WO2007097416A1 - Method of growing farmed fish - Google Patents
Method of growing farmed fish Download PDFInfo
- Publication number
- WO2007097416A1 WO2007097416A1 PCT/JP2007/053388 JP2007053388W WO2007097416A1 WO 2007097416 A1 WO2007097416 A1 WO 2007097416A1 JP 2007053388 W JP2007053388 W JP 2007053388W WO 2007097416 A1 WO2007097416 A1 WO 2007097416A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- feed
- fish
- tuna
- feeding
- mercury concentration
- Prior art date
Links
- 241000251468 Actinopterygii Species 0.000 title claims abstract description 106
- 238000000034 method Methods 0.000 title claims abstract description 12
- QSHDDOUJBYECFT-UHFFFAOYSA-N mercury Chemical compound [Hg] QSHDDOUJBYECFT-UHFFFAOYSA-N 0.000 claims abstract description 114
- 229910052753 mercury Inorganic materials 0.000 claims abstract description 114
- 235000019688 fish Nutrition 0.000 claims description 93
- 241001504592 Trachurus trachurus Species 0.000 claims description 47
- 238000004519 manufacturing process Methods 0.000 claims description 21
- 241000238366 Cephalopoda Species 0.000 claims description 19
- 235000013305 food Nutrition 0.000 claims description 15
- 241000972773 Aulopiformes Species 0.000 claims description 4
- 235000019515 salmon Nutrition 0.000 claims description 4
- 239000010902 straw Substances 0.000 claims 1
- 241000269838 Thunnus thynnus Species 0.000 abstract description 59
- 238000009313 farming Methods 0.000 abstract description 5
- 241000269821 Scombridae Species 0.000 description 20
- 235000020640 mackerel Nutrition 0.000 description 20
- 230000000052 comparative effect Effects 0.000 description 12
- 241000207961 Sesamum Species 0.000 description 11
- 235000003434 Sesamum indicum Nutrition 0.000 description 11
- 230000033228 biological regulation Effects 0.000 description 7
- 210000003205 muscle Anatomy 0.000 description 6
- 238000009360 aquaculture Methods 0.000 description 5
- 244000144974 aquaculture Species 0.000 description 5
- 230000037396 body weight Effects 0.000 description 5
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 4
- 230000037406 food intake Effects 0.000 description 4
- 235000012631 food intake Nutrition 0.000 description 4
- 230000003187 abdominal effect Effects 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- 241000255789 Bombyx mori Species 0.000 description 2
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 2
- 241000269851 Sarda sarda Species 0.000 description 2
- 241000269841 Thunnus albacares Species 0.000 description 2
- 241000269959 Xiphias gladius Species 0.000 description 2
- 238000010521 absorption reaction Methods 0.000 description 2
- 229910017604 nitric acid Inorganic materials 0.000 description 2
- 235000021335 sword fish Nutrition 0.000 description 2
- 239000006200 vaporizer Substances 0.000 description 2
- 241000473391 Archosargus rhomboidalis Species 0.000 description 1
- 241000252212 Danio rerio Species 0.000 description 1
- 235000019733 Fish meal Nutrition 0.000 description 1
- 241000251511 Holothuroidea Species 0.000 description 1
- 208000030527 Minamata disease Diseases 0.000 description 1
- JJWSNOOGIUMOEE-UHFFFAOYSA-N Monomethylmercury Chemical compound [Hg]C JJWSNOOGIUMOEE-UHFFFAOYSA-N 0.000 description 1
- 208000009507 Nervous System Mercury Poisoning Diseases 0.000 description 1
- 241001396014 Priacanthus arenatus Species 0.000 description 1
- 241000785681 Sander vitreus Species 0.000 description 1
- 241000269956 Thunnus maccoyii Species 0.000 description 1
- 241001222097 Xenocypris argentea Species 0.000 description 1
- 230000036528 appetite Effects 0.000 description 1
- 235000019789 appetite Nutrition 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000004720 fertilization Effects 0.000 description 1
- 239000004467 fishmeal Substances 0.000 description 1
- 230000012447 hatching Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 235000019553 satiation Nutrition 0.000 description 1
- 230000036186 satiety Effects 0.000 description 1
- 235000019627 satiety Nutrition 0.000 description 1
- 239000013535 sea water Substances 0.000 description 1
- 235000014102 seafood Nutrition 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 231100000331 toxic Toxicity 0.000 description 1
- 230000002588 toxic effect Effects 0.000 description 1
- 239000002351 wastewater Substances 0.000 description 1
- 238000003911 water pollution Methods 0.000 description 1
- 238000005303 weighing Methods 0.000 description 1
Classifications
-
- A—HUMAN NECESSITIES
- A23—FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
- A23K—FODDER
- A23K50/00—Feeding-stuffs specially adapted for particular animals
- A23K50/80—Feeding-stuffs specially adapted for particular animals for aquatic animals, e.g. fish, crustaceans or molluscs
-
- A—HUMAN NECESSITIES
- A01—AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
- A01K—ANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
- A01K61/00—Culture of aquatic animals
- A01K61/80—Feeding devices
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02A—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
- Y02A40/00—Adaptation technologies in agriculture, forestry, livestock or agroalimentary production
- Y02A40/80—Adaptation technologies in agriculture, forestry, livestock or agroalimentary production in fisheries management
- Y02A40/81—Aquaculture, e.g. of fish
Definitions
- the present invention relates to a method for producing cultured fish with low mercury concentration.
- the provisional regulation value is set so that the concentration of the total amount is 0.4 gZg or less.
- a regulation is set for the mercury concentration to be 0.3 g Zg or less, and it is legally stipulated that general fish containing methyl mercury exceeding this limit should be disposed of. It has been.
- the mercury concentration is high, but for general consumers, it is out of regulation because of low food intake.
- Tuna such as naturally occurring bluefin tuna
- the high total mercury concentration detected in tuna is because the tuna is located at the top of the food chain in fish, and the mercury contained in the ingested fish is sequentially concentrated and taken into the body. It is known that it is the result of being accumulated in the body without being excreted. For this reason, as described above, the regulation value of mercury concentration for general fish cannot be applied to tuna, but it is simply a low amount of food intake. It is a problem.
- tuna which are high-grade fishes
- bluefin tuna such as egg collection, fertilization, hatching, and fry farming to adult fish.
- I'm working on research we have finally reached the stage of shipping 3-year-old fish weighing 20-60 kg, which have been produced in complete aquaculture in recent years, to the farm.
- the present invention has been made to solve the above-described problems, and an object of the present invention is to produce cultured fish with reduced mercury concentration in the body and improved safety. Is to provide a method.
- the present inventors conducted research on the complete culture of bluefin tuna, and as a result of repeated aquaculture tests with various types of feeding fish and their feeding methods, By selecting the type of fish, the concentration of mercury accumulated in the body of bluefin tuna can be reduced, and by devising its feeding method, it is a fish species with a low mercury concentration.
- the inventors have found that it is possible to efficiently feed bluefin tuna having a low mercury concentration by increasing the growth rate by feeding bluefin tuna with a large amount of food that is not eaten, thereby completing the present invention. That is, the present invention is as follows.
- the method for producing cultured fish of the present invention is characterized in that the fish is cultivated by feeding food and Z or feed using fish having a total mercury concentration of 0.1 ⁇ gZg or less.
- the cultured fish in the method for producing cultured fish of the present invention is more preferably a bluefin tuna, which is preferably a tuna.
- the fish used for the feed and Z or the feed contains a horse mackerel.
- the horse mackerel is more preferably a mackerel.
- the fish used for the feed and Z or the feed may be horse mackerel and squid.
- feed with zebrafish and feed with z or feed, and feed fish with zodiac and feed with z or feed when the farmed fish begins to eat feed with zander and z or feed Switching, farming When fish no longer eat feed and z or feed using horse mackerel, switch to feeding and feeding Z or feed using eelfish, and feed and Z or feed using cultured fish silkworms It is preferable to repeat the feeding method to switch back to feeding and feeding Z or feed again with horse mackerel at the beginning.
- FIG. 1 A graph showing the relationship between bluefin tuna weight feeding and changes in total mercury concentration in muscle for bluefin tuna fed with sesame mackerel and bluefin tuna fed with horse mackerel and squid. Yes, the vertical axis is total mercury concentration (ppm), and the horizontal axis is body weight (kg).
- FIG. 2 A graph showing the amount of feed per bluefin tuna per month obtained in Example 1, with the vertical axis representing the amount fed (kg) and the horizontal axis representing the period from June to December. is there.
- FIG. 3 is a graph showing the mercury intake per bluefin tuna per month obtained in Example 1, with the vertical axis representing mercury intake (mg) and the horizontal axis from June to December. Each period.
- FIG. 4 Graph showing the mercury intake per kg of bluefin tuna per month, obtained in Example 1, with the vertical axis representing mercury intake g) and the horizontal axis representing each period from June to December. It is.
- FIG. 5 A graph showing the amount of feed per bluefin tuna per month obtained in Comparative Example 1, with the vertical axis representing the amount fed (kg) and the horizontal axis representing the period from June to December. is there.
- FIG. 6 is a graph showing the mercury intake per bluefin tuna per month obtained in Comparative Example 1, with the vertical axis representing mercury intake (mg) and the horizontal axis from June to December. Each period.
- FIG. 7 Graph showing the mercury intake per kg of bluefin tuna per month, obtained in Comparative Example 1, with the vertical axis representing mercury intake g) and the horizontal axis representing each period from June to December It is.
- FIG. 8 is a diagram schematically showing the division of the part of bluefin tuna fish 1 used in Example 2 and Comparative Example 2.
- FIG. 9 is a graph showing the mercury concentration of each part of the bluefin tuna obtained in Example 2, and the vertical axis represents the mercury concentration (ppm).
- FIG. 10 is a graph showing the mercury concentration of each part of the bluefin tuna obtained in Comparative Example 2, with the vertical axis representing the mercury concentration (ppm).
- the method for producing cultured fish according to the present invention is characterized in that the fish is cultured by feeding food and Z or feed using fish having a total mercury concentration of 0.1 ⁇ gZg or less.
- farmed fish include, but are not limited to, tuna, swordfish and bonito.
- bluefin tuna particularly preferred are bluefin tuna such as bluefin tuna, southern bluefin tuna, albacore, bigeye, yellowfin, yellowfin tuna and cocinaga.
- feed refers to raw food for feeding, and refers to fish itself having a total mercury concentration of 0 .: gZg or less.
- feed means a mixed feed for feeding, and refers to fish meal processed using fish having a total mercury concentration of 0.:gZg or less.
- the total mercury concentration in the edible part of farmed fish is the provisional regulation value for general fish by feeding with feed and Z or feed using fish with a total mercury concentration of 0.:gZg or less. Can be reduced to 4 gZg or less
- Figure 1 shows the relationship between bluefin tuna weight-fed and changes in total mercury concentration in muscle for bluefin tuna cultivated by feeding sesame mackerel and bluefin tuna cultivated by feeding horse mackerel and squid.
- the vertical axis represents total mercury concentration (ppm) and the horizontal axis represents body weight (kg).
- Figure 1 shows that the bluefin tuna cultivated mainly by feeding sesame mackerel up to a weight of 3 kg is divided into two test plots. As a result of measuring the total mercury concentration in the edible part of each bluefin tuna that were fished in a mixed growth period and fished until the weight reached about 9 kg, and each bluefin tuna belonging to both test zones was picked up at regular growth periods.
- the average total mercury concentration of sesame mackerel is about 0.18 g Zg
- the average total mercury concentration of horse mackerel and squid is about 0.04 g Zg.
- FIG. 1 shows that the total mercury concentration of the bluefin tuna that continued to feed sesame mackerel gradually increased while growing to a weight of 9 kg. If you continue to feed sesame horse mackerel to a weight of 20-30 kg, the total mercury concentration will gradually rise to an average value of about 0.5 / z gZg (not shown).
- bluefin tuna cultivated with a mixed feeding of horse mackerel and squid, a fish with a weight of 3 kg and a total mercury concentration of 0.1 ⁇ gZg or less In Figure 1, the total mercury concentration gradually decreases with increasing body weight, and it is shown in Fig. 1 that safe bluefin tuna with a total mercury concentration of 0.3 ⁇ & Zg or less can be produced reliably.
- the total mercury concentration is measured in advance for a candidate group of fish used for feed and Z or feed, and the measured total mercury concentration is 0.1 l ⁇ g / g or less ( Preferably, 0.04 ⁇ gZg or less fish is selectively used for feed and Z or feed.
- the total mercury concentration in the candidate group of fish used for feed and Z or feed can be determined by, for example, killing and exsanguinating these fish immediately, mincing the muscles removed in several parts, and then adding nitric acid and sulfuric acid. It can be measured by using an atomic absorption photometer equipped with a mercury reduction vaporizer after wet decomposition using.
- the mercury concentration in fish varies depending on the fish species, fishing grounds, and seasons, but for certain fish species that are landed in certain fishing grounds in certain seasons, it has a substantially constant mercury concentration. Therefore, if these data are prepared as a database, fish with a total mercury concentration of 0.1 ⁇ gZg or less that can be used in feed and Z or feed can be easily selected. It can be obtained.
- Examples of fish having a total mercury concentration of 0.1 ⁇ gZg or less that can be used as feed and Z or feed in the present invention include horse mackerel, mud horse mackerel, squid, squid, squid, etc. It is done.
- horse mackerel having a particularly low total mercury concentration, especially horse mackerel can be used for feed and Z or feed.
- tuna such as bluefin tuna
- the tuna is very weak in preference for horse mackerel.
- feed is used with horse mackerel and Z or feed alone
- squid squid with a total mercury concentration of 0.1 ⁇ gZg or less is more expensive than tuna, but is expensive compared with horse mackerel, It is not practical to grow tuna using z or feed alone.
- both a horse mackerel especially a horse mackerel
- a locust are used as a feed and z. Or it is preferable to use for feed.
- tuna are eaten in large quantities by feed and / or feed using horse mackerel and feed and / or feed using horse mackerel. This makes it possible to feed tuna with large amounts of feed and Z or feed using horse mackerel.
- the present inventors use the following method when cultivating tuna by mixing and feeding feed and Z or feed using a horse mackerel and feed and Z or feed using eelfish.
- it is a fish with low total mercury concentration, but tuna are generally preferred and do not eat, but feed with fish and Z or feed are fed in large quantities to make tuna
- tuna with reduced total mercury concentration can be produced efficiently while increasing the growth rate.
- tuna to feed tuna with feed and Z or feed and squid using a horse mackerel and feeding the feed and Z or feed together, feed the feed and Z or feed using squid first.
- switch to feed and Z or feed using horse mackerel, and tuna feed and Z or feed using horse mackerel When no longer ingestion of food, switch to feeding with squid and Z or feed, and when feeding with maggot power eelfish and Z or feed begins, feed and Z with horse mackerel again Or it is preferable to repeat the feeding method to switch to feeding.
- feed and Z or feed using horse mackerel are increased in tuna.
- the amount of food can be fed, and feeding with mainly horse mackerel and feeding with Z or feed enables efficient and economical aquaculture of tuna.
- extremely safe cultured tuna with extremely low mercury concentration which is not found in naturally occurring tuna with high mercury concentration, can be provided to the market at a relatively low price, and the commercial value of cultured tuna is low. Extremely high.
- the upper part of the bottomed cylindrical cage surrounded by a net with a diameter of about 30m and a depth of about 10m is floated on the surface of the sea, and the whole is installed under the sea surface, and about 1000 bluefin tuna with an average weight of 3kg are released in this, total mercury concentration
- the fish were cultured using horse mackerel and eelfish, both of which were less than 0.1 ⁇ gZg, as feed.
- the aquaculture started on June 1 and continued until December 31.
- Feeding horse mackerel and sea cucumber is a satiety feed.Specifically, feeding the sea bream first, switching to horse mackerel feeding when bluefin tuna begins to feed, and a small amount when bluefin tuna stops feeding Feeding squid again, and when the bluefin tuna began to feed, switching to horse mackerel feeding, the salmon feeding method was repeated.
- FIG. 2 is a graph showing the amount of feeding per month of bluefin tuna, obtained in Example 1, with the vertical axis representing the amount fed (kg) and the horizontal axis representing June to December. Each period.
- Fig. 3 is a graph showing the mercury intake per bluefin tuna per month obtained in Example 1, with the vertical axis representing mercury intake (mg) and the horizontal axis from June to December. Each period.
- Fig. 4 is a graph showing the mercury intake per kg of bluefin tuna per month obtained in Example 1, where the vertical axis is mercury intake g), and the horizontal axis is from June to December. Each period.
- FIG. 3 is the result of calculating the feeding amount shown in Fig. 2 and the concentration of total mercury contained in horse mackerel and eelfish.
- Mercury intake per kg of bluefin tuna per month shown is calculated by dividing the results shown in Fig. 3 by the average body weight of bluefin tuna.
- each period on the horizontal axis is one month (ie, for example, “June-July” is displayed for one month in June, and “July-August” is displayed for seven months. Means one month of the month).
- the amount of feeding increased from June to October This is because the amount of food intake increases as the weight of bluefin tuna increases.
- Bluefin tuna was cultured in the same manner as in Example 1 except that about 1,000 bluefin tuna with an average weight of 6 kg were released and sesame mackerel was fed.
- Fig. 5 is a graph showing the amount of feeding per bluefin tuna per month obtained in Comparative Example 1, with the vertical axis representing the amount fed (kg) and the horizontal axis representing the period from June to December. It is.
- Fig. 6 is a graph showing the mercury intake per bluefin tuna per month obtained in Comparative Example 1, with the vertical axis representing mercury intake (mg) and the horizontal axis representing June to December. Each period.
- FIG. 7 is a graph showing the mercury intake per kg of bluefin tuna per month obtained in Comparative Example 1.
- the vertical axis is mercury intake (g), and the horizontal axis is from June to December. Each period. From the results shown in Fig. 5 to Fig. 7, when the bluefin tuna is cultured by feeding sesame mackerel with a total mercury concentration exceeding 0.1 l ⁇ g Zg, it can be shipped as a 3 year old with a weight of 20-60 kg. When cultured to fish, the total mercury concentration in the edible portion is considered to reach 0.2 to 0.5 gZg, which is a provisional regulation value for the total mercury concentration of general fish. It turns out that there is a risk of exceeding 4 gZg.
- the bluefin tuna which were cultivated by feeding with horse mackerel and eelfish as in Example 1, and were picked up every month from June to January of the following year and shipped to the fishing ground, as shown in Fig. 8.
- the mercury concentration was determined by dividing the immediately killed / bleeded bluefin tuna into the above-mentioned parts, mincing the extracted muscles, wet-decomposing them with nitric acid and sulfuric acid, and then using an atomic absorption photometer equipped with a mercury reduction vaporizer. And measured.
- Fig. 9 is a graph showing the mercury concentration of each part of the bluefin tuna obtained in Example 2, and the vertical axis represents the mercury concentration (ppm).
- Fig. 9 shows the average value of mercury concentration data at each site aggregated every month. The T-shaped line protruding at the top of the graph shows the standard deviation of the data. From Fig. 9, the total mercury concentration is 0: L gZg or less, and when farming is conducted using horse mackerel and squid as feed, the concentration of mercury in each part of bluefin tuna is 0.3 gZg or less. It can be seen that the total mercury concentration in the food section is below the provisional specified value for the total mercury concentration applicable to general fish.
- FIG. 10 is a graph showing the mercury concentration in each part of the bluefin tuna obtained in Comparative Example 2, with the vertical axis representing the mercury concentration (ppm).
- Figure 10 also shows the average value of mercury concentration data at each site, which is tabulated every month.
- the T-shaped line protruding at the top of the bar graph shows the standard deviation of the data Is shown.
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Marine Sciences & Fisheries (AREA)
- Zoology (AREA)
- Animal Husbandry (AREA)
- Environmental Sciences (AREA)
- Polymers & Plastics (AREA)
- Biodiversity & Conservation Biology (AREA)
- Birds (AREA)
- Insects & Arthropods (AREA)
- Engineering & Computer Science (AREA)
- Food Science & Technology (AREA)
- Farming Of Fish And Shellfish (AREA)
- Feed For Specific Animals (AREA)
- Fodder In General (AREA)
- Meat, Egg Or Seafood Products (AREA)
Abstract
A method of growing farmed fish which comprises feeding the fish with a bait and/or a feed comprising fish(es) and having a total mercury concentration of 0.1 μg/g or less. According to this method, mercury contained in farmed fish bodies can be reduced and highly safe farmed fish can be provided in farming expensive fish such as Thunnus thynnus.
Description
明 細 書 Specification
養殖魚の生産方法 Farmed fish production method
技術分野 Technical field
[0001] 本発明は、水銀濃度の低い養殖魚を生産する方法に関する。 [0001] The present invention relates to a method for producing cultured fish with low mercury concentration.
背景技術 Background art
[0002] 近年、地球環境の悪化、特に汚染された排水などにより、海水や河川、湖沼などの 水質汚染により、水中の水銀濃度が高まっている。その結果、水中に生息するプラン タトンなどに水中の水銀が取り込まれ、生物の食物連鎖により順次濃縮される結果、 食物連鎖の頂点に進むにつれて、高濃度の水銀汚染が発生するという問題がある。 このような水銀を高濃度に含む魚類を食用に供すると、所謂水俣病などの公害が発 生してしまう。 [0002] In recent years, the concentration of mercury in water has increased due to water pollution of seawater, rivers, lakes and marshes due to deterioration of the global environment, especially polluted wastewater. As a result, mercury in the water is taken up by plantatons that inhabit the water, and is gradually concentrated by the food chain of the organism. As a result, as the top of the food chain is reached, high-concentration mercury pollution occurs. If fish containing such a high concentration of mercury is used for food, pollution such as so-called Minamata disease will occur.
[0003] わが国の厚生労働省は、食用魚類に含まれる水銀濃度の安全規準として、食品安 全法により、一般魚類については、可食部の総水銀濃度 (あらゆる化合物の形で存 在する水銀の総量の濃度)を 0. 4 gZg以下とする暫定規制値を定めている。その うち特に人体にとって毒性が強く危険なメチル水銀については水銀濃度を 0. 3 g Zg以下とする規制を設け、これを超えるメチル水銀を含む一般魚類は廃棄処分とす ることが法的に定められている。し力しマグロ、カジキ、カツォならびに深海性魚介類 については、水銀濃度は高いが、一般消費者の場合は、摂食量が少ないという理由 で規制外とされている。 [0003] In Japan, the Ministry of Health, Labor and Welfare has established that the safety standards for mercury levels in edible fish are based on the Food Safety Act. The provisional regulation value is set so that the concentration of the total amount is 0.4 gZg or less. In particular, for mercury that is highly toxic and dangerous for the human body, a regulation is set for the mercury concentration to be 0.3 g Zg or less, and it is legally stipulated that general fish containing methyl mercury exceeding this limit should be disposed of. It has been. However, for tuna, swordfish, bonito, and deep seafood, the mercury concentration is high, but for general consumers, it is out of regulation because of low food intake.
[0004] 天然産のクロマグロなどのマグロ類は、魚種、生息海域、漁場、季節などにより変動 するが、通常、可食部から 0. 2〜6 /z gZgの高い総水銀濃度が検出される。このよう にマグロ類において検出される高い総水銀濃度は、マグロ類が魚類における食物連 鎖の頂点に位置し、摂取した魚類に含まれる水銀が順次濃縮されて体内に取り込ま れ、その大半力 S排泄されずに体内に残留して蓄積した結果であることが知られて 、る 。このため、上述のように一般魚類に対する水銀濃度の規制値をマグロ類に適用す ることはできな 、ものの、単に摂食量が少な ヽと 、う理由をもってマグロ類につ!ヽては 規制外とされているのは問題である。
[0005] 本願発明者らは長年にわたり、高級魚であるマグロ類の資源枯渴に対処する方法 として、クロマグロの成魚力 の採卵、受精、孵化、稚魚の養殖から成魚に至るまでの 完全養殖の研究に取り組んでいる。研究の結果、近年ようやく完全養殖で生産され た、体重 20〜60kgの 3歳魚を巿場に出荷する段階にまで達して 、る。 [0004] Tuna, such as naturally occurring bluefin tuna, vary depending on the fish species, habitat, fishing ground, season, etc., but usually a high total mercury concentration of 0.2 to 6 / z gZg is detected from the edible part. The Thus, the high total mercury concentration detected in tuna is because the tuna is located at the top of the food chain in fish, and the mercury contained in the ingested fish is sequentially concentrated and taken into the body. It is known that it is the result of being accumulated in the body without being excreted. For this reason, as described above, the regulation value of mercury concentration for general fish cannot be applied to tuna, but it is simply a low amount of food intake. It is a problem. [0005] For many years, the inventors of the present application have dealt with the resource culling of tuna, which are high-grade fishes, in terms of the complete aquaculture of bluefin tuna, such as egg collection, fertilization, hatching, and fry farming to adult fish. I'm working on research. As a result of research, we have finally reached the stage of shipping 3-year-old fish weighing 20-60 kg, which have been produced in complete aquaculture in recent years, to the farm.
発明の開示 Disclosure of the invention
発明が解決しょうとする課題 Problems to be solved by the invention
[0006] 天然産のマグロ類は、海洋中で主としてサバ類、イカなどを捕食していると考えられ ている。このため、従来、マグロ類の養殖においては、マグロ類が好んで摂食し、しか も漁獲量が高ぐ安価に供給されるサバ類が主として給餌されている。し力しながら、 サバ類は水銀濃度が比較的高ぐ魚種、漁場、季節などにより変動はするが、通常、 総水銀濃度が 0. 2〜0. 3 gZg程度である。このため、サバ類を摂食して育った天 然産のマグロ類は、筋肉中の総水銀濃度が 1 μ gZg前後にまで達する。 [0006] Naturally occurring tuna are thought to prey on mackerel and squid mainly in the ocean. For this reason, conventionally, in the tuna culture, mackerel prefers to feed, but mackerel that is supplied at low cost with high catch is mainly fed. However, mackerels vary depending on the fish species, fishing grounds, seasons, etc., where the mercury concentration is relatively high, but the total mercury concentration is usually about 0.2 to 0.3 gZg. For this reason, naturally occurring tuna grown with mackerel have a total mercury concentration of around 1 μgZg.
[0007] 従来のマグロ類の養殖において、給餌用魚類の選択には、マグロ類の嗜好性およ び魚価 (コスト)が主として考慮される要素であり、給餌用魚類の水銀濃度については 何ら考慮されていない。このため現実的には、マグロ類のように大型の魚種を養殖す る場合には、給餌用魚類は上述した天然サバ類に限られてしまい、サバ類が大量に 獲れ、安価に入手し得る時期に、大量のサバ類をまとめて購入し、冷凍庫に保管し ておいて、順次解凍して給餌に用いることが通常行われる。マグロ類の養殖では、マ グロ類が餌を食べなくなるまで充分に給餌する飽食給餌を行うため、水銀濃度が高 い餌を給餌し続けた場合、マグロ類の体内に蓄積する水銀濃度が高くなり、厚生労 働省が一般魚類に対して定めている安全規準を超えてしまう虞がある。 [0007] In conventional tuna farming, the selection of fish for feeding is a factor that mainly takes into account the preference and cost (cost) of tuna, and considers the mercury concentration of fish for feeding. It has not been. Therefore, in reality, when a large fish species such as tuna is cultivated, the feeding fish is limited to the natural mackerel mentioned above, and a large amount of mackerel is caught and obtained at low cost. It is common to purchase a large amount of mackerel at a time when it is obtained, store it in a freezer, and thaw it sequentially to use it for feeding. In the cultivation of tuna, since satin feeding is performed until the tuna is no longer eaten, if the feed with high mercury concentration continues to be fed, the concentration of mercury accumulated in the tuna body will increase. The safety standards set by the Ministry of Health, Labor and Welfare for general fish may be exceeded.
[0008] 現在はマグロ類については、水銀濃度の規制値は適用されないので、かなり高濃 度の水銀を含むクロマグロなども市場に出荷可能である。し力しながら、人体にとって 極めて危険な物質である水銀の濃度を養殖魚の体内において減少させ、食品として の安全性を高め、消費者が安心して購入し、食することができる安全な養殖魚を生 産することが、養殖業者の社会的責任である。 [0008] Currently, the regulation value of mercury concentration does not apply to tuna, so bluefin tuna containing a fairly high concentration of mercury can be shipped to the market. While reducing the concentration of mercury, which is a very dangerous substance for the human body, in the body of the cultured fish, the safety of food is increased, and the safe cultured fish that consumers can purchase and eat with peace of mind. Production is the social responsibility of the fisherman.
[0009] 本発明は、上記課題を解決するためになされたものであって、その目的とするところ は、体内の水銀濃度が低減され、安全性が向上された養殖魚を生産することができ
る方法を提供することである。 [0009] The present invention has been made to solve the above-described problems, and an object of the present invention is to produce cultured fish with reduced mercury concentration in the body and improved safety. Is to provide a method.
課題を解決するための手段 Means for solving the problem
[0010] 上記目的を達成すベぐ本発明者らはクロマグロの完全養殖の研究を行なうにあた り、給餌用魚類の種類とその給餌方法を種々変えて養殖試験を重ねた結果、給餌用 魚類の種類を選択することによってクロマグロの体内に蓄積される水銀濃度を低減し 得ること、さらにはその給餌方法を工夫することにより、水銀濃度の低い魚種であるが 、通常クロマグロが好んで摂食しない餌を、クロマグロに多量に摂食させて成長速度 を高め、水銀濃度の低いクロマグロを効率良く生産することが可能であることを見出し 、本発明を完成するに到った。すなわち、本発明は、以下のとおりである。 [0010] In order to achieve the above objective, the present inventors conducted research on the complete culture of bluefin tuna, and as a result of repeated aquaculture tests with various types of feeding fish and their feeding methods, By selecting the type of fish, the concentration of mercury accumulated in the body of bluefin tuna can be reduced, and by devising its feeding method, it is a fish species with a low mercury concentration. The inventors have found that it is possible to efficiently feed bluefin tuna having a low mercury concentration by increasing the growth rate by feeding bluefin tuna with a large amount of food that is not eaten, thereby completing the present invention. That is, the present invention is as follows.
[0011] 本発明の養殖魚の生産方法は、総水銀濃度が 0. 1 μ gZg以下の魚類を用いた餌 料および Zまたは飼料を給餌して魚類を養殖することを特徴とする。 [0011] The method for producing cultured fish of the present invention is characterized in that the fish is cultivated by feeding food and Z or feed using fish having a total mercury concentration of 0.1 μgZg or less.
[0012] ここにおいて、予め測定された総水銀濃度が 0. 1 μ gZg以下の魚類を餌料および Zまたは飼料に用いることが好ましぐ予め測定された総水銀濃度が 0. 04/z gZg以 下の魚類を餌料および Zまたは飼料に用いることがより好まし 、。 [0012] Here, it is preferable to use fish with a pre-measured total mercury concentration of 0.1 μgZg or less for feed and Z or feed, and the pre-measured total mercury concentration is 0.04 / z gZg or less. More preferred to use the lower fish for feed and Z or feed.
[0013] 本発明の養殖魚の生産方法における養殖魚はマグロ類であることが好ましぐクロ マグロであることがより好ましい。 [0013] The cultured fish in the method for producing cultured fish of the present invention is more preferably a bluefin tuna, which is preferably a tuna.
[0014] また本発明の養殖魚の生産方法にぉ 、て餌料および Zまたは飼料に用いる魚類 はアジ類を含むことが好ましぐこの場合、アジ類はマアジであることがより好ましい。 [0014] In addition, in the method for producing cultured fish according to the present invention, it is preferable that the fish used for the feed and Z or the feed contains a horse mackerel. In this case, the horse mackerel is more preferably a mackerel.
[0015] また、本発明の養殖魚の生産方法においては、餌料および Zまたは飼料に用いる 魚類がアジ類およびイカナゴであってもよい。この場合、イカナゴを用いた餌料およ び Zまたは飼料を給餌し、養殖魚がイカナゴを用いた餌料および Zまたは飼料を摂 食し始めた時点でアジ類を用いた餌料および zまたは飼料の給餌に切り換え、養殖 魚がアジ類を用いた餌料および zまたは飼料を摂食しなくなった時点でイカナゴを 用いた餌料および Zまたは飼料の給餌に切り換え、養殖魚カイカナゴを用いた餌料 および Zまたは飼料を摂食し始めた時点で再びアジ類を用いた餌料および Zまたは 飼料の給餌に切り換える給餌法を繰り返すことが、好ま 、。 [0015] Further, in the method for producing cultured fish of the present invention, the fish used for the feed and Z or the feed may be horse mackerel and squid. In this case, feed with zebrafish and feed with z or feed, and feed fish with zodiac and feed with z or feed when the farmed fish begins to eat feed with zander and z or feed Switching, farming When fish no longer eat feed and z or feed using horse mackerel, switch to feeding and feeding Z or feed using eelfish, and feed and Z or feed using cultured fish silkworms It is preferable to repeat the feeding method to switch back to feeding and feeding Z or feed again with horse mackerel at the beginning.
発明の効果 The invention's effect
[0016] 本発明によれば、水銀濃度が低減された養殖魚を生産することができる。
図面の簡単な説明 [0016] According to the present invention, farmed fish with reduced mercury concentration can be produced. Brief Description of Drawings
[0017] [図 1]ゴマサバを給餌して養殖したクロマグロと、マアジおよびイカナゴを給餌して養 殖したクロマグロについて、クロマグロの体重増加と筋肉中の総水銀濃度の変化との 関係を示すグラフであり、縦軸は総水銀濃度 (ppm)、横軸は体重 (kg)である。 [0017] [Fig. 1] A graph showing the relationship between bluefin tuna weight feeding and changes in total mercury concentration in muscle for bluefin tuna fed with sesame mackerel and bluefin tuna fed with horse mackerel and squid. Yes, the vertical axis is total mercury concentration (ppm), and the horizontal axis is body weight (kg).
[図 2]実施例 1で得られた、 1ヶ月あたり、クロマグロ 1尾あたりの給餌量を示すグラフで あり、縦軸は給餌量 (kg)、横軸は 6月〜12月の各期間である。 [Fig. 2] A graph showing the amount of feed per bluefin tuna per month obtained in Example 1, with the vertical axis representing the amount fed (kg) and the horizontal axis representing the period from June to December. is there.
[図 3]実施例 1で得られた、 1ヶ月あたり、クロマグロ 1尾あたりの水銀摂取量を示すグ ラフであり、縦軸は水銀摂取量 (mg)、横軸は 6月〜12月の各期間である。 FIG. 3 is a graph showing the mercury intake per bluefin tuna per month obtained in Example 1, with the vertical axis representing mercury intake (mg) and the horizontal axis from June to December. Each period.
[図 4]実施例 1で得られた、 1ヶ月あたり、クロマグロ lkgあたりの水銀摂取量を示すグ ラフであり、縦軸は水銀摂取量 g)、横軸は 6月〜 12月の各期間である。 [Fig. 4] Graph showing the mercury intake per kg of bluefin tuna per month, obtained in Example 1, with the vertical axis representing mercury intake g) and the horizontal axis representing each period from June to December. It is.
[図 5]比較例 1で得られた、 1ヶ月あたり、クロマグロ 1尾あたりの給餌量を示すグラフで あり、縦軸は給餌量 (kg)、横軸は 6月〜12月の各期間である。 [Fig. 5] A graph showing the amount of feed per bluefin tuna per month obtained in Comparative Example 1, with the vertical axis representing the amount fed (kg) and the horizontal axis representing the period from June to December. is there.
[図 6]比較例 1で得られた、 1ヶ月あたり、クロマグロ 1尾あたりの水銀摂取量を示すグ ラフであり、縦軸は水銀摂取量 (mg)、横軸は 6月〜12月の各期間である。 FIG. 6 is a graph showing the mercury intake per bluefin tuna per month obtained in Comparative Example 1, with the vertical axis representing mercury intake (mg) and the horizontal axis from June to December. Each period.
[図 7]比較例 1で得られた、 1ヶ月あたり、クロマグロ lkgあたりの水銀摂取量を示すグ ラフであり、縦軸は水銀摂取量 g)、横軸は 6月〜 12月の各期間である。 [Fig. 7] Graph showing the mercury intake per kg of bluefin tuna per month, obtained in Comparative Example 1, with the vertical axis representing mercury intake g) and the horizontal axis representing each period from June to December It is.
[図 8]実施例 2および比較例 2において用いた、クロマグロの魚体 1の部位の区分を 模式的に示す図である。 FIG. 8 is a diagram schematically showing the division of the part of bluefin tuna fish 1 used in Example 2 and Comparative Example 2.
[図 9]実施例 2で得られた、クロマグロの月ごとの部位別の水銀濃度を示すグラフであ り、縦軸は水銀濃度 (ppm)である。 FIG. 9 is a graph showing the mercury concentration of each part of the bluefin tuna obtained in Example 2, and the vertical axis represents the mercury concentration (ppm).
[図 10]比較例 2で得られた、クロマグロの月ごとの部位別の水銀濃度を示すグラフで あり、縦軸は水銀濃度 (ppm)である。 FIG. 10 is a graph showing the mercury concentration of each part of the bluefin tuna obtained in Comparative Example 2, with the vertical axis representing the mercury concentration (ppm).
符号の説明 Explanation of symbols
[0018] 1 魚体、 2 背前部、 3 背中部、 4 背後部、 5 腹前部、 6 腹中部、 7 腹後部、 8 尾部。 [0018] 1 fish body, 2 front part, 3 back part, 4 back part, 5 front part, 6 middle part, 7 back part, 8 tail part.
発明を実施するための最良の形態 BEST MODE FOR CARRYING OUT THE INVENTION
[0019] 本発明の養殖魚の生産方法は、総水銀濃度が 0. 1 μ gZg以下の魚類を用いた餌 料および Zまたは飼料を給餌して魚類を養殖することを特徴とする。本発明における
養殖魚としては、たとえばマグロ類、カジキ類、カツォなどが挙げられるが、これら〖こ 限定されるものではない。中でも、クロマグロ、ミナミマグロ、ビンナガ、メバチ、キハダ 、タイセィヨウマグロ、コシナガなどのマグロ類が好ましぐクロマグロが特に好ましい。 [0019] The method for producing cultured fish according to the present invention is characterized in that the fish is cultured by feeding food and Z or feed using fish having a total mercury concentration of 0.1 μgZg or less. In the present invention Examples of farmed fish include, but are not limited to, tuna, swordfish and bonito. Among them, bluefin tuna, particularly preferred are bluefin tuna such as bluefin tuna, southern bluefin tuna, albacore, bigeye, yellowfin, yellowfin tuna and cocinaga.
[0020] 本発明において「餌料」とは、給餌用の生餌であり、総水銀濃度が 0.: gZg以下 の魚類自体を指す。また本発明において「飼料」とは、給餌用の配合飼料を意味し、 総水銀濃度が 0.: gZg以下の魚類を用いて加工された魚粉などを指す。本発明 の養殖魚の生産方法では、このような餌料または飼料を単独でそれぞれ用いてもよ いし、共に用いても勿論よい。本発明においては、総水銀濃度が 0.: gZg以下の 魚類を用いた餌料および Zまたは飼料を給餌することで、養殖魚の可食部の総水銀 濃度を、一般魚類の暫定規制値である 0. 4 gZg以下にまで低減することができる [0020] In the present invention, "food" refers to raw food for feeding, and refers to fish itself having a total mercury concentration of 0 .: gZg or less. In the present invention, “feed” means a mixed feed for feeding, and refers to fish meal processed using fish having a total mercury concentration of 0.:gZg or less. In the method for producing cultured fish of the present invention, such feed or feed may be used alone or of course. In the present invention, the total mercury concentration in the edible part of farmed fish is the provisional regulation value for general fish by feeding with feed and Z or feed using fish with a total mercury concentration of 0.:gZg or less. Can be reduced to 4 gZg or less
。なお、水銀濃度がより低ぐより安全な養殖魚を生産し得る観点カゝらは、総水銀濃 度が 0. 04 gZg以下の魚類を餌料および Zまたは飼料に用いることが好ましい。 . From the viewpoint of producing safer cultured fish with a lower mercury concentration, it is preferable to use fish with a total mercury concentration of not more than 0.04 gZg for feed and Z or feed.
[0021] ここで、図 1は、ゴマサバを給餌して養殖したクロマグロと、マアジおよびイカナゴを 給餌して養殖したクロマグロとについて、クロマグロの体重増加と筋肉中の総水銀濃 度の変化との関係を示すグラフであり、縦軸は総水銀濃度 (ppm)、横軸は体重 (kg) である。図 1は、体重 3kgまで主としてゴマサバを給餌して養殖したクロマグロについ て 2つの試験区に区分けし、一方の試験区ではそのままゴマサバを給餌し続け、他 方の試験区ではマアジと少量のイカナゴとを混合給餌し、それぞれ体重が約 9kgに なるまで養殖しつつ、一定の成長期間ごとに両試験区に属するクロマグロを 1尾ずつ 釣り上げて、その可食部に含まれる総水銀濃度を測定した結果を示している(図 1中 、ゴマアジを給餌し続けた場合の結果を実線、マアジおよびイカナゴを混合給餌した 場合の結果を破線で示している)。なお、ゴマサバの平均総水銀濃度が約 0. 18 g Zgであり、マアジおよびイカナゴの平均総水銀濃度は約 0. 04 gZgである。 [0021] Figure 1 shows the relationship between bluefin tuna weight-fed and changes in total mercury concentration in muscle for bluefin tuna cultivated by feeding sesame mackerel and bluefin tuna cultivated by feeding horse mackerel and squid. The vertical axis represents total mercury concentration (ppm) and the horizontal axis represents body weight (kg). Figure 1 shows that the bluefin tuna cultivated mainly by feeding sesame mackerel up to a weight of 3 kg is divided into two test plots. As a result of measuring the total mercury concentration in the edible part of each bluefin tuna that were fished in a mixed growth period and fished until the weight reached about 9 kg, and each bluefin tuna belonging to both test zones was picked up at regular growth periods. (In Fig. 1, the result when feeding sesame mackerel continues is shown by a solid line, and the result when feeding mackerel and squid is shown by a broken line). In addition, the average total mercury concentration of sesame mackerel is about 0.18 g Zg, and the average total mercury concentration of horse mackerel and squid is about 0.04 g Zg.
[0022] 図 1から、ゴマサバを給餌し続けたクロマグロは体重 9kgにまで成長する間に徐々 に総水銀濃度が上昇して 、ることが分かる。このようにゴマアジを給餌し続けて 20〜 30kgの体重にまでクロマグロを養殖すると、総水銀濃度は平均約 0. 5 /z gZgの平 衡値にまで徐々に上昇する(図示せず)。これに対し、体重 3kgから総水銀濃度が 0. 1 μ gZg以下の魚類であるマアジおよびイカナゴを混合給餌して養殖したクロマグロ
では、体重の増加に伴い総水銀濃度は徐々に低下しており、総水銀濃度が 0. 3 μ & Zg以下の安全なクロマグロを確実に生産できることが図 1に示されている。 [0022] FIG. 1 shows that the total mercury concentration of the bluefin tuna that continued to feed sesame mackerel gradually increased while growing to a weight of 9 kg. If you continue to feed sesame horse mackerel to a weight of 20-30 kg, the total mercury concentration will gradually rise to an average value of about 0.5 / z gZg (not shown). On the other hand, bluefin tuna cultivated with a mixed feeding of horse mackerel and squid, a fish with a weight of 3 kg and a total mercury concentration of 0.1 μgZg or less In Figure 1, the total mercury concentration gradually decreases with increasing body weight, and it is shown in Fig. 1 that safe bluefin tuna with a total mercury concentration of 0.3 µ & Zg or less can be produced reliably.
[0023] 本発明の養殖魚の生産方法では、餌料および Zまたは飼料に用いる魚類の候補 群について予め総水銀濃度を測定しておき、測定された総水銀濃度が 0. l ^ g/g 以下 (好ましくは 0. 04 μ gZg以下)の魚を選択的に餌料および Zまたは飼料に用 いることが好ましい。なお、餌料および Zまたは飼料に用いる魚類の候補群における 総水銀濃度は、たとえば、これらの魚類を即殺 ·脱血し、複数の部位に分割して取り 出した筋肉をミンチし、硝酸および硫酸を用いて湿式分解した後に、水銀還元気化 装置を装着した原子吸光光度計を用いることで測定することができる。なお、魚類に 含まれる水銀濃度は、その魚種、漁場、季節により変動するが、一定の季節に一定 の漁場で水揚げされる一定の魚種にっ 、ては、略一定の水銀濃度を有して 、ると考 えられるので、これらのデータをデータベースとして整備しておけば、餌料および Zま たは飼料に用いられ得る総水銀濃度 0. 1 μ gZg以下の魚類を容易に選択して入手 することができる。 [0023] In the method for producing cultured fish of the present invention, the total mercury concentration is measured in advance for a candidate group of fish used for feed and Z or feed, and the measured total mercury concentration is 0.1 l ^ g / g or less ( Preferably, 0.04 μgZg or less fish is selectively used for feed and Z or feed. The total mercury concentration in the candidate group of fish used for feed and Z or feed can be determined by, for example, killing and exsanguinating these fish immediately, mincing the muscles removed in several parts, and then adding nitric acid and sulfuric acid. It can be measured by using an atomic absorption photometer equipped with a mercury reduction vaporizer after wet decomposition using. The mercury concentration in fish varies depending on the fish species, fishing grounds, and seasons, but for certain fish species that are landed in certain fishing grounds in certain seasons, it has a substantially constant mercury concentration. Therefore, if these data are prepared as a database, fish with a total mercury concentration of 0.1 μgZg or less that can be used in feed and Z or feed can be easily selected. It can be obtained.
[0024] 本発明にお ヽて餌料および Zまたは飼料として用いられ得る総水銀濃度が 0. 1 μ gZg以下の魚類としては、たとえば、マアジ、ムロアジなどのアジ類、イカナゴ、イカ 類などが挙げられる。本発明の養殖魚の生産方法では、これらの中でも総水銀濃度 が特に低いアジ類、中でも特にマアジを、餌料および Zまたは飼料に用いることがで きる。 [0024] Examples of fish having a total mercury concentration of 0.1 μgZg or less that can be used as feed and Z or feed in the present invention include horse mackerel, mud horse mackerel, squid, squid, squid, etc. It is done. In the method for producing cultured fish of the present invention, among these, horse mackerel having a particularly low total mercury concentration, especially horse mackerel, can be used for feed and Z or feed.
[0025] し力しながら、養殖魚がクロマグロなどのマグロ類である場合、マグロ類はアジ類に 対する嗜好性は極めて弱ぐアジ類を用いた餌料および Zまたは飼料を単独で給餌 した場合には、飽食給餌を行っても、マグロ類の速い成長に必要充分な量を摂食さ せることは困難である。これに対し、同じく総水銀濃度が 0. 1 μ gZg以下であるイカ ナゴについては、マグロ類の嗜好性は良好であるものの、アジ類と比較して高価であ り、イカナゴを用いた餌料および zまたは飼料を単独で用いてマグロ類を養殖するこ とは現実的ではない。 [0025] However, if the farmed fish is a tuna such as bluefin tuna, the tuna is very weak in preference for horse mackerel. When feed is used with horse mackerel and Z or feed alone However, it is difficult to feed a sufficient amount necessary for the rapid growth of tuna, even when fed with satiation. On the other hand, squid squid with a total mercury concentration of 0.1 μgZg or less is more expensive than tuna, but is expensive compared with horse mackerel, It is not practical to grow tuna using z or feed alone.
[0026] このような観点から、本発明の養殖魚の生産方法では、養殖魚がマグロ類 (特にク ロマグロ)である場合には、アジ類 (特にマアジ)およびイカナゴを共に餌料および z
または飼料に用いることが好ましい。このようにすることで、マグロ類はイカナゴを用い た餌料および/または飼料につられてアジ類を用いた餌料および/または飼料も多 量に摂食するため、アジ類と比較して高価なイカナゴの使用を節減しつつ、アジ類を 用いた餌料および Zまたは飼料をマグロ類に多量に摂食させることが可能となる。 [0026] From this point of view, in the method for producing cultured fish of the present invention, when the cultured fish is a tuna (especially a bluefin tuna), both a horse mackerel (especially a horse mackerel) and a locust are used as a feed and z. Or it is preferable to use for feed. In this way, tuna are eaten in large quantities by feed and / or feed using horse mackerel and feed and / or feed using horse mackerel. This makes it possible to feed tuna with large amounts of feed and Z or feed using horse mackerel.
[0027] また本発明者らは、アジ類を用いた餌料および Zまたは飼料とイカナゴを用いた餌 料および Zまたは飼料とを混合給餌してマグロ類を養殖する場合には、以下の方法 を採用することで、総水銀濃度の低い魚類ではあるが、マグロ類が通常好んで摂食 しな 、魚類を用いた餌料および Zまたは飼料をマグロ類に多量に摂食させて、マグ 口類の成長速度を高めつつ、総水銀濃度が低減されたマグロ類を効率よく生産でき ることを見出した。すなわち、アジ類を用いた餌料および Zまたは飼料とイカナゴを用 、た餌料および Zまたは飼料とを混合給餌してマグロ類を養殖する場合には、まず イカナゴを用いた餌料および Zまたは飼料を給餌し、マグロ類カイカナゴを用いた餌 料および Zまたは飼料を摂食し始めた時点でアジ類を用いた餌料および Zまたは飼 料の給餌に切り換え、マグロ類がアジ類を用いた餌料および Zまたは飼料を摂食し なくなった時点でイカナゴを用いた餌料および Zまたは飼料の給餌に切り換え、マグ 口類力イカナゴを用いた餌料および Zまたは飼料を摂食し始めた時点で再びアジ類 を用いた餌料および Zまたは飼料の給餌に切り換える給餌法を繰り返すことが、好ま しい。 [0027] In addition, the present inventors use the following method when cultivating tuna by mixing and feeding feed and Z or feed using a horse mackerel and feed and Z or feed using eelfish. By adopting it, it is a fish with low total mercury concentration, but tuna are generally preferred and do not eat, but feed with fish and Z or feed are fed in large quantities to make tuna It was found that tuna with reduced total mercury concentration can be produced efficiently while increasing the growth rate. In other words, when using tuna to feed tuna with feed and Z or feed and squid using a horse mackerel, and feeding the feed and Z or feed together, feed the feed and Z or feed using squid first. When the feed and Z or feed using tuna silkworms begins to be fed, switch to feed and Z or feed using horse mackerel, and tuna feed and Z or feed using horse mackerel When no longer ingestion of food, switch to feeding with squid and Z or feed, and when feeding with maggot power eelfish and Z or feed begins, feed and Z with horse mackerel again Or it is preferable to repeat the feeding method to switch to feeding.
[0028] 上述した給餌法では、まずイカナゴを用いた餌料および Zまたは飼料を給餌するこ とで、マグロ類の食欲が刺激され、マグロ類は争って摂食するようになる。このように マグロ類が摂食し始めた時点で、餌料および Zまたは飼料をアジ類を用いた餌料お よび Zまたは飼料に切り換えることで、暫くの間はマグロ類はアジ類を用いた餌料お よび Zまたは飼料を旺盛に摂食し続ける。暫くするとマグロ類はアジ類を用いた餌料 および Zまたは飼料を全く摂食しなくなるため、少量のイカナゴを用いた餌料および Zまたは飼料を投入して再び給餌し、マグロ類が争って摂食し始めた時点で、再び アジ類を用いた餌料および Zまたは飼料に切り換えて給餌する。これを繰り返してィ カナゴを用いた餌料および Zまたは飼料とアジ類を用いた餌料および Zまたは飼料 とを交互に給餌することで、アジ類を用いた餌料および Zまたは飼料をマグロ類に多
量に摂食させることができ、主としてアジ類を用いた餌料および Zまたは飼料の給餌 によって、マグロ類の効率的かつ経済的な養殖を行うことが可能となる。これによつて 、水銀濃度が高い天然産マグロにはない、水銀濃度の極めて低い、極めて安全な養 殖マグロ類を、比較的安価に市場に提供することができ、養殖マグロ類の商品価値 が極めて高まる。 [0028] In the feeding method described above, by first feeding feed using eel and Z or feed, the appetite of the tuna is stimulated, and the tuna eats in competition. In this way, when the tuna begins to eat, the feed and Z or feed are switched to the feed and Z or feed using horse mackerel, so that for a while the tuna will feed and use the horse mackerel Continue eating Z or feed vigorously. After a while, the tuna no longer eat the feed and Z or feed using horse mackerel, so the feed and Z or feed using a small amount of locust were added and fed again, and the tuna began to compete for feeding. At that time, feed again with feed and Z or feed with horse mackerel. By repeating this and feeding feed and Z or feed using eelfish and feed and Z or feed using horse mackerel alternately, feed and Z or feed using horse mackerel are increased in tuna. The amount of food can be fed, and feeding with mainly horse mackerel and feeding with Z or feed enables efficient and economical aquaculture of tuna. As a result, extremely safe cultured tuna with extremely low mercury concentration, which is not found in naturally occurring tuna with high mercury concentration, can be provided to the market at a relatively low price, and the commercial value of cultured tuna is low. Extremely high.
[0029] 以下、実施例および比較例を挙げて本発明を詳細に説明するが、本発明はこれに 限定されることを意図しない。 Hereinafter, the present invention will be described in detail with reference to examples and comparative examples, but the present invention is not intended to be limited thereto.
[0030] <実施例 1 > <Example 1>
直径約 30m、深さ約 10mの網で囲った有底円筒状簀上部を海面に浮かべ、全体 を海面下に設置して、この中に平均体重 3kgのクロマグロを約 1000尾放ち、総水銀 濃度が共に 0. 1 μ gZg以下であるマアジおよびイカナゴを餌料として用いて養殖を 行った。養殖は 6月 1日に開始し、 12月 31日まで行った。マアジおよびイカナゴの給 餌は、飽食給餌し、具体的には、まず、イカナゴを給餌し、クロマグロが摂食し始めた 時点でマアジの給餌に切り換え、クロマグロがマアジを摂食しなくなった時点で少量 のイカナゴを再び給餌し、クロマグロが摂食し始めた時点でマアジの給餌に切り換え ると ヽぅ給餌法を繰り返し行った。 The upper part of the bottomed cylindrical cage surrounded by a net with a diameter of about 30m and a depth of about 10m is floated on the surface of the sea, and the whole is installed under the sea surface, and about 1000 bluefin tuna with an average weight of 3kg are released in this, total mercury concentration The fish were cultured using horse mackerel and eelfish, both of which were less than 0.1 μgZg, as feed. The aquaculture started on June 1 and continued until December 31. Feeding horse mackerel and sea cucumber is a satiety feed.Specifically, feeding the sea bream first, switching to horse mackerel feeding when bluefin tuna begins to feed, and a small amount when bluefin tuna stops feeding Feeding squid again, and when the bluefin tuna began to feed, switching to horse mackerel feeding, the salmon feeding method was repeated.
[0031] 図 2は、実施例 1で得られた、 1ヶ月あたり、クロマグロ 1尾あたりの給餌量を示すダラ フであり、縦軸は給餌量 (kg)、横軸は 6月〜12月の各期間である。また図 3は、実施 例 1で得られた、 1ヶ月あたり、クロマグロ 1尾あたりの水銀摂取量を示すグラフであり、 縦軸は水銀摂取量 (mg)、横軸は 6月〜12月の各期間である。さら〖こ図 4は、実施例 1で得られた、 1ヶ月あたり、クロマグロ lkgあたりの水銀摂取量を示すグラフであり、 縦軸は水銀摂取量 g)、横軸は 6月〜 12月の各期間である。なお、図 3に示す 1ケ 月あたり、クロマグロ 1尾あたりの水銀摂取量は、図 2に示す給餌量とマアジおよびィ カナゴ中に含まれる総水銀濃度力 算出された結果であり、図 4に示す 1ヶ月あたり、 クロマグロ lkgあたりの水銀摂取量はさらに図 3に示す結果をクロマグロの平均体重 で除して算出された結果である。図 2〜図 4のいずれも、横軸の各期間は 1ヶ月(すな わち、たとえば「6〜7月」の表示は 6月の 1ヶ月間、「7〜8月」の表示は 7月の 1ヶ月間 を意味している)。なお、図 2に示すように、 6月〜 10月の間は給餌量が増加している
のは、クロマグロの体重増加に伴って摂食量が増加しているためである。これに対し[0031] FIG. 2 is a graph showing the amount of feeding per month of bluefin tuna, obtained in Example 1, with the vertical axis representing the amount fed (kg) and the horizontal axis representing June to December. Each period. Fig. 3 is a graph showing the mercury intake per bluefin tuna per month obtained in Example 1, with the vertical axis representing mercury intake (mg) and the horizontal axis from June to December. Each period. Fig. 4 is a graph showing the mercury intake per kg of bluefin tuna per month obtained in Example 1, where the vertical axis is mercury intake g), and the horizontal axis is from June to December. Each period. In addition, the mercury intake per bluefin tuna per month shown in Fig. 3 is the result of calculating the feeding amount shown in Fig. 2 and the concentration of total mercury contained in horse mackerel and eelfish. Mercury intake per kg of bluefin tuna per month shown is calculated by dividing the results shown in Fig. 3 by the average body weight of bluefin tuna. In each of Figures 2-4, each period on the horizontal axis is one month (ie, for example, “June-July” is displayed for one month in June, and “July-August” is displayed for seven months. Means one month of the month). In addition, as shown in Figure 2, the amount of feeding increased from June to October This is because the amount of food intake increases as the weight of bluefin tuna increases. On the other hand
、気温が低下する 12月には摂食量は低下する。図 2〜図 4に示す結果から、総水銀 濃度が共に 0. 1 μ gZg以下である魚類を用いた餌料および Ζまたは飼料を給餌し て養殖を行った場合には、体重増加に伴い総水銀濃度は徐々に低減しており、総水 銀濃度が 0. 3 gZg以下の安全なクロマグロが生産されたことが分かる。 In December, when the temperature drops, food consumption will drop. From the results shown in Fig. 2 to Fig. 4, when the fish were fished with a total mercury concentration of 0.1 μgZg or less and fed with salmon or feed, the total mercury was increased as the body weight increased. It can be seen that the concentration decreased gradually and safe bluefin tuna with a total mercury concentration of 0.3 gZg or less was produced.
[0032] <比較例 1 > [0032] <Comparative Example 1>
平均体重 6kgのクロマグロを約 1000尾放ち、ゴマサバを飽食給餌したこと以外は 実施例 1と同様にして、クロマグロの養殖を行った。図 5は、比較例 1で得られた、 1ケ 月あたり、クロマグロ 1尾あたりの給餌量を示すグラフであり、縦軸は給餌量 (kg)、横 軸は 6月〜 12月の各期間である。また図 6は、比較例 1で得られた、 1ヶ月あたり、クロ マグロ 1尾あたりの水銀摂取量を示すグラフであり、縦軸は水銀摂取量 (mg)、横軸 は 6月〜 12月の各期間である。さらに図 7は、比較例 1で得られた、 1ヶ月あたり、クロ マグロ lkgあたりの水銀摂取量を示すグラフであり、縦軸は水銀摂取量( g)、横軸 は 6月〜 12月の各期間である。図 5〜図 7に示す結果から、総水銀濃度が 0. l ^ g Zgを超えるゴマサバを給餌してクロマグロの養殖を行った場合には、商品として出 荷し得る体重 20〜60kgの 3歳魚にまで養殖した場合には、可食部に含まれる総水 銀濃度が 0. 2〜0. 5 gZgにまで達してしまうと考えられ、一般魚類の総水銀濃度 の暫定規制値である 0. 4 gZgを超えてしまう虞があることが分かる。 Bluefin tuna was cultured in the same manner as in Example 1 except that about 1,000 bluefin tuna with an average weight of 6 kg were released and sesame mackerel was fed. Fig. 5 is a graph showing the amount of feeding per bluefin tuna per month obtained in Comparative Example 1, with the vertical axis representing the amount fed (kg) and the horizontal axis representing the period from June to December. It is. Fig. 6 is a graph showing the mercury intake per bluefin tuna per month obtained in Comparative Example 1, with the vertical axis representing mercury intake (mg) and the horizontal axis representing June to December. Each period. Further, FIG. 7 is a graph showing the mercury intake per kg of bluefin tuna per month obtained in Comparative Example 1. The vertical axis is mercury intake (g), and the horizontal axis is from June to December. Each period. From the results shown in Fig. 5 to Fig. 7, when the bluefin tuna is cultured by feeding sesame mackerel with a total mercury concentration exceeding 0.1 l ^ g Zg, it can be shipped as a 3 year old with a weight of 20-60 kg. When cultured to fish, the total mercury concentration in the edible portion is considered to reach 0.2 to 0.5 gZg, which is a provisional regulation value for the total mercury concentration of general fish. It turns out that there is a risk of exceeding 4 gZg.
[0033] <実施例 2> <Example 2>
実施例 1と同様にマアジとイカナゴを用いた給餌で養殖され、 6月から翌年 1月に至 る間に各月ごとに釣り上げて巿場に出荷したクロマグロについて、図 8に示すように魚 体 1を背前部 2、背中部 3、背後部 4、腹前部 5、腹中部 6、腹後部 7および尾部 8の 7 つの部位に区分し、それぞれの部位の筋肉に含まれる水銀濃度を測定した。水銀濃 度は、即殺 ·脱血したクロマグロを上述した各部位に分割し、取り出した筋肉をミンチ し、硝酸および硫酸で湿式分解した後、水銀還元気化装置を装着した原子吸光光 度計を用いて測定した。図 9は、実施例 2で得られた、クロマグロの月ごとの部位別の 水銀濃度を示すグラフであり、縦軸は水銀濃度 (ppm)である。なお、図 9は、各月ご とに集計された各部位における水銀濃度のデータの平均値を示しており、図 9中、棒
グラフの上部に突出して示す T字状の線はデータの標準偏差を示している。図 9から 、総水銀濃度が共に 0.: L gZg以下であるマアジおよびイカナゴを餌料として用い て養殖を行った場合には、クロマグロの各部位における水銀濃度は 0. 3 gZg以下 であり、可食部の総水銀濃度は、一般魚類に適用される総水銀濃度の暫定規定値 以下となることが分かる。 As shown in Fig. 8, the bluefin tuna, which were cultivated by feeding with horse mackerel and eelfish as in Example 1, and were picked up every month from June to January of the following year and shipped to the fishing ground, as shown in Fig. 8. Divide 1 into 7 parts: anterior part 2, back part 3, back part 4, abdominal part 5, abdominal part 6, abdominal part 7 and tail part 8 and measure the mercury concentration in muscle of each part did. The mercury concentration was determined by dividing the immediately killed / bleeded bluefin tuna into the above-mentioned parts, mincing the extracted muscles, wet-decomposing them with nitric acid and sulfuric acid, and then using an atomic absorption photometer equipped with a mercury reduction vaporizer. And measured. FIG. 9 is a graph showing the mercury concentration of each part of the bluefin tuna obtained in Example 2, and the vertical axis represents the mercury concentration (ppm). Fig. 9 shows the average value of mercury concentration data at each site aggregated every month. The T-shaped line protruding at the top of the graph shows the standard deviation of the data. From Fig. 9, the total mercury concentration is 0: L gZg or less, and when farming is conducted using horse mackerel and squid as feed, the concentration of mercury in each part of bluefin tuna is 0.3 gZg or less. It can be seen that the total mercury concentration in the food section is below the provisional specified value for the total mercury concentration applicable to general fish.
[0034] <比較例 2> [0034] <Comparative Example 2>
ゴマサバを用いた給餌で養殖されたクロマグロにっ 、て、実施例 2と同様に各部位 の筋肉に含まれる水銀濃度を測定した。図 10は、比較例 2で得られた、クロマグロの 月ごとの部位別の水銀濃度を示すグラフであり、縦軸は水銀濃度 (ppm)である。図 1 0についても、各月ごとに集計された各部位における水銀濃度のデータの平均値を 示しており、図 10中、棒グラフの上部に突出して示す T字状の線はデータの標準偏 差を示している。図 10から、ゴマサバを餌料として用いて養殖を行った場合には、可 食部の総水銀濃度は 0. 5 /z gZg程度であり、一般魚類に適用される総水銀濃度の 暫定規定値を超えてしまうことが分かる。 For the bluefin tuna cultivated by feeding with sesame mackerel, the concentration of mercury contained in the muscle of each part was measured in the same manner as in Example 2. FIG. 10 is a graph showing the mercury concentration in each part of the bluefin tuna obtained in Comparative Example 2, with the vertical axis representing the mercury concentration (ppm). Figure 10 also shows the average value of mercury concentration data at each site, which is tabulated every month. In Fig. 10, the T-shaped line protruding at the top of the bar graph shows the standard deviation of the data Is shown. From Figure 10, when cultivated using sesame mackerel as a feed, the total mercury concentration in the edible part is about 0.5 / z gZg, and the provisional provisional value for the total mercury concentration applicable to general fish is shown. You can see that it exceeds.
[0035] 今回開示された実施の形態はすべての点で例示であって制限的なものではないと 考えられるべきである。本発明の範囲は上記した説明ではなくて請求の範囲によって 示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが 意図される。
[0035] The embodiment disclosed this time should be considered as illustrative in all points and not restrictive. The scope of the present invention is defined by the terms of the claims, rather than the description above, and is intended to include any modifications within the scope and meaning equivalent to the terms of the claims.
Claims
[1] 総水銀濃度が 0. 1 μ gZg以下の魚類を用いた餌料および Ζまたは飼料を給餌し て魚類を養殖する、養殖魚の生産方法。 [1] A method for producing cultured fish that uses fish with a total mercury concentration of 0.1 μgZg or less and feeds fish and straw or feed to cultivate fish.
[2] 予め測定された総水銀濃度が 0. 1 μ gZg以下の魚類を餌料および Ζまたは飼料 に用いることを特徴とする、請求の範囲第 1項に記載の養殖魚の生産方法。 [2] The method for producing cultured fish according to claim 1, wherein a fish having a total mercury concentration measured in advance of 0.1 μgZg or less is used for feed, salmon or feed.
[3] 予め測定された総水銀濃度が 0. 04 μ gZg以下の魚類を餌料および Ζまたは飼 料に用いることを特徴とする、請求の範囲第 1項に記載の養殖魚の生産方法。 [3] The method for producing a cultured fish according to claim 1, wherein fish having a total mercury concentration measured in advance of 0.04 μgZg or less is used for food, salmon or feed.
[4] 養殖魚がマグロ類であることを特徴とする、請求の範囲第 1項に記載の養殖魚の生 産方法。 [4] The method for producing cultured fish according to claim 1, wherein the cultured fish is a tuna.
[5] マグロ類カ^ロマグロであることを特徴とする、請求の範囲第 4項記載の養殖魚の生 産方法。 [5] The method for producing cultured fish according to claim 4, wherein the fish is tuna tuna.
[6] 餌料および Zまたは飼料に用いる魚類がアジ類を含むことを特徴とする、請求の範 囲第 1項に記載の養殖魚の生産方法。 [6] The method for producing cultured fish according to claim 1, wherein the fish used in the feed and Z or feed contains horse mackerel.
[7] アジ類がマアジであることを特徴とする請求の範囲第 6項に記載の養殖魚の生産 方法。 [7] The method for producing cultured fish according to claim 6, wherein the horse mackerel is a horse mackerel.
[8] 餌料および Zまたは飼料に用いる魚類がアジ類およびイカナゴであることを特徴と する、請求の範囲第 1項に記載の養殖魚の生産方法。 [8] The method for producing cultured fish according to claim 1, wherein the fish used in the feed and Z or the feed is horse mackerel and squid.
[9] イカナゴを用いた餌料および Zまたは飼料を給餌し、養殖魚がイカナゴを用いた餌 料および Zまたは飼料を摂食し始めた時点でアジ類を用いた餌料および Zまたは飼 料の給餌に切り換え、養殖魚がアジ類を用いた餌料および Zまたは飼料を摂食しな くなつた時点でイカナゴを用いた餌料および Zまたは飼料の給餌に切り換え、養殖 魚がイカナゴを用いた 15料および Zまたは飼料を摂食し始めた時点で再びアジ類を 用いた餌料および Zまたは飼料の給餌に切り換える給餌法を繰り返すことを特徴と する、請求の範囲第 8項に記載の養殖魚の生産方法。
[9] Feed fish and Z or feed using squid, and feed fish and Z or feed using horse mackerel when the farmed fish begins to feed and feed Z or feed Switch to the feed and Z or feed feeding with eelfish when the farmed fish stops eating feed and Z or feed with horse mackerel, and the farmed fish with 15 and Z or feeding with squid 9. The method for producing cultured fish according to claim 8, wherein the feeding method is switched again to feed using Zhi and feed of Z or feed when feeding is started.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006-084146 | 2006-02-24 | ||
JP2006084146A JP4035737B2 (en) | 2006-02-24 | 2006-02-24 | Production method of cultured fish with low mercury content |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2007097416A1 true WO2007097416A1 (en) | 2007-08-30 |
Family
ID=38437451
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2007/053388 WO2007097416A1 (en) | 2006-02-24 | 2007-02-23 | Method of growing farmed fish |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP4035737B2 (en) |
WO (1) | WO2007097416A1 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103348942A (en) * | 2013-07-23 | 2013-10-16 | 苏州市阳澄湖现代农业产业园特种水产养殖有限公司 | Method for fine breeding of bluefin tunas |
CN105494209A (en) * | 2015-12-30 | 2016-04-20 | 黄群好 | Method for cage culture of bluefin tuna |
EP3673745A4 (en) * | 2017-08-22 | 2021-05-19 | Nippon Suisan Kaisha, Ltd. | Cultured tuna and use thereof, and method for producing cultured tuna |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103609497B (en) * | 2013-11-29 | 2015-06-03 | 简阳市大众养殖有限责任公司 | Method for breeding ecological finless eels by using rice fields |
ES2863580T3 (en) * | 2015-03-26 | 2021-10-11 | Nippon Suisan Kaisha Ltd | Marine fish ovaries maintenance method, culture medium adjustment method, and marine fish egg or fertilized egg production method |
-
2006
- 2006-02-24 JP JP2006084146A patent/JP4035737B2/en not_active Expired - Fee Related
-
2007
- 2007-02-23 WO PCT/JP2007/053388 patent/WO2007097416A1/en active Application Filing
Non-Patent Citations (2)
Title |
---|
ANDO M.: "Kanzen Yoshoku Kuromaguro no Suigin Gan'yuryo no Genjo to Tenbo", 21 SEIKI COE PROGRAM, KUROMAGUROTO NO GYORUI YOSHOKU SANGYO SHIENGATA KENKYU KYOTEN, 2003-2004 (HEISEI 15-16) NENDO CHUKAN SEIKA HOKOKUSHO, 31 March 2005 (2005-03-31), pages 171 - 174, XP003024490 * |
TAKII K. AND JI SEUNG CHUL: "Kuromaguro Thunnus orientalis Chigyo no Setsue Shigeki Busshitsu", 21 SEIKI COE PROGRAM, KUROMAGUROTO NO GYORUI YOSHOKU SANGYO SHIENGATA KENKYU KYOTEN, 2003-2004 (HEISEI 15-16) NENDO CHUKAN SEIKA HOKOKUSHO, 31 March 2005 (2005-03-31), pages 143 - 146, XP003024491 * |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103348942A (en) * | 2013-07-23 | 2013-10-16 | 苏州市阳澄湖现代农业产业园特种水产养殖有限公司 | Method for fine breeding of bluefin tunas |
CN105494209A (en) * | 2015-12-30 | 2016-04-20 | 黄群好 | Method for cage culture of bluefin tuna |
EP3673745A4 (en) * | 2017-08-22 | 2021-05-19 | Nippon Suisan Kaisha, Ltd. | Cultured tuna and use thereof, and method for producing cultured tuna |
Also Published As
Publication number | Publication date |
---|---|
JP4035737B2 (en) | 2008-01-23 |
JP2007222150A (en) | 2007-09-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Whetstone et al. | Opportunities and constraints in marine shrimp farming | |
CN103314904B (en) | Large gauge Eriocheir sinensia pond ecological seedling-cultivating method | |
CN103355240A (en) | Green high-yield fish mixed culturing method | |
Arimoro | Culture of the freshwater rotifer, Brachionus calyciflorus, and its application in fish larviculture technology | |
Zupo et al. | Roe enhancement of Paracentrotus lividus: Nutritional effects of fresh and formulated diets | |
CN104542407B (en) | Two-stage cultivation method for loach offspring seeds | |
CN103340165A (en) | Mandarin fish pond ecological high and stable yield method | |
CN105918170A (en) | Grass carp cultivation method | |
Suleiman et al. | Effect of stocking on the growth and survival of Clarias gariepinus grown in plastic tanks | |
CN102100190A (en) | Method for cultivating epinephelus septemfasciatus offspring seeds | |
WO2007097416A1 (en) | Method of growing farmed fish | |
CN110692551A (en) | Pond-level ecological breeding method for young ostriches acutifolius | |
Amoah et al. | Effect of dietary protein levels on growth and protein utilization In Juvenile Arctic Char (Salvelinus alpinus) | |
CN106577371A (en) | Finless eel breeding pilot feeding method employing baits of different gradient proportions | |
Anil et al. | Growth performance of the seabass Lates calcarifer (Blotch) in sea cage at Vizhinjam Bay along the south-west coast of India | |
JP2020010673A (en) | Circulation system of breeding water for culturing edible frog, circulation system of breeding water for culturing feed of edible frog, feeding method of feed for edible frog and production method of feed | |
Hatta et al. | Study food habits of fishes in Tempe Lake | |
Jones | The biology and aquaculture potential of Cherax quadricarinatus | |
Perry et al. | Expansion of the Soft Crab Fishery in Mississippi Using Cultured Blue Crabs. | |
Chauhan et al. | New innovative technologies for sustainable aqua production | |
Wunderlich et al. | Impact of daily feed rations for juvenile common whitefish (L.), on rearing indicators and oxygen requirements | |
Hartman et al. | Carp aquaculture in Europe and Asia | |
CN104542367B (en) | A kind of method with 4 square metres of small-sized net cage culturing rice field eels | |
CN106719120A (en) | A kind of wild six spot pierces the acclimation method of Puffer parent population | |
Simeanu et al. | Polyodon spathula–a review on its biodiversity, meat quality, and environmental impact in Romania |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 07714859 Country of ref document: EP Kind code of ref document: A1 |