WO2007099662A1 - 遠心ファン付ヒートシンク - Google Patents

遠心ファン付ヒートシンク Download PDF

Info

Publication number
WO2007099662A1
WO2007099662A1 PCT/JP2006/318789 JP2006318789W WO2007099662A1 WO 2007099662 A1 WO2007099662 A1 WO 2007099662A1 JP 2006318789 W JP2006318789 W JP 2006318789W WO 2007099662 A1 WO2007099662 A1 WO 2007099662A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat
centrifugal fan
heat sink
air
cover
Prior art date
Application number
PCT/JP2006/318789
Other languages
English (en)
French (fr)
Inventor
Yasuhiro Uchimura
Chiyoshi Sasaki
Nobuyuki Hashimoto
Original Assignee
Sony Computer Entertainment Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Computer Entertainment Inc. filed Critical Sony Computer Entertainment Inc.
Priority to JP2008502647A priority Critical patent/JP5078872B2/ja
Priority to US12/281,273 priority patent/US20090321058A1/en
Publication of WO2007099662A1 publication Critical patent/WO2007099662A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/46Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements involving the transfer of heat by flowing fluids
    • H01L23/467Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements involving the transfer of heat by flowing fluids by flowing gases, e.g. air
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/42Fillings or auxiliary members in containers or encapsulations selected or arranged to facilitate heating or cooling
    • H01L23/427Cooling by change of state, e.g. use of heat pipes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Definitions

  • the present invention relates to a heat sink with a centrifugal fan provided with a plurality of heat dissipating fins and a centrifugal fan, and more particularly to a compact heat sink with a centrifugal fan having a high ventilation rate and a high heat dissipation efficiency.
  • a space serving as a flow path for the working fluid is provided inside the heat pipe, and the movement of heat is caused by the phase change and movement of the working fluid stored in the space such as evaporation and condensation.
  • the working fluid evaporates due to the heat generated by the parts to be cooled that are conducted through the material of the container that constitutes the heat pipe, and the vapor moves to the heat dissipation side of the heat pipe. To do.
  • the working fluid vapor cools and returns to the liquid phase.
  • the working fluid that has returned to the liquid phase in this manner moves (refluxs) again to the heat absorption side. Heat is transferred by such phase transformation and movement of the working fluid.
  • Patent Document 1 Japanese Patent Laid-Open No. 11 351769
  • Patent Document 2 JP 2001-210767
  • the area of the front surface of the fin is comparable to the area of the axial fan, and the height of the fan tends to be high.
  • the heat sink becomes a horizontally long heat sink.
  • the heat fins become wider, and in order to cool them, a large number of small-diameter fans are arranged, and the number of fans to be combined increases.
  • the noise becomes high, and further, the exhaust port of the electronic device becomes large, and the housing becomes large in combination with securing the installation place of various terminals.
  • the conventional arrangement of the heat transfer member that fixes the heat dissipating fin portion having a plurality of thin plate-like fins is focused only on the function of transferring heat to the heat dissipating fin portion, and has entered the centrifugal fan force heat dissipating fin portion. There was a problem that the air flow hits the heat transfer member and disturbs the flow, impairing the heat dissipation efficiency.
  • the object of the present invention is to reduce the temperature of the entire casing even more effectively even when used in electronic devices where the height is restricted, such as personal computers and game machines. It is possible to provide a heat sink with a centrifugal fan that is low in noise, compact, and has high heat dissipation efficiency.
  • the inventor has conducted research in order to solve the above-described conventional problems.
  • the shape of the radiating fins in which multiple sheets are stacked at a predetermined interval is made into a generally semicircular shape corresponding to the centrifugal fan, and the bottom part with excellent thermal conductivity, where the cover and radiating fins are thermally connected
  • the amount of air ventilation in the housing is generated by generating an air flow that rapidly flows toward the outlet along the inner wall of the cover. It has been revealed that the temperature inside the housing can be lowered more effectively, and the temperature inside the housing can be lowered more effectively.
  • one side of the centrifugal fan is opposed to the semicircular air inflow portion of the radiating fins laminated at a predetermined interval, and the inner wall surface of the cover is directly opposed to the other side of the centrifugal fan. In this state, it is arranged in the space part described above.
  • an air flow is generated by the centrifugal fan toward the outlet along the inner wall surface of the predetermined shape.
  • the heat transfer member is blown from the air inflow portion of the radiating fin portion, flows through the heat releasing fin portion, and the air flow that flows out of the curved portion flows toward the air outlet along the inner wall of the cover. Since it is arranged so as not to hinder the heat dissipation efficiency.
  • a heat sink with a centrifugal fan of the present invention is made based on the research results described above.
  • the first aspect of the heat sink with a centrifugal fan of the present invention includes an air intake port and an air outlet port.
  • a heat receiving block that is thermally connected to a heating element that requires cooling
  • a heat dissipating fin portion that is thermally connected to the bottom portion and has a predetermined shape including at least an air inflow portion, and a plurality of fin portion forces housed in the space portion;
  • a rotating shaft is disposed in the vicinity of the air inflow portion of the radiating fin portion, takes in air from the air intake port, generates an air flow in a gap portion provided between adjacent fin portions of the radiating fin portion, and A centrifugal fan that generates airflow by directing the air outlet along the inner wall of the cover;
  • a heat sink with a centrifugal fan Arranged so that the resistance of the air flow generated by the centrifugal fan directed to the side of the radiating fin is reduced, and the heat from the bottom is conducted through the plurality of fins.
  • a heat sink with a centrifugal fan Arranged so that the resistance of the air flow generated by the centrifugal fan directed to the side of the radiating fin is reduced, and the heat from the bottom is conducted through the plurality of fins.
  • the radiating fin portion includes a plurality of fin edge portions formed by a plurality of thin plate-like fins laminated at a predetermined interval, The plurality of fin edges are at least partially circumferentially opposed to the centrifugal fan, communicated with the air inflow section, extended along the inner wall of the cover, and the outlet. It is a heat sink with a centrifugal fan provided with an opposed blowing part.
  • a third aspect of the heat sink with a centrifugal fan according to the present invention is the centrifugal fan, wherein a part of the outer peripheral surface of the fan is opposed to the partial circumferential air inflow portion of the radiating fin portion.
  • the cover has an inner wall of the cover at a position corresponding to a boundary portion between the air inflow portion and the curved portion of the heat radiating fin portion.
  • the radiating fin portion further includes another fin edge portion that directly contacts an inner wall of the force bar, A heat sink with a centrifugal fan, the end of which forms the starting point.
  • a sixth aspect of the heat sink with a centrifugal fan of the present invention is common to the air outlet through which the air outlet passes through the radiating fin portion and the air outlet through which the inner wall of the cover flows.
  • a heat sink with a centrifugal fan is common to the air outlet through which the air outlet passes through the radiating fin portion and the air outlet through which the inner wall of the cover flows.
  • a seventh aspect of the heat sink with a centrifugal fan according to the present invention is the heat sink with a centrifugal fan, wherein the heat transfer members are arranged radially from the centrifugal fan.
  • the heat transfer member is blown from the air inflow portion of the radiating fin portion, flows in the radiating fin portion, and the air generated by the curved portion force.
  • the heat sink with a centrifugal fan is arranged so that the flow does not hinder the flow of air flowing toward the air outlet along the inner wall of the cover.
  • a ninth aspect of the heat sink with a centrifugal fan according to the present invention is the heat sink with a centrifugal fan, wherein the heat transfer member becomes a heat pipe force!
  • the air blowing port is separate from an air blowing port through which the heat radiating fin portion passes and an air blowing port that flows along the inner wall of the cover. Is a heat sink with a centrifugal fan.
  • An eleventh aspect of the heat sink with a centrifugal fan according to the present invention is a heat sink with a centrifugal fan, wherein the heat receiving block is provided with at least one heat pipe.
  • a twelfth aspect of the heat sink with a centrifugal fan of the present invention is a heat sink with a centrifugal fan in which the air outlet is provided toward the outside of the housing.
  • the outlet is provided at one location.
  • a heat sink with a centrifugal fan A heat sink with a centrifugal fan.
  • Another aspect of the heat sink with a centrifugal fan according to the present invention is a heat sink with a centrifugal fan in which the blowout ports are provided at a plurality of locations.
  • a centrifugal fan that sends a side force of the swirling air flow, a heat dissipating fin assembly that is disposed on a side surface of the centrifugal fan and that is cooled by the swirling air flow from the centrifugal fan, and the heat dissipating fin assembly And a heat receiving block that conducts heat from the heat generating element requiring cooling to the heat dissipating fin assembly, and a case member that supports these and forms a ventilation space.
  • the case member is
  • First and second plate members for forming the ventilation space across the radiation fin assembly
  • a side member that covers a part of a side surface of the space sandwiched between the first and second plate members and forms a ventilation space together with the first and second plate members;
  • the radiation fin assembly is:
  • a plurality of heat dissipating fins stacked and spaced apart;
  • a heat transfer member group that passes through the heat dissipating fins arranged in a stacked manner and transfers heat to the heat dissipating fins;
  • the heat transfer member group includes a plurality of flat heat transfer members having a flat cross section, Several flat heat transfer members are distributed and arranged in a plurality of locations of the radiating fin, and the longitudinal direction of the flat cross-sectional shape passes through the flat cross-sectional shape in the flat heat transfer member distribution.
  • a heat radiating fin for receiving an air flow swirled and sent out from a side surface and cooling by the air flow
  • a plurality of heat dissipating fins stacked and spaced apart;
  • a heat transfer member group that passes through the heat dissipating fins arranged in a stacked manner and transfers heat to the heat dissipating fins;
  • the heat transfer member group includes a plurality of heat transfer members having a flat cross section, and the plurality of heat transfer members having a flat cross section are distributed and arranged at a plurality of locations of the heat radiating fins.
  • the shape of the heat transfer member is distributed such that the longitudinal direction of the flat cross section is acute in the same direction of rotation as the air flow swirl with respect to the radius from the rotation center of the centrifugal fan passing through the flat cross sectional shape.
  • a heat dissipating fin assembly including a plurality of components arranged in an inclined state.
  • one side force of the centrifugal fan is disposed relative to the semicircular air inflow portion of the plurality of thin plate fins arranged at a predetermined interval. Since the inner wall surface of the cover is directly opposed to the other side in the space portion, air flows through the plurality of laminated thin plate fins toward the outlet, and the inner wall surface of the cover On the directly opposite side, an air flow is generated by the centrifugal fan along the inner wall of the cover and directed to the outlet. If the air flow described above is an accelerated flow, the effect is even higher.
  • the heat transmitted to the heat generating element force heat receiving block moves to a plurality of thin plate fins arranged in layers at a predetermined interval, and is caused by the air flowing toward the outlet by the air of the centrifugal fan. Heat is dissipated outside the housing. Furthermore, the inner wall of the cover is directly opposite On the side, the air flow is accelerated along the inner wall of the cover by the centrifugal fan and accelerated toward the air outlet, so the air in the housing is taken in by the centrifugal fan, and the air flow generated along the inner wall of the cover Released outside the housing. In this manner, since the air is discharged directly to the outside of the casing, preferably by an accelerated flow, the ventilation amount is increased, and an increase in the air temperature inside the casing due to the heat generated by the heating element can be suppressed.
  • the heat transfer member is air that is blown from the air inflow portion of the radiating fin portion, flows through the radiating fin portion, and the air flow exiting the curved portion is directed toward the air outlet along the inner wall of the cover. Because it is arranged so as not to obstruct the flow of heat, heat dissipation efficiency is high.
  • the heat transfer member group that passes through the heat dissipating fins arranged in layers and transfers heat to the heat dissipating fins includes a plurality of heat transfer members having a flat cross section, and has a plurality of flat cross sections. Shaped heat transfer members are distributed and arranged at a plurality of locations of the heat radiating fins. For this reason, heat is easily transmitted to the heat radiation fins evenly.
  • the distribution of the heat transfer member having the flat cross-sectional shape is such that the longitudinal direction of the cross-sectional flat shape passes through the flat cross-sectional shape, and the rotational force of the centrifugal fan is the same as the rotation of the air flow with respect to the radius.
  • FIG. 1 is a perspective view showing a state in which one embodiment of a heat sink with a centrifugal fan of the present invention is viewed from the front side.
  • FIG. 2 is a perspective view showing a state in which one embodiment of the heat sink with a centrifugal fan of the present invention shown in FIG. 1 is viewed from the back side.
  • FIG. 3 is an exploded view illustrating a heat sink with a centrifugal fan according to the present invention.
  • Figure 3 (a) shows the cover.
  • Figure 3 (b) shows the bottom part with excellent thermal conductivity with thin fins stacked at a predetermined interval.
  • Figure 3 (c) shows a centrifugal fan.
  • FIG. 4 is a diagram for explaining the air flow of the heat sink with centrifugal fan of the present invention.
  • Fig. 5 is a diagram for explaining the air flow of the heat sink with centrifugal fan of the present invention.
  • FIG. 6 is a view for explaining the air flow of the heat sink with a centrifugal fan of the present invention.
  • FIG. 7 is a perspective view showing a state in which the heat sink with a centrifugal fan according to the present invention is partially cut away and shows another embodiment.
  • FIG. 8 is a perspective view showing another embodiment of the heat sink with a centrifugal fan of the present invention.
  • FIG. 9 is a cross-sectional view of FIG.
  • FIG. 10 is a cross-sectional view schematically showing a connecting portion between the first plate member and the third plate member.
  • Fig. 11 is a perspective view showing a state in which the first plate member and the third plate member are connected to each other with the radiation fin assembly mounted thereon.
  • FIG. 12 is a perspective view showing a state before the first plate member on which the radiation fin assembly is mounted is connected to the third plate member.
  • FIG. 13 is a perspective view showing a state before the third plate member and the first plate member on which the radiating fin assembly is mounted are connected.
  • FIG. 14 is a perspective view showing a state in which each of the first plate member and the third plate member is connected with the radiation fin assembly mounted thereon.
  • FIG. 15 is a perspective view showing a state in which the heat dissipating fin assembly is mounted, the first plate member and the third plate member are connected, and the hand, the saw blade, and the second plate member are placed thereon.
  • FIG. 16 is a cross-sectional view showing a part of a state in which a flat heat transfer member is threaded through the radiating fin assembly.
  • FIG. 17 is a perspective view showing a state in which a heat sink with a centrifugal fan according to a second embodiment of the present invention is attached to a base plate assembly.
  • FIG. 18 is a perspective view showing a state before the heat sink with a centrifugal fan according to the second embodiment of the present invention is fixed to the base plate assembly.
  • FIG. 19 is a cross-sectional view schematically showing a structure in which the IC chip and the heat receiving block are pressure-contacted in the board assembly.
  • FIG. 20 is a perspective view of the heat sink with a centrifugal fan according to the second embodiment of the invention. It is explanatory drawing which shows the distribution state of a heat-transfer member.
  • FIG. 21 is an explanatory view showing a mechanism for absorbing the difference in height between the radiating fin assemblies.
  • a heat sink with a centrifugal fan of the present invention will be described with reference to the drawings.
  • the first embodiment will be described with reference to FIG. 1 to FIG.
  • a second embodiment will be described with reference to FIGS.
  • One aspect of the heat sink with a centrifugal fan according to the present invention includes a cover having a predetermined shape including an air intake port and a blowout port, a heat receiving block thermally connected to a heating element that requires cooling, and the heat receiving unit.
  • a block is thermally connected to one surface, and is engaged with the cover to form a space portion.
  • the bottom portion has thermal conductivity, and is thermally connected to the bottom portion.
  • At least a circumferential air inflow portion is provided.
  • the heat dissipating fins having a plurality of thin-plate fin forces that are stacked and arranged at predetermined intervals with a predetermined shape and the rotation axis of the heat dissipating fins are substantially perpendicular to the thin-plate fins.
  • the plurality of It is a heat sink with a centrifugal fan provided with the heat-transfer member which penetrates a fin part and conducts the heat from the said bottom part.
  • FIG. 1 is a perspective view showing a state in which one embodiment of a heat sink with a centrifugal fan of the present invention is viewed from the front side.
  • FIG. 2 is a perspective view showing one state of the heat sink with a centrifugal fan of the present invention shown in FIG. 1 as viewed from the back side.
  • the heat sink 1 with a centrifugal fan includes an air intake port to the centrifugal fan, a cover 2 having a predetermined shape provided with an air outlet through the heat sink, and a heat receiving block.
  • a bottom portion 3 having thermal conductivity is provided which is thermally connected to the opposite surface and is engaged with the cover 2 to form a space.
  • a centrifugal fan 4 is attached to the air intake.
  • the thin plate fins 5 arranged at predetermined intervals arranged in the space can be seen.
  • a part of the heat transfer member 23 that exposes the heat of the heating element to the plurality of thin plate fins through the plurality of thin plate fins is exposed.
  • a heat receiving block 6 that is thermally connected to a heating element that requires cooling is thermally connected to the back side of the bottom portion 3 having thermal conductivity.
  • the heat of the heating element is transferred to the heat receiving block 6 by the heat pipe 7.
  • the air intake port for the centrifugal fan may be provided from the back of the heat sink.
  • the heat pipe is a round heat pipe, but it may be plate-shaped. The number of heat pipes is not limited to two.
  • a space is provided at the air outlet through the heat sink without a plurality of thin plate fins laminated at a predetermined interval.
  • the air flow accelerated by the centrifugal fan toward the outlet along the inner wall of the cover having a predetermined shape is directly discharged out of the casing through this space.
  • FIG. 3 is an exploded view illustrating the heat sink with a centrifugal fan according to the present invention.
  • Figure 3 (a) shows the cover.
  • Figure 3 (b) shows the bottom part with thermal conductivity, with thin fins stacked at predetermined intervals.
  • Figure 3 (c) shows a centrifugal fan.
  • the cover 2 is made of, for example, grease, and the portions other than the air outlet 11 are covered with a wall surface.
  • a conversion unit 16 that changes the curved surface is provided.
  • the bottom portion 3 having thermal conductivity has a shape substantially corresponding to the cover. That is, a doughnut-shaped portion 3-1 containing a centrifugal fan disposed opposite to a semicircular air inflow portion of a plurality of thin plate fins stacked at a predetermined interval, and a thin plate stacked at a predetermined interval It has parts 3-2 where the fins are placed in thermal connection.
  • the bottom portion 3 having heat conductivity includes a conversion portion 17 corresponding to the conversion portion 16 in which the curved surface forming the wall surface of the cover 2 changes.
  • Heat transfer members 23 that pass through the thin plate-like fins stacked at a predetermined interval and transfer heat from the bottom to the thin plate-like fins are arranged radially starting from the centrifugal fan. Further, the heat transfer member 23 is blown from the air inflow portion of the radiating fin portion, flows through the radiating fin portion, and the air flow exiting from the curved portion 13 is directed toward the air outlet along the inner wall of the cover. It is desirable to be arranged so that it does not hinder the flow of Furthermore, the heat transfer member may have a heat pipe force. Even in this case, the airflow is not disturbed.
  • the centrifugal fan includes a plurality of fans (impellers) 4-1, and a peripheral portion 4-2 attached to the air intake port of the cover.
  • the fan 41 is inserted into the space from the outside of the cover, arranged in the above-mentioned donut-shaped portion, and the protrusion provided on the peripheral edge 42 is fixed to the periphery of the air intake port of the cover .
  • the heat radiating fin portion 5 includes a plurality of fin edge portions formed by a plurality of thin plate-like fins stacked at a predetermined interval. That is, the plurality of fin edges include at least a circumferential air inflow portion (for example, a semicircular shape) 12 facing the centrifugal fan, and a curved portion 13 that communicates with the air inflow portion and extends along the inner wall of the cover. And a blowout portion 14 corresponding to the blowout port. Further, the plurality of thin plate-like fins stacked at a predetermined interval includes another fin edge portion 15 in contact with the inner wall surface of the cover.
  • the plurality of fin edges include at least a circumferential air inflow portion (for example, a semicircular shape) 12 facing the centrifugal fan, and a curved portion 13 that communicates with the air inflow portion and extends along the inner wall of the cover.
  • a blowout portion 14 corresponding to the blowout port.
  • the heat dissipating fin portion includes, for example, a plurality of pin fins arranged in parallel to the axial direction of the centrifugal fan, and the plurality of fins described above. You may arrange
  • 4 to 6 are diagrams for explaining the air flow of the heat sink with a centrifugal fan of the present invention.
  • the radiating fins are arranged only on one side of the centrifugal fan. This is because if the heat dissipating fin portion is arranged around the centrifugal fan so as to surround the centrifugal fan, the ventilation resistance is large and the air volume is reduced. As a result, the housing
  • the heat sink with a centrifugal fan of the present invention converts a part of the air taken in by the air intake loca centrifugal fan of the cover into a fast flow along the inner wall surface of the cover, and directly out of the housing from the air outlet. When it is discharged, it has a thought.
  • FIG. 4 shows the direct discharge route, that is, the air intake port force of the cover. A part of the air taken in by the centrifugal fan is changed into a fast flow along the inner wall surface of the cover, and the direct air outlet port It is a figure explaining the flow of the air discharged
  • the side of the centrifugal fan that does not face the heat dissipating fin portion faces the inner wall surface of the force bar as described above. Another fin edge 15 of the radiating fin is in direct contact with the inner wall surface of the cover.
  • the shape of the conversion portion 16 in which the curved surface forming the wall surface of the cover shown in FIG. 4 changes is the boundary portion of the curved portion that communicates with the semicircular air inflow portion of the radiating fin portion and extends along the inner wall of the cover. It is desirable that the air flow generated by the centrifugal fan be accelerated along the inner wall of the cover to become a large flow with the shape of the minute 21.
  • FIG. 5 is a diagram for explaining the air flow passing through the heat dissipating fin portion facing the centrifugal fan.
  • the air flow that is taken in from the air intake and directed toward the semicircular air inflow part of the radiating fins facing each other by the centrifugal fan passes radially between the radiating fins as shown by the arrow 22 and slowly It flows while changing direction by directing force to the air outlet.
  • the heat of the heating element is moved to the heat receiving block 6 by the heat pipe 7, and the heat transmitted to the heat radiating fin portion is moved toward the air blowing port by the air flow passing through the heat receiving block 6. It is a flow discharged outside the body.
  • a part of the heat transfer member 23 moves toward the curved part and partly moves toward the air outlet so as not to obstruct the air flow passing through the radiating fin part.
  • FIG. 6 is a view for explaining the air flow in the heat sink with a centrifugal fan of the present invention.
  • the air flow directly discharged to the outside and the heat of the heating element are transferred to the heat receiving block 6 and the heat transferred to the heat radiating fins by the heat transfer member is turbulent between the two flows of the air flow passing through it.
  • the heat transfer member is arranged so that no flow occurs.
  • the heat receiving block 2 is made of a metal material having excellent thermal conductivity such as aluminum or copper, and the shape thereof is appropriately set according to the shape of the heating element such as a cylinder, a square column, or a polygonal column. You can choose. When connecting to a plurality of heat generating elements having different heights, unevenness may be formed on the heat receiving surface corresponding to the heat generating elements.
  • each of the heat transfer members has, for example, a cross-sectional shape that spreads from the centrifugal fan toward the curved portion 13 and the air blowing portion 14 and further spreads as a whole.
  • a plurality of, more specifically, heat receiving blocks 400 and 500 for cooling an IC block on which two IC chips are mounted, and a corresponding heat dissipating fin assembly 200 and And 300 (see FIGS. 12 and 13) are examples of heat sinks with centrifugal fans that are cooled by a single centrifugal fan 100, respectively.
  • an IC is provided between a main frame 710 formed of a metal slope such as aluminum and a subframe 750 configured similarly.
  • a heat sink 1 with a fan according to the present embodiment is fixed to a substrate assembly 700 configured to sandwich a substrate 730 on which a chip 720, electronic elements, and the like and a wiring (not shown) are provided.
  • the fixing bolts 771 and 772 are passed, and the openings 751 of the subframe 750, the through holes 731, 732 and 711 of the substrate 730 and the main frame 710 are fixed.
  • FIG. 18 shows an exploded state before being fixed.
  • FIG. 18 shows an exploded state before being fixed.
  • FIG. 17 shows a state where the heat sink 1 with a fan is fixed to the substrate assembly.
  • a hard disk device 900 or the like is mounted on the board assembly, so that it is considered that the cooling can be dealt with.
  • the air flow sent out from the heat sink 1 with the centrifugal fan is discharged from the openings 631 and 632 and the opening 641, respectively.
  • the air flow from the heat dissipating fin assembly 300 in which a part of the side surface can be seen is discharged to the opening 641.
  • This heat sink 1 with a centrifugal fan is arranged on the side of the centrifugal fan 100 that sends the swirling air flow with a side force, and the heat dissipating fins for cooling by the swirling air flow from the centrifugal fan 100.
  • the centrifugal fan 100 sucks and sucks air in the axial direction, and sends it out as an air flow swirling from the side.
  • a core 110 (see FIGS. 7, 8, 9, and 17) having a rotation drive unit, a plurality of blades 120, a ring 130 that fixes the blades 120, and a core 110 are provided.
  • An attachment member 140 for attaching to the support member 620, an attachment claw 145, and a core part support piece 150 are provided.
  • Centrifugal fan 100 is fitted in through hole 611 provided in support member 620 and fixed by mounting member 140 and mounting claw 145.
  • the mounting claws 145 are fixed by bolts (not shown) using, for example, fan fixing screw holes 621 shown in FIG.
  • the case member 600 functions as a case having a space inside as a result of assembling a plurality of members.
  • the following members are included as the plurality of members.
  • the first plate member 610 and the third plate member 660 each having an opening 611 for allowing air to flow in, and the air flowing in.
  • a second plate member 620 having an opening 622.
  • the first plate member 610, the third plate member 660, and the side member 650 that covers a part of the side surface of the space sandwiched between the second plate members 620 are provided.
  • the side member 650 forms a ventilation space together with the first plate member 610, the third plate member 660, and the second plate member 620.
  • the first plate member 610, the third plate member 660, and the second plate member 620 are made of metal plates, for example. The reason for using metal is that the thermal conductivity is large and the mechanical strength is large.
  • one side of the case member 600 is covered by the first plate member 610 and the third plate member 660.
  • the other side is covered with the second plate material 620.
  • the centrifugal fan 100 is attached to the second plate material 620.
  • the first plate member 610 is provided to extend outside the turning radius of the rotary blade 120 of the centrifugal fan 100 to the arcuate boundary 619 that protrudes outward.
  • the third plate material 660 is processed into a shape that matches the planar shape of the boundary side 619 so as to contact the side surface of the first plate material at the boundary side 619. In other words, when the third plate member is brought into contact with the boundary of the first plate member 610, the force is changed to be a single plate.
  • a swirling air flow is generated by a centrifugal fan in a space 601 surrounded by the radiating fin assembly 200 and the radiating fin assembly 300 on the first plate member 610. It's time to meet the realm.
  • the first plate member 610 and the third plate member 660 are coupled by a coupling mechanism 690, as shown in FIGS. 7, 8, 10, and 12, for example. That is, the first plate member and the third plate member are connected so as to be displaceable in the thickness direction of the plate member.
  • the coupling mechanism 690 includes a claw 691 provided integrally with the first plate 610, a portion of the third plate 660 provided with a through hole 696 that engages with the claw 691, and a through-hole. And a portion of the radiating fin 310 provided with the hole 311.
  • the claw 691 includes an arm 693 and an engagement piece 692 extending from the tip of the arm 693 in the rotation axis direction of the centrifugal fan 100.
  • the length of the engaging piece 692 and the height position of the arm 693 are the lengths necessary to absorb the displacement in the height direction generated in the first plate member 610 and the third plate member 660.
  • the through-hole 696 is formed in the vicinity of the edge portion that abuts against the first plate member 610 boundary edge 619 of the third plate member 660.
  • Length of through hole 696 The width dimension is determined according to the allowable amount of movement of the third plate material into the plane perpendicular to the rotational axis of the centrifugal fan.
  • the coupling mechanism 690 can be displaced in the direction of the rotation axis.
  • the coupling mechanism 690 restricts the first plate member 610 and the third plate member 660 from being separated from each other in a plane orthogonal to the rotation axis, and restricts the third plate member 330 from riding on the first plate member 310. is doing.
  • the coupling mechanisms 690 are arranged at two positions with an inclination. More specifically, each of the forces is arranged in a direction along the radius of the rotation center O force of the centrifugal fan. For this reason, the relative displacement of the third plate material 660 with respect to the first plate material 610 in the same plane is suppressed to a small value.
  • the radiating fin assembly 200 and the heat receiving block 400 are fixed. Further, the side member 650 is connected to the first plate member 610. Further, the first plate member 610 is integrally provided with a side surface portion 615 that forms a side surface. For example, the side surface portion 615 is opposed to the one side surface 212 of the radiating fin assembly 200, and a bypass 602 is formed therebetween. Since the bypass 602 does not have the heat dissipating fin assembly 200, the resistance is reduced, and the air flow can flow at a high speed. On the entrance side of the bypass 602, a guide portion 603 for guiding the swirling air flow in the tangential direction of swirling is provided. Since the guide portion 603 is covered with the side surface member 650 on the outside, there is no opening. Therefore, the swirling air flow proceeds along the inner wall of the side member 650 and flows into the bypass 602.
  • the side member 650 is constituted by a plurality of members.
  • a side member 651 that covers one side surface and side members 652 and 653 that cover a corner portion are used.
  • Each of the side members 651 to 653 not only covers the side surface, but also has a function of regulating the displacement of the first plate member 610 and the third plate member 660 with respect to the rotation axis direction of the centrifugal fan. That is, the side members 651 force 653 are provided with claws 656 and 658 forces S, respectively, in contact with the first plate member 610 and the second member 620, respectively, and fix them to the side member.
  • the side member 650 is formed by plastic molding in this embodiment. This is because a complicated shape can be easily formed.
  • Case member 600 has a restricting mechanism for restricting the displacement stroke of third plate member 660 in the thickness direction.
  • the side member 651 has a centrifugal filter.
  • a rotating shaft direction restricting piece 659 is provided for restricting the displacement of Ann in the rotating shaft direction.
  • the rotating shaft direction restricting piece 659 is composed of a pair of restricting pieces 6 59a and 659b that face each other in the rotating shaft direction.
  • the restricting piece 695b is formed in a groove shape.
  • the second plate is sandwiched and fixed in this groove.
  • the third plate member 660 and the radiating fin assembly 300 are sandwiched between the restricting pieces 659a and 659b.
  • the displacement between the regulating pieces 659a and 659b is regulated within a certain stroke range.
  • This displacement stroke is determined assuming a deviation from a reference position in the height direction when mounting an IC chip, which will be described later.
  • the range is shorter than the plate thickness of the third plate member.
  • a locking portion 669 is provided at the end of the third plate member 660.
  • the locking portion 669 that is in contact with the side member 651 is locked to the restriction piece 659a within the aforementioned range of the displacement stroke.
  • the other locking portion 669 is engaged with the other side member 653 in the same manner as described above, but the displacement is limited by the restriction piece (not shown) corresponding to the restriction piece 659a at the displacement stroke range limit described above. Stopped.
  • the displacement of the third plate member 660 to which the radiating fin assembly 300 is fixed is restricted within the range of the fixed stroke by the restriction mechanism.
  • the restriction by the restriction piece 659 that is, the play, occurs when the heat receiving blocks 400 and 500 that are in close contact with the two IC chips correspond to the reference positions of the respective IC chips.
  • the heat receiving block 500 is relatively displaced to absorb the deviation and maintain an appropriate crimped state.
  • the first plate member 610 and the third plate member 660 can be connected with play in the height direction of the IC chip or the rotation axis direction of the centrifugal fan. For this reason, workability such as fixing to the substrate is improved.
  • a plurality of IC chips can be cooled by a heat sink equipped with a single centrifugal fan.
  • the heat dissipating fin assembly 200 passes through a plurality of heat dissipating fins 211 arranged in layers and spaced from each other and heat dissipating fins 211 arranged in layers, and transfers heat to the heat dissipating fins 211.
  • the heat transfer member 220 group includes a plurality of flat heat transfer members 220 having a flat cross section.
  • the plurality of flat heat transfer members 220 are formed of the heat radiation fins 211. Distributed in multiple locations.
  • the radiating fin assembly 300 is also used.
  • the force for explaining the flat heat transfer member 220 Since the configuration is common to the flat heat transfer member 320, the description will not be repeated.
  • the flat heat transfer member 220 is formed of a metal such as aluminum, for example.
  • the cross-sectional shape is formed to be a flat shape.
  • the flat cross-sectional shape has a longitudinal direction that is longer than the other directions. The reason for the flat shape is that the air resistance can be reduced by arranging the longitudinal direction of the flat shape along the flow of the air flow. Examples of the flat cross-sectional shape include an oval shape, an elliptical shape, and a rectangular shape.
  • this is further promoted and distributed as follows. That is, in the distribution of the flat heat transfer member 220, the longitudinal direction of the flat cross-sectional shape passes through the flat cross-sectional shape, and the radius of the centrifugal fan from the rotation center of the centrifugal fan is the origin of the air flow.
  • the number of flat heat transfer members arranged in an inclined state with an acute angle in the same direction of rotation as that of the swivel should be included.
  • FIG. 20 schematically shows a specific distribution of the heat transfer member used in the present embodiment.
  • the central force of the swirling air flow formed by the centrifugal fan is assumed to be at the rotational center o of the centrifugal fan, and a radial line segment r passing through the center of any flat heat transfer member is drawn from this rotational center. Further, a line segment k in the longitudinal direction of the flat heat transfer member is drawn.
  • the angle ⁇ formed by the intersection of the longitudinal line segment r and the radial line segment k is examined, it is the same direction as the rotational direction of the swirl flow (indicated by an arrow in FIG. 20). You can see that they all make an acute angle.
  • the flat heat insulating member 220 is inserted into the through hole 610a provided in the first plate member 610 and the through hole 21 la provided in each radiating fin 211 as shown in FIG.
  • the flat heat transfer member 220 is sequentially press-fitted so that a plurality of heat dissipating fins 211 are stacked at intervals.
  • the inner peripheral portion of the through-hole 610a is drawn to form an annular band.
  • the flat heat transfer member 220 is firmly fixed to the heat radiating fins 211. Further, since the contact area between the radiating fins 211 and the flat heat transfer member 220 is increased, there is an advantage that the heat transfer efficiency is improved.
  • a pin 250 for positioning or the like is used. These pins also function as a heat transfer member because a heat conduction effect can be expected. Therefore, in this embodiment, the heat transfer members having a circular cross section are substantially mixed.
  • the heat receiving block 400 includes a heat receiving portion 410 and a heat transfer portion 450 that transfers heat received by the heat receiving portion to the heat radiating fin.
  • the heat receiving part 410 is made of a metal having good thermal conductivity such as copper, for example.
  • the shape can be appropriately selected according to the shape of the heating element, such as a cylinder, a quadrangular column, or a polygonal column.
  • the heat transfer unit 450 is, for example, a heat pipe. Of course, it is not limited to this.
  • the heat receiving portion 410 is fixed to the first plate member 610.
  • the heat pipe of the heat transfer unit 450 is disposed so as to contact the base end of each flat heat transfer member 220. As a result, heat can be efficiently transferred to the heat radiating fins.
  • the heat receiving block 500 includes a heat receiving unit 510 and a heat transfer unit 550.
  • the heat receiving block 500 is arranged so as to float so that the heat receiving portion 510 and the heat transfer portion 550 do not contact the first plate member 610.
  • the heat transfer unit 550 is fixed to the third plate member 660. Accordingly, the heat receiving block 500 can be displaced according to the displacement of the third plate member.
  • the heat transfer unit 550 is disposed so as to contact the base end of the flat heat transfer member 320. By doing so, the heat transfer performance can be improved. [0084] As described above, according to the second embodiment of the present invention, it is possible to cool two chips with one heat sink with a centrifugal fan. Therefore, it is easy to reduce the size of the cooling part that takes up the volume.
  • two radiating fin assemblies are used, but it is of course possible to adopt a configuration with one radiating fin assembly. In that case, it is possible to cope with this by covering the portion where the third plate member 660 is placed with a side member. Of course, it is also possible to increase the area of the first plate member, increase the size of the heat dissipating fin assembly 200, and arrange the heat sink fin assembly 200 there.
  • the present embodiment since the present embodiment is provided with a bypass, it can reduce the resistance! / And can send an air flow at high speed, so that the efficiency of the centrifugal fan can be increased. As a result, it can contribute to cooling equipment in other areas. For example, it becomes possible to increase the amount of air for the node disk device shown in FIG.
  • the present invention can be used as a cooling device for cooling an object requiring cooling, including an IC chip mounted on an electronic device such as a computer, a control device, and a game machine. It can be applied to the cooling of objects that can be cooled by using radiating fins and centrifugal fans.

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
  • Cooling Or The Like Of Electrical Apparatus (AREA)

Description

遠心ファン付ヒートシンク
技術分野
[0001] この発明は、複数の放熱フィン、および、遠心ファンを備えた遠心ファン付ヒートシ ンク、特に、換気量が増大した、コンパクトで放熱効率の高い遠心ファン付ヒートシン クに関する。
背景技術
[0002] CPU,素子等の発熱量、発熱密度の増大によって、放熱効率に優れた高性能のヒ ートシンクが求められている。更に、ノ ソコン、ゲーム機器等の電子機器では、高さが 制限され、コンパクト、低騒音で、放熱効率の高いヒートシンクが求められている。従 来、製造コストの安価なアルミニウムの押し出し材によるヒートシンクが利用されてきた 。押し出し材によるヒートシンクは、受熱ブロックと放熱フィンとがー体的に形成される ので、製造は容易である力 製造上の制限によって放熱フィンのピッチが限定され細 力なピッチでフィンを形成することが技術的に困難であった。
[0003] 更に、受熱ブロックと放熱フィンの組み合わせだけでは発熱量の増大に対応するこ とが難しくなり、ヒートパイプを組み合わせたヒートシンクが使用されるようになった。そ の中でも、受熱ブロックに一端が取り付けられた垂直に配置された複数のヒートパイ プに、薄板状の多数の放熱フィンが挿通されたタイプのヒートシンクが広く使用される ようになつてきた。このようにヒートパイプを使用することによって、放熱面積とフィン効 率を向上し、高発熱量の放熱が可能になる。
[0004] ヒートパイプの内部には作動流体の流路となる空間が設けられ、その空間に収容さ れた作動流体が、蒸発、凝縮等の相変化や移動をすることによって、熱の移動が行 われる。即ち、ヒートパイプの吸熱側において、ヒートパイプを構成する容器の材質中 を熱伝導して伝わってきた被冷却部品が発する熱により、作動流体が蒸発し、その 蒸気がヒートパイプの放熱側に移動する。放熱側においては、作動流体の蒸気は冷 却され再び液相状態に戻る。このように液相状態に戻った作動流体は再び吸熱側に 移動(還流)する。このような作動流体の相変態や移動によって熱の移動が行われる [0005] 通常、受熱ブロックに接続され、垂直に配置された複数のヒートパイプに多数の放 熱フィンが挿通されたタイプのヒートシンクを使用する強制冷却方式のヒートシンクの 場合には、放熱フィンの側面部にファンを取り付けて、被冷却部品の熱をヒートパイ プによって放熱フィンに移動し、冷却用ファンによって強制的に冷却する。
特許文献 1:特開平 11 351769号公報
特許文献 2:特開 2001— 210767号公報
発明の開示
発明が解決しょうとする課題
[0006] しかし、上述した冷却用ファンを備えた従来のヒートシンクは、フィンの前面の面積 が軸流ファンの面積に匹敵し、ファンの高さが高くなりがちである。このようなヒートシ ンクを、パソコン、ゲーム機器等の高さが制限される電子機器に使用する場合には、 放熱フィンの高さを低くする代わりに横寸法を大きくした横長のヒートシンクになり、放 熱フィンが広くなり、それを冷却するためには小径のファンを多数並べることになり、 組み合わせるファンの数が多くなつてしまう。それと共に騒音が高くなる、更には、電 子機器の排気口が大きくなり、各種端末類の設置場所の確保と相俟って筐体も大型 化してしまうという問題点がある。
[0007] 更に、性能の高度化に伴って筐体内には多数の発熱素子が配置されているので、 より一層効率的に筐体内の温度を低下させる必要がある。
[0008] 更に、複数の薄板状フィン力 なる放熱フィン部を固定する伝熱部材の従来の配置 は、放熱フィン部に熱を移動する機能だけに着目され、遠心ファン力 放熱フィン部 に入った空気流が伝熱部材に当りその流れを乱して、放熱効率を阻害するという問 題点があった。
[0009] 従って、この発明の目的は、パソコン、ゲーム機器等の高さが制限される電子機器 に使用する場合においても、筐体内全体の温度をより一層効果的に低下させること ができ、高さを抑え、低騒音かつコンパクトで、放熱効率の高い遠心ファン付ヒートシ ンクを提供すること〖こある。
課題を解決するための手段 [0010] 発明者は、上述した従来の問題点を解決するために研究を重ねた。その結果、複 数枚を所定の間隔で積層配置した放熱フィンの形状を、遠心ファンに対応する概ね 半円周形状にし、カバーと放熱フィンが熱的に接続される熱伝導性に優れた底部に よって形成される空間部において、放熱フィンを通る空気の流れの他に、カバー内壁 に沿って吹き出し口に向力つて急速に流れる空気流を生じさせることによって、筐体 内における空気の換気量が著しく増大して、筐体内の温度をより一層効果的に低下 させることができることが半 IJ明した。
[0011] 即ち、遠心ファンの一方の側は、所定の間隔で積層された放熱フィンの半円周状 の空気流入部が相対し、遠心ファンの他方の側にはカバーの内壁面が直接相対し た状態で上述した空間部内に配置される。その結果、カバーの内壁面が直接相対し た側で、遠心ファンによって所定形状のカバー内壁に沿って吹き出し口に向力つて 空気流が生じる。更に、伝熱部材は、放熱フィン部の空気流入部から吹き込まれ放 熱フィン部中を流れて曲線部から出た空気流がカバーの内壁に沿って空気吹き出し 口に向力う空気流の流れを阻害しないように配置されているので、放熱効率が高い。
[0012] この発明の遠心ファン付ヒートシンクは、上述した研究結果に基づいてなされたもの であって、この発明の遠心ファン付ヒートシンクの第 1の態様は、空気取り入れ口と空 気吹き出し口とを備えた所定形状のカバーと、
冷却を要する発熱体と熱的に接続する受熱ブロックと、
前記受熱ブロックが一方の面に熱的に接続され、前記カバーと係合されて空間部 を形成する熱伝導性を有する底部と、
前記底部に熱的に接続し、少なくとも空気流入部を備える所定形状を備え、前記 空間部に収納される複数のフィン部力 なる放熱フィン部と、
回転軸が、前記放熱フィン部の空気流入部近傍に配置され、前記空気取り入れ口 から空気を取り入れ、前記放熱フィン部の隣り合うフィン部間に設けた間隙部に空気 流を生じさせると共に、前記カバーの内壁に沿って前記吹き出し口に向力つて空気 流を生じさせる遠心ファンと、
前記遠心ファンによる前記放熱フィン部の側方に向力つて生じた空気流の抵抗が 小さくなるように配置され、前記複数のフィン部を揷通して、前記底部からの熱を伝導 する伝熱部材とを備えた遠心ファン付ヒートシンクである。
[0013] この発明の遠心ファン付ヒートシンクの第 2の態様は、前記放熱フィン部は、所定の 間隔で積層された複数の薄板状フィンによって形成される複数のフィン縁部を備えて おり、前記複数のフィン縁部は、少なくとも前記遠心ファンに相対する部分円周状の 前記空気流入部と、前記空気流入部と連絡し、前記カバーの内壁に沿って延びる曲 線部と、前記吹き出し口に相対する吹き出し部とを備えている、遠心ファン付ヒートシ ンクである。
[0014] この発明の遠心ファン付ヒートシンクの第 3の態様は、前記遠心ファンは、ファンの 外周面の一部が前記放熱フィン部の前記部分円周状の空気流入部に相対し、他の 部分が前記カバーの内壁に相対して配置され、前記カバーの内壁の所定の位置を 起点として、前記カバーの内壁に沿った前記空気流を前記吹き出し口に向かって生 じさせる、遠心ファン付ヒートシンクである。
[0015] この発明の遠心ファン付ヒートシンクの第 4の態様は、前記カバーは、前記放熱フィ ン部の前記空気流入部と前記曲線部との境界部分に対応する位置に、前記カバー の内壁を形成する曲面の変換部を備えており、前記変換部によって、前記カバーの 内壁に沿った前記空気流を生じさせる、遠心ファン付ヒートシンクである。
[0016] この発明の遠心ファン付ヒートシンクの第 5の態様は、前記放熱フィン部は、前記力 バーの内壁に直接接触する別のフィン縁部を更に備えており、前記別のフィン縁部 の端部が前記起点を形成する、遠心ファン付ヒートシンクである。
[0017] この発明の遠心ファン付ヒートシンクの第 6の態様は、前記空気吹き出し口が前記 放熱フィン部を通過する空気吹き出し口と、前記カバーの内壁に沿って流れる空気 吹き出し口と共通である、遠心ファン付ヒートシンクである。
[0018] この発明の遠心ファン付ヒートシンクの第 7の態様は、前記伝熱部材は、遠心ファン を起点として放射状に配置されて 、る、遠心ファン付ヒートシンクである。
[0019] この発明の遠心ファン付ヒートシンクの第 8の態様は、前記伝熱部材は、前記放熱 フィン部の前記空気流入部から吹き込まれ前記放熱フィン部中を流れて前記曲線部 力 出た空気流が前記カバーの内壁に沿って空気吹き出し口に向力う空気流の流 れを阻害しな 、ように配置されて 、る、遠心ファン付ヒートシンクである。 [0020] この発明の遠心ファン付ヒートシンクの第 9の態様は、前記伝熱部材がヒートパイプ 力らなって!/、る、遠心ファン付ヒートシンクである。
[0021] この発明の遠心ファン付ヒートシンクの第 10の態様は、前記空気吹き出し口が前記 放熱フィン部を通過する空気の吹き出し口と、前記カバーの内壁に沿って流れる空 気の吹き出し口と別個に設けられている、遠心ファン付ヒートシンクである。
[0022] この発明の遠心ファン付ヒートシンクの第 11の態様は、前記受熱ブロックに少なくと も 1本のヒートパイプが備えられて 、る、遠心ファン付ヒートシンクである。
[0023] この発明の遠心ファン付ヒートシンクの第 12の態様は、前記空気吹き出し口が筐体 の外部に向かって設けられる、遠心ファン付ヒートシンクである。
[0024] この発明の遠心ファン付ヒートシンクの他の態様は、前記吹き出し口が 1箇所である
、遠心ファン付ヒートシンクである。
[0025] この発明の遠心ファン付ヒートシンクの他の態様は、前記吹き出し口が複数箇所で ある、遠心ファン付ヒートシンクである。
[0026] 旋回空気流を側面力 送出する遠心ファンと、前記遠心ファンの側面に配置され、 該遠心ファンからの旋回空気流により冷却をおこなうための放熱フィン組立体と、前 記放熱フィン組立体に固定され、冷却を要する発熱体からの熱を該放熱フィン組立 体に伝導する受熱ブロックと、これらを支持すると共に、通風空間を形成するケース 部材とを有し、
前記ケース部材は、
前記放熱フィン組立体を挟んで前記通風空間を形成するための第 1および第 2の 板材と、
前記第 1および第 2の板材に挟まれる空間の側面の一部を覆って、前記第 1および 第 2の板材と共に通風空間を形成する側面部材と、を有し、
前記放熱フィン組立体は、
間隔をあけて積層配置される複数枚の放熱フィンと、
前記積層配置される放熱フィンを挿通して、それらの放熱フィンに熱を伝達する伝 熱部材群と、を有し、
前記伝熱部材群は、断面が扁平形状である扁平伝熱部材を複数個有し、前記複 数個の扁平伝熱部材は、前記放熱フィンの複数箇所に分布して配置され、 前記扁平伝熱部材の分布には、前記断面扁平形状の長手方向が、当該断面扁平 形状を通る、前記遠心ファンの回転中心からの半径に対して、該半径を基点として前 記空気流の旋回と同じ回転の向きに鋭角をなして傾いた状態で配置される扁平伝熱 部材を、全数ないしそれより少ない複数個含むこと
を特徴とする遠心ファン付きヒートシンクである。
[0027] また、他の態様として、遠心ファン力も旋回して送り出される空気流を側面から受け て、該空気流により冷却をおこなうための放熱フィン 立体であって、
間隔をあけて積層配置される複数枚の放熱フィンと、
前記積層配置される放熱フィンを挿通して、それらの放熱フィンに熱を伝達する伝 熱部材群と、を有し、
前記伝熱部材群は、断面が扁平形状である伝熱部材を複数個含み、前記複数個 の断面扁平形状の伝熱部材は、前記放熱フィンの複数箇所に分布して配置され、 前記断面扁平形状の伝熱部材の分布は、前記断面扁平形状の長手方向が、当該 断面扁平形状を通る、前記遠心ファンの回転中心からの半径に対して、前記空気流 の旋回と同じ回転の向きに鋭角をなして傾いた状態で配置されるものを、複数個含 むことを特徴とする放熱フィン組立体が提供される。
発明の効果
[0028] この発明の遠心ファン付ヒートシンクによると、遠心ファンの一方側力 所定の間隔 で積層配置した複数の薄板フィンの半円周状の空気流入部に相対して配置され、遠 心ファンの他方の側にはカバーの内壁面が直接相対した状態で空間部内に配置さ れるので、積層配置された複数の薄板フィンを通って、吹き出し口に向かって空気が 流れると共に、カバーの内壁面が直接相対した側で、遠心ファンによってカバー内壁 に沿って吹き出し口に向力つて空気流が生じる。上述した空気流が加速された流れ であると更に効果が高い。
[0029] 従って、一方で、発熱素子力 受熱ブロックに伝わった熱は、所定の間隔で積層配 置された複数の薄板フィンに移動し、遠心ファンの空気によって吹き出し口に向かつ て流れる空気によって筐体外に放熱される。更に、カバーの内壁面が直接相対した 側で、遠心ファンによってカバー内壁に沿って吹き出し口に向力つて加速された空 気流が生じるので、筐体内の空気が遠心ファンによって取り込まれ、カバー内壁に沿 つて生じた空気流によって、吹き出しロカ 筐体外に放出される。このように筐体外 へ、好ましくは加速流によって直接排出するので、換気量が増え、発熱体の発熱によ る筐体内全体の空気温度上昇を抑えることができる。
[0030] 更に、伝熱部材は、放熱フィン部の空気流入部から吹き込まれ放熱フィン部中を流 れて曲線部から出た空気流がカバーの内壁に沿って空気吹き出し口に向力う空気 流の流れを阻害しな 、ように配置されて 、るので、放熱効率が高 、。
[0031] また、積層配置される放熱フィンを挿通して、それらの放熱フィンに熱を伝達する伝 熱部材群が、断面が扁平形状である伝熱部材を複数個含み、複数個の断面扁平形 状の伝熱部材は、放熱フィンの複数箇所に分布して配置される。このため、放熱フィ ンに熱が均等に伝わりやすい。しかも、断面扁平形状の伝熱部材の分布は、断面扁 平形状の長手方向が、当該断面扁平形状を通る、前記遠心ファンの回転中心力もの 半径に対して、前記空気流の旋回と同じ回転の向きに鋭角をなして傾いた状態で配 置される者を複数個含む。これにより、分布する伝熱部材が遠心ファンからの旋回空 気流の流れにぶつ力る面積が小さくなる。このため、全体として、旋回空気流が円滑 に放熱フィン間を流れるため、冷却効率を高めることができる。
図面の簡単な説明
[0032] [図 1]図 1は、この発明の遠心ファン付ヒートシンクの 1つの態様を表側から見た状態 を示す斜視図である。
[図 2]図 2は、図 2は、図 1に示すこの発明の遠心ファン付ヒートシンクの 1つの態様を 裏側から見た状態を示す斜視図である。
[図 3]図 3は、この発明の遠心ファン付ヒートシンクを分解して説明する図である。図 3 (a)はカバーを示す。図 3 (b)は所定の間隔で積層された薄板フィンを備えた熱伝導 性に優れた底部を示す。図 3 (c)は遠心ファンを示す。
[図 4]図 4は、この発明の遠心ファン付ヒートシンクの空気の流れを説明する図である [図 5]図 5は、この発明の遠心ファン付ヒートシンクの空気の流れを説明する図である [図 6]図 6は、この発明の遠心ファン付ヒートシンクの空気の流れを説明する図である
[図 7]図 7は、この発明の遠心ファン付きヒートシンクの他の態様を示す、一部切り欠 V、た状態を示す斜視図である。
[図 8]図 8は、この発明の遠心ファン付きヒートシンクの他の態様を示す斜視図である [図 9]図 8の横断面図である。
圆 10]図 10は、第 1板材と第 3板材との連結部を模式的に示す断面図である。
[図 11]図 11は、それぞれ放熱フィン組立体を搭載して、第 1板材および第 3板材を連 結させた状態を示す斜視図である。
[図 12]図 12は、放熱フィン組立体を搭載した第 1板材を第 3板材と連結させる前の状 態を示す斜視図である。
[図 13]図 13は、放熱フィン組立体を搭載した第 3板材および第 1板材を連結させる前 の状態を示す斜視図である。
[図 14]図 14は、それぞれ放熱フィン組立体を搭載して、第 1板材および第 3板材を連 結させた状態を示す斜視図である。
[図 15]図 15は、それぞれ放熱フィン組立体を搭載して、第 1板材および第 3板材を連 結させ手、さら〖こ、第 2板材を載せた状態を示す斜視図である。
[図 16]図 16は、放熱フィン組立体に扁平伝熱部材を揷通させた状態の一部を示す 断面図である。
[図 17]図 17は、この発明の第 2の実施形態に係る遠心ファン付きヒートシンクを、基 板組立体に取り付けた状態を示す斜視図である。
[図 18]図 18は、この発明の第 2の実施形態に係る遠心ファン付きヒートシンクを、基 板組立体に固定する前の状態を示す斜視図である。
[図 19]図 19は、基板組立体において ICチップと受熱ブロックとが圧接される構造を 模式的に示す断面図である。
[図 20]図 20は、この発明の第 2の実施形態に係る遠心ファン付きヒートシンクにおい て、伝熱部材の分布状態を示す説明図である。
[図 21]図 21は、放熱フィン組立体間の高さの差を吸収する機構を示す説明図である 。符号の説明 1:この発明の遠心ファン付ヒートシンク、 2:カバー、 3:底部、 3— 1:ド 一ナツ状部分、 3— 2:フィン配置部分、 4:遠心ファン、 4—1:インペラ一、 4— 2:周 縁部、 5:放熱フィン部、 6:受熱ブロック、 7:ヒートパイプ、 10:空気取り入れ口、 11: 空気吹き出し口、 12:放熱フィン部の半円周状の空気流入部、 13:曲線部、 14:吹き 出し部、 15:別のフィン縁部、 16:変換部、 18、 19、 20、 22:空気流、 21:境界部分 、 23:伝熱部材、 100···遠心ファン、 200···放熱フィン組立体、 210···放熱フィン、 2 20···扁平伝熱部材、 300…放熱フィン組立体、 320…扁平伝熱部材、 400、 500受 熱ブロック、 600…ケース部材、 610…第 1板材、 620…第 2板材、 660…第 3板材、 690···連結機構、 100:遠心ファン、 200:放熱フィン組立体、 210:放熱フィン、 220 :扁平伝熱部材、 300:放熱フィン組立体、 320:扁平伝熱部材、 400、 500受熱ブ口 ック、 600…ケース部材、 610:第 1板材、 620:第 2板材、 660:第 3板材、 690:連結 機構。発明を実施するための最良の形態
[0033] この発明の遠心ファン付ヒートシンクを、図面を参照しながら説明する。まず、図 1か ら図 6を参照して、第一の実施形態について説明する。次いで、図 7から図 21を参照 して、第二の実施形態について説明する。
[0034] この発明の遠心ファン付ヒートシンクの 1つの態様は、空気取り入れ口と吹き出し口 を備えた所定の形状のカバーと、冷却を要する発熱体と熱的に接続する受熱ブロッ クと、前記受熱ブロックが一方の面に熱的に接続され、前記カバーと係合されて空間 部を形成する熱伝導性を有する底部と、前記底部に熱的に接続し、少なくとも円周 状の空気流入部を備える所定形状を備え所定の間隔で積層配置されて、上述した 空間部に収納される複数の薄板状フィン力 なる放熱フィン部と、その回転軸が薄板 状フィンと概ね垂直になるように、放熱フィン部の空気流入部に相対して空間部内に 配置され、放熱フィン部の上および Zまたは下方向から空気を取り入れ、放熱フィン 部の側方に向力つて一部の空気を排出すると共に、カバーの内壁に沿って吹き出し 口に向力つて空気流を生じさせる遠心ファンと、前記遠心ファンによる前記放熱フィ ン部の側方に向力つて生じた空気流の抵抗が小さくなるように配置され、前記複数の フィン部を揷通して、前記底部からの熱を伝導する伝熱部材とを備えた遠心ファン付 ヒートシンクである。
[0035] 図 1は、この発明の遠心ファン付ヒートシンクの 1つの態様を表側から見た状態を示 す斜視図である。図 2は、図 1に示すこの発明の遠心ファン付ヒートシンクの 1つの態 様を裏側カゝら見た状態を示す斜視図である。
[0036] 図 1に示すように、遠心ファン付ヒートシンク 1は、遠心ファンへの空気取り入れ口と 、ヒートシンク内を通る空気の吹き出し口を備えた所定の形状のカバー 2と、受熱ブ口 ックがー方の面に熱的に接続され、カバー 2と係合されて空間部を形成する熱伝導 性を有する底部 3とを備えている。空気取り入れ口には遠心ファン 4が取り付けられて いる。空気の吹き出し口の一部に、空間部内に配置された所定の間隔で積層された 薄板フィン 5が見える。更に、カバー 2の表面には、複数の薄板状フィンを挿通して、 発熱体の熱を底部力 複数の薄板状フィンに移動する伝熱部材 23の一部が露出し ている。
[0037] 図 2に示すように、熱伝導性を有する底部 3の裏側には、冷却を要する発熱体と熱 的に接続する受熱ブロック 6が熱的に接続されている。発熱体とヒートシンクが離れた 場所にある場合には、例えば、ヒートパイプ 7によって発熱体の熱が受熱ブロック 6に 移動される。遠心ファンへの空気取り入れ口は、図 2に示すように、ヒートシンクの裏 面からも取り入れるように設けられてもよ 、。ヒートパイプは丸型のヒートパイプを示し ているが、板状であってもよい。ヒートパイプの数は 2本に限定されることはない。
[0038] 図 1および図 2に示すように、ヒートシンク内を通る空気の吹き出し口には、所定の 間隔で積層された複数の薄板フィンが位置しな 、空間が設けられて 、る。後に詳述 するように、遠心ファンによって所定形状のカバー内壁に沿って吹き出し口に向かつ て加速された空気流が、この空間を通って、例えば、筐体外に直接排出される。
[0039] 図 3は、この発明の遠心ファン付ヒートシンクを分解して説明する図である。図 3 (a) はカバーを示す。図 3 (b)は所定の間隔で積層された薄板フィンを備えた熱伝導性を 有する底部を示す。図 3 (c)は遠心ファンを示す。
[0040] 図 3 (a)に示すように、カバー 2は例えば榭脂等で作製され、空気吹き出し口 11以 外は、壁面によって覆われている。空気取り入れ口 10の上方にカバーの壁面を形成 する曲面が変わる変換部 16を備えている。カバー 2の表面には、遠心ファンによる放 熱フィン部の側方に向力つて生じた空気流の抵抗が小さくなるように配置された伝熱 部材 23の頭部が収められる孔が形成されている。
[0041] 図 3 (b)に示すように、熱伝導性を有する底部 3は概ねカバーと対応した形状を有し ている。即ち、所定の間隔で積層された複数の薄板フィンの半円周状空気流入部に 相対して配置される遠心ファンが収容されるドーナツ状部分 3— 1と、所定の間隔で 積層された薄板フィンが熱的に接続されて配置される部分 3— 2を備えている。熱伝 導性を有する底部 3は、カバー 2の壁面を形成する曲面が変わる変換部 16に対応し て、変換部 17を備えている。所定の間隔で積層された薄板状フィンを挿通して底部 から薄板状フィンに熱を移動する伝熱部材 23が、遠心ファンを起点として放射状に 配置されている。更に、伝熱部材 23は、放熱フィン部の空気流入部から吹き込まれ 放熱フィン部中を流れて曲線部 13から出た空気流がカバーの内壁に沿って空気吹 き出し口に向力 空気流の流れを阻害しな 、ように配置されて 、ることが望ま 、。更 に、伝熱部材がヒートパイプ力もなつていてもよい。その場合も、上述した空気流を阻 害しないように配置する。
[0042] 図 3 (c)に示すように、遠心ファンは、複数のファン (インペラ一) 4—1とカバーの空 気取り入れ口に取り付けられる周縁部 4— 2を備えている。例えば、カバーの外側か らファン 4 1が空間内に挿入され、上述したドーナツ状部分に配置されて、周縁部 4 2に設けられた突起部がカバーの空気取り入れ口の周辺部に固定される。
[0043] 更に、図 3 (b)に示すように、放熱フィン部 5は、所定の間隔で積層された複数の薄 板状フィンによって形成される複数のフィン縁部を備えている。即ち、複数のフィン縁 部は、少なくとも遠心ファンに相対する円周状の空気流入部(例えば半円周状) 12と 、空気流入部と連絡し、カバーの内壁に沿って延びる曲線部 13と、吹き出し口に相 対する吹き出し部 14とを備えている。更に、所定の間隔で積層された複数の薄板状 フィンは、カバーの内壁面と接する別のフィン縁部 15を備えて 、る。
[0044] なお、放熱フィン部は、所定の間隔で積層配置された複数の薄板状フィンの他に、 例えば、複数のピンフィンを遠心ファンの軸方向に平行に配置して、上述した複数の フィン縁部を形成するように配置してもよい。更に、空気流入部から吹き出し部に向 力つて空気が流れるように、湾曲された板状フィンを櫛歯形状に配置してもよい。い ずれにしても、放熱フィン部は、空気流入部力も空気吹き出し口に向力つて遠心ファ ンによって空気が流れる形状のものであればよい。
[0045] 上述した図 3 (a)、図 3 (b)、図 3 (c)に示すカバー、底部および遠心ファンが組み立 てられて、図 1および図 2に示すようにこの発明の遠心ファン付ヒートシンクが形成さ れる。
[0046] 図 4から図 6は、この発明の遠心ファン付ヒートシンクの空気の流れを説明する図で ある。
[0047] 図 4に示すように、この発明の遠心ファン付ヒートシンクにおいては、放熱フィン部を 遠心ファンの一方の側のみに配置している。これは、遠心ファンを囲むように遠心フ アンの周囲に放熱フィン部を配置すると、通風抵抗が大きく風量が低下する。その結 果、筐体
内の換気量が低下することで筐体内雰囲気温度が上昇し、全てのデバイス温度が上 昇する
t 、う問題を解決するものである。
[0048] 即ち、この発明の遠心ファン付ヒートシンクにおいては、放熱フィン部内を通過させ て、放熱フィンとの間で熱交換によって冷却する気流と、一方で空間部内の放熱フィ ンを取り除いた部分を利用して、カバーの内壁面に沿って生じさせた加速流とによつ て、換気を促進している。即ち、この発明の遠心ファン付ヒートシンクは、カバーの空 気取り入れロカ 遠心ファンによって取り入れた空気の一部を、カバーの内壁面に 沿って速 ヽ流れに変えて、直接空気吹き出し口から筐体外に排出してしまうと 、う思 想を備えている。
[0049] このように、カバーの空気取り入れ口力 遠心ファンによって取り入れた空気の一部 を、カバーの内壁面に沿って速い流れに変えて、直接空気吹き出し口から筐体外に 排出することによって、筐体内の周辺に位置する発熱体を冷却することができる。
[0050] 図 4は、直接放出ルート、即ち、カバーの空気取り入れ口力 遠心ファンによって取 り入れた空気の一部を、カバーの内壁面に沿って速い流れに変えて、直接空気吹き 出し口から筐体外に排出する空気の流れを説明する図である。 [0051] 図 4に示すように、遠心ファンの放熱フィン部に相対しない側は、上述したように力 バーの内壁面に相対している。放熱フィン部の別のフィン縁部 15は、カバーの内壁 面と直接接している。従って、遠心ファンによって生じた空気流の一部は、矢印 18に 示すように、カバーの半円周面形状の内壁面に沿って流れ、カバーの壁面を形成す る曲面が変わる変換部 16において、矢印 19に示すように更に加速されてカバー内 壁面に沿って大きな流れとなって空気吹き出し口に向かう。このように加速され大き な流れとなった空気流は、筐体の外側に直接排出される。
[0052] 図 4に示すカバーの壁面を形成する曲面が変わる変換部 16の形状は、放熱フィン 部の半円周状の空気流入部と連絡しカバーの内壁に沿って伸びる曲線部の境界部 分 21の形状と共に、遠心ファンによって生じた空気流がカバーの内壁に沿って加速 され大きな流れになるように流体力学的に設計されたものが望ましい。
[0053] 図 5は、遠心ファンに相対する放熱フィン部内を通過する空気流を説明する図であ る。空気取り入れ口から取り入れられ、遠心ファンによって相対する放熱フィン部の半 円周状の空気流入部に向力う空気流は、矢印 22に示すように、放射状に放熱フィン の間を通り、緩やかに空気吹き出し口に向力つて方向を変換しつつ流れる。この流 れは、例えば、ヒートパイプ 7によって発熱体の熱が受熱ブロック 6に移動され、放熱 フィン部に伝わった熱をその中を通過する空気流によって空気吹き出し口に向かつ て移動し、筐体外に排出する流れである。伝熱部材 23は、上述した放熱フィン部中 を通過する空気流を阻害しないように一部は曲線部に向力つて移動し、一部は直接 空気吹き出し口に向かって移動する。
[0054] 図 6は、この発明の遠心ファン付ヒートシンクにおける空気流を説明する図である。
図 6に示すように、図 4を参照して説明した、カバーの内壁に沿って加速して大きな 流れとなり空気吹き出しロカ 筐体外に直接排出される空気流と、図 5を参照して説 明した、発熱体の熱が受熱ブロック 6に移動され、放熱フィン部に伝わった熱をその 中を通過する空気流によって空気吹き出し口に向かって移動し、筐体外に排出する 流れの 2つの流れが生じている。これによつて、受熱ブロックに熱的に接続された発 熱体の熱と、周辺に位置する発熱体の熱を効果的に筐体外に排出することができる 。上述したカバーの内壁に沿って加速して大きな流れとなり空気吹き出し口から筐体 外に直接排出される空気流と、発熱体の熱が受熱ブロック 6に移動され、伝熱部材に よって放熱フィン部に伝わった熱をその中を通過する空気流の 2つの流れの間に乱 流が生じな 、ように伝熱部材が配置される。
[0055] なお、受熱ブロック 2はアルミニウム、銅等の熱伝導性に優れた金属材料から作製 されており、その形状は、円柱、四角柱、多角柱等、発熱素子の形状に応じて適切 に選ぶことができる。なお、高さの異なる複数の発熱素子に接続する場合には、発熱 素子に対応して、受熱面に凹凸を形成してもよい。
[0056] 上述したように、受熱ブロックとヒートパイプとの接続を容易にするために、対応する 溝部を設け、ヒートパイプとの間の接触面積を広げて熱伝導性を高めてもよい。ヒート パイプとして、それに限定されることはないが、丸型ヒートパイプを用いることが好まし い。伝熱部材の各々は、例えば、横断面形状が遠心ファンから曲線部 13および空気 吹き出し部 14に向力つて末広がりであり、更に、全体として末広がりであることが望ま しい。
[0057] 次に、本発明の他の実施形態について、図 7— 21を参照して説明する。この実施 形態は、複数、具体的には、 2個の ICチップが搭載された ICブロックを冷却するため の受熱ブロック 400、 500 (図 7参照)と、これに対応する放熱フィン組立体 200およ び 300 (図 12および図 13参照)とがそれぞれ用いられ、それらを 1台の遠心ファン 10 0で冷却する遠心ファン付きヒートシンクの例である。
[0058] 本実施形態では、図 18および図 19に示すように、例えば、アルミニウムのような金 属坂で構成されるメインフレーム 710と、同様に構成されるサブフレーム 750との間に 、 ICチップ 720と、電子素子等を搭載すると共に、図示していない配線が設けられた 基板 730を挟んで構成される基板組立体 700に、本実施形態に係るファン付きヒート シンク 1が固定される。固定は、板ばね 760に設けられた貫通孔 761および 762に、 固定ボルト 771および 772を揷通して、サブフレーム 750、の開口 751、基板 730お よびメインフレーム 710の貫通孔 731, 732および 711, 712をそれぞれ揷通して、 受熱ブロック 400 ( 500に対も同様)の、対応するネジ孔 411および 412〖こねじ込む。 これにより、メインフレーム 710に設けられた開口 713を介して、 ICチップ 720が受熱 ブロック 400〖こ圧接されること〖こなる。 [0059] また、基板組立体 700に受熱ブロック 400が固定されることとなる。なお、板ばね 76 0の下方には力を分散するための部材 740が配置される。力を分散するための部材 740は、板ばねの圧力を受けて、この力を板の四方に分散して、 ICチップに均等に 力が力かるように作用する。このようにすることにより、 ICチップと受熱ブロックとの密 着性を良くすることが可能となる。ここで、図 18は、固定される前の分解状態を示す。 一方、図 17は、ファン付きヒートシンク 1が、基板組立体に固定された状態を示す。な お、基板組立体には、 ICチップの他、例えば、図 17に示すように、ハードディスク装 置 900等が搭載されるため、それらの冷却についても対処できるように考えられてい る。遠心ファン付きヒートシンク 1から送出される空気流は、開口 631および 632と、開 口 641から、それぞれ排出される。例えば、図 18に示すように、開口 641に、側面の 一部が見える放熱フィン組立体 300からの空気流が排出される。
[0060] この遠心ファン付きヒートシンク 1は、旋回空気流を側面力も送出する遠心ファン 10 0と、遠心ファン 100の側面に配置され、遠心ファン 100からの旋回空気流により冷却 をおこなうための放熱フィン組立体 200および 300と、前記放熱フィン組立体 200に 固定され、冷却を要する発熱体からの熱を該放熱フィン組立体 200に伝導する受熱 ブロック 400と、同様に、前記放熱フィン組立体 300に固定され、冷却を要する発熱 体からの熱を該放熱フィン組立体 300に伝導する受熱ブロック 500と、これらを支持 すると共に、通風空間を形成するケース部材 600 (図 7参照)と、を有する。
[0061] 遠心ファン 100は、軸方向に空気を吸!、込み、側方から旋回する空気流として送り 出す。具体的には、回転駆動部を有するコア部 110 (図 7、図 8、図 9、図 17参照)と、 複数枚の羽根 120と、それらの羽根 120を固定するリング 130と、コア 110を支持部 材 620に取り付けるための取付部材 140、取付爪 145およびコア部支持片 150とを 有する。遠心ファン 100は、支持部材 620に設けられた貫通孔 611に嵌め込まれて、 取付部材 140および取付爪 145により固定される。取付爪 145では、例えば、図 15 に示すファン固定用ネジ孔 621を用いて、図示しないボルトにより固定される。
[0062] 前記ケース部材 600は、複数の部材を組み立てた結果、空間を内部に有するケー スとして機能する。複数の部材として、次の部材を有する。第 1に、空気を流入させる ための開口 611を有する第 1板材 610、および、第 3板材 660と、空気を流入させる ための開口 622を有する第 2板材 620とを有する。また、第 1板材 610および第 3板 材 660、並びに、第 2板材 620に挟まれる空間の側面の一部を覆う側面部材 650を 有する。この側面部材 650は、組み立てられた後、第 1板材 610および第 3板材 660 と、第 2板材 620と共に通風空間を形成する。第 1板材 610および第 3板材 660と、第 2板材 620は、例えば、金属板で構成される。金属を用いる理由は、熱伝導率が大き いことと、機械的強度が大きいからである。
[0063] 本実施形態のヒートシンクでは、第 1板材 610と、第 3板材 660とにより、ケース部材 600の一方側が覆われ。他方側が、第 2板材 620に覆われる。第 2板材 620に、遠心 ファン 100が装着されている。第 1板材 610は、図 8、図 12および図 14に示すように、 遠心ファン 100の回転羽根 120の旋回半径より外側に位置する、外側に凸の弧状の 境界辺 619まで延長して設けられている。一方、第 3板材 660は、境界辺 619におい て、第 1板材の側面と接するよう、境界辺 619の平面形状と一致する形状に加工され る。言い換えると、第 1板材 610の境界に第 3板材を当接させると、あた力も一枚の板 のようになる形状とする。
[0064] また、図 14に示すように、第 1板材 610上において、放熱フィン組立体 200と、放熱 フィン組立体 300とによって囲まれる空間 601は、遠心ファンにより旋回空気流が起 こされる領域と ヽうことちでさる。
[0065] 第 1板材 610と第 3板材 660とは、例えば、図 7、図 8、図 10および図 12に示すよう に、連結機構 690により連結される。すなわち、第 1板材と第 3板材とは、当該板材の 厚さ方向に変位可能に連結される。この連結機構 690は、この実施形態では、第 1板 材 610に一体的に設けられる爪 691と、この爪 691と係合する貫通孔 696が設けら れた第 3板材 660の部分と、貫通孔 311が設けられた放熱フィン 310の部分とにより 構成される。爪 691は、アーム 693と、このアーム 693の先端から、遠心ファン 100の 回転軸方向に延びる係合片 692とにより構成される。この係合片 692の長さと、ァー ム 693の高さ位置は、第 1板材 610と第 3板材 660とに生じる高さ方向の変位を吸収 するために必要な長さとしてある。
[0066] ここで、貫通孔 696は、図 8および図 12に示すように、第 3板材 660の第 1板材 610 境界縁 619と突き当たる端縁部分の近傍に形成されている。貫通孔 696の長さ寸法 と幅寸法とは、第 3板材の、遠心ファンの回転軸と直交する面内への許容移動量に 応じて決められる。
[0067] この連結機構 690は、回転軸方向には変位可能である。一方、連結機構 690は、 第 1板材 610と第 3板材 660とが回転軸と直交する面内で、離れないように規制する と共に、第 3板材 330が第 1板材 310に乗り上げないように規制している。
[0068] なお、本実施形態の場合、例えば、図 8に示すように、連結機構 690が、 2箇所に、 傾きを持って配置されている。より具体的にいえば、それぞれが、あた力も、遠心ファ ンの回転中心 O力もの半径に沿う向きに配置されている。このため、第 3板材 660の 第 1板材 610に対する同一面内での相対変位が小さく抑えられることとなる。
[0069] 第 1板材 610には、放熱フィン組立体 200と、受熱ブロック 400とが固定される。ま た、側面部材 650がこの第 1板材 610に連結される。また、第 1板材 610は、側面を 形成す側面部 615を一体的に設けている。例えば、側面部 615は、放熱フィン組立 体 200の一側面 212と対畤して、その間に、バイパス 602を形成している。このバイ パス 602は、放熱フィン組立体 200が存在しないため、抵抗が少なくなり、空気流が 高速で流れることができる。このバイパス 602の入り口側には、旋回空気流を、旋回 の接線方向に案内する案内部 603が設けられている。この案内部 603は、外側を側 面部材 650で覆われているため、開口が存在しない。そこで、旋回空気流が、側面 部材 650の内壁に沿って進行し、バイパス 602に流入することとなる。
[0070] 側面部材 650は、本実施形態の場合、複数の部材により構成される。例えば、一つ の側面を覆う側面部材 651と、コーナー部を覆う側面部材 652、 653とが用いられる 。各側面部材 651から 653は、側面を覆うのみならず、遠心ファンの回転軸方向に対 する第 1板材 610と第 3板材 660との変位を規制する機能をも有する。すなわち、側 面部材 651力ら 653には、それぞれ爪 656、 658力 S設けられ、それぞれ第 1板材 610 および第 2部材 620に接して、それらと当該側面部材とを固定する。側面部材 650は 、本実施形態では、プラスチック成形により形成されている。複雑な形状を容易に成 形することができるためである。
[0071] ケース部材 600には、第 3板材 660の厚さ方向の変位のストロークを規制する規制 機構を有する。具体的には、図 11、図 12に示すように、側面部材 651には、遠心フ アンの回転軸方向への変位を規制するための回転軸方向規制片 659が設けられて いる。この回転軸方向規制片 659は、回転軸方向に並んで対向する一対の規制片 6 59aと 659bとにより構成される。規制片 695bは、溝型に形成されている。この溝に、 第 2板材が挟まれて固定される。これらの規制片 659aと 659bとの間に、第 3板材 66 0と放熱フィン組立体 300とが挟まれる。これらは、図 21において矢印により示すよう に、回転軸方向(板圧の厚さ方向)に変位が可能となっている。ただし、規制片 659a と 659bの間で変位が一定のストロークの範囲内に規制される。この変位ストロークは 、後述する ICチップの実装時の高さ方向の基準位置に対する偏差を想定して定めら れる。本実施形態では、例えば、当該第 3板材の板厚より短くなる範囲としている。
[0072] 図 13に示すように、第 3板材 660の端部に、係止部 669が設けられている。係止部 669のうち、側面部材 651と接する係止部 669は、前述した変位ストロークの範囲限 界において規制片 659aに係止される。また、他の係止部 669は、他の側面部材 65 3に、同様に設けられている、規制片 659aに相当する規制片(図示せず)により変位 が前述した変位ストロークの範囲限界において係止される。この結果、放熱フィン組 立体 300が固定される第 3板材 660は、規制機構によって、回転軸方向の変位が一 定ストロークの範囲内で規制されることとなる。ただし、この規制片 659による規制、す なわち、遊びは、二つの ICチップにそれぞれ対応して密着する受熱ブロック 400と 5 00が、それぞれの ICチップ面の基準位置に対する偏差を生じた場合に、受熱ブロッ ク 500を相対的に変位させて、偏差を吸収して、適正な圧着状態を維持するための ものである。
[0073] 以上に述べた連結機構 690により、第 1板材 610と第 3板材 660とが、 ICチップの 高さ方向ないし遠心ファンの回転軸方向に、遊びを持って連結できる。このため、基 板への固定などの作業性が向上する。また、このような構成によって、複数個の ICチ ップを、 1台の遠心ファンを備えたヒートシンクにより、冷却することが可能となる。
[0074] 前記放熱フィン組立体 200は、間隔をあけて積層配置される複数枚の放熱フィン 2 11と、積層配置される放熱フィン 211を挿通して、それらの放熱フィン 211に熱を伝 達する伝熱部材 220群と、を有する。伝熱部材 220群は、断面が扁平形状である扁 平伝熱部材 220を複数個有する。複数個の扁平伝熱部材 220は、放熱フィン 211の 複数箇所に分布して配置される。本実施形態では、放熱フィン組立体 300も使用す る。以下、扁平伝熱部材 220について説明する力 これは、扁平伝熱部材 320につ いても構成は共通するので、説明を繰り返さない。
[0075] 扁平伝熱部材 220は、例えば、アルミニウムなどの金属により形成される。その断面 形状は、扁平形状となるように形成される。扁平断面形状は、他の方向より長さが長く なる長手方向が存在する。扁平形状とする理由は、扁平形状の長手方向を、空気流 の流れに沿うように配置することで、空気抵抗を小さくすることができるためである。そ の扁平断面形状としては、長円形状、楕円形状、長方形状が挙げられる。
[0076] ここで重要な点は、扁平形状の長手方向が空気流に沿うようにすることである。空 気流との交差が大きくなると、抵抗が増えてしまう。それでは、どのように配置すべき かが問題である。その一つの回答が、既に、図 1、図 3においてしめしたように、放射 状の配置とすることである。これによると、ある程度空気流の抵抗を少なくすることが 期待できる。
[0077] 第 2の実施形態では、これをさらに推し進めて、次のように分布させることとしている 。すなわち、扁平伝熱部材 220の分布に、断面扁平形状の長手方向が、当該断面 扁平形状を通る、前記遠心ファンの回転中心からの半径に対して、該半径を基点と して前記空気流の旋回と同じ回転の向きに鋭角をなして傾いた状態で配置される扁 平伝熱部材を、全数な ヽしそれより少な ヽ複数個含むようにする。
[0078] 図 20に、本実施形態で用いられた伝熱部材の具体的な分布につ!、て模式的に示 す。遠心ファンにより形成される旋回空気流の中心力 遠心ファンの回転中心 oにあ るものとして、この回転中心から、任意の扁平伝熱部材の中心を通る半径方向の線 分 rを引く。また、当該扁平伝熱部材の長手方向の線分 kを引いておく。この長手方 向の線分 rと、半径方向の線分 kとの交点において、それらのなす角度 Θを調べると、 旋回流の回転方向と同じ向き(図 20にお 、て矢印で示す)で、すべて鋭角をなすこと が分かる。
[0079] 本実施形態の場合、放熱フィン組立体 200および 300の両者において、すべての 伝熱部材が上で述べた関係を満たしている。もちろん、すべてが満たさなくても、本 発明の効果を奏することはできる。従って、一部の扁平伝熱部材については、設計 の都合で、条件を満たさないものが含まれていても、それが少ない数であれば、無視 できる。
[0080] ところで、本実施形態の場合、扁平断熱部材 220は、図 16に示すように、第 1板材 610に設けられた貫通孔 610aと、各放熱フィン 211に設けられた貫通孔 21 laに、扁 平伝熱部材 220を順次圧入させることで、複数枚の放熱フィン 211を間隔を空けて 積層する構造としている。貫通孔に圧入するため、それぞれの貫通孔、例えば、 610 aにおいて、貫通孔 610aの内周部が引き込まれて環状帯を形成している。これにより 、扁平伝熱部材 220が放熱フィン 211に対して強固に固定されることになる。また、 放熱フィン 211と扁平伝熱部材 220の接触面積が増えるので、熱伝達効率が向上す る利点がある。
[0081] なお、本実施形態では、扁平伝熱部材の他に、位置決めなどのためのピン 250が 用いられている。これらのピンによっても、熱伝導効果が期待できるため、伝熱部材と して機能する。従って、本実施形態では、断面が円形の伝熱部材が実質的に混在す ることになる。
[0082] 受熱ブロック 400は、図 7に示すように、受熱部 410と、受熱部が受けた熱を放熱フ インに伝達する熱伝達部 450とにより構成される。受熱部 410は、例えば、銅などの 熱伝導率の良い金属により形成される。その形状は、円柱、四角柱、多角柱等、発 熱素子の形状に応じて適切に選ぶことができる。また、熱伝達部 450は、例えば、ヒ ートパイプが用いられる。もちろん、これに限定されない。受熱ブロック 400の場合に は、受熱部 410が第 1板材 610に固定されている。また、熱伝達部 450のヒートパイ プが、各扁平伝熱部材 220の基端部に接するように配置されている。これにより、効 率的に熱を放熱フィンに伝えることができる。
[0083] 受熱ブロック 500は、受熱部 510と、熱伝達部 550とにより構成される。この受熱ブ ロック 500は、受熱部 510と、熱伝達部 550が、第 1板材 610と接触しないように浮か せて配置されている。熱伝達部 550は、第 3板材 660に固定されている。従って、受 熱ブロック 500は、第 3板材の変位に合わせて変位可能である。なお、熱伝達部 550 は、扁平伝熱部材 320の基端に接触するように配置される。このようにすることで、熱 伝達性能を向上することができる。 [0084] 以上のように、本発明の第 2の実施形態によれば、 2個のチップについて、 1台の遠 心ファン付きヒートシンクで冷却することが可能となる。そのため、容積を取る冷却部 分の小型化が容易となる。
[0085] 第 2の実施形態では、放熱フィン組立体を 2個用いているが、もちろん 1個による構 成とすることも可能である。その場合には、第 3板材 660がおかれる部分を側面部材 によって覆うことで、対応することができる。もちろん、第 1板材の面積を大きくして、放 熱フィン組立体 200も大きくして、その部分に配置することも可能である。
[0086] また、本実施形態は、バイパスを設けて 、るため、抵抗の少な!/、空気流を高速で送 ることができるため、遠心ファンの効率を上げることができる。その結果、他の領域に ある機器の冷却に貢献することができる。例えば、図 17に示すノヽードディスク装置に 対する空気量を増やすことが可能となる。
産業上利用することができる分野
本発明は、コンピュータ、制御装置、ゲーム機などの電子機器に搭載される ICチッ プをはじめとして、冷却を必要とする対象を冷却するための冷却装置として利用する ことができる。放熱フィンと、遠心ファンとを使って、冷却が行い得る対象についての 冷却に適用することができる。

Claims

請求の範囲
[1] 空気取り入れ口と空気吹き出し口とを備えた所定形状のカバーと、
冷却を要する発熱体と熱的に接続する受熱ブロックと、
前記受熱ブロックが一方の面に熱的に接続され、前記カバーと係合されて空間部 を形成する熱伝導性を有する底部と、
前記底部に熱的に接続し、少なくとも空気流入部を備える所定形状を備え、前記 空間部に収納される複数のフィン部力 なる放熱フィン部と、
回転軸が、前記放熱フィン部の空気流入部近傍に配置され、前記空気取り入れ口 から空気を取り入れ、前記放熱フィン部の隣り合うフィン部間に設けた間隙部に空気 流を生じさせると共に、前記カバーの内壁に沿って前記吹き出し口に向力つて空気 流を生じさせる遠心ファンと、
前記遠心ファンによる前記放熱フィン部の側方に向力つて生じた空気流の抵抗が 小さくなるように配置され、前記複数のフィン部を揷通して、前記底部からの熱を伝導 する伝熱部材と、を備えた遠心ファン付ヒートシンク。
[2] 前記放熱フィン部は、所定の間隔で積層された複数の薄板状フィンによって形成さ れる複数のフィン縁部を備えており、前記複数のフィン縁部は、少なくとも前記遠心フ アンに相対する部分円周状の前記空気流入部と、前記空気流入部と連絡し、前記力 バーの内壁に沿って延びる曲線部と、前記吹き出し口に相対する吹き出し部とを備 えて 、る、請求項 1に記載の遠心ファン付ヒートシンク。
[3] 前記遠心ファンは、ファンの外周面の一部が前記放熱フィン部の前記部分円周状 の空気流入部に相対し、他の部分が前記カバーの内壁に相対して配置され、前記力 バーの内壁の所定の位置を起点として、前記カバーの内壁に沿った前記空気流を 前記吹き出し口に向かって生じさせる、請求項 2に記載の遠心ファン付ヒートシンク。
[4] 前記カバーは、前記放熱フィン部の前記空気流入部と前記曲線部との境界部分に 対応する位置に、前記カバーの内壁を形成する曲面の変換部を備えており、前記変 換部によって、前記カバーの内壁に沿った前記空気流を生じさせる、請求項 3に記 載の遠心ファン付ヒートシンク。
[5] 前記放熱フィン部は、前記カバーの内壁に直接接触する別のフィン縁部を更に備 えており、前記別のフィン縁部の端部が前記起点を形成する、請求項 3または 4に記 載の遠心ファン付ヒートシンク。
[6] 前記空気吹き出し口が前記放熱フィン部を通過する空気吹き出し口と、前記カバ 一の内壁に沿って流れる空気吹き出し口と共通である、請求項 1から 5の何れか 1項 に記載の遠心ファン付ヒートシンク。
[7] 前記伝熱部材は、遠心ファンを起点として放射状に配置されて 、る、請求項 1に記 載の遠心ファン付ヒートシンク。
[8] 前記伝熱部材は、前記放熱フィン部の前記空気流入部から吹き込まれ前記放熱フ イン部中を流れて前記曲線部から出た空気流が前記カバーの内壁に沿って空気吹 き出し口に向力う空気流の流れを阻害しないように配置されている、請求項 7に記載 の遠心ファン付ヒート
シンク。
[9] 前記伝熱部材カ Sヒートパイプ力もなつている、請求項 8に記載の遠心ファン付ヒート シンク。
[10] 前記空気吹き出し口が前記放熱フィン部を通過する空気の吹き出し口と、前記カバ 一の内壁に沿って流れる空気の吹き出し口と別個に設けられている、請求項 1から 5 の何れか 1項に記載の遠心ファン付ヒートシンク。
[11] 前記受熱ブロックに少なくとも 1つのヒートパイプが備えられている、請求項 1から 10 の何れか 1項に記載の遠心ファン付ヒートシンク。
[12] 前記空気吹き出し口が筐体の外部に向力つて設けられる、請求項 1から 11の何れ 力 1項に記載の遠心ファン付ヒートシンク。
[13] 遠心ファン力 旋回して送り出される空気流を側面力 受けて、該空気流による冷 却を行うための放熱フィン組立体であって、
間隔をあけて積層配置される複数枚の放熱フィンと、
前記積層配置される放熱フィンを挿通して、それらの放熱フィンに熱を伝達する伝 熱部材群と、を有し、
前記伝熱部材群は、断面が扁平形状である扁平伝熱部材を複数個有し、前記複 数個の扁平伝熱部材は、前記放熱フィンの複数箇所に分布して配置され、 前記扁平伝熱部材の分布には、前記断面扁平形状の長手方向が、当該断面扁平 形状を通る、前記遠心ファンの回転中心からの半径に対して、該半径を基点として前 記空気流の旋回と同じ回転の向きに鋭角をなして傾いた状態で配置される扁平伝熱 部材を、全数な 、しそれより少な 、複数個含むことを特徴とする放熱フィン組立体。
[14] 請求項 13に記載の放熱フィン組立体において、
前記扁平伝熱部材は、断面が長円形状であることを特徴とする放熱フィン組立体。
[15] 旋回空気流を側面力 送出する遠心ファンと、前記遠心ファンの側面に配置され、 該遠心ファンからの旋回空気流により冷却を行うための放熱フィン組立体と、前記放 熱フィン組立体に固定され、冷却を要する発熱体からの熱を該放熱フィン組立体に 伝導する受熱ブロックと、これらを支持すると共に、通風空間を形成するケース部材と を有し、
前記ケース部材は、
前記放熱フィン組立体を挟んで前記通風空間を形成するための第 1および第 2の 板材と、
前記第 1および第 2の板材に挟まれる空間の側面の一部を覆って、前記第 1および 第 2の板材と共に通風空間を形成する側面部材と、を有し、
前記放熱フィン組立体は、
間隔をあけて積層配置される複数枚の放熱フィンと、
前記積層配置される放熱フィンを挿通して、それらの放熱フィンに熱を伝達する伝 熱部材群と、を有し、
前記伝熱部材群は、断面が扁平形状である扁平伝熱部材を複数個有し、前記複 数個の扁平伝熱部材は、前記放熱フィンの複数箇所に分布して配置され、
前記扁平伝熱部材の分布には、前記断面扁平形状の長手方向が、当該断面扁平 形状を通る、前記遠心ファンの回転中心からの半径に対して、該半径を基点として前 記空気流の旋回と同じ回転の向きに鋭角をなして傾いた状態で配置される扁平伝熱 部材を、全数ないしそれより少ない複数個含むこと
を特徴とする遠心ファン付きヒートシンク。
[16] 請求項 15に記載の遠心ファン付きヒートシンクにおいて、 前記ケース部材のいずれかの側面には、開口部が設けられ、
前記放熱フィン組立体は、その周縁部の一部が前記開口部に面し、他の一部が前 記遠心ファンの側面と対畤して配置されること、を特徴とする遠心ファン付きヒートシ ンク。
[17] 請求項 15に記載の遠心ファン付きヒートシンクにおいて、
前記放熱フィン組立体と、前記放熱フィン組立体に固定される前記受熱ブロックと を複数個対応して有し、
前記複数個の放熱フィン組立体は、前記遠心ファンの側面に配置されることを特徴 とする遠心ファン付きヒートシンク。
[18] 請求項 16に記載の遠心ファン付きヒートシンクにおいて、
前記放熱フィン組立体と、前記放熱フィン組立体に固定される前記受熱ブロックと を 2個対応して有し、
前記第 1板材の他に、第 3板材を有し、
前記放熱フィン組立体と前記受熱ブロックの一組を第 1板材により支持し、前記放 熱フィン組立体と前記受熱ブロックの他の一組を第 3板材により支持し、
前記複数個の放熱フィン組立体は、前記遠心ファンの側面に配置されることを特徴 とする遠心ファン付きヒートシンク。
[19] 請求項 18に記載の遠心ファン付きヒートシンクにおいて、
前記第 3板材は、当該板材の厚さ方向に変位可能に前記第 1板材と連結されてい ることを特徴とする遠心ファン付きヒートシンク。
[20] 請求項 19に記載の遠心ファン付きヒートシンクにおいて、
前記ケース部材は、前記第 3板材の厚さ方向の変位のストロークを規制する規制機 構を有することを特徴とする遠心ファン付きヒートシンク。
[21] 請求項 17に記載の遠心ファン付きヒートシンクにおいて、
前記ケース部材は、開口部のない少なくとも 1の側面と、合わせて複数の開口部が 設けられた複数の側面とを有し、
前記複数個の放熱フィン組立体は、それぞれの周縁部の一部が前記複数の開口 部対応する開口部に面し、それぞれの他の一部が前記遠心ファンの側面と対畤して 配置されること、を特徴とする遠心ファン付きヒートシンク。
[22] 請求項 16、 17、 18、 19、 20および 21のいずれか一項に記載の遠心ファン付きヒ ートシンクにおいて、
前記ケース部材は、開口部が設けられていない側面に沿って、当該側面と、その側 面に隣接する前記放熱フィン組立体の側面とにより形成される、前記空気流の一部 を前記開口部に導くバイノ スを有することを特徴とする遠心ファン付きヒートシンク。
[23] 請求項 16、 17、 18、 19、 20および 21のいずれか一項に記載の遠心ファン付きヒ ートシンクにおいて、
前記ケース部材は、開口部が設けられていない一つの側面に沿って、当該側面と 、その側面に隣接する前記放熱フィン組立体の側面とにより形成される、前記空気流 の一部を前記開口部に導くバイパスを有し、かつ、
前記一つの側面に続ぐ他の側面は、前記遠心ファン力 の旋回流の一部を前記 ノ ィパスに案内する案内壁と機能するものであることを特徴とする遠心ファン付きヒー トシンク。
[24] 請求項 15および 16のうちいずれか一項に記載の遠心ファン付きヒートシンクにお いて、
前記受熱ブロックは、冷却を要する発熱体と熱的に接続する受熱部と、該受熱部の 熱を前記放熱フィン組立体に伝えるための熱伝達部とを有すること、を特徴とする遠 心ファン付きヒートシンク。
[25] 請求項 15、 16、 17、 18、 19、 20および 21のうちいずれか一項に記載の遠心ファ ン付きヒートシンクにおいて、
前記扁平伝熱部材は、断面が長円形状であることを特徴とする遠心ファン付きヒー トシンク。
PCT/JP2006/318789 2006-03-02 2006-09-21 遠心ファン付ヒートシンク WO2007099662A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2008502647A JP5078872B2 (ja) 2006-03-02 2006-09-21 遠心ファン付ヒートシンク
US12/281,273 US20090321058A1 (en) 2006-03-02 2006-09-21 Heat sink provided with centrifugal fan

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006056261 2006-03-02
JP2006-056261 2006-03-02

Publications (1)

Publication Number Publication Date
WO2007099662A1 true WO2007099662A1 (ja) 2007-09-07

Family

ID=38458784

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/318789 WO2007099662A1 (ja) 2006-03-02 2006-09-21 遠心ファン付ヒートシンク

Country Status (3)

Country Link
US (1) US20090321058A1 (ja)
JP (1) JP5078872B2 (ja)
WO (1) WO2007099662A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009239118A (ja) * 2008-03-27 2009-10-15 Furukawa Electric Co Ltd:The ヒートシンク
JP2009239166A (ja) * 2008-03-28 2009-10-15 Furukawa Electric Co Ltd:The 薄型ヒートシンク
JP2018021694A (ja) * 2016-08-02 2018-02-08 株式会社ソニー・インタラクティブエンタテインメント ヒートシンク及び電子機器
JP2021106200A (ja) * 2019-12-26 2021-07-26 株式会社豊田自動織機 冷却構造体および電気機器
CN115267268A (zh) * 2022-05-27 2022-11-01 苏州联讯仪器有限公司 一种芯片测试装置

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4532422B2 (ja) * 2006-03-02 2010-08-25 古河電気工業株式会社 遠心ファン付ヒートシンク
TWI495424B (zh) * 2010-10-21 2015-08-01 Foxconn Tech Co Ltd 散熱裝置及使用該散熱裝置的電子裝置
TWI426861B (zh) * 2011-04-08 2014-02-11 Sunonwealth Electr Mach Ind Co 具有水平對流扇之散熱系統
JP5383740B2 (ja) * 2011-04-18 2014-01-08 株式会社ソニー・コンピュータエンタテインメント 電子機器
TWI458892B (zh) * 2012-01-31 2014-11-01 Quanta Comp Inc 離心式風扇
CN103458655B (zh) * 2012-06-01 2016-08-03 华硕电脑股份有限公司 散热模块
TW201428184A (zh) * 2013-01-10 2014-07-16 Wistron Corp 複合式風扇結構
CN109073340B (zh) 2016-01-21 2020-05-29 埃塔里姆有限公司 用流体交换热量的装置和系统
CN106273122A (zh) * 2016-08-19 2017-01-04 施派智能科技发展(上海)有限公司 一种打印机挤出机用导流散热器
CN109157240A (zh) * 2018-11-05 2019-01-08 中山市明峰医疗器械有限公司 一种自散热ct机
US20230171917A1 (en) * 2021-11-30 2023-06-01 Delta Electronics, Inc. Heat dissipation assembly

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11121667A (ja) * 1997-10-20 1999-04-30 Fujitsu Ltd ヒートパイプ式冷却装置
JPH11163235A (ja) * 1997-11-29 1999-06-18 Toyo Radiator Co Ltd ヒートシンク
JP2001210767A (ja) * 1999-11-16 2001-08-03 Matsushita Electric Ind Co Ltd ヒートシンク装置
JP2002305394A (ja) * 1995-05-31 2002-10-18 Sanyo Denki Co Ltd 電子部品冷却装置
JP2002368467A (ja) * 2001-06-08 2002-12-20 Toshiba Corp 発熱体を内蔵する電子機器およびこの電子機器に用いる冷却装置
JP2003023128A (ja) * 2001-07-09 2003-01-24 Toshiba Corp 冷却装置およびこの冷却装置を備えた電子機器
JP2003097892A (ja) * 2001-09-21 2003-04-03 Toshiba Corp 冷却装置及び冷却装置を内蔵した電子機器
JP2004087741A (ja) * 2002-08-27 2004-03-18 Yoshiyasu Sasa ヒートシンクを備えた冷却装置
JP2006279004A (ja) * 2005-03-02 2006-10-12 Furukawa Electric Co Ltd:The ヒートパイプ付ヒートシンク

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3592260A (en) * 1969-12-05 1971-07-13 Espey Mfg & Electronics Corp Heat exchanger with inner guide strip
US5810554A (en) * 1995-05-31 1998-09-22 Sanyo Denki Co., Ltd. Electronic component cooling apparatus
US7071587B2 (en) * 2001-09-07 2006-07-04 Rotys Inc. Integrated cooler for electronic devices
TWM242758U (en) * 2002-08-12 2004-09-01 Quanta Comp Inc Cooling apparatus

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002305394A (ja) * 1995-05-31 2002-10-18 Sanyo Denki Co Ltd 電子部品冷却装置
JPH11121667A (ja) * 1997-10-20 1999-04-30 Fujitsu Ltd ヒートパイプ式冷却装置
JPH11163235A (ja) * 1997-11-29 1999-06-18 Toyo Radiator Co Ltd ヒートシンク
JP2001210767A (ja) * 1999-11-16 2001-08-03 Matsushita Electric Ind Co Ltd ヒートシンク装置
JP2002368467A (ja) * 2001-06-08 2002-12-20 Toshiba Corp 発熱体を内蔵する電子機器およびこの電子機器に用いる冷却装置
JP2003023128A (ja) * 2001-07-09 2003-01-24 Toshiba Corp 冷却装置およびこの冷却装置を備えた電子機器
JP2003097892A (ja) * 2001-09-21 2003-04-03 Toshiba Corp 冷却装置及び冷却装置を内蔵した電子機器
JP2004087741A (ja) * 2002-08-27 2004-03-18 Yoshiyasu Sasa ヒートシンクを備えた冷却装置
JP2006279004A (ja) * 2005-03-02 2006-10-12 Furukawa Electric Co Ltd:The ヒートパイプ付ヒートシンク

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009239118A (ja) * 2008-03-27 2009-10-15 Furukawa Electric Co Ltd:The ヒートシンク
JP2009239166A (ja) * 2008-03-28 2009-10-15 Furukawa Electric Co Ltd:The 薄型ヒートシンク
JP2018021694A (ja) * 2016-08-02 2018-02-08 株式会社ソニー・インタラクティブエンタテインメント ヒートシンク及び電子機器
US11147185B2 (en) 2016-08-02 2021-10-12 Sony Interactive Entertainment Inc. Heat sink and electronic device
JP2021106200A (ja) * 2019-12-26 2021-07-26 株式会社豊田自動織機 冷却構造体および電気機器
JP7514619B2 (ja) 2019-12-26 2024-07-11 株式会社豊田自動織機 冷却構造体および電気機器
CN115267268A (zh) * 2022-05-27 2022-11-01 苏州联讯仪器有限公司 一种芯片测试装置

Also Published As

Publication number Publication date
JP5078872B2 (ja) 2012-11-21
US20090321058A1 (en) 2009-12-31
JPWO2007099662A1 (ja) 2009-07-16

Similar Documents

Publication Publication Date Title
WO2007099662A1 (ja) 遠心ファン付ヒートシンク
US7363963B2 (en) Heat dissipation device
US7447028B2 (en) Heat dissipation device
JP4532422B2 (ja) 遠心ファン付ヒートシンク
US7779894B2 (en) Heat dissipation device
US20080043436A1 (en) Thermal module
US20030063439A1 (en) Radial base heatsink
US20080105410A1 (en) Heat dissipation apparatus
US20080156460A1 (en) Thermal module
US6892800B2 (en) Omnidirectional fan-heatsinks
US20050252642A1 (en) Finned heat dissipation module with smooth guiding structure
TWI394030B (zh) 散熱模組及採用該散熱模組之電子裝置
JP4728196B2 (ja) 遠心ファン付ヒートシンク
US10921062B2 (en) Cooling fan and heat dissipating module including the same
JP6222938B2 (ja) 放熱装置
JP2005337118A (ja) 冷却ファン
JP2003258473A (ja) ヒートシンクを備えた冷却装置
US20040080910A1 (en) Heat dissipating device
JP2002261209A (ja) ファン付きヒートシンク
US6865079B2 (en) Cooling fan
CN101111138B (zh) 散热模组
CN100582495C (zh) 散热风扇机构
KR102513609B1 (ko) 전력전자기기의 하부 모듈
JP2003218295A (ja) ヒートシンク及びこれを備える冷却装置
TWI444537B (zh) 離心風扇

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2008502647

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 12281273

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 06798228

Country of ref document: EP

Kind code of ref document: A1