WO2007097273A1 - 樹脂製細胞培養容器およびその製造方法 - Google Patents

樹脂製細胞培養容器およびその製造方法 Download PDF

Info

Publication number
WO2007097273A1
WO2007097273A1 PCT/JP2007/052938 JP2007052938W WO2007097273A1 WO 2007097273 A1 WO2007097273 A1 WO 2007097273A1 JP 2007052938 W JP2007052938 W JP 2007052938W WO 2007097273 A1 WO2007097273 A1 WO 2007097273A1
Authority
WO
WIPO (PCT)
Prior art keywords
cell culture
culture container
resin
pattern
resist
Prior art date
Application number
PCT/JP2007/052938
Other languages
English (en)
French (fr)
Inventor
Taiji Nishi
Motohiro Fukuda
Go Tazaki
Seiichi Kanai
Takenori Kitani
Naoto Fukuhara
Original Assignee
Kuraray Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kuraray Co., Ltd. filed Critical Kuraray Co., Ltd.
Priority to JP2008501699A priority Critical patent/JPWO2007097273A1/ja
Publication of WO2007097273A1 publication Critical patent/WO2007097273A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M23/00Constructional details, e.g. recesses, hinges
    • C12M23/20Material Coatings
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M23/00Constructional details, e.g. recesses, hinges
    • C12M23/02Form or structure of the vessel
    • C12M23/12Well or multiwell plates

Definitions

  • the present invention relates to a cell culture container made of greaves and a method for producing the same.
  • Apoptosis is a type of death of the cells that make up the body of a multicellular organism, and refers to the suicide of a controlled * regulated cell that is actively triggered to keep an individual in a better state.
  • necrosis refers to cell death, that is, necrosis caused by poor internal or external environment due to poor blood circulation or trauma.
  • Necrosis is the death of a portion of a living tissue. Necrosis is different from normal death, and only the cells that make up part of the body die. Causes include infection, physical destruction, chemical damage, and decreased blood flow. Those caused by decreased blood flow are called infarctions. Even if it is a cell death, normal cells such as blood cells, skin, and mucosal epithelium of the digestive tract, tissues are replenished one after the other, and functional damage or histological abnormalities are not called necrosis. The necrotic tissue is eventually removed by the living immune system, and the defect is compensated by the regeneration and fibrosis of the original thread and weave.
  • Patent Document 1 proposes a cell culture container characterized in that a protrusion group having an equivalent diameter of lOnm to Lmm is formed on the surface of the cell culture container. This is because the formation of protrusions spreads the culture solution to the lower part of the cells, promotes the supply of nutrients required by the cells and the discharge of waste products released by the cells, and also points the contact between the cells and the container. This prevents cell damage that occurs during cell detachment.
  • Patent Document 1 JP 2005-168494 A
  • the formation of protrusion groups allows the culture solution to spread to the lower part of the cells, thereby supplying nutrients required by the cells and discharging waste products released by the cells. It can be promoted.
  • These released components are the direct cause of cell death, which is extremely toxic to cultured cells. Therefore, it is necessary to prevent toxic substances from being released into the culture medium from the surface of the cell culture container before supplying the fresh culture medium.
  • glass materials are used rather than plastic materials in cell types that are difficult to culture, such as nerve cells and cardiomyocytes.
  • the present invention has been made in order to solve such problems, and provides a cell culture container made of a resin capable of increasing the survival rate of cells to be cultured and a method for producing the same. Objective.
  • the cell culture container made of resin for fat according to the present invention comprises an inorganic membrane having a thickness of 0.002 ⁇ m to 5 ⁇ m on at least a surface on which cells are cultured, and allows oxygen permeation at 20 ° C. in a dry state.
  • the rate is 500 fmolZ m 2 -s-Pa or less.
  • a method for producing a cell culture container made of a resin according to the present invention comprises a step of forming a pattern on a substrate, and a metal is adhered in accordance with the pattern formed on the substrate or its transfer pattern. Forming a metal structure; transferring a pattern of the metal structure to form a cell culture container; and forming an inorganic film on at least a surface of the cell container on which cells are cultured. It is provided.
  • the present invention it is possible to provide a cell culture vessel made of a resin capable of increasing the survival rate of cells to be cultured and a method for producing the same.
  • FIG. 1 is a diagram schematically showing a configuration of a cell culture container made of fat resin according to a first embodiment of the present invention.
  • FIG. 2A is a diagram schematically showing a configuration of a cell culture container made of resin according to Embodiment 2 of the present invention.
  • FIG. 2B is a diagram schematically showing a configuration of a cell culture container made of resin according to Embodiment 2 of the present invention.
  • FIG. 3A is a diagram schematically showing a method for manufacturing a cell culture container made of resin according to Embodiment 2 of the present invention.
  • FIG. 3B is a diagram schematically showing a method for producing a cell culture container made of resin according to Embodiment 2 of the present invention.
  • FIG. 3C is a diagram schematically showing a method for manufacturing the cell culture container made of resin according to Embodiment 2 of the present invention.
  • FIG. 3D is a diagram schematically showing a method for manufacturing a cell culture container made of resin according to Embodiment 2 of the present invention.
  • FIG. 3E is a diagram schematically showing a method for producing a cell culture container made of resin according to Embodiment 2 of the present invention.
  • FIG. 3F is a diagram schematically showing a method for manufacturing the cell culture container made of resin according to Embodiment 2 of the present invention.
  • FIG. 3G is a diagram schematically showing a method for producing a cell culture container made of resin according to Embodiment 2 of the present invention.
  • FIG. 3H is a diagram schematically showing a method for manufacturing a cell culture container made of resin according to Embodiment 2 of the present invention.
  • FIG. 4 is a plan view schematically showing a cell culture container according to Example 4 of the present invention. Explanation of symbols
  • the present inventors have formed an inorganic material having a gas permeability within a specified value on the surface of a cell culture device made of resin, so that the plastic material is transferred into the culture solution. It has been found that a cell culture vessel can be provided that suppresses the release of toxic substances and can dramatically increase the survival rate of cell types that are difficult to culture.
  • a cell culture vessel can be provided that suppresses the release of toxic substances and can dramatically increase the survival rate of cell types that are difficult to culture.
  • FIG. 1 is a cross-sectional view showing the configuration of the cell culture container according to the first embodiment.
  • the cell culture container according to Embodiment 1 includes an inorganic film 1 on the surface where cells are cultured.
  • the thickness of the inorganic membrane 1 that covers at least the cell culture surface of the cell culture container made of resin is 0.002 ⁇ m to 5 ⁇ m in order to prevent the release of toxic substances into the culture solution.
  • the preferred range is 0.005 ⁇ m to 1 ⁇ m. If it is less than 0.002 ⁇ m, it will be difficult to prevent the release of toxic substances into the culture solution, and if it is longer than 5 ⁇ m, the film formation time will be long and the cost will be high, which is not suitable for practical use.
  • the oxygen permeability in the dry state 20 ° C in order to prevent release to the culture liquid of toxic substances, 500fmolZm 2 's'Pa less preferably instrument 250fmolZm 2' or less and more preferably S'Pa. If the oxygen permeability is low, the release of toxic substances into the cell culture vessel can be further suppressed. On the other hand, since it is necessary to increase the film thickness, the film formation time becomes longer and the cost is increased. Therefore, it is preferable to select appropriately according to the application.
  • a method of forming the inorganic film 1 will be described.
  • the following method is an example, and the present invention is not limited to this.
  • Examples of the method for forming the inorganic film 1 include a sputtering method using a vacuum apparatus, a vacuum evaporation method, an electron beam evaporation method, an electric plating, an electroless plating, and a force-spring plating method.
  • the sputtering method is preferable.
  • the equipment cost is high, and when the film thickness is 0.1 ⁇ m or more, peeling occurs due to film stress. It tends to be easy to do.
  • the vacuum deposition method has relatively low equipment costs and low film stress, so that a thick film can be formed. However, the uniformity and denseness of the film thickness are inferior to the sputtering method.
  • Examples of the inorganic film 1 that can be formed by sputtering or vacuum deposition include Cu, Al, Au, Ag, SiO, Ni, Mg, Fe, and Cr. None of these
  • Membrane 1 is a constant membrane, unlike plastic materials that have a molecular structure and gas permeability that differs greatly. By making it thick, a desired gas permeability can be achieved.
  • Transparent inorganic material such as SiO, which has a film thickness of 400 nm or less, as a range that achieves both prevention of release of toxic substances into the culture medium and transparency.
  • the resin plate has a light transmittance equivalent to that of a glass plate, the light transmittance at a wavelength of 300 nm to 800 nm including the ultraviolet region is 80% or more, and the haze value is set. It is preferable to be within 10%.
  • a material that does not have a ring structure in the chemical structure such as a resin using acrylic resin that does not contain an ultraviolet absorber, PC (polycarbonate), and polystyrene.
  • additives such as anti-oxidation agents, viscosity improvers, heat stabilizers and anti-sticking agents need not contain UV absorbers.
  • the light (excitation light) for causing the fluorescent dye to shine cannot be discriminated from the fluorescence (fluorescence radiation light) generated unless it passes through the cell culture vessel. Therefore, the cell culture container is required to have high light transmittance.
  • the transparency necessary to distinguish fluorescence (fluorescent radiation) must be at least 80% total visible light transmittance and within 10% haze.
  • a polyolefin resin which is a crystalline resin, for which it is preferable to use a material having excellent optical characteristics such as polymethyl methacrylate for the cell culture container, It is preferable to use it in the crystalline state.
  • Autofluorescence refers to the fact that polymer molecules absorb ultraviolet and visible light and then emit light to emit fluorescence. While glass plates do not emit autofluorescence, many resin plates do autofluorescence, making it impossible to distinguish the fluorescence (fluorescent radiation) generated by the sample cartridge, and microanalysis, a characteristic of fluorescence analysis, is not possible. It becomes difficult.
  • the wavelength is 230 ⁇ ! It is required to avoid autofluorescence by irradiating light of ⁇ 800nm. Therefore, it is necessary to select a resin material that does not have a ring structure in the chemical structure such as PC (polycarbonate) or polystyrene for the cell culture container.
  • a resin material that does not have a ring structure in the chemical structure such as PC (polycarbonate) or polystyrene for the cell culture container.
  • antioxidants, viscosity improvers, Additives such as heat stabilizers and anti-sticking agents are preferably as small as possible or not added.
  • the cell culture vessel can be rendered hydrophilic or hydrophobic by coating it with an organic film or an inorganic film.
  • an organic film or an inorganic film thereby, it is possible to prevent bubbles from adhering to the cell culture surface and to control the degree of cell adhesion.
  • the method for coating the organic film include a method of applying collagen, polylysine or the like, which is a protein that promotes cell adhesion, by spin coating or dating, vapor deposition polymerization, plasma polymerization, and the like.
  • Examples of the method for coating the inorganic film include a sputtering method and a vapor deposition method.
  • the range of culture test conditions can be further widened.
  • Inorganic film forming methods such as sputtering and vapor deposition can also be applied to oil immersion lens observation methods.
  • the oil used for the oil immersion lens is mixed with an organic solvent in order to make the optical properties compatible with the glass plate for culturing cells and the optical lens.
  • Organic solvents may not be applicable because they penetrate into cell culture vessels made of resin and cause whitening and dissolution problems.
  • Inorganic materials are resistant to organic solvents at the same time as the gas barrier effect. Therefore, an inorganic film is formed on the bottom of the cell culture vessel that comes in contact with oil in the oil immersion lens. And the application range of the cell culture container made of resin can be expanded.
  • the thickness of the film should be 400 nm or less, such as a transparent film such as SiO
  • FIG. 2A is a plan view showing the configuration of the cell culture container according to the second exemplary embodiment.
  • 2B is a cross-sectional view taken along the line II-B ′ of FIG. 2A.
  • the cell culture container is formed with a concavo-convex pattern constituting a plurality of micro space structures.
  • the concavo-convex pattern is formed in two steps as shown in FIG. 2B.
  • a two-step convex portion 5 including a first convex portion 3 formed in a lattice shape and a rectangular parallelepiped second convex portion 4 formed on the surface of the cell culture vessel on which cells are cultured. Is formed.
  • a space formed by the two-step convex portions 5 becomes the concave portion 2.
  • the concave portion 2 is composed of a concave portion completely surrounded by the first convex portion 3 and a concave portion formed by the second convex portion 4.
  • the side wall 6 of the first convex part 3 and the side wall 7 of the second convex part 4 are formed substantially perpendicular to the bottom surface.
  • an inorganic film 1 is formed on the entire surface of the cell culture container.
  • the first convex portions 3 are arranged in a lattice shape so as to surround the four sides of the rectangular concave portion 2.
  • the second convex portion 4 is arranged in an island shape on the first convex portion 3 between the adjacent concave portions 2.
  • the second convex portion 4 is provided on each of the four sides of the rectangular concave portion 2. Therefore, the recess 2 is not completely partitioned, and communicates with the adjacent recess 2 at the four apex portions of the rectangular recess 2.
  • the concave / convex pattern is preferably formed in two or more steps, but may be one step.
  • Cell adhesion can be achieved by forming an inorganic membrane 1 having a desired thickness and oxygen permeability on at least a cell-cultivating surface of a resin cell culture vessel having a plurality of microspace structures.
  • an inorganic membrane 1 having a desired thickness and oxygen permeability on at least a cell-cultivating surface of a resin cell culture vessel having a plurality of microspace structures.
  • this cell culture container can exhibit sufficiently high accuracy even when compared with a conventional glass plate with a pattern.
  • a method for producing a cell culture vessel made of a resin having a plurality of micro space structures on the surface on which the above cells are cultured will be described.
  • a micro space structure is formed on a substrate, and a metal is attached according to the micro space structure pattern formed on the substrate or a transfer pattern thereof, and the structure pattern of the resin plate is opposed to the metal pattern.
  • a cell culture container is manufactured.
  • steps (V) to (viii) are optional and can be omitted. On the other hand, the steps (V) to (viii) are repeated a plurality of times.
  • a first resist layer (thickness 70 m) and a second resist layer (thickness 30 m) are formed in this order.
  • Each layer is exposed, or exposed and heat-treated.
  • a pattern with a depth of 30 / zm, which is the second resist layer is obtained first, and then a pattern with a depth of 100 ⁇ m is obtained by combining the first resist layer and the second resist layer. .
  • the solubility of each layer in the developer must be controlled in order to prevent the second resist layer, the pattern with a depth of 30 m, from being dissolved or deformed in the developer. Is required.
  • One method for developing alkali resistance using a photolytic positive resist is to increase the beta time (solvent drying time) and cure the resist.
  • the resist has a beta time set according to the film thickness, solvent concentration such as thinner, and sensitivity. Yes. By increasing this time, alkali resistance can be provided.
  • the beta of the first resist layer progresses too much, the resist will be extremely hardened, and it will be difficult to form a pattern by dissolving the portion irradiated with light in subsequent development, so the beta time will be shortened. It is preferable to select as appropriate.
  • the apparatus used for beta is not particularly limited as long as the solvent can be dried, and examples thereof include an oven, a hot plate, and a hot air dryer.
  • the resist thickness to be set is 5 to 200 ⁇ m for each layer.
  • the range of 10 to 10 is preferable.
  • the range of LOO ⁇ m is more preferable.
  • the crosslinking density of the negative resist can be set by the exposure amount.
  • the crosslinking density can be set by the exposure amount and the heat treatment time. By increasing the exposure amount or the heat treatment time, alkali resistance can be exhibited.
  • the resist thickness to be set is preferably within the range of 5 to 500 ⁇ m, more preferably within the range of 10 to 300 ⁇ m, combining each layer! /, .
  • FIG. 3A shows a state where the first resist layer 12 is formed on the substrate 11.
  • the flatness of the resin cell container obtained in the molded product forming step is determined by the step of forming the first resist layer 12 on the substrate 11. That is, the flatness at the time when the first resist layer 12 is formed on the substrate 11 is reflected in the flatness of the metal structure, and hence the cell culture container.
  • the method for forming the first resist layer 12 on the substrate 11 is not limited in any way, and generally includes a spin coat method, a dating method, a roll method, and a bonding of a dry film resist.
  • the spin coating method is a method of applying a resist on a rotating glass substrate, and has an advantage of applying the resist to a glass substrate having a diameter of more than 300 mm at a high flatness. Therefore, the spin coating method is preferable from the viewpoint of realizing high flatness.
  • the resist used as the first resist layer 12 may be either a positive resist or a negative resist. In either case, the depth of focus of the resist depends on the sensitivity of the resist and the exposure conditions. The degree changes. Therefore, for example, when using a UV exposure system, it is preferable to select the type of exposure time, UV output value according to the resist thickness and sensitivity.
  • the resist used as the first resist layer 12 is a wet resist
  • a method by changing the spin coating rotational speed and adjusting the viscosity there are a method by changing the spin coating rotational speed and adjusting the viscosity.
  • the method by changing the spin coat rotational speed is to obtain a desired resist thickness by appropriately setting the spin coater rotational speed.
  • the method using viscosity adjustment is to adjust the viscosity according to the flatness required in actual use because there is a concern that the flatness may decrease when the resist thickness is thick or the coating area is large. is there.
  • the thickness of the resist layer applied at one time is preferably 10 to 50 ⁇ m, more preferably 20 to 50 ⁇ m in consideration of maintaining high flatness. It is preferable to be within the range.
  • the resist layer can be formed in multiple steps.
  • a method of cutting and pinning the substrate 11 and mask A13 at the same position a method of positioning using a laser interferometer, a position mark at the same position of the substrate 11 and mask A13, and using an optical microscope A method for aligning can be mentioned.
  • a method of aligning with an optical microscope for example, a position mark is produced on the substrate 11 by a photolithographic method, and the position mark is drawn on a mask A13 by a laser drawing apparatus. Even in manual operation using an optical microscope, it is effective in that accuracy within 5 m can be easily obtained.
  • the exposure of the first resist layer 12 using the mask A13 will be described.
  • the mask A13 used in the process shown in FIG. 3B is not limited in any way, but examples include an emulsion mask and a chrome mask.
  • the size and accuracy depend on the mask A13 used.
  • the dimensions and accuracy are also reflected in the cell culture container made of resin. Therefore, in order to ensure that the dimensions and accuracy of the cell culture container made of resin are predetermined, it is necessary to define the dimensions and accuracy of the mask A13.
  • the method for increasing the accuracy of the mask A13 is not limited at all.For example, the laser light source used to form the mask A13 pattern can be changed to one with a shorter wavelength, but the equipment cost is high. Since the production cost of the mask A13 is high, it is preferable that the cell culture vessel made of resin is appropriately specified according to the accuracy required for practical use.
  • quartz glass is preferable because of its thermal expansion coefficient and UV transmission absorption performance, but it is relatively expensive. It is preferable to specify. To obtain structures with different desired depths or heights as designed, or structures with different first and second resist patterns, use them for the exposure of the first resist layer 12 and the second resist layer 14.
  • the mask pattern design transmission Z shading part
  • simulation using CAE analysis software is one of the solutions.
  • the light source used for the exposure is preferably ultraviolet light or laser light, which has a low equipment cost. Synchrotron radiation can be used when the equipment cost is high and the price of the resin-made plate is substantially high, but it is desired to obtain a deep exposure depth.
  • the exposure conditions such as exposure time and exposure intensity vary depending on the material, thickness, and the like of the first resist layer 12, it is preferable to adjust appropriately according to the pattern to be obtained. In particular, adjustment of exposure conditions is important because it affects the size and accuracy of the spatial structure pattern.
  • the depth of focus varies depending on the type of resist, for example, when a UV exposure apparatus is used, it is preferable to select the exposure time and UV output value according to the resist thickness and sensitivity.
  • the post-exposure heat treatment is annealed to correct the resist pattern shape!
  • Heat treatment is known.
  • heat treatment is performed only when a chemically amplified negative resist is used for the purpose of chemical crosslinking.
  • a chemically amplified negative resist is mainly composed of a two-component or three-component system, and, for example, the epoxy group at the end of the chemical structure is ring-opened by light during exposure, and is subjected to a crosslinking reaction by heat treatment. .
  • the cross-linking reaction proceeds within a few minutes under the condition of a set temperature of 100 ° C.
  • the resist thickness to be set is not 100 m or more. It is preferable to select the heat treatment time as appropriate, for example, by shortening the heat treatment time or by performing only heat treatment of the second resist layer 14 later.
  • FIG. 3C shows a state where the second resist layer 14 is formed.
  • the formation of the second resist layer 14 is performed by the same method as the formation of the first resist layer 12 described in (i) above.
  • alkali resistance can be expressed by setting the beta time to about 1.5 to 2.0 times the normal time.
  • the alignment between the substrate 11 and the mask B15 is performed in the same manner as the alignment between the substrate 11 and the mask A13 described above.
  • Fig. 3D shows the exposure of the second resist layer 14.
  • the heat treatment of the second resist layer 14 is performed by the same method as the heat treatment of the first resist layer 12 described in (iv) above. Also, the heat treatment of the second resist layer 14 is such that when the pattern of the first resist layer 12 is obtained in the subsequent development, the pattern of the second resist layer 14 is dissolved. Or to prevent deformation. Chemical crosslinking proceeds by heat treatment, and alkali resistance is developed by increasing the crosslinking density. It is preferable that the heat treatment time for developing alkali resistance is appropriately selected according to the thickness of the resist from the normal 1.1 to 2.0 times range.
  • a predetermined developer corresponding to the resist used it is preferable to use a predetermined developer corresponding to the resist used.
  • Development conditions such as development time, development temperature, and developer concentration are preferably adjusted as appropriate according to the resist thickness and pattern shape. For example, if the imaging time is too long in order to obtain the required depth, it will become larger than a predetermined dimension, so it is preferable to set conditions appropriately.
  • a resist pattern 16 is formed.
  • Examples of a method for improving the planar accuracy of the upper surface of the cell culture container or the bottom of the fine pattern include a method of changing the resist type (negative type and positive type) used in resist coating, and the surface of the metal structure. A method of polishing is included.
  • the plurality of resist layers are simultaneously exposed and developed, or after forming and exposing one resist layer, Furthermore, the resist layer can be formed and exposed, and the two resist layers can be developed simultaneously.
  • the metal structure forming step is to form a metal along the resist pattern 16 obtained in the resist pattern forming step, and to form the micro space structure surface of the metal structure 18 along the resist pattern 16 to form a metal. In this step, the structure 18 is obtained.
  • a conductive film 17 is formed in advance along the resist pattern 16.
  • the method for forming the conductive film 17 is not particularly limited, but is preferably a vacuum deposition method, a sputtering method, or the like.
  • Examples of the conductive material used for the conductive film 17 include gold, silver, platinum, copper, and aluminum.
  • a metal is formed by plating along the resist pattern 16 to form a metal structure 18.
  • the plating method is not particularly limited, and examples thereof include electrolytic plating and electroless plating. Limited metal used Although not mentioned, nickel, nickel-cobalt alloy, copper, and gold can be mentioned, and economical power and durability from the viewpoint of durability. Nickel is preferably used.
  • the metal structure 18 may be polished according to its surface condition. However, since there is a concern that dirt may adhere to the molded article, it is preferable to perform ultrasonic cleaning after polishing. Further, the metal structure 18 may be surface-treated with a release agent or the like in order to improve the surface state.
  • the inclination angle of the metal structure 18 in the depth direction is preferably 50 ° to 90 °, more preferably 60 ° to 87 °, based on the shape of the resin molded product.
  • the metal structure 18 formed by plating is separated from the resist pattern 16.
  • the resin molded product 19 is formed using the metal structure 18 as a mold.
  • the method of forming the resin molded product 19 is not particularly limited, and examples thereof include injection transfer, press molding, monomer cast molding, solvent cast molding, roll transfer method by extrusion molding, and the like, from the viewpoint of productivity and mold transferability. From the above, injection molding is preferably used.
  • the resin molded product 19 is formed by injection molding using the metal structure 18 having a predetermined dimension selected as a mold, the shape of the metal structure 18 can be reproduced in the resin molded product 19 with a high transfer rate.
  • a method for confirming the transfer rate there are methods using an optical microscope, a scanning electron microscope (SEM), a transmission electron microscope (TEM), and the like.
  • the minimum flatness of the resin molded article 19 is preferably 1 ⁇ m or more from the viewpoint of easy industrial reproduction.
  • the maximum value of the flatness of the resin molded product 19 is preferably 200 m or less from the viewpoint of preventing the molded product from warping and coming into contact with the optical system unit.
  • the dimensional accuracy of the molded part of the resin molded product is preferably within a range of ⁇ 0.5 to 10% from the viewpoint of easy industrial reproduction.
  • Examples and comparative examples relating to the present invention are shown below.
  • the material thickness of the inorganic film 1 to be formed and the oxygen permeability were varied, and the cell viability, that is, the adhesion ability and the proliferation ability of the cultured cells were analyzed.
  • the thickness of the inorganic film 1 was measured by a stylus method using a surface shape measuring instrument (DEKTAK3030) manufactured by ULVAC, Inc.
  • the oxygen permeability at 20 ° C in the dry state was measured using a gas permeability measuring device (model: NO. 5 71) of Toyo Seiki.
  • Optical properties, total light transmittance and haze value are It was measured using a visible light transmittance meter (model: HA-TR) manufactured by Suga Test Instruments. Specifically, the total light transmittance was measured twice by a method based on JIS K6714, and the average value was obtained.
  • Cell adhesion was analyzed by the Crystal Violet method, which is a colorimetric analysis method.
  • the proliferation ability of the cells was analyzed by the MTT method, which is a colorimetric analysis method, and Comparative Example 1 was taken as 100%.
  • the Crystal Violet method is a colorimetric analysis method that utilizes the incorporation of Crystal Violet into living cells. Specifically, 5.0 ⁇ 10 5 rat brain hippocampal neurons were cultured in an incubator for 2 hours, washed with physiological saline, and floated (dead) from cells adhering to the substrate. Cell). Next, after staining with Crystal Violet, the cells adhering to the substrate were lysed using an SDS (sodium dodecyl sulfate) solution, and the absorbance at a wavelength of 540 nm was measured and compared with Comparative Example 1.
  • SDS sodium dodecyl sulfate
  • the MTT method is a staining method that utilizes the fact that MTT (a type of tetrazolium salt) is converted into formazan by a reaction with intracellular dehydrogenase.
  • MTT a type of tetrazolium salt
  • the concentration of formazan is high, which is reduced to formazan, which has high enzyme activity. This difference in concentration is used as the absorbance for counting the number of cells.
  • 5.0 x 10 5 rat brain hippocampal neurons were cultured in an incubator for 3 hours, washed with physiological saline, and suspended (dead) cells adhered to the substrate. Cell). After culturing in an incubator for 48 hours, the medium was replaced with a medium containing MTT, and the cultivation was continued for another 3 hours. Then, isopropanol was added to dissolve formazan, the absorbance at a wavelength of 570 nm was measured, and compared with Comparative Example 1.
  • a commercially available polystyrene petri dish ( ⁇ 90 mm, depth 20 mm, plate thickness 1. Omm) was used.
  • the coating with the inorganic film 1 was not carried out.
  • the oxygen transmission rate in the dry state at 20 ° C was 6500 fmolZm 2 's'Pa.
  • the shape of the protrusion on the surface to be cultured was 10 nm in width and the aspect ratio was 0.05.
  • the total light transmittance was 86%, and the haze value was 2.7%.
  • the film thickness was 0.10 / zm.
  • the oxygen transmission rate in the dry state at 20 ° C was lOfmol Zm 2 's' Pa.
  • Optical properties were 90% total light transmittance and 3.8% haze.
  • Example 3 Using Kuraray Co., Ltd. acrylic resin (parapet GH-S), a 24 mm wide, 74 mm long, 1. Omm thick resin plate was prepared by injection molding, and then sterilized. Next, a silicon oxide (SiO 2) film is formed using a deposition device of ULVAC, Inc. (model: UEP).
  • the film thickness was 2. O / zm.
  • the oxygen transmission rate in the dry state at 20 ° C was 0.5 fmol Zm 2 's' Pa.
  • the optical properties were a total light transmittance of 87% and a haze value of 5.5%.
  • FIG. 4 is a plan view showing the configuration of the cell culture container according to Example 4. This is a configuration having only the second protrusion 4 without the first protrusion 3 shown in FIG.
  • the dimensions of the second protrusions 4 are width m, length m, height 20 m, and the arrangement pitch is 100 m both vertically and horizontally.
  • the greaves plate was sterilized.
  • a silicon oxide (SiO 2) film was formed using an evaporation apparatus manufactured by ULVAC, Inc. (model: UEP). The film thickness is 0.3 m
  • the oxygen transmission rate in a dry state at 20 ° C was 15 fmolZm 2 's'Pa.
  • the optical properties were a total light transmittance of 86% and a haze value of 7.7%.
  • Table 1 summarizes the results of the above comparative examples and examples.
  • the thickness of the inorganic film 1 is 0.002 ⁇ m to 5 ⁇ m, and the oxygen transmission rate at a dry state of 20 ° C. is 500 fmolZm 2 ′ s′Pa or less, which is higher than that of Comparative Example 1. The cell survival rate was dramatically increased.
  • the inorganic film 1 is an oxide silicon (SiO 2) film,
  • the present invention is used, for example, in a cell culture vessel for culturing cells isolated from tissues and using them for testing and testing.

Abstract

 培養する細胞の生存率を高めることができる樹脂製細胞培養容器およびその製造方法を提供することを目的とする。本発明にかかる樹脂製細胞培養容器は、少なくとも細胞が培養される面に、厚さ0.002μm~5μmの無機膜1を備え、乾燥状態20°Cでの酸素透過率が500fmol/m2・s・Pa以下のものである。これにより、樹脂製細胞培養容器から、培養液中への毒性物質の放出を抑止し、培養が難しいとされる細胞種においても、その生存率を飛躍的に高められる樹脂製細胞培養容器を提供できる。

Description

明 細 書
樹脂製細胞培養容器およびその製造方法
技術分野
[0001] 本発明は、榭脂製細胞培養容器およびその製造方法に関する。
背景技術
[0002] 細胞死は、アポトーシス (apoptosis)と、ネクローシス (necrosis)に大別される。アポト 一シスとは、多細胞生物の体を構成する細胞の死に方の一種で、個体をより良い状 態に保っために積極的に引き起こされる、管理 *調節された細胞の自殺のことをいう 。他方、ネクローシスとは、血行不良、外傷などによる細胞内外の環境の悪ィ匕によつ て起こる細胞死、すなわち壊死(えし)をいう。
[0003] 壊死は、生物の組織の一部分が死ぬことである。壊死は通常の死とは違い、体の 一部分を構成する細胞だけが死滅する。感染、物理的破壊、化学的損傷、血流の減 少などが原因となる。血流減少によるものを特に梗塞と呼ぶ。細胞の死ではあっても 、血球、皮膚、消化管の粘膜上皮のように正常な細胞、組織が次々に補充され機能 的な障害、組織学的な異常を残さないものは壊死と呼ばない。壊死した組織は、生 体の免疫系によって最終的には取り除かれ、欠損部分は元の糸且織が再生したり線維 化したりすることで補われる。
[0004] このような細胞についての試験 ·研究には、組織から単離した細胞を培養する必要 がある。近年、この細胞培養は、創薬開発、薬剤の産生、再生医療での基礎試験、 薬物の効果判定等、多様な目的で実施され、バイオテクノロジー関連分野において 欠かせない方法となっている。細胞培養器で培養される細胞の接着能は、細胞の増 殖能にとって極めて重要な因子であるため、研究開発のスピードを左右する。また、 培養試験に用いられる細胞培養株は極めて高額であるため、試験コストにも直接影 響する。
[0005] プラスチック製シャーレ、ガラス製シャーレ、容器内に固定されたガラスプレート、ゥ エルプレート等の細胞培養容器で細胞を培養する場合、培養細胞カゝら排出される炭 酸ガスなどによる pH変化は、培養細胞の活性に大きく影響することが知られている。 このため、従来の長期間培養においては、研究者が定期的に培養液を交換すること で、培養細胞の活性を保っている。
[0006] また、特許文献 1には、細胞培養容器の表面に、相当直径が lOnm〜: Lmmである 突起群が形成されて ヽることを特徴とする細胞培養容器が提案されて ヽる。これは、 突起群の形成により、培養液を細胞の下部に行き渡らせ、細胞の必要とする栄養物 の供給と細胞の放出する老廃物の排出を促進するとともに、細胞と容器の接触を点 接触にすることにより細胞の剥離時に生じる細胞の損傷を防ぐものである。
特許文献 1 :特開 2005— 168494号公報
発明の開示
発明が解決しょうとする課題
[0007] し力しながら、神経細胞や心筋、骨格筋のように再生しな 、組織の壊死や、神経細 胞ゃ心筋、肝臓細胞と 、つた培養が難 、とされる組織の細胞死を抑制するために は、新鮮な培養液の交換だけでは、細胞死の抑制が実現できていないのが現状で ある。特に、培養が難しいとされる培養種では、新鮮な培養液の交換を行っても、最 初に配置した細胞数に対する生存率は 20〜40%程度である。
[0008] また、特許文献 1に示す方法によれば、突起群の形成により、培養液を細胞の下部 に行き渡らせ、細胞の必要とする栄養物の供給と細胞の放出する老廃物の排出を促 進することはできる。し力しながら、プラスチック材料から、低分子量成分、可塑剤、重 合触媒等の添加剤またはプラスチック材料の熱成形時に材料が分解したガスが培養 液中に放出されるのを防止することはできない。これらの放出成分は、培養細胞に対 して極めて毒性が高ぐ細胞死をもたらす直接の原因となる。そのため、新鮮な培養 液の供給の前に、細胞培養容器の表面から、毒性物質が培養液中に放出されること を防止する必要がある。特に、神経細胞や心筋細胞等の培養が難しい細胞種では、 プラスチック材料よりも、ガラス材料が使用されている。なぜなら、プラスチック製の細 胞培養容器を使用した場合、最初に配置した細胞の 80%近くが死滅してしまうから である。同様に、市販されているプラスチック製シャーレ、容器内に固定されたプラス チック製プレート、ゥヱルプレート等の細胞培養容器においても、毒性物質の培養液 中への放出が防止できて!/、ない問題点を有して 、る。 [0009] 本発明は、このような問題点を解決するためになされたものであり、培養する細胞の 生存率を高めることができる榭脂製細胞培養容器およびその製造方法を提供するこ とを目的とする。
課題を解決するための手段
[0010] 本発明にかかる榭脂製細胞培養容器は、少なくとも細胞が培養される面に、厚さ 0 . 002 μ m〜5 μ mの無機膜を備え、乾燥状態 20°Cでの酸素透過率が 500fmolZ m2- s - Pa以下のものである。
[0011] 本発明にかかる榭脂製細胞培養容器の製造方法は、基板上にパターンを形成す るステップと、前記基板上に形成されたパターンまたはその転写パターンにしたがつ て金属を付着させ、金属構造体を形成するステップと、前記金属構造体のパターン を転写して細胞培養容器を形成するステップと、前記細胞容器の少なくとも細胞が培 養される面に無機膜を形成するステップとを備えたものである。
発明の効果
[0012] 本発明によれば、培養する細胞の生存率を高めることができる榭脂製細胞培養容 器およびその製造方法を提供することができる。
図面の簡単な説明
[0013] [図 1]本発明の実施の形態 1にかかる榭脂製細胞培養容器の構成を模式的に示す 図である。
[図 2A]本発明の実施の形態 2にかかる榭脂製細胞培養容器の構成を模式的に示す 図である。
[図 2B]本発明の実施の形態 2にかかる榭脂製細胞培養容器の構成を模式的に示す 図である。
[図 3A]本発明の実施の形態 2にかかる榭脂製細胞培養容器の製造方法を模式的に 示す図である。
[図 3B]本発明の実施の形態 2にかかる榭脂製細胞培養容器の製造方法を模式的に 示す図である。
[図 3C]本発明の実施の形態 2にかかる榭脂製細胞培養容器の製造方法を模式的に 示す図である。 [図 3D]本発明の実施の形態 2にかかる榭脂製細胞培養容器の製造方法を模式的に 示す図である。
[図 3E]本発明の実施の形態 2にかかる榭脂製細胞培養容器の製造方法を模式的に 示す図である。
[図 3F]本発明の実施の形態 2にかかる榭脂製細胞培養容器の製造方法を模式的に 示す図である。
[図 3G]本発明の実施の形態 2にかかる榭脂製細胞培養容器の製造方法を模式的に 示す図である。
[図 3H]本発明の実施の形態 2にかかる榭脂製細胞培養容器の製造方法を模式的に 示す図である。
[図 4]本発明の実施例 4にかかる細胞培養容器を模式的に示す平面図である。 符号の説明
1 無機膜
2 凹部
3 第 1の凸部
4 第 2の凸部
5 2段の凸部
6 第 1の凸部の側壁
7 第 2の凸部の側壁
11 基板
12 第 1レジスト層
13 マスク A
14 第 2レジスト層
15 マスク B
16 レジストパターン
17 導電性膜
18 金属構造体
19 樹脂製成型品 発明を実施するための最良の形態
[0015] 本発明者らは、鋭意研究した結果、榭脂製細胞培養器の表面に対し、規定値内の ガス透過率を有する無機材料を形成することで、プラスチック材料から、培養液中へ の毒性物質の放出を抑止し、培養が難しいとされる細胞種においても、その生存率 を飛躍的に高められる細胞培養容器を提供できることを見出した。以下に、本発明の 実施の形態について図を用いて説明する。
[0016] 発明の実施の形態 1
図 1は、実施の形態 1にかかる細胞培養容器の構成を示した断面図である。実施の 形態 1にかかる細胞培養容器は、細胞を培養する面に無機膜 1を備えている。
[0017] 榭脂製細胞培養容器の少なくとも細胞を培養する面に被覆する無機膜 1の厚みは 、毒性物質の培養液中への放出を防止するため、 0. 002 μ m〜5 μ mが好ましぐ 0 . 005 μ m〜l μ mがより好ましい。 0. 002 μ m以下では毒性物質の培養液中への 放出防止が困難となり、 5 m以上では成膜時間が長くなり、高コストとなるため実用 に適さない。乾燥状態 20°Cでの酸素透過率は、毒性物質の培養液中への放出を防 止するため、 500fmolZm2' s'Pa以下が好ましぐ 250fmolZm2' s'Pa以下がより 好ましい。酸素透過率が低ければ、細胞培養容器力 培養液中への毒性物質の放 出をより抑制できる。一方、膜厚を厚くする必要があるため、成膜時間が長くなり、高 コストとなる。そのため、用途に応じ適宜選択することが好ましい。
[0018] 無機膜 1の形成法について述べる。以下にあげる方法は一例であり、これに限定さ れるものではない。無機膜 1の形成法には、真空装置を用いたスパッタリング法、真 空蒸着法、電子線蒸着法、電気メツキ、無電解メツキ、力-ゼンメツキ等による無機材 料形成法があげられる。形成した無機膜 1の均一性、緻密性が要求される場合は、ス ノ ッタリング法が好ましいが、設備費が高額であることおよび 0. 1 μ m以上の膜厚に なると膜応力により、剥離しやすい傾向がある。真空蒸着法は、設備費も比較的安価 であり、膜応力も低くなるため厚膜ィ匕が可能であるが、膜厚の均一性、緻密性は、ス ノ ッタリング法に劣る。スパッタリング法または真空蒸着法で形成可能な無機膜 1は、 一例として、 Cu、 Al、 Au、 Ag、 SiO、 Ni、 Mg、 Fe、 Cr等があげられる。これらの無
2
機膜 1は、分子構造でガス透過率が大きく異なるプラスチック材料と異なり、一定の膜 厚とすることで、所望のガス透過率を達成することができる。
[0019] 培養細胞の観察では、倒立顕微鏡を用いた透過光観察が主流である。このため、 細胞培養容器に被覆する無機膜には、波長 450ηπ!〜 600nmの可視光を散乱させ ないこと、すなわち透明性が要求される。毒性物質の培養液中への放出の防止と透 明性を両立する範囲として、膜厚を 400nm以下とする力 SiO等の透明無機材料
2
を用いることが好ましい。
[0020] 透過光観察を可能にするため、榭脂プレートをガラスプレートと同等の光透過率と するには、紫外線領域を含む波長 300nm〜800nmの光透過率を 80%以上、ヘイ ズ値を 10%以内とすることが好ましい。上記要求を満たすため、細胞培養容器には
、紫外線吸収剤が含まれないアクリル榭脂を用いるカゝ、 PC (ポリカーボネイト)、ポリス チレン等の化学構造に環構造を有さない材料を選択する必要がある。また、酸ィ匕防 止剤、粘度向上剤、耐熱安定剤、膠着防止剤等の添加物には、紫外線吸収剤が含 まれていない必要がある。
[0021] 蛍光観察法では、蛍光色素を光らせるための光 (励起光)は、細胞培養容器を透過 しなければ、それにより発生した蛍光 (蛍光放射光)を識別できない。したがって、細 胞培養容器には高 、光透過性が要求される。蛍光 (蛍光放射光)を識別するために 必要な透明性は、可視光の全光線透過率 80%以上、ヘイズ値 10%以内とする必要 がある。上記要求を満たすため、細胞培養容器には、例えば、ポリメチルメタクリレー ト等の光学特性に優れる材料を用いることが好ましぐ結晶性榭脂であるポリオレフィ ン系榭脂を用いる場合は、非結晶状態で用いることが好まし 、。
[0022] 自家蛍光とは、ポリマー分子が紫外 ·可視光を吸収した後、光を放出して自ら蛍光 を発することをいう。ガラスプレートは自家蛍光を発しないのに対し、榭脂プレートの 多くは自家蛍光するため、サンプルカゝら発生した蛍光 (蛍光放射光)を識別できなく なり、蛍光分析の特徴である微量分析が困難となる。
[0023] 自家蛍光の影響を受けないためには、波長 230ηπ!〜 800nmの光を照射すること で自家蛍光しないことが要求される。そのため、細胞培養容器には、 PC (ポリカーボ ネイト)、ポリスチレン等の化学構造に環構造を有しない榭脂材料を選択する必要が ある。また、自家蛍光の可能性を極力排除するため、酸化防止剤、粘度向上剤、耐 熱安定剤、膠着防止剤等の添加物は、できる限り少量とするか、添加しないことが好 ましい。
[0024] 微分干渉観察法のコントラストを低下させずに、偏光顕微鏡や微分干渉顕微鏡に より観察するために、光学ひずみの小さい材料が要求される。そのため、細胞培養容 器には、 PC (ポリカーボネイト)、ポリスチレン等の化学構造に環構造を有しない榭脂 材料を選択する必要がある。
[0025] 細胞培養容器に有機膜または無機膜を被覆することで、親水化または疎水化する ことができる。これにより、細胞培養面への気泡の付着防止や細胞の接着度合いを 制御することができる。有機膜を被覆する方法として、例えば、スピンコート法、デイツ ビング法により、細胞の付着を促すタンパク質であるコラーゲン、ポリリジン等を塗布 する方法、蒸着重合、プラズマ重合等が挙げられる。無機膜を被覆する方法として、 例えば、スパッタリング法、蒸着法等が挙げられる。また、細胞培養容器の一部分を マスクすることにより、他の部分のみを有機膜または無機膜により被覆することもでき る。これにより、培養試験条件の幅をさらに広くすることができる。
[0026] スパッタリング法、蒸着法等の無機膜形成法は、油浸レンズ観察法への適用もでき る。通常、油浸レンズに使用するオイルには、細胞を培養するガラスプレートおよび 光学レンズと光学物性を適合させるため、有機溶剤が配合されている。有機溶剤は、 榭脂製細胞培養容器に浸透し、白化や溶解の問題を発生させるため、適用できない 可能性がある。無機材料は、ガスバリヤ一効果と同時に、耐有機溶剤性を有するた め、油浸レンズのオイルが接触する細胞培養容器の底面に、無機膜を形成すること で、油浸レンズ観察法への適用も可能となり、榭脂製細胞培養容器の適用範囲を広 げることができる。透過光観察を行う場合、膜厚を 400nm以下とするカゝ、 SiO等の透
2 明無機材料を用いることが好まし 、。
[0027] 発明の実施の形態 2
上記の細胞が培養される面に、複数のマイクロ空間構造を有する榭脂製の細胞培 養容器を用いることもできる。実施の形態 2にかかる細胞培養容器の構成について図 2Aおよび図 2Bを用いて説明する。図 2Aは、実施の形態 2にかかる細胞培養容器の 構成を示す平面図である。図 2Bは、図 2Aの ΠΒ— IIB'断面図である。 [0028] 細胞培養容器には、図 2Aに示すように、複数のマイクロ空間構造を構成する凹凸 パターンが形成されている。凹凸パターンは、図 2Bに示すように、 2段の階段状に形 成されている。すなわち、細胞培養容器の細胞を培養する面に、格子状に形成され た第 1の凸部 3と、その上に形成された直方体状の第 2の凸部 4からなる 2段の凸部 5 が形成されている。この 2段の凸部 5により形成される空間が凹部 2となる。すなわち、 凹部 2は、第 1の凸部 3により完全に囲まれた凹部と第 2の凸部 4により形成される凹 部とからなる。第 1の凸部 3の側壁 6および第 2の凸部 4の側壁 7は底面に対して略垂 直に形成されている。さらに、細胞培養容器の表面全体に無機膜 1が形成されてい る。
[0029] 第 1の凸部 3は、図 2Aに示すように矩形状の凹部 2の四辺を囲むよう格子状に配置 されている。第 2の凸部 4は、隣接する凹部 2の間の第 1の凸部 3の上に島状に配置 されている。第 2の凸部 4は、矩形状の凹部 2の四辺のそれぞれに設けられている。 そのため、凹部 2は完全には仕切られておらず、矩形状の凹部 2の 4つの頂点部分 において、隣接する凹部 2と連通している。なお、凹凸パターンを 2段以上の階段状 に形成することが好ましいが、 1段でもよい。
[0030] 上記の複数のマイクロ空間構造を有する榭脂製細胞培養容器の少なくとも細胞を 培養する面に、所望の厚さおよび酸素透過率を有する無機膜 1を形成することで、細 胞の接着能、増殖機能に加え、細胞の伸展方向や形態の制御試験等、幅広い用途 に提供することができる。また、この細胞培養容器は、従来のパターン付きガラス製プ レートと対比しても充分に高い精度を発揮することができる。さらに、安価に形成する ことができるため、その利点を発揮できるような産業上大量に使用される用途に、特 【こ; して 0
[0031] 上記の細胞が培養される面に、複数のマイクロ空間構造を有する榭脂製の細胞培 養容器の製造方法について説明する。この製造方法は、基板上にマイクロ空間構造 を形成するステップと、基板上に形成されたマイクロ空間構造パターンまたはその転 写パターンにしたがって金属を付着させ、前記榭脂製プレートの構造パターンの反 対パターンを有する金属構造体を形成するステップと、前記金属構造体のパターン を転写して榭脂製プレートを形成するステップとを備える。 [0032] 詳細には以下の通りである。
(i)基板上への第 1レジスト層の形成
(ii)基板とマスク Aとの位置合わせ
(iii)マスク Aを用 V、た第 1レジスト層の露光
(iv)第 1レジスト層の熱処理
(V)第 1レジスト層上への第 2レジスト層の形成
(vi)基板とマスク Bとの位置合わせ
(vii)マスク Bを用いた第 2レジスト層の露光
(viii)第 2レジスト層の熱処理
(ix)レジスト層の現像
を行い、所望のレジストパターンを形成する。
(X)さらに、形成されたレジストパターンを導電化処理した後、形成されたレジストパタ ーンにしたがって、基板上に金属構造体をメツキにより形成する。
(xi)この金属構造体を型として、榭脂成形品を形成する
こと〖こよって、細胞培養容器が製造される。
(V)〜 (viii)の工程は任意であり、省略できる。一方、(V)〜 (viii)の工程を複数回繰 り返すことちでさる。
[0033] レジストパターン形成処理についてさらに詳細に説明する。
基板上に、例えば、深さ 30 mと深さ 100 mの構造体を得ようとした場合、第 1レ ジスト層(厚さ 70 m)、第 2レジスト層(厚さ 30 m)順に形成し、各層に露光、また は露光、熱処理を行う。現像工程では、最初に第 2レジスト層である深さ 30 /z mのパ ターンが得られ、次に第 1レジスト層と第 2レジスト層を合わせた深さ 100 μ mのパタ ーンが得られる。深さ 100 mのパターンが得られた時点で、第 2レジスト層である深 さ 30 mのパターンを現像液に溶解、または変形させないためには、各層の現像液 への溶解性を制御させることが要求される。
[0034] 光分解型のポジ型レジストを用いて、耐アルカリ性を発現させる方法の一つとして、 ベータ時間 (溶剤の乾燥時間)を長くし、レジストを硬化させることがあげられる。通常 、レジストは膜厚、シンナー等の溶剤濃度および感度に応じてベータ時間を設定して いる。この時間を長くすることによって耐アルカリ性を持たせることができる。また、第 1 レジスト層のベータが進行しすぎると、レジストが極度に硬化し、後の現像において光 が照射された部分を溶解させパターンを形成することが困難になることから、ベータ 時間を短くする等、適宜選択することが好ましい。ベータに用いる装置は、溶剤を乾 燥できれば特に限定されるものではなぐオーブン、ホットプレート、熱風乾燥機等が あげられる。光分解型のポジ型レジストは光架橋型のネガ型レジストと比較して、耐ァ ルカリ性の発現幅は制限されるため、設定するレジスト厚さは、各層を合わせて 5〜2 00 μ mの範囲内が好ましぐ 10〜: LOO μ mの範囲内であることがより好ましい。
[0035] 光架橋型のネガ型レジストを用いて耐アルカリ性を発現させる方法として、ベータ時 間の最適化の他に、架橋密度の最適化があげられる。通常、ネガ型レジストの架橋 密度は、露光量によって設定することができる。化学増幅系ネガ型レジストの場合、 露光量および熱処理時間によって架橋密度を設定することができる。この露光量、ま たは熱処理時間を長くすることによって、耐アルカリ性を発現させることができる。光 架橋型のネガ型レジストの場合、設定するレジスト厚さは、各層を合わせて 5〜500 μ mの範囲内が好ましく、 10〜300 μ mの範囲内であることがより好まし!/、。
[0036] (i)基板 11上への第 1レジスト層 12の形成について説明する。
図 3Aに基板 11上に第 1レジスト層 12が形成された状態を示す。成形品形成ステツ プで得られる榭脂製細胞容器の平面度は、基板 11上へ第 1レジスト層 12を形成する 工程で決定づけられる。すなわち、基板 11上に第 1レジスト層 12を形成した時点の 平面度が金属構造体、ひいては細胞培養容器の平面度に反映される。
[0037] 基板 11上に第 1レジスト層 12を形成する方法は何ら限定されないが、一般的にス ピンコート方式、デイツビング方式、ロール方式、ドライフィルムレジストの貼り合わせ 等を挙げることができる。なかでも、スピンコート方式は、回転しているガラス基板上に レジストを塗布する方法で、直径 300mmを超えるガラス基板にレジストを高 、平面 度で塗布する利点がある。従って、高い平面度を実現できる観点から、スピンコート 方式が好ましい。
[0038] 第 1レジスト層 12として用いられるレジストは、ポジ型レジスト、ネガ型レジストのいず れもでもよい。いずれの場合も、レジストの感度、露光条件により、レジストの焦点深 度が変わる。そのため、例えば、 UV露光装置を使用した場合、露光時間、 UV出力 値をレジスト厚さ、感度に応じて種類を選択するのが好まし 、。
[0039] 第 1レジスト層 12として用いるレジストがウエットレジストの場合、例えば、スピンコー ト方式で所定のレジスト厚さを得る方法としては、スピンコート回転数の変更や粘度調 整による方法がある。スピンコート回転数の変更による方法は、スピンコーターの回転 数を適宜設定することによって所望のレジスト厚さを得るものである。粘度調整による 方法は、レジスト厚さが厚い場合や塗布面積が大きい場合に、平面度が低下すること が懸念されるため、実際使用上で要求される平面度に応じて粘度を調整するもので ある。
[0040] 例えばスピンコート方式の場合、 1回で塗布するレジスト層の厚さは、高い平面度を 保持することを考慮し、好ましくは 10〜50 μ m、さらに好ましくは、 20-50 μ mの範 囲内であることが好ましい。高い平面度を保持したうえで、所望のレジスト層の厚さを 得るためには、レジスト層を複数回に分けて形成することができる。
[0041] 第 1レジスト層 12にポジ型レジストを使用した場合、ベータ時間(溶剤の乾燥)が過 度に進行しすぎると、レジストが極度に硬化し、後の現像においてパターンを形成す ることが困難になることから、設定するレジスト厚さが 100 m以上でない場合、ベー ク時間を短くする等、適宜選択することが好ましい。
[0042] (ii)基板 11とマスク A 13との位置合わせにっ 、て説明する。
第 1レジスト層 12のパターンと、第 2レジスト層 14のパターンにおける位置関係を所 望の設計通りにするためには、マスク A13を用いた露光時に、正確な位置合わせを 行うことが必要となる。位置合わせには、基板 11とマスク A13の同位置に切削加工を 施しピン固定する方法、レーザー干渉計を用い位置だしする方法、基板 11とマスク A13の同位置に位置マークを作製、光学顕微鏡で位置合わせをする方法等があげ られる。光学顕微鏡で位置合わせをする方法は、例えば、フォトリソグラフ法にて基板 11に位置マークを作製し、マスク A13にはレーザー描画装置で位置マークを描画す る。光学顕微鏡を用いた手動操作においても、 5 m以内の精度が簡単に得られる 点で有効である。
[0043] (iii)マスク A13を用いた第 1レジスト層 12の露光につ!、て説明する。 図 3Bに示される工程で使用するマスク A13は何ら限定されな ヽが、ェマルジョンマ スク、クロムマスク等を挙げることが出来る。レジストパターン形成ステップでは、使用 するマスク A13によって寸法、および精度が左右される。そして、その寸法、および 精度は、榭脂製細胞培養容器にも反映される。したがって、榭脂製細胞培養容器の 各寸法、および精度を所定のものとするためには、マスク A13の寸法、および精度を 規定する必要がある。マスク A13の精度を高める方法は何ら限定されないが、例え ば、マスク A13のパターン形成に使用するレーザー光源をより波長の短いものに変 えることを挙げることができるが、設備費用が高額であり、マスク A13製作費が高額と なるため、榭脂製細胞培養容器が実用的に要求される精度に応じて適宜規定する のが好ましい。
[0044] マスク A13の材質は温度膨張係数、 UV透過吸収性能の面カゝら石英ガラスが好ま しいが比較的高価であるため、榭脂成形品が実用的に要求される精度に応じて適宜 規定するのが好ましい。設計通りの所望の深さまたは高さが異なる構造体、あるいは 、第 1レジストパターンと第 2レジストパターンが異なる構造体を得るには、第 1レジスト 層 12および第 2レジスト層 14の露光に用いるマスクのパターン設計 (透過 Z遮光部) が確実であることが必要であり、 CAE解析ソフトを使用したシミュレーションもその解 決策の一つである。
[0045] 露光に用いられる光源は設備費用が安価である紫外線またはレーザー光であるこ とが好ましい。シンクロトロン放射光は、設備費用が高額であり、実質的に榭脂製プレ ートの価格が高額となるものの、露光深度が深いものを得たい場合などに用いること ができる。
[0046] 露光時間や露光強度等の露光条件は第 1レジスト層 12の材質、厚み等により変化 するため、得られるパターンに応じて適宜調節することが好ましい。特に空間構造パ ターンの寸法、および精度に影響を与えるため、露光条件の調節は重要である。ま た、レジストの種類により焦点深度が変わるため、例えば UV露光装置を使用した場 合、露光時間、 UV出力値をレジストの厚さ、感度に応じて選択するのが好ましい。
[0047] (iv)第 1レジスト層 12の熱処理について説明する。
露光後の熱処理は、レジストパターンの形状を補正するためにァニールと!、われる 熱処理が知られている。ここでは、化学架橋を目的とし、化学増幅系ネガ型レジストを 使用した場合のみに熱処理を行う。化学増幅系ネガ型レジストとは、主に、 2成分系 または 3成分系からなり、露光時の光によって、例えば、化学構造の末端のエポキシ 基が開環し、熱処理によって架橋反応させるものである。熱処理時間は、例えば膜厚 100 mの場合、設定温度 100°Cの条件下においては数分で架橋反応は進行する
[0048] 第 1レジスト層 12の熱処理が進行しすぎると、後の現像において未架橋部分を溶 解させパターンを形成することが困難になることから、設定するレジスト厚さが 100 m以上でない場合、熱処理時間を短くする、または後の第 2レジスト層 14の熱処理の みとする等、適宜選択することが好ましい。
[0049] (V)第 1レジスト層 12上への第 2レジスト層 14の形成につ!、て説明する。
図 3Cに第 2レジスト層 14が形成された状態を示す。この第 2レジスト層 14の形成は 、上記 (i)において説明した第 1レジスト層 12の形成と同様の方法による。また、スピ ンコート方式にて、ポジ型レジストを使用してレジスト層を形成する場合、ベータ時間 を通常の 1. 5〜2. 0倍程度とすることで、耐アルカリ性を発現させることができる。こ れにより、第 1レジスト層 12と第 2レジスト層 14の現像終了時、第 2レジスト層 14のレ ジストパターンの溶解、または変形を防止することができる。
[0050] (vi)基板 11とマスク B 15との位置合わせについて説明する。
基板 11とマスク B15との位置合わせは、上記 )について説明した、基板 11とマス ク A13との位置合わせと同様の方法による。
[0051] (vii)マスク B 15を用いた第 2レジスト層 14の露光につ!、て説明する。
マスク B15を用いた第 2レジスト層 14の露光は、上記(iii)において説明したマスク A 13を用いた第 1レジスト層 12の露光と同様の方法による。図 3Dに第 2レジスト層 14 の露光の様子を示す。
[0052] (viii)第 2レジスト層 14の熱処理につ!、て説明する。
第 2レジスト層 14の熱処理は、上記 (iv)において説明した第 1レジスト層 12の熱処 理と同様の方法による。また、第 2レジスト層 14の熱処理は、後の現像において第 1 レジスト層 12のパターンが得られた時点で、第 2レジスト層 14のパターンが溶解、ま たは変形させないために行う。熱処理によって化学架橋が進行し、架橋密度を高め ることで耐アルカリ性が発現する。耐アルカリ性を発現させるための熱処理時間は、 通常の 1. 1〜2. 0倍の範囲からレジストの厚さに応じて適宜選択することが好ましい
[0053] (ix)レジスト層 12および 14の現像について説明する。
図 3Eに示す現像工程では、用 、たレジストに対応する所定の現像液を用いること が好ましい。現像時間、現像温度、現像液濃度等の現像条件はレジスト厚みやバタ ーン形状に応じて適宜調節することが好ましい。例えば、必要な深さを得るために現 像時間を長くしすぎると、所定の寸法よりも大きくなつてしまうため、適宜条件を設定 することが好ましい。この現像工程により、レジストパターン 16が形成される。
[0054] 細胞培養容器の上面、または微細パターン底部の平面精度を高める方法としては 、例えば、レジスト塗布で使用するレジスト種類 (ネガ型、ポジ型)を変更する方法、金 属構造体の表面を研磨する方法などがあげられる。
[0055] なお、所望の造型深さを得るために複数のレジスト層を形成する場合、それら複数 のレジスト層を同時に露光'現像処理する、あるいは、一つのレジスト層を形成および 露光処理した後、さらにレジスト層の形成および露光処理を行い、 2つのレジスト層を 同時に現像処理することができる。
[0056] (X)金属構造体形成ステップについてさらに詳細に説明する。
金属構造体形成ステップとはレジストパターン形成ステップで得られたレジストパタ ーン 16に沿って金属を形成し、金属構造体 18のマイクロ空間構造面をレジストパタ ーン 16に沿つて形成することにより、金属構造体 18を得る工程である。
[0057] 図 3Fに示すように、この工程では予めレジストパターン 16に沿って導電性膜 17を 形成する。導電性膜 17の形成方法は、特には限定されないが、好ましくは、真空蒸 着法、スパッタリング法等による。導電性膜 17に用いられる導電性材料としては金、 銀、白金、銅、アルミニウムなどを挙げることができる。
[0058] 図 3Gに示すように、導電性膜 17を形成した後、レジストパターン 16に沿って金属 をメツキにより形成し、金属構造体 18を形成する。メツキ方法は特に限定されないが、 例えば電解メツキ、無電解メツキ等を挙げることができる。用いられる金属は特に限定 されないが、ニッケル、ニッケル コバルト合金、銅、金を挙げることができ、経済性. 耐久性の観点力 ニッケルが好ましく用いられる。
[0059] 金属構造体 18はその表面状態に応じて研磨しても構わない。ただし、汚れが造形 物に付着することが懸念されるため、研磨後、超音波洗浄を実施することが好ましい 。また、金属構造体 18はその表面状態を改善するために、離型剤等で表面処理して も構わない。なお、金属構造体 18の深さ方向の傾斜角度は、榭脂成形品の形状か ら 50° 〜90° であることが望ましぐより望ましくは 60° 〜87° である。メツキにより 形成した金属構造体 18はレジストパターン 16から分離される。
[0060] (xi)成形品形成ステップにつ!/、て詳細に説明する。
成形品形成ステップは、図 3Hに示すように、前記金属構造体 18を型として、榭脂 成形品 19を形成する工程である。榭脂成形品 19の形成方法は特に限定されないが 、例えば射出成形、プレス成形、モノマーキャスト成形、溶剤キャスト成形、押出成形 によるロール転写法等を挙げることができ、生産性、型転写性の観点から射出成形 が好ましく用いられる。所定の寸法を選択した金属構造体 18を型として射出成形で 榭脂成形品 19を形成する場合、金属構造体 18の形状を高い転写率で榭脂成形品 19に再現することができる。転写率を確認する方法としては、光学顕微鏡、走査電子 顕微鏡 (SEM)、透過電子顕微鏡 (TEM)等を用いる方法がある。
[0061] 榭脂成形品 19の平面度の最小値は、工業的に再現し易い観点から 1 μ m以上で あることが好ましい。榭脂成形品 19の平面度の最大値は、例えば、該成形品に反り 等が発生して光学系ユニットと接触しない等、支障とならない観点から 200 m以下 であることが好ましい。榭脂成形品の造形部に対する寸法精度は、工業的に再現し 易い観点から ±0. 5〜 10%の範囲内であることが好ましい。
[0062] 以下に、本発明にカゝかる実施例および比較例を示す。これらの実施例および比較 例は、形成する無機膜 1の材質'厚さ、酸素透過率を変量し、培養細胞の細胞生存 率すなわち接着能および増殖能を解析したものである。無機膜 1の厚さは、株式会 社アルバック製の表面形状測定器 (DEKTAK3030)による触針法にて測定した。 乾燥状態 20°Cでの酸素透過率は、東洋精機のガス透過率測定装置 (型式: NO. 5 71)を用いて測定した。光学物性値である全光透過率およびヘイズ値は、株式会社 スガ試験機製の可視光線透過率計 (型式: HA-TR)を用いて測定した。具体的に は、全光線透過率を JIS K6714に準拠した方法で 2回測定し、その平均値を求め た。また、細胞の接着能は、比色分析法である Crystal Violet法で解析した。細胞の 増殖能は、比色分析法である MTT法で解析し、比較例 1を 100%とした。
[0063] Crystal Violet法は、 Crystal Violetが生細胞に取り込まれることを利用した比色分 析法である。具体的には、 5. 0 X 105個のラット脳海馬神経細胞をインキュベーター 内で 2時間かけて培養した後、生理食塩水で洗浄し、基板に接着している細胞と、浮 遊(死んでいる)細胞とを区分した。次に、 Crystal Violetで染色した後、 SDS (sodium dodecyl sulfate)溶液を用いて基板に付着している細胞を溶解し、波長 540nmの吸 光度を測定し、比較例 1と比較した。
[0064] MTT法は、 MTT (テトラゾリゥム塩の一種)が細胞内の脱水素酵素による反応によ つて、ホルマザンに変化することを利用した染色法である。細胞が元気な場合は酵素 活性が高ぐホルマザンへの還元が高ぐホルマザン濃度が高くなる。この濃度差を 吸光度として細胞数計測に利用したものである。具体的には、 5. 0 X 105個のラット 脳海馬神経細胞をインキュベーター内で 3時間かけて培養した後、生理食塩水で洗 浄し、基板に接着している細胞と、浮遊 (死んでいる)細胞とを区分した。インキュべ 一ター内で 48時間かけて培養した後、 MTTを含む培養液と交換しさらに 3時間培養 を続けた。そして、イソプロパノールを加えてホルマザンを溶解、波長 570nmの吸光 度を測定し、比較例 1と比較した。
[0065] [比較例 1]
市販の滅菌済みのポリスチレン製シャーレ( Φ 90mm,深さ 20mm、板厚 1. Omm) を使用した。無機膜 1による被覆は実施しなカゝつた。乾燥状態 20°Cでの酸素透過率 は、 6500fmolZm2' s'Paであった。培養される面の突起形状は、幅 10nm、ァスぺ タト比 0. 05であった。全光線透過率 86%、ヘイズ値 2. 7%であった。
[0066] [比較例 2]
株式会社クラレ製のアクリル榭脂 (パラペット GH - S)を使用し、射出成形法により、 幅 24mm、長さ 74mm、厚さ 1. Ommの榭脂プレートを作製した後、滅菌を行った。 無機膜 1による被覆は実施しなカゝつた。乾燥状態 20°Cでの酸素透過率は、 9500fm olZm2' s 'Paであった。光学物性値は、全光線透過率 91%、ヘイズ値 2. 1%であつ た。
[0067] [比較例 3]
株式会社クラレ製のアクリル榭脂 (パラペット GH - S)を使用し、射出成形法により、 幅 24mm、長さ 74mm、厚さ 1. Ommの榭脂プレートを作製した後、滅菌を行った。 次に、株式会社アルバック (型式: UEP)の蒸着装置を用い、ニッケル (Ni)膜を形成 した。膜厚は、 0. 001 /z mであった。乾燥状態 20°Cでの酸素透過率は、 750fmolZ m2' s 'Paであった。光学物性値は、全光線透過率 88%、ヘイズ値 5. 7%であった。
[0068] [比較例 4]
株式会社クラレ製のアクリル榭脂 (パラペット GH - S)を使用し、射出成形法により、 幅 24mm、長さ 74mm、厚さ 1. Ommの榭脂プレートを作製した後、滅菌を行った。 次に、株式会社アルバック (型式: UEP)の蒸着装置を用い、アルミ (A1)膜を形成し た。膜厚は、 0. 001 /z mであった。乾燥状態 20°Cでの酸素透過率は、 1500fmolZ m2' s 'Paであった。光学物性値は、全光線透過率 82%、ヘイズ値 7. 9%であった。
[0069] [実施例 1]
株式会社クラレ製のアクリル榭脂 (パラペット GH - S)を使用し、射出成形法により、 幅 24mm、長さ 74mm、厚さ 1. Ommの榭脂プレートを作製した後、滅菌を行った。 次に、株式会社アルバック (型式: UEP)の蒸着装置を用い、アルミ (A1)膜を形成し た。膜厚は、 0. 02 /z mであった。乾燥状態 20°Cでの酸素透過率は、 75fmolZm2' s 'Paであった。光学物性値は、全光線透過率 21%、ヘイズ値 1. 9%であった。
[0070] [実施例 2]
株式会社クラレ製のアクリル榭脂 (パラペット GH - S)を使用し、射出成形法により、 幅 24mm、長さ 74mm、厚さ 1. Ommの榭脂プレートを作製した後、滅菌を行った。 次に、株式会社アルバック (型式: UEP)の蒸着装置を用い、酸化ケィ素 (SiO )膜を
2 形成した。膜厚は、 0. 10 /z mであった。乾燥状態 20°Cでの酸素透過率は、 lOfmol Zm2' s 'Paであった。光学物性値は、全光線透過率 90%、ヘイズ値 3. 8%であった
[0071] [実施例 3] 株式会社クラレ製のアクリル榭脂 (パラペット GH - S)を使用し、射出成形法により、 幅 24mm、長さ 74mm、厚さ 1. Ommの榭脂プレートを作製した後、滅菌を行った。 次に、株式会社アルバック (型式: UEP)の蒸着装置を用い、酸化ケィ素 (SiO )膜を
2 形成した。膜厚は、 2. O /z mであった。乾燥状態 20°Cでの酸素透過率は、 0. 5fmol Zm2' s 'Paであった。光学物性値は、全光線透過率 87%、ヘイズ値 5. 5%であった
[0072] [実施例 4]
株式会社クラレ製のアクリル榭脂 (パラペット GH— S)を使用し、スタンパーを使用 した射出成形法により、幅 24mm、長さ 74mm、厚さ 1. Ommの榭脂プレート上に、 高さ 20 μ mの複数の側壁によって形成されたマイクロ空間構造を有するプレートを 作製した。図 4は、実施例 4にかかる細胞培養容器の構成を示す平面図である。これ は、図 2に示す第 1の突起 3が無ぐ第 2の突起 4のみを有する構成である。この第 2の 突起 4の寸法が、幅 m、長さ m、高さ 20 mであり、配列ピッチは縦 '横と もに 100 mである。この榭脂プレートを、滅菌した。次に、株式会社アルバック (型 式: UEP)の蒸着装置を用い、酸化ケィ素(SiO )膜を形成した。膜厚は、 0. 3 m
2
であった。乾燥状態 20°Cでの酸素透過率は、 15fmolZm2' s'Paであった。光学物 性値は、全光線透過率 86%、ヘイズ値 7. 7%であった。
[0073] 以上の比較例および実施例の結果を表 1にまとめて示す。
[0074] [表 1]
無機膜 酸素透過率 光学物性 (¾) 細胞生存率 (%)
材質 厚さ (fmol/m-s-Pa) 透過率 ヘイズ値 接着能 増殖能 比較例 1 6500 86 2.7 100 100 比較例 2ノ 9500 91 2.1 75 60 比較例 3 i 0.001 jum 750 88 5.7 90 80 比較例 4 AI 0.001 1500 82 7.9 85 72 実施例 1 AI 0.02i/m 75 21 1.9 150 200 実施例 2 Si02 0.1 10 90 3.8 210 270 実施例 3 Si02 0.5 87 5.5 190 280 実施例 4 Si02 0.3 m 15 86 7.7 195 240
[0075] 無機膜 1の厚みが 0.002 μ m以下、乾燥状態 20°Cでの酸素透過率が 500fmolZ m2's'Paより大きい場合、比較例 1よりも接着能および増殖能はともに低下した。接 着能に比べ、増殖能は、さらに低下した。比較例 3および 4では、無機膜 1の厚さが薄 いため、透明性が保持されている。一方、表面被覆が不完全であるために酸素透過 率が高い。特に、比較例 4の真空蒸着法では、膜厚が変動するため、表面被覆が不 完全になりやすい。そのため、細胞培養容器力 の毒性物質の培養液中への放出を 防止することができず、培養細胞の細胞生存率が向上しな力つたと考えられる。また 、増殖能の低下が顕著であるのは、毒性物質が培養液中に長時間放出されたため であると考えられる。
[0076] 実施例では、無機膜 1の厚みを 0.002 μ m〜5 μ m、乾燥状態 20°Cでの酸素透 過率を 500fmolZm2's'Pa以下とすることで、比較例 1よりも飛躍的に高い細胞生 存率を示した。実施例 3および 4では、無機膜 1を酸ィ匕ケィ素(SiO )膜とすることで、
2
高い透明性と細胞生存率のいずれの性能も満足しており、透過光での細胞観察用 途に特に適している。
産業上の利用可能性
[0077] 本発明は、例えば、組織から単離した細胞を培養し、試験、検査に用いるための細 胞培養容器に利用される。

Claims

請求の範囲
[1] 少なくとも細胞が培養される面に、厚さ 0. 002 m〜5 mの無機膜を備え、乾燥 状態 20°Cでの酸素透過率が 500fmolZm2 · s · Pa以下である榭脂製細胞培養容器
[2] 透明性を有することを特徴とする請求項 1に記載の榭脂製細胞培養容器。
[3] 前記無機膜が酸ィ匕ケィ素であることを特徴とする請求項 1または 2に記載の榭脂製 細胞培養容器。
[4] 細胞培養容器の最表面の全体または一部に親水性または疎水性の有機膜または 無機膜を備えることを特徴とする請求項 1〜3のいずれ力 1項に記載の榭脂製細胞培 養容器。
[5] 前記細胞が培養される面に、複数のマイクロ空間構造を有することを特徴とする請 求項 1〜4のいずれか 1項に記載の榭脂製細胞培養容器。
[6] 基板上にパターンを形成するステップと、
前記基板上に形成されたパターンまたはその転写パターンにしたがって金属を付 着させ、金属構造体を形成するステップと、
前記金属構造体のパターンを転写して細胞培養容器を形成するステップと、 前記細胞容器の少なくとも細胞が培養される面に無機膜を形成するステップとを備 えた榭脂製細胞培養容器の製造方法。
[7] 前記無機膜を形成するステップが真空蒸着法であることを特徴とする請求項 6に記 載の榭脂製細胞培養容器の製造方法。
[8] 前記基板上にパターンを形成するステップにおいて、レジストパターンを形成する ステップが、レジスト層が所望の高さまたは深さを有する構造体に形成されるまで、複 数回レジスト層の形成、露光を繰り返すステップを含むことを特徴とする請求項 6また は 7に記載の榭脂製細胞培養容器の製造方法。
[9] 前記複数回レジスト層の形成、露光を繰り返すステップにおいて、パターンの位置 を合わせるためにマスク位置を合わせるステップを備えることを特徴とする請求項 8に 記載の榭脂製細胞培養容器の製造方法。
[10] 前記複数回レジスト層の形成、露光を繰り返すステップにおいて、異なるパターン のマスクを用いることを特徴とする請求項 8または 9に記載の榭脂製細胞培養容器の 製造方法。
PCT/JP2007/052938 2006-02-24 2007-02-19 樹脂製細胞培養容器およびその製造方法 WO2007097273A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008501699A JPWO2007097273A1 (ja) 2006-02-24 2007-02-19 樹脂製細胞培養容器およびその製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006-048046 2006-02-24
JP2006048046 2006-02-24

Publications (1)

Publication Number Publication Date
WO2007097273A1 true WO2007097273A1 (ja) 2007-08-30

Family

ID=38437313

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/052938 WO2007097273A1 (ja) 2006-02-24 2007-02-19 樹脂製細胞培養容器およびその製造方法

Country Status (3)

Country Link
JP (1) JPWO2007097273A1 (ja)
TW (1) TW200738871A (ja)
WO (1) WO2007097273A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007228818A (ja) * 2006-02-28 2007-09-13 Kuraray Co Ltd 細胞培養容器、その製造方法および細胞培養方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63196281A (ja) * 1987-02-12 1988-08-15 Sumitomo Electric Ind Ltd 細胞培養用基材
JPH01141588A (ja) * 1987-11-26 1989-06-02 Nippon Telegr & Teleph Corp <Ntt> 生体細胞成長用基板
JPH04262780A (ja) * 1991-02-15 1992-09-18 Hitachi Chem Co Ltd 神経線維の成長方向を制御する素子及びその製造法
JPH05230249A (ja) * 1991-11-05 1993-09-07 Japan Synthetic Rubber Co Ltd 基材の表面処理方法
JPH08116963A (ja) * 1994-10-21 1996-05-14 Toyo Ink Mfg Co Ltd 細胞培養用基材
JP2005080607A (ja) * 2003-09-10 2005-03-31 National Food Research Institute 細胞培養プレートおよびその製造方法
JP2005168494A (ja) * 2003-11-17 2005-06-30 Hitachi Ltd 細胞培養容器、及び培養細胞
WO2006075597A1 (ja) * 2005-01-11 2006-07-20 Kuraray Co., Ltd. 伸展方向が制御された細胞の培養方法
JP2006325532A (ja) * 2005-05-30 2006-12-07 Hitachi Ltd 細胞培養容器,細胞培養容器の製造方法、及び培養細胞

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63196281A (ja) * 1987-02-12 1988-08-15 Sumitomo Electric Ind Ltd 細胞培養用基材
JPH01141588A (ja) * 1987-11-26 1989-06-02 Nippon Telegr & Teleph Corp <Ntt> 生体細胞成長用基板
JPH04262780A (ja) * 1991-02-15 1992-09-18 Hitachi Chem Co Ltd 神経線維の成長方向を制御する素子及びその製造法
JPH05230249A (ja) * 1991-11-05 1993-09-07 Japan Synthetic Rubber Co Ltd 基材の表面処理方法
JPH08116963A (ja) * 1994-10-21 1996-05-14 Toyo Ink Mfg Co Ltd 細胞培養用基材
JP2005080607A (ja) * 2003-09-10 2005-03-31 National Food Research Institute 細胞培養プレートおよびその製造方法
JP2005168494A (ja) * 2003-11-17 2005-06-30 Hitachi Ltd 細胞培養容器、及び培養細胞
WO2006075597A1 (ja) * 2005-01-11 2006-07-20 Kuraray Co., Ltd. 伸展方向が制御された細胞の培養方法
JP2006325532A (ja) * 2005-05-30 2006-12-07 Hitachi Ltd 細胞培養容器,細胞培養容器の製造方法、及び培養細胞

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007228818A (ja) * 2006-02-28 2007-09-13 Kuraray Co Ltd 細胞培養容器、その製造方法および細胞培養方法

Also Published As

Publication number Publication date
JPWO2007097273A1 (ja) 2009-07-16
TW200738871A (en) 2007-10-16

Similar Documents

Publication Publication Date Title
JP5421588B2 (ja) 細胞培養容器およびその製造方法
JP5281886B2 (ja) 細胞培養容器およびその製造方法
JP4294425B2 (ja) 細胞培養プレート
US20090149345A1 (en) Microchannel array and method for producing the same, and blood measuring method employing it
JP4753672B2 (ja) 樹脂製マイクロチャネルアレイの製造方法及びこれを用いた血液測定方法
JP3990307B2 (ja) 樹脂成形品の製造方法、金属構造体の製造方法、チップ
US8980625B2 (en) Cell culture plate and method of manufacturing the same
EP2860239B1 (en) Vessel for culturing human es cells
KR100573241B1 (ko) 수지성형품의 제조방법
US20070202560A1 (en) Resin microchannel array, method of manufacturing the same and blood test method using the same
JP4806576B2 (ja) 細胞培養容器、その製造方法および細胞培養方法
JP5481044B2 (ja) 細胞評価方法及び細胞評価システム
US20130029422A1 (en) Composite Substrate for 3D Cell Culture
JP4317472B2 (ja) 樹脂製マイクロチャネルアレイ及び製造方法
US9290735B2 (en) Mammary gland epithelial cell culture
WO2007097273A1 (ja) 樹脂製細胞培養容器およびその製造方法
JPWO2007077899A1 (ja) 樹脂製プレートおよびその製造方法並びに樹脂製プレートを備える細胞培養容器
JP2013039071A (ja) 細胞培養基材及びその製造方法
Cote Development and Characterization of a Bioelectronic Scaffold for a Hybrid Brain Model
JP2007212344A (ja) ウエルプレート及びウエルプレートを用いた検査方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2008501699

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07714464

Country of ref document: EP

Kind code of ref document: A1