WO2007108339A1 - 強誘電体単結晶に形成された分極反転領域を固定化する方法、および、それを用いた光学素子 - Google Patents

強誘電体単結晶に形成された分極反転領域を固定化する方法、および、それを用いた光学素子 Download PDF

Info

Publication number
WO2007108339A1
WO2007108339A1 PCT/JP2007/054742 JP2007054742W WO2007108339A1 WO 2007108339 A1 WO2007108339 A1 WO 2007108339A1 JP 2007054742 W JP2007054742 W JP 2007054742W WO 2007108339 A1 WO2007108339 A1 WO 2007108339A1
Authority
WO
WIPO (PCT)
Prior art keywords
single crystal
domain
ferroelectric single
inverted region
region
Prior art date
Application number
PCT/JP2007/054742
Other languages
English (en)
French (fr)
Inventor
Xiaoyan Liu
Shunji Takekawa
Kazuya Terabe
Shunichi Hishita
Kenji Kitamura
Original Assignee
National Institute For Materials Science
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute For Materials Science filed Critical National Institute For Materials Science
Priority to JP2008506241A priority Critical patent/JPWO2007108339A1/ja
Priority to US12/225,162 priority patent/US8223427B2/en
Publication of WO2007108339A1 publication Critical patent/WO2007108339A1/ja

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/35Non-linear optics
    • G02F1/355Non-linear optics characterised by the materials used
    • G02F1/3558Poled materials, e.g. with periodic poling; Fabrication of domain inverted structures, e.g. for quasi-phase-matching [QPM]
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2202/00Materials and properties
    • G02F2202/20LiNbO3, LiTaO3

Definitions

  • the present invention relates to a technique for fixing a domain-inverted region formed in a ferroelectric single crystal.
  • a ferroelectric single crystal As such a ferroelectric single crystal, a lithium tantalate single crystal having a stoichiometric composition and a lithium niobate single crystal having a stoichiometric composition have attracted attention.
  • the adjacent domain-inverted regions formed may be joined, or the formed domain-inverted regions may be inverted again (pack switch). The problem arises.
  • the domain inversion region particularly in the lithium tantalate monocrystal with the stoichiometric composition is expanded.
  • Patent Document 1 discloses that a switching layer having low order of lattice points is provided on a surface to which an electric field is applied, thereby reducing the polarization inversion region junction or the pack switch phenomenon.
  • Patent Document 2 discloses that a control layer having a high defect density is provided on a surface to which an electric field is applied, thereby reducing the junction of domain-inverted regions or the paxtitch phenomenon. Yes.
  • Patent Document 1 Japanese Patent Laid-Open No. 2 0 0 5-1 4 8 2 0 2
  • Patent Document 2 Japanese Patent Application Laid-Open No. 2 0205-1 4 8 20 3 Disclosure of Invention
  • an object of the present invention is to provide a method for easily fixing a domain-inverted region formed in a ferroelectric single crystal.
  • a ferroelectric single crystal having a domain-inverted region is irradiated with either an ion beam or a neutral beam. Including steps, thereby achieving the above objectives.
  • the ferroelectric single crystal has a first surface perpendicular to the polarization direction and a second surface opposite to the first surface, and the irradiating step includes: When the surface penetrates from the first surface to the second surface, at least one of the first surface and the second surface is irradiated with a beam, and the domain-inverted region is the first surface.
  • the ferroelectric single crystal may be a substantially stoichiometric lithium tantalate single crystal or a substantially stoichiometric lithium niobate single crystal.
  • the substantially stoichiometric lithium tantalate single crystal or the substantially stoichiometric lithium niobate single crystal contains an element selected from the group consisting of Mg, Zn, Sc and In. :! ⁇ 3. May contain O mol%.
  • An optical element including a ferroelectric single crystal having a fixed domain-inverted region includes a ionic beam, a neutral beam, or a misaligned beam on a ferroelectric single crystal in which a domain-inverted region is formed.
  • the optical element may include a stop layer in contact with the domain-inverted region, and the stop layer may have an order lower than the order of lattice points of the ferroelectric single crystal.
  • the method of the present invention includes a step of irradiating the ferroelectric single crystal surface on which the domain-inverted region is formed with either an ion beam or a neutral beam. Irradiation with the beam reduces the crystallinity of the surface of the ferroelectric single crystal. As a result, the domain-inverted region that has been domain-inverted cannot be domain-inverted again in a ferroelectric single crystal with poor crystallinity (ie, no pack switch phenomenon occurs). Therefore, once the domain-inverted region is formed, It can be fixed without causing an elephant. In addition, since the above-described beam is only irradiated after forming the domain-inverted region, the conditions for forming the domain-inverted region can be fixed, so that the yield can be improved and the cost can be reduced.
  • FIG. 1 is a schematic diagram showing a technique according to the present invention.
  • FIG. 2 is a schematic diagram showing the AA ′ cross-sectional view of FIG.
  • FIG. 3 is a schematic diagram of an SLT single crystal having a periodically poled structure used in Example 1 and Comparative Example 1.
  • FIG. 4 is a view showing the surface state immediately after the ion beam irradiation according to Example 1.
  • FIG. 5 is a view showing the surface state after ion beam irradiation and heat treatment according to Example 1.
  • FIG. 6 is a diagram showing surface states before and after heat treatment according to Comparative Example 1.
  • FIG. 1 is a schematic diagram showing a technique according to the present invention.
  • any ferroelectric single crystal can be applied, but for the optical application, any ferroelectric single crystal having a nonlinear optical effect having a 180 ° domain is preferable. If it is 1 80 ° domain, the polarization can be easily reversed, and the polarization once reversed by the method of the present invention described later can be maintained well. More specifically, as the ferroelectric single crystal 100 to which the present invention can be applied, a lithium tantalate single crystal having a substantially stoichiometric composition (hereinafter simply referred to as SLT) or a substantially stoichiometric composition. A lithium niobate single crystal (hereinafter simply referred to as S LN) is fisted.
  • SLT substantially stoichiometric composition
  • S LN substantially stoichiometric composition
  • “Stoichiometric” means that the molar fraction of L i 2 O / (T a zOs + L i 2O) or L i 2O / (N b 2 O 5 + L i 2O) is completely 0.50 Although not present, it is intended to have a molar fraction of composition between 0.495 and 0.505, which is closer to the stoichiometric ratio than congruent yarn.
  • these S LT and S LN have a 180 ° domain, excellent piezoelectric effect, pyroelectric effect, electro-optic effect, and nonlinear optical effect. New characteristics are achieved by utilizing the nano-order polarization reversal region. Can be expected.
  • S L T and S LN are more suitable for optical applications because their nonlinear optical constant (d constant) is larger than that of other ferroelectric single crystals.
  • S LN and S LT may also contain 0.1 to 3. Omo 1% of an element selected from the group consisting of Mg, Zn, In, and Sc (for example, a feature by the inventors of the present application). See 2001-287999 and JP 2003-267798). Thereby, the light damage resistance can be improved.
  • the ferroelectric single crystal 100 has a first surface 110 that is perpendicular to the polarization direction and a second surface 120 that faces the first surface 110.
  • the polarization direction (indicated by the arrow in the figure) is the Z-axis direction.
  • the ferroelectric single crystal 1 0 0 has a domain-inverted region 1 3 0.
  • the domain-inverted region 1 3 0 can be formed by an arbitrary method such as an electric field application method, a domain-inverted method by ion exchange, or a microphone domain inversion method using an electron beam.
  • the shape of the domain-inverted region 1 3 0 is arbitrary.
  • the domain-inverted region 130 may have a periodic domain-inverted structure or a microdomain structure.
  • the domain-inverted region 1 3 0 may penetrate from the first surface 1 1 0 to the second surface 1 2 0 depending on the final device, or from the first surface 1 1 0 to the first surface It does not have to penetrate through to the surface 1 2 0 of 2.
  • the method of the present invention includes the step of irradiating the surface of the ferroelectric single crystal 10 0 having such a domain-inverted region 1 3 0 with a beam 1 4 0.
  • Beam 140 is either an ion beam or a neutral beam. With these beams, a low-order stop layer (2 10 in FIG. 2) described later can be formed in the ferroelectric single crystal 10 0.
  • the ion species is a noble gas ion or a metal ion. Examples of such ionic species include, but are not limited to, He, Ne, Ar, Zn, Nb and Mg. Further, in this specification, a proton beam (proton beam) can be included in an ion beam.
  • neutral beam is synonymous with molecular 'atomic beam'.
  • Examples of such neutral beams include, but are not limited to, helium and argon.
  • the neutral beam has a feature that it is less likely to cause a charging phenomenon (chase up) in the domain-inverted region 130 compared to the ion beam.
  • the irradiated surface is at least one of the first surface 110 and the second surface 120, but the domain-inverted region 1 30 is changed from the first surface 110 to the second surface 1 Up to 2 0 When penetrating, it may be performed on either the first surface 110 or the second surface 120, or on both surfaces.
  • the irradiated region may be the entire surface of the domain-inverted region 1 30 or the domain-inverted region 1 3 0 alone depending on the beam diameter.
  • the irradiation timing is desirably immediately after the formation of the domain-inverted region 1 30.
  • the beam 140 is irradiated so as to reach a depth of 0.1 to 5 m from the surface of the ferroelectric single crystal 100, for example.
  • the mechanism by which the domain-inverted region 1 3 0 is fixed by irradiating the beam 1 4 0 will be described in detail.
  • FIG. 2 when the polarization inversion region 1 3 0 penetrates from the first surface 1 1 0 to the second surface 1 2 0, the first surface 1 1 0 is irradiated with the beam 1 4 0. The case is illustrated.
  • FIG. 2 is a schematic diagram showing a cross-sectional view taken along the line AA ′ of FIG.
  • FIG. 2 (a) shows a state 2 0 0 after irradiation with the beam 14 0 (FIG. 1).
  • a stop layer 2 1 0 is formed on the first surface 1 1 0.
  • the stop layer 2 1 0 functions to stop the polarization inversion region 1 3 0 from being pack-switched in the Z-axis direction and from being pack-switched and / or expanded in the X-direction and the Y-direction.
  • the stop layer 2 1 0 has a lower order than the order of lattice points of the ferroelectric single crystal 1 10.
  • the stop layer 2 10 may be in an amorphous state.
  • the thickness of the stop layer 210 is, for example, 0.1 m to 5 ⁇ . Within this range, the expansion and back switch of the domain-inverted region 130 can be effectively suppressed.
  • the irradiation condition of the beam 140 shown in FIG. 1 is arbitrary as long as the stop layer 210 is formed in the irradiation region.
  • the irradiation condition is an implantation energy of 100 KeV to 2 MeV, It can range of the implanted ions quantity 1 X 10 12 cm- 2 ⁇ l X 10 17 cm- 2.
  • the domain-inverted region expansion 220 does not occur as the distance from the stop layer 210 increases. Such an extension 220 is not possible because it makes the domain inversion energetically unstable. The same applies when backswitching from the stop layer 210 toward the second surface 120. Therefore, when the stop layer 210 in contact with the domain-inverted region 130 is formed, the re-inversion (back switch) and expansion of the domain-inverted region 130 in all directions are stopped in the stop layer 210. .
  • the same effect can be obtained by irradiating only the second surface 120 or the second surface 120 in addition to the first surface 110.
  • the method of the present invention is particularly effective when there is no defect or the like in the ferroelectric single crystal 100 (FIG. 1), that is, the difference in order of lattice points between the ferroelectric single crystal 100 and the control layer 210 is large. Can be effective in some cases. Therefore, the effect can be more pronounced in SLT and SLN than in CLT and CLN.
  • P2007 / 054742 The optical element obtained by using the method of the present invention is intended to be any element that utilizes a domain-inverted region, and in particular, may be a modulator and a wavelength conversion element.
  • the optical element obtained by the present invention can improve the yield because the pack switch phenomenon and the domain-inverted region are not expanded in the machining process. Furthermore, since the deterioration of the optical characteristics due to the pack switch phenomenon due to heating or the like during use is suppressed, the reliability as an optical element can be improved. Even if the optical element has the stop layer 210, the stop layer 210 may be removed by mechanical polishing. As described above, the inventors of the present application have found a method for preventing the expansion of the domain-inverted region and the back switch in the machining process after the domain-inverted region has been formed.
  • FIG. 3 shows a schematic diagram of an SLT substrate having a periodically poled structure used in Example 1 and Comparative Example 1.
  • SLT substrate 310 was 10 mm (A direction) XI 0 mm (Y direction) X O. 3 mm (thickness).
  • a periodic polarization inversion region 320 was formed on the SLT substrate 310 by a pulse electric field application method using lithography. Specifically, a liquid electrode (LiC1 aqueous solution) full-surface electrode was applied on the Z-plane, and a periodic metal electrode piece of about 6 im was applied on the Z + plane.
  • the electrode piece extends in the ⁇ direction.
  • One domain inversion region 330 was 3 mm (Y direction) ⁇ 5 ⁇ ( ⁇ direction).
  • the domain-inverted region 330 was repeated so that the entire direction 1S of the periodic domain-inverted region 320 (longitudinal direction) 1S was 10 mm.
  • the region 340 was irradiated with an ion beam using an ion accelerator (2 MV type ion implantation apparatus manufactured by HV EE).
  • the irradiation conditions were Ar as the ion species, implantation energy 1 Me V, implantation ion amount 1 X 10 14 cm _2 , implantation depth 0.6 m.
  • the periodic domain-inverted region 320 was observed as surface irregularities by etching the surface of the SLT substrate 310 using an HF aqueous solution.
  • a scanning force microscope S FM S PA300HV, Seiko Instruments Inc., Japan
  • the observation lever was scanned at 0.24 ⁇ mZ sec. The observation results are shown in Fig. 4 and described later.
  • the temperature of the SLT substrate 310 was raised to 100 ° C, held for 10 minutes, and rapidly cooled to room temperature.
  • the third embodiment is the same as the first embodiment except that the region 3 5 0 not irradiated with the ion beam is used in the first embodiment, the description thereof is omitted.
  • FIG. 4 is a view showing the surface state immediately after the ion beam irradiation according to Example 1.
  • FIG. Fig. 4 (A) is a topographic image (stereo topograph) showing the surface state of the region 3 40 (Fig. 3) of the three-strip substrate 30 (Fig. 3) immediately after irradiation (and before heat treatment).
  • the part where the contrast is shown in white corresponds to the non-polarization inversion region (Z + plane)
  • the part where the contrast is shown in black corresponds to the polarization inversion region (Z-plane). Since HF aqueous solution tends to etch the Z-plane faster than the Z + plane, the periodically poled region can be confirmed as surface irregularities. From Fig.
  • FIG. 4 (A) is a diagram of the piezoelectric response of FIG. 4 (A). Unlike the topographic image, the part with the thin contrast in the figure corresponds to the domain-inverted region (Z—plane), and the part with the dark contrast corresponds to the non-polarized domain (Z + plane). Comparing Fig. 4 (A) and Fig. 4 (B), the pack switch phenomenon was confirmed in the part indicated by the arrow (approximately 3 ⁇ ). This is known to occur due to the addition of thermal energy during etching with an aqueous HF solution. When used as an optical element, the etching process is unnecessary, so this effect can be ignored.
  • FIG. 5 is a view showing the surface state after ion beam irradiation and heat treatment according to Example 1.
  • FIG. 5 is a view showing the surface state after ion beam irradiation and heat treatment according to Example 1.
  • FIG. 5 ( ⁇ ) is a topographic image showing the surface state of the region 3 40 of the SLT substrate 3 10 after irradiation and further after heat treatment.
  • Fig. 5 ( ⁇ ) shows the piezoelectric response of Fig. 5 ( ⁇ ). Comparing Fig. 4 ( ⁇ ) and Fig. 5 ( ⁇ ), it can be seen that almost identical piezoelectric response results were obtained. Therefore, even after heat treatment, the domain-inverted region 3 3 0 changes. I knew it was n’t there. Although not shown, the same result was obtained when the back side of the SLT substrate 310 was confirmed in the same manner.
  • FIG. 6 is a diagram showing surface states before and after heat treatment according to Comparative Example 1.
  • FIG. 6A is a topographic image showing the surface state of the region 3 5 0 (FIG. 3) of the SLT substrate 3 1 0 (FIG. 3) after heat treatment without irradiation with the ion beam. It was confirmed that the topographic image in Fig. 6 (A) coincided with the topographic image before heat treatment. Figure 6 (B) clearly shows that a back switch has occurred, as indicated by the arrow. It can be seen that the pack switch generated here is far more advanced than the pack switch generated by etching (Fig. 4 (B)).
  • the method according to this effort can be applied to any element that uses a domain-inverted region formed in a ferroelectric single crystal such as SLT.
  • it is resistant to heating during the processing process, which can lead to improved device reliability and yield.
  • fine control such as nanodomains, which was not possible before, becomes possible, it can be expected to be used for new optical elements.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

強誘電体単結晶に形成された分極反転領域を容易に固定化する方法、および、その強誘電体単結晶を含む光学素子を提供することを課題とする。 強誘電体単結晶に形成された分極反転領域を固定化する方法であって、強誘電体単結晶にイオンビームまたは中性ビームのいずれかのビームを照射するステップを包含すること、および、その強誘電体単結晶を含む光学素子であって、上記ステップを包含する方法によって製造されることを特徴とする。

Description

明細書 強誘電体単結晶に形成された分極反転領域を固定化する方法、 および、 それを 用いた光学素子 技術分野
本発明は、 強誘電体単結晶に形成された分極反転領域を固定化する技術に関す る。 背景技術
近年、 強誘電体の内部に周期的な分極反転領域 (分極反転構造) を形成した、 周波数変調器および光波長変換素子といった光学素子の研究が盛んである。 この ような強誘電体単結晶として、 定比組成のタンタル酸リチウム単結晶および定比 組成のニオブ酸リチウム単結晶が注目されている。 これら単結晶は、 分極反転領域を形成時の条件によっては、 形成された隣り合 う分極反転領域が接合してしまう、 または、 形成された分極反転領域が再度分極 反転してしまう (パックスイッチ) という問題が生じる。 上記問題に加えて、 定比組成のタンタル酸リチウム単結晶およぴ定比組成の二 ォプ酸リチウム単結晶のうち、 特に、 定比組成のタンタル酸リチウム単結晶にお いて、 分極反転領域形成後、 変調器または波長変換素子への加工プロセス中に形 成された分極反転領域のパックスィッチまたは分極反転領域の拡張が生じること が確認されている。 このような問題に対して、 格子点の秩序性制御による分極反転方法おょぴ欠陥 密度制御による分極反転方法に関する技術がある (例えば、 特許文献 1およぴ特 許文献 2を参照)。 特許文献 1に記載の技術は、 電界が印加される面に格子点の秩序性の低い制御 層を設けることによって、 分極反転領域の接合、 または、 パックスイッチ現象を 低減することを開示している。 一方、 特許文献 2に記載の技術は、 電界が印加さ れる面に欠陥密度の高い制御層を設けることによって、 分極反転領域の接合、 ま たは、 パックスィツチ現象を低減することを開示している。
特許文献 1 :特開 2 0 0 5— 1 4 8 2 0 2号公報
特許文献 2 :特開 2 0 0 5— 1 4 8 2 0 3号公報 発明の開示
発明が解決しようとする課題
しかしながら、 上記特許文献 1および特許文献 2に記載の方法は、 分極反転領 域を形成する前に予め制御層を設けることが必須である。 このため、 制御層の厚 さ、 制御層の格子点の秩序の程度によっては、 分極反転領域を形成するための条 件 (例えば、 抗電界の大きさ) が異なり得るので、 プロセスが複雑となるばかり でなく、 歩留まりが低下し、 コスト高を招く。 また、 上記特許文献 1および特許文献 2に記載の方法は、 分極反転領域が強誘 電体単結晶の分極方向にわたって貫通し、 制御層に到達することが必須であるた め、 強誘電体単結晶の表面のみに分極反転領域を設けた光学素子に対しては、 効 果を発揮できない。 したがって、 本発明の目的は、 強誘電体単結晶に形成された分極反転領域を容 易に固定化する方法を提供することである。 課題を解決するための手段
本発明による強誘電体単結晶に形成された分極反転領域を固定化する方法は、 分極反転領域が形成された強誘電体単結晶にイオンビームまたは中性ビームのい ずれかのビームを照射するステップを包含し、 これにより上記目的を達成する。 前記強誘電体単結晶は、 分極方向に垂直な第 1の面と、 前記第 1の面に対向す る第 2の面とを有し、 前記照射するステップは、 前記分極反転領域が第 1の面か ら第 2の面まで貫通している場合には、 前記第 1の面および前記第 2の面の少な くともいずれか一方にビームを照射し、 前記分極反転領域が第 1の面から第 2の 面まで貫通していない場合には、 前記第 1の面にビームを照射し得る。 前記強誘電体単結晶は、 実質的に定比組成のタンタル酸リチウム単結晶または 実質的に定比組成のニオブ酸リチウム単結晶であり得る。 前記実質的に定比組成のタンタル酸リチウム単結晶または実質的に定比組成の ニオブ酸リチウム単結晶は、 M g、 Z n、 S cおよび I nからなる群から選択さ れる元素を 0 . :!〜 3 . O m o l %含み得る。 本発明による固定化された分極反転領域を有する強誘電体単結晶を含む光学素 子は、 分極反転領域が形成された強誘電体単結晶にィオンビームまたは中性ビー ムのレ、ずれかのビームを照射するステツプを包含する方法によつて製造され、 こ れにより上記目的を達成する。 前記光学素子は、 前記分極反転領域に接する停止層を有し、 前記停止層は、 前 記強誘電体単結晶の格子点の秩序性よりも低い秩序性を有し得る。 発明の効果
本発明の方法によれば、 分極反転領域が形成された強誘電体単結晶表面にィォ ンビームまたは中性ビームのレ、ずれかのビームを照射するステツプを包含する。 上記ビームを照射することによって、 強誘電体単結晶表面の結晶性が低下する。 その結果、 ー且分極反転された分極反転領域は、 結晶性の悪い強誘電体単結晶に おいては、 再度分極反転をすることができない (すなわち、 パックスイッチ現象 を生じない)。 したがって、 一旦形成された分極反転領域を、 バックスイッチ現 象を生じすることなく固定ィヒさせることができる。 また、 分極反転領域を形成後 に、 上記ビームを照射するだけであるので、 分極反転領域を形成するための条件 を固定にできるので、 歩留まりが向上し、 コスト安となり得る。 図面の簡単な説明
図 1は、 本発明による技術を示す模式図である。
図 2は、 図 1の A— A'断面図を示す模式図である。
図 3は、 実施例 1および比較例 1で用いた周期分極反転構造を有する S LT単 結晶の模式図である
図 4は、 実施例 1によるイオンビーム照射直後の表面状態を示す図である。 図 5は、 実施例 1によるイオンビーム照射および熱処理後の表面状態を示す図 である。
図 6は、 比較例 1による熱処理前後の表面状態を示す図である。
(符号の説明)
100 強誘電体単結晶 1 10 第 1の面 120 第 2の面
1 30、 330 分極反転領域 140 ビーム
200 状態 210 停止層 220 拡張
310 S LT基板 320 周期分極反転領域 340 領域 発明を実施するための最良の形態
以下、 本発明の実施の形態について、 図面を参照して説明する。 図中、 同様の 要素には同一の参照符号を付し、 重複して説明するのを避ける。
図 1は、 本発明による技術を示す模式図である。
強誘電体単結晶 100は、 任意の強誘電体単結晶が適用可能であるが、 光学応 用には 180° ドメインを有する非線形光学効果を有する任意の強誘電体単結晶 が好ましい。 1 80° ドメインであれば、 容易に分極反転可能であり、 後述する 本発明の方法によって一旦反転した分極は良好に維持され得る。 より具体的には、 本発明が適用可能な強誘電体単結晶 100として、 実質的に 定比組成のタンタル酸リチウム単結晶 (以降では単に S LTと称する) または実 質的に定比組成のニオブ酸リチウム単結晶 (以降では単に S LNと称する) が拳 げられる。 これら S LTおよび S LNは、 従来のコングルェント組成のタンタル酸リチウ ム単結晶 (以降では単に C LTと称する) およぴコングルェント組成のニオブ酸 リチウム単結晶 (以降では単に CLNと称する) と比較して、 欠陥が少なく、 本 発明の方法がより効果を奏することを本願発明者らが見出した。 なお、 実質的に
「定比組成である」 とは、 L i 2 O/ (T a zOs+L i 2O) または L i 2O/ (N b 2 O 5 + L i 2O) のモル分率が完全 0. 500ではないものの、 コングルェン ト糸且成よりも化学量論比に近い,組成のモル分率 0. 495〜0. 505を有して いることを意図する。 また、 これら S LTおよび S LNは、 180° ドメイン、 優れた圧電効果、 焦 電効果、 電気光学効果および非線形光学効果を有しており、 ナノオーダの分極反 転領域を利用することによって新規な特性の利用が期待され得る。 さらに、 S L Tおよび S LNは、 非線形光学定数 (d定数) が他の強誘電体単結晶に比べて大 きいため、 より光学応用に適している。
S LNおよび S LTは、 また、 Mg、 Zn、 I nおよび S cからなる群から選 択される元素を 0. 1〜3. Omo 1 %含んでも良い (例えば、 本願発明者らに よる特開 2001 -287999および特開 2003— 267798を参照のこ と)。 これにより、 耐光損傷性を改善できる。 強誘電体単結晶 100は、 分極方向に垂直な第 1の面 1 10と第 1の面 1 10 に対向する第 2の面 1 20とを有する。 強誘電体単結晶 100として S LTまた は S LNを採用した場合、 分極方向 (図中の矢印で示す) は Z軸の方向である。 強誘電体単結晶 1 0 0は、 分極反転領域 1 3 0を有する。 分極反転領域 1 3 0 は、 電界印加法、 イオン交換による分極反転法、 または、 電子ビーム等によるマ イク口ドメイン反転法等の任意の方法によって形成され得る。 分極反転領域 1 3 0の形状は、 任意である。 分極反転領域 1 3 0は、 周期分極反転構造であっても よいし、 マイクロドメイン構造であってもよい。 分極反転領域 1 3 0は、 最終的なデバイスに応じて、 第 1の面 1 1 0から第 2 の面 1 2 0へと貫通していてもよいし、 第 1の面 1 1 0から第 2の面 1 2 0へと 貫通していなくてもよい。 · 本発明の方法は、 このような分極反転領域 1 3 0を有する強誘電体単結晶 1 0 0の表面にビーム 1 4 0を照射するステップを包含する。 ビーム 1 4 0は、 イオンビームまたは中性ビームのいずれかである。 これらの ビームであれば、 強誘電体単結晶 1 0 0中に後述する秩序性の低い停止層 (図 2 の 2 1 0 ) を形成することができる。 イオンビームを照射する場合、 そのイオン種は、 希ガスイオンまたは金属ィォ ンである。 このようなイオン種には、 例えば、 H e、 N e、 A r、 Z n、 N bお ょぴ M gがあるが、 これらに限定されない。 また、 本明細書では、 プロトンビー ム (陽子ビーム) は、 イオンビームに含まれ得る。 本明細書では、 中性ビームは、 分子 '原子ビームと同義である。 このような中 性ビームには、 例えば、 ヘリウム、 アルゴンがあるが、 これらに限定されない。 中性ビームは、 イオンビームに比べて、 分極反転領域 1 3 0に帯電現象 (チヤ一 ジアップ) を生じにくいという特徴を有する。 照射される表面は、 第 1の面 1 1 0および第 2の面 1 2 0の少なくともいずれ か一方であるが、 分極反転領域 1 3 0が第 1の面 1 1 0から第 2の面 1 2 0まで 貫通している場合には、 第 1の面 1 1 0または第 2の面 1 2 0のいずれか一方、 あるいは、 両面に行ってもよい。 また、 分極反転領域 1 3 0が第 1の面 1 1 0か ら第 2の面 1 2 0まで貫通していない場合には、 第 1の面 1 1 0のみでよレ、。 照射される領域は、 分極反転領域 1 3 0の表面全体であってもよいし、 ビーム 径によっては分極反転領域 1 3 0だけでもよレ、。 照射するタイミングは、 分極反転領域 1 3 0の形成直後が望ましい。 ビーム 1 4 0は、 例えば、 強誘電体単結晶 1 0 0の表面からの深さ 0 . 1〜 5 mまで到 達するように照射される。 次に、 ビーム 1 4 0を照射することによって、 分極反転領域 1 3 0が固定化さ れるメカニズムを詳述する。 図 2では、 第 1の面 1 1 0から第 2の面 1 2 0に分 極反転領域 1 3 0が貫通している場合に、 第 1の面 1 1 0にビーム 1 4 0を照射 する場合を例示する。
図 2は、 図 1の A— A ' 断面図を示す模式図である。
図 2 ( a ) には、 ビーム 1 4 0 (図 1 ) 照射後の状態 2 0 0が示される。 ビー ム 1 4 0を強誘電体単結晶 1 0 0の第 1の面 1 1 0に照射すると、 第 1の面 1 1 0には、 停止層 2 1 0が形成される。 停止層 2 1 0は、 分極反転領域 1 3 0が Z軸方向へパックスィツチすること、 および、 X方向ならびに Y方向へパックスィツチすることおよび/または拡張す ることを停止するように機能する。 停止層 2 1 0は、 強誘電体単結晶 1 0 0の格子点の秩序性に比べて低い秩序性 を有する。 停止層 2 1 0は、 非晶質状態であってもよい。 本願発明者らは、 この ような秩序性の差によって、 分極反転領域 1 3 0の拡張およびバックスイッチが 阻止され得ることを見出した。 ここで、 停止層 210の厚さは、 例えば、 0. 1 m〜5 μπιである。 この範 囲であれば、 効果的に分極反転領域 1 30の拡張およびバックスィッチが抑制さ れ得る。 図 1に示すビーム 140の照射条件は、 照射領域に停止層 210が形成される 限り、 任意であるが、 例えば、 ビーム 140としてイオンビームを用いた場合、 照射条件は、 注入エネルギー 100KeV〜2MeV、 注入イオン量 1 X 1012 cm-2〜l X 1017 cm—2の範囲であり得る。 分極反転領域 130は、 例えば、 図 2 (b) に示されるように、 停止層 210 から遠ざかるにしたがって、 分極反転領域の拡張 220が生じることはない。 このような拡張 220は、 分極反転領域をエネルギー的に不安定にするため、 起こり得ない。 停止層 210から第 2の面 1 20へ向かってバックスィツチする 場合も、 同様である。 したがって、ー且、分極反転領域 1 30に接する停止層 210が形成されると、 停止層 210にてすべての方向に対する分極反転領域 130の再反転 (バックス イッチ) および拡張が停止されることになる。
上述したように、 図 2の場合に、 第 2の面 120のみ、 または、 第 1の面 1 1 0に加えて第 2の面 1 20にもビーム 140を照射しても同様の効果が得られる のは言うまでもない。 本発明の方法は、 特に、 強誘電体単結晶 100 (図 1) に欠陥等のない場合、 すなわち、 強誘電体単結晶 1 00と制御層 210との格子点の秩序性の差が大き い場合に有効であり得る。 したがって、 CLTおよび CLNに比べて S LTおよび S LNにおいて、 効果 がより顕著であり得る。 P2007/054742 本発明の方法を用いて得られる光学素子は、 分極反転領域を利用する任意の素 子を意図しており、 詳細には、 変調器および波長変換素子であり得る。 本発明によって得られる光学素子は、 加工プロセスにおけるパックスィツチ現 象および分極反転領域の拡張が抑制されるので歩留まりが向上し得る。 さらに、 使用時の加熱等によるパックスイツチ現象による光学特性の低下も抑制されるの で、 光学素子としての信頼性が向上し得る。 なお、 光学素子は、 停止層 2 1 0を有していても、 機械的な研磨によって停止 層 2 1 0を除去してもよい。 以上、 説明してきたように、 本願発明者らは、 分極反転領域を形成した後に、 加工プロセスにおける分極反転領域の拡張およぴバックスィッチを阻止するため の方法を見出した。 従来技術において、 分極反転領域の拡張おょぴパックスイツ チを抑制するためには、 強誘電体単結晶を貫通した分極反転領域が制御層と接す ることが必須と考えられていたが、 本願発明者らは、 所望の分極反転領域を形成 後にも上記方法によつて抑制に効果があることを種々の実験から見出した。 さらに、 従来技術とは異なり、 予め制御層を設ける必要がないので、 分極反転 領域を形成するための条件は、 強誘電体単結晶固有の条件に固定できる。 そのた め、 従来技術において生じていた、 制御層があることによる分極反転領域の形成 の失敗がなくなる。 また、 本発明は、 表面のみの分極反転領域を用いたアプリケ ーシヨンにも適用可能である。 実施例 1
図 3は、 実施例 1および比較例 1で用いた周期分極反転構造を有する S L T基 板の模式図を示す。
原料供給型二重坩堝チョクラルスキー法によつて製造された M g Oを 1 m o 1 TJP2007/054742
%ドープした SLTを、 ポーリング (単一分極化) 後、 分極方向に対して垂直方 向に 0. 3mm厚となるようにカツトおよび研磨して、 MgO lmo 1 %ドープ 3!^丁基板310を得た。 得られた S LT基板 310の大きさは、 10 mm (A 方向) X I 0mm (Y方向) X O. 3mm (厚さ) であった。 リソグラフィを用いてパルス電界印加法によって、 SLT基板 310に周期分 極反転領域 320を形成した。 詳細には、 Z—面上に液体電極 (L i C 1水溶液) の全面電極を付与し、 Z+面に約 6 imの周期金属電極片を付与した。電極片は、 γ方向に伸ぴている。 1つの分極反転領域 330は、 3mm (Y方向) Χ 5 μΐη (Α方向) であった。 周期分極反転領域 320の A方向 (長手方向) 1S 全体と して 10 mmとなるように、 分極反転領域 330が繰り返された。 次いで、 領域 340にイオン加速器 (H V EE社製 2 MVタイプイオン注入装 置)を用いてイオンビームを照射した。照射条件は、イオン種として A rを用い、 注入エネルギー 1 Me V、 注入イオン量 1 X 1014 c m_2、 注入深さ 0. 6 m であった。 その後、 周期分極反転領域 320が正しく形成されたかどうかを確認 するため、 HF水溶液を用いて S LT基板 310の表面をエッチングすることに よって、周期分極反転領域 320を表面の凹凸として観察した。表面の観察には、 走查型フォース顕微鏡 S FM (S PA300HV、 セイコーインスツルメンッ、 J a p a n) を用いた。 観察条件は、 0. 24 ^ mZ s e cにて感知レバーを走 査した。 観察結果を図 4に示し、 後述する。 次いで、 加工プロセスによるパックスイッチの影響を調べるために、 S LT基 板 310を 1 00°Cまで昇温し、 10分間保持し、 室温まで急冷させた。 その後 ( 10分後)、 降温速度 2. 0でノ分で室温まで下げた。 以上の熱処理を 3回行 つた。 熱処理後の S LT基板 3 10の領域 340の表面状態を同様に、 S FMを 用いて観察した。 観察結果を図 5に示し、 後述する。 比較例 1
実施例 1でイオンビームを照射していない領域 3 5 0を用いた以外は、 実施例 1と同様であるため説明を省略する。
熱処理後の領域 3 5 0を実施例 1と同様に S F Mで観察した。 観察結果を図 6 に示し後述する。
図 4は、 実施例 1によるイオンビーム照射直後の表面状態を示す図である。 図 4 (A) は、 照射直後 (かつ、 熱処理前) の3し丁基板3 1 0 (図 3 ) の領 域 3 4 0 (図 3 ) の表面状態を示すトポ像 (ステレオトポグラフ) である。 図中 コントラス トが白く示される部分が非分極反転領域 (Z +面) に相当し、 コント ラストが黒く示される部分が分極反転領域 (Z—面) に相当する。 H F水溶液は、 Z +面に比べて Z—面を早くエッチングする傾向があるため、 周期分極反転領域を 表面の凹凸として確認することができる。 図 4 (A) から周期分極反転領域が正 しく形成されていることが分かる。 図 4 (B ) は、 図 4 (A) の圧電応答の図である。 トポ像とは異なり、 図中コ ントラストが薄く示される部分が分極反転領域 (Z—面) に相当し、 コントラス トが濃く示される部分が非分極反転領域 (Z +面) に相当する。 図 4 (A) およ び図 4 (B ) を比較すると、 矢印で示される部分に (約 3 μ ΐη) パックスイッチ 現象が確認された。 これは、 H F水溶液によるエッチング時に熱的なエネルギー が加わって生じることが知られている。 光学素子として利用する場合には、 エツ チング処理は不要であるため、 この影響は無視できる。 図 5は、 実施例 1によるイオンビーム照射および熱処理後の表面状態を示す図 である。
図 5 (Α) は、 照射後、 さらに熱処理後の S L T基板 3 1 0の領域 3 4 0の表 面状態を示すトポ像である。 図 5 (Β ) は、 図 5 (Α) の圧電応答の図である。 図 4 (Β ) および図 5 (Β ) を比較すると、 ほぼ同一の圧電応答の結果が得られ たことが分かる。 このことから、 熱処理をしても、 分極反転領域 3 3 0は変化し ないことがわかった。 なお、 図示しないが、 S L T基板 3 1 0の裏面についても 同様に確認したところ、 同一の結果が得られた。 図 6は、 比較例 1による熱処理前後の表面状態を示す図である。
図 6 (A) は、 イオンビームを照射することなく熱処理した後の S L T基板 3 1 0 (図 3 ) の領域 3 5 0 (図 3 ) の表面状態を示すトポ像である。 図 6 (A) のトポ像は、 熱処理前のトポ像に一致することを確認した。 図 6 ( B ) には、 矢 印に示すように、 バックスイッチが生じたことが明瞭に示される。 ここで生じた パックスイッチは、 エッチングによって生じるパックスィツチ (図 4 ( B ) ) に 比べて遥かに進行していることが分かる。
以上より、 本発明の方法が、 加工プロセスに伴う分極反転領域の再反転 (パッ クスィッチ) およぴ拡張の抑制に効果的であることが示された。 産業上の利用可能性
以上説明してきたように、 本努明による方法は、 S L T等の強誘電体単結晶に 形成された分極反転領域を利用する任意の素子に利用可能である。 特に、 加工プ ロセス時による加熱に対して耐性を有するので、 素子の信頼性および歩留まりの 向上につながり得る。 さらに、 ナノドメイン等の従来不可能であった微細制御も 可能となるので、 新規な光学素子への利用が期待され得る。

Claims

請求の範囲
1 . 強誘電体単結晶に形成された分極反転領域を固定化する方法であって、 分極反転領域が形成された強誘電体単結晶にィォンビームまたは中性ビームの レ、ずれかのビームを照射するステップ
を包含することを特徴とする方法。
2 . 前記強誘電体単結晶は、 分極方向に垂直な第 1の面と、 前記第 1の面に対向 する第 2の面とを有し、
前記照射するステップは、 前記分極反転領域が第 1の面から第 2の面まで貫通 している場合には、 前記第 1の面おょぴ前記第 2の面の少なくともいずれか一方 にビームを照射し、 前記分極反転領域が第 1の面から第 2の面まで貫通していな い場合には、前記第 1の面にビームを照射する、請求の範囲第 1項に記載の方法。
3 . 前記強誘電体単結晶は、 実質的に定比組成のタンタル酸リチウム単結晶また は実質的に定比組成のニオブ酸リチウム単結晶である、 請求の範囲第 1項に記載 の方法。
4 . 前記実質的に定比組成のタンタル酸リチウム単結晶または実質的に定比組成 のニオブ酸リチウム単結晶は、 M g、 Z n、 S cおよび I nからなる群から選択 される元素を 0 . 1〜3 . O m o 1 %含む、 請求の範囲第 3項に記載の方法。
5 .固定化された分極反転領域を有する強誘電体単結晶を含む光学素子であって、 分極反転領域が形成された強誘電体単結晶にイオンビームまたは中性ビームのレ、 ずれかのビームを照射するステップを包含する方法によって製造されることを特 徴とする光学素子。
6 . 前記光学素子は、 前記分極反転領域に接する停止層を有し、 前記停止層は、 前記強誘電体単結晶の格子点の秩序性よりも低い秩序性を有する、 請求の範囲第 5項に記載の光学素子。
PCT/JP2007/054742 2006-03-17 2007-03-05 強誘電体単結晶に形成された分極反転領域を固定化する方法、および、それを用いた光学素子 WO2007108339A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2008506241A JPWO2007108339A1 (ja) 2006-03-17 2007-03-05 強誘電体単結晶に形成された分極反転領域を固定化する方法、および、それを用いた光学素子
US12/225,162 US8223427B2 (en) 2006-03-17 2007-03-05 Method of fixing polarization-reversed region formed in ferroelectric single crystal

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006-074203 2006-03-17
JP2006074203 2006-03-17

Publications (1)

Publication Number Publication Date
WO2007108339A1 true WO2007108339A1 (ja) 2007-09-27

Family

ID=38522372

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/054742 WO2007108339A1 (ja) 2006-03-17 2007-03-05 強誘電体単結晶に形成された分極反転領域を固定化する方法、および、それを用いた光学素子

Country Status (3)

Country Link
US (1) US8223427B2 (ja)
JP (1) JPWO2007108339A1 (ja)
WO (1) WO2007108339A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6273762B2 (ja) * 2013-10-18 2018-02-07 ウシオ電機株式会社 波長変換素子の製造方法
JP7228792B2 (ja) * 2019-06-07 2023-02-27 パナソニックIpマネジメント株式会社 波長変換装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07230969A (ja) * 1994-02-17 1995-08-29 Nec Corp 半導体集積回路の製造方法
JPH1172809A (ja) * 1997-01-14 1999-03-16 Matsushita Electric Ind Co Ltd 光波長変換素子とその製造方法、この素子を用いた光発生装置および光ピックアップ、回折素子、ならびに分極反転部の製造方法
JP2002230720A (ja) * 2001-02-01 2002-08-16 Toshiba Corp 薄膜磁気ヘッドの製造方法
JP2004158627A (ja) * 2002-11-06 2004-06-03 Renesas Technology Corp 半導体装置の製造方法
JP2006018029A (ja) * 2004-07-01 2006-01-19 National Institute For Materials Science 電荷量制御による分極反転法およびそれを用いた波長変換素子

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60144721A (ja) * 1984-01-06 1985-07-31 Canon Inc 画像形成装置
US5715092A (en) * 1994-06-29 1998-02-03 Eastman Kodak Company Ferroelectric light frequency doubler device with a surface coating and having an inverted domain structure
US5748361A (en) * 1995-10-13 1998-05-05 Eastman Kodak Company Ferroelectric crystal having inverted domain structure
JP4613358B2 (ja) * 2000-12-22 2011-01-19 パナソニック株式会社 光波長変換素子およびその製造方法
JP5098113B2 (ja) * 2005-10-25 2012-12-12 独立行政法人物質・材料研究機構 分極反転領域を形成する方法、その装置およびそれを用いたデバイス

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07230969A (ja) * 1994-02-17 1995-08-29 Nec Corp 半導体集積回路の製造方法
JPH1172809A (ja) * 1997-01-14 1999-03-16 Matsushita Electric Ind Co Ltd 光波長変換素子とその製造方法、この素子を用いた光発生装置および光ピックアップ、回折素子、ならびに分極反転部の製造方法
JP2002230720A (ja) * 2001-02-01 2002-08-16 Toshiba Corp 薄膜磁気ヘッドの製造方法
JP2004158627A (ja) * 2002-11-06 2004-06-03 Renesas Technology Corp 半導体装置の製造方法
JP2006018029A (ja) * 2004-07-01 2006-01-19 National Institute For Materials Science 電荷量制御による分極反転法およびそれを用いた波長変換素子

Also Published As

Publication number Publication date
US20090231703A1 (en) 2009-09-17
JPWO2007108339A1 (ja) 2009-08-06
US8223427B2 (en) 2012-07-17

Similar Documents

Publication Publication Date Title
KR101019137B1 (ko) 레이저 조사방법 및 레이저 조사장치, 및 반도체장치의제조방법
JP2623276B2 (ja) 薄膜半導体装置の製造方法
US6544431B2 (en) Thin film lithium niobate structure and method of making the same
KR101612141B1 (ko) 양성자 교환에 의한 박층의 이동 방법
WO2014075546A1 (zh) 悬空式光波导及其制备方法
WO2007108339A1 (ja) 強誘電体単結晶に形成された分極反転領域を固定化する方法、および、それを用いた光学素子
US6436614B1 (en) Method for the formation of a thin optical crystal layer overlying a low dielectric constant substrate
JP2000066050A (ja) 光導波路部品の製造方法及び光導波路部品
JP4613347B2 (ja) バックスイッチ現象を抑制した光学素子を製造する方法、および、それによって得られた波長変換素子
KR100726129B1 (ko) 다결정실리콘 박막트랜지스터 소자 및 그 제조방법
CN112309946A (zh) 一种剥离铁电单晶薄膜的方法
US7446930B2 (en) Method of inverting polarization by controlling defect density or degree of order of lattice points
JP2701711B2 (ja) 多結晶シリコン薄膜の製造方法
Liu et al. Backswitching and fixing of periodically poled structure in low coercive field stoichiometric LiTaO3
JPH11121765A (ja) 半導体装置の製造方法
JP2965644B2 (ja) 波長変換光学素子の製造方法
JP2007308344A (ja) フッ化物強誘電体単結晶における負の分極面を有する領域をエッチングする方法、および、それを用いてフッ化物強誘電体単結晶の分極状態を判定する方法
US7029528B2 (en) Method for flattening surface of oxide crystal to ultra high degree
JP2005208197A (ja) 周期的分極反転領域を持つ基板の製造方法
JPH06151762A (ja) 強誘電体材料およびそれを使用した強誘電体メモリ素子
KR20030015618A (ko) 결정질 실리콘의 제조방법
Son et al. Effects of e-Beam Parameters on Sub-micron Ferroelectric Domain Engineering in Liquid Phase Epitaxy LiNbO3 by Direct-Write e–Beam
JPH0878298A (ja) シリコン半導体ウェーハ及びその製造方法
JP4581764B2 (ja) 薄膜半導体装置の製造方法
JP2910752B2 (ja) 半導体装置の製造方法

Legal Events

Date Code Title Description
DPE2 Request for preliminary examination filed before expiration of 19th month from priority date (pct application filed from 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07738227

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2008506241

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 12225162

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07738227

Country of ref document: EP

Kind code of ref document: A1