloctacosanyl, ö-Undecyloctacosanyl, 6-Decyloctacosanyl, 6-Nonyloctacosanyl, 6-Octyloctacosanyl, 6-Heptyloctacosanyl, 6-Hexyloctacosanyl, 6-Pentyloctacosanyl, 6-Butyloctacosanyl, 6-Propyloctacosanyl, 6-Ethyloctacosanyl, 6-Methyloctacosanyl,
in denen q für 6 steht, wie z. B.
7-Heptyloctyl, 7-Hexyloctyl, 7-Pentyloctyl, 7-Butyloctyl, 7-Propyloctyl, 7-Ethyloctyl, 7-Methyloctyl, 7-Octylnonyl, 7-Heptylnonyl, 7-Hexylnonyl, 7-Pentylnonyl, 7-Butylnonyl, 7-Propylnonyl, 7-Ethylnonyl, 7-Methylnonyl, 7-Nonyldecyl, 7-Octyldecyl, 7-Heptyldecyl, 7-Hexyldecyl, 7-Pentyldecyl, 7-Butyldecyl, 7-Propyldecyl, 7-Ethyldecyl, 7-Methyldecyl, 7-Decylundecyl, 7-Nonylundecyl, 7-Octylundecyl, 7-Heptylundecyl, 7-Hexylundecyl, 7-Pentylundecyl, 7-Butylundecyl, 7-Propylundecyl, 7-Ethylundecyl, 7-Methylundecyl, 7-Undecyldodecyl, 7-Decyldodecyl, 7-Nonyldodecyl, 7-Octyldodecyl, 7-Heptyldodecyl, 7-Hexyldodecyl, 7-Pentyldodecyl, 7-Butyldodecyl, 7-Propyldodecyl, 7-Ethyldodecyl, 7-Methyldodecyl, 7-Dodecyltιϊdecyl, 7-Undecyltridecyl, 7-Decyltridecyl, 7-Nonyltridecyl, 7-Octyltridecyl, 7-Heptyltridecyl, 7-Hexyltridecyl, 7-Pentyltridecyl, 7-Butyltridecyl, 7-Propyltridecyl, 7-Ethyltridecyl, 7-Methyltridecyl, 7-Tridecyltetrdecyl, 7-Undecyltetradecyl, 7-Decyltetradecyl, 7-Nonyltetradecyl, 7-Octyltetradecyl, 7-Hetyltetradecyl, 7-Hexyltetradecyl, 7-Pentytetradecyl, 7-Butyltetradecyl, 7-Propyltetradecyl, 7-Ethyltetradecyl, 7-Methyltetradecyl, 7-Pentadecylhexadecyl, 7-Tetradecylhexadecyl, 7-Tridecylhexadecyl, 7-Dodecylhexadecyl,
7-Undecylhexadecyl, 7-Decylhexadecyl, 7-Nonylhexadecyl, 7-Octylhexadecyl, 7-Heptylhexadecyl, 7-Hexylhexadecyl, 7-Pentylhexadecyl, 7-Butylhexadecyl, 7-Propylhexadecyl, 7-Ethylhexadecyl, 7-Methylhexadecyl, 7-Hexadecyloctadecyl, 7-Pentadecyloctadecyl, 7-Tetradecyloctadecyl, 7-Tridecyloctadecyl, 7-Dodecyloctadecyl, 7-Undecyloctadecyl, 7-Decyloctadecyl, 7-Nonyloctadecyl, 7-Octylocatedecyl, 7-Heptyloctadecyl, 7-Hexyloctadecyl, 7-Pentyloctadecyl, 7-Butyloctaedecyl, 7-Propyloctadecyl, 7-Ethyloctadecyl, 7-Methyloctadecyl 7-Nonadecyleicosanyl, 7-Octadecyleicosanyl, 7-Heptadecyleicosanyl, 7-Hexadecyleicosanyl, 7-Pentadecyleicosanyl, 7-Tetradecyleicosanyl, 7-Tridecyleicosanyl, 7-Dodecyleicosanyl, 7-Undecyleicosanyl, 7-Decyleicosanyl, 7-Nonyleicosanyl, 7-Octyleicosanyl, 7-Heptyleicosanyl, 7-Hexyleicosanyl, 7-Pentyleicosanyl, 7-Butyleicosanyl, 7-Propyleicosanyl, 7-Ethyleicosanyl, 7-Methyleicosanyl, 7-Eicosanyldocosanyl, 7-Nonadecyldocosanyl, 7-Octadecyldocosanyl, 7-Heptadecyldocosanyl, 7-Hexadecyldocosanyl, 7-Pentadecyldocosanyl, 7-Tetradecyldocosanyl, 7-Tιϊdecyldocosanyl, 7-Undecyldocosanyl, 7-Decyldocosanyl, 7-Nonyldocosanyl, 7-Octyldocosanyl, 7-Heptyldocosanyl, 7-Hexyldocosanyl, 7-Pentyldocosanyl, 7-Butyldocosanyl, 7-Propyldocosanyl, 7-Ethyldocosanyl, 7-Methyldocosanyl 7-Tricosanyltetracosanyl, 7-Docosanyltetracosanyl, 7-Nonadecyltetracosanyl, 7-Octadecyltetracosanyl, 7-Heptadecyltetracosanyl, 7-Hexadecyltetracosanyl, 7-Pentadecyltetracosanyl, 7-Pentadecyltetracosanyl, 7-Tetradecyltetracosanyl, 7-Tridecyltetracosanyl, 7-Dodecyltetracosanyl, 7-Undecyltetracosanyl, 7-Decyltetracosanyl, 7-Nonyltetracosanyl, 7-Octyltetracosanyl, 7-Heptyltetracosanyl, 7-Hexyltetracosanyl, 7-Pentyltetracosanyl, 7-Butyltetracosanyl, 7-Propyltetracosanyl, 7-Ethyltetracosanyl, 7-Methyltetracosanyl 7-Heptacosanyloctacosanyl, 7-Hexacosanyloctacosanyl, 7-Pentcosanyloctacosanyl, 7-Tetracosanyloctcosanyl, 7-Tιϊcosanyloctacosanyl, 7-Docosanyloctacosanyl, 7-Nonadecyloctacosanyl, 7-Octadecyloctacosanyl, 7-Heptadecyloctacosanyl, 7-Hexadecyloctacosanyl, 7-Hexadecyloctacosanyl, 7-Pentadecyloctacosanyl, 7-Tetradecyloctacosanyl, 7-Tιϊdecyloctacosanyl, 7-Dodecyloctacosanyl, 7-Undecyloctacosanyl, 7-Decyloctacosanyl, 7-Nonyloctacosanyl, 7-Octyloctacosanyl, 7-Heptyloctacosanyl, 7-Hexyloctacosanyl, 7-Pentyloctacosanyl, 7-Butyloctacosanyl, 7-Propyloctacosanyl, 7-Ethyloctacosanyl, 7-Methyloctacosanyl.
Bevorzugt sind folgende Verbindungen
Figure imgf000045_0001
Figure imgf000046_0001
Figure imgf000047_0001
Figure imgf000048_0001
Bezüglich der Bedeutungen der Gruppen Rc und Rd wird auf die eingangs gemachten Ausführungen Bezug genommen.
Bevorzugte Verbindungen sind:
Figure imgf000048_0002
Figure imgf000049_0001
Figure imgf000050_0001
worin R und R' für C4-Ci8-Alkyl, bevorzugt C5-Ci2-Alkyl, stehen. Bevorzugt steht R' für C4-Cs-AIkVl, besonders bevorzugt Cs-Cz-Alkyl.
Im Folgenden werden einige besonders bevorzugte erfindungsgemäße Verbindungen wiedergegeben:
Figure imgf000050_0002
Die zuvor beschriebenen Verbindungen sind in der Regel thermisch stabil. Figur 1 zeigt das thermische Verhalten der Verbindungen 1 bis 4, bestimmt mittels DSC (differential scanning calorimetry). 1 zeigt einen direkten Übergang vom columnar geordneten Zustand zum isotropen Zustand bei 130 0C. Die Isotropisierungstemperatur für 2 liegt bei 278 0C und für 3 bei oberhalb 500 0C. 3 zeigt einen weiteren flüssig-kristallinen Zu- stand bei 188 0C. Corronen 4 erfährt einen direkten Übergang vom columnar geordneten Zustand zum isotropen Zustand bei 2850C.
TDI (2) und PDI (1 ) wurden zwischen zwei Glasplättchen gebracht und aus der isotro- pen Phase abgekühlt. Figur 2 zeigt den TDI-FiIm unter einem Polarisationsmikroskop. TDI zeigte Selbstorganisation in großen Domänen mit Größen von Hunderten von Mikrometern. Die Doppelbrechung und die hohe optische Anisotropie weisen auf eine ausgeprägte uniaxial columnar Anordnung mit edge-on-ausgerichteten Discs hin. Diese Anordnung wird auch durch „large area X-Ray scattering" in Reflektion bestätigt. Das Vorhandensein einer großen Anzahl scharfer Reflexe in Figur 3 bestätigt die hohe Kristallinität des Films von TDI 2. Die hier beobachtete edge on-Anordnung eignet sich vorteilhaft für Halbleiter in OFETs. Die Moleküle können sich in edge on-Ausrichtung auf dem Dielektrikum anordnen und Ladungsträger durch die π-Ebenen der Rylenge- rüste hindurch transportieren. CDI Moleküle (4) wurden ebenfalls zwischen zwei Glas- platten „gesandwiched" und aus der isotropen Phase abgekühlt. In Figur 4 wird die Aufnahme unter einem Polarisationsmikroskop gezeigt, welche vernachlässigbare Doppelbrechung zeigt. Durch eine WAXS wide angle XRay scattering Transmissionsaufnahme (Figur 5) wird belegt, dass eine hexagonale Anordnung der Moleküle in Richtung des einfallenden Strahls vorliegt. Die Moleküle ordnen sich also parallel zur Oberflächennormale an. Diese face on-Orientierung ist besonders vorteilhaft für einen Einsatz in solchen Solarzellen, in denen die Absorbermoleküle halbleitende Eigenschaften aufweisen müssen. Derartige angeordnete Absorber können sehr gut mit dem einfallenden Licht wechselwirken und sie leiten die Ladungsträger direkt in Richtung der Substrate, bzw. Elektroden, auf denen sie angeordnet sind.
Es kann angenommen werden, dass sich durch entsprechende Vorbehandlung der Oberflächen, der Methode der Aufbringung des Halbleiters auf das Substrat (aus Lösung oder aus der Schmelze) die beiden Anordnungen gezielt einstellen lassen können und je nach Anwendung in einem OFET oder in einer Solarzelle entweder face on (homöotrop) oder edge on-Anordnungen eingestellt werden können. Auf jeden Fall aber sollten mit den zuvor beschriebenen Terrylendiimiden, Perrylendiimiden und Qua- terrylendiimiden gute OFETs gebaut werden können und mit den Corronen gute Solarzellen.
Herstellung
Variante 1 (Imidierung von Rylentetracarbonsäuredianhydriden): Die Herstellung der erfindungsgemäßen Verbindungen der allgemeinen Formel I kann ausgehen von bekannten Rylentetracarbonsäuredianhydriden. Die Rylencarbonsäu- reimide können hergestellt werden durch Imidierung der entsprechend substituierten oder unsusbtituierten Anhydride, so weit diese verfügbar sind. Für n = 1 (Naphthalintetracarbonsäuredianhydride) sind dies auf jeden Fall unsubstituierte, 2- bis 4-fach bromierte, 2- bis 4-fach fluorierte und 2- bis 4-fach cyanierte und 2-fach chlorierte. Für n = 2 (Perylentetracarbonsäuredianhydride) sind dies auf jeden Fall 4-fach chlorierte, 2-fach und 4-fach bromierte und 2-fach fluorierte.
Ein weiterer Gegenstand der Erfindung ist daher ein Verfahren zur Herstellung von Verbindungen der Formel I
Figure imgf000052_0001
(I)
wobei
n für 1 oder 2 steht,
die Reste Rn1, Rn2, Rn3 und Rn4 unabhängig voneinander ausgewählt sind unter Was- serstoff, F, Cl, Br und CN,
die Reste Rc und Rd unabhängig voneinander ausgewählt sind unter Gruppen der Formeln 11.1 bis II.5: # (A)p— C(ROx
(11.1 )
Figure imgf000053_0001
(II.2) (11.3)
Figure imgf000053_0002
(11.4) (11-5)
worin
# für die Verknüpfungsstelle zum Imidstickstoffatom steht,
p für 0 oder 1 steht,
x für 2 oder 3 steht,
A soweit vorhanden, für eine Ci-Cio-Alkylengruppe steht, die durch eine oder mehrere nicht benachbarte Gruppen, die ausgewählt sind unter -O- und
-S-, unterbrochen sein kann,
wobei für den Fall, dass in den Verbindungen der Formel 11.1 x für 2 steht, das
Kohlenstoffatom, das die Reste R1 trägt, zusätzlich ein H-Atom trägt,
wobei in den Verbindungen der Formel 11.5 x für 2 steht,
die Reste R1 jeweils unabhängig voneinander ausgewählt sind unter C4-C3o-Alkyl, welche durch ein oder mehrere nicht benachbarte Sauerstoffatom(e) unterbrochen sein können,
bei dem man
a1 ) ein Rylendianhydrid der Formel Ia,
Figure imgf000054_0001
einer Umsetzung mit einem Amin der Formel H2N-RC und gegebenenfalls einem davon verschiedenen Amin der Formel H2N-Rd unterzieht.
Die Imidierung von Carbonsäureanhydridgruppen ist prinzipiell bekannt. Vorzugsweise erfolgt die Umsetzung des Dianhydrids mit dem primären Amin in Gegenwart eines hochsiedenden Lösungsmittels.
Als Lösungsmittel für die Imidierung eignen sich unpolar aprotische Lösungsmittel, wie Kohlenwasserstoffe, z. B. Benzol, Toluol, XyIoI, Mesitylen Petrolether Dekalin etc. Als Lösungsmittel sich auch polare aprotische Lösungsmittel, wie Trialkylamine, stickstoffhaltige Heterocyclen, N,N-disubstituierte aliphatische Carbonsäureamide (vorzugsweise N,N-Di(Ci-C4-alkyl)-(Ci-C4)carbonsäureamide) und N-Alkyllactame, wie Dimethyl- formamid, Diethylformamid, Dimethylacetamid, Dimethylbutyramid und N-Methyl- pyrrolidon, wobei N-Methylpyrrolidon bevorzugt ist.
Beispiele für besonders geeignete Lösungsmittel sind: Chinolin, Isochinolin, Chinaldin, Pyrimidin, N-Methylpiperidin und Pyridin; Dimethylformamid, Diethylformamid, Di- methylacetamid und Dimethylbutyramid; N-Methylpyrrolidon. Bevorzugtes Lösungsmittel dieser Gruppe ist Chinolin.
Als Lösungsmittel eignen sich auch protische Lösungsmittel, insbesondere aliphatische Carbonsäuren, vorzugsweise C2-Ci2-Carbonsäuren, wie Essigsäure, Propionsäure, Butansäure und Hexansäure, wobei Essigsäure und Propionsäure bevorzugte protische Lösungsmittel sind.
Je nach Reaktivität der Edukte sind entweder die aprotischen oder die protischen Lösungsmittel bevorzugt. So sind die aprotischen Lösungsmittel für die Umsetzung von nicht substituierten Rylencarbonsäureanhydriden vorzuziehen, während die protischen Lösungsmittel bei der Umsetzung der reaktiveren substituierten Rylencarbonsäurean- hydride bevorzugt sind. In der Regel werden 1 bis 100 ml, insbesondere 3 bis 70 ml, Lösungsmittel pro g Ry- lencarbonsäureanhydrid (Ia), verwendet.
Die Reaktion kann in Gegenwart eines Imidierungskatalysators vorgenommen werden. Als Imidierungskatalysatoren eignen sich Lewis- und Brönstedt-Säuren, z. B. organische und anorganische Säuren, z. B. Ameisensäure, Essigsäure, Propionsäure und Phosphorsäure.
Der Einsatz einer Lewis-Säure ist insbesondere bei der Umsetzung der reaktionsträge- ren nichtsubstituierten Rylencarbonsäureanhydride (Ia) zu empfehlen.
Als Lewis-Säure eignen sich vor allem Zink-, Kupfer- und Eisensalze, wobei im Fall von Kupfer auch die Oxide verwendet werden können. Bevorzugt sind die Zink- und Kupferverbindungen, wobei die Zinkverbindungen besonders bevorzugt sind.
Beispiele für geeignete Lewis-Säuren sind Zinkacetat, Zinkpropionat, Kupfer(l)oxid, Kupfer(ll)oxid, Kupfer(l)chlorid, Kupfer(l)acetat und Eisen(lll)chlorid, wobei Zinkacetat ganz besonders bevorzugt ist.
Kommt eine Lewis-Säure zum Einsatz, so werden in der Regel 0,5 bis 3, vorzugsweise 0,5 bis 1 ,5, Äquivalente pro mol umzusetzender Anhydridgruppe im Rylencarbonsäure- anhydrid (Ia) verwendet.
Die Reaktionstemperatur hängt ebenfalls von der Reaktivität der Edukte ab und liegt im Allgemeinen im Bereich von 50 bis 250 °C. Bei den reaktionsträgeren nichtsubstituierten Rylencarbonsäureanhydriden sind Temperaturen von 150 bis 230 °C bevorzugt, die Umsetzung der reaktiveren substituierten Rylencarbonsäureanhydride (Ia) wird vorzugsweise bei 1 10 bis 170 °C vorgenommen.
Gewünschtenfalls (bei der Umsetzung mit Diaminen zwingend) kann man das sich bildende Reaktionswasser sowie das gegebenenfalls durch die Hilfsstoffe eingebrachte Wasser während der Umsetzung abdestillieren.
Die Reaktion kann unter Schutzgas, z. B. Stickstoff oder Argon, erfolgen.
Eine verfahrenstechnisch geeignete Vorgehensweise zur Imidierung ist wie folgt:
Man erhitzt eine Mischung von Rylencarbonsäureanhydrid, Amin, Lösungsmittel und gegebenenfalls Lewis-Säure, gewünschtenfalls unter Abdestillieren des sich bildenden Wassers, 1 bis 48 h auf die gewünschte Reaktionstemperatur. Wird bei Abdestillieren des Wassers zu viel Lösungsmittel mit abdestilliert, so muss eine entsprechende weitere Menge ergänzt werden.
Die Isolierung der erhaltenen Verbindungen kann wie folgt vorgenommen werden:
Die gewünschten Verbindungen werden durch Abkühlen und Zugabe eines protischen Lösungsmittels, wie Wasser oder eines niederen aliphatischen Alkohols, z. B. eines Ci-C4-Alkanols, ausgefällt bzw. auskristallisiert, abfiltriert, mit einem der vorstehenden Lösungsmittel und gegebenenfalls einer verdünnten Mineralsäure zur Entfernung von Rückständen von Rylendicarbonsäureimidderivaten und/oder anorganischen Salzen gewaschen und getrocknet.
Die erhaltenen flüssig-kristallinen Verbindungen können gewünschtenfalls zur weiteren Reinigung einer Säulenchromatographie bzw. Säulenfiltration oder einer Umkristallisa- tion bzw. fraktionierten Kristallisation unterzogen werden.
Variante 2 (Suzuki-Reaktion):
Die Herstellung von erfindungsgemäßen Perylen-, Terrylen- und Quaterrylen- Verbindungen der allgemeinen Formel I, bei denen der Aromatenkern unsubstituiert ist, kann auch durch Suzuki-Kupplungsreaktion erfolgen, bevorzugt wird dieses Verfahren zur Herstellung von Terrylen- und Quaterrylen-Verbindungen der allgemeinen Formel I eingesetzt. Ein geeignetes Verfahren zur Herstellung von Terrylentetracarbonsäure- diimiden durch Suzuki-Kupplung ist z. B. in der WO 2005/070894 beschrieben.
Ein weiterer Gegenstand der Erfindung ist daher ein Verfahren zur Herstellung von Verbindungen der Formel I
Figure imgf000056_0001
(I)
wobei n für 2, 3 oder 4 steht,
die Reste Rc und Rd unabhängig voneinander ausgewählt sind unter Gruppen der Formeln 11.1 bis II.5:
# (A)p— C(ROx
(11.1 )
Figure imgf000057_0001
(II-2) (II.3)
Figure imgf000057_0002
(II.4) (H-5)
worin
# für die Verknüpfungsstelle zum Imidstickstoffatom steht,
p für 0 oder 1 steht,
x für 2 oder 3 steht,
A soweit vorhanden, für eine Ci-Cio-Alkylengruppe steht, die durch eine oder mehrere nicht benachbarte Gruppen, die ausgewählt sind unter -O- und
-S-, unterbrochen sein kann,
wobei für den Fall, dass in den Verbindungen der Formel 11.1 x für 2 steht, das
Kohlenstoffatom, das die Reste R1 trägt, zusätzlich ein H-Atom trägt,
wobei in den Verbindungen der Formel 11.5 x für 2 steht,
die Reste R1 jeweils unabhängig voneinander ausgewählt sind unter C4-C3o-Alkyl, welche durch ein oder mehrere nicht benachbarte Sauerstoffatom(e) unterbrochen sein können,
bei dem man α) eine Verbindung der Formel lila)
Figure imgf000058_0001
(lila) wobei
n' für 1 oder 2 steht,
mit einem Diboran der Formel IV
R«O ORα
B-B
/ \
RαO ORα
(IV) worin
Rα gleich oder verschieden sind und unabhängig voneinander Wasserstoff, C1-C30- Alkyl, Cö-Cs-Cycloalkyl, Aryl oder Hetaryl bedeuten, wobei die Reste Rα auch unter Ausbildung eines die beiden Sauerstoffatome sowie das Boratom enthaltenden Fünfrings, der an den Kohlenstoffatomen durch bis zu vier Ci-C3o-Alkyl-, Cs-Cs-Cycloalkyl-, Aryl- oder Hetarylgruppen substituiert sein kann, miteinander verbunden sein können,
unter Erhalt einer Verbindung der Formel V
Figure imgf000059_0001
OR« ORa
(V) umsetzt,
ß) die Verbindung der Formel V) mit einer Verbindung der Formel IMb)
Figure imgf000059_0002
(N Ib) wobei
n" für 1 oder 2 steht,
in Gegenwart eines Übergangsmetallkatalysators und einer Base einer Suzuki- Kupplungsreaktion unter Erhalt einer Verbindung der Formel VI
Figure imgf000060_0001
(VI)
γ) die Verbindung der Formel VI) durch Cyclodehydrierung in einem Hydroxy- und Aminofunktionen aufweisenden und eine im Wesentlichen ungelöste Base enthaltenden organischen Reaktionsmedium in eine Verbindung der Formel I überführt, wobei n für die Summe aus n' und n" steht.
Zur Bereitstellung der Verbindungen der Formeln IMa bzw. IMb kann man Verbindungen der Formeln
Figure imgf000060_0002
worin n' und n" unabhängig für 1 oder 2 steht,
einer Umsetzung mit einem Amin der Formel HbN-R0 bzw. einem davon verschiedenen Amin der Formel HbN-R0 und einer Bromierung unterziehen. Die Reihenfolge von Bro- mierung und Imidierung ist dabei in der Regel nicht kritisch. Die Imidierung kann unter den zuvor für Schritt a1 ) beschriebenen Bedingungen erfolgen.
Halogenierte Verbindungen der Formeln IMa bzw. IMb, worin n' und n" für 1 stehen
Figure imgf000061_0001
sind kommerziell erhältlich.
Die Bromierung von Perylenmonoanhydrid erfolgt vorzugsweise in H2SO4.
Die Bromierung der Rylenmonoimide erfolgt vorzugsweise in einer Carbonsäure wie z. B. Essigsäure, Propionsäure oder Buttersäure. Dabei beträgt die Reaktionstempera- tur vorzugsweise 20 bis 100 °C, besonders bevorzugt 20 bis 50 °C. Es werden bevorzugt 1 bis 10 Moläquivalente, bevorzugt 1 bis 5 Moläquivalente Brom, bezogen auf die zu bromierende Verbindung, eingesetzt. Die Reaktion erfolgt z. B. unter Rühren für 1 bis 24 Stunden. Die Einsatzmenge an Carbonsäure beträgt bevorzugt 10 bis 100 bevorzugt 15 bis 50 ml Carbonsäure je g Rylenderivat. Bevorzugt werden zur Bromierung 1 bis 5 Gew.-%, besonders bevorzugt 1 bis 2 Gew.-% Jod, bezogen auf Brom, als Katalysator zugesetzt.
Schritt α)
Die Umsetzung des Diborans IV mit dem Edukt IMa in Schritt α) erfolgt bevorzugt in Gegenwart eines aprotischen organischen Lösungsmittels, eines Übergangsmetallkatalysators und einer Base.
Das Molverhältnis Diboran IV zu Edukt MIa liegt dabei im Allgemeinen bei 0,8 : 1 bis 3 : 1 , insbesondere bei 1 ,5 : 1 bis 2 : 1.
Als Lösungsmittel sind für Schritt α) grundsätzlich alle unter den Reaktionsbedingungen gegen Basen stabilen aprotischen Lösungsmittel mit einem Siedepunkt oberhalb der gewählten Reaktionstemperatur geeignet, in denen sich die Edukte IMa bei Reakti- onstemperatur vollständig und die verwendeten Katalysatoren und Basen zumindest partiell lösen, so dass weitgehend homogene Reaktionsbedingungen vorliegen. Es können sowohl unpolar-aprotische als auch polar-aprotische Lösungsmittel eingesetzt werden, wobei die unpolar-aprotischen Lösungsmittel bevorzugt sind. Beispiele für bevorzugte unpolar-aprotische Lösungsmittel sind bei > 100 °C siedende Lösungsmittel aus den folgenden Gruppen: Aliphaten (insbesondere Cs-Cis-Alkane), unsubstituierte, alkylsubstituierte und kondensierte Cycloaliphaten (insbesondere un- substituierte C7-Cio-Cycloalkane, Cβ-Cs-Cycloalkane, die durch ein bis drei Ci-Cβ- Alkylgruppen substituiert sind, polycyclische gesättigte Kohlenwasserstoffe mit 10 bis 18 C-Atomen), alkyl- und cycloalkylsubstituierte Aromaten (insbesondere Benzol, das durch ein bis drei Ci-Cδ-Alkylgruppen oder einen Cs-Cs-Cycloalkylrest substituiert ist) und kondensierte Aromaten, die alkylsubstituiert und/oder teilhydriert sein können (insbesondere Naphthalin, das durch ein bis vier Ci-Cδ-Alkylgruppen substituiert ist) sowie Mischungen dieser Lösungsmittel.
Als Beispiele für besonders bevorzugte Lösungsmittel seien im einzelnen genannt: Octan, Isooctan, Nonan, Isononan, Decan, Isodecan, Undecan, Dodecan, Hexadecan und Octadecan; Cycloheptan, Cyclooctan, Methylcyclohexan, Dimethylcyclohexan, Trimethylcyclohexan, Ethylcyclohexan, Diethylcyclohexan, Propylcyclohexan, Isopro- pylcyclohexan, Dipropylcyclohexan, Butylcyclohexan, tert.-Butylcyclohexan, Methyl- cycloheptan und Methylcyclooctan; Toluol, o-, m- und p-Xylol, 1 ,3,5-Trimethylbenzol (Mesitylen), 1 ,2,4- und 1 ,2,3-Trimethylbenzol, Ethylbenzol, Propylbenzol, Isopropyl- benzol, Butylbenzol, Isobutylbenzol, tert.-Butylbenzol und Cyclohexylbenzol; Naphtha- Nn, Decahydronaphthalin (Dekalin), 1- und 2-Methylnaphthalin und 1- und 2-Ethyl- naphthalin; Kombinationen aus den zuvor genannten Lösungsmitteln, wie sie aus den hochsiedenden, teil- oder durchhydrierten Fraktionen thermischer und katalytischer Crackprozesse bei der Rohöl- oder Naphthaverarbeitung gewonnen werden können, z. B. Gemische vom Exsol® Typ und Alkylbenzolgemische vom Solvesso® Typ.
Ganz besonders bevorzugte Lösungsmittel sind XyIoI (alle Isomeren), Mesitylen und vor allem Toluol.
Beispiele für geeignete polar-aprotische Lösungsmittel sind N,N-disubstituierte aliphati- sehe Carbonsäureamide (insbesondere N,N-Di-Ci-C4-alkyl-Ci-C4-carbonsäureamide), stickstoffhaltige Heterocyclen und aprotische Ether (insbesondere cyclische Ether, Di- arylether und Di-Ci-Cβ-alkylether von monomeren und oligomeren C2-C3-Alkylenglyko- len, die bis zu 6 Alkylenoxideinheiten enthalten können, vor allem Diethylenglykoldi- Ci-C4-alkylether).
Als Beispiele für besonders geeignete Lösungsmittel seien im einzelnen genannt: N,N-Dimethylformamid, N,N-Diethylformamid, N,N-Dimethylacetamid und N,N-Dimethyl-butyramid; N-Methyl-2-pyrrolidon, Chinolin, Isochinolin, Chinaldin, Pyri- midin, N-Methyl-piperidin und Pyridin; Tetrahydrofuran, Dioxan, Diphenylether, Diethy- lenglykoldi-methyl-, -diethyl-, -dipropyl-, -diisopropyl-, -di-n-butyl-, -di-sec.-butyl- und -di-tert.-butyl-ether, Diethylenglykolmethylethylether, Triethylenglykoldimethyl- und -diethylether und Triethylenglykolmethylethylether.
Im Fall von Perylenen als Edukte IMa sind die unpolar-aprotischen Lösungsmittel, vor allem Toluol, besonders bevorzugt, im Fall von Naphthalinen als Edukte MIa sind polar- aprotische Lösungsmittel, insbesondere Dioxan, besonders bevorzugt.
Die Lösungsmittelmenge beträgt in der Regel 10 bis 1000 ml, bevorzugt 20 bis 300 ml, je g Edukt IMa.
Als Übergangsmetallkatalysator eignen sich insbesondere Palladiumkomplexe, wie Tetrakis(triphenylphosphin)palladium(0), Tetrakis(tris-o-tolylphosphin)palladium(0), [1 ,2-Bis(diphenylphosphino)ethan]palladium(M)chlorid, [1 ,1 '-Bis(diphenylphosphino)- ferrocen]palladium(ll)chlorid, Bis(triethylphosphin)palladium(ll)chlorid, Bis(tricyclo- hexylphosphin)palladium(ll)acetat, (2,2'-Bipyridyl)palladium(M)chlorid, Bis(triphenyl- phosphin)palladium(ll)chlorid, Tris(dibenzylidenaceton)dipalladium(0), 1 ,5-Cycloocta- dienpalladium(ll)chlorid, Bis(acetonitril)palladium(ll)chlorid und Bis(benzonitril)palla- dium(ll)chlorid, wobei [1 ,1 '-Bis(diphenylphosphino)ferrocen]palladium(M)chlorid und Tetrakis(triphenylphosphin)palladium(0) bevorzugt sind.
Üblicherweise wird der Übergangsmetallkatalysator in einer Menge von 1 bis 20 mol- %, vor allem 2 bis 10 mol-%, bezogen auf das Edukt IMa, eingesetzt.
Als Base kommen vorzugsweise die Alkalimetallsalze, insbesondere die Natrium- und vor allem die Kaliumsalze, schwacher organischer und anorganischer Säuren, wie Na- triumacetat, Kaliumacetat, Natriumcarbonat, Natriumhydrogencarbonat, Kaliumcarbo- nat und Kaliumhydrogencarbonat, zum Einsatz. Bevorzugte Basen sind die Acetate, vor allem Kaliumacetat.
Im Allgemeinen werden 1 bis 5 mol, bevorzugt 2 bis 4 mol, Base je mol Edukt IMa verwendet.
Die Reaktionstemperatur liegt üblicherweise bei 20 bis 180 °C, vor allem bei 60 bis 120 0C.
Die Reaktionszeit beträgt in der Regel 0,5 bis 30 h, insbesondere 1 bis 20 h.
Verfahrenstechnisch geht man in Schritt α) zweckmäßigerweise wie folgt vor: Man legt Edukt IMa und Lösungsmittel vor, gibt Diboran IV, den Übergangsmetallkatalysator und die Base nacheinander zu und erhitzt die Mischung 0,5 bis 30 h unter Schutzgas auf die gewünschte Reaktionstemperatur. Nach Abkühlen auf Raumtempe- ratur filtriert man die festen Bestandteile aus dem Reaktionsgemisch ab und destilliert das Lösungsmittel unter vermindertem Druck ab.
Die Reinheit des so hergestellten Dioxaborolanylderivate V reicht im Allgemeinen für die Weiterverarbeitung aus. Gegebenenfalls kann das Rohprodukt durch Waschen mit einem die Verunreinigungen lösenden Lösungsmittel, wie Wasser, oder durch Säulenchromatographie an Kieselgel mit einem Gemisch von Methylenchlorid und Hexan oder Pentan oder mit Toluol als Eluens weiter aufgereinigt werden.
Schritt ß)
Die Umsetzung des Dioxaborolanylderivats V mit einer Verbindung MIb (oder gegebenenfalls MIa) wird vorzugsweise in Gegenwart eines organischen Lösungsmittels, ge- wünschtenfalls im Gemisch mit Wasser, durchgeführt.
Das Molverhältnis von V zu MIb beträgt im Allgemeinen 0,8 : 1 bis 3 : 1.
Im Fall von Perylenen als Edukte MIb beträgt das Molverhältnis von V zu IMb in der Regel 0,8 : 1 bis 3 : 1 , vorzugsweise 0,9 : 1 bis 2 : 1.
Im Fall von Naphthalinen als Edukte MIb beträgt das Molverhältnis von V zu IMb im Allgemeinen 0,8 : 1 bis 3 : 1 , bevorzugt 1 ,5 : 1 bis 2,5 : 1.
Als Lösungsmittel eignen sich für Schritt ß) alle Lösungsmittel, in denen sich die Dioxaborolanylderivate V und die Edukte IMb bei Reaktionstemperatur vollständig und die verwendeten Katalysatoren und Basen zumindest partiell lösen, so dass weitgehend homogene Reaktionsbedingungen vorliegen. Insbesondere geeignet sind die bereits für Schritt α) genannten Lösungsmittel, wobei auch hier die alkylsubstituierten Benzole bevorzugt sind. Die Lösungsmittelmenge liegt üblicherweise bei 10 bis 1000 ml, vorzugsweise bei 20 bis 100 ml, je g Dioxaborolanylderivat V.
Vorzugsweise setzt man in Schritt ß) Wasser als zusätzliches Lösungsmittel ein. In diesem Fall werden in der Regel 10 bis 1000 ml, insbesondere 250 bis 500 ml, Wasser je I organisches Lösungsmittel verwendet. Als Übergangsmetallkatalysatoren werden in Schritt ß) ebenfalls vorzugsweise Palladiumkomplexe eingesetzt, wobei hier die gleichen Bevorzugungen wie in Schritt a) gelten. Die Einsatzmenge Katalysator beträgt üblicherweise 1 bis 20 mol-%, insbesondere 1 ,5 bis 5 mol-%, bezogen auf das Dioxaborolanylderivat V.
Als Base sind in Schritt ß) wie in Schritt α) die Alkalimetallsalze schwacher Säuren bevorzugt, wobei die Carbonate, wie Natriumcarbonat und vor allem Kaliumcarbonat besonders bevorzugt sind. In der Regel liegt die Basenmenge bei 0,1 bis 10 mol, insbesondere bei 0,2 bis 5 mol, je mol Dioxaborolanylderivat V.
Die Reaktionstemperatur beträgt im Allgemeinen 20 bis 180 °C, bevorzugt 60 bis 120 °C. Wird in Schritt ß) Wasser eingesetzt, so empfiehlt es sich, die Umsetzung nicht bei Temperaturen über 100 °C vorzunehmen, da ansonsten unter Druck gearbeitet werden müsste.
Die Reaktion ist üblicherweise in 0,5 bis 48 h, insbesondere in 5 bis 20 h, beendet.
Verfahrenstechnisch geht man in Schritt ß) zweckmäßigerweise wie folgt vor:
Man legt Dioxaborolanylderivat V und Edukt IMb sowie Lösungsmittel vor, gibt Übergangsmetallkatalysator und die vorzugsweise in Wasser oder einem Wasser/Alkohol- Gemisch gelöste Base zu und erhitzt die Mischung 0,5 bis 48 h unter Schutzgas auf die gewünschte Reaktionstemperatur. Nach Abkühlen auf Raumtemperatur trennt man die organische Phase aus dem Reaktionsgemisch ab und destilliert das Lösungsmittel unter vermindertem Druck ab.
Die Reinheit des so hergestellten Kupplungsprodukts VI reicht im Allgemeinen für die Weiterverarbeitung aus. Gegebenenfalls kann das Rohprodukt durch Waschen mit Wasser und gewünschtenfalls einem geeigneten organischen Lösungsmittel, insbe- sondere einem chlorierten aliphatischen oder aromatischen Kohlenwasserstoff, oder durch Säulenchromatographie an Kieselgel mit einem Gemisch von Methylenchlorid und Hexan oder Pentan oder mit Toluol als Eluens weiter aufgereinigt werden.
Schritt γ)
Die Cylodehydrierung von VI zu I erfolgt wie folgendermaßen geschrieben:
Die Cyclodehydrierung kann entweder in einem Hydroxy- und Aminofunktionen aufweisenden und eine im wesentlichen ungelöste Base enthaltenden organischen Reakti- onsmedium oder in Gegenwart eines basenstabilen, hochsiedenden, organischen Lösungsmittels sowie einer alkali- oder erdalkalimetallhaltigen Base und einer stickstoffhaltigen Hilfsbase vorgenommen werden.
Bevorzugt ist die erste Verfahrensvariante, die im Folgenden näher beschrieben wird.
Als organisches Reaktionsmedium sind dabei vor allem Aminoalkohole geeignet, die 2 bis 20, vorzugsweise 2 bis 10 Kohlenstoffatome aufweisen. Die Kohlenstoffkette dieser Alkohole kann durch Sauerstoffatome in Etherfunktion unterbrochen sein. Beispiele für besonders geeignete Lösungsmittel sind Ethanolamin, Triethanolamin und Diethanol- amin, wobei Ethanolamin bevorzugt ist. Es ist auch möglich, Mischungen von Alkoholen und Aminen zu verwenden, die jeweils einen Siedepunkt von mindestens 70 °C haben und bei der Reaktionstemperatur flüssig sind.
Üblicherweise werden 1 ,5 bis 150 ml, bevorzugt 5 bis 50 ml, Reaktionsmedium je g Kupplungsprodukt VI eingesetzt.
Als im Reaktionsmedium im wesentlichen unlösliche Base eignen sich die Alkalimetallsalze, insbesondere die Natriumsalze und vor allem die Kaliumsalze, schwacher orga- nischer und bevorzugt schwacher anorganischer Säuren, wie Formiate, Acetate, Pro- pionate, Hydrogencarbonate und besonders bevorzugt Carbonate, insbesondere Natri- umcarbonat und vor allem Kaliumcarbonat.
In der Regel beträgt die Basenmenge 1 bis 10 mol, bevorzugt 2 bis 5 mol, je mol Kupp- lungsprodukt VI.
Die Reaktionstemperatur liegt im Allgemeinen bei 40 bis 200 °C, insbesondere bei 80 bis 160 0C.
Die Reaktionszeit beträgt üblicherweise 0,5 bis 24 h, vorzugsweise 1 bis 12 h.
Verfahrenstechnisch geht man in Schritt γ) zweckmäßigerweise so vor, dass man eine Mischung Kupplungsprodukt VI, Lösungsmittel und Base 0,5 bis 24 h unter Schutzgas bei der gewünschten Reaktionstemperatur rührt und das gebildete Produkt I nach Ab- kühlen auf Raumtemperatur durch Zugabe eines Alkohols, wie Ethanol, oder von Wasser aus dem Reaktionsgemisch ausfällt, abfiltriert und mit Wasser wäscht.
Die Reinigung des erhaltenen Produkts I kann wie folgt vorgenommen werden: Katalysatorrückstände können durch eine schnelle Filtration über Kieselgel unter waschen mit einem halogenierten aliphatischen Kohlenwasserstoff, wie Methylenchlorid, entfernt werden. Rückstände nichtumgesetzter Edukte auf Perylen- und Terrylenbasis können durch Säulenchromatographie an Kieselgel mit Methylenchlorid als Eluens oder durch wiederholtes Waschen mit Hexan oder Pentan entfernt werden.
Die Herstellung von Terrylenen und Quaterrylenen durch Suzuki-Kupplung kann dann beispielsweise wie in folgendem Schema zusammengefasst erfolgen:
Figure imgf000067_0001
Variante 3:
Die Herstellung von erfindungsgemäßen Terrylen- und Quaterrylen-Verbindungen der allgemeinen Formel I, kann auch durch Direktsynthese erfolgen. Ein geeignetes Verfahren zur Herstellung von Terrylentetracarbonsäurediimiden durch Direktsynthese ist z. B. in der WO 2005/070895 beschrieben. Ein geeignetes Verfahren zur Herstellung von Quaterrylentetracarbonsäurediimiden durch Direktsynthese ist z. B. in der WO 2006/021307 beschrieben. Ein weiterer Gegenstand der Erfindung ist daher ein Verfahren zur Herstellung von Verbindungen der Formel I
Figure imgf000068_0001
(I)
wobei
n für 3 oder 4 steht,
die Reste Rc und Rd unabhängig voneinander ausgewählt sind unter Gruppen der Formeln 11.1 bis II.5:
# (A)p— C(ROx
(11.1 )
Figure imgf000068_0002
(11.4) (11.5)
worin
# für die Verknüpfungsstelle zum Imidstickstoffatom steht, p für O oder 1 steht,
x für 2 oder 3 steht,
A soweit vorhanden, für eine Ci-Cio-Alkylengruppe steht, die durch eine oder mehrere nicht benachbarte Gruppen, die ausgewählt sind unter -O- und -S-, unterbrochen sein kann,
wobei für den Fall, dass in den Verbindungen der Formel 11.1 x für 2 steht, das Kohlenstoffatom, das die Reste R1 trägt, zusätzlich ein H-Atom trägt,
wobei in den Verbindungen der Formel 11.5 x für 2 steht,
die Reste R1 jeweils unabhängig voneinander ausgewählt sind unter C4-C3o-Alkyl, welche durch ein oder mehrere nicht benachbarte Sauerstoffatom(e) unterbrochen sein können,
bei dem man ein Perylen-3,4-dicarbonsäureimid der allgemeinen Formel VII,
Figure imgf000069_0001
(VH)
in Gegenwart eines basenstabilen Lösungsmittels und einer alkali- oder erdalkalime- tallhaltigen Base mit einer Verbindung der allgemeinen Formel VIII
Figure imgf000070_0001
(VI II)
wobei n"' für 0 oder 1 steht und Z für Wasserstoff, Brom oder Chlor steht, umsetzt.
Als Edukte VIII können dabei sowohl in 4-Position chlorierte oder bromierte (n'"= 0) bzw. in 9-Position halogenierte (n' "= 1 ), als auch nichthalogenierte Verbindungen eingesetzt werden.
In einer ersten Ausführungsform zur Herstellung von Terrylenderivaten wird als Edukt VIII ein in 4-Position chloriertes oder bromiertes oder ein in 4-Position nicht halogenier- tes Naphthalin-1 ,8-dicarbonsäureimid VIII (n' "= 0) eingesetzt.
Werden nichthalogenierte Edukte VIII verwendet, so empfiehlt es sich in der Regel, die Umsetzung bei verschärften Reaktionsbedingungen vorzunehmen, d. h. größere Über- schüsse an Verbindung VIII und gegebenenfalls zusätzlich zu einer starken alkalimetallhaltigen Base eine stickstoffhaltige Hilfsbase sowie polar-aprotische Lösungsmittel einzusetzen.
Dementsprechend beträgt das Molverhältnis von Verbindung VIII zu Perylen-3,4- dicarbonsäureimid VII bei Verwendung von halogeniertem Edukt VIII (Z: Chlor oder Brom) üblicherweise 4 bis 1 : 1 und bevorzugt 2 bis 1 : 1 , während es bei nichthaloge- niertem Edukt VIII im Allgemeinen bei 8 bis 1 : 1 und vorzugsweise bei 6 bis 2 : 1 liegt.
Als Lösungsmittel sind grundsätzlich alle unter den Reaktionsbedingungen gegen Ba- sen stabile Lösungsmittel geeignet. Bevorzugt sind aprotische Lösungsmittel. Bevorzugt sind weiter Lösungsmittel mit einem Siedepunkt oberhalb der gewählten Reaktionstemperatur, in denen sich die Perylen-3,4-dicarbonsäureimide VII und die Verbin- düngen VIII bei Reaktionstemperatur vollständig und die verwendeten Basen zumindest partiell lösen, so dass weitgehend homogene Reaktionsbedingungen vorliegen. Es können sowohl unpolar-aprotische als auch polar-aprotische Lösungsmittel eingesetzt werden, wobei unpolar-aprotische Lösungsmittel und auf Ethern basierende apro- tische Lösungsmittel bei Einsatz von halogenierten Edukten VIII und die polar- aprotischen Lösungsmittel bei Einsatz von nichthalogenierten Edukten VIII bevorzugt sind.
Beispiele für besonders geeignete unpolar-aprotische Lösungsmittel sind bei > 100 °C siedende Lösungsmittel aus den folgenden Gruppen: Aliphaten (insbesondere Cs-C-is- Alkane), unsubstituierte, alkylsubstituierte und kondensierte Cycloaliphaten (insbesondere unsubstituierte C7-Cio-Cycloalkane, Cβ-Cs-Cycloalkane, die durch ein bis drei Ci-Cδ-Alkylgruppen substituiert sind, polycyclische gesättigte Kohlenwasserstoffe mit 10 bis 18 C-Atomen), alkyl- und cycloalkylsubstituierte Aromaten (insbesondere Ben- zol, das durch ein bis drei Ci-Cδ-Alkylgruppen oder einen Cs-Cβ-Cycloalkylrest substituiert ist) und kondensierte Aromaten, die alkylsubstituiert und/oder teilhydriert sein können (insbesondere Naphthalin, das durch ein bis vier Ci-Cδ-Alkylgruppen substituiert ist) sowie Mischungen dieser Lösungsmittel.
Als Beispiele für bevorzugte unpolar-aprotische Lösungsmittel seien im Einzelnen genannt: Octan, Isooctan, Nonan, Isononan, Decan, Isodecan, Undecan, Dodecan, He- xadecan und Octadecan; Cycloheptan, Cyclooctan, Methylcyclohexan, Dimethyl- cyclohexan, Trimethylcyclohexan, Ethylcyclohexan, Diethylcyclohexan, Propylcyclo- hexan, Isopropylcyclohexan, Dipropylcyclohexan, Butylcyclohexan, tert.-Butylcyclo- hexan, Methylcycloheptan und Methylcyclooctan; Toluol, o-, m- und p-Xylol, 1 ,3,5-Tri- methylbenzol (Mesitylen), 1 ,2,4- und 1 ,2,3-Trimethylbenzol, Ethylbenzol, Propylbenzol, Isopropylbenzol, Butylbenzol, Isobutylbenzol, tert.-Butylbenzol und Cyclohexylbenzol; Naphthalin, Decahydronaphthalin (Dekalin), 1- und 2-Methylnaphthalin, 1- und 2-Ethyl- naphthalin; Kombinationen aus den zuvor genannten Lösungsmitteln, wie sie aus den hochsiedenden, teil- oder durchhydrierten Fraktionen thermischer und katalytischer Crackprozesse bei der Rohöl- oder Naphthaverarbeitung gewonnen werden können, z. B. Gemische vom Exsol® Typ, und Alkylbenzolgemische vom Solvesso® Typ.
Besonders bevorzugte unpolar-aprotische Lösungsmittel sind XyIoI (alle Isomere), Me- sitylen und vor allem Toluol und Dekalin.
Beispiele für besonders geeignete polar-aprotische Lösungsmittel sind N,N-disubsti- tuierte aliphatische Carbonsäureamide (insbesondere N,N-Di-Ci-C4-alkyl-Ci-C4-car- bonsäureamide), stickstoffhaltige Heterocyclen und aprotische Ether (insbesondere cyclische Ether, Diarylether und Di-d-Cδ-alkylether von monomeren und oligomeren C2-C3-Alkylenglykolen, die bis zu 6 Alkylenoxideinheiten enthalten können, vor allem Diethylenglykoldi-Ci-C4-alkylether).
Als Beispiele für bevorzugte polar-aprotische Lösungsmittel seien im Einzelnen genannt: N,N-Dimethylformamid, N,N-Diethylformamid, N,N-Dimethylacetamid und N,N-Dimethylbutyramid; N-Methyl-2-pyrrolidon, Chinolin, Isochinolin, Chinaldin, Pyrimi- din, N-Methylpiperidin und Pyridin; Tetrahydrofuran, Dioxan, Diphenylether, Diethy- lenglykoldimethyl-, -diethyl-, -dipropyl-, -diisopropyl-, -di-n-butyl-, -di-sec.-butyl- und -di-tert.-butylether, Diethylenglykolmethylethylether, Triethylenglykoldimethyl- und
-diethylether und Triethylenglykolmethylethylether, wobei Diethylenglykoldiethylether, Diphenylether und vor allem Diethylenglykoldimethylether besonders bevorzugt sind.
Die Lösungsmittelmenge beträgt in der Regel 50 bis 250 ml unpolar-aprotisches Lö- sungsmittel bzw. 10 bis 50 ml polar-aprotisches Lösungsmittel je g Perylen-3,4-dicar- bonsäureimid VII.
Als Base sind starke anorganische und organische alkali- oder erdalkalimetallhaltige Basen geeignet, wobei die alkalimetallhaltigen Basen besonders geeignet sind. Bevor- zugte anorganische Basen sind Alkali- und Erdalkalimetallhydroxide und -amide, bevorzugte organische Basen sind Alkali- und Erdalkalimetallalkoholate (insbesondere die Ci-Cβ-Alkoholate, vor allem tert.-C4-C6-Alkoholate), Alkali- und Erdalkalimetall- (phenyl)alkylamide (insbesondere die Bis(Ci-C4-alkyl)amide) und Triphenylmethylme- tallate. Besonders bevorzugt sind die Alkalimetallalkoholate. Bevorzugte Alkalimetalle sind Lithium, Natrium und Kalium, wobei Kalium ganz besonders bevorzugt ist. Besonders geeignete Erdalkalimetalle sind Magnesium und Calcium.
Als Beispiele für besonders bevorzugte Basen seien im einzelnen genannt: Lithiumhydroxid, Natriumhydroxid und Kaliumhydroxid; Lithiumamid, Natriumamid und KaIi- umamid; Lithiummethylat, Natriummethylat, Kaliummethylat, Lithiumethylat, Natrium- ethylat, Kaliumethylat, Natriumisopropylat, Kaliumisopropylat, Natrium-tert.-butylat und Kalium-tert.-butylat; Lithiumdimethylamid, Lithiumdiethylamid, Lithiumdiisopropylamid, Natriumdiisopropylamid, Triphenylmethyllithium, Triphenylmethylnatrium und Triphenyl- methylkalium.
Ganz besonders bevorzugte Basen sind Lithiumdiisopropylamid, Natriummethylat, Natrium-tert.-butylat, vor allem Kaliummethylat und Kaliumhydroxid und insbesondere Kalium-tert.-butylat. Bei Verwendung der Methylate und der Hydroxide sowie generell bei Verwendung von nichthalogenierten Edukten VIII empfiehlt sich zur Erhöhung der Reaktivität der Zusatz einer stickstoffhaltigen Hilfsbase mit geringer nucleophiler Wirkung. Geeignete Basen sind bei den Reaktionstemperaturen flüssige Alkylamine, insbesondere Tri-C3-C6-alkyl- amine, wie Tripropylamin und Tributylamin, Alkoholamine, insbesondere Mono-, Di- und Tri-C2-C4-alkoholamine, wie Mono-, Di- und Triethanolamin, und insbesondere heterocyclische Basen, wie Pyridin, N-Methylpiperidin, N-Methyl-piperidon, N-Methyl- morpholin, N-Methyl-2-pyrrolidon, Pyrimidin, Chinolin, Isochinolin, Chinaldin und vor allem Diazabicyclononen (DBN) und Diazabicycloundecen (DBU). Geeignete Einsatz- mengen für die Hilfsbase liegen im Fall der halogenierten Edukte VIII im Allgemeinen bei 1 bis 15 g, vorzugsweise bei 1 bis 5 g, je g Perylen-3,4-dicarbon-säureimid VII und im Fall der nichthalogenierten Edukte IM in der Regel bei 1 bis 60 g, bevorzugt bei 5 bis 20 g, je g Perylen-3,4-dicarbonsäureimid II. Von der Alkalimetallbase werden bei halogenierten Edukten VIII üblicherweise 2 bis 10 mol, insbesondere 2 bis 4 mol, je mol Perylen-3,4-dicarbonsäureimid VII und bei nichthalogenierten Edukten VIII im Allgemeinen 2 bis 20 mol, vorzugsweise 8 bis 20 mol, je mol Perylen-3,4-dicarbon- säureimid VII, eingesetzt.
Die Alkalimetallbase kann in fester oder in gelöster Form eingesetzt werden. Wenn die Alkalimetallbase in Kombination mit einem unpolar-aprotischen Reaktionslösungsmittel verwendet wird, in dem sie nicht ausreichend löslich ist, kann sie in einem Alkohol, der eine höhere Basenstärke als die Alkalimetallbase hat, gelöst werden. Geeignet sind vor allem tertiäre aliphatische Alkohole, die Arylsubstituenten enthalten können und insgesamt vier bis zwölf C-Atome aufweisen, z. B. tert.-Butanol, 2-Methyl-2-butanol (tert.-Amylalkohol), 3-Methyl-3-pentanol, 3-Ethyl-3-pentanol, 2-Phenyl-2-pentanol, 2,3-Di-methyl-3-pentanol, 2,4,4-Trimethyl-2-pentanol und 2,2,3,4,4-Pentamethyl-3- pentanol.
Die Reaktionstemperatur liegt üblicherweise bei 50 bis 210 °C, bevorzugt bei 70 bis 180 0C.
Insbesondere bei Abwesenheit eine Hilfsbase kann es vorteilhaft sein, zunächst eine Reaktionstemperatur im oberen Bereich zu wählen, um das Perylen-3,4-dicarbon- säureimid VII in 9-Stellung zu deprotonieren. Die anschließende Kupplungsreaktion mit dem Edukt VIII kann dann in der Regel bei niedrigerer Temperatur durchgeführt werden, was sich insbesondere bei Edukten VIII mit basenlabilen Substituenten am Imid- stickstoffatom empfiehlt. Die Reaktionszeit beträgt in der Regel 1 bis 3 h bei halogenierten Edukten VIII und 2 bis 8 h bei nichthalogenierten Edukten VIII.
Verfahrenstechnisch geht man beim Einsatz nichthalogenierter Edukte VIII zweckmä- ßigerweise wie folgt vor:
Man legt Perylen-3,4-dicarbonsäureimid VII, Verbindung VIII und Base vor, gibt Lösungsmittel und gegebenenfalls Hilfsbase unter Schutzgas zu und erhitzt die Mischung die gewünschte Zeit unter Rühren und unter Schutzgas auf die gewünschte Reaktions- temperatur. Nach Abkühlen auf Raumtemperatur fällt man die Verbindungen I durch Zugabe von einem protischen Lösungsmittel, das die anderen Komponenten löst, z. B. von Ci-C3-Alkoholen und insbesondere Wasser, aus. Man filtriert ab und wäscht mit einem der genannten Lösungsmittel, insbesondere mit einem der Alkohole.
Bei Verwendung halogenierter Edukte VIII kann analog vorgehen. Man kann jedoch auch zunächst nur ein Gemisch von Perylen-3,4-dicarbonsäureimid VII, Base, gegebenenfalls Hilfsbase sowie Lösungsmittel unter Rühren und Schutzgas auf eine Temperatur im Bereich von 120 bis 210 °C erhitzen (Deprotonierung) und das Edukt VIII anschließend, gegebenenfalls nach Absenken der Temperatur auf 50 bis 120 °C, zugeben.
Zur weiteren Reinigung kann man die Produkte I z. B. aus einem Gemisch von halogenierten Lösungsmitteln, wie Chlorform und Methylenchlorid, und Alkoholen, wie Methanol, Ethanol und Isopropanol, Umkristallisieren. Alternativ kann man auch eine Säulen- Chromatographie an Kieselgel unter Verwendung von Methylenchlorid oder Aceton als Eluens vornehmen.
Mit Hilfe der dritten Variante des erfindungsgemäßen Verfahrens unter Einsatz eines in 4-Position chlorierten oder bromierten oder eines in 4-Position nicht halogenierten Naphthalin-1 ,8-dicarbonsäureimid VIII (n' "= 0) können Terrylen-3,4:11 ,12-tetracarbon- säurediimide I in guten Ausbeuten (in der Regel von 40 bis 80 %) und hohen Reinheiten (üblicherweise 95 bis 99 %) auf wirtschaftliche Weise in einem Schritt hergestellt werden. Sowohl an den Imidstickstoffatomen symmetrisch als auch unsymmetrisch substituierte Verbindungen I sind auf vorteilhafte Weise zugänglich.
In einer zweiten Ausführungsform zur Herstellung von Quaterrylenderivaten wird als Edukt VIII ein in 9-Position chloriertes oder bromiertes oder ein in 9-Position nicht ha- logeniertes Perylen-3,4-dicarbonsäureimid VIII (n' "= 1) eingesetzt. Mit Hilfe des erfindungsgemäßen Verfahrens können die Quaterrylen-3,4:13,14-tetra- carbonsäurediimide I in einem Schritt durch Umsetzung eines Perylen-3,4-dicarbon- säureimids VIII (im Folgenden Imid VIII genannt) mit einem Perylen-3,4-dicarbonsäure- imid VII (im Folgenden Imid VII genannt) in Gegenwart eines basenstabilen, hochsie- denden, organischen Lösungsmittels und einer alkali- oder erdalkalimetallhaltigen Base hergestellt werden.
Als Imid VIII kann dabei sowohl ein in 9-Position halogeniertes, also chloriertes oder insbesondere bromiertes, als auch ein nichthalogeniertes Imid, das am Imidstickstoff- atom einen Rest X1(R')X tragen kann, der mit dem Rest X2(R")y am Imidstickstoffatom des Imids VII übereinstimmt oder von diesem verschieden ist, eingesetzt werden.
Der Einsatz von halogeniertem Imid VIII ermöglicht dabei die gezielte Synthese unsymmetrischer Quaterrylen-3, 4: 13,14-tetracarbonsäurediimide I (R ≠ R'). In diesem Fall ist es vorteilhaft, ein Molverhältnis VIII zu VII von 4 bis 1 : 1 , insbesondere von 2 bis 1 : 1 , zu verwenden.
Wird nichthalogeniertes Imid VIII verwendet, so empfiehlt es sich in der Regel, die Umsetzung bei verschärften Reaktionsbedingungen vorzunehmen, d. h. zusätzlich zu ei- ner starken alkalimetallhaltigen Base eine stickstoffhaltige Hilfsbase einzusetzen.
Als Lösungsmittel sind grundsätzlich alle unter den Reaktionsbedingungen gegen Basen stabilen, hochsiedenden Lösungsmittel (Siedepunkt > 100 °C und oberhalb der gewählten Reaktionstemperatur) geeignet, in denen sich die verwendeten Basen bei Reaktionstemperatur vollständig und die Imide VII und VIII zumindest partiell, bevorzugt vollständig lösen, so dass weitgehend homogene Reaktionsbedingungen vorliegen. Es können sowohl aprotische (unpolar-aprotische und polar-aprotische) als auch protische Lösungsmittel eingesetzt werden. Selbstverständlich können auch Lösungsmittelmischungen verwendet werden.
Beispiele für geeignete unpolar-aprotische Lösungsmittel sind bei > 100 °C siedende Kohlenwasserstoffe aus den folgenden Gruppen: Aliphaten (insbesondere Ce-Ci β- Alkane), unsubstituierte, alkylsubstituierte und kondensierte Cycloaliphaten (insbesondere unsubstituierte C7-Cio-Cycloalkane, Cβ-Cs-Cycloalkane, die durch ein bis drei Ci-Cδ-Alkylgruppen substituiert sind, polycyclische gesättigte Kohlenwasserstoffe mit 10 bis 18 C-Atomen), alkyl- und cycloalkylsubstituierte Aromaten (insbesondere Benzol, das durch ein bis drei Ci-Cδ-Alkylgruppen oder einen Cs-Cs-Cycloalkylrest substituiert ist) und kondensierte Aromaten, die alkylsubstituiert und/oder teilhydriert sein kön- nen (insbesondere Naphthalin, das durch ein bis vier Ci-Cβ-Alkylgruppen substituiert ist) sowie Mischungen dieser Lösungsmittel.
Als Beispiele für bevorzugte unpolar-aprotische Lösungsmittel seien im einzelnen ge- nannt:
Octan, Isooctan, Nonan, Isononan, Decan, Isodecan, Undecan, Dodecan, Hexadecan und Octadecan; Cycloheptan, Cyclooctan, Methylcyclohexan, Dimethylcyclohexan, Trimethylcyclohexan, Ethylcyclohexan, Diethylcyclohexan, Propylcyclohexan, Isopro- pylcyclohexan, Dipropylcyclohexan, Butylcyclohexan, tert.-Butylcyclohexan, Methyl- cycloheptan und Methylcyclooctan;
Toluol, o-, m- und p-Xylol, 1 ,3,5-Trimethylbenzol (Mesitylen), 1 ,2,4- und 1 ,2,3-Tri- methylbenzol, Ethylbenzol, Propylbenzol, Isopropylbenzol, Butylbenzol, Isobutylbenzol, tert. -Butylbenzol und Cyclohexylbenzol; Naphthalin, Decahydronaphthalin (Dekalin), 1- und 2-Methylnaphthalin, 1- und 2-Ethylnaphthalin; Kombinationen aus den zuvor genannten Lösungsmitteln, wie sie aus den hochsiedenden, teil- oder durchhydrierten Fraktionen thermischer und katalytischer Crackprozesse bei der Rohöl- oder Naphtha- verarbeitung gewonnen werden können, z. B. Gemische vom Exsol® Typ, und Alkyl- benzolgemische vom Solvesso® Typ.
Besonders bevorzugte unpolar-aprotische Lösungsmittel sind XyIoI (alle Isomere), Mesitylen und vor allem Dekalin.
Beispiele für geeignete polar-aprotische Lösungsmittel sind stickstoffhaltige Heterocy- clen und aprotische Ether (insbesondere cyclische Ether, Diarylether und Di-Ci-Cβ- alkylether von monomeren und oligomeren C2-C3-Alkylenglykolen, die bis zu 6 Alkylen- oxideinheiten enthalten können, vor allem Diethylenglykoldi-Ci-C4-alkylether).
Als Beispiele für bevorzugte polar-aprotische Lösungsmittel seien im einzelnen genannt:
Chinolin, Isochinolin, Chinaldin, Pyrimidin, N-Methylpiperidin und Pyridin;
Dimethyl- und Tetramethyltetrahydrofuran und Dioxan;
Diphenylether; Ethylenglykoldiethyl-, -dipropyl-, -diisopropyl-, -di-n-butyl-, -di-sec.-butyl- und -di-tert.-butylether und Ethylenglykolmethylethylether, Di- und Triethylenglykoldi- methyl-, -diethyl-, -dipropyl-, -diisopropyl-, -di-n-butyl-, -di-sec.-butyl- und -di-tert.-butyl- ether und Di- und Triethylenglykolmethylethylether.
Dabei sind Diethylenglykoldiethylether, Diphenylether und vor allem Diethylenglykoldi- methylether besonders bevorzugt.
Beispiele für geeignete protische Lösungsmittel sind bei > 100 °C siedende einwertige und mehrwertige, aliphatische und aromatische Alkohole (insbesondere einwertige C4-Ci8-Alkanole, mehrwertige C2-C4-Alkohole und deren Oligomere, wie C2-C3-Alkylen- glykole, die bis zu 6 Alkylenoxideinheiten enthalten können, und Phenole), Etheralko- hole (insbesondere Mono-Ci-C6-alkyl- und -phenylether von monomeren und oligome- ren C2-C3-Alkylenglykolen, die bis zu 6 Alkylenoxideinheiten enthalten können, vor allem Ethylenglykolmono-C4-C6-alkylether) und Aminoalkohole (insbesondere Mono-, Di- und Tri-C2-C4-alkoholamine).
Als Beispiele für bevorzugte protische Lösungsmittel seien im einzelnen genannt:
n-Butanol, Isobutanol, tert.-Butanol, n-Pentanol, Isopentanol, 2-Methylbutanol, 2-Methyl-2-butanol (tert. -Amylalkohol), Hexanol, 2-Methylpentanol, 3-Methyl-3-pentanol, Heptanol, 1-Ethylpentanol, 3-Ethyl-3-pentanol,
2,3-Dimethyl-3-pentanol, Octanol, 2-Ethylhexanol, 2,4,4-Trimethyl-2-pentanol, Isooctyl- alkohol, Nonanol, Isononylalkohol, Decanol, 2,2,3,4,4-Pentamethyl-3-pentanol, Isode- cylalkohol, Undecanol, Dodecanol, Tridecanol, Isotridecylalkohol, Tetradecanol, Penta- decanol, Hexadecanol, Heptadecanol und Octadecanol;
Ethylenglykol, Diethylenglykol, Triethylenglykol, Tetraethylenglykol, Pentaethylenglykol und Hexaethylenglykol, Propylenglykol, 1 ,3-Propandiol, Glycerin und 1 ,2-, 1 ,3- und 1 ,4-Butandiol;
Ethylenglykolmonomethyl-, -ethyl-, -propyl-, -isopropyl-, -n-butyl-, -sec.-butyl-, -tert- butyl-, -n-pentyl- und -n-hexylether und Ethylenglykolmonophenylether und Di- und Triethylenglykolmonomethyl-, -ethyl-, -propyl-, -isopropyl-, -n-butyl-, -sec.-butyl-, -tert- butyl-, -n-pentyl- und -n-hexylether und Di- und Triethylenglykolmonophenylether;
Monoethanolamin, Diethanolamin und Triethanolamin.
Besonders bevorzugte protische Lösungsmittel sind Ethylenglykol und Ethanolamin. Die Lösungsmittelmenge beträgt in der Regel 1 bis 20 g, bevorzugt 2 bis 10 g und besonders bevorzugt 2 bis 5 g je g Imid VII und VIII.
Als Base sind starke anorganische und organische alkali- oder erdalkalimetallhaltige Basen geeignet, wobei die alkalimetallhaltigen Basen besonders geeignet sind. Bevorzugte anorganische Basen sind Alkali- und Erdalkalimetallhydroxide und -amide, bevorzugte organische Basen sind Alkali- und Erdalkalimetallalkoholate (insbesondere die Ci-Cio-Alkoholate, vor allem tert.-C4-Cio-Alkoholate), Alkali- und Erdalkalimetall- (phenyl)alkylamide (insbesondere die Bis(Ci-C4-alkyl)amide) und Triphenylmethylme- tallate. Besonders bevorzugt sind die Alkalimetallalkoholate. Bevorzugte Alkalimetalle sind Lithium, Natrium und Kalium, wobei Kalium ganz besonders bevorzugt ist. Besonders geeignete Erdalkalimetalle sind Magnesium und Calcium.
Als Beispiele für besonders bevorzugte Basen seien im Einzelnen genannt: Lithium- hydroxid, Natriumhydroxid und Kaliumhydroxid; Lithiumamid, Natriumamid und KaIi- umamid; Lithiummethylat, Natriummethylat, Kaliummethylat, Lithiumethylat, Natrium- ethylat, Kaliumethylat, Natriumisopropylat, Kaliumisopropylat, Natrium-tert.-butylat und Kalium-tert.-butylat; Lithium-(1 ,1-dimethyl)octylact, Natrium-(1 ,1-dimethyl)octylat, KaIi- um-(1 ,1-dimethyl)octylat, Lithiumdimethylamid, Lithiumdiethylamid, Lithiumdiisopropyl- amid, Natriumdiisopropylamid, Triphenylmethyllithium, Triphenylmethylnatrium und Triphenylmethylkalium.
Ganz besonders bevorzugte Basen sind Lithiumdiisopropylamid, Natriummethylat, Natrium-tert.-butylat, vor allem Kaliummethylat und Kaliumhydroxid und insbesondere Kalium-tert.-butylat.
Bei Verwendung der Methylate und der Hydroxide sowie generell bei Verwendung von nichthalogenierten Imiden VIII empfiehlt sich zur Erhöhung der Reaktivität der Zusatz einer stickstoffhaltigen Hilfsbase mit geringer nukleophiler Wirkung, wenn nicht bereits ein stickstoffhaltiger Heterocyclus oder ein Alkoholamin als Lösungsmittel anwesend ist. Geeignete Basen sind bei den Reaktionstemperaturen flüssige Alkylamine, insbesondere Tri-C3-C6-alkylamine, wie Tripropylamin und Tributylamin, Alkoholamine, insbesondere Mono-, Di- und Tri-C2-C4-alkoholamine, wie Mono-, Di- und Triethanolamin, und insbesondere heterocyclische Basen, wie Pyridin, N-Methylpiperidin, N-Methyl- piperidon, N-Methylmorpholin, N-Methyl-2-pyrrolidon, Pyrimidin, Chinolin, Isochinolin, Chinaldin und vor allem Diazabicyclononen (DBN) und Diazabicycloundecen (DBU).
Geeignete Einsatzmengen für die Hilfsbase liegen im Allgemeinen bei 0,5 bis 25 g, bevorzugt 1 bis 10 g, besonders bevorzugt 1 bis 3 g, je g Imid VII und VIII. Die Alkali- oder Erdalkalimetallbase wird in der Regel in Mengen von 2 bis 20 mol, insbesondere 2 bis 10 mol, je mol Imid VII und VIII eingesetzt.
Die Alkalimetallbase kann in fester oder in gelöster Form eingesetzt werden. Wenn die Alkalimetallbase in Kombination mit einem unpolar-aprotischen Reaktionslösungsmittel verwendet wird, in dem sie nicht ausreichend löslich ist, kann sie in einem Alkohol, der eine höhere Basenstärke als die Alkalimetallbase hat, gelöst werden. Geeignet sind vor allem tertiäre aliphatische Alkohole, die Arylsubstituenten enthalten können und insge- samt vier bis zwölf C-Atome aufweisen, z. B. tert.-Butanol, 2-Methyl-2-butanol
(tert.-Amylalkohol), 3-Methyl-3-pentanol, 3-Ethyl-3-pentanol, 2-Phenyl-2-pentanol, 2,3-Di-methyl-3-pentanol, 2,4,4-Trimethyl-2-pentanol und 2,2,3,4,4-Pentamethyl-3- pentanol.
Die Reaktionstemperatur liegt üblicherweise bei 70 bis 210 °C, bevorzugt bei 120 bis 180 0C.
Insbesondere bei Abwesenheit eine Hilfsbase kann es zur Herstellung unsymmetrischer Quaterrylen-3,4:13,14-tetracarbonsäurediimide vorteilhaft sein, zunächst eine Reaktionstemperatur im oberen Bereich zu wählen, um das Imid VII in 9-Stellung zu deprotonieren. Die anschließende Kupplungsreaktion mit dem halogenierten Imid VIII kann dann in der Regel bei niedrigerer Temperatur durchgeführt werden, was sich insbesondere bei der Anwesenheit von basenlabilen Substituenten (z. B. Cyclohexyl) am Imidstickstoffatom empfiehlt.
Die Reaktionszeit beträgt in der Regel 1 bis 3 h bei Einsatz halogenierter Imide VIII und 2 bis 12 h bei Einsatz nichthalogenierter Imide VIII.
Verfahrenstechnisch geht man beim Einsatz nichthalogenierter Imide VIII, also insbe- sondere einer Homokondensation, zweckmäßigerweise wie folgt vor:
Man erhitzt Lösungsmittel, Base und gegebenenfalls Hilfsbase zur Homogenisierung unter Schutzgas und gibt Imid VII und Imid VIII gegebenenfalls nach vorherigem Abkühlen unter Schutzgas zu und erhitzt die Mischung die gewünschte Zeit unter Rühren und unter Schutzgas auf die gewünschte Reaktionstemperatur. Nach Abkühlen auf Raumtemperatur fällt man die Quaterrylen-3,4:13,14-tetracarbonsäurediimide I durch Zugabe von einem protischen Lösungsmittel, das die anderen Komponenten löst, z. B. von Ci-Cβ-Alkoholen oder Wasser, aus. Man filtriert ab und wäscht mit einem der genannten Lösungsmittel, insbesondere mit einem der Alkohole. Bei Verwendung halogenierter lmide VIII kann man verfahrenstechnisch wie bei Verwendung nichthalogenierter lmide VIII vorgehen. Man kann jedoch auch zunächst nur ein Gemisch von Imid VII, Base, gegebenenfalls Hilfsbase sowie Lösungsmittel unter Rühren und Schutzgas auf eine Temperatur im Bereich von 120 bis 210 °C erhitzen (Deprotonierung) und das Imid VIII anschließend, gegebenenfalls nach Absenken der Temperatur auf 50 bis 120 °C, zugeben.
Gelegentlich kann es zweckmäßig sein, das Reaktionsprodukt einer Oxidation zu un- terziehen. Dies kann am einfachsten durch Einblasen von Luftsauerstoff in die noch warme Reaktionsmischung geschehen. Es ist jedoch auch möglich, Oxidationsmittel, wie vorzugsweise Wasserstoffperoxid, aber auch aldehydgruppenhaltige Zucker, z. B. Glukose, insbesondere nach der Reaktion zuzugeben.
Ein weiterer Gegenstand der Erfindung ist ein Verfahren zur Herstellung Verbindungen der Formel I
Figure imgf000080_0001
(I)
wobei
n für 1 oder 2 steht,
wenigstens einer der Reste Rn1, Rn2, Rn3 und Rn4 für CN steht und die Reste Rn1, Rn2, Rn3 und Rn4, die nicht für CN stehen, für Wasserstoff, stehen,
die Reste Ra und Rb unabhängig voneinander ausgewählt sind unter Wasserstoff und Alkyl, ste Rc und Rd unabhängig voneinander ausgewählt sind unter Gruppen der Formeln 11.1 bis II.5:
# (A)p— C(ROx
(11.1 )
Figure imgf000081_0001
(H.2) (II.3)
Figure imgf000081_0002
(II.4) (H-5)
worin
# für die Verknüpfungsstelle zum Imidstickstoffatom steht,
p für 0 oder 1 steht,
x für 2 oder 3 steht,
A soweit vorhanden, für eine Ci-Cio-Alkylengruppe steht, die durch eine oder mehrere nicht benachbarte Gruppen, die ausgewählt sind unter -O- und
-S-, unterbrochen sein kann,
wobei für den Fall, dass in den Verbindungen der Formel 11.1 x für 2 steht, das
Kohlenstoffatom, das die Reste R1 trägt, zusätzlich ein H-Atom trägt,
wobei in den Verbindungen der Formel 11.5 x für 2 steht,
die Reste R1 jeweils unabhängig voneinander ausgewählt sind unter C4-C3o-Alkyl, welche durch ein oder mehrere nicht benachbarte Sauerstoffatom(e) unter- brachen sein können, wobei in den Verbindungen der Formel 11.1 wenigstens einer der Reste R1 auch für C4-C3o-Alkyloxy oder C4-C3o-Alkylthio stehen kann, bei dem man eine Verbindung der Formel I, bei der wenigstens einer der Reste Rπ1, Rn2, Rn3 und Rn4 für Br oder Cl steht und die Reste Rn1, Rn2, Rn3 und Rn4, die nicht für Br oder Cl stehen, für Wasserstoff stehen, einer Substitution des Broms oder des Chlors durch Cyanogruppen in einem aromatischen Kohlenwasserstoff als Lösungsmittel un- terzieht.
Zum Halogenaustausch eignen sich Alkalicyanide, wie KCN und NaCN, sowie speziell Zinkcyanid. Die Umsetzung erfolgt vorzugsweise in Gegenwart wenigstens eines Übergangsmetallkatalysators. Als Übergangsmetallkatalysator eignen sich insbesondere Palladiumkomplexe, wie Tetrakis(triphenylphosphin)palladium(0), Tetrakis(tris-o-tolyl- phosphin)palladium(O), [1 ,2-Bis(diphenylphosphino)ethan]palladium(ll)chlorid, [1 ,1 '-Bis(diphenylphosphino)-ferrocen]palladium(ll)chlorid, Bis(triethylphosphin)- palladium(ll)chlorid, Bis(tricyclo-hexylphosphin)palladium(ll)acetat, (2,2'-Bipyridyl)palladium(ll)chlorid, Bis(triphenyl-phosphin)palladium(ll)chlorid, Tris(dibenzylidenaceton)dipalladium(0), 1 ,5-Cycloocta-dienpalladium(N)chlorid, Bis(acetonitril)palladium(ll)chlorid und Bis(benzonitril)palla-dium(ll)chlorid, wobei [1 ,1 '-Bis(diphenylphosphino)ferrocen]palladium(ll)chlorid und Tetrakis(triphenyl- phosphin)palladium(O) bevorzugt sind.
Überraschenderweise wurde gefunden, dass die Umsetzung besonders gut in aromatischen Kohlenwasserstoffen als Lösungsmittel abläuft. Dazu zählen vorzugsweise Benzol, Toluol, XyIoIe, etc. Besonders bevorzugt wird Toluol eingesetzt.
Zur weiteren Reinigung kann man die Produkte I z. B. aus einem Gemisch von haloge- nierten Lösungsmitteln, wie Chloroform und Methylenchlorid, und Alkoholen, wie Methanol, Ethanol und Isopropanol, Umkristallisieren. Alternativ kann man auch eine Säulenchromatographie an Kieselgel unter Verwendung von Methylenchlorid oder Aceton als Eluens vornehmen.
Eine weitere Reinigungsmethode besteht darin, die Produkte I aus N,N-disubstituierten aliphatischen Carbonsäureamiden, wie N,N-Dimethylformamid und N,N-Dimethylacet- amid, oder stickstoffhaltigen Heterocyclen, wie N-Methylpyrrolidon, oder deren Gemischen mit Alkoholen, wie Methanol, Ethanol und Isopropanol, umzukristallisieren oder mit diesen Lösungsmitteln zu waschen.
Schließlich können die Produkte I auch aus Schwefelsäure fraktioniert werden.
Mit Hilfe des erfindungsgemäßen Verfahrens können die Quaterrylen-3,4:13,14-tetra- carbonsäurediimide I in guten Ausbeuten (in der Regel von 30 bis 60 %) und hohen Reinheiten (üblicherweise 90 bis 99 %) auf wirtschaftliche Weise in einem Schritt her- gestellt werden. Sowohl an den Imidstickstoffatomen symmetrisch als auch unsymmetrisch substituierte Quaterrylen-3,4:13,14-tetracarbonsäurediimide I sind auf vorteilhafte Weise zugänglich.
Corronene der allgemeinen Formel II, worin Ra und Rb für Alkyl stehen, sind prinzipiell bekannt (Müllen, J. Mater. Chem., 1 1 , 1789(2001 )).
Die erfindungsgemäßen und nach dem erfindungsgemäßen Verfahren erhältlichen Verbindungen eignen sich besonders vorteilhaft als organische Halbleiter. Sie fungie- ren dabei als n-Halbleiter und zeichnen sich durch ihre Luftstabilität aus. Weiterhin verfügen sie über eine hohe Ladungstransportmobilität und haben ein hohes on/off- Verhältnis. Sie eignen sich in besonders vorteilhafter Weise für organische Feldeffekttransistoren. Die erfindungsgemäßen Verbindungen eignen sich vorteilhaft zur Herstellung von integrierten Schaltkreisen (ICs), für die bislang übliche n-Kanal MOSFET (me- tal oxide semiconductor field-effect transistor (MOSFET) zum Einsatz kommen. Dabei handelt es sich dann um CMOS analoge Halbleiterbausteine, z. B. für Microprozessoren, Microcontroller, statische RAM, und andere digitale logic circuits. Zur Herstellung von Halbleitermaterialien können die erfindungsgemäßen Verfahren nach einem der folgenden Verfahren weiterverarbeitet werden: Drucken (Offset, Flexo, Gravur, Screen, InkJet, Elektrofotografie), Verdampfen, Lasertransfer, Fotolithografie, Dropcasting. Sie eignen sich insbesondere für einen Einsatz in Displays und RFID- Tags.
In einer geeigneten Ausführungsform erfolgt die Abscheidung von in die Gasphase überführbaren Verbindung der allgemeinen Formeln I und Il durch ein Gasphasenab- scheidungsverfahren (Physical Vapor Deposition PVD). PVD-Verfahren werden unter Hochvakuumbedingungen durchgeführt und umfassen die folgenden Schritte: Verdampfen, Transport, Abscheidung.
Die erhaltenen Halbleiterschichten weisen im Allgemeinen eine Dicke auf, die für einen ohmschen Kontakt zwischen Source- und Drain-Elektrode ausreicht. Die Abscheidung kann unter einer Inertatmosphäre, z. B. unter Stickstoff, Argon oder Helium erfolgen. Die Abscheidung erfolgt üblicherweise bei Umgebungsdruck oder unter reduziertem Druck. Ein geeigneter Druckbereich beträgt etwa 10"7 bis 1 ,5 bar. Vorzugsweise wird die Verbindung der Formel I oder Il auf dem Substrat in einer Dicke von 10 bis
1000 nm, besonders bevorzugt 15 bis 250 nm, abgeschieden. In einer speziellen Ausführung wird die Verbindung der Formel I oder Il zumindest teilweise in kristalliner Form abgeschieden. In einer bevorzugten Ausführungsform erfolgt die Abscheidung wenigstens einer Verbindung der allgemeinen Formel I oder Il (und gegebenenfalls weiterer Halbleitermaterialien) durch ein Nassabscheidungsverfahren (wet processing). Dazu zählen z. B. Ro- tationsbeschichtung (spin coating) und Eindampfen aus Lösungen (drop casting). Die nass verarbeitbaren Verbindungen der Formeln (I) und (II) sollten sich somit auch zur Herstellung von Halbleiterelementen, speziell OFETs oder auf der Basis von OFETs, durch ein Druckverfahren eignen. Es können dafür übliche Druckprozesse (InkJet, FIe- xo, Offset, gravure; Tiefdruck, Nanoprint) verwendet werden. Bevorzugte Lösungsmittel für den Einsatz der Verbindungen der Formeln (I) und (II) in einem Druckverfahren sind aromatische Lösungsmittel wie Toluol, XyIoI, etc. Man kann zu diesen "Halbleitertinten" verdickend wirkende Substanzen, wie Polymere zusetzen, z. B. Polystyrol, etc. Dabei verwendet man als Dielektrikum die zuvor genannten Verbindungen.
Organische Solarzellen auf Basis der erfindungsgemäßen und erfindungsgemäß ver- wendeten Verbindungen der Formeln (I) und (II) sind in der Regel schichtförmig aufgebaut und umfassen in der Regel zumindest die folgenden Schichten: Anode, photoaktive Schicht und Kathode. Diese Schichten befinden sich in der Regel auf einem dafür üblichen Substrat. Geeignete Substrate sind z. B. oxidische Materialien (wie Glas, Quarz, Keramik, Siθ2, etc.), Polymere (z. B. Polyvinylchlorid, Polyolefine, wie Polyethy- len und Polypropylen, Polyester, Fluorpolymere, Polyamide, Polyurethane, Polyal- kyl(meth)acrylate, Polystyrol und Mischungen und Komposite davon) und Kombinationen davon.
Als Elektroden (Kathode, Anode) eignen sich prinzipiell Metalle (vorzugsweise der Gruppen 8, 9, 10 oder 11 des Periodensystems, z. B. Pt, Au, Ag, Cu, AI, In, Mg, Ca), Halbleiter (z. B. dotiertes Si, dotiertes Ge, Indium-Zinn-Oxid (ITO), Gallium-Indium- Zinn-Oxid (GITO), Zink-Indium-Zinn-Oxid (ZITO), etc.), Metalllegierungen (z. B. auf Basis Pt, Au, Ag, Cu, etc., speziell Mg/Ag-Legierungen), Halbleiterlegierungen, etc. Bevorzugt wird als Anode ein gegenüber einfallendem Licht im Wesentlichen transpa- rentes Material eingesetzt. Dazu zählt z. B. ITO, dotiertes ITO, ZnO, TiO2, Ag, Au, Pt. Bevorzugt wird als Kathode ein das einfallende Licht im Wesentlichen reflektierendes Material eingesetzt. Dazu zählen z. B. Metallfilme, z. B. aus AI, Ag, Au, In, Mg, Mg/AI, Ca, etc.
Die photoaktive Schicht ihrerseits umfasst wenigstens eine oder besteht aus wenigstens einer Schicht, die als organisches Halbleitermaterial wenigsten eine Verbindung, die ausgewählt ist unter Verbindungen der Formeln I und II, wie zuvor definiert, enthält. In der Regel umfasst die photoaktive Schicht wenigstens eine Schicht, die ein organisches Akzeptormaterial enthält (electron transport layer, ETL) und wenigstens eine Schicht, die ein organisches Donormaterial enthält (hole transport layer, HTL). Diese zwei Schichten können ganz oder zum Teil gemischt sein. Zusätzlich zu der photoaktive Schicht kann es eine oder mehrere weitere Schichten geben, z. B. ETL, HTL, (die nicht absorbieren müssen), blockierende Schichten (z. B. excition blocking layers, EBL) (die nicht absorbieren sollen), Multiplikatorschichten (multiplication layers).
Der Aufbau organischer Solarzellen ist z. B. in US 2005/0098726 A1 und
US 2005/0224905 A1 beschrieben, worauf hier in vollem Umfang Bezug genommen wird.
Die Verbindungen der Formel (I) und (ll)eignen sich besonders vorteilhaft für einen Einsatz in der organischen Photovoltaik (OPV). Bevorzugt ist dabei ihr Einsatz in Solarzellen, die durch eine Diffusion von angeregten Zuständen (Excitonendiffusion) gekennzeichnet sind. Dabei zeichnet sich eines oder beide der eingesetzten Halbleiter- materialien durch eine Diffusion von angeregten Zuständen aus. Geeignet ist auch die Kombination wenigstens eines Halbleitermaterials, das durch eine Diffusion von angeregten Zuständen gekennzeichnet ist, mit Polymeren, die eine Leitung der angeregten Zustände entlang der Polymerkette zulassen. Derartige Solarzellen werden im Sinne der Erfindung als excitonische Solarzellen bezeichnet. Die Direktumwandlung von So- larenergie in elektrische Energie in Solarzellen beruht auf dem inneren Photoeffekt eines Halbleitermaterials, d. h. der Erzeugung von Elektron-Loch-Paaren durch Absorption von Photonen und der Trennung der negativen und positiven Ladungsträger an einem p-n-Übergang oder einem Schottky-Kontakt. Ein Exciton kann z. B. entstehen, wenn ein Photon in einen Halbleiter eindringt und ein Elektron zum Übergang aus dem Valenzband in das Leitungsband anregt. Um Strom zu erzeugen, muss der durch die absorbierten Photonen erzeugte angeregte Zustand jedoch einen p-n-Übergang erreichen, um ein Loch und ein Elektron zu erzeugen, welches dann zur Anode und Kathode fließt. Die so erzeugte Photospannung kann in einem äußeren Stromkreis einen Photostrom bewirken, durch den die Solarzelle ihre Leistung abgibt. Von dem Halbleiter können dabei nur solche Photonen absorbiert werden, die eine Energie aufweisen, die größer als seine Bandlücke ist. Die Größe der Halbleiterbandlücke bestimmt also den Anteil des Sonnenlichts, der in elektrische Energie umgewandelt werden kann. Die beschriebenen excitonischen Solarzellen bestehen normalerweise aus zwei absorbierenden Materialien mit unterschiedlichen Bandlücken, um die Sonnen- energie möglichst effektiv zu nutzen. Die meisten organischen Halbleiter haben Excito- nen-Diffusionslängen von bis zu 10 nm. Hier besteht weiterhin ein Bedarf an organischen Halbleitern, über die der angeregte Zustand über möglichst große Distanzen weitergeleitet werden kann. Überraschenderweise wurde nun gefunden, dass sich die zuvor beschriebenen Verbindungen der allgemeinen Formel I besonders vorteilhaft für einen Einsatz in excitonischen Solarzellen eignen.
Geeignete organische Solarzellen sind in der Regel schichtförmig aufgebaut und um- fassen in der Regel zumindest die folgenden Schichten: Anode, photoaktive Schicht und Kathode. Diese Schichten befinden sich in der Regel auf einem dafür üblichen Substrat. Der Aufbau organischer Solarzellen ist z. B. in US 2005/0098726 A1 und US 2005/0224905 A1 beschrieben, worauf hier in vollem Umfang Bezug genommen wird.
Die photoaktive Schicht ihrerseits umfasst wenigstens eine oder besteht aus wenigstens einer Schicht, die als organisches Halbleitermaterial wenigsten eine Verbindung enthält, die ausgewählt ist unter Verbindungen der Formeln I und II, wie zuvor definiert. In einer Ausführung umfasst die photoaktive Schicht wenigstens ein organisches Ak- zeptormaterial. Zusätzlich zu der photoaktiven Schicht kann es eine oder mehrere weitere Schichten geben, z. B. eine Schicht mit elektronenleitenden Eigenschaften (ETL, electron transport layer) und eine Schicht, die ein löcherleitendes Material (hole trans- port layer, HTL) enthält, die nicht absorbieren müssen, Excitonen und Löcher blockierende Schichten (z. B. excition blocking layers, EBL), die nicht absorbieren sollen, MuI- tiplikatorschichten (multiplication layers). Geeignete Excitonen und Löcher blockierende Schichten sind z. B. in US 6,451 ,415 beschrieben.
Geeignete Excitonenblockerschichten sind z. B. Bathocuproine (BCP), 4,4',4"-Tris(N-(3-methylphenyl)-N-phenylamino)triphenylamin (m-MTDATA) oder PoIy- ethylendioxithiophen (PEDOT), wie in US 7,026,041 beschrieben.
Die erfindungsgemäßen excitonischen Solarzellen basieren auf photoaktiven Donor- Akzeptor-Heteroübergängen. Wird wenigstens eine Verbindung der Formel (I) als HTM eingesetzt, muss das entsprechende ETM so gewählt werden, dass nach Anregung der Verbindungen ein schneller Elektronenübergang auf das ETM stattfindet. Geeignete ETM sind z. B. C60 und andere Fullerene, Perylen-3,4:9,10-bis(dicarboximide) PTCDI, etc. Wird wenigstens eine Verbindung der Formel (I) als ETM eingesetzt, muss das komplementäre HTM so gewählt werden, dass nach Anregung der Verbindung ein schneller Löcherübertrag auf das HTM stattfindet. Der HeteroÜbergang kann flach aus- geführt werden (vgl. Two layer organic photovoltaic cell, C. W. Tang, Appl. Phys. Lett, 48 (2), 183-185 (1986) oder N. Karl, A. Bauer, J. Holzäpfel, J. Marktanner, M. Möbus, F. Stölzle, Mol. Cryst. Liq. Cryst, 252, 243-258 (1994).) oder als Volumen-HeteroÜbergang (bulk heterojunction bzw. interpenetrierenes Donor-akzeptor-Netzwerk, vgl. z. B. C. J. Brabec, N. S. Sariciftci, J. C. Hummelen, Adv. Funct. Mater., 1 1 (1 ), 15 (2001).) realisiert werden. Die photoaktive Schicht auf Basis eines HeteroÜbergangs zwischen wenigstens einer Verbindung der Formel (I) und einem HTL oder ETL kann in Solarzellen mit MiM-, pin-, pn-, Mip- oder Min-Aufbau zum Einsatz kommen (M=Metall, p=p-dotierter organischer oder anorganischer Halbleiter, n=n-dotierter organischer oder anorganischer Halbleiter, i=intrinsisch leitfähiges System organischer Schichten, vgl. z. B. J. Drechsel et al., Org. Eletron., 5 (4), 175 (2004) oder Maennig et al., Appl. Phys. A 79, 1-14 (2004)). Sie kann auch in Tandemzellen, wie von P. Peumnas, A. Yakimov, S. R. Forrest in J. Appl. Phys, 93 (7), 3693-3723 (2003) (vgl. Patente US 04461922, US 06198091 und US 06198092) beschrieben, verwendet werden. Sie kann auch in Tandemzellen aus zwei oder mehreren aufeinandergestapelten MiM-, pin-, Mip- oder Min-Dioden (vgl. Patentanmeldung DE 103 13 232.5) verwendet werden (J. Drechsel et al., Thin Solid Films, 451452, 515-517 (2004)).
Dünne Schichten der Verbindungen und aller anderer Schichten können durch Auf- dampfen im Vakuum oder in Inertgasatmosphäre, durch Laserablation oder durch lö- sungs- oder dispersionsprozessierbare Verfahren wie Spin-Coating, Rakeln, Gießverfahren, Aufsprühen, Tauchbeschichtung oder Drucken (z. B. InkJet, Flexo, Offset, gra- vure; Tiefdruck, Nanoimprint) hergestellt werden. Die Schichtdicken der M-, n-, i- und p-Schichten betragen typischerweise 10 bis 1000 nm, bevorzugt 10 bis 400 nm.
Als Substrat werden z. B. Glas, Metall- oder Polymerfolien verwendet, die in der Regel mit einer transparenten, leitfähigen Schicht (wie z. B. Snθ2:F, Snθ2:ln, ZnO:AI, Car- bon-Nanotubes, dünne Metallschichten) beschichtet sind.
Neben den Verbindungen der allgemeinen Formeln (I) und (II) eignen sich die folgenden Halbleitermaterialien für einen Einsatz in der organischen Photovoltaik:
Acene, wie Anthracen, Tetracen, Pentace, die jeweils unsubstituiert oder substituiert sein können. Substituierte Acene umfassen vorzugsweise wenigstens einen Substi- tuenten, der ausgewählt ist unter elektronenschiebenden Substituenten (z. B. Alkyl, Alkoxy, Ester, Carboxylat oder Thioalkoxy), elektronenziehenden Substituenten (z. B. Halogen, Nitro oder Cyano) und Kombinationen davon. Dazu zählen 2,9-Dialkyl- pentacene und 2,10-Dialkylpentacene, 2,10-Dialkoxypentacene, 1 ,4,8,11-Tetraalkoxy- pentacene und Rubren (5,6,1 1 ,12-Tetraphenylnaphthacen). Geeignete substituierte Pentacene sind in US 2003/0100779 und US 6,864,396 beschrieben, worauf hier Bezug genommen wird. Ein bevorzugtes Acen ist Rubren (5,6,11 ,12-Tetraphenylnaphthacen); Phthalocyanine, beispielsweise Phthalocyanine, die wenigstens einen Halogensubsti- tuenten tragen, wie Hexadecachlorophthalocyanine und Hexadecafluorophthalocyani- ne, metallfreie oder zweiwertige Metalle oder Metallatom-haltige Gruppen enthaltende Phthalocyanine, insbesondere die des Titanyloxy, Vanadyloxy, Eisens, Kupfers, Zinks, etc. Geeignete Phthalocyanine sind insbesondere Kupferphthalocyanin, Zinkphthalo- cyanin, metallfreies Phthalocyanin, Hexadecachlorokupferphthalocyanin, Hexadeca- chlorozinkphthalocyanin, metallfreies Hexadecachlorophathlocyanin, Hexadecafluoro- kupferphthalocyanin, Hexadecafluorophthalocyanin oder metallfreies Hexadefluoro- phthalocyanin;
Porphyrine, wie z. B. 5,10,15,20-Tetra(3-pyridyl)porphyrin (TpyP);
Flüssigkristalline (LC-) Materialien, beispielsweise Coronene, wie Hexabenzocoronen (HBC-PhC12), Coronendiimide, oder Triphenylene, wie 2,3,6,7,10,11-Hexahexylthiotriphenylen (HTT6), 2,3,6,7,10,11-Hexakis-(4-n-nonyl- phenyl)-triphenylen (PTP9) oder 2,3,6,7, 10,11-Hexakis-(undecyloxy)-triphenylen (HAT11 ). Besonders bevorzugt sind flüssigkristalline Materialien, die diskotisch sind;
Thiophene, Oligothiophene und substituierte Derivate davon. Geeignete Oligothiophe- ne sind Quaterthiophene, Quinquethiophene, Sexithiophene, α,ω-Di(Ci-C8)-alkyloligothiophenes, wie α,ω-Dihexylquaterthiophene, α,ω-Dihexylquinquethiophene und α,ω-Dihexylsexithiophene, Poly(alkylthiophene), wie Poly(3-hexylthiophen), Bis(dithienothiophene), Anthradithiophene und Dialkylanthra- dithiophene, wie Dihexylanthradithiophen, Phenylene-Thiophen- (P-T-) Oligomere und Derivate davon, speziell α,ω-Alkyl-substituierte Phenylen-Thiophen-Oligomere;
Geeignet sind weiterhin Verbindungen des Typs α,α'-Bis(2,2-dicyanovinyl)quinquethiophen (DCV5T),
(3-(4-Octylphenyl)-2,2'-bithiophen) (PTOPT), Poly(3-(4'-(1 ,4,7-trioxaoctyl)phenyl)thiophen (PEOPT),
(Poly(3-(2'-methoxy-5'-octylphenyl)thiophen)) (POMeOPT),
Poly(3-octylthiophen) (P3OT), Poly(pyridopyrazinvinylen)-Polythiophen-Blends, wie
EHH-PpyPz, Copolymere PTPTB, BBL, F8BT, PFMO, siehe Brabec C, Adv. Mater.,
2996, 18, 2884, (PCPDTBT) Poly[2,6-(4,4-bis-(2-ethylhexyl)-4H-cyclo- penta[2,1-b;3,4-b']-dithiophen)-4,7-(2,1 ,3-benzothiadiazol);
Paraphenylenvinylen und Paraphenylenvinylen enthaltende Oligomere oder Polymere wie z. B. Polyparaphenylenvinylen, MEH-PPV (Poly(2-methoxy-5-(2'-ethylhexyloxy)- 1 ,4-phenylenevinylen, MDMO-PPV (Poly(2-methoxy-5-(3',7'-dimethyloctyloxy)-1 ,4- phenylen-vinylen)), PPV, CN-PPV (mit verschiedenen Alkoxy-Derivaten);
Phenylenethinylen/Phenylenvinylen-Hybridpolymere (PPE-PPV);
Polyfluorene und alternierende Polyfluoren-Copolymere wie z. B. mit 4,7-Dithien-2'-yl- 2,1 ,3-benzothiadiazol, geeignet sind weiterhin Poly(9,9'-dioctylfluoren-co-benzothio- diazol) (F8BT), Poly(9,9'-dioctylfluoren-co-bis-N,N'-(4-butyl-phenyl)-bis-N,N'-phenyl-1 ,4- phenylendiamin (PFB);
Polycarbazole, d. h. Carbazol enthaltende Oligomere und Polymere, wie (2,7) und (3,6).
Polyaniline, d. h. Anilin enthaltende Oligomere und Polymere, wie (2,7) und (3,6).
Triarylamine, Polytriarylamine, Polycyclopentadiene, Polypyrrole, Polyfurane, Polysi- lole, Polyphosphole, TPD, CBP, Spiro-MeOTAD.
Fullerene, speziell C60 und seine Derivate wie PCBM (= [6,6]-Phenyl-C6i-buttersäure- methylester). In derartigen Zellen ist das Fullerenderivat ein Lochleiter.
Kupfer(l)iodid, Kupfer(l)thiocyanat.
p-n-Mischmaterialien, d. h. Donor und Akzeptor in einem Material, Polymer, Blockpo- lymer, Polymere mit C60s, C60-Azofarben, Triaden carotenoid-porphyrin-quinode LC Donor/Akzeptor-Systeme wie von Kelly in S. Adv. Mater. 2006, 18, 1754, beschrieben.
Alle zuvor genannten Halbleitermaterialien können auch dotiert sein. Beispiele von Dotierstoffen für p-Halbleiter: 2,3,5,6-Tetrafluoro-7,7,8,8-tetracyanochinodimethan (F4-TCNQ), etc.
Die erfindungsgemäßen (neuen) Verbindungen (I) eignen sich auch besonders vorteilhaft als organische Halbleiter. Sie fungieren dabei in der Regel als n-Halbleiter. Werden die erfindungsgemäß eingesetzten Verbindungen der Formel (I) mit anderen HaIb- leitern kombiniert und ergibt sich aus der Lage der Energieniveaus, dass die anderen Halbleiter als n-Halbleiter fungieren, so können die Verbindungen (I) auch ausnahmsweise als p-Halbleiter fungieren. Dies ist z. B. bei der Kombination mit cyanosubstitu- ierten Perylentetracarboximiden der Fall. Die Verbindungen der Formel (I) zeichnen sich durch ihre Luftstabilität aus. Weiterhin verfügen sie über eine hohe Ladungstrans- portmobilität und haben ein hohes on/off-Verhältnis. Sie eignen sich in besonders vorteilhafter Weise für organische Feldeffekttransistoren. Die erfindungsgemäßen Verbindungen eignen sich vorteilhaft zur Herstellung von integrierten Schaltkreisen (ICs), für die bislang übliche n-Kanal MOSFET (metal oxide semiconductor field-effect transistor (MOSFET) zum Einsatz kommen. Dabei handelt es sich dann um CMOS-analoge Halbleiterbausteine, z. B. für Mikroprozessoren, Mikrocontroller, statische RAM, und andere digitale Logikbausteine. Zur Herstellung von Halbleitermaterialien können die erfindungsgemäßen Verfahren nach einem der folgenden Verfahren weiterverarbeitet werden: Drucken (Offset, Flexo, Gravur, Screen, InkJet, Elektrofotografie), Verdampfen, Lasertransfer, Fotolithografie, Dropcasting. Sie eignen sich insbesondere für einen
Einsatz in Displays (speziell großflächigen und/oder flexiblen Displays) und RFID-Tags.
Die erfindungsgemäßen Verbindungen eignen sich weiterhin besonders vorteilhaft zur Datenspeicherung in Dioden, speziell in OLEDs, in der Photovoltaik, als UV-Absorber, als optischer Aufheller, als unsichtbares Label und als Fluoreszenzlabel für Biomoleküle, wie Proteine, DNA, Zucker und Kombinationen davon.
Die erfindungsgemäßen Verbindungen eignen sich weiterhin besonders vorteilhaft als Fluoreszenzfarbstoff in einem auf Fluoreszenzkonversion beruhenden Display; in ei- nem lichtsammelnden Kunststoffteil, welches gegebenenfalls mit einer Solarzelle kombiniert ist; als Pigmentfarbstoff in elektrophoretischen Displays; als Fluoreszenzfarbstoff in einer auf Chemolumineszenz basierenden Anwendung (z. B. in glow sticks).
Die erfindungsgemäßen Verbindungen eignen sich weiterhin besonders vorteilhaft als Fluoreszenzfarbstoff in einem auf Fluoreszenzkonversion beruhenden Display. Derartige Displays umfassen im Algemeinen ein transparentes Substrat, einen auf dem Substrat befindlichen Fluoreszenzfarbstoff und eine Strahlungsquelle. Übliche Strahlungsquellen senden blaues (color-by-blue) oder UV-Licht (color-by-uv) aus. Die Farbstoffe absorbieren entweder das blaue oder das UV-Licht und werden als Grünemitter einge- setzt. In diesen Displays wird z. B. das rote Licht erzeugt, indem der Rotemitter durch einen blaues oder UV-Licht absorbierenden Grünemitter angeregt wird. Geeignete color-by-blue-Displays sind z. B. in der WO 98/28946 beschrieben. Geeignete color-by- uv-Displays werden z. B. von W. A. Crossland, I. D. Sprigle und A. B. Davey in Photoluminescent LCDs (PL-LCD) using phosphors Cambridge University and Screen Tech- nology Ltd., Cambridge, UK, beschrieben.
Die erfindungsgemäßen Verbindungen eignen sich weiterhin besonders als Fluoreszenzemitter in OLEDs, in denen sie entweder durch Elektrolumineszenz oder durch einen entsprechenden Phosphoreszenzemitter über Förster Energietransfer (FRET) angeregt werden.
Die erfindungsgemäßen Verbindungen eignen sich weiterhin besonders in Displays, welche basierend auf einem elektrophoretischen Effekt über geladene Pigmentfarbstoffe Farben an- und ausschalten. Derartige elektrophoretische Displays sind z. B. in der US 2004/0130776 beschrieben.
Die erfindungsgemäßen Verbindungen eignen sich weiterhin besonders für den Ein- satz in einem lichtsammelnden Kunststoffteil, welches großflächig Licht absorbiert und an seinen Kanten nach mehrfacher Brechung das Licht emittiert (so genannte LISAs). Derartige LISAs können an den Kanten Solarzellen wie z. B. Siliciumsolarzellen oder organische Solarzellen aufweisen, die das konzentrierte Licht in elektrische Energie umwandeln. Eine Kombination lichtsammelnder Kunststoffe mit Solarzellen ist z. B. in der US 4,110,123 beschrieben.
Die erfindungsgemäßen Verbindungen eignen sich weiterhin besonders in Chemolu- mineszenzanwendungen. Dazu zählen so genannte "Glow Sticks". Zu deren Herstellung kann wenigstens eine Verbindung der Formel (I) z. B. in einem Alkylphthalat ge- löst werden. Eine Anregung der Chemolumineszenz kann durch Mischung eines Oxalsäureesters mit Wasserstoffperoxid erfolgen, z. B. nachdem diese beiden zunächst separaten Komponenten durch Zerbrechen eines Glases gemischt werden. Die resultierende Reaktionsenergie führt zur Anregung und Fluoreszenz der Farbstoffe. Derartige Glow Sticks können als Notlicht, z. B. beim Angeln, in Seenotrettungswesten oder anderen Sicherheitsanwendungen eingesetzt werden.
Gegenstand der Erfindung sind weiterhin organische Feldeffekttransistoren, umfassend ein Substrat mit wenigstens einer Gate-Struktur, einer Source-Elektrode und einer Drain-Elektrode und wenigstens einer Verbindung der Formel I, wie zuvor definiert, als n-Halbleiter. Gegenstand der Erfindung sind weiterhin Substrate mit einer Vielzahl von organischen Feldeffekttransistoren, wobei zumindest ein Teil der Feldeffekttransistoren wenigstens eine Verbindung der Formel I, wie zuvor definiert, als n-Halbleiter enthält. Gegenstand der Erfindung sind auch Halbleiterbausteine, die wenigstes ein solches Substrat umfassen.
Eine spezielle Ausführungsform ist ein Substrat mit einem Muster (Topographie) von organischen Feldeffekttransistoren, wobei jeder Transistor
einen auf dem Substrat befindlichen organischen Halbleiter; eine Gate-Struktur zur Steuerung der Leitfähigkeit des leitenden Kanals; und leitfähige Source- und Drain-Elektroden an den beiden Enden des Kanals
enthält, wobei der organische Halbleiter aus wenigstens einer Verbindung der Formel (I) besteht oder eine Verbindung der Formel (I) umfasst. Des Weiteren umfasst der organische Feldeffekttransistor in der Regel ein Dielektrikum.
Eine weitere spezielle Ausführungsform ist ein Substrat mit einem Muster von organischen Feldeffekttransistoren, wobei jeder Transistor einen integrierten Schaltkreis bil- det oder Teil eines integrierten Schaltkreises ist und wobei zumindest ein Teil der Transistoren wenigstens eine Verbindung der Formel (I) umfasst.
Als Substrate eignen sich prinzipiell die dafür bekannten Materialien. Geeignete Substrate umfassen z. B. Metalle (vorzugsweise Metalle der Gruppen 8, 9, 10 oder 1 1 des Periodensystems, wie Au, Ag, Cu), oxidische Materialien (wie Glas, Quarz, Keramiken, Siθ2), Halbleiter (z. B. gedoptes Si, gedoptes Ge), Metalllegierungen (z. B. auf Basis von Au, Ag, Cu, etc.), Halbleiterlegierungen, Polymere (z. B. Polyvinylchlorid, Polyole- fine, wie Polyethylen und Polypropylen, Polyester, Fluoropolymere, Polyamide, PoIy- imide, Polyurethane, Polyalkyl(meth)acrylate, Polystyrol und Mischungen und Kompo- site davon), anorganische Feststoffe (z. B. Ammoniumchlorid), Papier und Kombinationen davon. Die Substrate können flexibel oder unflexibel solid, mit gekrümmter oder planarer Geometrie sein, abhängig von der gewünschten Anwendung.
Ein typisches Substrat für Halbleiterbausteine umfasst eine Matrix (z. B. eine Quarz- oder Polymermatrix) und, optional, eine dielektrische Deckschicht.
Geeignete Dielektrika sind Siθ2, Polystyrol, Poly-α-methylstyrol, Polyolefine (wie Polypropylen, Polyethylen, Polyisobuten) Polyvinylcarbazol, fluorierte Polymere (z. B. Cytop, CYMM) Cyanopullane, Polyvinylphenol, Poly-p-xylol, Polyvinylchlorid oder thermisch oder durch Luftfeuchtigkeit vernetzbare Polymere. Spezielle Dielektrika sind "seif assembled nanodielectrics", d. h. Polymere, welche aus SiCI-Funktionalitäten enthaltenden Monomeren wie z. B. CI3SiOSiCI3, CI3Si-(CH2)G-SiCI3 , CI3Si-(CH2)i2-SiCI3 erhalten und/oder welche durch Luftfeuchtigkeit oder durch Zugabe von Wasser in Verdünnung mit Lösungsmitteln vernetzt werden (siehe z. B. Faccietti Adv. Mat. 2005, 17, 1705-1725). An Stelle von Wasser können auch hydroxylgruppenhaltige Polymere wie Polyvinylphenol oder Polyvinylalkohol oder Copolymere aus Vinylphenol und Styrol als Vernetzungskomponenten dienen. Es kann auch wenigstens ein weiteres Polymer während des Vernetzungsvorgangs zugegen sein, wie z. B. Polystyrol, welches dann mitvernetzt wird (siehe Facietti, US-Patentanmeldung 2006/0202195). Das Substrat kann zusätzlich Elektroden aufweisen, wie Gate-, Drain- und Source- Elektroden von OFETs, die normalerweise auf dem Substrat lokalisiert sind (z. B. abgeschieden auf oder eingebettet in eine nichtleitende Schicht auf dem Dielektrikum). Das Substrat kann zusätzlich leitfähige Gate-Elektroden der OFETs enthalten, die üblicherweise unterhalb der dielektrischen Deckschicht (d. h. dem Gate-Dielektrikum) angeordnet sind.
Nach einer speziellen Ausführung befindet sich eine Isolatorschicht (gate insulating layer) auf wenigstes einem Teil der Substratoberfläche. Die Isolatorschicht umfasst wenigstens einen Isolator, der vorzugsweise ausgewählt ist unter anorganischen Isolatoren, wie Siθ2, SiN, etc., ferroelektrischen Isolatoren, wie AI2O3, Ta2θs, La2θs, Tiθ2, Y2O3, etc., organischen Isolatoren, wie Polyimiden, Benzocyclobuten (BCB), Polyvinyl- alkoholen, Polyacrylaten, etc. und Kombinationen davon.
Geeignete Materialien für Source- und Drain-Elektroden sind prinzipiell elektrisch leitfähige Materialien. Dazu zählen Metalle, vorzugsweise Metalle der Gruppen 8, 9, 10 oder 11 des Periodensystems, wie Pd, Au, Ag, Cu, AI, Ni, Cr, etc. Geeignet sind weiterhin leitfähige Polymere, wie PEDOT (=Poly(3,4-ethylenedioxythiophene);PSS (= Poly(styrolsulfonat), Polyanilin, oberflächenmodifiziertes Gold, etc. Bevorzugte elektrisch leitfähige Materialien haben einen spezifischen Widerstand von weniger als 10 "3, vorzugsweise weniger als 10 "4, insbesondere weniger als 10 "6 oder 10 "7 Ohm x Meter.
Nach einer speziellen Ausführung befinden sich Drain- und Source-Elektroden zumin- dest teilweise auf dem organischen Halbleitermaterial. Selbstverständlich kann das Substrat weitere Komponenten umfassen, wie sie üblicherweise in Halbleitermaterialien oder ICs eingesetzt werden, wie Isolatoren, Widerstände, Kondensatoren, Leiterbahnen, etc.
Die Elektroden können nach üblichen Verfahren, wie Verdampfen, lithographische Verfahren oder einen anderen Strukturierungsprozess aufgebracht werden.
Die Halbleitermaterialien können auch mit geeigneten Hilfsmitteln (Polymere, Tenside) in disperser Phase durch Verdrucken verarbeitet werden.
In einer ersten bevorzugten Ausführungsform erfolgt die Abscheidung wenigstens einer Verbindung der allgemeinen Formel I (und gegebenenfalls weiterer Halbleitermaterialien) durch ein Gasphasenabscheidungsverfahren (Physical Vapor Deposition PVD). PVD-Verfahren werden unter Hochvakuumbedingungen durchgeführt und umfassen die folgenden Schritte: Verdampfen, Transport, Abscheidung. Überraschenderweise wurde gefunden, dass sich die Verbindungen der allgemeinen Formel I besonders vorteilhaft für einen Einsatz in einem PVD-Verfahren eignen, da sie sich im Wesentlichen nicht zersetzen und/oder unerwünschte Nebenprodukte bilden. Das abgeschiedene Material wird in hoher Reinheit erhalten. In einer speziellen Ausführung wird das abgeschiedene Material in Form von Kristallen erhalten oder enthält einen hohen kristallinen Anteil. Allgemein wird zur PVD wenigstens eine Verbindung der allgemeinen Formel I auf eine Temperatur oberhalb ihrer Verdampfungstemperatur erhitzt und durch Abkühlen unterhalb der Kristallisationstemperatur auf einem Substrat abgeschieden. Die Temperatur des Substrats bei der Abscheidung liegt vorzugsweise in einem Bereich von etwa 20 bis 250 0C, besonders bevorzugt 50 bis 200 0C. Überraschenderweise wurde gefunden, dass erhöhte Substrattemperaturen bei der Abscheidung der Verbindungen der Formel I vorteilhafte Auswirkungen auf die Eigenschaften der erzielten Halbleiterelemente haben können.
Die erhaltenen Halbleiterschichten weisen im Allgemeinen eine Dicke auf, die für einen ohmschen Kontakt zwischen Source- und Drain-Elektrode ausreicht. Die Abscheidung kann unter einer Inertatmosphäre, z. B. unter Stickstoff, Argon oder Helium, erfolgen.
Die Abscheidung erfolgt üblicherweise bei Umgebungsdruck oder unter reduziertem Druck. Ein geeigneter Druckbereich beträgt etwa 10"7 bis 1 ,5 bar.
Vorzugsweise wird die Verbindung der Formel (I) auf dem Substrat in einer Dicke von 10 bis 1000 nm, besonders bevorzugt 15 bis 250 nm, abgeschieden. In einer speziel- len Ausführung wird die Verbindung der Formel I zumindest teilweise in kristalliner Form abgeschieden. Hierfür eignet sich speziell das zuvor beschriebene PVD- Verfahren. Weiterhin ist es möglich, zuvor hergestellte organische Halbleiterkristalle einzusetzen. Geeignete Verfahren zur Gewinnung von derartigen Kristallen werden von R. A. Laudise et al. in "Physical Vapor Growth of Organic Semi-Conductors", Jour- nal of Crystal Growth 187 (1998), Seiten 449-454, und in "Physical Vapor Growth of Centimeter-sized Crystals of α-Hexathiophene", Journal of Cystal Growth 1982 (1997), Seiten 416-427, beschrieben, worauf hier Bezug genommen wird.
Verbindungen der allgemeinen Formel (I), wobei wenigstens einer der Reste Rn1, Rn2, Rn3 und Rn4 eine Arylgruppe oder Hetarylgruppe aufweist, die wenigstens zwei Substi- tuenten trägt, die jeweils unabhängig voneinander ausgewählt sind unter C4-C3o-Alkyl, C4-C3o-Alkoxy und C4-C3o-Alkylthio, wobei die Alkylreste der Alkyl-, Alkoxy- und Alkyl- thiosubstituenten durch ein oder mehrere nicht benachbarte Sauerstoffatom(e) unterbrochen sein können, können auch besonders vorteilhaft aus Lösung prozessiert wer- den. In einer zweiten bevorzugten Ausführungsform erfolgt die Abscheidung wenigstens einer solchen Verbindung der allgemeinen Formel (I) (und gegebenenfalls weiterer Halbleitermaterialien) daher durch eine Rotationsbeschichtung (spin coating). Diese Verbindungen der Formel (I) sollten sich auch zur Herstellung von Halbleiterelementen, speziell OFETs oder auf der Basis von OFETs, durch ein Druckverfahren eignen. Es können dafür übliche Druckprozesse (InkJet, Flexo, Offset, gravure; Tiefdruck, Na- noprint) verwendet werden. Bevorzugte Lösungsmittel für den Einsatz der Verbindungen der Formel (I) in einem Druckverfahren sind aromatische Lösungsmittel wie Toluol, XyIoI, etc. Man kann zu diesen "Halbleitertinten" verdickend wirkende Substanzen, wie Polymere zusetzen, z. B. Polystyrol, etc. Dabei verwendet man als Dielektrikum die zuvor genannten Verbindungen.
In einer bevorzugten Ausführungsform handelt es sich bei dem erfindungsgemäßen Feldeffekttransistor um einen Dünnschichttransistor (thin film transistor, TFT). Gemäß einem üblichen Aufbau verfügt ein Dünnschichttransistor über eine auf dem Substrat befindliche Gate-Elektrode, eine auf dieser und dem Substrat befindliche Gate-Isolierschicht, eine auf der Gate-Isolierschicht befindliche Halbleiterschicht, eine ohmsche Kontaktschicht auf der Halbleiterschicht sowie über eine Source-Elektrode und eine Drain-Elektrode auf der ohmschen Kontaktschicht.
In einer bevorzugten Ausführungsform wird die Oberfläche des Substrats vor der Abscheidung wenigstens einer Verbindung der allgemeinen Formel (I) (und gegebenenfalls wenigstens eines weiteren Halbleitermaterials) einer Modifizierung unterzogen. Diese Modifizierung dient der Bildung von die Halbleitermaterialien bindenden Berei- chen und/oder von Bereichen, auf denen keine Halbleitermaterialien abgeschieden werden können. Bevorzugt wird die Oberfläche des Substrats mit wenigstens einer Verbindung (C1) modifiziert, die geeignet ist, an die Oberfläche des Substrats sowie die Verbindungen der Formel (I) zu binden. In einer geeigneten Ausführungsform wird ein Teil der Oberfläche oder die komplette Oberfläche des Substrats mit wenigstens einer Verbindung (C1) beschichtet, um eine verbesserte Abscheidung wenigstens einer Verbindung der allgemeinen Formel (I) (und gegebenenfalls weiterer halbleitender Verbindungen) zu ermöglichen. Eine weitere Ausführungsform umfasst die Abscheidung eines Musters von Verbindungen der allgemeinen Formel (C1 ) auf dem Substrat nach einem entsprechenden Herstellungsverfahren. Dazu zählen die dafür bekannten Mas- kenprozesse sowie so genannte "Patterning"-Verfahren, wie sie z. B. in der
US 1 1/353934 beschrieben sind, worauf hier in vollem Umfang Bezug genommen wird.
Geeignete Verbindungen der Formel (C1 ) sind zu einer bindenden Wechselwirkung sowohl mit dem Substrat als auch mit wenigstens einer Halbleiterverbindung der all- gemeinen Formel I befähigt. Der Begriff "bindende Wechselwirkung" umfasst die Bildung einer chemischen Bindung (kovalenten Bindung), ionischen Bindung, koordinati- ven Wechselwirkung, Van der Waals-Wechselwirkungen, z. B. Dipol-Dipol-Wechselwirkungen) etc. und Kombinationen davon. Geeignete Verbindungen der allgemeinen Formel (C1 ) sind:
Silane, Phosphonsäuren, Carbonsäuren, Hydroxamsäuren, wie Alkyltrichlorsila- ne, z. B. n-(Octadecyl)trichlorsilan; Verbindungen mit Trialkoxysilan-Gruppen, z. B. Alkyltrialkoxysilane, wie n-Octadecyltrimethoxysilan, n-Octadecyltriethoxy- silan, n-Octadecyltri-(n-propyl)oxysilan, n-Octadecyltri-(isopropyl)oxysilan; Tri- alkoxyaminoalkylsilane, wie Triethoxyaminopropylsilan und N[(3-triethoxysilyl)- propyl]-ethylendiamin; Trialkoxyalkyl-3-glycidylethersilane, wie Triethoxypropyl-3- glycidylethersilan; Trialkoxyallylsilane wie Allyltrimethoxysilan; Trialkoxy- (isocyanatoalkyl)silane; Trialkoxysilyl(meth)acryloxyalkane und Trialkoxysilyl- (meth)acrylamidoalkane, wie 1-Triethoxysilyl-3-acryloxypropan.
Amine, Phosphine und Schwefel enthaltende Verbindungen, speziell Thiole.
Bevorzugt ist die Verbindung (C1 ) ausgewählt unter Alkyltrialkoxysilanen, speziell n-Octadecyltrimethoxysilan, n-Octadecyltriethoxysilan; Hexaalkyldisilazanen, und speziell Hexamethyldisilazane (HMDS); Cβ-Cao-Alkylthiolen, speziell Hexadecanthiol; Mer- captocarbonsäuren und Mercaptosulfonsäuren speziell Mercaptoessigsäure, 3-Mercaptopropionsäure, Mercaptobernsteinsäure, 3-Mercapto-1 -propansulfonsäure und den Alkalimetall- und Ammoniumsalzen davon.
Es sind auch verschiedene Halbleiterarchitekturen mit den erfindungsgemäßen Halbleitern denkbar wie z. B. Top Contact, Top Gate, Bottom Contact, Bottom Gate, oder aber ein vertikaler Aufbau wie z. B. ein VOFET (Vertical organic field effect transistor) wie z. B. in US 2004/0046182 beschrieben.
Die Schichtdicken betragen bei Halbleitern z. B. 10 nm bis 5 μm, beim Dielektrikum 50 nm bis 10 μm, die Elektroden können z. B. 20 nm bis 1 μm dick sein. Die OFETs können auch zu anderen Bauteilen wie Ringoszillatoren oder Inverter kombiniert werden.
Ein weiterer Aspekt der Erfindung ist die Bereitstellung elektronischer Bauteile, die mehrere Halbleiterkomponenten umfassen, wobei es sich um n- und/oder p-Halbleiter handeln kann. Beispiele solcher Bauteile sind Feldeffekttransistoren (FETs), bipolare Flächentransistoren (bipolar junction transistors, BJTs), Tunneldioden, Wechselrichter, lichtemittierende Bauteile, biologische und chemische Detektoren oder Sensoren, temperaturabhängige Detektoren, Photodetektoren wie Polarisations-sensitive Photodetektoren, Gatter, AND-, NAND-, NOT-, OR-, TOR-, und NOR-Gatter, Register, Schalter, Zeitbausteine, statische oder dynamische Speicher und andere dynamische oder se- quentielle logische oder andere digitale Bauteile einschließlich programmierbarer Schaltungen.
Ein spezielles Halbleiterelement ist ein Inverter. In der digitalen Logic ist der Inverter ein Gatter, das ein Eingangssignal invertiert. Der Inverter wird auch als NOT-Gate be- zeichnet. Reale Inverterschaltungen weisen einen Ausgangsstrom auf, der das Gegenteil zum Eingangsstrom darstellt. Übliche Werte sind z. B. (0, +5V) für TTL-Schaltun- gen. Die Leistungsfähigkeit eines digitalen Inverters gibt die Spannungstransferkurve (Voltage Transfer Curve VTC) wieder, d. h. der Auftrag von Inputstrom gegen Outputstrom. Idealerweise handelt es sich um eine Stufenfunktion und je näher sich die real gemessene Kurve einer solchen Stufe annähert, desto besser ist der Inverter. In einer speziellen Ausführung der Erfindung werden die Verbindungen der Formel (I) als organischer n-Halbleiter in einem Inverter eingesetzt.
Die Erfindung wird anhand der folgenden, nicht einschränkenden Beispiele näher er- läutert.
Beispiele
Beispiel 1 : N,N'-Di(1-Heptyloctyl)terrylen-3,4:1 1 ,12-tetracarbonsäurediimid (2)
1.1 N-(1 -Heptyloctyl)- 4-bromnaphthalin-1 ,8-dicarbonsäureimid
5 g (18 mmol) 4-Bromnaphthalin-1 ,8-dicarbonsäureanhydrid wurden mit 6,1 g
(27 mmol) 1-Heptyloctylamin in 50 mL Ethylenglycol 4 Stunden auf 160 °C erwärmt. Die erhaltene Lösung ließ man auf Raumtemperatur abkühlen. Danach verdünnte man die Lösung mit 50 mL Methanol und 50 mL destilliertem Wasser. Man extrahierte die wässrige Lösung mit Diethylether, trocknete die Lösung über MgSO4 und verdampfte das Lösungsmittel. Das erhaltene gelbe Öl reinigte man durch Säulenchromatographie mit Dichlormethan als Eluierungsmittel auf, wobei man 5,5 g (63 %) der Titelverbindung als farbloses Öl erhielt.
1H-NMR (300 MHz, C2D2CI4, 25 0C): δ [ppm] = 8,53 (m, 1 H), 8,44 (d, 1 H, J = 8,5 Hz), 8,29 (m, 1 H), 7,95 (d, 1 H, J = 7,9 Hz), 7,76 (t, 1 H, J = 7,6 Hz), 5,08-4,96 (m, 1 H), 2,15- 2,06 (m, 2H), 1 ,77-1 ,70 (m, 2H), 1 ,17-1 ,10 (m, 20 H), 0,77-0,72 (m, 6H). 13C-NMR (75 MHz, C2D2CI4, 25 0C): δ [ppm] = 165,02, 163,88, 133,19, 132,67, 131 ,38, 131 ,22, 130,69, 130,21 , 129,35, 128,41 , 123,98, 123,25, 123,12, 122,39, 54,91 , 32,57, 32,15, 29,57, 27,22, 22,98, 14,50.
IR (NaCI): v (cm -1) = 2924, 2854, 2362, 1704, 1663, 1619, 1588, 1508, 1461 , 1400, 1342, 1239, 783
MS (FD): 486,1 (100 %) [M+] (berechnet für C27H36NBrNO2 486,50)
1.2 N-(1-Heptyloctyl)-perylen-3,4-dicarbonsäureimid
6 g (19 mmol) Perylen-3,4-dicarbonsäureanhydrid wurden mit 10,7 g (47 mmol)
1-Heptyloctylamin in 100 ml_ Chinolin 12 Stunden bei 160 °C unter Argon gerührt. Danach ließ man das Reaktionsgemisch auf Raumtemperatur abkühlen und verdünnte mit Salzsäure. Der Niederschlag wurde abfiltriert und unter vermindertem Druck getrocknet. Das rohe Produkt wurde durch Chromatographie an Kieselgel mit Dichlor- methan als Eluierungsmittel aufgereinigt, wobei man 8,4 g (83 %) eines roten Feststoffs mit einem Schmelzpunkt von 156 °C erhielt.
1H-NMR (250 MHz, C2D2CI4, 25 0C): δ [ppm] = 8,38 (m, 2H), 8,17 (d, 2H, J = 7,9 Hz), 8,12 (d, 2H, J = 8,2 Hz), 7,75 (d, 2H, J = 7,9 Hz), 7,47 (t, 2H, J = 7,6 Hz), 5,17-5,05 (m, 1 H), 2,23-2,16 (m, 2H), 1 ,89-1 ,81 (m, 2H), 1 ,27-1 ,20 (m, 20H), 0,82-0,77 (m, 6H). 13C-NMR (62,5 MHz, C2D2CI4, 25 0C): δ [ppm] = 165,24, 164,24, 136,85, 134,22, 131 ,90, 131 ,20, 131 ,00, 129,83, 129,09, 127,79, 127,16, 126,53, 123,77, 121 ,61 , 120,84, 120,21 , 54,58, 32,65, 32,15, 29,91 , 29,58, 27,39, 22,97, 14,50. IR (KBr): v (cm -1) = 2924, 2853, 2365, 1697, 1653, 1594, 1572, 1450, 1460, 1408, 1355, 1292, 1244, 1172, 1 136, 1109, 840, 754.
UV-Vis (CHCI3): λmax (ε) = 51 1 (50000), 489 nm (50000 M"1 cm-1)
Fluoreszenz (CHCI3): λmaχ = 571 , 544 nm.
MS (FD): 531 ,2 (100 %) [M+] (berechnet für C37H4I NO2 531 ,74)
1.3 N-(1-Heptyloctyl)-9-bromperylen-3,4-dicarbonsäureimid
Man suspendierte 8 g (15,05 mmol) N-(1-Heptyloctyl)-perylen-3,4-dicarbonsäureimid aus Beispiel 1.2 30 Minuten in 100 ml_ Essigsäure. Danach gab man 150 mg (0,6 mmol) lod und 9,6 g (60,2 mmol) Brom zu der Mischung und rührte das erhaltene Gemisch 4,5 Stunden bei Raumtemperatur unter Lichtausschluss. Zur Entfernung von überschüssigem Brom leitete man Argon in den Kolben und fällte die Mischung mit 100 ml Methanol und rührte über Nacht. Man filtrierte das Produkt ab und wusch mit 150 ml Methanol. Nach dem Trocknen unter vermindertem Druck erhielt man 8,9 g (97 %) der Titelverbindung mit einem Schmelzpunkt von 163 0C. 1H-NMR (500 MHz, CD2CI2, 25 0C): δ [ppm] = 8,63 (d, 1 H, J = 8,2 Hz), 8,61 (d, 1 H, J =
8.2 Hz), 8,45 (d, 1 H1 J = 8,2 Hz), 8,42 (d, 1 H1 J = 8,2 Hz), 8,36 (d, 1 H1 J = 7,6 Hz), 8,27 (d, 1 H1 J = 8,2 Hz), 8,20 (d, 1 H1 J = 8,2 Hz), 7,87 (d, 1 H1 J = 8,2 Hz), 7,70 (t, 1 H1 J = 7,6 Hz), 5,17-5,05 (m, 1 H), 2,23-2,16 (m, 2H), 1 ,89-1 ,81 (m, 2H), 1 ,27-1 ,20 (m, 20 H),
0,82-0,77 (m, 6H).
13C-NMR (Spinecho, 125 MHz, CD2CI2, 25 0C): δ [ppm] = 165,16, 164,12, 136,16,
132,73, 132,01 , 131 ,26, 129,90, 129,73, 129,47, 128,93, 128,20, 126,14, 126,08,
124,38, 123,67, 122,06, 121 ,31 , 120,75, 120,48, 54,69, 32,65, 32,15, 29,90, 29,59, 27,40, 22,98, 14,53.
IR (KBr): v (cm -1) = 2924, 2853, 2365, 1697, 1653, 1594, 1572, 1450, 1460, 1408,
1355, 1292, 1244, 1 172, 1136, 1 109, 840, 810, 754.
UV-Vis (CHCI3): λmax (ε) = 514 (51000), 489 nm (52000 M"1 cm-1)
Fluoreszenz (CHCb): λmaχ = 571 , 544 nm. MS (FD): 611 ,1 (100 %) [M+] (berechnet für C37H40BrNO2 610,64)
1.4 N-(1 -Heptyloctyl)-9-(4,4,5,5-tetramethyl-1 ,3,2-dioxaborolan-2-yl)-perylen-3,4- dicarbonsäureimid
Zu 1 ,2 g (2 mmol) N-(1-Heptyloctyl)-9-bromperylen-3,4-dicarbonsäureimid aus Beispiel
1.3 und 558 mg (2,5 mmol) Bis(pinacolato)diboron gab man unter einem schwachen Argonstrom 588 mg (5.3 mmol) Kaliumacetat in 20 ml_ Dioxan. Anschließend gab man 44 mg (0.1 mmol) [1 ,1'-Bis(diphenylphosphino)ferrocen]-palladium(ll)-chlorid-Methylen- chlorid ([PdCI2(dppf)]xCH2CI2) zu und rührte das Reaktionsgemisch unter einer Argon- atmosphäre 16 Stunden bei 70 0C. Nach dem Abkühlen auf Raumtemperatur extrahierte man das Gemisch mit Dichlormethan und wusch zweimal mit destilliertem Wasser. Die organische Schicht trennte man ab, trocknete über Magnesiumsulfat und reinigte das rohe Produkt durch Säulenchromatographie mit Dichlormethan als Eluierungsmit- tel, wobei man 1 ,0 g (78 %) der Titelverbindung als roten Feststoff mit einem Schmelz- punkt von 213 °C erhielt.
1H-NMR (300 MHz, THF-d8, 250C): δ [ppm] = 8,87 (d, 1 H, J = 7,7 Hz), 8,55-8,47 (m, 6H), 8,15 (d, 1H, J = 7,7 Hz), 7,59 (t, 1H, J = 7,7 Hz), 5,27-5,17 (m, 1 H), 2,40-2,28 (m, 2H), 1,84-1,77 (m, 2H), 1,44 (s, 12H), 1,34-1,24 (m, 20H), 0,85-0,81 (t, 6H, J = 6,8 Hz). 13C-NMR (75 MHz, THF-d8, 25 °C): δ [ppm] = 165,24, 164,33, 139,04, 137,83, 137,28, 132,81, 132,20, 131,45, 130,64, 130,02, 128,60, 127,81, 127,40, 124,38, 123,34, 123,25, 122,04, 121,90, 121,28.
IR(KBr): v (cm-1) = 2925, 2854, 2362, 2337, 1691, 1653, 1592, 1507, 1461, 1416, 1376, 1332, 1272, 1246, 1209, 1142, 1113, 1068, 966, 858, 811, 754, 674 UV-Vis (CHCI3): λmax (ε) = 514 (47000), 489 nm (45000 M"1 cm-1). Fluoreszenz (CHCI3): λmax = 577,546 nm. MS (FD): 657,2 (100 %) [M+] (berechnet für C43H52BN2O4 657,71 )
1.5 N-(1 -Heptyloctyl)-9-(4-N-(1 -Heptyloctyl)-naphthalin-1 ,8-dicarbonsäureimid)- perylen-3,4-dicarbonsäureimid
1 ,0 g, (1 ,52 mmol) N-(1-Heptyloctyl)-9-(4,4,5,5-tetramethyl-1 ,3,2-dioxaborolan-2-yl)- perylen-3,4-dicarbonsäureimid aus Beispiel 1.4 und 0,813 g (1 ,67 mmol) N-(I-Heptyloctyl)- 4-bromnaphthalin-1 ,8-dicarbonsäureimid aus Beispiel 1.1 wurden in 76 ml_ Toluol gelöst. Man gab eine Lösung von Na2CO3 in Wasser (63 ml_, 1 M) und Ethanol (5 ml) zu und spülte die Lösung mit Argon. Danach gab man [Pd(PPh3)4] (80 mg, 0,06 mmol) zu und rührte das Reaktionsgemisch 16 h bei 80 °C. Man ließ das Reaktionsgemisch auf Raumtemperatur abkühlen. Man trennte die organische Phase ab und verdampfte das Lösungsmittel unter vermindertem Druck. Das Produkt wurde durch Chromatographie an Kieselgel mit Dichlormethan als Eluierungsmittel aufgereinigt, wobei man 1 ,1 g (79 %) als roten Feststoff mit einem Schmelzpunkt von 129 °C erhielt.
1H-NMR (700 MHz, C2D2CI4, 130 0C) δ [ppm] = 8,68 (d, 1 H, J = 6,7 Hz), 8,64-8,56 (m, 3H), 8,53 (d, 1 H), 8,47 (d, 1 H), 8,45-8,39 (m, 2H), 7,85-7,75 (m, 2H), 7,62 (d, 1 H, J = 6,8 Hz), 7,59-7,54 (m, 1 H), 7,45 (d, 1 H, J = 7,1 Hz), 7,41 (d, 1 H, J = 7,8 Hz), 5,22-5,11 (m, 2H), 2,31-2,19 (m, 4H), 1 ,98-1 ,86 (m, 4H), 1 ,41-1 ,19 (m, 40H), 0,93-0,77 (m, 12H). 13C-NMR (175 MHz, C2D2CI4, 130 0C): δ [ppm] = 164,77, 164,63, 164,53, 144,02, 139,39, 136,84, 136,57, 133,87, 131 ,96, 131 ,64, 131 ,60, 131 ,36, 131 ,33, 130,58, 130,51 , 130,27, 130,24, 129,32, 129,09, 129,03, 127,71 , 127,32, 127,06, 124,18, 123,91 , 123,83, 122,94, 122,64, 122,50, 120,89, 120,80, 55,16, 55,00, 32,93, 32,90, 31 ,93, 31 ,90, 29,64, 29,24, 27,24, 22,61 , 13,92. IR (KBr): v (cm -1) = 2956, 2927, 2850, 1697, 1654, 1590, 1577, 1348, 81 1. UV-Vis (CHCI3): λmax (ε) = 508 (40000), 482 (39000), 350 (14.000), 335 nm (16000 M"1 cm-1) MS (FD): 937,5 (100 %) [M+] (berechnet für C64H76N2O4 937,33)
1.6 N,N'-Di(1-Heptyloctyl)terrylen-3,4:11 ,12-tetracarbonsäurediimid
0,9 g (0,96 mmol) N-(1-Heptyloctyl)-9-(4-N-(1-Heptyloctyl)-naphthalin-1 ,8-dicarbon- säureimid)-perylen-3,4-dicarbonsäureimid, 6,42 g (46,5 mmol) K2CO3 und 9,0 g, (0,147 mol) Ethanolamin wurden unter Argon 3 h bei 160 °C gerührt. Nach dem Abkühlen auf Raumtemperatur goss man die Lösung in Methanol (20 mL). Den Niederschlag filtrierte man ab, wusch mit Wasser, trocknete unter vermindertem Druck und reinigte durch Säulenchromatographie an Kieselgel (CH2CI2), wobei man ein blaues Produkt (0,763 g, 85 %) mit einem Schmelzpunkt von 278,13 °C erhielt.
1H-NMR (250 MHz, THF-d8, 25 0C): δ [ppm] = 8,25 (s, 4H), 8,18 (d, 8H, J = 8,5 Hz),
5,21 (m, 2H), 2,37 (m, 4H, J = 6,95 Hz), 1 ,92 (m, 4H), 1 ,42-1 ,30 (m, 40H), 0,89-0,84
(m, 12 H) .
13C-NMR (125 MHz, THF-d8, 25 0C): δ [ppm] = 164,43, 163,52, 135,18, 130,52, 129,77,
127,85, 125,76, 124,35, 122,90, 122,04, 121 ,34, 54,78, 33,20, 32,79, 30,51 , 30,17, 28,06, 23,43, 14,34.
IR (KBr): v (cm -1) = 2923, 2852, 1694, 1652, 1585, 1379, 1353, 1323, 807.
UV-Vis (CHCI3): λmax (ε) = 651 (127000), 598 (66000), 547 nm (21000 M"1 cm"1).
Fluoreszenz (CHCI3): λmax = 669, 729 nm
MS (FD): 935,6 (100 %) [M+] (berechnet für C64H74N2O4 935,31 )
Beispiel 2: N,N'-Di(1-Heptyloctyl)quaterrylene-3,4:13,14-tetracarbonsäurediimid (3)
2.1 N,N'-Bis(1-Heptyloctyl)-9,9'-biperylen-3,4:3',4'-bis(dicarbonsäureimid)
0,2 g (0,3 mmol) N-(1 -Heptyloctyl)-9-(4,4,5,5-tetramethyl-1 ,3,2-dioxaborolan-2-yl)- perylen-3,4-dicarbonsäureimid aus Beispiel 1.4 und 0,37 g, (0,6 mmol) N-(1-Heptyl- octyl)-9-bromperylen-3,4-dicarbonsäureimid aus Beispiel 1.3 wurden in Toluol (15 ml_) gelöst. Man gab eine Lösung von Na2CO3 in Wasser (10 ml_, 1 M) und Ethanol (5 ml) zu und spülte das Gemisch mit Argon. Danach gab man [Pd(PPh3)4] (16 mg, 0,01 mmol) zu und rührte das Reaktionsgemisch 16 h bei 80 0C. Das Reaktionsgemisch ließ man auf Raumtemperatur abkühlen. Die organische Phase trennte man ab und verdampfte das Lösungsmittel unter vermindertem Druck. Man reinigte das rohe Produkt durch Chromatographie an Kieselgel mit Dichlormethan als Eluierungsmittel auf, wobei man 0,24 g (76 %) eines roten Feststoffs mit einem Schmelzpunkt von 304 °C erhielt.
1H-NMR (700 MHz, C2D2CI4, 130 0C): δ [ppm] = 8,65-8,57 (m, 4H), 8,54 (d, 2H, J = 7,4 Hz), 8,47 (d, 2H, J = 7,7 Hz), 8,45-8,40 (m, 4H), 7,68 (d, 2H, J = 7,3 Hz), 7,55 (d, 2H, J = 8,0 Hz), 7,46 (t, 2H, J = 8,0 Hz), 5,22-5,1 1 (m, 2H), 2,30-2,19 (m, 4H), 1 ,97-1 ,85 (m, 4H), 1 ,37-1 ,19 (m, 40H), 0,94-0,780,84 (m, 12H).
13C-NMR (75 MHz, C2D2CI4, 130 °C): δ [ppm] = 164,58, 140,68, 137,01 , 136,80, 134,15, 131 ,63, 130,29, 130,19, 130,10, 129,45, 129,24, 128,83, 127,56, 127,08, 123,88, 123,18, 122,46, 122,39, 120,77, 120,65, 54,99, 32,91 , 31 ,91 , 29,66, 29,26, 27,26, 22,62, 13,93. IR (KBr): v (cm -1) = 2954, 2925, 2854, 1693, 1653, 1593, 1572, 1352, 812 UV-Vis (CHCI3): λmax (ε) = 527 nm (97000 M"1 cm-1) MS (FD): 1060,0 (100 %) [M+] (berechnet für C74H80N2O4 1061 ,47)
2.2 N,N'-Di(1-Heptyloctyl)quaterrylene-3,4:13,14-tetracarbonsäurediimid
0,2 g (0,19 mmol) N,N'-Bis(1-Heptyloctyl)-9,9'-biperylen-3,4:3',4'-bis(dicarbon- säureimid) aus Beispiel 2.1 , 1 ,26 g (9,1 mmol) K2CO3 und 1 ,7 g, (0,028 mol) Ethanol- amin wurden 3 h bei 160 °C unter Argon gerührt. Nach Abkühlen auf Raumtemperatur goss man die Lösung in Methanol (10 ml_). Den Niederschlag filtrierte man ab, wusch mit Wasser, trocknete unter vermindertem Druck und reinigte durch Säulenchromatographie an Kieselgel mit Dichlormethan als Eluierungsmittel auf, wobei man ein blaugrüne Produkt (0,165 g, 83 %) mit einem Schmelzpunkt von oberhalb 350 °C erhielt.
1H-NMR (300 MHz, C2D2CI4, 120 0C): δ [ppm] = 8,47 (m, 16H), 5,17 (m, 2H), 2,25 (m, 4H), 1 ,93 (m, 4H), 1 ,32 (m, 40H), 0,84 (m, 12H)
13C-NMR (75 MHz, THF-d8, 25 0C): δ [ppm] = 164,14, 163,79, 140,81 , 135,80, 131 ,51 , 130,38, 129,34, 127,99, 127,17, 126,34, 124,15, 123,21 , 120,68, 55,03, 33,51 , 33,03, 30,81 , 30,43, 28,38, 23,65, 14,56 IR (KBr): v (cm -1) = 2956, 2925, 2856, 1693, 1652, 1575, 1349, 1286, 809 UV-Vis (CHCI3): λmax (ε) = 762 nm (162000 M"1 cm-1) MS (FD): 1058,1 (100 %) [M+] (berechnet für C74H78N2O4 1059,4)
Beispiel 3: N,N'-Di(1-heptyloctyl)-5,1 1-didecylcoronen-2,3:8,9-tetracarbonsäurediimid (4)
3.1 N,N'-Bis(1-heptyloctyl)-1 ,7-dibromperylen-3,4:9,10-tetracarbonsäurediimid
Eine Mischung aus 0,5 g, (0,909 mmol) 1 ,7-Dibromperylen-3, 4:9,10-tertacarbonsäure- dianhydrid und 0,75 g, (3,298 mmol) 1-Heptyloctylamin in 50 ml_ N-Methylpyrrolidon wurde 4 h bei 150 0C gerührt. Nach Abkühlen auf Raumtemperatur goss man die Lösung in verdünnte Salzsäure (400 mL). Den Niederschlag filtrierte man ab, wusch mit Wasser und Methanol, trocknete unter vermindertem Druck und reinigte durch Säulenchromatographie an Kieselgel (Petrolether / CH2CI 3/2), wobei man (0,34 g, 39 %) eines roten Produkts erhielt.
1H-NMR (300 MHz, CD2CI, 25 °C): δ [ppm] = 9,53 (s, 1 H); 9,50 (s, 1 H); 8,89 (sb, 2H); 8,66 (dd, J = 7,2 Hz, 2H); 5,20 - 5,12 (m, 2H); 2,25 - 2,20 (m, 4H); 1 ,86 - 1 ,80 (m, 4H); 1 ,28 - 1 ,22 (m, 40H); 0,85 - 0,81 (m, 12H). 13C-NMR (75 MHz, CD2CI, 25 0C): δ [ppm] = 162,55 (C=O); 138,21 ; 137,13; 132,86; 132,66; 131 ,52; 130,10; 129,28; 128,48; 127,18; 120,61 ; 54,75; 41 ,08; 31 ,77; 29,44; 29,18; 26,85; 22,59; 13,79.
IR (KBr): v (cm -1) = 2956, 2925, 2854, 1703, 1660, 1589, 1381 , 1329, 1240, 810, 748 UV-Vis (CHCI3): λmax (ε) = 390 (6000); 460 (15000) ; 490 (37000); 526 nm (55000 M"1 cm-1) MS (FD): 971 ,3 (100 %) [M+] (berechnet für C54H68Br2N2O4 968,96)
3.2 N,N'-Bis(1-heptyloctyl)-1 ,7-didocen-1-yneperylen-3,4:9,10-tetracarbonsäurediimid
0,2 g (0,206 mmol) N,N'-Bis(1-heptyloctyl)-1 ,7-dibromperylen-3,4:9,10-tetracarbon- säurediimid aus Beispiel 3.1 , 0,14 g (0,824 mmol) 10 Dodec-1-in, 25 mg (0,021 mmol), 6 mg (0,020 mmol) [Pd(PPh3)2CI], Triphenylphosphin und Kupfer(l)-iodid (4 mg, 0,020 mmol) wurden in einem Gemisch aus 20 ml_ Triethylamin und 20 ml_ Tetrahydro- furan 16 h bei 80 °C gerührt. Nach Abkühlen auf Raumtemperatur goss man die Lösung in verdünnte HCl (100 ml_) und extrahierte das Gemisch mit CH2CI. Man verdampfte das Lösungsmittel unter vermindertem Druck und reinigte den erhaltenen Feststoff durch Säulenchromatographie an Kieselgel (Pentan / CH2CI 3/1 ), wobei man ein rotes Produkt (0,15 g, 64 %) erhielt. Das Produkt enthielt geringe Mengen an N,N'-Di(1-heptyloctyl)-5,1 1-didecylcoronen-2,3:8,9-tetracarbonsäurediimid, die durch sehr sorgfältige Säulenchromatographie an Kieselgel (Pentan / CH2CI 3/1) abgetrennt werden können.
1H-NMR (300 MHz, C2D2CI4, 100 0C): δ [ppm] = 10,13 (d, J = 8,2 Hz, 2H); 8,72 (s, 2H); 8,60 (d, J = 8,2 Hz, 2H); 5,12 (sept, J = 6,1 Hz, 2H); 2,63 (t, J = 7,1 Hz, 4H); 2,22 -
2,17 (m, 4H); 1 ,89 - 1 ,74 (m, 8H); 1 ,58 - 1 ,53 (m, 4H); 1 ,26 - 1 ,22 (m, 64H); 0,84 -
0,79 (m, 18H).
13C-NMR (75 MHz, C2D2CI4, 100 0C, Spinechoexperiment): δ [ppm] = 164,11 (C=O);
138,34 (t); 134,44 (q); 134,00 (q); 130,49 (t); 127,97 (q); 127,85 (q); 127,18 (t); 123,66 (q); 122,71 (q); 121 ,28 (q); 102,06 (q); 82,82 (q); 55,18 (CH); 32,77 (CH2); 32,03 (CH2);
31 ,96 (CH2); 29,73 (CH2); 29,67 (CH2); 29,43 (CH2); 29,40 (CH2); 29,33 (CH2); 29,29
(CH2); 28,61 (CH2); 27,19 (CH2); 22,76 (CH2); 22,70 (CH2); 20,52 (CH2); 14,12 (CH3);
14,09 (CH3).
IR(KBr): v (cm-1) = 2958, 2925, 2856, 2214, 1699, 1657, 1601, 1589, 1466, 1410, 1342, 1327, 1259, 1246, 812, 756, 706
UV-Vis (CHCI3): λmax (ε) = 413 (7000); 477 (13000); 512 (28000); 553 nm (48000 M"1 cm-1)
MS (FD): 1139,7 (100 %) [M+] (berechnet für C78Hn0N2O4 1 139,76) 3.3 N,N'-Di(1-heptyloctyl)-5,1 1-didecylcoronen-2,3:8,9-tetracarbonsäurediimid
Man löste 0,1 g (0,088 mmol) N,N'-Di(1-heptyloctyl)-1 ,7-di(dodec-1-ynyl)perylen- 3,4:9,10-tetracarbonsäurediimid aus Beispiel 3.2 in 30 ml Toluol und entfernte den Sauerstoff aus der Lösung mit Argon. Danach gab man 0,1 ml_ 1 ,8-Diazabicyc- lo[5.4.0]undec-7-en (DBU) zu und rührte das Gemisch 20 h bei 110 0C. Nach Abkühlen auf Raumtemperatur goss man die Lösung in kalte verdünnte HCl (300 mL) und extrahierte die Mischung mit Toluol. Man verdampfte das Lösungsmittel unter vermindertem Druck und reinigte den erhaltenen Feststoff durch Säulenchromatographie an Kieselgel (Petrolether / CH2CI 3/1 ) , wobei man ein gelbes Produkt (40 mg, 40 %) mit einem Schmelzpunkt von 285 °C erhielt.
1H-NMR (300 MHz, C2D2CI4, 100 0C): δ [ppm] = 10,14 (s, 2H); 9,88 (s, 2H); 8,96 (s,
2H); 5,40 (sept, J = 5,9 Hz, 2H); 3,89 (t, J = 7,7 Hz, 4H); 2,47 - 2,36 (m, 4H); 2,23 - 2,18 (m, 4H); 2,09 - 2,02 (m, 4H); 1 ,71 - 1 ,66 (m, 4H); 1 ,48 - 1 ,21 (m, 64H); 0,87 -
0,76 (m, 18H).
13C-NMR (75 MHz, C2D2CI4, 100 0C, Spinechoexperiment): δ [ppm] = 142,09 (C=O);
130,46 (t); 130,20 (q); 129,64 (q); 128,58 (t); 127,16 (q); 126,75 (t); 124,36 (q); 123,16
(q); 123,03 (q); 122,58 (q); 122,35 (q); 121 ,71 (q); 55,59 (CH); 34,06 (CH2); 33,09 (CH2); 32,04 (CH2); 31 ,97 (CH2); 31 ,70 (CH2); 30,02 (CH2); 29,77 (CH2); 29,43 (CH2);
29,34 (CH2); 27,41 (CH2); 22,76 (CH2); 22,69 (CH2); 14,13 (CH3); 14,07 (CH3).
IR (KBr): v (cm -1) = 2960, 2927, 2856, 1703, 1660, 1606, 1469, 1335, 926, 810.
UV-Vis (CHCI3): λmax (ε) = 334 (70000); 337 (70000); 382 (8000); 404 (28000), 429
(58000), 477 (10000), 511 nm (18000 M"1 cm"1). Fluoreszenz (CHCI3): λmax = 515, 555, 601 nm.
MS (FD): 1139,8 (100 %) [M+] (berechnet für C78Hn0N2O4 1 139,76).
Beispiel 4: N,N'-Di(1-Heptyloctyl)perrylen-3,4:9,10-tetracarbonsäurediimid (1 )
Figure imgf000104_0001
Diese Verbindung wurde gemäß H. Langhals, S. Demmig, T. Potrawa, J. prakt. Chem. 1991 , 333, 733-748 hergestellt.
Beispiel 5: N,N'-Di(1-Heptyloctyl)terrylen-3,4:1 1 ,12-tetracarbonsäurediimid durch einstufige baseninduzierte Dimerisierung Zu einer auf 60 °C erwärmten Mischung von 7 ml Diethylenglycoldiethylether, 2,79 g (29 mmol) Natriumtertbutylat und 13,7 g (90 mmol) 1 ,8-Diazabicyclo[5.4.0]undec-7-en (DBU) gibt man 0,77 g (1 ,45 mmol) N-1-Heptyloctyl-perylen-3,4-dicarbonsäuremono- imid und 2,36 (5,8 mmol) N-1-Heptyloctyl-napthalin-1 ,8-dicarbonsäuremonoimid. Das Reaktionsgemisch wird 6 Stunden auf 130 °C erhitzt und anschließend auf Raumtemperatur abgekühlt, mit Essigester verdünnt und mehrfach mit verdünnter Salzsäure gewaschen. Nach Trocknen der Essigesterphase über Magnesiumsulfat wird der Essigester im Vakuum entfernt. Der Rückstand wird mit einem Gradienten aus Toluol und Petrolether chromatographiert. Man erhält 0,13 g (10 %) eines blauen Feststoffes. Die Bildung eines Quaterrylendiimids wird nicht beobachtet.
Beispiel 6:
1 ,6,9,14-Tetrabromo-N,N'-Di(1-heptyloctyl)terrylen-3,4:11 ,12-tetracarbonsäurediimid
Figure imgf000105_0001
Eine Mischung aus 15 ml Chlorbenzol, 5 ml Wasser 0,13g (0,13 mmol) der oben beschriebenen Verbindung werden mit wenigen tropfen Brom und einer Spatelspitze Jod versetzt und auf 90 °C für 7 Stunden erhitzt. Anschließend wird das Reaktionsgemisch abgekühlt und Dichlormethan zugesetzt, eine Natriumsulfitlösung zugesetzt und die Phasen getrennt. Nach Trocknen der organsichen Phasen wird das Lösungsmittel im Vakuum entfernt und der verbliebene Rückstand durch säulenchromatographische Reinigung mit einem Toluol/Petrolether-Gradienten gereinigt. Man erhält 90 mg (52 %) eines blauen Feststoffes. Rf (Toluol) = 0,71
Beispiel 7:
N,N'-Di(1-Heptyloctyl)quaterrylene-3,4:13,14-tetracarbonsäurediimid
Figure imgf000106_0001
Eine Mischung aus 1 ,48 g (13 mmol) Kaliumtertbutylat, 2,3 g (15,1 mmol) DBU, 2,2 g (36,3 mmol) Ethanolamin und 1 ,0 g (1 ,9 mmol) N-(1-Heptyloctyl)-perylen-3,4-dicarbon- säuremonoimid wird 6 Stunden auf 170 °C erhitzt. Anschließend wird das Reaktionsgemisch mit verdünnter Salzsäure und mit Dichlormethan versetzt, die Phasen getrennt, die wässrige Phase mehrfach mit Dichlormethan extrahiert, getrocknet und das Lösungsmittel im Vakuum entfernt. Man erhält 1 ,8 g eines grünen, öligen Rohprodukts, welches durch Chromatographie mit Dichlormethan weiter gereinigt wird. Man erhält 0,15 g (15 %) des grünen Produkts.
Beispiel 8:
N,N'-(1-Heptylocytl)-1 ,6-dibromperylen-3,4;9,19-tetracarbonsäurediimid und N,N'-(1-Heptylocytl)-1 ,7-dibromperylen-3,4;9,19-tetracarbonsäurediimid (ca. 15 : 85)
Figure imgf000106_0002
Eine Mischung aus 16 ml Chinolin, 2 ml Propionsäure, 1 ,10 g (2 mmol) Dibromperylen- 3,4:9, 10-tetrcarbonsäurediimid und 1 ,82 g (8 mmol) 1-Heptyloctylamin werden 3 Stunden auf 90 °C erwärmt. Das Reaktionsgemisch wird auf Raumtemperatur abgekühlt und mit 250 ml verdünnter Salzsäure verdünnt. Nach Zugabe einer gesättigten Kochsalzlösung fällt das Produkt aus und wird abfiltriert und mit Wasser gewaschen und getrocknet. Das Produkt wird durch Chromatographie gereinigt. Rf (Toluol) = 0,66 (1 ,6 Isomer), 0,74 (1 ,7-lsomer)
Beispiel 9: N,N'-(1-Heptylocytl)-1 ,6-dibromoperylen-3,4;9,19-tetracarbonsäurediimid und N,N'-(1-Heptylocytl)-1 ,7-dibromoperylen-3,4;9,19-tetracarbonsäurediimid (15 : 85)
Figure imgf000107_0001
Eine Mischung aus 20 ml Toluol, 1 ,17 g (10 mmol) Zinkcyanid, 242 mg (0,25 mmol) der Dibromperylen-Verbindung aus Beispiel 8,69 mg (0,125 mmol) 1 ,1'-Bis(diphenylphosphinoferrocen) und 1 14 mg (0,125 mmol) Tris(dibenzylidenaceton)dipalladium werden 6,5 Stunden auf 100 0C erhitzt. Man lässt das Reaktionsgemisch auf Raumtemperatur abkühlen, filtriert den Rückstand ab, wäscht mit Toluol undtrocknet unter Vakuum. Der Rückstand wird einer ersten Säulenchromatographie mit einem Petrolether-Toluol-Gradienten und einer zweiten Säulenchromatographie mit einem Petrolether-THF-Gradienten unterzogen. Rf (Petrolether : THF = 10 : 1 ) = 0,51
Beispiel 10:
N,N'-Bis(3,4,5-Tridodecylphenyl)-1 ,6-difluoroperyl-3,4;9,10-tetracarbonsäurediimid und N,N'-Bis(3,4,5-Tridodecylphenyl)-1 ,7-difluoroperyl-3,4;9,10-tetracarbonsäurediimid (ca. 13 : 87)
Figure imgf000108_0001
Ein Gemisch aus 100 mg (233 mmol) 1 ,7-Difluorperylen-3,4:9,10 tetrcarbonsäurebi- sanhydrid, welches ca. 25 % 1 ,6 Difluorisomer enthält, 550 mg Tridodecylanilin, 51 mg Zinkacetat und 13 ml Chinolin wird vier Stunden auf 180 °C erhitzt. Nach Abkühlen auf Raumtemperatur wird das Reaktionsgemisch auf 100 ml 1 molare Salzsäure gegossen, der Niederschlag filtriert und mit Wasser und anschließend mit Methanol gewaschen. Der Rückstand wird durch Säulenchromatographie (Petrolether/Dichlormethan 1 :1 und Petrolether Dichlormethan 3 : 2 gereinigt. Man erhält 45 mg (12 %) eines oran- gefarbenen Feststoffes, welcher gemäß 1H-NMR 13 % des 1 ,6-lsomers enthält.
Beim Erhitzen einer Probe der Verbindung über die Klärtemperatur von 320 °C und anschließendes Abkühlen wurde im Polarisationsmikroskop unter gekreuzten Polarisatoren die Ausbildung einer für hexagonal columnare Meosphasen typische Textur be- obachtet. Die Figuren 6 und 7 zeigen die Texturen unter dem Polarisationsmikroskop, sowie das DSC (differential scanning calorimetry) der Probe. Columnare Phasen sind zur Erzielung einer hohen Mobilität der Ladungsträger in organischen Feldeffekttransistoren und in organischen Solarzellen entscheidend.
Beispiel 11 :
N,N'-Bis(3,4,5-Tridodecylphenyl)-quaterrylen-3,4;13,14-tetracarbonsäurediimid
Figure imgf000108_0002
Beispiel 11 .1 : N-(3,4,5-Tridodecylphenyl)-9-bromo-perylen-3,4-dicarbonsäuremonoimid
Figure imgf000109_0001
9-Brom-perylen-3,4-dicarbonsäuremonoanhydrid wird gemäß WO2004/029028 hergestellt. Eine Mischung aus 10 ml Chinolin, 0,53 g (0,83 mmol) 3,4,5-Tridodecylanilin, 0,66 g (3 mmol) Zinkacetatdihydrat und 0,401 g (1 mmol) 9-Bromo-perylen-3,4- dicarbonsäuremonoanhydrid werden 2 Stunden auf 180 °C erhitzt. Nach Abkühlen auf Raumtemperatur setzt man verdünnte Salzsäure zu extrahiert das Wertprodukt mit Dichlormethan. Das Produkt wird durch Chromatographie in Toluol Petrolether 1 : 1 gereinigt. Man erhält 0,71 g (72 %) eines orangefarbenen Feststoffes. Rf (Toluol) = 0,55
Beispiel 11.2:
N-(3,4,5-Tridodecylphenyl)-9-(4,4,5,5-tetramethyl-1 ,3,2-dioxaborolan-2-yl)-perylen-3,4- dicarbonsäuremonoimid
Figure imgf000109_0002
0,276 g (0,281 mmol) der 9-Bromoverbindung aus Beispiel 13.1 , 15 ml Toluol, 89,2 mg (0,351 mmol) Bispinacolatodiboran, 30,3 mg (0,31 mmol) Kaliumacetat und 11 ,4 mg (0,014 mmol) (1 ,1-Bis(diphenylphosphino)ferrocen)dichloropalladium werden 21 Stunden zum Rückfluss erhitzt. Anschließend gibt man weitere 892 mg (3,51 mmol) Bispi- nacolatodiboran, 61 mg Kaliumacetat, 23 mg (0,028 mmol) (1 ,1-Bis(diphenyl- phosphino)ferrocen)dichloropalladium und 15 ml XyIoI dazu. Man erhitzt weitere 28 Stunden auf 130 °C und kühlt anschließend auf Raumtemperatur ab. Das Lösungsmittelgemisch wird im Vakuum entfernt und der Rückstand durch Chromatographie mit Petrolether und Toluol gereinigt. Man erhält 0,28 g (quantitativ) eines dunkelroten Feststoffes.
Rf (Toluol) = 0,20
Beispiel 11.3:
N,N'-Bis(1-3,4,5-Tridodecylphenyl)-9,9'-biperylen-3,4:3',4'-bis(dicarbonsäuremonoimid)
Figure imgf000110_0001
Eine Mischung von 280 mg (0,27 mmol) der Perylenborverbindung aus Beispiel 13.2, 184 mg (0,187 mmol) der 9-Bromoperylenverbindung aus Beispiel 13.1 , 15 ml Toluol, 5 ml Ethanol, 11 mg (0,01 mmol) Tetrakistriphenylphosphinpalladium und 10 ml
(10 mmol) einer 1 M Natriumcarbonatlösung werden 16 Stunden auf 80 °C erhitzt. Nach Abkühlen auf Raumtemperatur werden die Phasen getrennt, die wässrige Phase mehrfach mit Toluol extrahiert, getrocknet unbd das Lösungsmittel der vereinigten organischen Phasen im Vakuum entfernt. Nach Chromatographie mit Toluol können 230 mg (47 %) des Produktes als violett schwarzer Feststoff isoliert werden. Rf (Toluol) = 0.24
Beispiel 11.4:
N,N'-Bis(3,4,5-Tridodecylphenyl)-quaterrylen-3,4;13,14-tetracarbonsäurediimid
Figure imgf000110_0002
Eine Mischung aus 230 mg (0,128 mmol) der Bisperylenverbindung aus Beispel 13.3, 0,85 g (6,1 mmol) Kaliumarbonat, 2 ml Ethanolamin und 15 ml Mesitylen wird 2,5 Stunden auf 160 °C erhitzt. Nach Abkühlen auf Raumtemperatur wird das Lösungsmittel im Vakuum entfernt und der Rückstand durch Chromatographie mit Dichlormethan/- Ethylaceat 50 : 1 gereinigt. Man erhält 1 10 mg (48 %) eines grünen Feststoffes. Eine weitere Reinigung kann durch Chromatographie mit THF erzielt werden. Rf (CH2CI2 : Ethylacetat = 50 : 1 ) = 0,4
λmax (THF) = 701 nm (78 l/g cm), 748 nm (44 I /g cm)
Beispiel 12: Herstellung einer excitonischen Solarzelle:
Es wurden die folgenden Halbleitermateralien eingesetzt:
A)
Figure imgf000111_0001
B)
Figure imgf000111_0002
C)
Figure imgf000111_0003
D)
Figure imgf000111_0004
Aufbau:
Als Arbeitselektrode wurden mit Indium-dotiertem Zinnoxid (ITO) beschichtete Glasplatten der Abmessung 25 mm x 15 mm x 1 ,2 mm verwendet (30 bis 60 Ohm Widerstand, Sigma-Aldrich). Diese wurden nacheinander mit Glasreiniger, Wasser und Ace- ton im Ultraschallbad gereinigt, in siedendem Isopropanol nachbehandelt und im Stickstoffstrom getrocknet. Anschließend wurden die Substrate mit einer etwa 100 nm dicken PEDOT-Schicht (= Poly(3,4-ethylendioxythiophen) durch Spin-Coating belegt. Dabei wurde PEDOT in wässriger Lösung verwendet (Baytron®P VP AI 4083), die Spincoatingfrequenz betrug 4500 Upm und die Schleuderzeit 30 s. Danach wurde die Probe 15 Minuten bei 100 °C im Trockenschrank getrocknet.
Zur elektrischen Isolation der Metallrückelektroden von der Arbeitselektrode wurde auf die PEDOT-Schicht an den Rändern längsseitig jeweils ein Streifen Polyimid (Pyrolin Polyimide Coating, Supelco) aufgetragen und 15 Minuten bei 200 °C im Trockenschrank ausgehärtet.
Die aktiven organischen Schichten wurden in der folgenden Reihenfolge aufgebracht. Zuerst wurde als Donor Kupferphthalocyanin (CuPc, einfach gradientensublimiert) aufgedampft, dann als Akzeptor die Verbindung A) mittels Spincoatung aufgeschleudert und schließlich als Pufferschicht Bathocuproine (BCP) mit einer thermischen Verdampfung im Vakuum auf die PEDOT/Polyimid-Schicht aufgebracht. Es wurde bei einem Druck von 2 x 10"6 mbar gearbeitet. Die Verdampfung des CuPc fand bei einer Tempe- ratur von 360 °C und einer Aufdampfrate von 0,2 bis 1 ,0 nm/s statt. Die entstandenen Schichtdicken betrugen 35 bis 40 nm für das CuPc, ca. 40 nm für die mittels Spincoa- ting aufgeschleuderte Schicht der Verbindung C) und 20 nm für die BCP-Schicht.
Die Metallrückelektrode wurde durch thermische Metallverdampfung im Vakuum auf- gebracht. Dazu wurde die Probe mit einer Maske versehen, um acht voneinander getrennte runde Rückelektroden mit einem Durchmesser von 1 mm auf die aktive Region zu bedampfen, die jeweils mit einer etwa 3 mm x 2 mm großen Kontaktfläche über der Polyimidschicht verbunden sind. Als Metall wurde Ag verwendet, das mit einer Rate von 0,5 bis 1 ,5 nm/s bei einem Druck von ca. 4 x 10"5 mbar verdampft wurde, so dass eine Schichtdicke von 100 nm entstand.
Der Aufbau der Solarzelle ist in Figur 8 wiedergegeben.
Die Herstellung von Solarzellen der Verbindungen B) bis D) erfolgte analog.
Zur Bestimmung des Wirkungsgrads η wurde die jeweilige Strom/Spannungs-Kennlinie mit einem Source Meter Model 2400 (Keithley Instruments Inc.) unter Bestrahlung mit einem Halogen-Lampenfeld (Xenophot® 64629; Osram) als Sonnensimulator gemessen.
Figur 9 zeigt die Strom-Spannungs-Kennlinie von Verbindung B)
Figur 10 zeigt die Leistungs-Spannungs-Kennlinie von Verbindung B) Figur 1 1 zeigt die Strom-Spannungs-Kennlinie von Verbindung C)
Figur 12 zeigt die Leistungs-Spannungs-Kennlinie von Verbindung C)
Es wurden folgende elektrische Daten erhalten:
Figure imgf000113_0001
Uoc = offene Klemmspannung Isc = Kurzschlussstrom FF = Füllfaktor Eta = Wirkungsgrad
Beispiel 13:
Allgemeine Vorschrift zur Ermittlung der Transistorkenndaten
Herstellung von Halbleitersubstraten mittels drop casting
Als Substrate wurden n-dotierte Siliciumwafer (2,5 x 2,5 cm, Leitfähigkeit < 0,004 Q-1Cm) mit thermisch abgeschiedener Oxidschicht (300 nm) als Dielektrikum (flächenbezogene Kapazität C, = 10 nF/cm2) eingesetzt. Zur Herstellung von Source- und Drain-Elektroden von 5 mm Kanallänge und 10 μm Kanalbreite wurde mittels Photoli- tographie und Gasphasenabscheidung eine 60 nm Goldschicht auf 4 nm Chrom abgeschieden. Die Oberflächen der Substrate wurden durch zweistündge Behandlung mit Hexamethyldisilazan (HMDS) bei 120 0C modifiziert. Die Halbleiterverbindungen wurden durch Eindampfen einer Toluollösung (10 mg/ml) auf dem Substrat abgeschieden. Die elektrischen Eigenschaften der OFETs wurden mittels Keithley 4200-SCS Halblei- ter-Parameter-Analysator unter trockener Stickstoffatmosphäre ermittelt.
Figur 13 zeigt die Strom-Spannungs-Kennlinien von
Figure imgf000114_0001
Figur 14 zeigt die Transfer-Charakteristik des entsprechenden Feldeffekttransistors.

Claims

Patentansprüche
1. Verwendung von Verbindungen der allgemeinen Formeln I und Il
Figure imgf000115_0001
wobei
n für 1 , 2, 3 oder 4 steht,
die Reste Rn1, Rn2, Rn3 und Rn4 für n = 1 oder 2 unabhängig voneinander ausgewählt sind unter Wasserstoff, F, Cl, Br und CN, für n = 3 oder 4 unabhängig voneinander ausgewählt sind unter Wasserstoff, F, Cl und Br,
die Reste Ra und Rb unabhängig voneinander ausgewählt sind unter Wasserstoff und Alkyl,
die Reste Rc und Rd unabhängig voneinander ausgewählt sind unter Gruppen der Formeln 11.1 bis II.5: # (A)p— C(ROx
(11.1 )
Figure imgf000116_0001
(II.2) (11.3)
Figure imgf000116_0002
(11.4) (11-5)
worin
# für die Verknüpfungsstelle zum Imidstickstoffatom steht,
p für 0 oder 1 steht,
x für 2 oder 3 steht,
A soweit vorhanden, für eine Ci-Cio-Alkylengruppe steht, die durch eine oder mehrere nicht benachbarte Gruppen, die ausgewählt sind unter -O- und -S-, unterbrochen sein kann,
wobei für den Fall, dass in den Verbindungen der Formel 11.1 x für 2 steht, das Kohlenstoffatom, das die Reste R1 trägt, zusätzlich ein H-Atom trägt,
wobei in den Verbindungen der Formel 11.5 x für 2 steht,
die Reste R1 jeweils unabhängig voneinander ausgewählt sind unter C4-C3o-Alkyl, welche durch ein oder mehrere nicht benachbarte Sauerstoffatom(e) unterbrochen sein können, wobei in den Verbindungen der Formel 11.1 wenigstens einer der Reste R1 auch für C4-C3o-Alkyloxy oder C4-C3o-Alkylthio stehen kann,
als n-Halbleiter für organische Feldeffekttransistoren oder Solarzellen, ausgenommen die Verwendung von Verbindungen der Formel (I), worin n für 2 steht, die Reste Rn1, Rn2, Rn3 und Rn4 alle für Wasserstoff stehen und die Reste Rc und Rdfür (C9HIg)2CH- stehen.
2. Verwendung nach Anspruch 1 , wobei die Reste R1 jeweils unabhängig voneinander ausgewählt sind unter linearem C4-C3o-Alkyl, welche durch ein oder mehrere nicht benachbarte Sauerstoffatom(e) unterbrochen sein können.
3. Verwendung nach einem der Ansprüche 1 oder 2, wobei in den Verbindungen der Formel I die Reste Rn1, Rn2, Rn3 und Rn4 alle für Wasserstoff stehen.
4. Verwendung nach einem der Ansprüche 1 oder 2, wobei in den Verbindungen der
Formel I wenigstens einer der Reste Rπ1, Rπ2, Rπ3 und Rπ4 für einen von Wasserstoff verschiedenen Rest steht.
5. Verwendung nach einem der vorhergehenden Ansprüche, von wenigstens einer Verbindung der Formel I, wobei n für 1 , 3 oder 4, insbesondere für 3 oder 4, steht.
6. Verwendung nach einem der vorhergehenden Ansprüche, wobei die Reste R1 ausgewählt sind unter C4-Ci8-Alkyl, bevorzugt C5-Ci2-Alkyl.
7. Verwendung nach einem der Ansprüche 1 bis 6 von Verbindungen der Formel (I), wobei die Gruppen die Gruppen Rc und Rd für Gruppen der Formel (11.1)
# — (CH) \R|
(11.1 ) stehen, worin
# für die Verknüpfungsstelle zum Imidstickstoffatom steht, und
die Reste R1 ausgewählt sind unter C4-Cs-AIkVl, bevorzugt Cs-Cz-Alkyl.
8. Verwendung nach einem der Ansprüche 1 bis 6, von wenigstens einer Verbindung der Formel I, wobei die Reste Rc und Rd unabhängig voneinander ausge- wählt sind unter Gruppen der Formeln II.2 bis II.5.
9. Verwendung nach Anspruch 8, von wenigstens einer Verbindung der Formel I, wobei die Reste Rc und Rd unabhängig voneinander ausgewählt sind unter Gruppen der Formel II.2 und x in den Gruppen der Formel II.2 für 3 steht.
10. Verwendung nach Anspruch 1 , wobei in den Verbindungen der Formel Il wenigstens einer der Reste Ra und Rb für einen von Wasserstoff verschiedenen Rest steht.
1 1. Verwendung nach Anspruch 10, wobei in den Verbindungen der Formel Il die Reste Ra und Rb beide für Alkyl stehen.
12. Verwendung nach Anspruch 1 , von wenigstens einer Verbindung, die ausgewählt ist unter:
Figure imgf000118_0001
Figure imgf000119_0001
Figure imgf000119_0002
worin R und R' für C4-Ci8-Alkyl, bevorzugt C5-Ci2-Alkyl, stehen.
13. Verwendung von Verbindungen der allgemeinen Formeln I, wie in einem der An- Sprüche 1 bis 9 und 12 definiert, zur Herstellung von organischen Feldeffekttransistoren.
14. Verwendung von Verbindungen der allgemeinen Formeln I, wie in einem der Ansprüche 1 bis 9 und 12 definiert, in der organischen Photovoltaik, insbesondere als Halbleiter in excitonischen Solarzellen.
15. Verwendung von Verbindungen der allgemeinen Formeln II, wie in einem der Ansprüche 1 bis 11 definiert, zur Herstellung von Solarzellen.
16. Verwendung nach Anspruch 15 als Halbleiter in excitonischen Solarzellen.
17. Verfahren zur Herstellung von Verbindungen der Formel I
Figure imgf000120_0001
(I)
wobei
n für 1 oder 2 steht,
die Reste Rπ1, Rπ2, Rπ3 und Rπ4 unabhängig voneinander ausgewählt sind unter Wasserstoff, F, Cl, Br und CN,
die Reste Rc und Rd unabhängig voneinander ausgewählt sind unter Gruppen der Formeln 11.1 bis II.5: # (A)p— C(ROx
(11.1 )
Figure imgf000121_0001
(II.2) (II.3)
Figure imgf000121_0002
(11.4) (11-5)
worin
# für die Verknüpfungsstelle zum Imidstickstoffatom steht,
p für 0 oder 1 steht,
x für 2 oder 3 steht,
A soweit vorhanden, für eine Ci-Cio-Alkylengruppe steht, die durch eine oder mehrere nicht benachbarte Gruppen, die ausgewählt sind unter -O- und -S-, unterbrochen sein kann,
wobei für den Fall, dass in den Verbindungen der Formel 11.1 x für 2 steht, das Kohlenstoffatom, das die Reste R1 trägt, zusätzlich ein H-Atom trägt,
wobei in den Verbindungen der Formel 11.5 x für 2 steht,
die Reste R1 jeweils unabhängig voneinander ausgewählt sind unter C4-C3o-Alkyl, welche durch ein oder mehrere nicht benachbarte Sauerstoffatom(e) unterbrochen sein können,
bei dem man
a1 ) ein Rylendianhydrid der Formel Ia,
Figure imgf000122_0001
einer Umsetzung mit einem Amin der Formel HbN-R0 und gegebenenfalls einem davon verschiedenen Amin der Formel HbN-R0 unterzieht.
18. Verfahren zur Herstellung von Verbindungen der Formel I
Figure imgf000122_0002
(I)
wobei
n für 2, 3 oder 4 steht,
die Reste Rc und Rd unabhängig voneinander ausgewählt sind unter Gruppen der Formeln 11.1 bis II.5: # (A)p— C(ROx
(11.1 )
Figure imgf000123_0001
(II.2) (11.3)
Figure imgf000123_0002
(11.4) (11-5)
worin
# für die Verknüpfungsstelle zum Imidstickstoffatom steht,
p für 0 oder 1 steht,
x für 2 oder 3 steht,
A soweit vorhanden, für eine Ci-Cio-Alkylengruppe steht, die durch eine oder mehrere nicht benachbarte Gruppen, die ausgewählt sind unter -O- und -S-, unterbrochen sein kann,
wobei für den Fall, dass in den Verbindungen der Formel 11.1 x für 2 steht, das Kohlenstoffatom, das die Reste R1 trägt, zusätzlich ein H-Atom trägt,
wobei in den Verbindungen der Formel 11.5 x für 2 steht,
die Reste R1 jeweils unabhängig voneinander ausgewählt sind unter C4-C3o-Alkyl, welche durch ein oder mehrere nicht benachbarte Sauerstoffatom(e) unterbrochen sein können,
bei dem man
α) eine Verbindung der Formel lila)
Figure imgf000124_0001
(lila) wobei
n' für 1 oder 2 steht,
mit einem Diboran der Formel IV
RαO ORα
\ /
B-B
/ \ RαO ORα
(IV)
worin
Rα gleich oder verschieden sind und unabhängig voneinander Wasserstoff, Ci-C3o-Alkyl, Cδ-Cs-Cycloalkyl, Aryl oder Hetaryl bedeuten, wobei die Reste Rα auch unter Ausbildung eines die beiden Sauerstoffatome sowie das Boratom enthaltenden Fünfrings, der an den Kohlenstoffatomen durch bis zu 4 Ci-C3o-Alkyl-, Cs-Cs-Cycloalkyl-, Aryl- oder Hetarylgruppen substituiert sein kann, miteinander verbunden sein können,
unter Erhalt einer Verbindung der Formel V
Figure imgf000125_0001
(V) umsetzt,
die Verbindung der Formel V) mit einer Verbindung der Formel IMb)
Figure imgf000125_0002
(N Ib) wobei
n" für 1 oder 2 steht,
in Gegenwart eines Übergangsmetallkatalysators und einer Base einer Suzuki- Kupplungsreaktion unter Erhalt einer Verbindung der Formel VI
Figure imgf000126_0001
(VI)
γ) die Verbindung der Formel VI) durch Cyclodehydrierung in einem Hydroxy- und Aminofunktionen aufweisenden und eine im Wesentlichen ungelöste Base enthaltenden organischen Reaktionsmedium in eine Verbindung der Formel I überführt, wobei n für die Summe aus n' und n" steht.
19. Verfahren zur Herstellung von Verbindungen der Formel I
Figure imgf000126_0002
(I)
wobei
n für 3 oder 4 steht, die Reste Rc und Rd unabhängig voneinander ausgewählt sind unter Gruppen der Formeln 11.1 bis II.5:
# (A)p— C(ROx
(11.1 )
Figure imgf000127_0001
(II-2) (II.3)
Figure imgf000127_0002
(WA) (M-5)
worin
# für die Verknüpfungsstelle zum Imidstickstoffatom steht,
p für 0 oder 1 steht,
x für 2 oder 3 steht,
A soweit vorhanden, für eine Ci-Cio-Alkylengruppe steht, die durch eine oder mehrere nicht benachbarte Gruppen, die ausgewählt sind unter -O- und -S-, unterbrochen sein kann,
wobei für den Fall, dass in den Verbindungen der Formel 11.1 x für 2 steht, das Kohlenstoffatom, das die Reste R1 trägt, zusätzlich ein H-Atom trägt,
wobei in den Verbindungen der Formel 11.5 x für 2 steht,
die Reste R1 jeweils unabhängig voneinander ausgewählt sind unter C4-C3o-Alkyl, welche durch ein oder mehrere nicht benachbarte
Sauerstoffatom(e) unterbrochen sein können,
bei dem man ein Perylen-3,4-dicarbonsäureimid der allgemeinen Formel VII,
Figure imgf000128_0001
(VII)
in Gegenwart eines basenstabilen Lösungsmittels und einer alkali- oder erdalka- limetallhaltigen Base mit einer Verbindung der allgemeinen Formel VIII
Figure imgf000128_0002
(VIIl)
wobei n' " für 0 oder 1 steht und Z für Wasserstoff, Brom oder Chlor steht, umsetzt.
20. Verfahren zur Herstellung Verbindungen der Formel I
Figure imgf000129_0001
(I)
wobei
n für 1 oder 2 steht,
wenigstens einer der Reste Rn1, Rn2, Rn3 und Rn4 für CN steht und die Reste Rn1, Rn2, Rn3 und Rn4, die nicht für CN stehen, für Wasserstoff, stehen,
die Reste Ra und Rb unabhängig voneinander ausgewählt sind unter Wasserstoff und Alkyl,
die Reste Rc und Rd unabhängig voneinander ausgewählt sind unter Gruppen der Formeln 11.1 bis II.5:
# (A)p— C(ROx
(11.1 )
Figure imgf000129_0002
(11.2) (11.3)
Figure imgf000129_0003
(11.4) (11.5)
worin # für die Verknüpfungsstelle zum Imidstickstoffatom steht,
p für 0 oder 1 steht,
x für 2 oder 3 steht,
A soweit vorhanden, für eine Ci-Cio-Alkylengruppe steht, die durch eine oder mehrere nicht benachbarte Gruppen, die aus- gewählt sind unter -O- und -S-, unterbrochen sein kann,
wobei für den Fall, dass in den Verbindungen der Formel 11.1 x für 2 steht, das Kohlenstoffatom, das die Reste R1 trägt, zusätzlich ein H-Atom trägt,
wobei in den Verbindungen der Formel II.5 x für 2 steht,
die Reste R1 jeweils unabhängig voneinander ausgewählt sind unter C4-C3o-Alkyl, welche durch ein oder mehrere nicht benachbarte Sauerstoffatom(e) unterbrochen sein können, wobei in den
Verbindungen der Formel 11.1 wenigstens einer der Reste R1 auch für C4-C3o-Alkyloxy oder C4-C3o-Alkylthio stehen kann,
bei dem man eine Verbindung der Formel I, bei der wenigstens einer der Reste Rn1, Rn2, Rn3 und Rn4 für Br oder Cl steht und die Reste Rn1, Rn2, Rn3 und Rn4, die nicht für Br oder Cl stehen, für Wasserstoff stehen, einer Substitution des Broms oder des Chlors durch Cyanogruppen in einem aromatischen Kohlenwasserstoff als Lösungsmittel unterzieht.
21. Verbindungen der allgemeinen Formel I
Figure imgf000131_0001
(I) wobei
n für 1 , 2, 3 oder 4 steht,
die Reste Rπ1, Rπ2, Rπ3 und Rπ4 für n = 1 oder 2 unabhängig voneinander ausgewählt sind unter Wasserstoff, F, Cl, Br und CN, für n = 3 oder 4 unabhängig voneinander ausgewählt sind unter Wasserstoff, F, Cl und Br,
die Reste Ra und Rb unabhängig voneinander ausgewählt sind unter Wasserstoff und Alkyl,
die Reste Rc und Rd unabhängig voneinander ausgewählt sind unter Gruppen der Formeln 11.1 bis II.5:
# (A)p— C(ROx
(11.1 )
Figure imgf000131_0002
(11.2) (11.3)
Figure imgf000131_0003
(11.4) (11.5)
worin # für die Verknüpfungsstelle zum Imidstickstoffatom steht,
p für 0 oder 1 steht,
x für 2 oder 3 steht,
A soweit vorhanden, für eine Ci-Cio-Alkylengruppe steht, die durch eine oder mehrere nicht benachbarte Gruppen, die aus- gewählt sind unter -O- und -S-, unterbrochen sein kann,
wobei für den Fall, dass in den Verbindungen der Formel 11.1 x für 2 steht, das Kohlenstoffatom, das die Reste R1 trägt, zusätzlich ein H-Atom trägt,
wobei in den Verbindungen der Formel II.5 x für 2 steht,
die Reste R1 jeweils unabhängig voneinander ausgewählt sind unter C4-C3o-Alkyl, welche durch ein oder mehrere nicht benachbarte Sauerstoffatom(e) unter- brachen sein können, wobei in den Verbindungen der Formel 11.1 wenigstens einer der Reste R1 auch für C4-C3o-Alkyloxy oder C4-C3o-Alkylthio stehen kann,
ausgenommen:
Verbindungen der Formel (I), worin n für 2 steht, die Reste Rπ1, Rπ2, Rπ3 und
Rn4 alle für Wasserstoff stehen und die Reste Rc und Rd für einen Rest der
Formel (II.2) stehen,
Verbindungen der Formel (I), worin n für 2 steht, die Reste R12 und R23 für CN stehen, die übrige Reste Rn1, Rn2, Rn3 und Rn4 alle für Wasserstoff stehen und die Reste Rc und Rd für einen Rest der Formel (II.2) stehen, - Verbindungen der Formel (I), worin n für 2 steht, die Reste Rn1, Rn2, Rn3 und
Rn4 alle für Wasserstoff stehen und die Reste Rc und Rd beide für (C9HIg)2CH- stehen, - Verbindungen der Formel (I), worin n für 4 steht, die Reste Rn1, Rn2, Rn3 und
Rn4 alle für Wasserstoff stehen und die Reste Rc und Rd für einen Rest der
Formel (11.1 ) stehen.
22. Verbindungen nach Anspruch 21 , wobei n für wobei n für 1 , 3 oder 4, vorzugsweise für 3 oder 4, steht.
23. Verbindungen nach einem der Ansprüche 21 oder 22, wobei wenigstens einer der Reste Rn1, Rn2, Rn3 und Rn4 für einen von Wasserstoff verschiedenen Rest steht.
24. Verbindungen der Formeln
Figure imgf000133_0001
25. Organischer Feldeffekttransistor, umfassend ein Substrat mit wenigstens einer Gate-Struktur, einer Source-Elektrode und einer Drain-Elektrode und wenigstens einer Verbindung der Formel I, wie in einem der Ansprüche 21 bis 24 definiert, als n-Halbleiter.
26. Substrat mit einer Vielzahl von organischen Feldeffekttransistoren, wobei zumindest ein Teil der Feldeffekttransistoren wenigstens einer Verbindung der Formel I, wie in einem der Ansprüche 21 bis 24 definiert, als n-Halbleiter enthält.
27. Halbleiterbaustein, umfassend wenigstes ein Substrat, wie in Anspruch 26 definiert.
28. Verwendung wenigstens einer Verbindungen der allgemeinen Formel I, wie in einem der Ansprüche 21 bis 24 definiert, in der organischen Elektronik, insbesondere in organischen Feldeffekttransistoren.
29. Verwendung wenigstens einer Verbindungen der allgemeinen Formel I, wie in einem der Ansprüche 21 bis 24 definiert, für optische Label, zur unsichtbaren Markierung von Produkten, als Fluoreszenzfarbstoffe, als Fluoreszenzlabel für Biomoleküle und als Pigmente.
30. Verwendung wenigstens einer Verbindungen der allgemeinen Formel I, wie in einem der Ansprüche 21 bis 24 definiert, als Fluoreszenzfarbstoff in einem auf Fluoreszenzkonversion beruhenden Display; in einem lichtsammelnden Kunststoffteil, welches gegebenenfalls mit einer Solarzelle kombiniert ist; als Pigmentfarbstoff in elektrophoretischen Displays; als Fluoreszenzfarbstoff in einer auf Chemolumineszenz basierenden Anwendung.
PCT/EP2007/053330 2006-04-07 2007-04-04 Flüssig-kristalline rylentetracarbonsäurederivate und deren verwendung WO2007116001A2 (de)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP07727799A EP2008319A2 (de) 2006-04-07 2007-04-04 Flüssig-kristalline rylentetracarbonsäurederivate und deren verwendung
US12/296,312 US8481736B2 (en) 2006-04-07 2007-04-04 Liquid crystalline rylene tetracarboxylic acid derivatives and use thereof
JP2009503588A JP2009532436A (ja) 2006-04-07 2007-04-04 液晶性のリレンテトラカルボン酸誘導体及びそれらの使用
AU2007235952A AU2007235952C1 (en) 2006-04-07 2007-04-04 Liquid crystalline rylene tetracarboxylic acid derivatives and use thereof
ZA2008/09444A ZA200809444B (en) 2006-04-07 2008-11-05 Liquid crystalline rylene tetracarboxylic acid derivatives and use thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP06007415A EP1843407A1 (de) 2006-04-07 2006-04-07 Flüssig-kristalline Rylentetracarbonsäurederivate und deren Verwendung
EP06007415.0 2006-04-07

Publications (2)

Publication Number Publication Date
WO2007116001A2 true WO2007116001A2 (de) 2007-10-18
WO2007116001A3 WO2007116001A3 (de) 2007-11-22

Family

ID=36928271

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2007/053330 WO2007116001A2 (de) 2006-04-07 2007-04-04 Flüssig-kristalline rylentetracarbonsäurederivate und deren verwendung

Country Status (8)

Country Link
US (1) US8481736B2 (de)
EP (2) EP1843407A1 (de)
JP (1) JP2009532436A (de)
KR (1) KR20080111120A (de)
CN (1) CN101467276A (de)
AU (1) AU2007235952C1 (de)
WO (1) WO2007116001A2 (de)
ZA (1) ZA200809444B (de)

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009037283A1 (de) * 2007-09-18 2009-03-26 Basf Se Verfahren zur herstellung von mit rylentetracarbonsäurediimiden beschichteten substraten
US20090301552A1 (en) * 2008-06-06 2009-12-10 Basf Se Chlorinated naphthalenetetracarboxylic acid derivatives, preparation thereof and use thereof in organic electronics
KR20100108605A (ko) * 2008-02-05 2010-10-07 바스프 에스이 페릴렌 반도체 및 이의 제조 방법 및 용도
WO2011000939A1 (de) 2009-07-03 2011-01-06 Basf Se Verwendung von substituierten periflanthenen in organischen solarzellen
JP2011513376A (ja) * 2008-03-04 2011-04-28 クリスオプティクス株式会社 多環式有機化合物、偏光素子およびその製造方法
WO2011082234A1 (en) 2009-12-29 2011-07-07 Polyera Corporation Thionated aromatic bisimides as organic semiconductors and devices incorporating them
WO2011161262A1 (de) 2010-06-24 2011-12-29 Heliatek Gmbh Verdampfbares organisch halbleitendes material und dessen verwendung in einem optoelektronischen bauelement
DE102013101712A1 (de) 2013-02-21 2014-08-21 Heliatek Gmbh Photoaktives organisches Material für optoelektronische Bauelemente
DE102013101713A1 (de) 2013-02-21 2014-08-21 Heliatek Gmbh Photoaktives, organisches Material für optoelektronische Bauelemente
DE102013106639A1 (de) 2013-06-25 2015-01-08 Heliatek Gmbh Organisches, halbleitendes Bauelement
WO2015036529A1 (de) 2013-09-13 2015-03-19 Heliatek Gmbh Vorrichtung der organischen elektronik mit aktiver schicht
DE102013110693A1 (de) 2013-09-27 2015-04-02 Heliatek Gmbh Photoaktives, organisches Material für optoelektronische Bauelemente
WO2016027217A1 (en) 2014-08-18 2016-02-25 Basf Se Organic semiconductor composition comprising liquid medium
WO2016083914A1 (en) 2014-11-26 2016-06-02 Basf Se 4-oxoquinoline compounds
DE102015101835A1 (de) 2015-02-09 2016-08-11 Technische Universität Dresden Lichtabsorber
DE102015101768A1 (de) 2015-02-06 2016-08-11 Technische Universität Dresden Lichtabsorber
EP3110817A4 (de) * 2014-02-24 2017-09-20 Basf Se Neue cyclazine und deren verwendung als halbleiter
US10186664B2 (en) 2014-06-17 2019-01-22 Basf Se N-fluoroalkyl-substituted dibromonaphthalene diimides and their use as semiconductor
US10741762B2 (en) 2012-05-02 2020-08-11 Clap Co., Ltd. Method for the deposition of an organic material

Families Citing this family (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101535696B1 (ko) * 2008-02-05 2015-07-09 바스프 에스이 릴렌-(π-억셉터) 공중합체로부터 제조된 반도체 재료
EP2246350A1 (de) 2009-04-15 2010-11-03 LANXESS Deutschland GmbH Fluor-substituierte Perylene für Farbfilter in LCD
KR101429370B1 (ko) * 2009-10-29 2014-08-11 다이니치 세이카 고교 가부시키가이샤 유기 반도체 재료, 유기 반도체 박막 및 유기 박막 트랜지스터
CN102329414B (zh) * 2010-07-12 2012-10-10 海洋王照明科技股份有限公司 含环戊二烯二噻吩-萘四羧酸二酰亚胺共轭聚合物及其制备方法和应用
US8901300B2 (en) 2011-02-18 2014-12-02 Basf Se Tetraazapyrene compounds and their use as N-type semiconductors
JP5639510B2 (ja) * 2011-03-10 2014-12-10 パナソニック株式会社 光電変換素子
US8987044B2 (en) 2011-04-04 2015-03-24 National University Corporation Kagawa University Perylene tetracarboxylic acid bisimide derivative, N-type semiconductor, a method for producing N-type semiconductor, and electronic device
US8986842B2 (en) 2011-05-24 2015-03-24 Ecole Polytechnique Federale De Lausanne (Epfl) Color conversion films comprising polymer-substituted organic fluorescent dyes
US9082983B1 (en) * 2012-05-16 2015-07-14 The United States Of America As Represented By The Secretary Of The Navy Solution processable thin-film transistors
WO2014002061A2 (en) * 2012-06-29 2014-01-03 Basf Se Substituted terrylene and quaterrylene derivatives and the use as semiconductors
US8816081B2 (en) * 2012-08-06 2014-08-26 Basf Se Boron containing perylene monoimides, a process for their production, their use as building blocks for the production of perylene monoimide derivatives, monoimide derivatives and their use in dye-sensitized solar cells
EP2883254B1 (de) * 2012-08-09 2018-10-24 Merck Patent GmbH Organische halbleitende vorrichtung
KR102171901B1 (ko) 2012-12-13 2020-11-02 메르크 파텐트 게엠베하 액정 매질
CN112285980A (zh) 2013-03-05 2021-01-29 默克专利股份有限公司 用于调节光学能量穿透量的装置
US10108058B2 (en) 2013-05-08 2018-10-23 Merck Patent Gmbh Device for regulating the passage of energy
US10344217B2 (en) 2013-05-24 2019-07-09 Merck Patent Gmbh Device for controlling the passage of energy, containing a dichroic dye compound
CN105829497A (zh) 2013-12-19 2016-08-03 默克专利股份有限公司 调节光透射的设备
DE102015005800A1 (de) 2015-05-06 2016-11-10 Merck Patent Gmbh Thiadiazolochinoxalinderivate
KR102602326B1 (ko) 2015-07-10 2023-11-16 메르크 파텐트 게엠베하 다이티오-알킬-피롤로-피롤 및 염료로서의 이의 용도
EP3475389B1 (de) 2016-06-28 2020-02-26 Merck Patent GmbH Flüssigkristallines medium
US11168257B2 (en) 2016-07-19 2021-11-09 Merck Patent Gmbh Liquid crystalline medium
CN108727568B (zh) * 2018-06-08 2020-10-16 福建师范大学 可交联的基于萘二酰亚胺的全聚物太阳能电池受体材料、制备方法及其应用
KR20210019511A (ko) 2018-06-11 2021-02-22 메르크 파텐트 게엠베하 액정 매질
CN112313311A (zh) 2018-06-20 2021-02-02 默克专利股份有限公司 液晶介质
US11702597B2 (en) 2018-09-25 2023-07-18 Merck Patent Gmbh Azo dye
EP3884011B1 (de) 2018-11-23 2024-02-14 Merck Patent GmbH Dichroitische farbstoffzusammensetzung
JP2022516008A (ja) 2018-12-19 2022-02-24 メルク・パテント・ゲゼルシヤフト・ミツト・ベシユレンクテル・ハフツング スイッチング素子に使用されるスイッチング層
CN114008176A (zh) 2019-06-17 2022-02-01 默克专利股份有限公司 基于液晶的光阀
US11040946B2 (en) * 2019-10-31 2021-06-22 Council Of Scientific And Industrial Research Bromonaphthalimide compounds and phosphorescent liquid formulation thereof
CN110845505B (zh) * 2019-11-18 2022-03-29 陕西理工大学 苝二酰亚胺衍生物及基于其的电学阻抗型区分检测吡啶衍生物传感器及其制备方法和应用
EP3839620A1 (de) 2019-12-16 2021-06-23 Merck Patent GmbH Vorrichtung zur regelung der lichttransmission
EP4259747A1 (de) 2020-12-11 2023-10-18 Merck Patent GmbH Vorrichtung zur regelung der lichttransmission
WO2023094404A1 (en) 2021-11-24 2023-06-01 Merck Patent Gmbh Liquid crystal medium and liquid crystal display

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10233955A1 (de) * 2002-07-25 2004-06-24 Heinz Prof. Dr. Langhals Die Darstellung von Quaterrylen in wenigen Schritten und großen Mengen
US20050017237A1 (en) * 2003-07-25 2005-01-27 Xerox Corporation Device with n-type semiconductor
WO2005070895A1 (de) * 2004-01-23 2005-08-04 Basf Aktiengesellschaft Verfahren zur herstellung von terrylen-3,4:11,12-tetracarbonsäurediimiden durch direktsynthese
DE102004003735A1 (de) * 2004-01-23 2005-08-11 Basf Ag Verfahren zur Herstellung von Terrylen-3,4:11,12-tetracarbonsäurediimiden
US20050176970A1 (en) * 2004-01-26 2005-08-11 Marks Tobin J. Perylene n-type semiconductors and related devices
WO2005124453A2 (en) * 2004-06-14 2005-12-29 Georgia Tech Research Corporation Perylene charge-transport materials, methods of fabrication thereof, and methods of use thereof
WO2006093965A2 (en) * 2005-03-01 2006-09-08 Georgia Tech Research Corporation Coronene charge-transport materials, methods of fabrication thereof, and methods of use thereof

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3235526C2 (de) 1982-09-25 1998-03-19 Basf Ag Substituierte Perylen-3,4,9,10-tetracarbonsäurediimide
US4667036A (en) * 1983-08-27 1987-05-19 Basf Aktiengesellschaft Concentration of light over a particular area, and novel perylene-3,4,9,10-tetracarboxylic acid diimides
JPH07106613A (ja) * 1993-09-29 1995-04-21 Nippon Shokubai Co Ltd 有機n型半導体およびこれを用いた有機太陽電池
DE59509556D1 (de) * 1994-11-10 2001-10-04 Ciba Sc Holding Ag Verfahren zur Herstellung von Perylenimiden, neue di-, tri- und tetrachromophore Perylenfarbstoffe und deren Verwendung
WO1996022332A1 (de) * 1995-01-20 1996-07-25 Basf Aktiengesellschaft Substituierte quaterrylentetracarbonsäurediimide
DE19512773A1 (de) 1995-04-05 1996-10-10 Langhals Heinz Quaterrylenbisimide und ihre Verwendung als Fluoreszenzfarbstoffe
DE19534494A1 (de) * 1995-09-18 1997-03-20 Basf Ag Elektronische Bauelemente mit Transistorfunktion
DE19547209A1 (de) * 1995-12-18 1997-06-19 Basf Ag 1,7-Diaroxy-oder -arylthiosubstituierte Perylen-3,4,9,10-tetracarbonsäuren, deren Dianhydride und Diimide
DE10039232A1 (de) * 2000-08-11 2002-02-21 Basf Ag Flüssigkristalline Perylen-3,4:9,10-tetracarbonsäurediimide
JP2003138154A (ja) 2001-08-20 2003-05-14 Yukinori Nagao アザ多環芳香族系化合物およびその製造方法、ならびにアザ多環芳香族系化合物を含有する色素
DE10212358A1 (de) 2002-03-20 2003-10-02 Heinz Langhals Bichromophore Perylenderivate - Energieübertragung von nicht fluoreszierenden Chromophoren
DE10225595A1 (de) 2002-06-07 2003-12-18 Basf Ag 1,6,9,14-Tetrasubstituierte Terrylentetracarbonsäurediimide
DE10233179A1 (de) 2002-07-22 2004-02-12 Heinz Prof. Dr. Langhals Polymere Fluoreszenzfarbstoffe
EP1564826A1 (de) 2004-02-10 2005-08-17 Université Libre De Bruxelles Schicht aus Phthalocyanin-Derivaten in einem elektronischen Mehrschichtapparat und ein Verfahren zu deren Herstellung
US20050224905A1 (en) * 2004-04-13 2005-10-13 Forrest Stephen R High efficiency organic photovoltaic cells employing hybridized mixed-planar heterojunctions
DE102004024909A1 (de) * 2004-05-19 2005-12-15 Heinz Prof. Dr. Langhals Neue Fluoreszenzpigmente auf Perylen-Basis
JP4513433B2 (ja) * 2004-07-07 2010-07-28 ヤマハ株式会社 音楽教習装置及びプログラム
JP5013665B2 (ja) * 2004-09-10 2012-08-29 国立大学法人東京工業大学 ベンゾトリアゾール構造含有高分子及びその製造方法、並びに電荷輸送材料及び有機電子デバイス
EP2280971A1 (de) * 2008-03-19 2011-02-09 Basf Se N-n'-bis(fluorphenylalkyl)-substituierte perylen-3,4:9,10-tetracarboximide und deren herstellung und verwendung

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10233955A1 (de) * 2002-07-25 2004-06-24 Heinz Prof. Dr. Langhals Die Darstellung von Quaterrylen in wenigen Schritten und großen Mengen
US20050017237A1 (en) * 2003-07-25 2005-01-27 Xerox Corporation Device with n-type semiconductor
WO2005070895A1 (de) * 2004-01-23 2005-08-04 Basf Aktiengesellschaft Verfahren zur herstellung von terrylen-3,4:11,12-tetracarbonsäurediimiden durch direktsynthese
DE102004003735A1 (de) * 2004-01-23 2005-08-11 Basf Ag Verfahren zur Herstellung von Terrylen-3,4:11,12-tetracarbonsäurediimiden
US20050176970A1 (en) * 2004-01-26 2005-08-11 Marks Tobin J. Perylene n-type semiconductors and related devices
WO2005124453A2 (en) * 2004-06-14 2005-12-29 Georgia Tech Research Corporation Perylene charge-transport materials, methods of fabrication thereof, and methods of use thereof
WO2006093965A2 (en) * 2005-03-01 2006-09-08 Georgia Tech Research Corporation Coronene charge-transport materials, methods of fabrication thereof, and methods of use thereof

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
F. NOLDE ET AL.: "Synthesis and Self-Organization of Core-Extended Perylene Tetracarboximides with Branched Alkyl Substituents" CHEM. MATER., Bd. 18, 15. Juli 2006 (2006-07-15), Seiten 3715-3725, XP002450049 *
LANGHALS H ET AL: "Persistent Fluorescence of Perylene Dyes by Steric Inhibition of Aggregation" TETRAHEDRON, ELSEVIER SCIENCE PUBLISHERS, AMSTERDAM, NL, Bd. 56, Nr. 30, 21. Juli 2000 (2000-07-21), Seiten 5435-5441, XP004210209 ISSN: 0040-4020 *
PETRITSCH K ET AL: "LIQUID CYRSTALLINE PHTHALOCYANINES IN ORGANIC SOLAR CELLS" SYNTHETIC METALS, ELSEVIER SEQUOIA, LAUSANNE, CH, Bd. 102, Nr. 1/3, Juni 1999 (1999-06), Seiten 1776-1777, XP000933520 ISSN: 0379-6779 *
ROHR U ET AL: "Liquid crystalline coronene derivatives" JOURNAL OF MATERIALS CHEMISTRY, THE ROYAL SOCIETY OF CHEMISTRY, CAMBRIDGE, GB, Bd. 11, 2001, Seiten 1789-1799, XP002397609 ISSN: 0959-9428 *

Cited By (41)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009037283A1 (de) * 2007-09-18 2009-03-26 Basf Se Verfahren zur herstellung von mit rylentetracarbonsäurediimiden beschichteten substraten
KR101638199B1 (ko) * 2008-02-05 2016-07-08 바스프 에스이 페릴렌 반도체 및 이의 제조 방법 및 용도
KR20100108605A (ko) * 2008-02-05 2010-10-07 바스프 에스이 페릴렌 반도체 및 이의 제조 방법 및 용도
JP2011514884A (ja) * 2008-02-05 2011-05-12 ビーエーエスエフ ソシエタス・ヨーロピア ペリレン半導体並びにその製造方法及び使用
JP2011513376A (ja) * 2008-03-04 2011-04-28 クリスオプティクス株式会社 多環式有機化合物、偏光素子およびその製造方法
KR101702487B1 (ko) * 2008-06-06 2017-02-06 바스프 에스이 염소화 나프탈렌테트라카르복실산 유도체, 이의 제조 방법 및 유기 전자 장치에서의 그 용도
US20090301552A1 (en) * 2008-06-06 2009-12-10 Basf Se Chlorinated naphthalenetetracarboxylic acid derivatives, preparation thereof and use thereof in organic electronics
TWI480280B (zh) * 2008-06-06 2015-04-11 Basf Se 氯化萘四羧酸衍生物、其製備方法及用於有機電子產品之用途
WO2009147237A1 (en) 2008-06-06 2009-12-10 Basf Se Chlorinated naphthalenetetracarboxylic acid derivatives, preparation thereof and use thereof in organic electronics
US9512354B2 (en) 2008-06-06 2016-12-06 Basf Se Chlorinated naphthalenetetracarboxylic acid derivatives, preparation thereof and use thereof in organic electronics
US10214525B2 (en) 2008-06-06 2019-02-26 Basf Se Chlorinated napthalenetetracarboxylic acid derivatives, preparation thereof and use thereof in organic electronics
KR20110015454A (ko) * 2008-06-06 2011-02-15 바스프 에스이 염소화 나프탈렌테트라카르복실산 유도체, 이의 제조 방법 및 유기 전자 장치에서의 그 용도
WO2011000939A1 (de) 2009-07-03 2011-01-06 Basf Se Verwendung von substituierten periflanthenen in organischen solarzellen
WO2011082234A1 (en) 2009-12-29 2011-07-07 Polyera Corporation Thionated aromatic bisimides as organic semiconductors and devices incorporating them
US8440828B2 (en) 2009-12-29 2013-05-14 Polyera Corporation Organic semiconductors and devices incorporating same
WO2011161262A1 (de) 2010-06-24 2011-12-29 Heliatek Gmbh Verdampfbares organisch halbleitendes material und dessen verwendung in einem optoelektronischen bauelement
DE102010030500A1 (de) 2010-06-24 2011-12-29 Heliatek Gmbh Verdampfbares organisch halbleitendes Material und dessen Verwendung in einem optoelektronischen Bauelement
US9127020B2 (en) 2010-06-24 2015-09-08 Heliatek Gmbh Evaporable organic semiconductive material and use thereof in an optoelectronic component
US10741762B2 (en) 2012-05-02 2020-08-11 Clap Co., Ltd. Method for the deposition of an organic material
WO2014128277A1 (de) 2013-02-21 2014-08-28 Heliatek Photoaktives, organisches material für optoelektronische bauelemente
DE102013101712A1 (de) 2013-02-21 2014-08-21 Heliatek Gmbh Photoaktives organisches Material für optoelektronische Bauelemente
DE102013101712B4 (de) 2013-02-21 2020-05-28 Heliatek Gmbh Photoaktives organisches Material für optoelektronische Bauelemente
DE102013101713A1 (de) 2013-02-21 2014-08-21 Heliatek Gmbh Photoaktives, organisches Material für optoelektronische Bauelemente
WO2014128281A1 (de) 2013-02-21 2014-08-28 Heliatek Gmbh Photoaktives, organisches material für optoelektronische bauelemente
DE102013106639A1 (de) 2013-06-25 2015-01-08 Heliatek Gmbh Organisches, halbleitendes Bauelement
US9685616B2 (en) 2013-06-25 2017-06-20 Heliatek Gmbh Organic semiconductive component
WO2015036529A1 (de) 2013-09-13 2015-03-19 Heliatek Gmbh Vorrichtung der organischen elektronik mit aktiver schicht
DE102013110693B4 (de) 2013-09-27 2024-04-25 Heliatek Gmbh Photoaktives, organisches Material für optoelektronische Bauelemente
DE102013110693A1 (de) 2013-09-27 2015-04-02 Heliatek Gmbh Photoaktives, organisches Material für optoelektronische Bauelemente
WO2015044377A1 (de) 2013-09-27 2015-04-02 Heliatek Gmbh Photoaktives; organisches material für optoelektronische bauelemente
EP3110817A4 (de) * 2014-02-24 2017-09-20 Basf Se Neue cyclazine und deren verwendung als halbleiter
US10186664B2 (en) 2014-06-17 2019-01-22 Basf Se N-fluoroalkyl-substituted dibromonaphthalene diimides and their use as semiconductor
WO2016027218A1 (en) 2014-08-18 2016-02-25 Basf Se Process for preparing crystalline organic semiconductor material
US10224485B2 (en) 2014-08-18 2019-03-05 Basf Se Process for preparing a crystalline organic semiconductor material
US10454037B2 (en) 2014-08-18 2019-10-22 Basf Se Organic semiconductor composition comprising a liquid medium
WO2016027217A1 (en) 2014-08-18 2016-02-25 Basf Se Organic semiconductor composition comprising liquid medium
WO2016083914A1 (en) 2014-11-26 2016-06-02 Basf Se 4-oxoquinoline compounds
US10522767B2 (en) 2014-11-26 2019-12-31 Basf Se 4-oxoquinoline compounds
DE102015101768A1 (de) 2015-02-06 2016-08-11 Technische Universität Dresden Lichtabsorber
DE102015101835A1 (de) 2015-02-09 2016-08-11 Technische Universität Dresden Lichtabsorber
WO2016128356A1 (de) 2015-02-09 2016-08-18 Technische Universität Dresden Lichtabsorbierende verbindungen

Also Published As

Publication number Publication date
AU2007235952C1 (en) 2013-10-03
CN101467276A (zh) 2009-06-24
US20110042651A1 (en) 2011-02-24
AU2007235952B2 (en) 2013-06-06
US8481736B2 (en) 2013-07-09
KR20080111120A (ko) 2008-12-22
JP2009532436A (ja) 2009-09-10
WO2007116001A3 (de) 2007-11-22
AU2007235952A1 (en) 2007-10-18
EP1843407A1 (de) 2007-10-10
ZA200809444B (en) 2014-01-29
EP2008319A2 (de) 2008-12-31

Similar Documents

Publication Publication Date Title
EP2008319A2 (de) Flüssig-kristalline rylentetracarbonsäurederivate und deren verwendung
US10522767B2 (en) 4-oxoquinoline compounds
JP5627459B2 (ja) ハロゲン含有のペリレンテトラカルボン酸誘導体及びそれらの使用
EP2297274B1 (de) Chlorierte naphthalintetracarbonsäurederivate, ihre herstellung und verwendung zur organoelektronik
EP1987092B1 (de) Fluorierte rylentetracarbonsäurederivate und deren verwendung
EP2742112B1 (de) Carbazolocarbazol-bis(dicarboximide) und ihre verwendung als halbleiter
WO2009037283A1 (de) Verfahren zur herstellung von mit rylentetracarbonsäurediimiden beschichteten substraten
WO2010112452A1 (en) Oligocondensed perylene bisimides
JP6234602B2 (ja) 新規シクラジン、及びその半導体としての使用
EP2029573B1 (de) Dibenzorylentetracarbonsäurediimide als infrarotabsorber
WO2016083915A1 (en) 4-hydroxyquinoline compounds
WO2009000831A1 (de) Bromsubstituierte rylentetracarbonsäurederivate und deren verwendung
WO2008113753A1 (de) Verfahren zur herstellung von rylentetracarbonsäurediimiden, deren imidstickstoffe wasserstoffatome tragen, und deren verwendung

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200780021275.1

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07727799

Country of ref document: EP

Kind code of ref document: A2

WWE Wipo information: entry into national phase

Ref document number: 2007235952

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 2009503588

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2007235952

Country of ref document: AU

Date of ref document: 20070404

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2007727799

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 1020087027403

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 12296312

Country of ref document: US