WO2007099599A1 - 磁気式ジャイロ - Google Patents

磁気式ジャイロ Download PDF

Info

Publication number
WO2007099599A1
WO2007099599A1 PCT/JP2006/303745 JP2006303745W WO2007099599A1 WO 2007099599 A1 WO2007099599 A1 WO 2007099599A1 JP 2006303745 W JP2006303745 W JP 2006303745W WO 2007099599 A1 WO2007099599 A1 WO 2007099599A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnetic
axis
calculating
rotation
calculation means
Prior art date
Application number
PCT/JP2006/303745
Other languages
English (en)
French (fr)
Inventor
Yoshinobu Honkura
Katsuhiko Tsuchida
Eiji Kako
Original Assignee
Aichi Micro Intelligent Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aichi Micro Intelligent Corporation filed Critical Aichi Micro Intelligent Corporation
Priority to JP2008502586A priority Critical patent/JPWO2007099599A1/ja
Priority to PCT/JP2006/303745 priority patent/WO2007099599A1/ja
Publication of WO2007099599A1 publication Critical patent/WO2007099599A1/ja

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C17/00Compasses; Devices for ascertaining true or magnetic north for navigation or surveying purposes
    • G01C17/02Magnetic compasses
    • G01C17/28Electromagnetic compasses
    • G01C17/30Earth-inductor compasses
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C19/00Gyroscopes; Turn-sensitive devices using vibrating masses; Turn-sensitive devices without moving masses; Measuring angular rate using gyroscopic effects

Definitions

  • the present invention relates to a magnetic gyro that uses geomagnetism to measure a rotation angle based on an arbitrary posture or to measure a rotation angular velocity.
  • a gyro is used as a means for detecting the rotation angle and rotation angular velocity of the device.
  • the gyro includes, for example, a directional gyro that measures postures and azimuths (that is, rotation angles) of various devices, vehicles, airplanes, and the like, and a rate gyro that measures a rotation angular velocity that is a change rate of the rotation angle. There is. There is also a means for calculating the rotation angle by integrating the rate gyro output signal.
  • Patent Document 1 The directional gyro described in Patent Document 1 requires a complicated mechanism. Therefore, it is difficult to reduce the size if the cost is low. In addition, a lot of electric power is required to rotate the rotor. Therefore, it will be limited to special uses, such as an aircraft.
  • rate gyro described in Patent Document 2 also requires a vibration mechanism, so that it is difficult to reduce the size.
  • Patent Document 1 US Patent No. 3143892
  • Patent Document 2 JP-A-7-139951
  • the present invention has been made in view of the conventional problems that are striking, and an object of the present invention is to provide a magnetic gyro that is excellent in measurement accuracy and that can be easily miniaturized.
  • the present invention provides a three-axis magnetic sensor that detects geomagnetism as a magnetic vector in a three-axis orthogonal coordinate system fixed to a measurement object;
  • Rotation axis calculation means for calculating the rotation axis based on the magnetic vector data at three or more different points of time accumulated in the memory
  • a magnetic gyro comprising rotation angle calculation means for calculating a rotation angle of the measured object around the rotation axis based on data of the magnetic vector.
  • the magnetic gyro has the three-axis magnetic sensor, the memory, the rotation axis calculation means, and the rotation angle calculation means. Based on the geomagnetism detected by the three-axis magnetic sensor, the change in the posture of the measured object is detected. Under normal circumstances, geomagnetism basically has a certain direction and size relative to the ground. Therefore, when the posture of the object to be measured, that is, when the posture of the 3-axis Cartesian coordinate system changes, the 3-axis The magnetic vector in the orthogonal coordinate system will change. By detecting this changing magnetic vector, it is possible to accurately measure changes in the posture of the measured object.
  • the change in the posture of the measured object can be specified by an arbitrary rotation angle around an arbitrary rotation axis.
  • the rotation axis is calculated by the rotation axis calculation means.
  • the memory stores the magnetic vector data at three or more different points necessary to calculate the rotation axis.
  • the rotation angle calculation means calculates the rotation angle of the measured object around the rotation axis based on the magnetic vector data.
  • the rotation axis and the rotation angle around the rotation axis can be obtained, the change in the posture of the measurement object can be measured.
  • the magnetic gyro can measure a change in posture of the measurement object based on the geomagnetism. Therefore, even if mechanical vibrations or impacts other than the rotational motion to be measured are applied, accurate measurement without reacting to these can be ensured.
  • the magnetic gyro since the magnetic gyro uses a three-axis magnetic sensor, it does not require a complicated mechanism or a lot of electric power unlike a mechanical type. Therefore, downsizing and low cost can be easily achieved. As a result, it can be easily incorporated into, for example, portable electronic devices whose size and density are increasing.
  • FIG. 1 is a conceptual diagram of a magnetic gyroscope in an embodiment.
  • FIG. 2 is an explanatory diagram of a three-axis orthogonal coordinate system, a rotation axis, a magnetic vector, and the like in the embodiment.
  • FIG. 3 is an auxiliary explanatory diagram of a method for calculating center coordinates in the embodiment.
  • FIG. 4 is an auxiliary explanatory diagram of a method for calculating a rotation angle in the embodiment.
  • FIG. 5 is a perspective view of a three-axis magnetic sensor in the example.
  • FIG. 6 is a plan view of a magneto 'impedance' sensor element in an example.
  • FIG. 7 is a schematic cross-sectional view taken along line A—A in FIG.
  • the magnetic gyro can be mounted on various measured objects such as mobile electronic devices such as mobile phones and PDAs, cameras, vehicles, robots, aircrafts, ships, and the like.
  • the magnetic vector is a vector parallel to the geomagnetism starting from the origin in the three-axis orthogonal coordinate system, and its magnitude is constant.
  • the magnetic gyro is configured to calculate a rotation angle of the measured object between two different time points calculated by the rotation angle calculating means and a difference between the sampling times of the magnetic vector data at the two time points.
  • an angular velocity calculating means for calculating the rotational angular velocity of the object to be measured around the rotation axis.
  • the interval at which the magnetic vector data is collected is constant.
  • the calculation in the rotation axis calculation means and the rotation angle calculation means can be performed easily and accurately, and the posture change can be accurately measured.
  • the rotation axis calculation means calculates two difference vectors that are differences between two magnetic vectors among the magnetic vectors at three or more different time points, and calculates an outer product of these two difference vectors. Accordingly, it is preferable to calculate a rotation axis vector in the same direction as the rotation axis. In this case, the rotation axis can be calculated easily and accurately.
  • the rotation angle calculation means includes a data plane determined by coordinate points of the magnetic vector at three or more different time points in the three-axis orthogonal coordinate system, and the rotation axis calculated by the rotation axis calculation means.
  • Rotation center coordinate calculation means for calculating the center coordinates of the trajectory circle passing through the coordinate points of the above magnetic vector at three or more different time points by calculating the intersection of the above and the center calculated by the rotation center coordinate calculation means Calculate the radius to calculate the radius of the locus circle by calculating the distance between the coordinates and the coordinate point of the magnetic vector.
  • the rotation angle is calculated based on the radius of the locus circle calculated by the radius calculation means and the coordinate points of the magnetic vector at two different time points.
  • the rotation angle can be calculated easily and accurately.
  • the rotation center coordinate calculation means may calculate the center coordinate of the trajectory circle by taking an inner product of the rotation axis vector calculated by the rotation axis calculation means and the magnetic vector. preferable.
  • the center coordinates can be calculated easily and accurately.
  • the radius calculation means calculates the radius of the trajectory circle by calculating a difference between a center coordinate vector having the origin as a start point and the center coordinate as an end point, and the magnetic vector. It is preferable.
  • the radius of the locus circle can be calculated easily and accurately.
  • the three-axis magnetic sensor is preferably constituted by a magneto 'impedance' sensor element.
  • the magneto-impedance sensor element (Ml element) is highly sensitive, it can detect weak geomagnetism with high accuracy. Furthermore, since the magneto 'impedance' sensor element is small, a small three-axis magnetic sensor can be obtained. This also makes it possible to fit the magnetic gyro in the IC chip.
  • the three-axis magnetic sensor can be formed by disposing the three magneto 'impedance' sensor elements so that their magnetic sensitive directions are in the three-axis directions orthogonal to each other.
  • the three-axis magnetic sensor is not limited to the magneto-impedance sensor element, and can be configured using various magnetic detection elements such as a Hall element, a magnetoresistive element, and a flux gate.
  • the magnetic gyro 1 of this example includes a three-axis magnetic sensor 2, a memory 3, a rotation axis calculation means 4, a rotation angle calculation means 5, and an angular velocity calculation means 6 as shown in FIG.
  • the triaxial magnetic sensor 2 detects geomagnetism as magnetic vectors m, m, m in the triaxial orthogonal coordinate system 10 fixed to the measurement object shown in FIG.
  • the above memory 3 is stored in time series by the 3-axis magnetic sensor 2 when the measured object moves as indicated by the arrow V in Fig. 1 around an arbitrary rotation axis K passing through the origin O of the 3-axis orthogonal coordinate system 10.
  • the data of magnetic vectors m, m, m detected in is stored.
  • the rotation axis calculation means 4 is a magnetic vector m, m stored in the memory 3 at three or more different time points.
  • the rotation angle calculation means 5 calculates the rotation angle of the object to be measured about the rotation axis K based on the magnetic vector data m, m, m.
  • the angular velocity calculation means 6 is based on the rotation angle of the measured object at two different time points calculated by the rotation angle calculation means 5 and the difference in the collection time of the magnetic vector data at the two time points. Then, the rotational angular velocity of the object to be measured about the rotation axis K is calculated.
  • the three-axis magnetic sensor 2 is constituted by a magneto-impedance sensor element 20 as shown in FIG. That is, the three-axis magnetic sensor 2 is configured so that the three magneto 'impedance' sensor elements 20 are in the three-axis directions (X-axis direction, Y-axis direction, Z-axis direction) in which the respective magnetic sensing directions are orthogonal to each other. It is formed by arranging. In FIG. 5, electronic components and wiring other than the magneto-impedance sensor element 20 are omitted.
  • the magneto-impedance sensor element 20 includes a magnetic sensing body 21 and a detection coil 22 wound around the magnetic sensing body 21.
  • the magnetic sensitive body 21 penetrates through an insulator 23 having an epoxy resin and the like, and the detection coil 22 is disposed on the outer peripheral surface of the insulator 23.
  • the magnetosensitive member 21 for example, Co Fe Si B having a length of 1. Omm and a wire diameter of 20 ⁇ m is used.
  • Magnet'impedance sensor element 20 has a so-called MI (Magneto) in which an induced voltage corresponding to the magnitude of the magnetic field acting on the element is generated in the detection coil 22 in accordance with a change in the current applied to the magnetic sensing element 21.
  • MI Magnetic
  • -Magnetic sensing using impedance phenomenon This Ml phenomenon is caused by a magnetic field having an electron spin arrangement in the circulation direction with respect to the supplied current direction. It is generated for the magnetic sensitive material 21 that is a material strength.
  • the magnetic field in the circulation direction changes abruptly, and the change in the spin direction of electrons occurs according to the peripheral magnetic field due to the effect of the magnetic field change.
  • a phenomenon in which changes in the internal magnetic field, impedance, etc. of the magnetic sensitive member 21 at that time occur is the Ml phenomenon.
  • the magneto-impedance sensor element 20 has a depth of 50 to 150 as shown in FIG.
  • the recess 24 is filled with an insulator 23, and a magnetosensitive body 21 is embedded in the insulator 23.
  • a conductive pattern is continuously formed in a spiral shape on the inner peripheral surface of the recess 24 and the side surface of the insulator 23 disposed at the position of the opening of the recess 24, and this conductive pattern is formed around the magnetic body 21.
  • the detection coil 22 for winding is configured.
  • the following method is available. That is, after depositing a conductive metal thin film on the inner peripheral surface of the recess 24, an etching process is performed to form a conductive pattern. Thereafter, the insulator 23 and the magnetic sensitive body 21 are disposed in the recess 24. Then, after depositing a conductive metal thin film on the side surface of the insulator 23, an etching process is performed to form a conductive pattern. At this time, the conductive pattern formed on the inner peripheral surface of the recess 24 and the conductive pattern formed on the side surface of the insulator 23 are made to be continuous spirally.
  • the inner diameter of the detection coil 22 of this example has 66 ⁇ m as a circle-equivalent inner diameter that is the diameter of a circle having the same cross-sectional area as that of the recess 24.
  • the line width and the line width of the detection coil 22 are both 25 m. Note that in FIG. 6, consideration for the line width and the line width is omitted.
  • the magnetic gyro 1 accumulates the above three-axis magnetic sensor 2 and the magnetic vector data detected by the three-axis magnetic sensor 2, and based on these, changes in the posture of the object to be measured and And a computer 11 that performs a calculation for calculating a posture change speed. That is, the computer 11 is provided with the memory 3, the rotation axis calculation means 4, the rotation angle calculation means 5, and the angular velocity calculation means 6.
  • the rotation angle calculation means 5 includes a rotation center coordinate calculation means 51 and a radius calculation means 52 described later.
  • the memory 3 is composed of hardware, and the rotation axis calculation means 4, the rotation angle calculation means 5, and the angular velocity calculation means 6 are constructed as calculation programs in software.
  • the three-axis magnetic sensor 2 is fixed to a part of the measurement object, and detects the geomagnetism as the magnetic vectors m, m, m at regular time intervals At. Magnetic vector m, m, m
  • This data of magnetic vectors m, m, m detected in time series is stored in computer 11.
  • the rotation axis K of the object to be measured is calculated by the rotation axis calculation means 4 based on the magnetic vector data at three or more different points accumulated in the memory 3.
  • the end points M, M, M of these magnetic vectors are one in the three-magnetic orthogonal coordinate system 10.
  • the magnetic vector data can be drawn as an average orbital circle passing through three forces, which are three here, and the more magnetic vector data, the more accurate the calculation is possible. It becomes. [0040] Therefore, first, as shown in FIG. 4, the difference vector n, which is the difference between the magnetic vectors m and m,
  • n that is, a vector perpendicular to the data plane S
  • n X n (, ⁇ n — n n n n — n n n — n n)
  • a straight line that is parallel to the rotation axis vector k thus obtained and passes through the origin O of the three-axis orthogonal coordinate system 10 is the rotation axis K.
  • the point force at which the rotation axis K and the data plane S intersect is the center coordinate C of the trajectory circle Q. Therefore, the rotation center coordinate calculation means 51 included in the rotation angle calculation means 5 obtains the center coordinate C as an intersection of the rotation axis K and the data plane S as follows.
  • the size of the center coordinate vector OC is the inner product of the rotation axis vector k and the magnetic vector m (or m or m) having the end point M (or M or M) on the locus circle Q.
  • the center coordinate C (center coordinate vector OC) is obtained from (ak, ak, ak).
  • the center coordinate C obtained by the center coordinate calculation means 51 in this way is used as the radius calculation method.
  • the center coordinate vector OC, whose center is C, which is the center of the locus circle Q, and the magnetic vector whose end point is the point M (or M or M) on the circumference of the locus circle Q are shown.
  • the radius R of the trajectory circle Q is calculated from the difference from Torr m (or m or m) by the following formula (6).
  • the rotation angle calculating means 5 calculates the rotation angle as follows.
  • the magnetic vector is changed from m to t
  • the line segment M G corresponds to the diameter 2R of the locus circle Q.
  • the angle M GM is the angle M CM (ie, the rotation angle ⁇ )
  • the rotation angle ⁇ is calculated as time.
  • the posture change speed of the measured object is divided.
  • the magnetic gyro 1 includes the triaxial magnetic sensor 2, the memory 3, the rotation axis calculation means 4, and the rotation angle calculation means 5. Based on the geomagnetism detected by the three-axis magnetic sensor 2, a change in the posture of the measured object is detected. Under normal circumstances, geomagnetism basically has a certain direction and size with respect to the ground. Therefore, when the attitude of the measured object, that is, the attitude of the three-axis orthogonal coordinate system 10 changes, the magnetic vector in the three-axis orthogonal coordinate system 10 changes in response to the change in attitude. . By detecting this changing magnetic vector, it is possible to accurately measure changes in the posture of the measured object.
  • the change in the posture of the measured object can be specified by an arbitrary rotation angle ⁇ around an arbitrary rotation axis ⁇ .
  • the rotation axis ⁇ is calculated by the rotation axis calculation means 4.
  • the memory 3 stores magnetic vector data at three or more different time points necessary for calculating the rotation axis ⁇ .
  • the rotation angle calculation means 5 allows the measurement object to be measured around the rotation axis ⁇ .
  • the rotation angle ⁇ is calculated based on the magnetic vector data.
  • the magnetic gyro can measure a change in the posture of the measurement object based on the geomagnetism. Therefore, even if mechanical vibrations or impacts other than the rotational motion to be measured are applied, accurate measurement without reacting to these can be ensured.
  • the magnetic gyro 1 uses the three-axis magnetic sensor 2, it does not require a complicated mechanism or a lot of electric power unlike a mechanical type. Therefore, downsizing and low cost can be easily achieved. As a result, it can be easily incorporated into, for example, portable electronic devices that are becoming smaller and higher in density.
  • the magnetic gyro 1 has the angular velocity calculation means 6, the rotational angular velocity ⁇ of the measured object can be easily detected. Therefore, it is possible to detect the posture change speed as well as the posture change amount of the measured object.
  • the rotation angle calculation means 5 includes a rotation center coordinate calculation means 51 and a radius calculation means 52, and is configured to calculate the rotation angle ⁇ using these as described above.
  • the rotation angle ⁇ can be calculated easily and accurately.
  • the three-axis magnetic sensor 2 is composed of the magneto 'impedance' sensor element 20, it is possible to obtain a magnetic gyro 1 with higher accuracy, higher sensitivity, higher response, and smaller size. That is, since the magneto 'impedance' sensor element 20 has high sensitivity, it can detect weak geomagnetism with high accuracy. Furthermore, since the magneto 'impedance' sensor element 20 is small, a small three-axis magnetic sensor 2 can be obtained. This also makes it possible to fit the magnetic gyro 1 inside the IC chip.
  • the magnetic gyro of the present invention is not limited to the above-described embodiment, and various modes are conceivable. Also, the above-described embodiment is merely an example of the calculation method of the rotation angle and the rotation angular velocity. That is, for example, the three-axis magnetic sensor includes, for example, a Hall element, a magnetoresistive element, and a flat element. Can be configured by other than magnet, impedance sensor element such as tas gate
  • the interval between magnetic vector sampling times by the three-axis magnetic sensor is not necessarily constant.
  • the number of magnetic vector data used for the calculation is not limited to three, and may be four or more.
  • extremely high-precision measurements can be made by taking measures such as taking averages using as many magnetic vector data as possible. Is possible.
  • the magnetic gyro of the present invention is mounted on a portable electronic device such as a mobile phone or a PDA, for example, so that the posture change amount and the posture change speed detected by the magnetic gyro Various input signals can be used.
  • the posture of the subject in the frame can be corrected or camera shake can be prevented using the detected posture change amount and posture change speed. Can do.
  • the detected posture change amount and posture change speed can be used for robot posture control and the like.
  • the magnetic gyro can be mounted on various objects to be measured such as vehicles, robots, airplanes, and ships.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • General Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Electromagnetism (AREA)
  • Gyroscopes (AREA)
  • Measuring Magnetic Variables (AREA)

Abstract

 被測定体に固定された3軸直交座標系における磁気ベクトルとして地磁気を検出する3軸磁気センサ2と、3軸直交座標系の原点を通る任意の回転軸を中心に上記被測定体が運動したとき、3軸磁気センサ2によって時系列的に検出される磁気ベクトルのデータを蓄積するメモリ3と、メモリ3に蓄積された異なる3時点以上の磁気ベクトルのデータを基に、回転軸を算出する回転軸算出手段4と、回転軸を中心とした被測定体の回転角度を磁気ベクトルのデータを基に算出する回転角度算出手段5とを有する磁気式ジャイロ1。

Description

明 細 書
磁気式ジャイロ
技術分野
[0001] 本発明は、地磁気を利用して、任意の姿勢を基準とした回転角度を測定したり、回 転角速度を測定する磁気式ジャイロに関する。
背景技術
[0002] 近年、例えば携帯電話機や PDA等の携帯電子機器を傾けたり振り回したりしたとき のピッチ、ョー、ロール方向の回転角度 (機器の姿勢)や、回転角速度を検出し、これ らを上記携帯電子機器へのインプット信号とする技術が開発されている。
また、カメラの回転角度や回転角速度を検出して、写真 (撮影画像)の手振れ防止 用の補正信号とする技術も開発されて!、る。
これらの技術において、機器の回転角度や回転角速度を検出する手段として、ジャ イロが利用されている。
[0003] 上記ジャイロとしては、例えば、各種機器、車両、航空機等の姿勢や方位角(即ち 回転角度)を計測するディレクショナルジャイロと、この回転角度の変化率である回転 角速度を計測するレートジャイロとがある。なお、レートジャイロの出力信号を積分演 算して、回転角度を求める手段もある。
[0004] 上記ディレクショナルジャイロとしては、軸を中心に回転する機械的なロータをジン バルで支持し、ロータの慣性力を利用して、被測定体の回転角度 (姿勢や方位角)を 測定するものが開示されている (特許文献 1)。
また、上記レートジャイロとしては、振動子に働くコリオリカに対応する信号を検出す る方式の振動ジャイロが多く用いられて 、る(特許文献 2)。
[0005] し力し、これら従来のジャイロは、いずれも運動力学的な原理を利用したものである 。そのため、測定対象とする回転運動以外の力学的な振動や衝撃等が印加されたと きにもこれらに反応してしまうおそれがある。これにより、ノイズが出力信号に重畳され 、精確な計測が困難となるおそれがあるという問題がある。
[0006] また、特許文献 1に記載のディレクショナルジャイロは、複雑な機構を必要とするた め、低コストィ匕ゃ小型化が困難である。また、ロータを回転させるための電力を多く必 要とする。そのため、航空機等の特殊な用途に限定されてしまう。
また、特許文献 2に記載のレートジャイロ (振動ジャイロ)も、振動機構を必要とする ために小型化が困難である。
それ故、これらのジャイロは、例えば、小型化、高密度化が進んでいる携帯電子機 器等に組み込むことは困難であるという問題もある。
[0007] 特許文献 1:米国特許第 3143892号明細書
特許文献 2 :特開平 7— 139951号公報
発明の開示
発明が解決しょうとする課題
[0008] 本発明は、力かる従来の問題点に鑑みてなされたもので、計測精度に優れた小型 化容易な磁気式ジャイロを提供しょうとするものである。
課題を解決するための手段
[0009] 本発明は、被測定体に固定された 3軸直交座標系における磁気ベクトルとして地磁 気を検出する 3軸磁気センサと、
上記 3軸直交座標系の原点を通る任意の回転軸を中心に上記被測定体が運動し たとき、上記 3軸磁気センサによって時系列的に検出される上記磁気ベクトルのデー タを蓄積するメモリと、
該メモリに蓄積された異なる 3時点以上の上記磁気ベクトルのデータを基に、上記 回転軸を算出する回転軸算出手段と、
上記回転軸を中心とした上記被測定体の回転角度を上記磁気ベクトルのデータを 基に算出する回転角度算出手段とを有することを特徴とする磁気式ジャイロにある。
[0010] 次に、本発明の作用効果につき説明する。
上記磁気式ジャイロは、上記 3軸磁気センサと上記メモリと上記回転軸算出手段と 上記回転角度算出手段とを有する。そして、 3軸磁気センサによって検出する地磁気 を基に、被測定体の姿勢変化を検知する。通常の環境においては、地磁気は地上 に対して基本的に一定の方向、大きさを有している。それ故、被測定体の姿勢すな わち 3軸直交座標系の姿勢が変化したとき、その姿勢変化に対応して、相対的に 3軸 直交座標系における磁気ベクトルが変化することとなる。この変化する磁気ベクトルを 検出することによって、被測定体の姿勢の変化を精確に計測することが可能となる。
[0011] そして、被測定体の姿勢の変化は、任意の回転軸の周りの任意の回転角度によつ て特定することができる。
そこで、上記のごとぐ上記磁気式ジャイロにおいては、上記回転軸算出手段によ つて、上記回転軸を算出する。また、上記メモリによって、上記回転軸を算出するた めに必要な、異なる 3時点以上における磁気ベクトルのデータを蓄積しておく。更に、 上記回転角度算出手段によって、上記回転軸を中心とした被測定体の回転角度を 上記磁気ベクトルのデータを基に算出する。
以上により、回転軸とその周りの回転角度を求めることができるため、被測定体の姿 勢の変化を計測することができる。
[0012] また、上記磁気式ジャイロは、従来の運動力学的原理を利用した機械式のジャイロ とは異なり、地磁気を基に被測定体の姿勢の変化を計測することができる。それ故、 測定対象とする回転運動以外の力学的な振動や衝撃等が印加されてもこれらに反 応することなぐ精確な計測を確保することができる。
[0013] また、上記磁気式ジャイロは、 3軸磁気センサを利用するものであるため、機械式の ように複雑な機構を必要としたり、電力を多く必要としたりすることもない。それ故、小 型化、低コストィ匕を容易に図ることができる。その結果、例えば、小型化、高密度化が 進んでいる携帯電子機器等に組み込むことも容易となる。
[0014] 以上のごとぐ本発明によれば、計測精度に優れた小型化容易な磁気式ジャイロを 提供することができる。
図面の簡単な説明
[0015] [図 1]実施例における、磁気式ジャイロの概念図。
[図 2]実施例における、 3軸直交座標系、回転軸、磁気ベクトル等の説明図。
[図 3]実施例における、中心座標の算出方法の補助説明図。
[図 4]実施例における、回転角度の算出方法の補助説明図。
[図 5]実施例における、 3軸磁気センサの斜視図。
[図 6]実施例における、マグネト 'インピーダンス 'センサ素子の平面図。 [図 7]図 6の A— A線矢視断面概念図。
発明を実施するための最良の形態
[0016] 本発明において、上記磁気式ジャイロは、例えば、携帯電話機や PDA等の携帯電 子機器、カメラ、車両、ロボット、航空機、船舶等、種々の被測定体に搭載することが できる。
また、上記磁気ベクトルは、上記 3軸直交座標系における原点を始点とした地磁気 に平行なベクトルであり、その大きさは一定である。
[0017] また、上記磁気式ジャイロは、上記回転角度算出手段によって算出された異なる 2 時点間における上記被測定体の回転角度と、その 2時点における上記磁気ベクトル のデータの採取時刻の差とを基に、上記回転軸を中心とする上記被測定体の回転 角速度を算出する角速度算出手段を有することが好ましい。
この場合には、被測定体の回転角速度を容易に検出することができる磁気式ジャィ 口を得ることができる。それ故、被測定体の姿勢変化量だけでなぐ姿勢変化速度も 検出することができる。
[0018] また、上記磁気ベクトルのデータの採取時刻の間隔は一定であることが好ましい。
この場合には、上記回転軸算出手段や上記回転角度算出手段における演算を容 易かつ精確に行うことができ、精確な姿勢変化の計測を行うことができる。
[0019] また、上記回転軸算出手段は、異なる 3時点以上の上記磁気ベクトルのうちの 2つ の磁気ベクトルの差である差分ベクトルを 2つ算出し、これら 2つの差分ベクトルの外 積をとることにより、上記回転軸と同方向の回転軸ベクトルを算出することが好ましい この場合には、容易かつ精確に上記回転軸を算出することができる。
[0020] また、上記回転角度算出手段は、上記 3軸直交座標系における異なる 3時点以上 の上記磁気ベクトルの座標点によって定まるデータ平面と、上記回転軸算出手段に よって算出された上記回転軸との交点を算出することにより、異なる 3時点以上の上 記磁気ベクトルの座標点を通る軌跡円の中心座標を算出する回転中心座標算出手 段と、該回転中心座標算出手段によって算出された上記中心座標と、上記磁気べク トルの座標点との距離を算出することにより、上記軌跡円の半径を算出する半径算出 手段とを有し、該半径算出手段によって算出した上記軌跡円の半径と、異なる 2時点 の上記磁気ベクトルの座標点とを基に、上記回転角度を算出するよう構成してあるこ とが好ましい。
この場合には、容易かつ精確に上記回転角度を算出することができる。
[0021] また、上記回転中心座標算出手段は、上記回転軸算出手段によって算出した回転 軸ベクトルと、上記磁気ベクトルとの内積をとることにより、上記軌跡円の上記中心座 標を算出することが好ましい。
この場合には、容易かつ精確に上記中心座標を算出することができる。
[0022] また、上記半径算出手段は、上記原点を始点とすると共に上記中心座標を終点と する中心座標ベクトルと、上記磁気ベクトルとの差を算出することにより、上記軌跡円 の半径を算出することが好ましい。
この場合には、容易かつ精確に上記軌跡円の半径を算出することができる。
[0023] また、上記 3軸磁気センサは、マグネト 'インピーダンス 'センサ素子によって構成し てあることが好ましい。
この場合には、より高精度、高感度、高応答性、かつ小型の磁気式ジャイロを得るこ とがでさる。
即ち、マグネト 'インピーダンス ·センサ素子 (Ml素子)は、高感度であるため、微弱 な地磁気を高精度にて検出することができる。更には、マグネト 'インピーダンス 'セン サ素子は小型であるため、小型の 3軸磁気センサを得ることができる。また、これによ り、磁気式ジャイロを ICチップ内に納めることも可能となる。
なお、上記 3軸磁気センサは、 3個の上記マグネト 'インピーダンス 'センサ素子を、 それぞれの感磁方向が互いに直交する 3軸方向となるように配設することにより、形 成することができる。
[0024] なお、 3軸磁気センサは、マグネト 'インピーダンス ·センサ素子に限らず、例えば、 ホール素子、磁気抵抗素子、フラックスゲート等、種々の磁気検出用の素子を用いて 構成することちできる。
実施例
[0025] 本発明の実施例に力かる磁気式ジャイロにっき、図 1〜図 7を用いて説明する。 本例の磁気式ジャイロ 1は、図 1に示すごとぐ 3軸磁気センサ 2とメモリ 3と回転軸算 出手段 4と回転角度算出手段 5と角速度算出手段 6とを有する。
[0026] 3軸磁気センサ 2は、図 2に示す、被測定体に固定された 3軸直交座標系 10におけ る磁気ベクトル m、 m、 mとして、地磁気を検出する。
1 2 3
上記メモリ 3は、 3軸直交座標系 10の原点 Oを通る任意の回転軸 Kを中心に上記 被測定体が図 1の矢印 Vに示すごとく運動したとき、 3軸磁気センサ 2によって時系列 的に検出される磁気ベクトル m、 m、 mのデータを蓄積する。
1 2 3
[0027] 回転軸算出手段 4は、メモリ 3に蓄積された異なる 3時点以上の磁気ベクトル m、 m
1 2
、 mのデータを基に、回転軸 Kを算出する。
3
上記回転角度算出手段 5は、回転軸 Kを中心とした被測定体の回転角度を磁気べ タトル m、 m、 mのデータを基に算出する。
1 2 3
[0028] 角速度算出手段 6は、回転角度算出手段 5によって算出された異なる 2時点間にお ける被測定体の回転角度と、その 2時点における磁気ベクトルのデータの採取時刻 の差とを基に、回転軸 Kを中心とする被測定体の回転角速度を算出する。
[0029] 3軸磁気センサ 2は、図 5に示すごとぐマグネト 'インピーダンス.センサ素子 20によ つて構成してある。即ち、 3軸磁気センサ 2は、 3個のマグネト 'インピーダンス 'センサ 素子 20を、それぞれの感磁方向が互いに直交する 3軸方向(X軸方向、 Y軸方向、 Z 軸方向)となるように配設することにより、形成してある。なお、図 5においては、マグネ ト 'インピーダンス ·センサ素子 20以外の電子部品や配線は省略してある。
[0030] 図 6、図 7に示すごとぐマグネト 'インピーダンス ·センサ素子 20は、感磁体 21と該 感磁体 21に卷回した検出コイル 22とを有する。感磁体 21は、エポキシ榭脂等力もな る絶縁体 23の中を貫通しており、検出コイル 22は、絶縁体 23の外周面に配設され ている。感磁体 21としては、例えば、長さ 1. Omm、線径 20 μ mの Co Fe Si B
68.1 4.4 12.5 1 合金カゝらなるアモルファスワイヤを利用する。
5.0
[0031] マグネト 'インピーダンス ·センサ素子 20は、感磁体 21に通電する電流の変化に伴 い、素子に作用する磁界の大きさに応じた誘起電圧が検出コイル 22に生じる、いわ ゆる MI (Magneto - impedance)現象を利用して磁気センシングを行うものである。 この Ml現象は、供給する電流方向に対して周回方向に電子スピン配列を有する磁 性材料力 なる感磁体 21について生じるものである。この感磁体 21の通電電流を急 激に変化させると、周回方向の磁界が急激に変化し、その磁界変化の作用によって 周辺磁界に応じて電子のスピン方向の変化が生じる。そして、その際の感磁体 21の 内部磁ィ匕及びインピーダンス等の変化が生じる現象が上記の Ml現象である。
[0032] そして、本例では、感磁体 21にパルス状の電流 (パルス電流)を通電したときに検 出コイル 22の両端の電極 221と電極 222との間に生じる誘起電圧を計測することで 磁界の強度を検出する。この磁気検出方法においては、感磁体 21に通電したパル ス電流の立ち下がり時に、検出コイル 22に発生する誘起電圧を計測する。
[0033] また、マグネト 'インピーダンス.センサ素子 20は、図 7に示すごとぐ深さ 50〜150
/z mの断面略矩形状を呈する溝状の凹部 24を設けた素子基板 240上に形成してあ る。凹部 24の内部には絶縁体 23が充填され、該絶縁体 23の中に感磁体 21が埋設 してある。
凹部 24の内周面と、凹部 24の開口部の位置に配される絶縁体 23の側面とには、 導電パターンが連続的に螺旋状に形成され、この導電パターンが、感磁体 21の周り を卷回する検出コイル 22を構成して 、る。
[0034] なお、検出コイル 22の導電パターンを形成する方法としては、例えば以下のような 方法がある。即ち、凹部 24の内周面に、導電性の金属薄膜を蒸着したのち、エッチ ング処理を施して導電パターンを形成する。その後、凹部 24に絶縁体 23及び感磁 体 21を配設する。そして、絶縁体 23の側面に導電性の金属薄膜を蒸着した後、エツ チング処理を施して導電パターンを形成する。このとき、凹部 24の内周面に形成した 導電パターンと絶縁体 23の側面に形成した導電パターンとが螺旋状に連続するよう にする。
[0035] 本例の検出コイル 22の捲線内径は、凹部 24の断面積と同一断面積を呈する円の 直径である円相当内径として 66 μ mを有する。そして、検出コイル 22の線幅及び線 間幅は共に 25 mとしてある。なお、図 6においては、線幅及び線間幅についての 考慮を省略した。
[0036] 次に、本例の磁気式ジャイロ 1を用いた被測定体の姿勢変化量及び姿勢変化速度 の検出方法につき、具体的に説明する。 磁気式ジャイロ 1は、図 1に示すごとぐ上記 3軸磁気センサ 2と、該 3軸磁気センサ 2 によって検出した磁気ベクトルのデータを蓄積すると共にこれらを基に被測定体の姿 勢変化量及び姿勢変化速度を算出する演算を行うコンピュータ 11とを有する。即ち 、該コンピュータ 11には、上記メモリ 3と上記回転軸算出手段 4と上記回転角度算出 手段 5と上記角速度算出手段 6とが設けてある。なお、回転角度算出手段 5には、後 述する回転中心座標算出手段 51及び半径算出手段 52とが含まれる。
上記メモリ 3は、ハードウェアからなるものであり、上記回転軸算出手段 4、上記回転 角度算出手段 5、及び上記角速度算出手段 6は、ソフトウェア内に演算プログラムとし て構築されている。
[0037] 3軸磁気センサ 2は、被測定体の一部に固定されており、一定の時間間隔 A tごと に地磁気を磁気ベクトル m、 m、 mとして検出する。磁気ベクトル m、 m、 mは、被
1 2 3 1 2 3 測定体に固定された 3軸直交座標系 10の原点 Oを始点とするベクトルである。このと き、被測定体が動いて、姿勢を変化させている場合には、時系列的に検出される複 数の磁気ベクトル m、 m、 mは、互いに異なる。
1 2 3
この時系列的に検出される磁気ベクトル m、 m、 mのデータを、コンピュータ 11内
1 2 3
のメモリ 3に送り、時系列的なデータとして記憶させる。
[0038] 次いで、回転軸算出手段 4によって、メモリ 3に蓄積された異なる 3時点以上の磁気 ベクトルのデータを基に、被測定体の回転軸 Kを算出する。
即ち、例えば、異なる 3時点(t、 t+ A t, t+ 2 A t)の磁気ベクトルのデータを、メモリ 3から読み出す。そして、時刻 tにおける磁気ベクトルを m = (m 、 m 、 m )とし、時
1 lx ly lz 刻 t+ A tにおける磁気ベクトルを m二(m 、m 、m )とし、時刻 t + 2 Δ tにおける磁
2 2x 2y 2z
気べクトノレを m = (m 、 m 、 m )とする。
3 3x 3y 3z
[0039] これらの磁気ベクトルの終点 M、 M、 Mは、 3磁気直交座標系 10において、一つ
1 2 3
のデータ平面 Sの上に存在し、一つの軌跡円 Qの周上に存在することとなる。このデ ータ平面 Sに直交すると共に、軌跡円 Qの中心を通る軸力 回転軸 Kとなる。
なお、磁気ベクトルのデータは、ここでは 3個とした力 4個以上とつて、これらを通る 平均的な軌道円を描くこともでき、磁気ベクトルのデータは多数とるほど、精度のよい 演算が可能となる。 [0040] そこで、まず、図 4に示すごとぐ磁気ベクトル mと mとの差である差分ベクトル nと
1 2 1
、磁気ベクトル mと mとの差である差分ベクトル nとを算出する。そして、以下の式(1
3 2 2
)、 (2)のように、差分ベクトル n、 nの X、 Y、 Ζ成分を整理することができる。
1 2
[0041] n =m— m = (m — m 、 m — m 、 m — m ) = (n 、 n 、 n )
1 1 2 lx 2x ly 2y lz 2z lx ly lz
•••(1)
n =m— m = (m — m 、 m — m 、 m — m ) = (n 、 n 、 n )
2 3 2 3x 2x 3y 2y 3z 2z 2x 2y 2z
•••(2)
[0042] そして、差分ベクトル nと差分ベクトル nとの外積 n X nをとることにより、差分べタト
1 2 1 2
ル n, nに垂直なベクトル、即ち上記データ平面 Sに垂直なベクトルとして、回転軸べ
1 2
クトル kを、下記の式(3)に示すように得ることができる。
k=n X n = (,η n — n n n n — n n n n — n n )
1 2 ly 2z lz 2y lz 2x lx 2z lx 2y ly 2x
= (k , k , k ) · · · (3)
1 2 3
[0043] このようにして得られた回転軸ベクトル kに平行であり、 3軸直交座標系 10の原点 O を通る直線が回転軸 Kである。この回転軸 Kとデータ平面 Sとが交わる点力 上記軌 跡円 Qの中心座標 Cとなる。そこで、回転角度算出手段 5に含まれる回転中心座標 算出手段 51においては、回転軸 Kとデータ平面 Sとの交点として、以下のように中心 座標 Cを求める。
[0044] 図 3に示すごとぐ中心座標ベクトル OCの大きさは、回転軸ベクトル kと軌跡円 Q上 に終点 M (或いは M又は M )を有する磁気ベクトル m (或いは m又は m )との内積
1 2 3 1 2 3 によって求めることができる。また、中心座標ベクトル OCの向きは、回転軸ベクトル k と同じである。そこで、中心座標ベクトル OCをベクトル akとおくと以下の等式 (4)が成 り立つ。ここで、 aは任意の係数である。
k-ak=k-m · · · (4)
1
[0045] この等式 (4)から、係数 aを下記の式(5)のように求めることができる。
a= (m k +m k +m k ) / (k 2+k 2+k 2) …(5)
x x y y z z x y z
そして、データ平面 Sにおける中心座標ベクトル OCが akに等しいことから、中心座 標 C (中心座標ベクトル OC)は(ak , ak , ak )〖こより得られる。
[0046] このようにして中心座標算出手段 51によって得られた中心座標 Cを、半径算出手 段 52に出力する。そして、軌跡円 Qの中心である中心座標 Cを終点とする中心座標 ベクトル OCと、軌跡円 Qの円周上の点 M (或いは M又は M )を終点とする磁気べク
1 2 3
トル m (或いは m又は m )との差から、下記の式(6)により、軌跡円 Qの半径 Rを求め
1 2 3
る。
R2 = (m - OC) 2= (m— OC) 2 = (m - OC) 2 · · · (6)
1 2 3
[0047] ここで、演算に用いる磁気ベクトルは一つだけでもよいが、上記 3個のデータ m、 m
1
、 mを用いて平均をとることにより、より精度のよい演算が可能となる。また、 4個以上
2 3
の磁気ベクトルのデータを用いて、それらを基に演算した半径 Rの平均を求めること により、更に精度のよい演算が可能となる。
[0048] 上記のようにして得られる半径 Rを基に、回転角度算出手段 5は、以下のようにして 、回転角度を算出する。
例えば、図 4に示すごとぐ時刻 tから時刻 t+ A tまでの間に磁気ベクトルが mから
1 mに変化したとき、軌跡円 Qにおける回転角 Θは、以下の式(7)によって算出される
2
[0049] [数 1]
Figure imgf000012_0001
[0050] 上記式(7)は、図 4に示すごとぐ軌跡円 Qに内接すると共に磁気ベクトル m、 mの
1 2 終点 M、 Mを 2つの頂点とする直角三角形 M M Gに、正弦定理を適用することに
1 2 1 2
より得ることができる。即ち、三角形 M M Gにおいて、以下の式(8)が成り立つ。ここ
1 2
で、線分 M Gは、軌跡円 Qの直径 2Rに該当する。そして、角 M GMと角 M CMと
1 1 2 1 2 は円周角と中心角との関係を有するため、角 M GMは、角 M CM (即ち回転角 Θ )
1 2 1 2
の半分である。
[0051] [数 2] … (8 )
Figure imgf000013_0001
[0052] それ故、この式(8)から上記式(7)が導かれ、回転角 Θを求めることができる。この 回転角 Θの信号を出力端子 P1から出力する(図 1)。
以上により、回転軸 Kとその周りの回転角 Θを得ることができるため、時刻 tから時刻 t+ Δほでの間における被測定体の姿勢変化量が分力ることとなる。
[0053] また、この結果を利用して、上記角速度算出手段 6においては、回転角度 Θを時間
A tで除算することにより、角速度 ωを得ることができる。即ち、 Θ ' = 0 Z A tとなる。 この角速度 ωの信号を出力端子 P2から出力する。
以上により、回転軸 Κとその周りの回転角速度 ωを得ることができるため、被測定体 の姿勢変化速度が分力ることとなる。
[0054] 次に、本例の作用効果につき説明する。
上記磁気式ジャイロ 1は、上記 3軸磁気センサ 2と上記メモリ 3と上記回転軸算出手 段 4と上記回転角度算出手段 5とを有する。そして、 3軸磁気センサ 2によって検出す る地磁気を基に、被測定体の姿勢変化を検知する。通常の環境においては、地磁気 は地上に対して基本的に一定の方向、大きさを有している。それ故、被測定体の姿 勢すなわち 3軸直交座標系 10の姿勢が変化したとき、その姿勢変化に対応して、相 対的に 3軸直交座標系 10における磁気ベクトルが変化することとなる。この変化する 磁気ベクトルを検出することによって、被測定体の姿勢の変化を精確に計測すること が可能となる。
[0055] そして、被測定体の姿勢の変化は、任意の回転軸 Κの周りの任意の回転角度 Θに よって特定することができる。
そこで、上記のごとぐ上記磁気式ジャイロ 1においては、上記回転軸算出手段 4に よって、上記回転軸 Κを算出する。また、上記メモリ 3によって、上記回転軸 Κを算出 するために必要な、異なる 3時点以上における磁気ベクトルのデータを蓄積しておく 。更に、上記回転角度算出手段 5によって、上記回転軸 Κを中心とした被測定体の 回転角度 Θを上記磁気ベクトルのデータを基に算出する。
以上により、回転軸 Κとその周りの回転角度 Θを求めることができるため、被測定体 の姿勢の変化を計測することができる。
[0056] また、上記磁気式ジャイロは、従来の運動力学的原理を利用した機械式のジャイロ とは異なり、地磁気を基に被測定体の姿勢の変化を計測することができる。それ故、 測定対象とする回転運動以外の力学的な振動や衝撃等が印加されてもこれらに反 応することなぐ精確な計測を確保することができる。
[0057] また、上記磁気式ジャイロ 1は、 3軸磁気センサ 2を利用するものであるため、機械 式のように複雑な機構を必要としたり、電力を多く必要としたりすることもない。それ故 、小型化、低コストィ匕を容易に図ることができる。その結果、例えば、小型化、高密度 化が進んでいる携帯電子機器等に組み込むことも容易となる。
[0058] また、上記磁気式ジャイロ 1は、角速度算出手段 6を有するため、被測定体の回転 角速度 ωを容易に検出することができる。それ故、被測定体の姿勢変化量だけでな ぐ姿勢変化速度も検出することができる。
また、回転角度算出手段 5は、回転中心座標算出手段 51と、半径算出手段 52とを 有し、これらを上記のごとく利用して回転角度 Θを算出するよう構成してある。これに より、容易かつ精確に上記回転角度 Θを算出することができる。
[0059] また、 3軸磁気センサ 2は、マグネト 'インピーダンス 'センサ素子 20によって構成し てあるため、より高精度、高感度、高応答性、かつ小型の磁気式ジャイロ 1を得ること ができる。即ち、マグネト 'インピーダンス 'センサ素子 20は、高感度であるため、微弱 な地磁気を高精度にて検出することができる。更には、マグネト 'インピーダンス 'セン サ素子 20は小型であるため、小型の 3軸磁気センサ 2を得ることができる。また、これ により、磁気式ジャイロ 1を ICチップ内に納めることも可能となる。
[0060] 以上のごとぐ本例によれば、計測精度に優れた小型化容易な磁気式ジャイロを提 供することができる。
[0061] 本発明の磁気式ジャイロは、上記実施例に限らず、種々の態様が考えられ、また、 回転角度や回転角速度の算出方法についても、上記実施例は一例にすぎない。 即ち、例えば、上記 3軸磁気センサは、例えば、ホール素子、磁気抵抗素子、フラッ タスゲート等、マグネト,インピーダンス ·センサ素子以外によって構成することもできる
[0062] また、 3軸磁気センサによる磁気ベクトルの採取時刻の間隔は、必ずしも一定である 必要はない。また、演算に使用する磁気ベクトルのデータの数は、 3個に限らず、 4個 以上であってもよい。そして、データ平面 S、軌跡円 Q、半径 R等の算出に当たっては 、できるだけ多数の磁気ベクトルのデータを利用して、平均をとるなどの措置を採るこ とにより、極めて高精度の計測を行うことが可能となる。
[0063] なお、本発明の磁気式ジャイロは、例えば、携帯電話機や PDA等の携帯電子機器 に搭載することにより、磁気式ジャイロによって検出された姿勢変化量や姿勢変化速 度を、上記機器に対する種々の入力信号とすることなどができる。
また、例えば、上記磁気式ジャイロをカメラに搭載することにより、検出した姿勢変 化量や姿勢変化速度を利用して、フレーム内における被写体の姿勢を補正したり、 手振れを防止したりすることなどができる。
[0064] また、例えば、上記磁気式ジャイロをロボットに搭載することにより、検出した姿勢変 化量や姿勢変化速度を、ロボットの姿勢制御等に利用することなどができる。
その他、上記磁気式ジャイロを、車両、ロボット、航空機、船舶等、種々の被測定体 に搭載することができる。

Claims

請求の範囲
[1] 被測定体に固定された 3軸直交座標系における磁気ベクトルとして地磁気を検出 する 3軸磁気センサと、
上記 3軸直交座標系の原点を通る任意の回転軸を中心に上記被測定体が運動し たとき、上記 3軸磁気センサによって時系列的に検出される上記磁気ベクトルのデー タを蓄積するメモリと、
該メモリに蓄積された異なる 3時点以上の上記磁気ベクトルのデータを基に、上記 回転軸を算出する回転軸算出手段と、
上記回転軸を中心とした上記被測定体の回転角度を上記磁気ベクトルのデータを 基に算出する回転角度算出手段とを有することを特徴とする磁気式ジャイロ。
[2] 請求項 1において、上記回転角度算出手段によって算出された異なる 2時点間に おける上記被測定体の回転角度と、その 2時点における上記磁気ベクトルのデータ の採取時刻の差とを基に、上記回転軸を中心とする上記被測定体の回転角速度を 算出する角速度算出手段を有することを特徴とする磁気式ジャイロ。
[3] 請求項 2において、上記磁気ベクトルのデータの採取時刻の間隔は一定であること を特徴とする磁気式ジャイロ。
[4] 請求項 1〜3のいずれか一項において、上記回転軸算出手段は、異なる 3時点以 上の上記磁気ベクトルのうちの 2つの磁気ベクトルの差である差分ベクトルを 2つ算出 し、これら 2つの差分ベクトルの外積をとることにより、上記回転軸と同方向の回転軸 ベクトルを算出することを特徴とする磁気式ジャイロ。
[5] 請求項 1〜4のいずれか一項において、上記回転角度算出手段は、上記 3軸直交 座標系における異なる 3時点以上の上記磁気ベクトルの座標点によって定まるデー タ平面と、上記回転軸算出手段によって算出された上記回転軸との交点を算出する ことにより、異なる 3時点以上の上記磁気ベクトルの座標点を通る軌跡円の中心座標 を算出する回転中心座標算出手段と、該回転中心座標算出手段によって算出され た上記中心座標と、上記磁気ベクトルの座標点との距離を算出することにより、上記 軌跡円の半径を算出する半径算出手段とを有し、該半径算出手段によって算出した 上記軌跡円の半径と、異なる 2時点の上記磁気ベクトルの座標点とを基に、上記回 転角度を算出するよう構成してあることを特徴とする磁気式ジャイロ。
[6] 請求項 5において、上記回転中心座標算出手段は、上記回転軸算出手段によって 算出した回転軸ベクトルと、上記磁気ベクトルとの内積をとることにより、上記軌跡円 の上記中心座標を算出することを特徴とする磁気式ジャイロ。
[7] 請求項 5又は 6において、上記半径算出手段は、上記原点を始点とすると共に上 記中心座標を終点とする中心座標ベクトルと、上記磁気ベクトルとの差を算出するこ とにより、上記軌跡円の半径を算出することを特徴とする磁気式ジャイロ。
[8] 請求項 1〜7のいずれか一項において、上記 3軸磁気センサは、マグネト 'インピー ダンス ·センサ素子によって構成してあることを特徴とする磁気式ジャイロ。
PCT/JP2006/303745 2006-02-28 2006-02-28 磁気式ジャイロ WO2007099599A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2008502586A JPWO2007099599A1 (ja) 2006-02-28 2006-02-28 磁気式ジャイロ
PCT/JP2006/303745 WO2007099599A1 (ja) 2006-02-28 2006-02-28 磁気式ジャイロ

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2006/303745 WO2007099599A1 (ja) 2006-02-28 2006-02-28 磁気式ジャイロ

Publications (1)

Publication Number Publication Date
WO2007099599A1 true WO2007099599A1 (ja) 2007-09-07

Family

ID=38458722

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/303745 WO2007099599A1 (ja) 2006-02-28 2006-02-28 磁気式ジャイロ

Country Status (2)

Country Link
JP (1) JPWO2007099599A1 (ja)
WO (1) WO2007099599A1 (ja)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008224642A (ja) * 2007-03-09 2008-09-25 Aichi Micro Intelligent Corp 磁気式ジャイロ
JP2009002934A (ja) * 2007-04-25 2009-01-08 Commiss Energ Atom 実質的に不変な回転軸を検出するための方法および装置
JP2009156779A (ja) * 2007-12-27 2009-07-16 Fujitsu Ltd モーションセンシング装置,モーションセンシング方法およびモーションセンシング回路
JP2010271336A (ja) * 2010-09-10 2010-12-02 Aichi Micro Intelligent Corp 磁気式ジャイロ
JP2010281837A (ja) * 2010-09-10 2010-12-16 Aichi Micro Intelligent Corp 磁気式ジャイロ
WO2011037118A1 (ja) 2009-09-26 2011-03-31 アルプス電気株式会社 地磁気検知装置
WO2011152105A1 (ja) * 2010-06-03 2011-12-08 アイチ・マイクロ・インテリジェント株式会社 磁気式ジャイロ
JP2011252808A (ja) * 2010-06-02 2011-12-15 Alps Electric Co Ltd 磁気検知装置
JP2012088124A (ja) * 2010-10-18 2012-05-10 Alps Electric Co Ltd 磁界検知装置
JP2012093152A (ja) * 2010-10-26 2012-05-17 Aichi Micro Intelligent Corp 磁気式ジャイロ
WO2012099819A1 (en) * 2011-01-21 2012-07-26 Northrop Grumman Guidance and Electronics Company Inc. Gyroscope system magnetic field error compensation
JP2013015435A (ja) * 2011-07-05 2013-01-24 Aichi Micro Intelligent Corp 磁気式ジャイロ
WO2018180076A1 (ja) 2017-03-30 2018-10-04 愛知製鋼株式会社 ボール回転量測定システム
US10365106B2 (en) 2015-12-21 2019-07-30 Casio Computer Co., Ltd. Electronic apparatus, angular velocity acquisition method and storage medium for the same
WO2020152463A1 (en) * 2019-01-22 2020-07-30 Deepmatter Ltd Rotational speed and anomalous rotation rate detection

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10115634A (ja) * 1996-10-14 1998-05-06 Sony Corp 角速度検出装置
JP2006047267A (ja) * 2003-07-18 2006-02-16 Aichi Steel Works Ltd 3次元磁気方位センサおよびマグネト・インピーダンス・センサ素子

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005061969A (ja) * 2003-08-11 2005-03-10 Asahi Kasei Electronics Co Ltd 方位角計測装置及び方位角計測方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10115634A (ja) * 1996-10-14 1998-05-06 Sony Corp 角速度検出装置
JP2006047267A (ja) * 2003-07-18 2006-02-16 Aichi Steel Works Ltd 3次元磁気方位センサおよびマグネト・インピーダンス・センサ素子

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008224642A (ja) * 2007-03-09 2008-09-25 Aichi Micro Intelligent Corp 磁気式ジャイロ
JP2009002934A (ja) * 2007-04-25 2009-01-08 Commiss Energ Atom 実質的に不変な回転軸を検出するための方法および装置
JP2009156779A (ja) * 2007-12-27 2009-07-16 Fujitsu Ltd モーションセンシング装置,モーションセンシング方法およびモーションセンシング回路
US9234754B2 (en) 2009-09-26 2016-01-12 Alps Electric Co., Ltd. Geomagnetism sensing device
JP5076027B2 (ja) * 2009-09-26 2012-11-21 アルプス電気株式会社 地磁気検知装置
WO2011037118A1 (ja) 2009-09-26 2011-03-31 アルプス電気株式会社 地磁気検知装置
CN102510997A (zh) * 2009-09-26 2012-06-20 阿尔卑斯电气株式会社 地磁力检测装置
US20120078571A1 (en) * 2009-09-26 2012-03-29 Alps Electric Co., Ltd. Geomagnetism sensing device
JP2011252808A (ja) * 2010-06-02 2011-12-15 Alps Electric Co Ltd 磁気検知装置
JP2011252857A (ja) * 2010-06-03 2011-12-15 Aichi Micro Intelligent Corp 磁気式ジャイロ
WO2011152105A1 (ja) * 2010-06-03 2011-12-08 アイチ・マイクロ・インテリジェント株式会社 磁気式ジャイロ
JP2010271336A (ja) * 2010-09-10 2010-12-02 Aichi Micro Intelligent Corp 磁気式ジャイロ
JP2010281837A (ja) * 2010-09-10 2010-12-16 Aichi Micro Intelligent Corp 磁気式ジャイロ
JP2012088124A (ja) * 2010-10-18 2012-05-10 Alps Electric Co Ltd 磁界検知装置
JP2012093152A (ja) * 2010-10-26 2012-05-17 Aichi Micro Intelligent Corp 磁気式ジャイロ
US8600691B2 (en) 2011-01-21 2013-12-03 Northrop Grumman Guidance and Electronics, Inc. Gyroscope system magnetic field error compensation
JP2014504729A (ja) * 2011-01-21 2014-02-24 ノースロップ グラマン ガイダンス アンド エレクトロニクス カンパニー インコーポレイテッド ジャイロスコープシステムの磁場誤差補正
WO2012099819A1 (en) * 2011-01-21 2012-07-26 Northrop Grumman Guidance and Electronics Company Inc. Gyroscope system magnetic field error compensation
JP2013015435A (ja) * 2011-07-05 2013-01-24 Aichi Micro Intelligent Corp 磁気式ジャイロ
US10365106B2 (en) 2015-12-21 2019-07-30 Casio Computer Co., Ltd. Electronic apparatus, angular velocity acquisition method and storage medium for the same
USRE49812E1 (en) 2015-12-21 2024-01-23 Casio Computer Co., Ltd. Electronic apparatus, angular velocity acquisition method and storage medium for the same
WO2018180076A1 (ja) 2017-03-30 2018-10-04 愛知製鋼株式会社 ボール回転量測定システム
WO2020152463A1 (en) * 2019-01-22 2020-07-30 Deepmatter Ltd Rotational speed and anomalous rotation rate detection
GB2595124A (en) * 2019-01-22 2021-11-17 Deepmatter Ltd Rotational speed and anomalous rotation rate detection
GB2595124B (en) * 2019-01-22 2023-04-12 Deepmatter Ltd Rotational speed and anomalous rotation rate detection

Also Published As

Publication number Publication date
JPWO2007099599A1 (ja) 2009-07-16

Similar Documents

Publication Publication Date Title
WO2007099599A1 (ja) 磁気式ジャイロ
KR102368230B1 (ko) 폴더블 디바이스의 두 몸체부의 사이각 측정 방법 및 이를 위한 장치
JP5023073B2 (ja) モーションセンシングプログラム及びそれを備えた電子コンパス
WO2006035505A1 (ja) 磁気センサの制御方法、制御装置、および携帯端末装置
JP4599502B1 (ja) 磁気式ジャイロ
US20120022823A1 (en) Electronic compass
JP2002196055A (ja) 3軸磁気センサ、全方位磁気センサおよびそれらを用いた方位測定方法
CN103941309A (zh) 地磁传感器校准设备及其方法
US11408735B2 (en) Positioning system and positioning method
WO2006088057A1 (ja) 方位計測装置
JP5678357B2 (ja) 回転情報演算方法、回転情報演算プログラム、磁気型ジャイロスコープおよび移動体
JP2008224642A (ja) 磁気式ジャイロ
JP4890660B2 (ja) 地磁気検知装置
JP5186645B2 (ja) 電子コンパス
CN101581221A (zh) 随钻测量系统
JP5457890B2 (ja) 方位検知装置
JP5374422B2 (ja) 磁界検知装置
CN110030991B (zh) 融合陀螺和磁强计的飞行物高速旋转角运动测量方法
JP5475873B2 (ja) 地磁気検知装置
JP4149344B2 (ja) 地磁気方位センサおよび地磁気方位センサの使用方法
JP5498209B2 (ja) 磁界検知装置
JP2010281837A (ja) 磁気式ジャイロ
JP4034556B2 (ja) 磁気センサ装置用地球磁極方位計算方法
JP5490576B2 (ja) 磁界検知装置
JP2015148497A (ja) 磁気型ジャイロスコープおよび三次元方位計

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2008502586

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06714875

Country of ref document: EP

Kind code of ref document: A1