WO2007110170A1 - Anordnung mit einem geschützten turbolader in der abgasrückführleitung - Google Patents

Anordnung mit einem geschützten turbolader in der abgasrückführleitung Download PDF

Info

Publication number
WO2007110170A1
WO2007110170A1 PCT/EP2007/002437 EP2007002437W WO2007110170A1 WO 2007110170 A1 WO2007110170 A1 WO 2007110170A1 EP 2007002437 W EP2007002437 W EP 2007002437W WO 2007110170 A1 WO2007110170 A1 WO 2007110170A1
Authority
WO
WIPO (PCT)
Prior art keywords
exhaust gas
arrangement
gas recirculation
recirculation line
layer
Prior art date
Application number
PCT/EP2007/002437
Other languages
English (en)
French (fr)
Inventor
Arndt-Udo Rolle
Rolf BRÜCK
Original Assignee
Emitec Gesellschaft Für Emissionstechnologie Mbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Emitec Gesellschaft Für Emissionstechnologie Mbh filed Critical Emitec Gesellschaft Für Emissionstechnologie Mbh
Priority to JP2009500758A priority Critical patent/JP5547473B2/ja
Priority to KR1020097021435A priority patent/KR101233848B1/ko
Priority to EP07723403A priority patent/EP1999362B1/de
Publication of WO2007110170A1 publication Critical patent/WO2007110170A1/de
Priority to US12/236,909 priority patent/US8082729B2/en
Priority to US13/285,575 priority patent/US20120042648A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B37/00Engines characterised by provision of pumps driven at least for part of the time by exhaust
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • B01D53/9445Simultaneously removing carbon monoxide, hydrocarbons or nitrogen oxides making use of three-way catalysts [TWC] or four-way-catalysts [FWC]
    • B01D53/9454Simultaneously removing carbon monoxide, hydrocarbons or nitrogen oxides making use of three-way catalysts [TWC] or four-way-catalysts [FWC] characterised by a specific device
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D39/00Filtering material for liquid or gaseous fluids
    • B01D39/10Filter screens essentially made of metal
    • B01D39/12Filter screens essentially made of metal of wire gauze; of knitted wire; of expanded metal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D39/00Filtering material for liquid or gaseous fluids
    • B01D39/14Other self-supporting filtering material ; Other filtering material
    • B01D39/20Other self-supporting filtering material ; Other filtering material of inorganic material, e.g. asbestos paper, metallic filtering material of non-woven wires
    • B01D39/2027Metallic material
    • B01D39/2041Metallic material the material being filamentary or fibrous
    • B01D39/2044Metallic material the material being filamentary or fibrous sintered or bonded by inorganic agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D39/00Filtering material for liquid or gaseous fluids
    • B01D39/14Other self-supporting filtering material ; Other filtering material
    • B01D39/20Other self-supporting filtering material ; Other filtering material of inorganic material, e.g. asbestos paper, metallic filtering material of non-woven wires
    • B01D39/2027Metallic material
    • B01D39/2041Metallic material the material being filamentary or fibrous
    • B01D39/2048Metallic material the material being filamentary or fibrous otherwise bonded
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D39/00Filtering material for liquid or gaseous fluids
    • B01D39/14Other self-supporting filtering material ; Other filtering material
    • B01D39/20Other self-supporting filtering material ; Other filtering material of inorganic material, e.g. asbestos paper, metallic filtering material of non-woven wires
    • B01D39/2068Other inorganic materials, e.g. ceramics
    • B01D39/2093Ceramic foam
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B39/00Component parts, details, or accessories relating to, driven charging or scavenging pumps, not provided for in groups F02B33/00 - F02B37/00
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/02EGR systems specially adapted for supercharged engines
    • F02M26/04EGR systems specially adapted for supercharged engines with a single turbocharger
    • F02M26/06Low pressure loops, i.e. wherein recirculated exhaust gas is taken out from the exhaust downstream of the turbocharger turbine and reintroduced into the intake system upstream of the compressor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/13Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories
    • F02M26/14Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories in relation to the exhaust system
    • F02M26/15Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories in relation to the exhaust system in relation to engine exhaust purifying apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/13Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories
    • F02M26/35Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories with means for cleaning or treating the recirculated gases, e.g. catalysts, condensate traps, particle filters or heaters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2239/00Aspects relating to filtering material for liquid or gaseous fluids
    • B01D2239/06Filter cloth, e.g. knitted, woven non-woven; self-supported material
    • B01D2239/065More than one layer present in the filtering material
    • B01D2239/0668The layers being joined by heat or melt-bonding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2258/00Sources of waste gases
    • B01D2258/01Engine exhaust gases
    • B01D2258/012Diesel engines and lean burn gasoline engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/13Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories
    • F02M26/22Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories with coolers in the recirculation passage
    • F02M26/23Layout, e.g. schematics
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Definitions

  • the present invention relates to an arrangement for the treatment of exhaust gases of an internal combustion engine with a predetermined displacement having an exhaust gas recirculation line, wherein the exhaust gas flowing therethrough cooperates with a turbocharger.
  • the invention finds particular application in mobile internal combustion engines, as are provided for example in motor vehicles.
  • turbocharger should regularly higher torques and thus higher engine performance are achieved with respect to the internal combustion engine. This is achieved by compressing the intake air or the exhaust gas routed back. As a result of the increased density, in particular more oxygen can reach the combustion chamber of the engine at each intake stroke. With the higher oxygen content, improved combustion is possible, so that ultimately the performance can be increased.
  • the heat and kinetic energy of the engine exhaust gas is used regularly to drive the exhaust gas turbine of the turbocharger.
  • the exhaust gas turbine operates the compressor in the exhaust gas recirculation line or the air intake line.
  • an object of the present invention to at least partially solve the technical problems described with reference to the prior art.
  • an arrangement for the treatment of exhaust gases is to be specified, which ensures a permanent operation of the turbocharger, at the same time the effectiveness of the turbocharger or the desired boost pressure can be achieved without further ado.
  • the inventive arrangement for the treatment of exhaust gases of an internal combustion engine having a predetermined displacement has an exhaust gas recirculation line, wherein the exhaust gas flowing therethrough cooperates with a turbocharger, wherein further in the exhaust gas recirculation line before the turbocharger a sieve layer is provided, which is greater than a central cross section the exhaust gas recirculation
  • the invention relates in particular to gasoline engines, diesel engines and the like. These internal combustion engines have in common that they have a displacement. Under a displacement is the sum of the volume understood that the combustion chambers of the internal combustion engine have a total.
  • the displacement for such internal combustion engines is in particular in the range of 0.5 1 to 13.0 1, wherein the currently encountered in the majority of automobiles reaches a displacement in the range of 0.8 1 to 3.0 1 used.
  • a sieve layer as seen from the exhaust gas flow in front of the turbocharger.
  • a sieve layer is meant in particular a surface structure.
  • Such a screen layer differs from known filters, for example, in that it does not provide a multiplicity of channels, but rather flows over a large area.
  • the screen layer may be formed on the one hand as a cross-section of the exhaust gas recirculation line spanning surface, but optionally also simple FaIt- or joint constructions are possible, for example in the manner of a cylinder, a bag, a fold or the like. Regularly then this shape has only a single inflow, via which the exhaust gas is contacted with the bulk of, in particular the entire, Siebfiambae.
  • the sieve layer is larger than a central cross section of the exhaust gas recirculation line, in other words preferably (at least partially) not (only) positioned parallel to the central cross section, but for example has a structure or oblique to the Cross section is arranged.
  • the average cross section it should be noted that this represents an average over the entire length of the exhaust gas recirculation line.
  • the diameters of the exhaust gas recirculation lines of passenger cars are in the range of 30 millimeters [mm], so that a mean cross section of approximately 700 square millimeters [mm 2 ] results.
  • the exhaust gas can flow through the sieve layer with a much smaller pressure loss. This is an effective protective measure. impacted, however, the flow behavior of the exhaust gas to the turbocharger only insignificantly affected.
  • the wire layer provide at least 10 square centimeters [cm 2 ] of screen area per 1.0 liter [1] displacement of the internal combustion engine.
  • the sieve layer provides at least 25 cm 2 screen area per 1.0 1 displacement of the internal combustion engine.
  • a Sieblage is used in the exhaust gas recirculation line, which has at least 20 cm, preferably at least 50 cm, screen surface.
  • the Sieblage generated here usual flow conditions during operation in the exhaust gas recirculation line regularly a pressure drop of not more than 20 millibar [mbar], in particular of at most 10 mbar.
  • the sieve layer is positioned obliquely to the flow direction of the exhaust gas through the exhaust gas recirculation line. Due to the oblique inflow of the sieve layer, especially in connection with a larger execution of the sieve layer than the average cross section, a flow behavior of the exhaust gas is supported, which results in a low pressure loss.
  • the reason for this is in particular also that an increased number of für Stammsöffiiungen is provided for the exhaust gas by the oblique arrangement, so that despite local blockages of the Sieblage during operation of the exhaust gas recirculation line nevertheless a low pressure loss can be maintained.
  • the exhaust gas recirculation line has a local extension in the region of the sieve layer. This means in particular that in the area of the sieve layer, a larger cross section of the exhaust gas recirculation line is realized.
  • a kind of diffuser is formed which, by widening the flow cross-section, slows down the flow velocity of the exhaust gas in the exhaust gas recirculation line result.
  • the local extension is designed so that at least an increase in the cross section of the exhaust gas recirculation line is realized by 30%.
  • the extension advantageously also includes a connection region of segments of the exhaust gas recirculation line, such as flanges or the like. This simultaneously opens up the possibility of a permanent and secure fixation of the sieve layer between the segments of the exhaust gas recirculation lines.
  • the wire layer comprises a fabric with wire filaments.
  • a nonwoven with wire filaments in which there is a "chaotic" distribution of the wire filaments, but preference is given to a type of fabric, ie a structure in which the filaments are positioned in an order relative to one another and arranged to cooperate with one another
  • the wire filaments are usually made of a high temperature resistant, corrosion resistant material such as steel comprising chromium and / or aluminum
  • the wire filaments regularly have a filament thickness in the range from 30 to 300 micrometers [ ⁇ m], in particular in the range from 50 to 150 ⁇ m
  • thicker wire filaments preferably have a filament thickness of about 100 to 300 microns and thinner wire filaments preferably has a filament thickness of about 30 to 150 microns.
  • the Sieblage in the plurality of openings having a width of at least 0.05 mm. It is particularly preferred that at least 90% of the openings such Have width.
  • width is meant the largest width with respect to the openings, if they are not round, in terms of the width, a range of 0.1 to 0.25 mm is preferred so that there is sufficient safety for the turbocharger, so that corresponding foreign bodies be stopped, at the same time the sucked exhaust gas is only slightly influenced with respect to the pressure conditions.
  • the wire filaments are connected to one another in a material-locking manner. Even if the provision of the wire filaments in the form of a fabric already partially realizes a sufficient connection of the wire filaments to one another, in which the openings permanently maintain their width, a joining-technical, material-locking connection between the wire filaments can also be advantageous here.
  • soldering sin-called "brazing”
  • sintering and / or welding of the wire filaments is possible.
  • capacitor pulse welding the wire filaments are subjected to a current under pressure while being welded.
  • the sieve layer is formed with a plurality of layers, wherein the layers are connected to one another.
  • a layer regularly comprises a screen construction which is formed with wires and / or wire filaments.
  • These metallic components of the wire layer or the layers are now preferably welded together, wherein they are in particular formed directly adjacent to each other.
  • the layers may have different functions, for example a screen function, a holding function, a power supply function and the like.
  • the connection is carried out in particular directly or directly, therefore not only a connection via the exhaust pipe is present. Rather, additional holding elements and / or direct contact of the layers with each other can represent the connection.
  • a layer is made with a wire construction made with gaps of at least 5.0 mm.
  • the wire construction is designed with a significantly greater openness.
  • This wire construction therefore has primarily a holding function.
  • these are formed with (in particular thick) wire filaments which have approximately the same dimensions as stated above.
  • a sieve layer is arranged downstream of a ceramic wall filter.
  • a “wall filter” is meant in particular so-called “wall flow filter”, which are shaped in the manner of a honeycomb body formed with porous material, wherein the channels are mutually closed. This results in a forced flow of the exhaust gas through the porous walls of the honeycomb body. It has been found that especially when operating an exhaust system with such a wall filter, especially when silicon carbide comprises, components are replaced time and again, jeopardizing the downstream components of the exhaust system. Therefore, it is now proposed here to provide such a sieve layer in the flow direction downstream of the ceramic wall filter. In this case, the Sieblage protects in particular the downstream turbocharger in front of the detached parts of the ceramic wall filter.
  • the sieve layer is arranged between the cooler of the exhaust gas recirculation line and the turbocharger.
  • the “cooler” is meant in particular an exhaust gas cooler In which the exhaust gas was first brought to a lower temperature by means of the exhaust gas cooler, the exhaust gas flows through the exhaust gas recirculation line simultaneously with a slightly lower flow velocity, which in turn has advantages in flowing through the Sieblage, since this has a lower pressure loss compared to the still hot exhaust gas in front of the exhaust gas cooler.
  • FIGS. illustrate particularly preferred embodiments of the invention, but the invention is not limited thereto. They show schematically:
  • Fig. 3 a further embodiment of the wire tray
  • FIG. 1 schematically shows a first embodiment of an arrangement 1 for the treatment of exhaust gases of an internal combustion engine 2.
  • the internal combustion engine 2 is here designed with four cylinders each having a combustion space. The sum of these volumes of the combustion chambers yields the displacement 3 of the internal combustion engine 2.
  • the exhaust gas produced in the internal combustion engine 2 leaves the internal combustion engine 2 in the flow direction 9 and first flows through the turbine of a turbocharger 5 before subsequently reaching a ceramic wall filter 18.
  • a branch for an exhaust gas recirculation line 4 is then shown, with part of the exhaust gas being conducted back into the direction of flow 9 to the internal combustion engine 2.
  • the exhaust gas in the exhaust gas recirculation line 4 is then first a radiator 19, namely an (optional) exhaust gas cooler, supplied, wherein the temperature of the exhaust gas is reduced. Following this, the exhaust gas flows through a sieve layer 6 before it is fed to the compressor of the turbocharger 5 together with the combustion air. The compressed exhaust gas flow is then, for example, still another cooler 19 (in particular a so-called intercooler), fed and finally reintroduced into the internal combustion engine.
  • a radiator 19 namely an (optional) exhaust gas cooler
  • FIG. 2 A concrete embodiment variant of the exhaust gas recirculation line 4 with a sieve layer 6 is illustrated in FIG. 2.
  • the exhaust gas recirculation line 4 is normally carried out substantially round, so that the indicated average cross-section 8 results.
  • a construction of the gas return line 4 is provided with an extension 10, in which the wire layer 6 is positioned.
  • the two sections of the exhaust gas recirculation line have a kind of flange, which is formed laterally in the extension direction of the exhaust gas recirculation line. These flanges serve more to accommodate the sieve layer 6, which is positioned so obliquely to the flow direction 9 of the exhaust gas and has a sieve surface 7 which is significantly larger than the average cross section 8 of the exhaust gas recirculation line 4.
  • Such a sieve layer is characterized by a particularly low pressure loss with regard to the passage of exhaust gas.
  • the third illustrates a sieve layer 6 with a plurality of layers, namely a first layer 14 and a second layer 21.
  • the first layer 14 comprises a sieve layer 6 of a fabric with wire filaments 11.
  • the wire filaments 11 are interwoven with each other so that openings 12 with one Width 13 of at least 0.08 mm are formed.
  • the second layer 21 comprises a wire construction 21 with a wire construction 15 which is designed with spaces 16 of a dimension 17 of at least 5 mm.
  • the fabric and wire construction 15 are welded together, with an exploded view selected.
  • both layers lie directly next to each other and are advantageously provided with a pulse-capacitor Welding in front of each other. With regard to the orientation of such a sieve layer in the exhaust gas flow, it is preferred that the exhaust gas first flows through the tissue, then then the wire construction 15.
  • FIG. 4 now illustrates a further embodiment variant of the arrangement 1 in a motor vehicle 20.
  • the internal combustion engine 2 is shown in turn with the displacement 3 partially indicated.
  • the mode of operation of the internal combustion engine 2, exhaust gas recirculation and similar processes is regularly controlled by a motor control 22.
  • the exhaust gas first flows back to the turbocharger 5 and then further the exhaust pipe 23 along to possibly provided catalytic converters 24.
  • From the exhaust pipe 23 leads the exhaust gas recirculation line 4 away, which provides a connection to the turbocharger 5 .
  • a sieve layer 6 is provided, through which the exhaust gas flows.
  • the sieve layer 6 of a bag or a simple folding is configured, which is itself dimensionally stable, in particular by providing a corresponding wire construction.
  • the turbocharger 5 the compressed exhaust gas flow is now supplied together with the charge air again to the internal combustion engine 2.
  • the measures proposed here represent, in particular, protection for the turbocharger in the exhaust gas recirculation line, wherein at the same time the smallest possible influence on the flow of the exhaust gas and thus also the desired boost pressures can be permanently maintained.

Abstract

Anordnung (1) zur Behandlung von Abgasen einer Verbrennungskraftmaschine (2) mit einem vorgegebenen Hubraum (3), die eine Abgasrückführleitung (4) aufweist, wobei das dort hindurch strömende Abgas mit einem Turbolader (5) zusammenwirkt und in der Abgasrückführleitung (4) vor dem Turbolader (5) eine Sieblage (6) vorgesehen ist, die größer als ein mittlerer Querschnitt (8) der Abgasrückführleitung (4) ist.

Description

Anordnung mit einem geschützten Turbolader in der Abgasrückführieitung
Die vorliegende Erfindung betrifft eine Anordnung zur Behandlung von Abgasen einer Verbrennungskraftmaschine mit einem vorgegebenen Hubraum, die eine Abgasrückruhrleitung aufweist, wobei das dort hindurch strömende Abgas mit einem Turbolader zusammenwirkt. Die Erfindung findet insbesondere Anwendung bei mobilen Verbrennungskraftmaschinen, wie sie beispielsweise bei Kraft- fahrzeugen vorgesehen sind.
Derartige Abgasbehandlungsanordnungen mit einer Abgasriickführung sind vielfach bekannt. Ziel bei der Bereitstellung solcher Anordnungen ist es, dass teilweise noch nicht vollständig umgesetzte Abgas wieder der Verbrennungskraftma- schine zuzuführen, um auf diese Weise eine vollständigere Umsetzung von unverbrannten Kohlenwasserstoffen und/oder eine weitere Konvertierung von Abgasbestandteilen zu gewährleisten.
Durch den Einsatz eines Turboladers sollen regelmäßig höhere Drehmomente und somit höhere Motorleistungen bezüglich der Verbrennungskraftmaschine erzielt werden. Dies gelingt, in dem die angesaugte Luft bzw. das zurück geführte Abgas verdichtet wird. Infolge der erhöhten Dichte kann bei jedem Einlasstakt insbesondere mehr Sauerstoff in den Brennraum des Motors gelangen. Mit dem höheren Sauerstoffgehalt ist eine verbesserte Verbrennung möglich, so dass letztendlich die Leistung gesteigert werden kann. Die Wärme- und Bewegungsenergie des Motorabgases wird dabei regelmäßig genutzt, um die Abgasturbine des Turboladers anzutreiben. Die Abgasturbine betreibt den Verdichter in der Abgasrückführieitung bzw. der Luftansaug- Leitung.
Es hat sich nun jedoch herausgestellt, dass gerade der Verdichter des Turboladers gelegentlich beachtliche Schäden aufweist, die infolge des Eindringens von Fremdkörpern insbesondere am Verdichterrad festzustellen sind. Diese Fremdkörper sind insbesondere Teile vorgelagerter Abgasbehandlungskomponenten, deren Beschichtungen und/oder auch Feststoffe, die dem Abgas als Additiv zugegeben werden oder sich in der Abgasleitung gebildet haben. 5
Hiervon ausgehend ist es Aufgabe der vorliegenden Erfindung, die mit Bezug auf den Stand der Technik geschilderten technischen Probleme zumindest teilweise zu lösen. Insbesondere soll eine Anordnung zur Behandlung von Abgasen angegeben werden, die einen dauerhaften Betrieb des Turboladers gewährleistet, wobei 10 gleichzeitig die Effektivität des Turboladers bzw. der gewünschte Ladedruck ohne weiteres erreicht werden kann.
Diese Aufgaben werden gelöst mit einer Anordnung gemäß den Merkmalen des Patentanspruchs 1. Weitere vorteilhafte Ausgestaltungen der Anordnung sind in 15 den abhängig formulierten Patentansprüchen angegeben. Es ist darauf hinzuweisen, dass die in den Unteransprüchen einzeln aufgeführten Merkmale in beliebiger, technologisch sinnvoller, Weise miteinander kombiniert werden können und weitere Ausgestaltungen der Erfindung aufzeigen.
20 Die erfindungsgemäße Anordnung zur Behandlung von Abgasen einer Verbrennungskraftmaschine mit einem vorgegebenen Hubraum weist eine Abgasrückführ- leitung auf, wobei das dort hindurchströmende Abgas mit einem Turbolader zusammenwirkt, wobei weiter in der Abgasrückführleitung vor dem Turbolader eine Sieblage vorgesehen ist, die größer als ein mittlerer Querschnitt der Abgasrück-
25. führleitung ist.
Grundsätzlich ist es möglich, dass eine solche Anordnung im Zusammenhang mit einer stationären Verbrennungskraftmaschine betrieben wird, bevorzugt ist jedoch der Einsatz mit einer mobilen Verbrennungskraftmaschine. Die Erfindung betrifft 30 dabei insbesondere Ottomotoren, Dieselmotoren und dergleichen. Diesen Verbrennungskraftmaschinen ist gemein, dass diese einen Hubraum aufweisen. Unter einem Hubraum wird die Summe des Volumens verstanden, dass die Verbrennungsräume der Verbrennungskraftmaschine insgesamt aufweisen. Der Hubraum für solche Verbrennungskraftmaschinen liegt insbesondere im Bereich von 0,5 1 bis 13,0 1, wobei bei den derzeitig anzutreffenden Automobilen in der überwiegenden Mehrzahl ein Hubraum im Bereich von 0,8 1 bis 3,0 1 zum Einsatz gelangt.
Hier wird nun vorgeschlagen, aus Sicht des Abgasstromes gesehen vor dem Turbolader eine Sieblage vorzusehen. Mit einer Sieblage ist insbesondere ein fiächi- ges Gebilde gemeint. Eine solche Sieblage unterscheidet sich gegenüber bekannten Filtern beispielsweise dadurch, dass diese keine Vielzahl von Kanälen bereitstellt, sondern großflächig angeströmt wird. Die Sieblage kann dabei einerseits als eine den Querschnitt der Abgasrückführleitung überspannende Fläche ausgebildet sein, gegebenenfalls sind jedoch auch einfache FaIt- oder Fügekonstruktionen möglich, beispielsweise nach Art eines Zylinders, eines Sackes, einer Falte oder dergleichen. Regelmäßig weist dann dieses Formgebilde nur einen einzelnen Einströmkanal auf, über den das Abgas mit der dem Großteil der, insbesondere der gesamten, Siebfiäche kontaktiert wird.
Im Hinblick auf die Größe der Sieblage wird gefordert, dass die Sieblage größer als ein mittlerer Querschnitt der Abgasrückführleitung ist, mit anderen Worten also bevorzugt (wenigstens teilweise) nicht (nur) parallel zum mittleren Querschnitt positioniert ist, sondern beispielsweise eine Struktur aufweist oder schräg zum Querschnitt angeordnet ist. Bezogen auf den mittleren Querschnitt ist anzu- merken, dass dieser einen Mittelwert über die gesamte Länge der Abgasrückführleitung darstellt. Üblicherweise liegen die Durchmesser der Abgasrückführleitun- gen von Personenkraftwagen im Bereich von 30 Millimeter [mm], so dass sich ein mittlerer Querschnitt von ca. 700 Quadratmillimeter [mm2] ergibt. Infolge der vergrößerten Siebfläche kann das Abgas die Sieblage mit einem deutlich kleineren Druckverlust durchströmen. Damit ist eine wirkungsvolle Schutzmaßnahme ge- troffen, die gleichwohl das Anströmverhalten des Abgases hin zum Turbolader nur unwesentlich beeinträchtigt.
Gemäß einer Weiterbildung der Anordnung wird vorgeschlagen, dass die Sieblage mindestens 10 Quadratzentimeter [cm2] Siebfläche pro 1,0 Liter [1] Hubraum der Verbrennungskraftmaschine bereit stellt. Bevorzugt ist eine Ausgestaltung, wobei die Sieblage mindestens 25 cm2 Siebfläche pro 1,0 1 Hubraum der Verbrennungskraftmaschine bereit stellt. Das bedeutet mit anderen Worten beispielsweise, dass bei einer Verbrennungskraftmaschine, die einen Dieselmotor und einen Hubraum von 2,0 1 aufweist, eine Sieblage in der Abgasrückfuhrleitung eingesetzt wird, die mindestens 20 cm , vorzugsweise mindestens 50 cm , Siebfläche aufweist. Dabei generiert die Sieblage bei hier üblichen Strömungsbedingungen während des Betriebes in der Abgasrückfuhrleitung regelmäßig einen Druckverlust von nicht mehr als 20 Millibar [mbar], insbesondere von höchstens 10 mbar.
Gemäß einer Weiterbildung wird auch vorgeschlagen, dass die Sieblage schräg zur Strömungsrichtung des Abgases durch die Abgasrückfuhrleitung positioniert ist. Durch die schräge Anströmung der Sieblage, gerade in Verbindung mit einer größeren Ausfuhrung der Sieblage als der mittlere Querschnitt, wird ein Durch- strömungsverhalten des Abgases unterstützt, welches einen geringen Druckverlust zur Folge hat. Grund hierfür ist insbesondere auch, dass durch die schräge Anordnung eine erhöhte Anzahl von Durchtrittsöffiiungen für das Abgas bereitgestellt wird, so dass trotz lokaler Verstopfungen der Sieblage während des Betriebes der Abgasrückfuhrleitung gleichwohl ein geringer Druckverlust aufrecht erhalten werden kann.
Nach einer Weiterbildung der Anordnung weist die Abgasrückfuhrleitung eine lokale Erweiterung im Bereich der Sieblage auf. Damit ist insbesondere gemeint, dass im Bereich der Sieblage ein größerer Querschnitt der Abgasrückfuhrleitung verwirklicht ist. Damit ist eine Art Diffiisor gebildet, der durch eine Aufweitung des Strömungsquerschnittes eine Verlangsamung der Strömungsgeschwindigkeit des Abgases in der Abgasrückführleitung zur Folge hat. Auch diese Maßnahme führt dazu, dass ein Durchströmen der Sieblage mit möglichst geringem Druckverlust einsetzt. Bevorzugt ist die lokale Erweiterung so gestaltet, dass zumindest eine Vergrößerung des Querschnitts der Abgasrückführleitung um 30 % realisiert ist. Die Erweiterung umfasst dabei vorteilhafterweise auch einen Verbindungsbereich von Segmenten der Abgasrückführleitung, wie beispielsweise Flansche oder dergleichen. Damit wird gleichzeitig die Möglichkeit einer dauerhaften und sicheren Fixierung der Sieblage zwischen den Segmenten der Abgasrückführleitungen eröffnet.
Besonders vorteilhaft ist es, wenn die Sieblage ein Gewebe mit Drahtfilamenten umfasst. Grundsätzlich ist es natürlich möglich, ein Vlies mit Drahtfilamenten einzusetzen, bei denen eine „chaotische" Verteilung der Drahtfilamente vorliegt. Bevorzugt ist jedoch eine Art Gewebe, also ein Gebilde, bei dem die Drahtfila- mente in einer Ordnung zueinander positioniert und miteinander zusammenwirkend angeordnet sind. Damit können die Abstände der Drahtfilamente zueinander und die dadurch gebildeten Öffnungen zum Durchtritt des Abgasstromes sehr gleichmäßig ausgeführt werden. Die Drahtfilamente sind regelmäßig aus einem hochtemperaturfesten, korrosionsbeständigen Material, wie z.B. einem Chrom und/oder Aluminium umfassenden Stahl. Bei einem solchen Gewebe sind bevorzugt wenigstens zwei verschiedene Arten der Drahtfilamente vorgesehen, beispielsweise dickere und dünnere. Die Drahtfilamente weisen regelmäßig eine Fi- lamentdicke im Bereich von 30 bis 300 Mikrometer [μm], insbesondere im Bereich von 50 bis 150 μm. Falls unterschiedliche Drahtfilamente zum Aufbau des Gewebes vorgesehen sein sollten, haben dickere Drahtfilamente bevorzugt eine Filamentdicke von ca. 100 bis 300 μm und dünnere Drahtfilamente bevorzugt eine Filamentdicke von ca. 30 bis 150 μm.
In diesem Zusammenhang ist es besonders vorteilhaft, dass die Sieblage in der Mehrzahl Öffnungen mit einer Weite von mindestens 0,05 mm aufweist. Ganz besonders bevorzugt ist dabei, dass zumindest 90 % der Öffnungen eine solche Weite aufweisen. Mit „Weite" ist die größte Weite bezüglich der Öffnungen gemeint, wenn diese nicht rund sind. Im Hinblick auf die Weite ist ein Bereich von 0,1 bis 0,25 mm bevorzugt. Damit besteht ausreichend Sicherheit für den Turbolader, so dass entsprechende Fremdkörper aufgehalten werden, gleichzeitig wird das angesaugte Abgas bezüglich der Druckverhältnisse nur gering beeinflusst.
Einer weiteren Ausgestaltung der Anordnung zufolge sind die Drahtfilamente miteinander stoffschlüssig verbunden. Auch wenn die Bereitstellung der Drahtfilamente in Form eines Gewebes bereits teilweise eine ausreichende Verbindung der Drahtfilamente zueinander verwirklicht, bei denen die Öffnungen dauerhaft ihre Weite beibehalten, so kann auch hier eine fügetechnische, stoffschlüssige Verbindung zwischen den Drahtfilamenten vorteilhaft sein. Grundsätzlich ist ein Verlöten (so genanntes "brazing"), Versintern und/oder Verschweißen der Drahtfilamente möglich. Bevorzugt ist hier eine Schweißverbindung, insbesondere eine Schweißverbindung, die nach dem Kondensator-Impuls-Schweißen realisiert wurde. Beim Kondensator-Impuls-Schweißen werden die Drahtfilamente unter Druck mit einem Strom beaufschlagt und dabei verschweißt.
Zudem kann die Anordnung dadurch weitergebildet werden, dass die Sieblage mit mehreren Schichten gebildet ist, wobei die Schichten miteinander verbunden sind. Eine Schicht umfasst dabei regelmäßig eine Siebkonstruktion, die mit Drähten und/oder Drahtfilamenten gebildet ist. Diese metallischen Komponenten der Sieblage bzw. der Schichten sind nunmehr bevorzugt miteinander verschweißt, wobei sie insbesondere direkt aneinander liegend ausgebildet sind. Die Schichten können dabei unterschiedliche Funktionen aufweisen, beispielsweise eine Siebfunktion, eine Haltefunktion, eine Stromzuführfunktion und dergleichen. Ergänzend ist anzumerken, dass die Verbindung insbesondere direkt bzw. unmittelbar ausgeführt ist, demnach also nicht nur einer Verbindung über die Abgasleitung vorliegt. Vielmehr können zusätzliche Halteelemente und/oder ein direkter Kontakt der Schichten miteinander die Verbindung darstellen. In diesem Zusammenhang wird vorgeschlagen, dass eine Schicht mit einer Drahtkonstruktion ausgeführt ist, die mit Zwischenräumen eines Ausmaß von mindestens 5,0 mm ausgeführt ist. Damit ist die Drahtkonstruktion mit einer signifikant größeren Offenheit ausgeführt. Diese Drahtkonstruktion hat demnach primär eine Haltefunktion. Grundsätzlich ist nicht zwingend erforderlich, dass die Drahtkonstruktion und ein als Gewebe ausgeführte Sieblage die gleiche Fläche aufweisen, dies ist jedoch bevorzugt. Im Hinblick auf die Drahtkonstruktion wird auch vorgeschlagen, dass diese mit (insbesondere dicken) Drahtfilamenten gebildet sind, die in etwa an die gleichen Dimensionen wie oben angegeben aufweisen.
Ganz besonders bevorzugt ist diese Ausgestaltung der Anordnung dann, wenn die Sieblage in Strömungsrichtung gesehen einem keramischen Wandfilter nachgeordnet ist. Mit einem „Wandfilter" sind insbesondere so genannte „wall flow fil- ter" gemeint, die nach Art eines mit porösem Material gebildeten Wabenkörpers geformt sind, wobei die Kanäle wechselseitig verschlossen sind. Damit erfolgt eine gezwungene Strömung des Abgases durch die porösen Wände des Wabenkörpers. Es hat sich gezeigt, dass gerade bei Betrieb einer Abgasanlage mit einem solchen Wandfilter, insbesondere wenn Siliziumcarbid umfasst, immer wieder Bestandteile abgelöst werden, die nachgelagerte Komponenten des Abgassystems gefährden. Deshalb wird hier nun vorgeschlagen, eine solche Sieblage in Strömungsrichtung stromabwärts des keramischen Wandfilters vorzusehen. Dabei schützt die Sieblage insbesondere den nachgeschalteten Turbolader vor den abgelösten Teilen des keramischen Wandfilters.
Besonders bevorzugt ist auch eine Ausgestaltung, bei der die Sieblage zwischen Kühler der Abgasrückführleitung und dem Turbolader angeordnet ist. Mit dem „Kühler" ist insbesondere ein Abgaskühler gemeint. In dem das Abgas zunächst mittels des Abgaskühler auf eine niedrigere Temperatur gebracht wurde, durchströmt das Abgas die Abgasrückführleitung gleichzeitig mit einer etwas geringe- ren Strömungsgeschwindigkeit. Dies hat wiederum Vorteile beim Durchströmen der Sieblage, da diese einen geringeren Druckverlust aufweist, verglichen mit dem noch heißen Abgas vor dem Abgaskühler.
Wie bereits mehrfach angedeutet, wird die vorstehend beschriebene Anordnung insbesondere in Kombination mit einem Kraftfahrzeug vorgeschlagen.
Die Erfindung sowie das technische Umfeld werden nachfolgend anhand der Figuren näher erläutert. Es ist darauf hinzuweisen, dass die Figuren besonders bevorzugte Ausführungsvarianten der Erfindung veranschaulichen, die Erfindung jedoch nicht darauf begrenzt ist. Es zeigen schematisch:
Fig. 1 : eine erste Ausführung einer erfindungsgemäßen Anordnung,
Fig. 2: eine bevorzugte Ausführungsvariante der Sieblage,
Fig. 3: eine weitere Ausführungsvariante der Sieblage, und
Fig. 4: eine weitere Ausführungsvariante der erfindungsgemäßen Anordnung.
Fig. 1 zeigt schematisch eine erste Ausführungsvariante einer Anordnung 1 zur Behandlung von Abgasen einer Verbrennungskraftmaschine 2. Die Verbren- nungskraftmaschine 2 ist hier mit vier Zylindern ausgeführt, die jeweils einen Verbrennungsraum aufweisen. Die Summe dieser Volumina der Verbrennungs- räume ergibt den Hubraum 3 der Verbrennungskraftmaschine 2. Das in der Verbrennungskraftmaschine 2 erzeugte Abgas verlässt die Verbrennungskraftmaschine 2 in Strömungsrichtung 9 und durchströmt zunächst die Turbine eines Turboladers 5, bevor sie nachfolgend einen keramischen Wandfilter 18 erreicht. In Strömungsrichtung dem keramischen Wandfilter 18 nachfolgend ist dann eine Abzweigung für eine Abgasrückführleitung 4 gezeigt, wobei ein Teil des Abgases wieder zurück in Strömungsrichtung 9 zur Verbrennungskraftmaschine 2 geführt wird. Das Abgas in der Abgasrückführleitung 4 wird dann zunächst einem Kühler 19, nämlich einem (optionalen) Abgaskühler, zugeführt, wobei die Temperatur des Abgases reduziert wird. Im Anschluss daran durchströmt das Abgas eine Sieblage 6 bevor es dem Verdichter des Turboladers 5 gemeinsam mit der Verbrennungsluft zugeführt wird. Der komprimierte Abgasstrom wird dann beispielsweise noch einem weiteren Kühler 19 (insbesondere einem sogenannten Ladeluftkühler), zugeführt und schließlich wieder in die Verbrennungskraftmaschine eingeleitet.
Eine konkrete Ausführungsvariante der Abgasrückführleitung 4 mit einer Sieblage 6 ist in Fig. 2 veranschaulicht. Die Abgasrückführleitung 4 ist dabei normalerweise im Wesentlichen rund ausgeführt, so dass sich der angedeutete mittlere Querschnitt 8 ergibt. Nunmehr ist eine Konstruktion der Gasrückführleitung 4 mit einer Erweiterung 10 vorgesehen, in der die Sieblage 6 positioniert ist. Bei der veranschaulichten Ausführungsvariante weisen die beiden Abschnitte der Abgasrück- führleitung eine Art Flansch auf, der seitlich in Erstreckungsrichtung der Abgasrückführleitung ausgebildet ist. Diese Flansche dienen mehr zur Aufnahme der Sieblage 6, die so schräg zur Strömungsrichtung 9 des Abgases Positioniert ist und eine Siebfläche 7 aufweist, die deutlich größer als der mittlere Querschnitt 8 der Abgasrückführleitung 4 ist. Eine solche Sieblage zeichnet sich durch einen besonders geringen Druckverlust hinsichtlich des Durchströmens von Abgas aus.
Fig. 3 veranschaulicht eine Sieblage 6 mit mehreren Schichten, nämlich einer ersten Schicht 14 und einer zweiten Schicht 21. Die erste Schicht 14 umfasst eine Sieblage 6 aus einem Gewebe mit Drahtfilamenten 11. Die Drahtfilamenten 11 sind so miteinander verwebt, dass Öffnungen 12 mit einer Weite 13 von mindestens 0,08 mm gebildet sind. Die zweite Schicht 21 umfasst dahingegen eine Drahtkonstruktion 21 mit einer Drahtkonstruktion 15, die mit Zwischenräumen 16 eines Ausmaßes 17 von mindestens 5 mm ausgeführt ist. Das Gewebe und die Drahtkonstruktion 15 sind miteinander verschweißt, wobei eine Explosionsdar- Stellung gewählt wurde. Letztendlich liegen beide Schichten unmittelbar aufeinander und sind vorteilhafterweise mit einem Impuls-Kondensator- Schweiß vor gang miteinander verbunden. Im Hinblick auf die Ausrichtung einer solchen Sieblage im Abgasstrom wird bevorzugt, dass das Abgas zunächst das Gewebe durchströmt, anschließend dann die Drahtkonstruktion 15.
Fig. 4 veranschaulicht nun eine weitere Ausfϊihrungsvariante der Anordnung 1 in einem Kraftfahrzeug 20. Zentrisch dargestellt ist wiederum die Verbrennungskraftmaschine 2 mit dem teilweise angedeuteten Hubraum 3. Die Betriebsweise der Verbrennungskraftmaschine 2, der Abgasrückführung und ähnlicher Prozesse wird regelmäßig mit einer Motorsteuerung 22 gesteuert. Ausgehend von der Verbrennungskraftmaschine 2 strömt das Abgas zunächst wieder hin zum Turbolader 5 und dann weiter die Abgasleitung 23 entlang hin zu ggf. vorgesehenen katalytischen Konvertern 24. Von der Abgasleitung 23 führt die Abgasrückführ- leitung 4 weg, die eine Verbindung hin zum Turbolader 5 bereitstellt. Bevor das Abgas in der Abgasrückführleitung 4 den Turbolader 5 erreicht, ist wiederum eine Sieblage 6 vorgesehen, die von dem Abgas durchströmt wird. In dieser Ausführungsvariante ist die Sieblage 6 eines Sackes bzw. einer einfachen Faltung ausgestaltet, die insbesondere durch die Bereitstellung einer entsprechenden Drahtkonstruktion selbst formstabil ist. Im Turbolader 5 verdichteter der Abgasstrom wird nunmehr mit der Ladeluft gemeinsam wieder der Verbrennungskraftmaschine 2 zugeführt.
Die hier vorgeschlagenen Maßnahmen stellen insbesondere einen Schutz für den Turbolader in der Abgasrückführleitung dar, wobei gleichzeitig eine möglichst geringe Beeinflussung der Strömung des Abgases und damit auch die gewünsch- ten Ladedrücke dauerhaft eingehalten werden können.
Bezugszeichenliste
1 Anordnung
T Verbrennungskraftmaschine
3 Hubraum
4 Abgasrückfuhrleitung
5 Turbolader
6 Sieblage
7 Siebfläche
8 Querschnitt
9 Strömungsrichtung
10 Erweiterung
11 Drahtfϊlament
12 Öffnung
13 Weite
14 erste Schicht
15 Drahtkonstruktion
16 Zwischenraum
17 Ausmaß
18 Wandfilter
19 Kühler
20 Kraftfahrzeug
21 zweite Schicht
22 Motorsteuerung
23 Abgasleitung
24 katalytischer Konverter

Claims

Patentansprüche
1. Anordnung (1) zur Behandlung von Abgasen einer Verbrennungskraftmaschi- ne (2) mit einem vorgegebenen Hubraum (3), die eine Abgasrückführlei- tung (4) aufweist, wobei das dort hindurch strömende Abgas mit einem Turbolader (5) zusammenwirkt und in der Abgasrückführleitung (4) vor dem Turbolader (5) eine Sieblage (6) vorgesehen ist, die größer als ein mittlerer Querschnitt (8) der Abgasrückführleitung (4) ist.
2. Anordnung (1) nach Patentanspruch 1, bei der die Sieblage (6) mindestens 10 Quadratzentimeter Siebfläche (7) pro 1,0 Liter Hubraum (3) der Verbrennungskraftmaschine (2) bereit stellt.
3. Anordnung (1) nach Patentanspruch 1 oder 2, bei der die Sieblage (6) schräg zur Strömungsrichtung (9) des Abgases durch die Abgasrückführleitung (4) positioniert ist.
4. Anordnung (1) nach einem der vorhergehenden Patentansprüche, bei der die Abgasrückführleitung (4) eine lokale Erweiterung (10) im Bereich der Sieblage (6) aufweist.
5. Anordnung (1) nach einem der vorhergehenden Patentansprüche, bei der die Sieblage (6) ein Gewebe mit Drahtfilamenten (11) umfasst.
6. Anordnung (1) nach Patentanspruch 5, bei der die Sieblage (6) in der Mehrzahl Öffnungen (12) mit einer Weite (13) von mindestens 0,05 Millimeter aufweist.
7. Anordnung (1) nach Patentanspruch 5 oder 6, bei der die Drahtfilamente (11) miteinander stoffschlüssig verbunden sind.
8. Anordnung (1) nach einem der vorhergehenden Patentansprüche, bei der die Sieblage (6) mit mehreren Schichten (14, 21) gebildet ist, wobei die Schichten (14) miteinander verbunden sind.
9. Anordnung (1) nach Patentanspruch 8, bei der eine Schicht (21) mit einer Drahtkonstruktion (15) ausgeführt ist, die mit Zwischenräumen (16) eines Ausmaß (17) von mindestens 5,0 Millimeter ausgeführt ist.
10. Anordnung (1) nach einem der vorhergehenden Patentansprüche, bei der die Sieblage (6) in Strömungsrichtung (9) einem keramischen Wandfilter (18) nachgeordnet ist.
11. Anordnung (1) nach einem der vorhergehenden Patentansprüche, bei der die Sieblage (6) zwischen einem Kühler (19) der Abgasrückführleitung (4) und dem Turbolader (5) angeordnet ist.
12. Kraftfahrzeug (20) aufweisend wenigstens eine Anordnung (1) nach einem der vorhergehenden Patentansprüche.
PCT/EP2007/002437 2006-03-24 2007-03-20 Anordnung mit einem geschützten turbolader in der abgasrückführleitung WO2007110170A1 (de)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2009500758A JP5547473B2 (ja) 2006-03-24 2007-03-20 内燃機関の排気処理装置
KR1020097021435A KR101233848B1 (ko) 2006-03-24 2007-03-20 배기가스 재순환 라인에 보호 터보차저를 갖는 장치
EP07723403A EP1999362B1 (de) 2006-03-24 2007-03-20 Anordnung mit einem geschützten turbolader in der abgasrückführleitung
US12/236,909 US8082729B2 (en) 2006-03-24 2008-09-24 Configuration having a protected turbocharger in an exhaust gas recirculation line and motor vehicle having the configuration
US13/285,575 US20120042648A1 (en) 2006-03-24 2011-10-31 Configuration having a protected turbocharger in an exhaust gas recirculation line and motor vehicle having the configuration

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102006013709A DE102006013709A1 (de) 2006-03-24 2006-03-24 Anordnung mit einem geschützten Turbolader in der Abgasrückführleitung
DE102006013709.4 2006-03-24

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US12/236,909 Continuation US8082729B2 (en) 2006-03-24 2008-09-24 Configuration having a protected turbocharger in an exhaust gas recirculation line and motor vehicle having the configuration

Publications (1)

Publication Number Publication Date
WO2007110170A1 true WO2007110170A1 (de) 2007-10-04

Family

ID=38008374

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2007/002437 WO2007110170A1 (de) 2006-03-24 2007-03-20 Anordnung mit einem geschützten turbolader in der abgasrückführleitung

Country Status (8)

Country Link
US (2) US8082729B2 (de)
EP (2) EP2154356B1 (de)
JP (2) JP5547473B2 (de)
KR (2) KR101233848B1 (de)
DE (1) DE102006013709A1 (de)
ES (2) ES2372876T3 (de)
RU (1) RU2446290C2 (de)
WO (1) WO2007110170A1 (de)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2915529A1 (fr) * 2007-04-24 2008-10-31 Renault Sas Systeme de recirculation des gaz d'echappement pour moteur a combustion interne de vehicule automobile
JP2010048257A (ja) * 2006-03-24 2010-03-04 Emitec Ges Fuer Emissionstechnologie Mbh 内燃機関の排気処理装置
WO2011029705A1 (de) 2009-09-14 2011-03-17 Emitec Gesellschaft Für Emissionstechnologie Mbh Hohlkörper zum abfangen von partikeln in einer abgasleitung
DE102010025284A1 (de) 2010-06-28 2011-12-29 Emitec Gesellschaft Für Emissionstechnologie Mbh Vorrichtung zur Partikelabscheidung im Abgasrückführsystem
WO2012000852A1 (de) 2010-06-28 2012-01-05 Emitec Gesellschaft Für Emissionstechnologie Mbh Vorrichtung zur partikelabscheidung im abgasrückführsystem
DE102010050393A1 (de) 2010-11-03 2012-05-03 Emitec Gesellschaft Für Emissionstechnologie Mbh Vorrichtung zur Partikelabscheidung im Abgasrückführsystem
DE102010051730A1 (de) 2010-11-19 2012-05-24 Emitec Gesellschaft Für Emissionstechnologie Mbh Partikelabscheider mit einer für Abgas durchströmbaren metallischen Lage

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102008038983A1 (de) 2008-08-13 2010-02-18 Emitec Gesellschaft Für Emissionstechnologie Mbh Partikelabfangvorrichtung für eine Abgasrückführleitung
EP2273095B1 (de) * 2009-07-10 2014-01-08 Behr GmbH & Co. KG Wärmetauscher, Abgasrückführsystem und Brennkraftmaschine
DE102010051712A1 (de) * 2010-11-19 2012-06-06 Emitec Gesellschaft Für Emissionstechnologie Mbh Partikelabscheider mit mehrteiligem Gehäuse
DE102010051729A1 (de) * 2010-11-19 2012-05-24 Emitec Gesellschaft Für Emissionstechnologie Mbh Reinigbarer Partikelabscheider
JP2012122332A (ja) * 2010-12-06 2012-06-28 Sankei Kogyo Kk Egrフィルタ
DE102013000247A1 (de) * 2013-01-08 2014-07-10 Volkswagen Aktiengesellschaft Abgasanlage für eine Verbrennungskraftmaschine und Kraftfahrzeug mit einer solchen
KR20210146591A (ko) * 2020-05-27 2021-12-06 현대자동차주식회사 Egr 쿨러용 em 필터

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2610042A1 (de) * 1975-03-12 1976-09-23 Woods Enterprises Inc Verfahren und vorrichtung zum betrieb eines verbrennungsmotors
US4345572A (en) * 1980-08-07 1982-08-24 Nagatoshi Suzuki Engine exhaust gas reflux apparatus
JPS6283015A (ja) * 1985-10-09 1987-04-16 Honda Motor Co Ltd 耐熱性フイルタ
EP0321451A2 (de) * 1984-03-31 1989-06-21 Mitsubishi Jidosha Kogyo Kabushiki Kaisha Regenerationssystem für eine Diesel-Partikel-Oxydierungseinrichtung
DE3919533A1 (de) * 1989-06-15 1990-12-20 Daimler Benz Ag Russabbrennfilter fuer das abgas von dieselmotoren mit einem mechanischen nachfilter
WO2000077353A2 (en) * 1999-06-15 2000-12-21 Johnson Matthey Public Limited Company Improvements in emissions control
JP2001132555A (ja) * 1999-11-04 2001-05-15 Hideo Kawamura エンジンのegr装置に設けた水分離装置
WO2001036805A1 (en) * 1999-11-17 2001-05-25 Southwest Research Institute Exhaust gas recirculation filtration system
US6301887B1 (en) * 2000-05-26 2001-10-16 Engelhard Corporation Low pressure EGR system for diesel engines
WO2004042222A1 (de) * 2002-11-08 2004-05-21 Emitec Gesellschaft Für Emissionstechnologie Mbh Abgasanlage und verfahren zu deren betrieb
US20050109017A1 (en) * 2003-11-26 2005-05-26 Gsi Engine Management Group Exhaust gas recirculation afterburner
US20060021335A1 (en) * 2004-07-29 2006-02-02 Caterpillar, Inc. Exhaust treatment system having particulate filters

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3998599A (en) * 1974-09-20 1976-12-21 Gould Inc. System for catalytic reduction of NOx emanating from an internal combustion engine
DE2519609A1 (de) * 1975-05-02 1976-11-11 Daimler Benz Ag Vorrichtung zum entfernen des russes aus abgasen von brennkraftmaschinen, insbesondere dieselbrennkraftmaschinen
DE3412081A1 (de) * 1984-03-31 1984-11-15 Helmut 7101 Löwenstein Hübner Abgasreiniger
DE3580606D1 (de) 1984-03-31 1991-01-03 Mitsubishi Motors Corp Regenerationssystem fuer eine diesel-partikel-oxydierungseinrichtung.
JPH0640939B2 (ja) * 1987-03-05 1994-06-01 株式会社ユニックス フイルタ材
JPH01293112A (ja) * 1988-05-17 1989-11-27 Ngk Insulators Ltd ガス発生器用フイルタおよびその製造方法
JPH04201761A (ja) * 1990-11-30 1992-07-22 Nippon Oil & Fats Co Ltd ガス発生器
US5298046A (en) * 1993-01-06 1994-03-29 Minnesota Mining And Manufacturing Company Diesel particulate filter element and filter
JPH06221228A (ja) * 1993-01-28 1994-08-09 Mazda Motor Corp 過給機付エンジンの排気ガス還流装置
JPH1089050A (ja) * 1996-09-11 1998-04-07 Nhk Spring Co Ltd 排気ガス用のフィルタ装置
DE19704147A1 (de) * 1997-02-04 1998-08-06 Emitec Emissionstechnologie Hitzebeständiger und regenerierbarer Filterkörper mit Strömungswegen
JPH11166409A (ja) * 1997-12-01 1999-06-22 Nhk Spring Co Ltd 排気ガス用のフィルタ装置
AT4789U1 (de) * 2000-03-23 2001-11-26 Avl List Gmbh Brennkraftmaschine, vorzugsweise mit einem abgasturbolader
US20020062562A1 (en) * 2000-11-27 2002-05-30 Houliang Li Method of spin forming oblique end cones of a catalytic converter
US6749670B2 (en) * 2001-03-26 2004-06-15 Shell Oil Company Process for trapping particulate matter in hot gas and trap therefor
SE520972C2 (sv) * 2001-12-06 2003-09-16 Stt Emtec Ab Anordning för att vid en förbränningsmotor rena dess avgaser
JP4089396B2 (ja) * 2002-11-15 2008-05-28 いすゞ自動車株式会社 ターボチャージャーを備えた内燃機関のegrシステム
US6981375B2 (en) * 2003-09-16 2006-01-03 Detroit Diesel Corporation Turbocharged internal combustion engine with EGR flow
US6955162B2 (en) * 2003-10-16 2005-10-18 International Truck Intellectual Property Company, Llc Internal combustion engine with pressure boosted exhaust gas recirculation
JP2005163766A (ja) * 2003-11-11 2005-06-23 Ishino Consulting Capital:Kk Dpf装置
DE102006013709A1 (de) * 2006-03-24 2007-09-27 Emitec Gesellschaft Für Emissionstechnologie Mbh Anordnung mit einem geschützten Turbolader in der Abgasrückführleitung

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2610042A1 (de) * 1975-03-12 1976-09-23 Woods Enterprises Inc Verfahren und vorrichtung zum betrieb eines verbrennungsmotors
US4345572A (en) * 1980-08-07 1982-08-24 Nagatoshi Suzuki Engine exhaust gas reflux apparatus
EP0321451A2 (de) * 1984-03-31 1989-06-21 Mitsubishi Jidosha Kogyo Kabushiki Kaisha Regenerationssystem für eine Diesel-Partikel-Oxydierungseinrichtung
JPS6283015A (ja) * 1985-10-09 1987-04-16 Honda Motor Co Ltd 耐熱性フイルタ
DE3919533A1 (de) * 1989-06-15 1990-12-20 Daimler Benz Ag Russabbrennfilter fuer das abgas von dieselmotoren mit einem mechanischen nachfilter
WO2000077353A2 (en) * 1999-06-15 2000-12-21 Johnson Matthey Public Limited Company Improvements in emissions control
JP2001132555A (ja) * 1999-11-04 2001-05-15 Hideo Kawamura エンジンのegr装置に設けた水分離装置
WO2001036805A1 (en) * 1999-11-17 2001-05-25 Southwest Research Institute Exhaust gas recirculation filtration system
US6301887B1 (en) * 2000-05-26 2001-10-16 Engelhard Corporation Low pressure EGR system for diesel engines
WO2004042222A1 (de) * 2002-11-08 2004-05-21 Emitec Gesellschaft Für Emissionstechnologie Mbh Abgasanlage und verfahren zu deren betrieb
US20050109017A1 (en) * 2003-11-26 2005-05-26 Gsi Engine Management Group Exhaust gas recirculation afterburner
US20060021335A1 (en) * 2004-07-29 2006-02-02 Caterpillar, Inc. Exhaust treatment system having particulate filters

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010048257A (ja) * 2006-03-24 2010-03-04 Emitec Ges Fuer Emissionstechnologie Mbh 内燃機関の排気処理装置
FR2915529A1 (fr) * 2007-04-24 2008-10-31 Renault Sas Systeme de recirculation des gaz d'echappement pour moteur a combustion interne de vehicule automobile
WO2008145882A1 (fr) * 2007-04-24 2008-12-04 Renault S.A.S Systeme de recirculation des gaz d'echappement pour moteur a combustion interne de vehicule automobile
WO2011029705A1 (de) 2009-09-14 2011-03-17 Emitec Gesellschaft Für Emissionstechnologie Mbh Hohlkörper zum abfangen von partikeln in einer abgasleitung
DE102009041093A1 (de) 2009-09-14 2011-03-24 Emitec Gesellschaft Für Emissionstechnologie Mbh Hohlkörper zum Abfangen von Partikeln in einer Abgasleitung
US8500835B2 (en) 2009-09-14 2013-08-06 Emitec Gesellschaft Fuer Emissionstechnologie Mbh Hollow body for capturing particles in an exhaust gas line, exhaust-gas treatment device and motor vehicle
WO2012000852A1 (de) 2010-06-28 2012-01-05 Emitec Gesellschaft Für Emissionstechnologie Mbh Vorrichtung zur partikelabscheidung im abgasrückführsystem
DE102010025284A1 (de) 2010-06-28 2011-12-29 Emitec Gesellschaft Für Emissionstechnologie Mbh Vorrichtung zur Partikelabscheidung im Abgasrückführsystem
US8771392B2 (en) 2010-06-28 2014-07-08 Emitec Gesellschaft Fuer Emissionstechnologie Mbh Device for particle separation in an exhaust-gas recirculation system and motor vehicle having the device
DE102010050393A1 (de) 2010-11-03 2012-05-03 Emitec Gesellschaft Für Emissionstechnologie Mbh Vorrichtung zur Partikelabscheidung im Abgasrückführsystem
DE102010051730A1 (de) 2010-11-19 2012-05-24 Emitec Gesellschaft Für Emissionstechnologie Mbh Partikelabscheider mit einer für Abgas durchströmbaren metallischen Lage
WO2012066022A1 (de) 2010-11-19 2012-05-24 Emitec Gesellschaft Für Emissionstechnologie Mbh Partikelabscheider mit einer für abgas durchströmbaren metallischen lage
CN103221109A (zh) * 2010-11-19 2013-07-24 排放技术有限公司 包括排气可流过的金属层的颗粒分离器
US9151197B2 (en) 2010-11-19 2015-10-06 Emitec Gesellschaft Fuer Emissionstechnologie Mbh Particle separator with a metal layer through which exhaust gas can flow and motor vehicle having at least one particle separator

Also Published As

Publication number Publication date
KR20080113254A (ko) 2008-12-29
US20090071151A1 (en) 2009-03-19
JP5547473B2 (ja) 2014-07-16
RU2008141975A (ru) 2010-06-20
EP1999362A1 (de) 2008-12-10
JP2009530534A (ja) 2009-08-27
US20120042648A1 (en) 2012-02-23
KR101067311B1 (ko) 2011-09-26
EP1999362B1 (de) 2011-09-07
EP2154356B1 (de) 2014-02-26
DE102006013709A1 (de) 2007-09-27
ES2463999T3 (es) 2014-05-29
ES2372876T3 (es) 2012-01-27
KR101233848B1 (ko) 2013-02-15
RU2446290C2 (ru) 2012-03-27
US8082729B2 (en) 2011-12-27
KR20090115892A (ko) 2009-11-09
EP2154356A1 (de) 2010-02-17
JP2010048257A (ja) 2010-03-04

Similar Documents

Publication Publication Date Title
EP2154356B1 (de) Anordnung mit einem geschützten Turbolader in der Abgasrückführung
EP2440759B1 (de) Abgasbehandlungsvorrichtung für den motornahen einsatz
EP2027372B1 (de) Nebenstromfilter mit verbessertem filterwirkungsgrad
WO2003038248A1 (de) Filterverbund und verfahren zu seiner herstellung
EP1439895B1 (de) Hitzebeständige filterlage, filterkörper und verfahren zu seiner herstellung
DE102004040893A1 (de) Abgasturbolader
EP2273095B1 (de) Wärmetauscher, Abgasrückführsystem und Brennkraftmaschine
DE102016212249B4 (de) Zweistufig aufladbare direkteinspritzende Brennkraftmaschine mit Abgasnachbehandlung und Verfahren zum Betreiben einer derartigen Brennkraftmaschine
EP1902203B1 (de) Filterlage für einen, insbesondere konischen, wabenkörper zur abgasbehandlung und verfahren zur herstellung der filterlage
WO2012066022A1 (de) Partikelabscheider mit einer für abgas durchströmbaren metallischen lage
EP1957767B1 (de) Verfahren zur abgasnachbehandlung bei verbrennungsmotoren, und vorrichtung zur durchführung dieses verfahrens
DE102008051981A1 (de) Turboladeranordnung
DE102018209238A1 (de) Abgasturboaufgeladene Brennkraftmaschine mit Abgasrückführung und Verfahren zum Betreiben einer derartigen Brennkraftmaschine
EP2961957B1 (de) Frischluftanlage
DE102017205696A1 (de) Abgasnachbehandlungssystem für einen Verbrennungsmotor sowie Verbrennungsmotor
WO2011018134A1 (de) Verbrennungskraftmaschine
DE102016212251A1 (de) Zweistufig aufladbare Brennkraftmaschine mit Abgasnachbehandlung und Verfahren zum Betreiben einer derartigen Brennkraftmaschine
DE102010008273B4 (de) Partikelfilteranordnung
DE202016103676U1 (de) Zweistufig aufladbare Brennkraftmaschine mit Abgasnachbehandlung
EP1551534B1 (de) Katalysator-trägerkörper mit passivierungsschicht sowie verfahren zu dessen herstellung
DE202007007146U1 (de) Entkoppelelement
EP1691052A1 (de) Abgasanlage für eine Brennkraftmaschine
DE102018208922A1 (de) Vorrichtung zur Abgasnachbehandlung
WO2019137854A1 (de) Filterschalldämpfer für einen abgasturbolader einer brennkraftmaschine
DE102018128161A1 (de) Partikelfilter sowie Verfahren zur Herstellung eines solchen Partikelfilters

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07723403

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2007723403

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2009500758

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 1020087025891

Country of ref document: KR

ENP Entry into the national phase

Ref document number: 2008141975

Country of ref document: RU

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1020097021435

Country of ref document: KR