WO2007108246A1 - 圧電マイクロポンプ - Google Patents

圧電マイクロポンプ Download PDF

Info

Publication number
WO2007108246A1
WO2007108246A1 PCT/JP2007/052323 JP2007052323W WO2007108246A1 WO 2007108246 A1 WO2007108246 A1 WO 2007108246A1 JP 2007052323 W JP2007052323 W JP 2007052323W WO 2007108246 A1 WO2007108246 A1 WO 2007108246A1
Authority
WO
WIPO (PCT)
Prior art keywords
piezoelectric element
diaphragm
piezoelectric
pump chamber
support member
Prior art date
Application number
PCT/JP2007/052323
Other languages
English (en)
French (fr)
Inventor
Atsuhiko Hirata
Gaku Kamitani
Original Assignee
Murata Manufacturing Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co., Ltd. filed Critical Murata Manufacturing Co., Ltd.
Priority to JP2008506195A priority Critical patent/JP4793441B2/ja
Priority to DE112007000669T priority patent/DE112007000669B4/de
Publication of WO2007108246A1 publication Critical patent/WO2007108246A1/ja
Priority to US12/234,858 priority patent/US8454327B2/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B43/00Machines, pumps, or pumping installations having flexible working members
    • F04B43/02Machines, pumps, or pumping installations having flexible working members having plate-like flexible members, e.g. diaphragms
    • F04B43/04Pumps having electric drive
    • F04B43/043Micropumps
    • F04B43/046Micropumps with piezoelectric drive

Definitions

  • the present invention relates to a piezoelectric micropump, and more particularly to a micropump using a piezoelectric element that bends and deforms.
  • Patent Document 1 discloses a micro pump in which a pump chamber is formed in a pump body, and a piezoelectric element is attached to the back surface of a diaphragm constituting the ceiling wall of the pump chamber.
  • FIG. 9 (a) shows an outline of the pump structure shown in Patent Document 1.
  • FIG. The case 20 is provided with a pump chamber 21, and a piezoelectric element 23 is pasted on a diaphragm 22 constituting the ceiling wall of the pump chamber 21.
  • FIG. 9B shows a partial force of the volume change of the pump chamber 21 that should occur due to the bending of the piezoelectric element 23.
  • Diaphragms 22 at both ends of the piezoelectric element 23 There is a problem that it is wasted due to the displacement of.
  • the piezoelectric element 23 is merely floating and moving through the diaphragm 22, and the displacement of the piezoelectric element 23 cannot be sufficiently transmitted as the volume change of the pump chamber 21.
  • the reason why such a phenomenon occurs is that, for example, when the piezoelectric element 23 deforms convexly toward the pump chamber 21 and tries to push out an incompressible fluid (liquid) filled in the pump chamber 21, the diaphragm 22 This is because a hydraulic pressure is applied, and the peripheral portion of the diaphragm 22 (the portion where the piezoelectric element 23 is not attached) is displaced in a direction opposite to the pump chamber 21 due to the hydraulic pressure.
  • the piezoelectric element 23 is deformed into a concave shape by directing the force toward the pump chamber 21, the peripheral portion of the diaphragm 22 stagnate toward the pump chamber 21.
  • the diaphragm 22 is formed of a hard material such as a metal plate, the stagnation of the peripheral portion of the diaphragm 22 can be suppressed, and the phenomenon shown in FIG. 9B does not occur.
  • the diaphragm 22 is hard, the bending deformation of the piezoelectric element 23 is hindered, and the amplitude becomes small. The volume change of 1 becomes small.
  • the fluid transport capacity of the pump decreases as a result of lowering the pump drive frequency.
  • Patent Document 1 Japanese Patent Laid-Open No. 2003-214349
  • a preferred embodiment of the present invention is that the purpose of the embodiment is to transmit the displacement of the piezoelectric element as a volume change of the pump chamber without waste even if the diaphragm is soft!
  • An object of the present invention is to provide a piezoelectric micropump having an excellent fluid transport capability.
  • the pump chamber is isolated by a diaphragm, a piezoelectric element is disposed on the rear surface of the diaphragm, the diaphragm is followed by deformation by bending deformation of the piezoelectric element, and the volume of the pump chamber is changed.
  • a piezoelectric micropump for transporting fluid in the pump chamber there is provided a piezoelectric micropump characterized in that a support member is provided in contact with and supporting the back surface of the piezoelectric element.
  • the piezoelectric element When an alternating voltage (rectangular wave voltage or AC voltage) is applied to the piezoelectric element, the piezoelectric element bends and deforms in the plate thickness direction, and the diaphragm follows and deforms. If the diaphragm is made of a soft material, the periphery of the diaphragm (the piezoelectric element is placed!) Will stagnate in the opposite direction to the piezoelectric element due to the pressure change of the fluid filled in the pump chamber. The displacement of the piezoelectric element cannot be sufficiently transmitted as the volume change of the pump chamber.
  • alternating voltage rectangular wave voltage or AC voltage
  • the support member restricts the stagnation of the periphery of the diaphragm in the reverse direction, thereby preventing the piezoelectric element from floating.
  • the displacement of the piezoelectric element can be reliably transmitted as the volume change of the pump chamber, and the fluid transport capability can be improved.
  • the back surface of the piezoelectric element is merely in contact with the support member and is not restricted by adhesion or the like. Therefore, the support member does not limit the bending displacement of the piezoelectric element, It can be driven efficiently.
  • the back surface of the diaphragm is a surface opposite to the pump chamber of the diaphragm
  • the back surface of the piezoelectric element is a surface opposite to the pump chamber of the piezoelectric element.
  • the present invention causes a decrease in performance because displacement of the piezoelectric element in the back direction is restricted by the support member even if the piezoelectric element is displaced from the center. Hateful.
  • the performance is hardly deteriorated.
  • a soft (low Young's modulus) diaphragm can be used, and it is easy to obtain pumping action even with low-voltage driven piezoelectric elements!
  • the support member for example, the inner wall of the case supporting the diaphragm may be used, or another member may be disposed inside the case.
  • the support member may be formed of a relatively hard material similar to the case or the like, or an elastic body such as rubber may be used.
  • the diaphragm may be an organic material such as polyimide as in the past, or any elastic material such as rubber or elastomer can be used.
  • a metal plate can also be used, but a flexible material with a Young's modulus of 20 MPa or less and a thickness of 100 ⁇ m or less is desirable.
  • the support member is preferably a planar member that supports the entire back surface of the piezoelectric element when not driven.
  • the support member when the piezoelectric element is deformed so as to be convex toward the pump chamber, the support member supports the back surface of the outer peripheral part or both ends of the piezoelectric element, and the piezoelectric element is recessed toward the pump chamber.
  • the support member can support the back surface of the central portion of the piezoelectric element. Therefore, even when the piezoelectric element is deformed in any direction, the diaphragm can always be displaced in the direction of the pump chamber, and the volume of the pump chamber can be reduced. As a result, the fluid in the pump chamber can be reliably pushed out, and the fluid transport capability can be improved.
  • the piezoelectric element is formed in a rectangular shape
  • the support member supports the back surface of both ends in the longitudinal direction of the piezoelectric element
  • the piezoelectric element can be bent and deformed on the back surface side of the central part of the piezoelectric element. It is preferable that a space is provided.
  • the shape of the piezoelectric element includes a disk shape and a rectangular shape, but if the rectangular piezoelectric element is bent and displaced in a mode in which both longitudinal ends (two sides on the short side) are fulcrums, A displacement volume larger than that obtained when the piezoelectric element is bent and displaced in a mode with its outer periphery as a fulcrum is obtained.
  • a rectangular piezoelectric element is used as an actuator for driving a diaphragm, the pump efficiency can be improved.
  • the support member supports the entire back surface of the piezoelectric element, the force that can always move the diaphragm in the direction of the pump chamber regardless of the direction of deformation of the piezoelectric element.
  • the displacement volume when deformed is smaller than when deformed convexly. Therefore, by adopting a structure in which the support member supports the back surfaces of both ends in the longitudinal direction of the piezoelectric element, when the piezoelectric element deforms convexly toward the pump chamber, the central portion of the diaphragm is pushed up so that the piezoelectric element is in the pump chamber.
  • the center part of the diaphragm When it is deformed into a concave shape, the center part of the diaphragm is displaced so as to pull downward. In either case, a large displacement volume can be obtained. Therefore, the volume of the pump chamber can be periodically varied greatly, and the pump efficiency can be increased.
  • the piezoelectric element is formed smaller than the variable region of the diaphragm, and the piezoelectric element is arranged over the entire circumference on the outer peripheral side from the piezoelectric element of the diaphragm. It should have a structure with a margin. If the size of the piezoelectric element is the same as the variable region of the diaphragm, there is almost no blank space in the diaphragm, so when the piezoelectric element is displaced, an excessive force is applied to a part of the diaphragm and the displacement of the piezoelectric element is restricted. There is a possibility that.
  • the piezoelectric element is made smaller than the variable region of the diaphragm and a diaphragm blank is provided on the outer peripheral side of the piezoelectric element, the blank of the diaphragm can freely expand and contract when the piezoelectric element is displaced. It does not restrict the displacement of the piezoelectric element. Therefore, the piezoelectric element can be bent and displaced freely, and the pump efficiency is improved.
  • the piezoelectric element may be surface bonded to the diaphragm.
  • the adhesive it is preferable to use an elastic adhesive such as silicone or urethane as in the case of the diaphragm. Even if the piezoelectric element is slightly displaced from the center of the diaphragm, there is no significant effect on the pump efficiency.
  • the gap in the thickness direction between the diaphragm and the support member is set narrower than the thickness of the piezoelectric element, and the piezoelectric element is pressed against the support member by the elasticity of the diaphragm. You should make it! /
  • the piezoelectric element can be pressed against and held in advance by the elasticity of the diaphragm. Since the piezoelectric element and the support member can be reliably brought into contact with each other, the volume of the pump chamber can be reliably changed by bending deformation of the piezoelectric element.
  • the piezoelectric element and the diaphragm need not be bonded.
  • the piezoelectric element can be freely displaced without being constrained by the diaphragm, so that the piezoelectric element can be driven efficiently at a low voltage.
  • the piezoelectric element and the diaphragm are not bonded, the piezoelectric element may be displaced in the plane direction with respect to the diaphragm. Therefore, it is preferable to provide a peripheral wall portion for restricting the position of the outer peripheral surface of the piezoelectric element with a predetermined gap on the support member. In this case, the displacement of the piezoelectric element can be prevented, and the peripheral wall portion does not have a binding force with respect to the displacement of the piezoelectric element, so that the piezoelectric element can be driven efficiently.
  • the support member since the back surface of the piezoelectric element is supported by the support member, the support member regulates the displacement of the peripheral portion of the diaphragm and prevents the piezoelectric element from floating. it can. As a result, the displacement of the piezoelectric element can be reliably transmitted as the volume change of the pump chamber, and the fluid transport capability can be improved.
  • Figs. 1 to 4 show a first embodiment of a piezoelectric micropump according to the present invention.
  • the microphone pump P of the present embodiment includes a bottom plate 1, a piezoelectric element 2, a diaphragm 3, a frame body 4, and a top plate 5, and these components are laminated and bonded to each other.
  • the bottom plate 1 is formed of, for example, a glass epoxy substrate or a resin material, and a rectangular recess la that forms a vibration chamber is formed in the center.
  • the bottom wall la of the recess la comes into contact with the back surface of the piezoelectric element 2 and serves as a support member for supporting the same.
  • the piezoelectric element 2 is formed in a rectangular shape and accommodated in the recess la.
  • the external dimension of the piezoelectric element 2 is smaller than the inner dimension of the recess la, and a predetermined gap ⁇ (see FIG. 5) is formed between the four sides of the piezoelectric element 2 and the inner edge of the recess la with the piezoelectric element 2 housed in the recess la. 3) is formed.
  • This gap ⁇ corresponds to the width of the blank portion 3a that can sufficiently extend the diaphragm 3 when the piezoelectric element 2 is bent and displaced.
  • the piezoelectric element 2 of this embodiment is a known bimorph type ceramic piezoelectric element.
  • Two lead wires 2a are connected to the electrode on the lower surface of the piezoelectric element 2.
  • a rectangular wave signal or an AC signal to these lead wires 2a, both ends in the longitudinal direction (two sides on the short side) It is possible to bend and vibrate in bending mode with the central point in the longitudinal direction as the maximum displacement point.
  • the piezoelectric element 2 may be a morph type piezoelectric element.
  • the diaphragm 3 is an elastic sheet material such as rubber, elastomer, or soft resin, and has the same outer shape as the bottom plate 1. Adhesive is applied to the entire rear surface of diaphragm 3, that is, the surface on the vibration chamber side. By attaching diaphragm 3 onto bottom plate 1 containing piezoelectric element 2, piezoelectric element 2 and diaphragm 3 Are bonded together, and the upper surface of the bottom plate 1 excluding the concave portion la and the diaphragm 3 are bonded together.
  • the frame body 4 is made of, for example, a glass epoxy substrate or a resin material, and is formed in a rectangular frame shape to form the pump chamber 6.
  • a side wall portion 4a for forming the inflow passage 7 is provided on the outside of one short side surface of the frame body 4, and a side wall portion 4b for forming the discharge passage 8 on the outside of one long side surface is provided. Is provided.
  • An inflow hole 4c is formed in the side wall between the inner side of the frame 4 (pump chamber) and the inflow passage 7. Only the inflow of liquid into the pump chamber 6 is allowed on the side of the inflow hole 4c on the pump chamber side.
  • Check valve 10 is installed.
  • a discharge hole 4d is formed in the side wall between the inside of the frame 4 (pump chamber) and the discharge passage 8, and only the liquid from the pump chamber 6 is discharged on the side surface of the discharge hole 4d on the discharge passage side. Allowable check valve 11 is installed.
  • the force of the check valves 10 and 11 made of an inertia sheet such as rubber is not limited to this.
  • the lower surface of the frame 4 is attached to the upper surface of the diaphragm 3.
  • the top plate 5 is made of, for example, a glass epoxy substrate or a resin material, Bonded to the top surface.
  • a pump chamber 6 By bonding the top plate 5, a pump chamber 6, an inflow passage 7, and a discharge passage 8 are formed between the top plate 5 and the diaphragm 3.
  • Tubes 9a and 9b are connected to the inflow passage 7 and the discharge passage 8, respectively, and are connected to a liquid supply section and a liquid discharge section (not shown) via the tubes 9a and 9b.
  • silicon tubes were used as the tubes 9a and 9b.
  • FIG. 5 is a schematic diagram for explaining the operation of the micropump P.
  • (a) is when not driven or voltage is switched
  • (b) is when the piezoelectric element 2 is deformed upwardly
  • (C) shows the time when the piezoelectric element 2 is deformed downward and convex.
  • FIG. 6A shows an alternating voltage applied to the piezoelectric element 2.
  • an alternating voltage that changes between + V and V is applied to the piezoelectric element 2, for example, during a half cycle of + V, the piezoelectric element 2 deforms upwardly as shown in FIG. During the half cycle, the piezoelectric element 2 is deformed downward as shown in FIG. 5 (c).
  • the piezoelectric element 2 returns to a planar shape as shown in (a), so that the diaphragm 3 also returns flat.
  • the direction of the voltage and the direction of deformation of the piezoelectric element 2 are related to the polarization direction of the piezoelectric element 2, so that the piezoelectric element 2 is deformed downward and convex for a half period of + V, contrary to the above. During the half period of V, the piezoelectric element 2 is deformed upwardly.
  • the piezoelectric element 2 is paired with both ends in the longitudinal direction (two sides on the short side) and both ends in the short direction (two sides on the long side).
  • the corresponding blank portion 3a extends, so that the piezoelectric element 2 can be bent and deformed without the displacement of the piezoelectric element 2 being strongly restrained.
  • FIG. 6B shows a change in the discharge flow rate of the micropump P. Even if the piezoelectric element 2 is deformed in any direction as described above, the diaphragm 3 is always displaced in the direction of the pump chamber 6, so that the interval at which the liquid is discharged from the pump chamber 6 is short. The body can be discharged.
  • the discharge flow rate when the piezoelectric element 2 changes convexly is larger than the discharge flow rate when the piezoelectric element 2 changes convexly downward. Therefore, as shown in Fig. 6 (b), large flow rate discharge and small flow rate discharge appear alternately.
  • FIG. 7 shows a second preferred embodiment of the present invention.
  • This embodiment is an example in which the gap H between the diaphragm 3 and the bottom wall la of the bottom plate 1 in the first example is narrower than the thickness T of the piezoelectric element 2.
  • the piezoelectric element 2 can be held against the bottom wall la by the elasticity of the diaphragm 3. Therefore, the piezoelectric element 2 and the diaphragm 3 do not need to be bonded. However, it goes without saying that the piezoelectric element 2 and the diaphragm 3 may be bonded.
  • the piezoelectric element 2 and the diaphragm 3 are not bonded, the piezoelectric element 2 can bend and deform more freely than when both are bonded, and a large displacement can be obtained. Therefore, the pump efficiency is improved.
  • FIG. 8 shows a third preferred embodiment of the present invention.
  • Fig. 8 (a) is when not driving or switching voltage
  • Fig. 8 (b) is when piezoelectric element 2 is deformed upward
  • Fig. 8 (c) is when piezoelectric element 2 is deformed downward. It is time to do.
  • a pillow portion (supporting member) Id that supports two longitudinal ends of the piezoelectric element 2, that is, two sides on the short side, is provided in the concave portion la of the bottom plate 1.
  • Piezoelectric element 2 is only placed on pillow Id and not bonded.
  • the pillow part Id may be formed integrally with the bottom plate 1, or another part may be fixed on the bottom plate 1. Piezoelectric element 2 is freely deformed between pillow parts Id A vibration space le is provided.
  • both longitudinal ends of the piezoelectric element 2 are supported by the pillow part Id, and the piezoelectric element 2 is lifted inside the vibration chamber.
  • the piezoelectric element 2 is deformed upward as shown in (b)
  • the piezoelectric element 2 pushes up the diaphragm 3 in the vicinity of the center and reduces the volume of the pump chamber 6.
  • the liquid inside can be pushed out.
  • the piezoelectric element 2 is deformed downward as shown in (c)
  • the diaphragm 3 is displaced so as to be pulled downward. Since the vibration space le is provided between the pillow portions Id, the central portion of the piezoelectric element 2 can be greatly displaced downward. Following the downward displacement of the piezoelectric element 2, the diaphragm 3 is also displaced integrally, and the volume of the pump chamber 6 can be expanded. Therefore, liquid can be sucked into the pump chamber 6.
  • the piezoelectric element 2 when the piezoelectric element 2 is convexly deformed downward, the liquid is sucked into the pump chamber 6, and when the piezoelectric element 2 is convexly deformed upward, the liquid in the pump chamber 6 can be discharged.
  • the pillow part Id When the piezoelectric element 2 is bent and displaced up and down, the pillow part Id always supports both ends of the piezoelectric element 2, so that the piezoelectric element 2 does not float and the displacement of the piezoelectric element 2 is changed to the pump chamber 6.
  • the micropump of this example that can effectively convey the volume change of the pump can effectively utilize the bending of the piezoelectric element 2 in the opposite direction to the pump chamber 6, so that the pump discharge flow The amount can be increased and the pump efficiency can be increased.
  • a bimorph type piezoelectric element is used as the piezoelectric element 2.
  • This piezoelectric element causes an equivalent bending displacement in both directions by applying an alternating voltage.
  • a piezoelectric element capable of obtaining a large displacement only in one direction may be used.
  • the pump efficiency can be improved by using a piezoelectric element that can obtain a large displacement only in the upward direction.
  • a piezoelectric element capable of obtaining a large displacement only in one direction can be realized by using a laminated structure that is asymmetrical with respect to the intermediate layer.
  • a rectangular piezoelectric element is used, but a square or circular piezoelectric element is used. You can also. However, in the case of a rectangular piezoelectric element, a displacement volume larger than that of a square or circular piezoelectric element can be obtained. Therefore, there is an advantage that a micropump can be realized with small size and efficiency.
  • a member different from the force case using the bottom plate constituting the case may be used as the supporting member that supports the back surface of the piezoelectric element.
  • the support member is not limited to a hard material, and a soft material such as elastic rubber may be used.
  • the case is not limited to the one composed of a bottom plate, a frame body and a top plate as shown in FIG. 2, but the pump chamber can be isolated by a diaphragm and a support member for supporting the back surface of the piezoelectric element can be provided. Any structure may be used as long as it is present.
  • FIG. 1 is a perspective view of a first embodiment of a piezoelectric micropump according to the present invention.
  • FIG. 2 is an exploded perspective view of the piezoelectric micropump shown in FIG.
  • FIG. 3 is a longitudinal sectional view of the piezoelectric micropump shown in FIG. 1.
  • FIG. 4 is a cross-sectional view taken along the line IV-IV in FIG.
  • FIG. 5 is a schematic cross-sectional view showing the operation of the piezoelectric micropump shown in FIG. 1, where (a) shows a non-driven state, (b) shows an upward convex state, and (c) shows a downward convex state. .
  • FIG. 6 (a) shows the alternating voltage applied to the piezoelectric element, and (b) shows the change in the discharge flow rate of the micropump.
  • FIG. 7 is a schematic sectional view of a second embodiment of the present invention.
  • FIG. 8 is a schematic cross-sectional view of a third embodiment of the present invention, where (a) shows a non-driven state, (b) shows an upwardly convex state, and (c) shows a downwardly convex state.
  • FIG. 9 is a cross-sectional view of an example of a conventional micropump, where (a) shows a non-driven state and (b) shows a state where a piezoelectric element is deformed.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Reciprocating Pumps (AREA)

Abstract

【課題】ダイヤフラムが柔らかい材料で形成されていても、圧電素子の変位をポンプ室の容積変化として無駄なく伝えることができ、流体輸送能力の優れた圧電マイクロポンプを提供する。 【解決手段】ポンプ室6をダイヤフラム3で隔離し、ダイヤフラム3の背面に圧電素子2を配置し、圧電素子2の屈曲変形によりダイヤフラム3を追従変形させ、ポンプ室6を容積変化させてポンプ室6内の流体を輸送する圧電マイクロポンプである。圧電素子2の背面を支持する支持部材1a1 を設け、ダイヤフラム3の周辺部の逆方向の撓みを支持部材1a1 が規制し、圧電素子2が浮いた状態になるのを防止する。その結果、圧電素子2の変位をポンプ室6の容積変化として確実に伝えることができ、流体輸送能力が向上する。

Description

明 細 書
圧電マイクロポンプ
技術分野
[0001] 本発明は圧電マイクロポンプ、詳しくは屈曲変形する圧電素子を用いたマイクロボン プに関するものである。
背景技術
[0002] 従来より、電圧印加によりベンディングモードで屈曲変形する圧電素子を用いたマイ クロポンプが知られている。特許文献 1には、ポンプ本体にポンプ室を形成し、このポ ンプ室の天井壁を構成するダイヤフラムの背面に圧電素子を貼り付けたマイクロボン プが開示されている。
[0003] 図 9の(a)は特許文献 1に示されたポンプ構造の概略を示したものである。ケース 20 にはポンプ室 21が設けられ、ポンプ室 21の天井壁を構成するダイヤフラム 22の上に 圧電素子 23が貼り付けられている。ダイヤフラム 22としては、ポリイミドのような有機 材料が使用されている。ところが、圧電素子 23が屈曲変形したとき、図 9の (b)のよう に圧電素子 23の屈曲によって発生するはずのポンプ室 21の容積変化の一部力 圧 電素子 23の両端部分のダイヤフラム 22の変位によって無駄になってしまうという問 題がある。例えていえば、圧電素子 23がダイヤフラム 22を介して浮いて動いている だけの状態になり、圧電素子 23の変位をポンプ室 21の容積変化として十分に伝える ことができない。このような現象が生じる理由は、例えば圧電素子 23がポンプ室 21に 向かって凸に変形し、ポンプ室 21に満たされた非圧縮性流体 (液体)を押し出そうと する時、ダイヤフラム 22には液圧がかかり、この液圧によってダイヤフラム 22の周辺 部 (圧電素子 23が貼り付けられていない部分)がポンプ室 21と逆方向に変位するか らである。逆に、圧電素子 23がポンプ室 21に向力つて凹に変形した時は、ダイヤフラ ム 22の周辺部がポンプ室 21方向に橈む。
[0004] ダイヤフラム 22が金属板のような硬質材料で形成されておれば、ダイヤフラム 22の 周辺部の橈みを抑制できるので、図 9の (b)のような現象は発生しない。しかし、ダイ ャフラム 22が硬いと圧電素子 23の屈曲変形を阻害して振幅が小さくなり、ポンプ室 2 1の容積変化が小さくなる。また、ポンプの駆動周波数を下げてしまう結果、ポンプの 流体輸送能力が低下するという問題がある。さらに、従来の場合は、ダイヤフラム 22 の中央に圧電素子 23を貼り付けることができなければ、左右の変位のバランスが崩 れ、ポンプ室 21の容積変化を正確に伝えることができない。そのため、ダイヤフラム 2 2と圧電素子 23の貼付位置精度を高くする必要がある。
特許文献 1:特開 2003— 214349号公報
発明の開示
発明が解決しょうとする課題
[0005] そこで、本発明の好ま 、実施形態の目的は、ダイヤフラムが柔らか!/、材料で形成さ れて 、ても、圧電素子の変位をポンプ室の容積変化として無駄なく伝えることができ 、流体輸送能力の優れた圧電マイクロポンプを提供することにある。
課題を解決するための手段
[0006] 上記目的を達成するため、本発明は、ポンプ室をダイヤフラムで隔離し、ダイヤフラム の背面に圧電素子を配置し、圧電素子の屈曲変形によりダイヤフラムを追従変形さ せ、ポンプ室を容積変化させてポンプ室内の流体を輸送する圧電マイクロポンプに おいて、上記圧電素子の背面に当接してこれを支持する支持部材を設けたことを特 徴とする圧電マイクロポンプを提供する。
[0007] 圧電素子に交番電圧 (矩形波電圧または交流電圧)を印加すると、圧電素子が板厚 方向に屈曲変形し、ダイヤフラムも追従して変形する。ダイヤフラムが柔らかい材料 で形成されていると、ポンプ室内に満たされた流体の圧力変化のため、ダイヤフラム の周辺部 (圧電素子が配置されて!、な 、部分)が圧電素子と逆方向に橈み、圧電素 子の変位をポンプ室の容積変化として十分に伝えることができない。しかし、圧電素 子の背面が支持部材によって支持されているので、ダイヤフラムの周辺部の逆方向 の橈みを支持部材が規制し、圧電素子が浮いた状態になるのを防止する。その結果 、圧電素子の変位をポンプ室の容積変化として確実に伝えることができ、流体輸送 能力を向上させることができる。
[0008] 圧電素子の背面は支持部材に対して接触しているだけで、接着などで拘束されてい る訳ではない。そのため、支持部材が圧電素子の屈曲変位を制限せず、圧電素子を 効率よく駆動させることができる。なお、本発明でダイヤフラムの背面とは、ダイヤフラ ムのポンプ室と反対側の面のことであり、圧電素子の背面とは、圧電素子のポンプ室 と反対側の面のことである。
[0009] 圧電素子をダイヤフラムの中央に貼り付けることが好ましいが、本発明は中央部から ズレが生じても、支持部材によって圧電素子の背面方向へのずれが規制されるので 、性能低下を生じにくい。また、ダイヤフラムが圧電素子に比べてかなり大きい場合で も性能低下を生じにくい。柔かい (ヤング率の低い)ダイヤフラムを使用でき、低電圧 駆動の圧電素子でもポンプ作用を得やす!/、。
[0010] 支持部材としては、例えばダイヤフラムを支持しているケースの内壁を用いてもよいし 、ケースの内側に別部材を配置してもよい。支持部材はケースなどと同様な比較的 硬質の材料で形成してもよいし、ゴムなどの弾性体を用いてもよい。ダイヤフラムは、 従来と同様にポリイミドのような有機材料でもよいし、ゴム、エラストマなど任意の弾性 材料も使用できる。金属板も使用可能であるが、望ましくはヤング率が 20MPa以下、 厚さが 100 μ m以下の柔弹性材料がよい。
[0011] 好ましい実施形態によれば、支持部材は非駆動時における圧電素子の背面全面を 支持する平面部材がよい。この場合には、圧電素子がポンプ室に向力つて凸となるよ うに変形したときには支持部材が圧電素子の外周部背面または両端部背面を支持し 、圧電素子がポンプ室に向力つて凹となるように変形したときには支持部材が圧電素 子の中央部背面を支持することができる。そのため、圧電素子がいずれの向きに変 形した場合でもダイヤフラムを常にポンプ室方向に変位させ、ポンプ室の体積を減少 させることができる。その結果、ポンプ室の流体を確実に押し出すことができ、流体輸 送能力を向上させることができる。
[0012] 好ましい実施形態によれば、圧電素子は長方形に形成され、支持部材は圧電素子 の長手方向両端部の背面を支持し、圧電素子の中央部背面側には圧電素子が屈 曲変形可能な空間が設けられているものがよい。圧電素子の形状としては、円板形 や長方形などがあるが、長方形状の圧電素子をその長手方向両端部 (短辺側の 2辺 )を支点とするモードで屈曲変位させた場合、円板状の圧電素子をその外周部を支 点とするモードで屈曲変位させた場合よりも大きな変位体積が得られる。そのため、 長方形の圧電素子をダイヤフラム駆動用ァクチユエータとして使用すれば、ポンプ効 率を向上させることができる。支持部材が圧電素子の背面全面を支持した場合には 、圧電素子がいずれの向きに変形したときでもダイヤフラムを常にポンプ室方向に変 位させることができる力 圧電素子がポンプ室に対して凹に変形したときの変位体積 が凸に変形したときに比べて小さい。そこで、支持部材が圧電素子の長手方向両端 部の背面を支持する構造とすることにより、圧電素子がポンプ室に向かって凸に変形 する場合は、ダイヤフラムの中央部を押し上げ、圧電素子がポンプ室に向力つて凹 に変形する場合は、ダイヤフラムの中央部を下方に引張るように変位する。いずれの 場合も大きな変位体積を得ることができる。従って、ポンプ室の体積を周期的に大き く変動させることができ、ポンプ効率を高めることができる。
[0013] 好ましい実施形態によれば、圧電素子はダイヤフラムの可変位領域より小形に形成 されており、ダイヤフラムの圧電素子より外周側の全周に亘つて、圧電素子が配置さ れて 、な 、余白部が設けられて 、る構造とするのがよ 、。圧電素子をダイヤフラムの 可変位領域と同等な大きさにした場合、ダイヤフラムに余白部分が殆どないので、圧 電素子が変位した時にダイヤフラムの一部に過大な力がかかり、圧電素子の変位が 制約される可能性がある。これに対し、圧電素子をダイヤフラムの可変位領域より小 形とし、圧電素子より外周側にダイヤフラムの余白部分を設けた場合には、圧電素子 が変位した時にダイヤフラムの余白部分が自由に伸縮することができ、圧電素子の 変位を拘束しない。そのため、圧電素子が自由に屈曲変位でき、ポンプ効率が向上 する。
[0014] 好ましい実施形態によれば、圧電素子をダイヤフラムに面接着するのがよい。この場 合には、ダイヤフラムが圧電素子と密着して動くことにより、圧電素子の変位を確実に ダイヤフラムに伝えることができる。また、圧電素子が左右にフリーに動くのを防止す ることができる。接着剤としては、ダイヤフラムと同様にシリコーン系やウレタン系など の弾性接着剤を用いるのがよい。なお、圧電素子をダイヤフラムの中央部に対して多 少位置ずれして 、ても、ポンプ効率に大きな影響がな 、。
[0015] 好ましい実施形態によれば、ダイヤフラムと支持部材との厚み方向隙間を圧電素子 の厚みより狭く設定し、圧電素子をダイヤフラムの弾性によって支持部材に押し付け るようにするのがよ!/、。ダイヤフラムの弾性によって圧電素子を予め支持部材に押し つけて保持することができる。圧電素子と支持部材とを確実に接触させることができる ため、圧電素子の屈曲変形により、ポンプ室の体積を確実に変動させることができる 。このようにダイヤフラムの弾性によって圧電素子を予め支持部材に押しつけて保持 する場合には、圧電素子とダイヤフラムとを接着しなくてもよい。接着しない場合には 、圧電素子がダイヤフラムに拘束されずに自由に変位できるので、圧電素子を低電 圧で効率よく駆動することができる。なお、圧電素子とダイヤフラムとを接着しない場 合、圧電素子がダイヤフラムに対して平面方向に位置ずれを起こすことがある。そこ で、支持部材に圧電素子の外周面を所定の隙間をもって位置規制する周壁部を設 けるのがよい。この場合には、圧電素子の位置ずれを防止できるとともに、圧電素子 の変位に対して周壁部が拘束力を持たないので、圧電素子を効率よく駆動すること ができる。
発明の好ましい実施形態の効果
[0016] 以上のように、本発明によれば、圧電素子の背面を支持部材によって支持したので、 ダイヤフラムの周辺部の変位を支持部材が規制し、圧電素子が浮いた状態になるの を防止できる。その結果、圧電素子の変位をポンプ室の容積変化として確実に伝え ることができ、流体輸送能力を向上させることができる。
発明を実施するための最良の形態
[0017] 以下に、本発明の好ましい実施の形態を、実施例に基づいて説明する。
実施例 1
[0018] 図 1〜図 4は本発明に力かる圧電マイクロポンプの第 1実施例を示す。本実施例のマ イク口ポンプ Pは、底板 1と、圧電素子 2と、ダイヤフラム 3と、枠体 4と、天板 5とで構成 され、これら部品が互いに積層接着されている。
[0019] 底板 1は、例えばガラスエポキシ基板ゃ榭脂材料によって形成されており、中央部に 振動室を構成する長方形の凹部 laが形成されている。本実施例では、後述するよう に凹部 laの底壁 la が圧電素子 2の背面に当接してこれを支持する支持部材となつ
1
ている。凹部 laの底面には、圧電素子 2のリード線 2aを引き出すための 2つの引き出 し孔 lbと、振動室を大気に開放するための複数の貫通孔 lcとが形成されている。凹 部 laの深さは、圧電素子 2の厚みと同等または僅かに浅い。
[0020] 圧電素子 2は長方形に形成され、凹部 laに収納されている。圧電素子 2の外形寸法 は凹部 laの内寸より小さぐ圧電素子 2を凹部 laに収納した状態で圧電素子 2の 4つ の辺と凹部 laの内側縁との間に所定の隙間 δ (図 3参照)が形成される。この隙間 δ は、圧電素子 2が屈曲変位したとき、ダイヤフラム 3の十分に伸びることができる余白 部分 3aの幅に対応する。この実施例の圧電素子 2は公知のバイモルフ型セラミック 圧電素子である。圧電素子 2の下面の電極には 2本のリード線 2aが接続されており、 これらリード線 2aに矩形波信号または交流信号を印加することにより、長手方向両端 部(短辺側の 2辺)を支点とし、長手方向中央部を最大変位点とするベンディングモ ードで屈曲振動させることができる。なお、圧電素子 2としては、ュ-モルフ型圧電素 子でもよい。
[0021] ダイヤフラム 3はゴム、エラストマ、軟質樹脂のような弾性シート材料で、底板 1と同一 外形に形成されている。ダイヤフラム 3の背面、つまり振動室側の面には接着剤が全 面に塗布されており、ダイヤフラム 3を圧電素子 2が収納された底板 1上に密着させる ことにより、圧電素子 2とダイヤフラム 3とが面接着されるとともに、底板 1の凹部 laを 除く上面とダイヤフラム 3とが接着される。
[0022] 枠体 4は、例えばガラスエポキシ基板ゃ榭脂材料によって構成されており、ポンプ室 6を形成するため長方形枠状に形成されて 、る。枠体 4の 1つの短辺側側面の外側 に流入通路 7を形成するための側壁部 4aが設けられ、 1つの長辺側側面の外側に排 出通路 8を形成するための側壁部 4bが設けられている。枠体 4の内側(ポンプ室)と 流入通路 7との間の側壁には流入孔 4cが形成され、この流入孔 4cのポンプ室側の 側面にはポンプ室 6への液体の流入のみを許容する逆止弁 10が取り付けられている 。枠体 4の内側(ポンプ室)と排出通路 8との間の側壁には排出孔 4dが形成され、こ の排出孔 4dの排出通路側の側面にはポンプ室 6からの液体の排出のみを許容する 逆止弁 11が取り付けられている。この例では、逆止弁 10, 11をゴムなどの弹性シ一 トで構成した力 これに限るものではない。枠体 4の下面はダイヤフラム 3の上面に接 着されている。
[0023] 天板 5は、例えばガラスエポキシ基板ゃ榭脂材料によって構成されており、枠体 4の 上面に接着されている。天板 5を接着することにより、天板 5とダイヤフラム 3との間に ポンプ室 6と流入通路 7と排出通路 8とが形成される。流入通路 7および排出通路 8に はそれぞれチューブ 9a, 9bが接続され、チューブ 9a, 9bを介して図示しない液体供 給部および液体排出部と接続されている。この実施例では、チューブ 9a, 9bとしてシ リコンチューブを用いた。
[0024] 図 5は上記マイクロポンプ Pの動作を説明するための概略図であり、(a)は非駆動時 または電圧切替時、(b)は圧電素子 2が上に凸に変形した時、(c)は圧電素子 2が下 に凸に変形した時を示す。
[0025] 図 6の(a)は、圧電素子 2に印加される交番電圧を示す。圧電素子 2に +Vと Vの 間で変化する交番電圧を印加すると、例えば +Vの半周期の間、圧電素子 2は図 5 の(b)のように上に凸に変形し、 Vの半周期の間、圧電素子 2は図 5の(c)のように 下に凸に変形する。電圧切替え時には、(a)のように圧電素子 2は平面形状に復帰 するため、ダイヤフラム 3も平坦に戻る。なお、電圧の向きと圧電素子 2の変形の向き は、圧電素子 2の分極方向に関係するので、上記とは逆に +Vの半周期の間、圧電 素子 2を下に凸に変形させ、 Vの半周期の間、圧電素子 2を上に凸に変形させるこ とちでさる。
[0026] 圧電素子 2が上に凸に変形したとき、ダイヤフラム 3の中央部がポンプ室 6に向かって 変位し、ポンプ室 6内の液体を押し出す。このとき、ポンプ室 6内の液圧によってダイ ャフラム 3は逆方向に押されるが、圧電素子 2の長手方向両端部が底板 1の凹部 la の底壁 la に接触して支持されるので、ダイヤフラム 3がポンプ室 6と逆方向に橈むこ
1
と力 Sなく、効率よく液体を押し出すことができる。なお、幅 δを持つダイヤフラム 3の余 白部分 3aが 4辺に設けられているので、圧電素子 2が上に凸に変形したとき、圧電素 子 2の短手方向両端部 (長辺側の 2辺)に対応する余白部分 3aが伸びることで、圧電 素子 2の変位が拘束されることなぐ大きく屈曲変形することができる。逆に、圧電素 子 2が下に凸に変形したとき、圧電素子 2の長手方向中央部が底板 1の凹部 laの底 壁 la に接触するので、圧電素子 2の両端部が持ち上がり、ダイヤフラム 3の周辺部
1
がポンプ室 6に向力つて変位し、ポンプ室 6内の液体を押し出す。このときも、圧電素 子 2の長手方向両端部(短辺側の 2辺)および短手方向両端部 (長辺側の 2辺)に対 応する余白部分 3aが伸びることで、圧電素子 2の変位が強く拘束されることなぐ圧 電素子 2が屈曲変形することができる。
[0027] 図 6の(b)は上記マイクロポンプ Pの吐出流量の変化を示す。上記のように圧電素子 2がいずれの向きに変形した場合でもダイヤフラム 3を常にポンプ室 6方向に変位さ せるので、ポンプ室 6から液体を吐出する間隔が短ぐポンプ室 6からほぼ間断なく液 体を吐出することができる。圧電素子 2が上に凸に変化した時の吐出流量は、圧電 素子 2が下に凸に変化した時の吐出流量に比べて大きい。そのため、図 6の(b)に示 すように、大流量吐出と小流量吐出とが交互に現れる。
[0028] 上記構成のマイクロポンプにおいて、ポンプ室 6の大きさを 25. 5mm X 12. 5mm X 1. 6mmとし、圧電素子 2に ± 5V、 17Hzの矩形波状の電圧を印加して駆動したとき 、吐出流量は 6. 4 μ 1/s,ポンプ圧は 350Paを得ることができた。
実施例 2
[0029] 図 7は本発明の好ましい第 2実施例を示す。この実施形態は、第 1実施例におけるダ ィャフラム 3と底板 1の凹部底壁 la との隙間 Hを、圧電素子 2の厚み Tより狭くした例
1
である。この場合には、ダイヤフラム 3の弾性によって圧電素子 2を底壁 laに押しつ けて保持することができる。そのため、圧電素子 2とダイヤフラム 3とを接着しなくてもよ い。但し、圧電素子 2とダイヤフラム 3とを接着してもよいことは勿論である。
[0030] 圧電素子 2とダイヤフラム 3とを接着しない場合には、両者を接着した場合に比べて 圧電素子 2がより自由に屈曲変形することができ、大きな変位を得ることができる。そ のため、ポンプ効率が向上する。
実施例 3
[0031] 図 8は本発明の好ましい第 3実施例を示す。図 8の(a)は非駆動時または電圧切替 時、図 8の (b)は圧電素子 2が上に凸に変形した時、図 8の(c)は圧電素子 2が下に 凸に変形した時である。
[0032] この実施例では、底板 1の凹部 laに、圧電素子 2の長手方向両端部つまり短辺側の 2辺を支持する枕部(支持部材) Idを設けたものである。圧電素子 2は枕部 Idの上に 載っているだけで、接着はされていない。枕部 Idは底板 1と一体に形成してもよいし 、別部品を底板 1上に固定してもよい。枕部 Idの間には、圧電素子 2が自由に変形 できる振動空間 leが設けられている。
[0033] 上記のように、圧電素子 2の長手方向両端部を枕部 Idで支持し、圧電素子 2を振動 室内部で持ち上げる構造とする。これにより、(b)のように圧電素子 2が上に凸に変形 する場合は、圧電素子 2は中央部付近でダイヤフラム 3を上方に押し上げ、ポンプ室 6の容積を縮小させるため、ポンプ室 6内の液体を押し出すことができる。一方、(c) のように圧電素子 2が下に凸に変形する場合は、ダイヤフラム 3を下方に引張るように 変位する。枕部 Idの間には振動空間 leが設けられているので、圧電素子 2の中央 部は下方へ大きく変位できる。圧電素子 2の下方への変位に追従してダイヤフラム 3 も一体に変位し、ポンプ室 6の容積を拡大できる。そのため、ポンプ室 6へ液体を吸 い込むことができる。
[0034] この実施例では、圧電素子 2が下に凸に変形するとき、ポンプ室 6へ液体を吸い込み 、圧電素子 2が上に凸に変形するとき、ポンプ室 6の液体を排出できる。圧電素子 2 が上下に屈曲変位するとき、圧電素子 2の両端部を枕部 Idが常に支持して 、るので 、圧電素子 2が浮いた状態にならず、圧電素子 2の変位をポンプ室 6の容積変化とし て効果的に伝えることができるこの実施例のマイクロポンプでは、第 1実施例と異なり 、圧電素子 2のポンプ室 6と逆方向の屈曲を有効に活用できるため、ポンプの吐出流 量を大きくでき、ポンプ効率を高めることができる。
[0035] 上記実施例では、圧電素子 2としてバイモルフ型の圧電素子を用いた。この圧電素 子は、交番電圧を印加することで、両方向に同等の屈曲変位をさせるものであるが、 例えば一方向にのみ大きな変位が得られる圧電素子を使用してもよい。第 1実施例 では圧電素子 2の上に凸の変形が吐出量に大きく影響するので、上方向にのみ大き な変位が得られる圧電素子を使用することで、ポンプ効率を高めることができる。なお 、一方向にのみ大きな変位が得られる圧電素子は、中間層に対して上下で非対称な 積層構造にすることにより実現できる。また、上下で対称な積層構造であっても、印 加電圧を正負で非対称にして、一方側にのみ大きな電圧を印加することにより、一方 側にのみ大きく変位させることができる。さらに両者を組み合わせることで、より大きな 変位を得ることちできる。
[0036] 上記実施例では、長方形の圧電素子を用いたが、正方形や円形の圧電素子を用い ることもできる。但し、長方形の圧電素子の場合、正方形や円形の圧電素子より大き な変位体積が得られるので、小型で効率のょ 、マイクロポンプを実現できる利点があ る。
[0037] 上記実施例では、圧電素子の背面を支持する支持部材として、ケースを構成する底 板を用いた力 ケースとは別の部材を用いてもよい。この場合、支持部材は硬質材料 に限らず、弾性ゴム等の軟質材料を使用してもよい。さらに、ケースは図 2に示すよう に底板と枠体と天板とで構成したものに限らず、ダイヤフラムによってポンプ室を隔離 でき、圧電素子の背面を支持する支持部材を設けることができる構造であれば、如何 なる構造であってもよい。
図面の簡単な説明
[0038] [図 1]本発明に係る圧電マイクロポンプの第 1実施例の斜視図である。
[図 2]図 1に示す圧電マイクロポンプの分解斜視図である。
[図 3]図 1に示す圧電マイクロポンプの縦断面図である。
[図 4]図 3の IV— IV線断面図である。
[図 5]図 1に示す圧電マイクロポンプの作動を示す概略断面図であり、 (a)は非駆動 時、(b)は上に凸の状態、(c)は下に凸の状態を示す。
[図 6] (a)は圧電素子に印加される交番電圧を示し、 (b)はマイクロポンプの吐出流量 の変化を示す。
[図 7]本発明の第 2実施例の概略断面図である。
[図 8]本発明の第 3実施例の概略断面図であり、(a)は非駆動時、(b)は上に凸の状 態、(c)は下に凸の状態を示す。
[図 9]従来のマイクロポンプの一例の断面図であり、(a)は非駆動時、(b)は圧電素子 が変形した状態を示す。
符号の説明
[0039] P マイクロポンプ
1 底板
la 凹部 (振動室)
la 底壁 (支持部材) Id 枕部 (支持部材)
2 圧電素子
3 ダイヤフラム
3a 余白部
枠体
5 天板
ポンプ室 流入通路 排出通路
10, 11 逆止弁

Claims

請求の範囲
[1] ポンプ室をダイヤフラムで隔離し、ダイヤフラムの背面に圧電素子を配置し、圧電素 子の屈曲変形によりダイヤフラムを追従変形させ、ポンプ室を容積変化させてポンプ 室内の流体を輸送する圧電マイクロポンプにおいて、
上記圧電素子の背面に当接してこれを支持する支持部材を設けたことを特徴とする 圧電マイクロポンプ。
[2] 上記支持部材は、非駆動時における上記圧電素子の背面全面を支持する平面部材 であることを特徴とする請求項 1に記載の圧電マイクロポンプ。
[3] 上記圧電素子は長方形に形成され、上記支持部材は上記圧電素子の長手方向両 端部の背面を支持し、上記圧電素子の中央部背面側には上記圧電素子が屈曲変 形可能な空間が設けられて 、ることを特徴とする請求項 1に記載の圧電マイクロボン プ。
[4] 上記圧電素子は上記ダイヤフラムの可変位領域より小形に形成されており、上記ダ ィャフラムには上記圧電素子より外周側の全周に亘つて、上記圧電素子が配置され て 、な 、余白部が設けられて 、ることを特徴とする請求項 1な 、し 3の 、ずれかに記 載の圧電マイクロポンプ。
[5] 上記圧電素子は上記ダイヤフラムに面接着されていることを特徴とする請求項 1ない し 4の 、ずれかに記載の圧電マイクロポンプ。
[6] 上記ダイヤフラムと上記支持部材との厚み方向隙間は、上記圧電素子の厚みより狭 く設定されており、上記圧電素子は上記ダイヤフラムの弾性によって上記支持部材 に押し付けられて 、ることを特徴とする請求項 1な 、し 4の 、ずれかに記載の圧電マ イク口ポンプ。
PCT/JP2007/052323 2006-03-22 2007-02-09 圧電マイクロポンプ WO2007108246A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2008506195A JP4793441B2 (ja) 2006-03-22 2007-02-09 圧電マイクロポンプ
DE112007000669T DE112007000669B4 (de) 2006-03-22 2007-02-09 Piezoelektrische Mikropumpe
US12/234,858 US8454327B2 (en) 2006-03-22 2008-09-22 Piezoelectric micropump

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006079424 2006-03-22
JP2006-079424 2006-03-22

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US12/234,858 Continuation US8454327B2 (en) 2006-03-22 2008-09-22 Piezoelectric micropump

Publications (1)

Publication Number Publication Date
WO2007108246A1 true WO2007108246A1 (ja) 2007-09-27

Family

ID=38522283

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/052323 WO2007108246A1 (ja) 2006-03-22 2007-02-09 圧電マイクロポンプ

Country Status (5)

Country Link
US (1) US8454327B2 (ja)
JP (1) JP4793441B2 (ja)
CN (1) CN101427026A (ja)
DE (1) DE112007000669B4 (ja)
WO (1) WO2007108246A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160356314A1 (en) * 2015-06-05 2016-12-08 Jtekt Corporation Rolling bearing apparatus

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102449363B (zh) * 2009-05-25 2015-02-04 株式会社村田制作所 阀、流体装置及流体供给装置
FR2952135B1 (fr) * 2009-11-04 2013-02-22 Seb Sa Procede de pilotage d'une pompe piezoelectrique d'appareil electromenager et appareil electromenager mettant en oeuvre un tel procede
US8404132B2 (en) * 2011-03-31 2013-03-26 Fujifilm Corporation Forming a membrane having curved features
EP2767715B1 (en) * 2011-10-11 2018-04-04 Murata Manufacturing Co., Ltd. Fluid-control device, and method for adjusting fluid-control device
WO2013119860A2 (en) * 2012-02-10 2013-08-15 Kci Licensing, Inc. Systems and methods for regulating the temperature of a disc pump system
CN103362786B (zh) * 2013-07-12 2018-07-13 重庆中镭科技有限公司 一种压电微型隔膜泵
DE102014013152A1 (de) * 2014-09-04 2016-03-10 Fresenius Medical Care Deutschland Gmbh Verfahren zur Bestimmung eines Systemkompressibilitätswertes eines medizinischen Membranpumpenantriebs
TWI651110B (zh) * 2017-08-22 2019-02-21 研能科技股份有限公司 空氣過濾防護器
CN109882388B (zh) * 2019-03-01 2020-06-30 浙江师范大学 一种累积压缩式微型空压机
EP3754733A1 (en) 2019-06-19 2020-12-23 Albert-Ludwigs-Universität Freiburg Piezoelectric actuator and microfluidic device
CN110594137A (zh) * 2019-10-28 2019-12-20 南京航空航天大学 一种板式无阀压电泵及其工作方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH038680U (ja) * 1989-06-09 1991-01-28
JP2001065461A (ja) * 1999-08-26 2001-03-16 Matsushita Electric Works Ltd 圧電ダイヤフラムポンプ及びこれを用いた血圧計及び圧電ダイヤフラムポンプの製造方法
JP2005133704A (ja) * 2003-06-17 2005-05-26 Seiko Epson Corp ポンプ

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3107630A (en) * 1955-01-31 1963-10-22 Textron Inc Non-magnetic electro-hydraulic pump
US2928409A (en) * 1955-01-31 1960-03-15 Textron Inc Non-magnetic electro hydraulic transfer valve
US4430529A (en) * 1980-12-24 1984-02-07 Murata Manufacturing Co., Ltd. Piezoelectric loudspeaker
JPH0167479U (ja) 1987-10-21 1989-04-28
JPH038680A (ja) * 1989-06-05 1991-01-16 Hitachi Elevator Eng & Service Co Ltd エレベータの作業応援要請装置
JP2000314381A (ja) * 1999-03-03 2000-11-14 Ngk Insulators Ltd ポンプ
TW558611B (en) * 2001-07-18 2003-10-21 Matsushita Electric Ind Co Ltd Small pump, cooling system and portable equipment
JP2003214349A (ja) 2002-01-24 2003-07-30 Matsushita Electric Ind Co Ltd マイクロポンプおよびその製作方法
US6827559B2 (en) * 2002-07-01 2004-12-07 Ventaira Pharmaceuticals, Inc. Piezoelectric micropump with diaphragm and valves
US7048519B2 (en) * 2003-04-14 2006-05-23 Agilent Technologies, Inc. Closed-loop piezoelectric pump
US7484940B2 (en) * 2004-04-28 2009-02-03 Kinetic Ceramics, Inc. Piezoelectric fluid pump
DE602006013936D1 (de) * 2005-01-26 2010-06-10 Panasonic Elec Works Co Ltd Piezolelektrisch betriebene diaphragmapumpe

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH038680U (ja) * 1989-06-09 1991-01-28
JP2001065461A (ja) * 1999-08-26 2001-03-16 Matsushita Electric Works Ltd 圧電ダイヤフラムポンプ及びこれを用いた血圧計及び圧電ダイヤフラムポンプの製造方法
JP2005133704A (ja) * 2003-06-17 2005-05-26 Seiko Epson Corp ポンプ

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160356314A1 (en) * 2015-06-05 2016-12-08 Jtekt Corporation Rolling bearing apparatus
US9784318B2 (en) * 2015-06-05 2017-10-10 Jtekt Corporation Rolling bearing apparatus

Also Published As

Publication number Publication date
JPWO2007108246A1 (ja) 2009-08-06
JP4793441B2 (ja) 2011-10-12
US8454327B2 (en) 2013-06-04
US20090010779A1 (en) 2009-01-08
CN101427026A (zh) 2009-05-06
DE112007000669T5 (de) 2009-01-29
DE112007000669B4 (de) 2013-07-04

Similar Documents

Publication Publication Date Title
JP4793441B2 (ja) 圧電マイクロポンプ
CN101490419B (zh) 压电泵
JP3629405B2 (ja) マイクロポンプ
KR101088943B1 (ko) 압전 마이크로 블로어
CN102597520B (zh) 流体泵
US10781808B2 (en) Valve, fluid control device, and sphygmomanometer
JP5012889B2 (ja) 圧電マイクロブロア
JP5682513B2 (ja) 流体制御装置
JP5533823B2 (ja) 流体制御装置
JP5287854B2 (ja) 圧電マイクロブロア
JP5528404B2 (ja) 流体制御装置
JPWO2012140967A1 (ja) ポンプ装置
WO2007111049A1 (ja) マイクロポンプ
JP4840505B2 (ja) 圧電ポンプ
JP4047803B2 (ja) ダイアフラムポンプ
JP4957501B2 (ja) 圧電マイクロブロア
JP6127361B2 (ja) 流体制御装置
JP3130483B2 (ja) マイクロポンプ
JP5003154B2 (ja) 圧電ポンプ
JP2008054367A (ja) 圧電アクチュエータ及びこれを用いたポンプ
JP4497021B2 (ja) 圧電ダイヤフラムポンプ
JP4645159B2 (ja) マイクロポンプ
JP4878587B2 (ja) マイクロポンプ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07713979

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2008506195

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 200780014133.2

Country of ref document: CN

RET De translation (de og part 6b)

Ref document number: 112007000669

Country of ref document: DE

Date of ref document: 20090129

Kind code of ref document: P

122 Ep: pct application non-entry in european phase

Ref document number: 07713979

Country of ref document: EP

Kind code of ref document: A1

REG Reference to national code

Ref country code: DE

Ref legal event code: 8607