WO2007102517A1 - 粉末法Nb3Sn超電導線材の前駆体および粉末法Nb3Sn超電導線材 - Google Patents

粉末法Nb3Sn超電導線材の前駆体および粉末法Nb3Sn超電導線材 Download PDF

Info

Publication number
WO2007102517A1
WO2007102517A1 PCT/JP2007/054356 JP2007054356W WO2007102517A1 WO 2007102517 A1 WO2007102517 A1 WO 2007102517A1 JP 2007054356 W JP2007054356 W JP 2007054356W WO 2007102517 A1 WO2007102517 A1 WO 2007102517A1
Authority
WO
WIPO (PCT)
Prior art keywords
powder
sheath
precursor
wire
raw material
Prior art date
Application number
PCT/JP2007/054356
Other languages
English (en)
French (fr)
Inventor
Kyoji Zaitsu
Takayoshi Miyazaki
Original Assignee
Kabushiki Kaisha Kobe Seiko Sho
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kabushiki Kaisha Kobe Seiko Sho filed Critical Kabushiki Kaisha Kobe Seiko Sho
Priority to EP07715247A priority Critical patent/EP1993107A1/en
Priority to US12/224,291 priority patent/US20090011941A1/en
Publication of WO2007102517A1 publication Critical patent/WO2007102517A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N60/00Superconducting devices
    • H10N60/01Manufacture or treatment
    • H10N60/0184Manufacture or treatment of devices comprising intermetallic compounds of type A-15, e.g. Nb3Sn
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/02Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by mechanical features, e.g. shape
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/02Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by mechanical features, e.g. shape
    • B23K35/0222Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by mechanical features, e.g. shape for use in soldering, brazing
    • B23K35/0244Powders, particles or spheres; Preforms made therefrom

Definitions

  • the present invention relates to an NbSn superconducting wire produced by a powder method and a precursor therefor
  • the present invention relates to a powder method Nb Sn superconducting wire useful as a material for a superconducting magnet for generating a high magnetic field and a precursor thereof.
  • Nb Sn wire As a superconducting wire used for a superconducting magnet for generating a high magnetic field, Nb Sn wire is used.
  • the bronze method is mainly used for the production of this Nb Sn superconducting wire.
  • an internal diffusion method can be used as a method for producing the Nb Sn superconducting wire.
  • Patent Document 1 For example, Patent Document 1, Japanese Patent Document 1
  • the Sn concentration can be set as high as possible, and the superconducting characteristics are improved.
  • the composition of the material due to the composition of the material, the Sn core and the Cu base material are in direct contact. On the other hand, brittleness and Cu-Sn composite are easily formed, so that intermediate annealing cannot be applied, there is a processing limit, and strong processing is difficult.
  • one or more metals (alloy elements) selected from the group consisting of Ti, Zr, Hf, V, and Ta are reacted with Sn at a high temperature to cause an alloy or a metal thereof.
  • An intermediate compound (hereinafter sometimes referred to as “Sn compound”) is pulverized to obtain a raw material powder of Sn compound, and this powder is used as a core material (powder core portion described later) as a sheath made of Nb or an Nb-based alloy
  • a method is disclosed in which a heat treatment (diffusion heat treatment) is performed after filling the inside and reducing the diameter.
  • a heat treatment diffusion heat treatment
  • Fig. 1 is a cross-sectional view schematically showing a state in which an Nb Sn superconducting wire is manufactured by a powder method.
  • 1 is a sheath (tubular body) made of Nb or Nb-based alloy
  • 2 is a powder core portion filled with raw material powder
  • 3 is a Cu coating portion covering the outer periphery of the sheath.
  • the Cu coating 3 is arranged as a stabilizer for the Nb Sn superconducting wire, for example, oxygen-free copper.
  • a raw material powder containing at least Sn is filled in the powder core portion 2, extruded, and subjected to diameter reduction processing such as wire drawing to obtain a primary composite wire ( After forming a superconducting wire precursor, a NbSn superconducting phase is formed at the interface between the sheath and the raw material powder by winding in a coil shape and subjecting it to a heat treatment.
  • the heat treatment temperature for forming the superconducting phase is a force that requires a high temperature of at least about 900 to 1000 ° C. in the Nb—Sn binary system. An increase in size is required.
  • the superconducting wire is encapsulated in a solenoid shape and heat-treated, and in this case, an insulator made of glass fiber is used to prevent an electrical short circuit. There is a problem that the insulating material made of glass fiber becomes brittle in the heat treatment at a high temperature.
  • the power of heat treatment is 600-750 by adding Cu to the raw material powder. It is also known that the reaction proceeds even when the temperature is lowered to about ° C.
  • the powder method generally involves adding an appropriate amount of Cu powder to the raw material powder and then heat-treating the intermetallic compound.
  • FIG. 1 a force schematically showing a single core is used.
  • a multi-core material multi-core material in which a plurality of the above-mentioned primary composite wires are inserted into a billet (cylindrical member) made of Cu. It is generally used in the form of a core type composite wire).
  • Patent Document 1 Japanese Published Patent No. 49-114389
  • Patent Document 2 Japanese Published Patent No. 11-250749
  • Nb Sn formation reaction in the case of adopting a composition in which Cu powder is mixed with raw material powder in the powder method includes N
  • the Sn reaction does not proceed effectively without the diffusion of Sn into the b-base metal as well as the diffusion of Cu into the Nb-base metal.
  • a powder method that does not limit the solid solubility limit of Sn is applied, it is governed by the diffusion rate of Sn and Cu. It cannot be said that there is Sn that remains in the powder core without reacting, and in many cases, sufficient reaction efficiency is not obtained as desired.
  • the present invention has been made under these circumstances, and its purpose is to improve the Nb Sn production reaction efficiency even in a relatively low practical temperature range of about 600 to 750 ° C. , Excellent
  • the precursor of the present invention that has achieved the above object is that a sheath powder containing at least Nb is filled with a raw material powder containing at least Sn, and this is reduced in diameter to form a wire.
  • Powder method that forms a superconducting layer at the interface between the sheath and powder by heat treatment Nb Sn
  • Nb-based metal part an Nb or Nb-based alloy part (hereinafter sometimes collectively referred to as “Nb-based metal part”) and a Cu or Cu-based alloy part in the sheath.
  • the ratio of Nb base metal part: Cu base metal part is 50: 1 to 5: 1 (mass ratio)
  • the sheath is configured so that the raw material powder and the Cu-based metal portion do not contact each other, and
  • the outer periphery of the sheath is made of Nb or Ta.
  • Use of a Sn diffusion barrier layer is a preferable requirement.
  • the content of the Cu component in the raw material powder is preferably 2 to 15 mass% with respect to the entire raw material powder.
  • at least one metal and Sn alloy powder or intermetallic compound powder selected from the group consisting of Ti, Zr, Hf, V, and Ta, Sn powder and Cu powder are further added. Addition mixed.
  • a primary composite wire is formed by drawing a single core wire having a Cu coating portion covering the outer peripheral side of the sheath. By heating this, a single-core superconducting wire can be obtained.
  • a single-core wire having a Cu coating covering the outer periphery of the sheath is drawn to form a primary composite wire, and a plurality of the primary composite wires are inserted into a copper billet to form a multi-core composite.
  • a multi-core Nb Sn superconductor is formed by drawing and heat-treating this multi-core composite wire.
  • FIG. 1 is a cross-sectional view schematically showing a state in which an Nb Sn superconducting wire is manufactured by a powder method.
  • FIG. 2 is a cross-sectional view schematically showing one configuration of a sheath used in the precursor of the present invention.
  • FIG. 3 is a cross-sectional view schematically showing another configuration of the sheath used in the precursor of the present invention.
  • FIG. 4 is a cross-sectional view schematically showing still another configuration of the sheath used in the precursor of the present invention.
  • FIG. 5 is a cross-sectional view schematically showing another configuration of the sheath used in the precursor of the present invention.
  • FIG. 6 is a cross-sectional view schematically showing the configuration of a sheath when forming a Sn diffusion barrier layer.
  • the present invention has been completed by finding that the above object can be achieved brilliantly if the metal part and the Cu-based metal part are combined.
  • FIG. 2 is a cross-sectional view schematically showing one configuration of the precursor of the present invention.
  • the sheath la used in the precursor of the present invention comprises Nb-based metal tubes 5, 6, and 7 and Cu-based metal tubes 8 and 9, alternating so that the innermost layer and the outermost layer are Nb-based metal tubes 5 and 7. It is constructed by laminating. That is, the sheath used in the present invention is composed of an Nb-based metal portion made of Nb-based metal tubes 5, 6, and 7 and a Cu-based metal portion made of Cu-based metal tubes 8 and 9. It is. Then, the raw material powder is filled in the powder core portion 2 in the central portion constituted by the laminated members.
  • Fig. 3 is a cross-sectional view schematically showing another configuration of the sheath used in the precursor of the present invention, in which 10 is an Nb-based metal sheet (a sheet made of Nb or an Nb-based alloy).
  • 11 represents a Cu-based metal sheet (a sheet made of Cu or Cu-based alloy).
  • Nb-based metal sheet 10 and Cu-based metal sheet 11 are overlapped and wound to form a cylindrical sheath lb.
  • the Nb-based metal sheet 10 is located in the innermost layer of the sheath lb.
  • the raw material powder is filled in the powder core portion 2 in the central portion formed by the wound sheet member, as in the configuration shown in FIG.
  • FIG. 4 is a cross-sectional view schematically showing still another configuration of the sheath used in the precursor of the present invention.
  • a plurality of grooves extending in the longitudinal direction are formed in the sheath 15 made of Nb-based metal.
  • a sheath 15 having a Cu-based metal part (Cu or Cu-based alloy plate) is formed by inserting a Cu- or Cu-based alloy plate 16 into each groove in advance and spaced apart in the circumferential direction. Made. Even in such a configuration, the Cu or Cu-based alloy plate 16 is not exposed to the middle of the thickness of the sheath 15, and the inner surface side of the sheath 15 is composed of an Nb-based metal.
  • the outer periphery of the sheath 15 has a force configured such that the Cu plate 16 is exposed at a portion, for example, as shown in FIG.
  • the cover may be configured such that a Cu or Cu-based alloy plate 16 is supported in the sheath 15.
  • the sheath used in the present invention is composed of a composite of an Nb-based metal part and a Cu-based metal part.
  • the metal part promotes the Nb Sn formation reaction and also functions as a bypass for Sn diffusion.
  • the Sn content that can contribute to the Sn phase generation can be increased, which contributes to the improvement of superconducting properties. That is, when heat treatment is performed at a relatively low temperature (600 to 750, preferably 600 to 700 ° C.), the diffusion rate of Sn in Cu is faster than that in Nb-based metal, and Cu as described above is used. By disposing the base metal portion in the sheath, the diffusion rate of Sn can be remarkably increased, and the above effect is exhibited. [0024] In order to exert such an effect, it is preferable to appropriately adjust the ratio of the Nb-based metal part to the Cu-based metal part in the sheath. From these viewpoints, it is preferable to arrange the Cu base metal part at least in the ratio (mass ratio) of Nb base metal part: Cu base metal part, but if the Cu base metal part is too much, As impurities for Nb Sn produced by Cu
  • the Nb-based alloy used as the sheath in the present invention is an alloy containing 90% by mass or more of Nb, and preferably contains an alloy element such as Ta or Ti in the range of 10% by mass or less.
  • Cu-based alloys that are composited with Nb or Nb-based alloys in the sheath are alloys containing 90% by mass or more of Cu, and Pb, Fe, Zn, Al, as long as the workability of the superconducting wire is not impaired.
  • Mn, Al, P and other alloy elements containing up to 10% by mass can be used.
  • the raw material powder used in the powder method is a force that contains at least Sn.
  • Sn and Cu are in direct contact
  • a brittle Cu-Sn compound is formed during heat treatment, and wire drawing workability is deteriorated.
  • wire drawing workability is deteriorated.
  • the Cu-based metal part in the sheath is arranged so as not to be in direct contact with the powder core part.
  • the Cu-based metal part is arranged from t to t / 10.
  • the single core wires shown in Figs. 2 to 5 are formed with a primary composite wire material after forming a Cu coating layer on the outer peripheral side of the sheath (see 3 in Fig. 1) and then reducing the diameter.
  • a superconducting wire can be obtained by heat treatment.
  • a plurality of primary composite wires are inserted into a Cu billet to form a multi-core composite wire, and the multi-core composite wire is drawn and then heat-treated. As a result, a multi-core superconducting wire can be obtained.
  • Nb or Nb-based alloy is arranged on the outermost periphery of the sheath (see Fig. 2, 3, 5 etc.), and the thickness of the sheath is relatively thick so that it can function as a Sn diffusion-free rear layer. Can also be demonstrated.
  • FIG. 6 the detailed configuration in the sheath is omitted for convenience of explanation.
  • the raw material powder used in the present invention includes at least Sn as a component for forming the Nb Sn phase.
  • the Cu content in the raw material powder is 2% by mass or more. However, if the Cu component content is excessive, it is the same as the Cu-based metal part in the sheath material. However, the amount of impurities may be increased and the superconducting properties may be lowered, so it should be 15% by mass or less.
  • one or more metals selected from the group consisting of Ti, Zr, Hf, V, and Ta are contained, so that these alloys are included. It is known that a small amount of element can be dissolved in the reaction layer during Nb Sn generation to improve superconducting properties.
  • each Cu powder is weighed in an appropriate amount and mixed. After that, a heat treatment is performed, followed by a pulverization process.
  • a very hard Cu-Sn compound is simultaneously formed during the heat treatment, and the presence of such a Cu-Sn compound is small. An abnormal deformation of the sheath occurs in the course of the plasticizing process, and in the worst case, disconnection is induced.
  • the present inventors have been further studying a raw material powder that can realize an NbSn superconducting wire that exhibits good superconducting characteristics while preventing such inconveniences.
  • One or more metals selected from the group consisting of Ti, Zr, Hf, V, and Ta and Sn alloy powder or metal compound powder We have found that a superconducting property can be obtained while adding the Sn powder and Cu powder to the “Sn compound powder” and mixing it with the powder, while avoiding the above disadvantages.
  • the previously proposed raw material powder can be used.
  • Cu powder is added after Sn compound powder is produced in advance, so that it can be formed into a wire without producing a hard Sn-Cu compound during the Sn compound production reaction (melt diffusion reaction). It is possible to reduce the occurrence of abnormal deformation and disconnection in the middle of the wire rod as much as possible.
  • the Sn compound as described above is produced and then pulverized to obtain an Sn compound powder, and a powder obtained by adding and mixing Sn powder and Cu powder is used as the raw material powder.
  • the mixing ratio in the raw material powder is preferably 15 to 90 parts by mass of Sn powder and 1 to 20 parts by mass of Cu powder when the Sn compound powder is 100 parts by mass.
  • the Cu content with respect to the entire raw material powder is 2 to 15% by mass, more preferably 2 to 5% by mass.
  • the sheath material in order to fill the sheath material with the raw material powder, it is generally performed by a uniaxial press. However, instead of such treatment, the powder is pressed by isotropic pressure such as cold isostatic pressing (CIP).
  • CIP cold isostatic pressing
  • the filling rate of the raw material powder can be increased, and uniform processing is also possible. This is preferable.
  • the sheath in the configuration shown in FIG. 3, if the raw material powder in the powder core portion 2 is compacted, the sheath can be easily produced by winding a sheet-like member on the outer periphery thereof. .
  • the sheath is constituted by a cylindrical member as shown in FIG. 2, it is needless to say that raw powder subjected to the compacting treatment may be used.
  • CIP is applied, CIP is performed after filling the rubber mold. However, the CIP molded body can be machined, and the assembly accuracy of the composite wire can be increased accordingly.
  • the obtained Ta-Sn compound was coarsely pulverized and then pulverized in an automatic mortar for 1 hour in an Ar atmosphere to obtain a particle size of 75 zm or less. 25% by mass of Sn powder and 5% by mass of Cu powder were added to and mixed with the obtained Ta-Sn compound powder to obtain a raw material powder (Sn-based powder).
  • the following materials (A) to (E) are sequentially stacked to form a composite sheath (see FIG. 2), the raw material powder is filled inside the composite sheath, and the outer diameter is further provided on the outer periphery thereof.
  • the extruded billet configured as described above was extruded with a hydrostatic pressure extrusion apparatus, and then processed to a wire diameter of 1. Omm by die drawing.
  • the mass ratio of Nb-Ta and Cu in this billet was Nb_Ta: Cu and was 5.7: 1.
  • the critical current (Ic) was measured with an external magnetic field applied by a superconducting magnet, and Ic was divided by the area of the non-copper portion of the wire cross section to obtain the non-copper critical current density (nonCu_Jc ) was evaluated.
  • the temperature 4. 2K the critical current density in a magnetic field 18T (nonCu_Jc) was 470A / mm 2.
  • the reaction rate of the sheath after reaction (the ratio of the Nb Sn layer cross-sectional area divided by the total sheath cross-sectional area) was measured.
  • the obtained Ta-Sn compound was coarsely pulverized and then pulverized in an automatic mortar for 1 hour in an Ar atmosphere to obtain a particle size of 75 / im or less. 25% by mass of Sn powder and 5% by mass of Cu powder were added to and mixed with the obtained Ta—Sn compound powder to obtain a raw material powder (Sn-based powder).
  • the obtained molded body was machined into a cylindrical molded body having an outer diameter of ⁇ 30mm x 180mm.
  • Nb-7. 5% by mass & sheet (Nb_Ta sheet) with a thickness of 0.1mm is wound around the periphery of this molded body by 30 perimeters, and a Cu sheet with a thickness of 0.03mm is inserted into the Nb_Ta sheet. I asked for it.
  • Stacking was carried out 10 times, and then only the Nb_Ta sheet was rolled 80 times to produce a composite material. At this time, Nb-Ta: Cu (mass ratio) was 48: 1.
  • the produced composite material was combined with an oxygen-free copper pipe having an outer diameter of 65 mm and an inner diameter of 55 mm to form an extruded billet.
  • the extruded billet constructed as described above was extruded with a hydrostatic pressure extrusion apparatus, and then was cast to a wire diameter of 1. Omm by die drawing.
  • heat treatment was performed at 700 ° C for 100 hours in vacuum.
  • the critical current (Ic) was measured with an external magnetic field applied by a superconducting magnet, and Ic was divided by the area of the non-copper portion of the wire cross section to obtain the non-copper critical current density (nonCu_Jc ) Was evaluated.
  • the critical current density (nonCu_Jc) at a temperature of 4.2 K and a magnetic field of 18 T was 49 OA / mm 2 .
  • the reaction rate of the sheath after reaction (the ratio of the cross-sectional area of the Nb Sn layer divided by the total cross-sectional area of the sheath) was measured.
  • the obtained Ta-Sn compound was roughly pulverized and then pulverized in an automatic mortar for 1 hour in an Ar atmosphere to obtain a particle size of 75 / im or less. 25% by mass of Sn powder and 5% by mass of Cu powder were added to and mixed with the obtained Ta—Sn compound powder to obtain a raw material powder (Sn-based powder).
  • the obtained raw material powder was filled in a sheath made of Nb_7.5% by mass with an outer diameter of 55 mm and an inner diameter of 30 mm, and an oxygen-free copper pipe with an outer diameter of 65 mm and an inner diameter of 55 mm on the outer periphery. And combined to form an extruded billet.
  • the extruded billet constructed as described above was extruded with a hydrostatic pressure extrusion device, and then processed to a wire diameter of 1. Omm by die drawing.
  • the critical current (Ic) was measured with an external magnetic field applied by a superconducting magnet, and Ic was divided by the area of the non-copper portion of the wire cross section to obtain the non-copper critical current density (nonCu_Jc ) Was evaluated.
  • the critical current density (nonCu_Jc) at a temperature of 4.2 K and a magnetic field of 18 T was 31 OA / mm 2 .
  • the reaction rate of the sheath after the reaction was measured.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)

Abstract

 600~750°C程度の比較的低い実用温度範囲であっても、Nb3Snの生成反応効率を向上させ、優れた超電導特性を発揮することのできる粉末法Nb3Sn超電導線材の前駆体および粉末法Nb3Sn超電導線材を提供する。  本発明の前駆体は、少なくともNbを含むシース内に、少なくともSnを含む原料粉末が充填され、これを縮径加工して線材化した後熱処理することによって、シースと粉末の界面に超電導層を形成する粉末法Nb3Sn超電導線材の前駆体であって、前記原料粉末は、Cu成分を含有すると共に、前記シースは、NbまたはNb基合金部とCuまたはCu基合金部を複合化して構成されたものである。

Description

明 細 書
粉末法 Nb Sn超電導線材の前駆体および粉末法 Nb Sn超電導線材
3 3 技術分野
[0001] 本発明は、粉末法によって製造される Nb Sn超電導線材およびそのための前駆体
3
に関するものであり、殊に高磁場発生用超電導マグネットの素材として有用な粉末法 Nb Sn超電導線材およびその前駆体に関するものである。
3
背景技術
[0002] 超電導線材が実用化されている分野のうち、高分解能核磁気共鳴 (NMR)分析装 置に用いられる超電導マグネットについては発生磁場が高いほど分解能が高まるこ とから、超電導マグネットは近年ますます高磁場化の傾向にある。
[0003] 高磁場発生用超電導マグネットに使用される超電導線材としては、 Nb Sn線材が
3 実用化されており、この Nb Sn超電導線材の製造には主にブロンズ法が採用されて
3
いる。このブロンズ法は、 Cu-Sn基合金(ブロンズ)マトリックス中に複数の Nb基芯材 を埋設し、伸線カ卩ェすることによって上記 Nb基芯材をフィラメントとなし、このフィラメ ントを複数束ねて線材群とし、安定化の為の銅(安定化銅)に坦設して伸線加工する 。上記線材群を 600〜800°Cで熱処理 (拡散熱処理)することにより、 Nb基フイラメン トとマトリックスの界面に Nb Sn化合物相を生成する方法である。し力 ながら、この
3
方法ではブロンズ中に固溶できる Sn濃度には限界があり(15. 8質量%以下)、生成 される Nb Sn層の量が少なぐまた結晶性が劣化してしまい、高磁場特性が良くない
3
とレ、う欠点がある。
[0004] Nb Sn超電導線材を製造する方法としては、上記ブロンズ法の他に、内部拡散法
3
も知られている。この内部拡散法では、 Cuを母材とし、この母材中央部に Sn芯を埋 設すると共に、 Sn芯の周囲の Cu母材中に複数の Nb線を配置し、縮径加工した後、 熱処理によって Snを拡散させ、 Nbと反応させることによって Nb Snを生成させる方
3
法である(例えば、特許文献 1)。この方法では、ブロンズ法のような固溶限による Sn 濃度に限界がないので Sn濃度をできるだけ高く設定でき、超電導特性が向上するこ とになる。し力しながら、素材の構成上、 Sn芯と Cu母材が直接的に接触しているの で、脆レ、 Cu-Snィ匕合物が生成しやすいので、中間焼鈍が適用できず、加工限界が あり、強加工が困難であるという不都合がある。
[0005] 一方、 Nb Sn超電導線材を製造する方法としては、粉末法も知られている。この方
3
法としては、例えば特許文献 2には、 Ti, Zr, Hf, Vおよび Taよりなる群から選ばれる 1種以上の金属(合金元素)と Snを高温で溶融拡散反応させてそれらの合金または 金属間化合物(以下、「Sn化合物」と呼ぶことがある)とし、それを粉砕して Sn化合物 原料粉末を得、この粉末を芯材 (後記粉末コア部)として、 Nbまたは Nb基合金製の シース内に充填し、縮径加工した後熱処理 (拡散熱処理)する方法が開示されている 。この方法では、ブロンズ法のような Sn量に制限がなぐまた Sn部と Cu部が直接接 触しない構成であるので、中間焼鈍が可能で強加工でき、良質な Nb Sn層が生成
3
可能であるため、高磁場特性に優れた超電導線材が得られることが予想される。
[0006] 図 1は、粉末法で Nb Sn超電導線材を製造する状態を模式的に示した断面図であ
3
り、図中 1は Nbまたは Nb基合金からなるシース(管状体)、 2は原料粉末が充填され る粉末コア部、 3はシースの外周部を被覆する Cu被覆部を夫々示す。尚、 Cu被覆 部 3は、 Nb Sn超電導線材の安定化材として配置されるものであり、例えば無酸素銅
3
からなるものである。
[0007] 粉末法を実施するに当たっては、少なくとも Snを含む原料粉末を粉末コア部 2に充 填し、これを押出し、伸線加工等の縮径加工を施すことによって線材化して一次複合 線材 (超電導線材製造用前駆体)を形成した後、コイル状に巻き線して力 熱処理を 施すことによってシースと原料粉末の界面に Nb Sn超電導相を形成する。
3
[0008] ところで、超電導相を形成するときの熱処理温度は、 Nb-Snの二元系においては 少なくとも 900〜1000°C程度の高温が必要であるとされている力 高温での熱処理 では熱処理炉の大型化が要求されることになる。また、高磁場超電導マグネットとして 用いられる場合には、超電導線材をソレノイド状に密卷きされて熱処理されることにな り、その際に電気的短絡を防止するために、ガラス繊維からなる絶縁体を線材外周 部に配置するのである力 高温での熱処理ではガラス繊維からなる絶縁体が脆ィ匕し てしまうという問題がある。
[0009] こうしたこと力 、原料粉末に Cuを添加することによって、熱処理温度を 600〜750 °c程度まで下げても反応が進行することも知られている。こうした観点力 、粉末法で は、原料粉末中に適量の Cu粉末を添加した後金属間化合物生成の熱処理をする のが一般的である。尚、前記図 1では、模式的に単芯であるものを示した力 実用上 では上記した一次複合線材の複数本を Cu製のビレット(筒状部材)内に挿入された 多芯材(多芯型複合線材)の形態で用いられるのが一般的である。
特許文献 1 :日本公開特許昭 49-114389号公報
特許文献 2 :日本公開特許平 11-250749号公報
発明の開示
発明が解決しょうとする課題
[0010] 上述のごとぐ原料粉末に Cuを添加することによって、熱処理温度を 600〜750°C 程度まで下げることができることも知られている力 こうした温度範囲で熱処理した場 合には、 Nbまたは Nb基合金(以下、総括して「Nb基金属」と呼ぶことがある)中への Snの拡散速度が極めて遅レ、ものとなるという問題がある。即ち、粉末法において原 料粉末に Cu粉末を混合する構成を採用する場合における Nb Sn生成反応には、 N
3
b基金属中への Snの拡散は勿論のこと、 Cuの Nb基金属への拡散が伴わなければ、 Snの反応が効果的に進行しないことになる。その結果、 Snの固溶限界に制限のな い粉末法を適用しても、 Snおよび Cuの拡散速度に律則されてしまレ、、 Snを多く含有 できるという利点を十分に活力、しきれているとは言えず、粉末コア中に反応しきれず に残存する Snが存在することになつて、希望するほどの十分な反応効率が得られて いない場合が多い。
[0011] 本発明はこうした状況の下でなされたものであって、その目的は、 600〜750°C程 度の比較的低い実用温度範囲であっても、 Nb Snの生成反応効率を向上させ、優
3
れた超電導特性を発揮することのできる粉末法 Nb Sn超電導線材およびそのため
3
の前駆体を提供することにある。
課題を解決するための手段
[0012] 上記目的を達成することのできた本発明の前駆体とは、少なくとも Nbを含むシース 内に、少なくとも Snを含む原料粉末が充填され、これを縮径カ卩ェして線材化した後 熱処理することによって、シースと粉末の界面に超電導層を形成する粉末法 Nb Sn 超電導線材の前駆体であって、前記原料粉末は、 Cu成分を含有すると共に、前記 シースは、 Nbまたは Nb基合金部と Cuまたは Cu基合金部を複合化して構成されたも のである点に要旨を有するものである。
[0013] 本発明の前駆体においては、(A)前記シース中おける Nbまたは Nb基合金部(以 下、総括して「Nb基金属部」と呼ぶことがある)と Cuまたは Cu基合金部(以下、総括 して「Cu基金属部」と呼ぶことがある)の割合が、 Nb基金属部: Cu基金属部で 50: 1 〜5 : 1 (質量比)であること、(B)熱処理前の状態では、前記シースは、前記原料粉 末と前記 Cu基金属部とが接触しなレ、ように構成されてレ、ること、(C)シースの外周に 、 Nbまたは Taからなる Sn拡散バリア層が形成されたものを用いること、等は好ましい 要件である。
[0014] 一方、本発明で用レ、る原料粉末としては、原料粉末中の Cu成分の含有量は原料 粉末全体に対して 2〜: 15質量%であることが好ましい。また原料粉末の好ましい他の 形態としては、 Ti, Zr, Hf, Vおよび Taよりなる群から選ばれる 1種以上の金属と Sn の合金粉末または金属間化合物粉末に、更に Sn粉末および Cu粉末を添加混合し たものが挙げられる。
[0015] 本発明の前駆体を用いて、超電導線材を製造するに当っては、前記シースの外周 側を被覆する Cu被覆部を備えた単芯線を伸線加工して一次複合線材を形成し、こ れを熱処理することによって単芯型の超電導線材を得ることができる。また前記シー スの外周側を被覆する Cu被覆部を備えた単芯線を伸線加工して一次複合線材を形 成し、該一次複合線材の複数本を銅ビレットに挿入して多芯型複合線材とし、この多 芯型複合線材を伸線加工した後、熱処理することによって多芯型の Nb Sn超電導
3
泉材を得ること力 sできる。 発明の効果
[0016] 本発明では、 Nbまたは Nb基合金部と Cuまたは Cu基合金部を複合化して構成さ れるシースを用いることによって、 Nb Sn相生成反応を促進すると共に、前記 Cuまた
3
は Cu基合金部に Sn拡散のバイパスとしての機能を発揮させて Sn拡散速度を速める ようにしたので、熱処理温度が 600〜750°C程度であってもコア中に残存する Sn量 を極力低減して Nb Sn超電導相を均一に十分な反応効率で生成させることができ、 その結果として高い臨界電流密度を発揮する Nb Sn超電導線材が実現できた。
3
図面の簡単な説明
[0017] [図 1]粉末法で Nb Sn超電導線材を製造する状態を模式的に示した断面図である。
3
[図 2]本発明の前駆体で用いるシースの一構成を模式的に示した断面図である。
[図 3]本発明の前駆体で用いるシースの他の構成を模式的に示した断面図である。
[図 4]本発明の前駆体で用いるシースの更に他の構成を模式的に示した断面図であ る。
[図 5]本発明の前駆体で用いるシースの他の構成を模式的に示した断面図である。
[図 6]Sn拡散バリア層を形成する場合のシースの構成を模式的に示した断面図であ る。
符号の説明
[0018] 1 , la, lb シース
2 粉末コア部
3 Cu被覆部
5, 6, 7 Nb基金属管
8, 9 Cu基金属管
10 Nb基金属製シート
11 Cu基金属製シート
発明を実施するための最良の形態
[0019] 本発明者らは、上記目的を達成するために様々な角度から検討した。その結果、 粉末法によって Nb Sn超電導線材を製造するに際して、用いるシースとして、 Nb基
3
金属部と Cu基金属部を複合化して構成したものとすれば、上記目的が見事に達成 されることを見出し、本発明を完成した。
[0020] 以下、本発明の構成を図面に基づいて説明する。図 2は、本発明の前駆体の一構 成を模式的に示した断面図である。本発明の前駆体で用いるシース laは、 Nb基金 属管 5、 6、 7と Cu基金属管 8、 9を、その最内層と最外層が Nb基金属管 5、 7となるよ うに、交互に積層して構成される。即ち、本発明で用いるシースは、 Nb基金属管 5、 6、 7からなる Nb基金属部と Cu基金属管 8、 9からなる Cu基金属部とによって構成さ れる。そして、この積層した各部材によって構成された中央部の粉末コア部 2に原料 粉末が充填されることになる。
[0021] 図 3は、本発明の前駆体で用いるシースの他の構成を模式的に示した断面図であ り、図中 10は Nb基金属製シート(Nbまたは Nb基合金からなるシート)、 11は Cu基 金属製シート(Cuまたは Cu基合金からなるシート)を夫々示す。この構成では、異な る 2種のシート状部材(Nb基金属製シート 10および Cu基金属製シート 11)を重ねて 巻き付け、円筒状のシース lbを構成するものである。こうした構成を採用する場合に おいても、シース lbの最内層は Nb基金属シート 10が位置するようにされる。そして、 この卷回したシート部材によって構成された中央部の粉末コア部 2に原料粉末が充 填されることは、前記図 2に示した構成と同様である。
[0022] 図 4は本発明の前駆体で用いるシースの更に他の構成を模式的に示した断面図で あり、この構成では Nb基金属製のシース 15に、長手方向に延びる複数の溝を周方 向に間隔を明けて形成しておき、夫々の溝に Cuまたは Cu基合金製のプレート 16を 嵌め込んで、 Cu基金属部(Cuまたは Cu基合金製プレート)を有するシース 15が構 成される。こうした構成においても、 Cuまたは Cu基合金製プレート 16は、シース 15 の肉厚の途中までとして露出させず、シース 15の内面側は Nb基金属で構成される。 また、このシース 15の外周は、 Cu製プレート 16がー部露出したように構成されてい る力 例えば図 5に示すように、 Nb基金属からなる円筒状部材若しくはシート状部材 18でその外周を覆い、 Cuまたは Cu基合金製プレート 16がシース 15中に坦設され るように構成しても良い。
[0023] 上記図 2〜5のいずれの構成を採用するにしても、本発明で用いるシースは、 Nb基 金属部と Cu基金属部を複合化して構成されたものであるので、該 Cu基金属部が Nb Snの生成反応を促進するともに、 Sn拡散のバイパスとしての機能を発揮させ、 Nb
3 3
Sn相生成に関与できる Sn分を増大させることができ、超電導特性の向上に寄与す ることになる。即ち、比較的低温(600〜750好ましくは 600〜700°C)で熱処理した 場合には、 Cu中における Snの拡散速度は、 Nb基金属中における場合と比べて速く なり、上記のような Cu基金属部をシース内に配置しておくことによって、 Snの拡散速 度を著しく速めることができて上記の効果が発揮されるのである。 [0024] こうした効果を発揮させるためには、シース内における Nb基金属部と Cu基金属部 の割合も適切に調整することが好ましい。こうした観点力ら、少なくとも Nb基金属部: Cu基金属部で 50: 1以上の割合 (質量割合)で Cu基金属部を配置することが好まし いが、 Cu基金属部があまり多くなると、 Cuが生成する Nb Snに対して不純物として
3
作用して超電導特性が低下しやすくなり、また Nb Sn有効面積も減少するので、 5 : 1
3
以下の割合にすべきである。尚、本発明でシースとして用いられる Nb基合金は、 Nb を 90質量%以上含有する合金であり、 Ta, Ti等の合金元素を 10質量%以下の範囲 で含むものが好適である。またシース部で Nbまたは Nb基合金と複合する Cu基合金 については、 Cuを 90質量%以上含有する合金であり、超電導線材の加工性を損な わない範囲で、 Pb, Fe, Zn, Al, Mn, Al, P等の合金元素を 10質量%以下の範囲 で含むものを使用することができる。
[0025] 一方、粉末法で用いる原料粉末は、少なくとも Snを含むものである力 この Snと Cu が直接接触した構成では、熱処理時に脆い Cu-Sn化合物を形成して、伸線加工性 を劣化することがある。こうしたことから、前記図 2〜5に示したように、シース内の Cu 基金属部は粉末コア部とは直接接触しないように配置することが好ましい。しかしな がら、 Cu基金属部を配置する位置までの距離があまり大きくなりすぎると、 Sn成分の 拡散バイパスとしての機能が発揮されなくなるので、シースの厚みを tとしたとき、シー ス内周面から t/10までに Cu基金属部が配置されるようにすることが好ましい。
[0026] 前記図 2〜5に示した単芯線は、シースの外周側に Cu被覆層を形成した後(前記 図 1の 3参照)、縮径加工して一次複合線材を形成し、これを熱処理することによって 超電導線材を得ることができるが、こうした一次複合線材の複数本を Cuビレットに挿 入して多芯型複合線材とし、この多芯型複合線材を伸線加工した後、熱処理するこ とによって多芯型の超電導線材を得ることができる。
[0027] いずれの工程を経るにしても、シースの外周側に Cu被覆層が形成される力 S、上記 のような Cu部を有するシースでは Snの拡散が非常に速いものとなって、安定化のた めの Cu被覆層まで Snが侵入して Cu被覆層が汚染される可能性もでてくる。こうした 不都合を解消するためには、図 6に示すように、例えば Taまたは Ta基合金からなる S n拡散バリア層 4をシースの外周(Cu被覆層の内周側)に形成することも好ましい実 施形態である。また、シースの最外周に Nbまたは Nb基合金が配置されるようにし (前 記図 2、 3、 5等参照)、その厚さを比較的厚くすることによって Sn拡散ノくリア層として の機能を発揮させることもできる。尚、図 6では説明の便宜上、シース内の詳細な構 成は省略してある。
[0028] 本発明で用いる原料粉末としては、 Nb Sn相を形成する成分である Snを少なくとも
3
含むものを使用する必要がある力 比較的低温 (600〜750°C)で拡散熱処理をして も Nb Sn生成反応を効率よく進行させるために、その前提としてこの原料粉末には C
3
u成分を含む必要がある。こうした効果を発揮させるためには、原料粉末中の Cu成 分は 2質量%以上にすることが好ましいが、 Cu成分の含有量が過剰になると、シース 材中のおける Cu基金属部と同様に、不純物量を多くして超電導特性を低下させるこ とになりかねないので、 15質量%以下にすべきである。
[0029] 粉末法で用いる原料粉末としては、 Snの他、 Ti, Zr, Hf, Vおよび Taよりなる群か ら選ばれる 1種以上の金属(合金元素)を含有させることよって、これらの合金元素を Nb Sn生成時に反応層内に少量固溶させて超電導特性を向上させ得ることが知ら
3
れている。こうした構成を採用する場合には、まず Ti, Zr, Hf, Vおよび Taよりなる群 力 選択される 1種以上の金属および Snに加えて、更に Cuの各粉末の夫々を適量 秤量し、混合した後熱処理を行い、その後粉砕する過程を経ることになる。しかしな がら、こうした手順で粉末法を実施した場合には、熱処理時に非常に硬い Cu-Snィ匕 合物も同時に生成されることになり、こうした Cu-Snィ匕合物の存在が細径化加工の途 中でシースの異常変形を生じ、最悪の場合には断線を誘発することになる。
[0030] そこで本発明者らは、こうした不都合が生じるのを防止しつつ良好な超電導特性を 発揮する Nb Sn超電導線材を実現できる原料粉末にっレ、てもかねてより検討してき
3
た。その結果、上記溶融拡散反応を行う際に、原料となる Snの全量を反応させるの ではなぐ Ti, Zr, Hf, V, Ta等の合金元素を合金化させるのに必要最小限な量だ け反応させれば良いこと、および Cuについても、溶融拡散反応の際には添加せずに 、その反応の後に原料粉末に添加混合することによって、 Cu添カ卩による熱処理温度 低下効果が有効に発揮されるとの着想が得られた。そして、 Ti, Zr, Hf, Vおよび Ta よりなる群から選ばれる 1種以上の金属と Snの合金粉末または金属化合物粉末 (以 下、「Sn化合物粉末」と呼ぶ)に、更に Sn粉末および Cu粉末を添加混合したもので は、上記のような不都合を回避しつつ良好な超電導特性が得られることを見出してい る。
[0031] 本発明において用いる原料粉末としては、先に提案した原料粉末を用いることがで きる。この原料粉末では、 Sn化合物粉末を予め生成させた後に、 Cu粉末を添加する ことになるので、 Sn化合物生成反応 (溶融拡散反応)の際に、硬い Sn-Cu化合物を 生成させることなく線材化することができ、線材カ卩ェ途中における異常変形や断線の 発生を極力低減できることになる。
[0032] 上記 Sn化合物粉末は、 Ti, Zr, Hf, V, Ta等の合金元素と Snを溶融拡散反応さ せることによって得られるものであり、合金元素と Snの混合割合については特に限定 されるものではなレ、が、超電導特性の観点からして、合金元素:311=4 : 1〜1 : 2 (原 子比)程度であることが好ましレ、。
[0033] 上記原料粉末では、上記のような Sn化合物を生成させた後粉砕して Sn化合物粉 末とし、これに Sn粉末および Cu粉末を添加混合したものを原料粉末として用いるも のであるが、原料粉末における混合割合は、 Sn化合物粉末を 100質量部としたとき に、 Sn粉末が 15〜90質量部、 Cu粉末が 1〜20質量部とすることが好ましい。但し、 前述した趣旨からして、原料粉末全体に対する Cu含有量が 2〜: 15質量%となるよう にすることが好ましぐ 2〜5質量%となるようにすることがより好ましい。
[0034] こうした原料粉末を用いる場合において、 Sn粉末の混合割合が 15質量部未満とな ると、 Snの添カ卩による超電導特性の改善効果が発揮されにくくなり、 90質量部を超 えると、原料粉末中における上記合金元素の含有量が相対的に少なくなつて、押し 出しカ卩ェ時に加工発熱によって Snが溶出してしまうことになる。また Cu粉末の混合 割合が 1質量部未満では、 Cu添加による熱処理温度(拡散熱処理温度)低減効果 が発揮されず、 20質量部を超えると、焼鈍の際にコア中に硬い Cu-Sn化合物が多く 生成してしまレ、、線材の加工性が劣化し、断線を頻発してしまうことになる。
[0035] ところで原料粉末をシース材に充填するには、一軸プレスによって行われるのが一 般的であるが、こうした処理の代わりに冷間静水圧圧縮 (CIP)などの等方圧による圧 粉処理を施すことによって、原料粉末の充填率を高めることができ、また均一加工を する上で好ましい。例えば、前記図 3に示した構成では、粉末コア部 2における原料 粉末を圧粉処理したものとすれば、その外周にシート状部材を卷回することによって 、シースを容易に作製することができる。但し、前記図 2に示したような、筒状部材に よってシースを構成する場合においても、圧粉処理を施した原料粉末を使用しても 良いことは勿論である。尚、 CIPを施す際には、ゴム型に充填した後 CIPすることにな るが、 CIP成形体には機械加工を施すことも可能となり、それだけ複合線材の組み立 て精度を高めることができる。
[0036] 以下、本発明を実施例によってより具体的に説明するが、下記実施例は本発明を 限定する性質のものではなぐ前 ·後記の趣旨に徴して設計変更することは、いずれ も本発明の技術的範囲に含まれるものである。例えば、下記実施例では、単芯の超 電導線材として用いる場合について示した力 Cuマトリックス中に複数本の単芯が配 置された多芯型の複合線材の形で用いて超電導線材を得る場合も勿論適用可能で ある。
実施例
[0037] [実施例 1]
八1"ガス雰囲気中で、丁&ぉょび311粉末を、丁& : 311=6 : 5 (原子比)となるょぅに電子 天秤で秤量し、これらを Vプレンダ一中で 30分間混合した。この混合粉末に、真空中 で 950°C、 10時間の熱処理を施し、 Ta-Sn化合物を生成させた。
[0038] 得られた Ta-Sn化合物を粗粉砕した後、 Ar雰囲気中で自動乳鉢にて 1時間粉砕 し、 75 z m以下の粒径にした。得られた Ta-Sn化合物粉末に対して、 25質量%の S n粉末および 5質量%の Cu粉末を、添加 ·混合し、原料粉末(Sn基粉末)とした。
[0039] 一方、下記 (A)〜 (E)の素材を順次重ねて複合シースを構成し (前記図 2参照)、 この複合シースの内部に上記原料粉末を充填し、更にその外周に外径: 65mm、内 径: 55mmの無酸素銅パイプを配置して組み合わせ、押し出しビレットとした。
(A)外径: 35mm、内径: 30mmの Nb_7. 5質量%丁&合金製パイプ
(B)外径: 37mm、内径: 35mmの Cuパイプ
(C)外径: 42mm、内径: 37mmの Nb_7. 5質量%丁&合金製パイプ
(D)外径: 44mm、内径: 42mmの Cuパイプ (E)外径: 55mm、内径: 44mmの Nb_7. 5質量%丁&合金製パイプ
[0040] 上記のようにして構成された押し出しビレットを、静水圧押し出し装置にて押し出し た後、ダイス伸線により線径 1. Ommまで加工した。このビレットにおける、 Nb-Taと C uの質量比は Nb_Ta : Cuで 5. 7 : 1であった。
[0041] この線材に、 Nb Snを生成させるために、真空中で 700°C X 100時間の熱処理を
3
施した。この熱処理後の線材について、超電導マグネットにより外部磁場を印加した 状態で臨界電流 (Ic)を測定し、線材断面の非銅部の面積で Icを除して非銅部の臨 界電流密度(nonCu_Jc)の評価を行った。その結果、温度 4. 2K、磁場 18T中での 臨界電流密度(nonCu_Jc)は 470A/mm2であった。また反応後のシースの反応率 (Nb Sn層断面積を全シース断面積で除した率)を測定したところ、 67%と高い反応
3
率が得られていた。
[0042] [実施例 2]
八1"ガス雰囲気中で、丁&ぉょび311粉末を、丁& : 311= 6 : 5 (原子比)となるょぅに電子 天秤で秤量し、これらを Vプレンダ一中で 30分間混合した。この混合粉末に、真空中 で 950°C、 10時間の熱処理を施し、 Ta-Sn化合物を生成させた。
[0043] 得られた Ta-Sn化合物を粗粉砕した後、 Ar雰囲気中で自動乳鉢にて 1時間粉砕 し、 75 /i m以下の粒径にした。得られた Ta-Sn化合物粉末に対して、 25質量%の S n粉末および 5質量%の Cu粉末を、添加 *混合し、原料粉末(Sn基粉末)とした。
[0044] 得られた原料粉末を、ゴム型に封入した後、 CIPにて 200MPa、 15分間成形処理 し、外径: φ 32mm X長さ: 181mmの円柱状成形体を得た。
[0045] 得られた成形体を機械加工により外径: φ 30mm X 180mmの円柱状成形体とし た。この成形体の外周に、厚み: 0. 1mmの Nb-7. 5質量%丁&シート(Nb_Taシート )を 30周囲巻きつけた後、厚み: 0. 03mmの Cuシートを揷入し、 Nb_Taシートを重 ね卷きした。重ね卷きは 10周行い、その後 Nb_Taシートのみを 80周卷きつけて複合 材を作製した。このときの、 Nb-Ta : Cu (質量比)は 48 : 1であった。
[0046] 作製した複合材を、外径: 65mm、内径: 55mmの無酸素銅パイプを配置して組み 合わせ、押し出しビレットとした。上記のようにして構成された押し出しビレットを、静水 圧押し出し装置にて押し出した後、ダイス伸線により線径 1. Ommまでカ卩ェした。 [0047] この線材に、 Nb Snを生成させるために、真空中で 700°C X 100時間の熱処理を
3
施した。この熱処理後の線材について、超電導マグネットにより外部磁場を印加した 状態で臨界電流 (Ic)を測定し、線材断面の非銅部の面積で Icを除して非銅部の臨 界電流密度(nonCu_Jc)の評価を行った。その結果、温度 4. 2K、磁場 18T中での 臨界電流密度(nonCu_Jc)は 49 OA/mm2であった。また反応後のシースの反応率 (Nb Sn層断面積を全シース断面積で除した率)を測定したところ、 70%と高い反応
3
率が得られていた。
[0048] [比較例 1]
八1"ガス雰囲気中で、丁&ぉょび311粉末を、丁& : 311= 6 : 5 (原子比)となるょぅに電子 天秤で秤量し、これらを Vプレンダ一中で 30分間混合した。この混合粉末に、真空中 で 950°C、 10時間の熱処理を施し、 Ta-Sn化合物を生成させた。
[0049] 得られた Ta-Sn化合物を粗粉砕した後、 Ar雰囲気中で自動乳鉢にて 1時間粉砕 し、 75 /i m以下の粒径にした。得られた Ta-Sn化合物粉末に対して、 25質量%の S n粉末および 5質量%の Cu粉末を、添加 *混合し、原料粉末(Sn基粉末)とした。
[0050] 得られた原料粉末を、外径: 55mm、内径: 30mmの Nb_7. 5質量%丁&製シース に充填し、更にその外周に、外径: 65mm、内径: 55mmの無酸素銅パイプを配置し て組み合わせ、押し出しビレットとした。上記のようにして構成された押し出しビレット を、静水圧押し出し装置にて押し出した後、ダイス伸線により線径 1. Ommまで加工 した。
[0051] この線材に、 Nb Snを生成させるために、真空中で 700°C X 100時間の熱処理を
3
施した。この熱処理後の線材について、超電導マグネットにより外部磁場を印加した 状態で臨界電流 (Ic)を測定し、線材断面の非銅部の面積で Icを除して非銅部の臨 界電流密度(nonCu_Jc)の評価を行った。その結果、温度 4. 2K、磁場 18T中での 臨界電流密度(nonCu_Jc)は 31 OA/mm2であった。また反応後のシースの反応率 (Nb Sn層断面積を全シース断面積で除した率)を測定したところ、 38%と低い反応
3
率しか得られていな力 た。

Claims

請求の範囲
[1] 少なくとも Nbを含むシース内に、少なくとも Snを含む原料粉末が充填されてなる粉 末法 Nb Sn超電導線材の前駆体であって、
3
前記原料粉末は、 Cu成分を含有すると共に、前記シースは、 Nbまたは Nb基合金 部と Cuまたは Cu基合金部を複合化して構成されるものであることを特徴とする粉末 法 Nb Sn超電導線材の前駆体。
3
[2] 前記シース中おける Nbまたは Nb基合金部と Cuまたは Cu基合金部の割合力 (N bまたは Nb合金部): (Cuまたは Cu基合金部)で 50 ::!〜 5 : 1 (質量比)である請求項 1に記載の粉末法 Nb Sn超電導線材の前駆体。
3
[3] 熱処理前の状態では、前記シースは、前記原料粉末と前記 Cuまたは Cu基合金部 とが接触しないように構成されている請求項 1または 2に記載の粉末法 Nb Sn超電導
3 線材の前駆体。
[4] 前記シースの外周に、 Nb若しくは Nb基合金または Ta若しくは Ta基合金からなる S n拡散バリア層が形成されている請求項 1〜3のいずれかに記載の粉末法 Nb Sn超
3 電導線材の前駆体。
[5] 前記原料粉末中の Cu成分の含有量は、原料粉末全体に対して 2〜: 15質量%であ る請求項 1〜4のいずれかに記載の粉末法 Nb Sn超電導線材の前駆体。
3
[6] 前記原料粉末は、
Ti, Zr, Hf, Vおよび Taよりなる群力、ら選ばれる 1種以上の金属と Snの合金粉末、 または、 Ti, Zr, Hf, Vおよび Taよりなる群力、ら選ばれる 1種以上の金属と Snの金属 間化合物粉末と、
Sn粉末と、
Cu粉末と、
が添加混合されたものである請求項 1〜5のいずれかに記載の粉末法 Nb Sn超電
3 導線材の前駆体。
[7] 請求項:!〜 6のいずれかに記載の粉末法 Nb Sn超電導線材の前駆体を用い、
3
前記シースの外周側を被覆する Cu被覆部を備えた単芯線を縮径カ卩ェして一次複 合線材を形成し、これを熱処理することによって得られることを特徴とする粉末法 Nb Sn超電導線材。
請求項:!〜 6のいずれかに記載の粉末法 Nb Sn超電導線材の前駆体を用い、
3
前記シースの外周側を被覆する Cu被覆部を備えた単芯線を縮径カ卩ェして一次複 合線材を形成し、該一次複合線材の複数本を Cuビレットに揷入して多芯型複合線 材とし、この多芯型複合線材を更に縮径加工した後、熱処理することによって得られ ることを特徴とする粉末法 Nb Sn超電導線材。
PCT/JP2007/054356 2006-03-07 2007-03-06 粉末法Nb3Sn超電導線材の前駆体および粉末法Nb3Sn超電導線材 WO2007102517A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP07715247A EP1993107A1 (en) 2006-03-07 2007-03-06 PRECURSOR OF POWDER-METHOD Nb3Sn SUPERCONDUCTING WIRE ROD, AND POWDER-METHOD Nb3Sn SUPERCONDUCTING WIRE ROD
US12/224,291 US20090011941A1 (en) 2006-03-07 2007-03-06 Precursor of Nb3Sn Superconducting Wire Produced by Powder Process and Nb3Sn Superconducting Wire Produced by Powder Process

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006-061299 2006-03-07
JP2006061299A JP4163719B2 (ja) 2006-03-07 2006-03-07 粉末法Nb3Sn超電導線材の前駆体および製造方法

Publications (1)

Publication Number Publication Date
WO2007102517A1 true WO2007102517A1 (ja) 2007-09-13

Family

ID=38474944

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/054356 WO2007102517A1 (ja) 2006-03-07 2007-03-06 粉末法Nb3Sn超電導線材の前駆体および粉末法Nb3Sn超電導線材

Country Status (4)

Country Link
US (1) US20090011941A1 (ja)
EP (1) EP1993107A1 (ja)
JP (1) JP4163719B2 (ja)
WO (1) WO2007102517A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021112211A1 (ja) * 2019-12-04 2021-06-10 古河電気工業株式会社 Nb3Sn単芯超電導線材用前駆体およびその製造方法、Nb3Sn単芯超電導線材、ならびにNb3Sn多芯超電導線材用前駆体およびその製造方法、Nb3Sn多芯超電導線材

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4533254B2 (ja) * 2005-06-21 2010-09-01 株式会社日立製作所 金属面の接合方法
JP4697240B2 (ja) * 2008-02-15 2011-06-08 日立電線株式会社 Nb3Sn超電導線材の製造方法
EP2333793B1 (en) * 2009-12-09 2012-02-08 Bruker BioSpin AG Superconductors with improved mechanical strength
DE102018126760B4 (de) 2018-10-26 2020-08-13 Bruker Eas Gmbh Monofilament zur Herstellung eines Nb3Sn-haltigen Supraleiterdrahts, insbesondere für eine interne Oxidation

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003086041A (ja) * 2001-09-07 2003-03-20 Kobe Steel Ltd 粉末法Nb▲3▼Sn超電導線材の製造方法
JP2006012796A (ja) * 2004-05-25 2006-01-12 Kobe Steel Ltd 粉末法Nb3Sn超電導線材の製造方法
JP2006085986A (ja) * 2004-09-15 2006-03-30 Kobe Steel Ltd Nb3Sn超電導線材の製造方法およびそのための複合線材
JP2006114491A (ja) * 2004-09-15 2006-04-27 Kobe Steel Ltd 粉末法Nb3Sn超電導線材の製造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003086041A (ja) * 2001-09-07 2003-03-20 Kobe Steel Ltd 粉末法Nb▲3▼Sn超電導線材の製造方法
JP2006012796A (ja) * 2004-05-25 2006-01-12 Kobe Steel Ltd 粉末法Nb3Sn超電導線材の製造方法
JP2006085986A (ja) * 2004-09-15 2006-03-30 Kobe Steel Ltd Nb3Sn超電導線材の製造方法およびそのための複合線材
JP2006114491A (ja) * 2004-09-15 2006-04-27 Kobe Steel Ltd 粉末法Nb3Sn超電導線材の製造方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021112211A1 (ja) * 2019-12-04 2021-06-10 古河電気工業株式会社 Nb3Sn単芯超電導線材用前駆体およびその製造方法、Nb3Sn単芯超電導線材、ならびにNb3Sn多芯超電導線材用前駆体およびその製造方法、Nb3Sn多芯超電導線材

Also Published As

Publication number Publication date
JP2007242355A (ja) 2007-09-20
JP4163719B2 (ja) 2008-10-08
EP1993107A1 (en) 2008-11-19
US20090011941A1 (en) 2009-01-08

Similar Documents

Publication Publication Date Title
US7566414B2 (en) Method for manufacturing power-metallurgy processed Nb3Sn superconducting wire, precursor to powder-metallurgy processed Nb3Sn superconducting wire
EP2838091B1 (en) Compound superconductive wire and method for manufacturing the same
US10134508B2 (en) MgB2 superconductive wire material, and production method therefor
WO2007102517A1 (ja) 粉末法Nb3Sn超電導線材の前駆体および粉末法Nb3Sn超電導線材
CN110612578B (zh) Nb3Sn超导线材的制造方法、Nb3Sn超导线材用的前驱体、及使用该前驱体的Nb3Sn超导线材
WO2002103716A1 (fr) Materiau de fil supraconducteur et son procede de preparation, aimant supraconducteur comprenant ce dernier
EP1993153A1 (en) Nb3Sn superconducting wire, precursor of same, and method for producing precursor
US7459031B2 (en) Method for producing Nb3Sn superconductive wire material using powder process
EP2713413A2 (en) Nb3Sn superconducting wire and precursor of same
JP4652938B2 (ja) 粉末法Nb3Sn超電導線材の製造方法
JP3778971B2 (ja) 酸化物超電導線材およびその製造方法
JPWO2021024529A1 (ja) Nb3Sn超伝導線材用前駆体、その製造方法、および、それを用いたNb3Sn超伝導線材の製造方法
JP3920606B2 (ja) 粉末法Nb▲3▼Sn超電導線材の製造方法
EP0600407A1 (en) Nb3A1 superconductor, manufactoring method, precursory composition, and superconducting magnet
JP5356132B2 (ja) 超電導線材
JP2010135215A (ja) Nb3Sn超電導線材製造用前駆体およびNb3Sn超電導線材
JP4476800B2 (ja) Nb3Sn超電導線材の製造方法
JP2011076821A (ja) 二ホウ化マグネシウム線、及びその製造方法
JP4728006B2 (ja) 粉末法Nb3Sn超電導線材の製造方法およびそのための複合部材
JP2010129453A (ja) ブロンズ法Nb3Sn超電導線材

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 12224291

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2007715247

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE