WO2007096513A1 - Capsules a surface modifiee pour greffage sur fibres - Google Patents
Capsules a surface modifiee pour greffage sur fibres Download PDFInfo
- Publication number
- WO2007096513A1 WO2007096513A1 PCT/FR2007/000299 FR2007000299W WO2007096513A1 WO 2007096513 A1 WO2007096513 A1 WO 2007096513A1 FR 2007000299 W FR2007000299 W FR 2007000299W WO 2007096513 A1 WO2007096513 A1 WO 2007096513A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- capsules
- support
- grafting
- fiber
- groups
- Prior art date
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J13/00—Colloid chemistry, e.g. the production of colloidal materials or their solutions, not otherwise provided for; Making microcapsules or microballoons
- B01J13/02—Making microcapsules or microballoons
- B01J13/06—Making microcapsules or microballoons by phase separation
- B01J13/14—Polymerisation; cross-linking
- B01J13/16—Interfacial polymerisation
-
- D—TEXTILES; PAPER
- D06—TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
- D06M—TREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
- D06M23/00—Treatment of fibres, threads, yarns, fabrics or fibrous goods made from such materials, characterised by the process
- D06M23/12—Processes in which the treating agent is incorporated in microcapsules
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/25—Web or sheet containing structurally defined element or component and including a second component containing structurally defined particles
- Y10T428/254—Polymeric or resinous material
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/29—Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
- Y10T428/2913—Rod, strand, filament or fiber
- Y10T428/2927—Rod, strand, filament or fiber including structurally defined particulate matter
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T442/00—Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
- Y10T442/20—Coated or impregnated woven, knit, or nonwoven fabric which is not [a] associated with another preformed layer or fiber layer or, [b] with respect to woven and knit, characterized, respectively, by a particular or differential weave or knit, wherein the coating or impregnation is neither a foamed material nor a free metal or alloy layer
Definitions
- the present invention relates to a method of grafting, by covalent bonding, hollow or solid composite capsules on any type of natural, artificial or synthetic carrier, organic or inorganic, said capsules being chemically, physically or physico-chemically modified so as to to possibly improve their affinity with said support and to functionalize them, then grafted, after activation of said capsules and / or said support.
- the invention also relates to the capsules thus modified, the supports grafted by said capsules, in particular fibers and textiles, and the use of these grafted supports, in particular fibers and textiles, for producing said articles. "function”.
- the present invention relates to a method for grafting polymer membrane composite capsules optionally comprising one or more active substances, on any type of support, in particular fibers, such as textile fibers, glass fibers, paper fibers, of wood, and others.
- the invention also relates to the modified composite capsules capable of being grafted onto said supports, as well as the supports grafted by these capsules and the articles made with said grafted supports.
- the textile industry is now experiencing a particular boom in the field of clothing called "function".
- These garments consist mainly of textile fibers, natural, artificial or synthetic, including various active ingredients and allowing for example clothing to store and return heat, to release more or less rapidly perfumes, moisturizers, therapeutic agents or to trap or retain various organic or inorganic compounds in contact with the fibers, etc.
- the active ingredients are encapsulated in microcapsules which are fixed or associated with the fibers in various ways, for example by inclusion, coating, or by ionic bonds.
- microcapsules may be sensitive, for example, to body heat and / or the external environment thus influencing the release of various molecules.
- the capsules are trapped directly in the heart of the fiber.
- the advantage of this technique is that the capsules are permanently fixed in the fiber.
- This process can be implemented only for synthetic fibers spun by extrusion at low temperature.
- the encapsulated active ingredient is difficult to access or diffuse with difficulty through the membrane of the capsule and through the fiber to the surface thereof.
- the fixing of capsules on any type of fiber, and in particular natural fibers is now generally used in the coating technique.
- the capsules are dispersed in a cross-linked polymer that is coated on the fibers.
- the fixing of the capsules is permanent, and the process is easy to implement.
- the fibers, thus coated with the crosslinked polymer and in which the capsules are dispersed are less pleasant to the touch.
- the encapsulated active ingredient is difficult to access, or diffuse with difficulty through the membrane of the capsule and through the coating varnish.
- Another technique still involves the fixing of the capsules by ionic bonds on the fibers.
- This technique uses the fact that the fibers generally have a surface potential. Capsules are synthesized to exhibit cationic or anionic functions on the outer surface of the membrane and are ionically attached to the fibers.
- an advantage is a very simple implementation of the process. The major disadvantage is the very poor wet performance. After some washes, almost all the capsules disappeared from the surface of the fibers.
- More recent techniques use the known methods of grafting dyes on textile fibers, that is to say a grafting by covalent bonds.
- the patent application WO 01/06054 discloses an active substance contained in a polymer capsule, the surface of which has reactive groups allowing said covalent bond with the fiber via a binder.
- the description of this technique is very general, and the examples relate solely to cotton fibers, on which are grafted capsules containing an active material, said capsules being bonded to the cotton fibers via a "Bridge" provided by a resin having methylol groups.
- the covalent bond is created between two hydroxyl groups (-OH) with removal of a molecule of water, in the presence of a Lewis acid catalyst.
- the methylol resin is a urea resin.
- These groups can undesirably inter-react with the polymer capsules, in particular by forming agglomerates of capsules that are harmful to a good distribution of the capsules on the fibers.
- the Applicant has now discovered a method for grafting composite capsules, solid or hollow, on fibers, in particular textile fibers, said method being also suitable for grafting said capsules on any type of support, presenting directly, or under latent form, or after pre-treatment, functional groups capable of forming covalent bonds with said capsules.
- the present invention therefore proposes a covalent bond grafting process of hollow or filled polymer capsules, optionally containing an active ingredient, on any type of medium, especially fibers, in particular textile fibers, which process does not have the drawbacks of the known processes of the prior art.
- the method of the present invention allows among other things to meet the need for textile fibers "function", including able to store and return the heat, to release more or less quickly perfumes, moisturizing agents, therapeutic agents, or to trap or retain various organic or inorganic compounds in contact with the fibers, while not having the disadvantages known from the prior art.
- a first object of the present invention is to provide a method of grafting hollow or solid polymer capsules, optionally containing at least one active ingredient, on a support, natural, artificial or synthetic, organic or inorganic, grafting said capsules having improved strength over existing fastening techniques.
- An object of the invention is also to provide a method of grafting hollow composite polymer capsules, optionally containing at least one liposoluble or water-soluble active ingredient, on a support, natural, artificial or synthetic, organic or inorganic, by intermediate of a strong chemical bond, and definitively.
- Another object of the invention is to provide a method for grafting hollow or solid composite polymer capsules, optionally containing at least one liposoluble or water-soluble active ingredient, on a support, natural, artificial or synthetic, organic or inorganic, while respecting the intrinsic quality of said support.
- the present invention also aims to provide a method for grafting hollow or solid composite polymer capsules, optionally containing at least one liposoluble or water-soluble active ingredient, on a support, natural, artificial or synthetic, organic or inorganic, of which the qualities, especially to the touch, are not substantially modified.
- the present invention aims to provide a method of grafting hollow or filled composite polymer capsules, optionally containing at least one liposoluble or water-soluble active ingredient, on a support, natural, artificial or synthetic, organic or inorganic, in particular fibers, natural, artificial or synthetic, organic or inorganic, without using coating agent on said support or said fibers.
- Another object of the invention is to provide a method of grafting hollow or solid composite polymer capsules, optionally containing at least one liposoluble or water-soluble active ingredient, on a support, natural, artificial or synthetic, organic or inorganic , in particular fibers, said capsules being grafted onto said support or said fibers in a homogeneous and controlled manner. Still other objectives will become clear upon reading the description of the invention which follows. It has now been discovered that these goals can be achieved, in whole or in part, by the grafting method of the present invention.
- support denotes any substrate, directly or in latent form, or after pretreatment, or after activation, functional groups capable of forming covalent bonds with said capsules.
- Such groups are, without limitation, hydroxy, thiol, epoxy, carboxy, halo, amino, amido, oxo, thioxo, cyano, ethylenic or acetylenic unsaturation, and the like.
- the groups can be directly present on the support, or even in latent form and can be made active. (activation step) by means of one or more chemical, physical or physico-chemical treatments, known to those skilled in the art.
- the carrier according to the invention may also not have, or may have an insufficient quantity, reactive groups.
- a pretreatment also known in the art, such as, and without limitation, a plasma treatment or a corona treatment, is performed in order to reveal, or to multiply, the reactive groups on the support.
- the suitable supports in the sense of the invention are advantageously, and not limited to, wood, paper, stone, and minerals in general, glass, vegetables, leather, skin, polymers and plastics in general, and others.
- Composite supports comprising two or more of these supports are also included in the present invention.
- the support used in the process according to the present invention may be in raw form, or in any type of form, and in particular in the form of film, coating, paint, varnish, sheet, plate, fiber, son, and others.
- a particularly preferred support for the process according to the invention is a support in the form of fibers, in particular textile fibers, wood fibers, glass fibers, carbon fibers, and in particular textile fibers.
- fiber means any object whose length is much greater, of the order of a few hundred to 1000 times or more than its section.
- the section of a fiber can be of any shape, round, serrated or fluted, or in the form of beans, but also multilobal, in particular trilobed or pentalobed, X-shaped, ribbon, hollow, square, triangular, elliptical , Or other.
- inorganic fiber is meant a fiber of mineral origin, such as fiberglass, carbon fiber, etc..
- organic fiber includes any fiber that is not of mineral origin.
- a natural fiber is by definition a fiber naturally present in nature, directly or after mechanical and / or physical treatment. In this category, fibers of plant origin are grouped by ⁇
- examples are cotton, linen, wood, hemp, rummy, jute, and those of animal origin such as wool, silk, angora, etc.
- the artificial fibers are derived from natural fibers which have been subjected to one or more chemical treatments in order to improve in particular the mechanical properties and / or physicochemical.
- the cellulosic fibers are obtained by regeneration or modification of the cellulose, and are for example the fibers known as viscose, acetate, triacetate, etc.
- Synthetic fibers include fibers obtained by chemical synthesis and are generally fibers consisting of one or more polymers and / or copolymers, mono- or multi-components (for example heart-skin type), which are generally extruded and / or drawn to the desired diameter of the fiber.
- synthetic fibers may be polyester or polyamide, of which a well-known representative is nylon, polyvinyl chloride, polyethylene, polypropylene, etc.
- the fibers are essentially characterized by their length. These can be short (cotton for example) or long (wool) or can be in the form of filaments, such as silk. Rather than talking about the diameter of the fibers, it is customary in the field of textile fibers to characterize them by their title.
- the most common title unit is tex, and its submultiples, such as decitex (or dtex) or millitex (mtex).
- the present invention therefore relates to a method for grafting hollow or solid polymer composite capsules, on any type of support, in particular on fibers, in particular textile fibers, as they have just been defined.
- composite capsule is meant any type of individualized particle consisting of a polymer part and a part "active ingredient” (or “material, or active substance”).
- hollow composite capsule is meant a particle consisting of a polymer membrane continuous solid enveloping one or more cores optionally containing one or more active ingredients (i.e., an encapsulated product).
- solid composite capsule is meant a particle consisting of a continuous polymer material in which are dispersed one or more active ingredients.
- the composite capsules behave like reservoirs and allow isolation or retention or release of said active ingredient (s). These particles generally have sizes of between a few nanometers and a few millimeters.
- the capsule is generally constituted by a membrane whose role is, on the one hand, to isolate the active substance from the external environment, and on the other hand, to allow better preservation of said active substance, or even direct and / or immediate, prolonged, delayed and / or controlled release of the encapsulated active substance in conventional uses which are made encapsulated products.
- the active ingredient can also be used to "trap" molecules outside the capsule that have crossed the membrane or diffused through the membrane.
- encapsulated product indicates that a product is enclosed, in the solid state or liquid or gaseous, alone or in combination with formulating agents, in a hollow body, or in a continuous medium, the capsule, in order to isolate it from the outside environment.
- capsules There are many methods for preparing capsules, and among these, there may be mentioned in particular the synthesis of capsules by simple or complex coacervation, or by melting or gelation of the support material (spray coating). Other techniques use emulsion or dispersion polymerization or suspension, solid particle synthesis, vesicle synthesis, or the synthesis of capsules by fluidized bed, by coating, for example in bed fluidized air. Another method uses the technique of interfacial polycondensation in dispersed medium, disclosed technique, for example by PW Morgan et al., J. Polym. ScL, 40, (1959), 299-327, for the synthesis of flat films. This technique has been adapted to capsule synthesis (R. Arshady, J.
- the constituent polymers of the capsule membranes are advantageously chosen from common polymers, such as, for example, polyesters, polyamides, polyurethanes or natural polymers of vegetable or marine origins.
- the preparation of capsules by interfacial polycondensation in dispersed medium leads to capsules particularly suitable for grafting on fibers according to the present invention.
- the capsules prepared according to this method offer the advantage of proposing a very large diversity of nature of the polymer constituting the membrane, and consequently a very large diversity of reactive groups capable of forming covalent bonds with the reactive groups present on the fibers.
- Composite capsules obtained by interfacial polycondensation dispersed medium have a mechanical strength particularly suitable for applications envisaged in the context of the present invention.
- the capsule membranes obtained according to this process also offer an optimum degree of porosity for said applications.
- Another advantage of the capsules obtained by interfacial polycondensation in a dispersed medium is that it is possible to obtain biocompatible capsules, that is to say perfectly biotolerated and non-toxic to humans, animals, animals, animals and animals. plants and for the living environment in general. This is particularly important when grafted fibers are used with composite capsules for the preparation of fabrics and garments to come into contact with living tissues, such as the human epidermis, to avoid allergy problems. or toxicity.
- the process for obtaining such biocompatible composite capsules is described in more detail in the patent application FR-A-2 837 724.
- capsules by interfacial polycondensation in a dispersed medium also allows the encapsulation of virtually all active substances, lipophilic or lipophobic, depending on the type of dispersion retained.
- active substances lipophilic or lipophobic, depending on the type of dispersion retained.
- any other type of capsule may of course be suitable, with however the conditions previously defined and relating to the presence of reactive groups on the surface of the membranes said capsules, these groups being able to be initially present or revealed or even created by one or more chemical, physical or physicochemical treatments.
- the diameter of the capsules that can be grafted onto the fibers can vary in very large proportions and is generally between a few nanometers and a few millimeters.
- the capsules used in the process of the invention preferably have a diameter of between approximately 0.05 ⁇ m and approximately 100 ⁇ m, advantageously included. between about 0.1 ⁇ m and about 10 ⁇ m, particularly preferably between about 0.5 ⁇ m and about 5 ⁇ m and particularly preferably a diameter of about 1 ⁇ m.
- the size of the capsules must be adapted to the size of the fibers, large diameter fibers can support relatively bulky capsules, while fine fibers, for example microfibers, will preferably be grafted by capsules whose diameter is less than one micrometer ( ⁇ m), or even much less than one micrometer.
- the fiber title will advantageously be between about 1 dtex and about 7 dtex, that is to say a diameter, depending on the nature of the the fiber considered, between about 10 microns and 30 microns.
- the diameter of the capsules will preferably be less than 1 ⁇ m.
- the present invention relates to a method for grafting hollow or solid composite capsules, on a support, said process comprising the steps of: a) optionally preparing the capsules for adaptation of the lipophilic / hydrophilic character of the surface of the capsule depending on the nature of the medium; b) functionalization of the surface of the capsules; c) activation of functionalized capsules and / or support by grafting reactive groups capable of forming covalent bonds with the reactive groups present on the surface of the support and / or functionalized capsules respectively; d) contacting the functionalized and optionally activated capsules with the possibly activated support and creating covalent bonds between said capsules said support; and e) recovering and rinsing the support comprising covalently bonded composite capsules.
- steps a) and b) can be performed in reverse order, i.e. step b) before step a). It is thus possible to functionalize the surface of the capsule, and then possibly modify the hydrophilic / lipophilic nature of the surface of the capsule to adapt it to that of the support.
- the term "adapt" in the sense of the present invention means modifying the lipophilic / hydrophilic character of the membrane of the capsule to make it substantially identical to the lipophilic / hydrophilic character of the support.
- the purpose of this operation is to make the capsules compatible with the support, and makes it possible to reduce, or even avoid, the formation of capsules aggregates, that is to say to obtain a substantially homogeneous distribution, and to controlled way, capsules on the support.
- This modification may for example be carried out by grafting hydrophilic functions, such as hydroxyl groups (-OH), onto the surface of the membranes of the capsules.
- hydrophilic functions such as hydroxyl groups (-OH)
- Any other type of means, known to those skilled in the art, for modifying the lipophilic / hydrophilic nature of the surface of the capsules is suitable in the context of the process of the present invention.
- Step b) of functionalization of the capsule surface is to "homogenize” the reactive groups on the surface of the capsule and / or improve their availability and / or increase their number.
- homoogenization is meant a chemical, physical, or physicochemical treatment, allowing the production of reactive groups on the surface of the capsules substantially identical to each other.
- the synthesis of polyamide membrane capsules by interfacial polycondensation in reverse phase leads to the presence of reactive groups, available on the membrane surface, amine, ammonium, carboxylic acid, carboxylate and acyl chloride .
- the surface of the capsule then only has reactive groups of amine type, which allows optimization and better control of the subsequent grafting reaction on the support, with the activation molecule.
- the functional groups all identical, use only one type of reaction for the formation of the covalent bond between the capsule and the activation group.
- Amine-type reactive groups are also more numerous (as seen in the diagram above), thus allowing a greater number of covalent bonds.
- the functionalization can be carried out for example by modifying the pH, and / or by grafting compounds, generally having at least two reactive groups, one of the groups allowing a covalent bond with the groups.
- the chemical, physical and physicochemical treatments involved in the abovementioned functionalization treatment are of any type and are well known to those skilled in the art, and are, for example, covalently bonded grafting methods, pH adjustments. etc.
- such compounds having at least two reactive groups and which are more particularly suitable in the case of polyamide membrane capsules obtained by reverse phase interfacial polycondensation, mention may be made of diamines, triamines, tetramines and polyamines in general, in particular ⁇ , ⁇ -diamines, including poly (oxyalkylene) amines.
- the amines described above are, according to a preferred embodiment of the present invention, chosen from ethylenediamine, di-ethylenetriamine, triethylene tetramine, tetra ethylenepentamine, tris-amino-ethylamine, linear poly (ethylene) -imines, branched poly (ethylene) imines and - x O - -
- poly (oxyalkylene) amines particularly those known under the trade name Jeffamine ® distributed by Huntsman, especially those of the ED series, EDR, D and T, and especially Jeffamine ® EDR-148, Jeffamine ® D- 230 or the Jeffamine ® T-403. All these amines allow homogeneous functionalization of the membrane surfaces of the capsules, the capsules from step b) of the process according to the present invention, in this case have functional groups -NH 2 , substantially all identical.
- steps a) and b) can be carried out simultaneously, in a single step. It is also possible to carry out the lipophilic / hydrophilic adaptation described above by means of the compound (s) used for the above-described treatment of homogenization of the reactive groups on the surface of the membrane of the capsules.
- the present invention relates to a process for grafting hollow or solid composite capsules onto a support, said process comprising the steps of: a) adaptation of the lipophilic / hydrophilic character of the capsule according to the nature of the support, and simultaneous functionalization of said surface;
- the grafting of compounds of the family of poly (oxyalkylene) amines on the surface of polyamide composite capsules not only gives said capsules a hydrophilic character compatible with that of cotton fibers. but also allows homogeneous functionalization of the reactive groups, in this case amino groups (-NH 2 ), on the surface of said capsules.
- FIG. 1 schematically represents a polyamide capsule functionalized with an amine of formula H 2 NR-NH 2 , where R represents the residue of the functionalization compound.
- Figure 2 is a schematic representation of the functionalized capsule of Figure 1 wherein the functionalizing compound is Jeffamine ® EDR-148.
- Step c) (or b ')) of the process according to the present invention is the activation step of the surfaces of the capsules which have been functionalized, and whose lipophilic / hydrophilic character has been possibly adapted to that of the support to be grafted by said capsules.
- the activation can be carried out on the support itself, or else both on the support and on the capsules.
- the functional groups present on the surface of the capsules, and / or the support are replaced and / or modified by a chemical, physical or physico-chemical treatment, so as to observe, at the surface of the capsules, and / or the support, reactive groups capable of forming covalent bonds with the reactive groups present on the support, and / or the capsules respectively, the reaction forming the covalent bonds being preferably a reaction total, irreversible, rapid kinetics, and advantageously does not require the action of a catalyst.
- the covalently bonding creation reactions will also be advantageously reactions which take place at atmospheric pressure and at temperatures between -10 ° C. and 100 ° C., preferably in the vicinity of room temperature.
- capsules having on their surface reactive groups capable of forming covalent bonds with the support advantageously a fiber, preferably a textile fiber, by total chemical reactions, non-reversible and with relatively rapid kinetics.
- the support advantageously a fiber, preferably a textile fiber, by total chemical reactions, non-reversible and with relatively rapid kinetics.
- reference may advantageously be made to conventional works of organic chemistry dealing with chemical functions capable of reacting with each other to form covalent bonds.
- covalent bonds mentioned in the present invention may be of any type known to those skilled in the art, specialized in the field of organic chemistry, and are defined in particular by J. March, "Advanced Organic Chemistry", 3rd edition, pp. 3-9.
- Activation of the functionalized capsules and / or the support can for example be carried out by grafting, on the functional groups present on the surface of the capsules and / or the support, compounds (activating groups) having at least one reactive group capable of forming a covalent bond with the reactive groups present on the support and / or capsules respectively, said reaction being preferably total, irreversible and relatively fast kinetics.
- the compounds for activating the functionalized capsules and / or the support may be of any type known to those skilled in the art, comprising at least two reactive groups, one with the functional groups present on the surface of the capsules. the other with the functional groups present on the surface of the support. These compounds can also be oligomers or even polymers.
- the compounds allowing the activation of the functionalized capsules and / or the support have two, three or even more reactive groups with the groups present on the support and / or the capsules respectively.
- the capsules thus have a number of reactive groups with the support equal to twice, three times, or more, the number of reactive groups normally observed. with an activating compound having only one reactive group with said support.
- the organic compound (activating group) capable of forming a covalent bond between the surface of the functionalized capsule and the support can be chosen from those presented in the following table:
- activating groups which may be advantageously used in the context of the present invention are for example those conventionally used in the field of textile fiber dyes and are well known to those skilled in the art. , specialized in the technique of coloring textiles.
- the activations defined above form an integral part of the present invention.
- activated capsule is a hollow or solid polyamide composite capsule, optionally containing at least one active ingredient, functionalized with amino groups (-NH 2 ), and activated to present groups. chlorinated (-CI).
- Figure 3 provides a schematic representation of the capsule thus defined, where R and R 'represent the residues of functionalization and activation compounds, respectively, shown below, and n represents an integer equal to 1, 2 or 3:
- those for which the functionalization compound is chosen from ethylenediamine, diethylenetriamine, triethylenetetramine and tetraethylenepentamine are preferred.
- trisaminoethylamine, linear poly (ethylene) imines, branched poly (ethylene) imines and poly (oxyalkylene) amines more preferably ethylenediamine, diethylenetriamine, triethylenetetramine and poly ( oxyalkylene) amines, especially those known under the trade name Jeffamine ® distributed by Huntsman so entirely preferably those of .ED series, EDR, D and T, and especially Jeffamine ® EDR-148, Jeffamine ® D-230 or the Jeffamine ® T-403.
- a particularly preferred polyamide composite capsule is that shown schematically in Figure 4, with the functionalized Jeffamine ® EDR-148, and activated with 2,4,6-trichlorotriazine.
- This capsule is particularly quite suitable for grafting onto cotton fibers, because of some of its hydrophilic character (provided by Jeffamine ®) substantially identical to that of the cotton fiber, and on the other hand because of its chlorinated reactive groups (2 chlorine atoms for a Jeffamine ® ) allowing the formation of a covalent bond by reaction with the hydroxyl functions of the cotton fiber (cellulose), total reaction, irreversible and relatively fast kinetics.
- This formation reaction of the covalent bond between the functionalized and activated capsule and the support, in particular the fiber corresponds to the grafting proper of the capsule on the support, in particular the fiber.
- This pretreatment generally consists of "revealing" the reactive groups present on the support, or, in case of absence or insufficiency of such reactive groups, to make them appear, to create them, by one or more chemical, physical or physicochemical.
- the pretreatments of the supports are well known to those skilled in the art and consist, by way of non-limiting examples, in plasma treatments, or corona type and others.
- these treatments are generally similar to, or even identical to, pretreatments carried out in the field of dyeing and dyeing of textiles. We can thus refer to the books dealing with the coloring of textiles for details on pretreatments.
- the carrier support is a textile fiber, it may be subjected to one or more treatments selected from buckling, desizing, scouring, bleaching, washing, carbonizing, threshing, desizing, fixing, and others.
- a cotton fiber is generally pretreated before grafting, the pretreatment consisting of three operations: desizing, scouring and bleaching.
- the following table gives other examples of possible pretreatments, and commonly used in the textile industry, depending on the nature of the fibers:
- the reactive groups present on the surface of the support may be of any type, depending on the nature and / or the origin of the support, whether natural, artificial or synthetic.
- a cotton fiber is a cellulose fiber, having on its surface, and after optional treatment, free hydroxyl functions.
- a wool fiber has on its surface at least one, several or all functions of amino acids, that is to say the carboxylic acid, amine, thiol, phenol, amide, etc. functions.
- Reactive chemical groups are of course also present on the synthetic fibers, and for example, amine and carboxylic acid groups, being polyamide fibers, or alcohol and carboxylic acid groups on the polyester fibers.
- the glass fibers also have reactive groups, such as silanol groups Si-OH.
- the grafting reaction may be carried out either on the fibers or directly on the textile made from the fibers, and as a rule, either directly on the support as defined above, or on a finished product including a support as defined above.
- the support after any pre-treatments may be activated, for example by means of one or more activation groups, as they have been defined above for activation of the functionalized capsules.
- the actual grafting reaction that is to say the formation of the connection of the capsule with the support is performed between the functionalized capsule and the activated support.
- FIG. 5 is a diagrammatic representation of a 2,4,6-trichlorotriazine-activated cotton fiber capable of being grafted with functionalized capsules, advantageously capsules presenting predominantly free amino functions on their surface, and by functionalized capsules such as those shown in Figure 1 or Figure 2.
- reaction conditions of grafting depend on the type of support and the type of capsules used.
- the reaction may be carried out in aqueous, hydro-organic or organic medium, for example in water or in cyclohexane, in suitable pH areas.
- Mineral salts such as for example sodium carbonate (Na 2 CU 3 ) are for example usable as electrolytes, in the case of grafting polyamide capsules on cotton fibers.
- surfactants such as Hypermer ® 1083 or Tween ® 20 was also effective, especially for the grafting of Jeffamine ® functionalized or hollow activated polyamide composite capsules, activated by the 2 , 4,6-trichlorotriazine, on cotton fibers.
- a grafted support by composite capsules, functionalized and activated is another object of the present invention.
- cotton fiber by composite capsules grafted polyamide hollow or solid, functionalized Jeffamine ® EDR-148 and activated with 2,4,6-trichlorotriazine form a particularly preferred embodiment of the present invention.
- the present invention also relates to a support activated and grafted by functionalized composite capsules and whose lipophilic / hydrophilic character has been possibly previously adapted to that of said support.
- FIG 6 is a schematic representation of a grafted cotton fiber.
- This grafted fiber can be obtained either by grafting functionalized capsules as shown in Figure 2 with an activated cotton fiber as shown in Figure 5, or by grafting functionalized and activated capsules as shown in Figure 4 with a cotton fiber simply pre-treated, c that is, having on its surface free hydroxy functions.
- the resulting fibers thus have on their surface composite capsules grafted by covalent bonds.
- This type of bonding thus provides chemical and mechanical resistance, especially for prolonged and repeated washings.
- This type of covalent bond grafting also allows the work of the fiber, as practiced in the textile industry.
- the grafted fibers can thus be parallelized and then twisted together to form threads, which can then be assembled, by weaving or knitting, to form the two-dimensional support that is the fabric.
- the fibers can also be directly interwoven to obtain the nonwoven type materials.
- the fabrics undergo, before conventional post-treatments, other stages of finishing and in particular dyeing (dyeing and / or printing).
- Printing is usually done by means of rotating cylinders or by ink jet.
- dyeing it is usually carried out in full bath ("jigger") or by padding.
- conventional finishing and making that is to say directly on the son or on the fabric, the articles of clothing and other textile materials.
- Such an alternative of the method of grafting capsules onto yarns, on the fabric, on garments and other fiber-based textile materials is also within the scope of the present invention.
- the process of grafting capsules onto the yarns or the fabric is identical to the process of grafting the capsules onto the fibers and results in also forming one or more covalent bonds between the capsules and the fibers constituting the yarns and / or the fabric.
- One of the advantages of grafting capsules onto fabric is that it is possible to graft capsules onto textile materials that are not made from fibers. It is thus possible to graft composite capsules according to the method of the present invention on textile materials such as leather, natural, artificial or synthetic.
- the fabrics and other textile materials thus grafted by composite capsules behave quite like conventional fabrics of the textile field and as such can then enter the making phase.
- This operation consists in transforming fabrics and other textile materials into textile articles, for example articles of clothing such as clothing, trimmings, gloves, hosiery, tights, scarves, but also any textile-based article, for example covers - Head, shoes, capes, and canvas goods (tents, canopies), carpets, carpets, wall coverings, bed linen, gas mask cartridges, military fabrics and textiles, patches, dressings, woven prostheses, etc.
- the various supports envisaged in the present description including fibers, yarns, fabrics, textile materials and garment, but also leather, wood, paper, glass, polymeric plastics, coatings, paints , varnishes, and others covalently grafted to composite capsules, according to the method of the present invention, find a use quite interesting in many fields for the development of articles with particularly interesting properties, depending on the nature of the support, the chemical nature of the polymer of the capsule and the type of active material that may be present in the capsules.
- the support is a textile fiber or a yarn, a fabric, a fabric, etc.
- the process of the present invention allows the elaboration of so-called functional textiles, that is to say say bringing additional new functionality to said textiles.
- the possible applications may be firstly related to the mechanical and / or physicochemical properties of the grafted capsules themselves, that is to say in the absence of encapsulated active ingredient.
- Such hollow or solid capsules grafted in particular on fibers, yarns, fabrics and other textile materials can thus find particularly interesting uses for the production of adhesive, non-stick, non-slip, etc. textiles.
- the capsules may also contain at their heart one or more active ingredients, liposoluble or water-soluble that can be released, immediately, delayed, released or prolonged, or even not be released and remain inside the capsules. capsules; the said capsules thus confer on the various supports on which they are grafted, special and specific properties with high added value in various types of application fields, such as, for example, the industrial, domestic, medical, paramedical and cosmetic fields, as well as that of civil and military defense.
- the capsules contemplated in the process of the present invention which contain one or more active substances can be "refilled".
- the active substance (s) originally present and which diffused outside the capsule or which have been eliminated by any chemical, physical or physico-chemical means, (for example by washing (s) ) of the grafted support can be introduced again inside the capsules.
- the supports can thus be envisaged to treat the supports by soaking, bathing, or spraying active material in order to "recharge” said capsules.
- the supports such as fibers, yarns, fabrics and other textile materials, grafted with capsules capable of releasing one or more active ingredients and those grafted with capsules whose active ingredient produces its action.
- the supports such as fibers, yarns, fabrics, articles of confection and other textile materials comprising these grafted fibers, find for example a possible use as textiles.
- disinfectants for example anti-static, softening, bleaching agents or enzymes, etc.
- the grafted fibers according to the present invention can also be used for the preparation of yarns, fabrics, articles of clothing and other textile materials, useful in the medical field and in the paramedical field as analgesic, venotonic, vasoprotective textiles, anti-inflammatories, etc.
- the supports that can be envisaged in the process of the present invention can also be composite supports.
- Such supports may, for example, be grafted with capsules containing an adhesive agent, in order to reinforce said supports in order to obtain better cohesion during stress aging, for example for clogging micro-cracks in the concrete, cement, plastics, wood, and others.
- a Waring-Blendor homogenizer 85 ml of cyclohexane and Hypermer ® 1083 at 10 g / l are introduced. Then 70 ml of water, 0.5 M hexamethylenediamine and 1 M sodium hydrogen carbonate are introduced. Stirring is set at 18,000 rpm for 5 minutes.
- the dispersion is then transferred to a 1 L beaker in an ultrasonic tank in which a bottom of water and ice was introduced.
- the sonification of the dispersion is carried out for 5 minutes, while stirring at 100 rpm using a horizontal paddle of polytetrafluoroethylene.
- the reaction mixture is always sonified during the introduction of this solution, and stirring at 100 rpm in the beaker is maintained so as to ensure good homogenization during the synthesis. This operation lasts about thirty minutes.
- reaction medium is transferred to a Sovirel reactor thermostated at 25 ° C and stirring is set at 200 rpm until the end of the synthesis (24 hours).
- a first washing step consists of taking up the pellet with 200 mL of chloroform containing Hypermer ® 1083 at 10 g / L, stir the dispersion thus obtained at 200 rpm for 15 min and then centrifuge at 2500 rpm for 5 min.
- the pellet is taken up in 500 mL of cyclohexane containing Hypermer ® 1083 to 10 g / L, the dispersion is stirred at 200 rev / min for 15 min and then centrifuged at 2500 rev / min for 5 min. This second washing step is repeated three times.
- the pellet is taken up in 20O mL of cyclohexane containing Hypermer ® 1083 at 10 g / L and the dispersion is stirred at 200 rpm for 5 min. The capsules can be stored in this solution.
- Capsules with a diameter of about 1 micron are obtained whose membrane is a polyamide polymer and whose core, free of active ingredient, is filled with water.
- the capsules (centrifugation pellet, ie approximately 70 ml) are taken up in 20O ml of a cyclohexane mixture and Hypermer ® 1083 at 10 g / l.
- the assembly is introduced into a Sovirel reactor thermostated at 25 ° C and 7O mL of cyclohexane, Hypermer® ® 1083 to 10 g / L and a 0.5 M solution of ethylenediamine (EDA) are added. Stirring is maintained at 200 rpm for 1 hour and then the reaction is stopped. The reaction medium is then centrifuged. The capsules are then washed according to the protocol described above (step c): washing the capsules).
- polyamide membrane capsules obtained by interfacial polycondensation in reverse system, on which are grafted, by covalent bond, trichlorotriazine molecules.
- capsules have at their surface chlorinated reactive groups capable of forming covalent bonds with the hydroxyl functions of the cellulose of the cotton fiber.
- a sample of cotton fabric is * placed in a beaker containing 600 mL of water with 20% detergent. The solution is brought to 60 ° C. and stirred for one hour. The sample is taken up and rinsed with water. Step 2: Unclogging
- the desiccated fabric sample is taken up and immersed in a 2.5 M sodium hydroxide solution. The solution is heated to 95 ° C. and stirred for one hour. The sample is taken up and rinsed with water.
- Step 3 Bleaching The desiccated and debubbled tissue sample is taken up and immersed in a solution of sodium hypochlorite at chlorometric 48 ° to 0.5 mL / L. The solution is brought to 60 ° C. and stirred for 30 minutes. The sample is taken up and rinsed with water.
- the grafting of the capsules is carried out according to a process similar to a dyeing of cotton fibers, as described for example in "Basic principles of textile coloration "by AD Broadbent, edited by” Society of dyers and colourists ", 2001.
- the capsules preserved in cyclohexane phase / Hypermer ® 1083 at 10 g / L are centrifuged at 2500 rpm for 5 minutes to separate them from the organic medium.
- the pellet is recovered and then dispersed in 600 ml water at pH 5 (buffer medium: hydrogen phthalate, potassium hydroxide and sodium hydroxide) containing Tween ® 20, 5% (v / v).
- the dispersion obtained is stirred for 15 minutes at 500 rpm.
- Tween ® 20 allows the elimination of cyclohexane.
- the dispersion is centrifuged at 2500 rpm for 5 minutes. These three operations are repeated three times to remove any trace of cyclohexane.
- the pellet is recovered and then dispersed in 600 mL of water at pH 5.
- the dispersion is stirred for 15 minutes at 500 rpm.
- the dispersion is again centrifuged at 2500 rpm for 5 minutes. These three operations are repeated three times to remove all traces of Tween ® 20.
- the microcapsules are recovered in 600 ml of water at pH 5.
- Step 2 Grafting [0151]
- a volume V (mL) of the dispersion of the microcapsules obtained in step 1 above is taken and introduced into a bottle containing the tissue sample.
- the bath ratio for the grafting of this example is set at 1:15.
- Na 2 C ⁇ 3 at 30 g / L is added, in order to promote the adsorption of microcapsules on the cotton fabric.
- the temperature rise on the machine is programmed at a rate of 3 ° C / min.
- the final grafting temperature of the microcapsules on the cotton fibers is set at 50 ° C.
- the bath is kept under stirring (10 rpm) for 15 minutes at the set temperature. At the end of this adsorption step, the bottle is removed from the machine.
- NaOH sodium hydroxide
- the bottle is returned to the machine, the bath temperature is reported at 50 0 C, and the pH is about 10.5-11.
- the reaction is conducted for about 45 to 90 minutes.
- the tissue is recovered and then rinsed with water until neutralization, that is to say a pH value at the surface of the fabric close to 7. This last stage also makes it possible to eliminate particles not fixed on the fabric.
- FIG. 7 shows cotton fibers grafted with polyamide composite capsules prepared by interfacial polycondensation in inverse system, functionalized with ethylenediamine, and activated by the
- Figure 8 shows cotton fibers grafted by polyamide composite capsules prepared by interfacial polycondensation in a reverse system, functionalized Jeffamine ® D-230, a poly (oxyalkylene) amine, and activated by 2,4,6-trichlorotriazine .
- the comparison of the fibers obtained shows, on the one hand, the absence of agglomerates of capsules on the fibers in both cases.
- the use of a hydrophilic functionalization amine allows a better grafting, in terms of number of grafted capsules, on the fibers.
- the method of the present invention thus makes it possible to perform a grafting of hollow or solid composite capsules on any type of support, in particular fibers, organic or inorganic (glass, carbon, natural, artificial or synthetic textile fiber), controlled and homogeneous way.
- the grafting method makes it possible, on the one hand, to control the level of grafting on the support and, on the other hand, to obtain a distribution of the capsules on the support, homogeneous, or at least more homogeneous than with the covalent bond grafting methods known from the prior art, in particular for grafting capsules onto textile fibers.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Textile Engineering (AREA)
- Dispersion Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Treatments For Attaching Organic Compounds To Fibrous Goods (AREA)
- Chemical Or Physical Treatment Of Fibers (AREA)
- Manufacturing Of Micro-Capsules (AREA)
- Polyamides (AREA)
- Separation Using Semi-Permeable Membranes (AREA)
Abstract
La présente invention concerne un procédé de greffage, par liaison de covalence, de capsules composites creuses ou pleines sur tout type de support naturel, artificiel ou synthétique, organique ou inorganique, lesdites capsules étant modifiées chimiquement, physiquement ou physico-chimiquement afin d'améliorer éventuellement leur affinité avec ledit support et de les fonctionnaliser, puis greffées, après activation desdites capsules et/ou dudit support. L'invention concerne également les capsules ainsi modifiées, les supports greffés par lesdites capsules, notamment des fibres et textiles, ainsi que l'utilisation de ces supports greffés, notamment fibres et textiles, pour l'élaboration d'articles dits 'de fonction'.
Description
Capsules à surface modifiée pour greffage sur fibres
[0001] La présente invention concerne un procédé de greffage, par liaison de covalence, de capsules composites creuses ou pleines sur tout type de support naturel, artificiel ou synthétique, organique ou inorganique, lesdites capsules étant modifiées chimiquement, physiquement ou physico- chimiquement afin d'améliorer éventuellement leur affinité avec ledit support et de les fonctionnaliser, puis greffées, après activation desdites capsules et/ou dudit support.
[0002] L'invention concerne également les capsules ainsi modifiées, les supports greffés par lesdites capsules, notamment des fibres et des textiles, ainsi que l'utilisation de ces supports greffés, notamment fibres et textiles, pour l'élaboration d'articles dits "de fonction".
[0003] Plus particulièrement, la présente invention concerne un procédé de greffage de capsules composites à membrane polymère comprenant éventuellement une ou plusieurs substances actives, sur tout type de support, notamment des fibres, telles que fibres textiles, fibres de verre, de papier, de bois, et autres. L'invention concerne également les capsules composites modifiées aptes à être greffées sur lesdits supports, ainsi que les supports greffés par ces capsules et les articles réalisés avec lesdits supports greffés.
[0004] L'industrie textile connaît de nos jours un essor particulier dans le domaine des vêtements dits "de fonction". Ces vêtements sont constitués principalement de fibres textiles, naturelles, artificielles ou synthétiques, comprenant divers principes actifs et permettant par exemple aux vêtements d'emmagasiner et de restituer la chaleur, de libérer plus ou moins rapidement des parfums, des agents hydratants, des agents thérapeutiques, ou encore de piéger ou retenir divers composés organiques ou inorganiques venant au contact des fibres, etc.
[0005] Généralement, les principes actifs sont encapsulés dans des microcapsules qui sont fixées ou associées aux fibres de diverses manières, par exemple par inclusion, enduction, ou encore par liaisons ioniques. Ces microcapsules peuvent être sensibles, par exemple, à la chaleur corporelle et/ou à l'environnement extérieur influençant ainsi la libération de diverses molécules.
[0006] Dans le mode de fixation par inclusion, les capsules sont emprisonnées directement au cœur de la fibre. L'avantage de cette technique est que les capsules sont fixées de manière permanente dans la fibre. L'inconvénient cependant est que ce procédé ne peut être mis en œuvre que pour des fibres synthétiques filées par extrusion à basse température. En outre, le principe actif encapsulé est difficilement accessible ou diffuse difficilement au travers de la membrane de la capsule et au travers de la fibre jusqu'à la surface de celle-ci.
[0007] C'est pourquoi, la fixation de capsules sur tout type de fibre, et en particulier sur fibres naturelles, fait aujourd'hui généralement appel à la technique d'enduction. Les capsules sont dispersées dans un polymère réticulé qui est enduit sur les fibres. Ici encore, la fixation des capsules est permanente, et le procédé est d'une mise en œuvre aisée. Cependant les fibres, ainsi enduites par le polymère réticulé et dans lequel sont dispersées les capsules, sont moins agréables au toucher.
[0008] En outre, dans le cas précédent, le principe actif encapsulé est difficilement accessible, ou diffuse difficilement au travers de la membrane de la capsule et au travers du vernis d'enduction.
[0009] Une autre technique encore fait appel à la fixation des capsules par liaisons ioniques sur les fibres. Cette technique utilise le fait que les fibres possèdent généralement un potentiel de surface. Des capsules sont synthétisées de manière à présenter des fonctions cationiques ou anioniques sur la surface externe de la membrane et sont fixées par liaisons ioniques sur les fibres. Ici encore, un avantage est une mise en œuvre très simple du procédé. L'inconvénient majeur est la très mauvaise tenue au mouillé. Après
quelques lavages, la quasi totalité des capsules ont disparu de la surface des fibres.
[0010] Des techniques plus récentes utilisent les méthodes connues de greffage de colorants sur les fibres textiles, c'est-à-dire un greffage par liaisons de covalence. Ainsi, par exemple, la demande de brevet WO 01/06054 divulgue une matière active contenue dans une capsule polymère, dont la surface présente des groupements réactifs permettant ladite liaison de covalence avec la fibre par l'intermédiaire d'un liant. [0011] Toutefois, la description de cette technique reste très générale, et les exemples concernent uniquement des fibres de coton, sur lesquelles sont greffées des capsules renfermant une matière active, lesdites capsules étant liées aux fibres de coton par l'intermédiaire d'un « pont » apporté par une résine possédant des groupements méthylol. [0012] Dans ces exemples, la liaison de covalence est créée entre deux groupements hydroxyle (-OH) avec élimination d'une molécule d'eau, en présence d'un catalyseur de type acide de Lewis.
[0013] Ce procédé souffre de nombreux inconvénients, dont notamment celui de générer de l'eau, en tant que sous-produit, et de nécessiter l'emploi d'un catalyseur. En outre, la résine à groupements méthylol est une résine de type urée. Ces groupements peuvent inter-réagir de manière non désirée avec les capsules polymères, notamment en formant des agglomérats de capsules nuisibles à une bonne répartition des capsules sur les fibres.
[0014] La demanderesse a maintenant découvert un procédé permettant le greffage de capsules composites, pleines ou creuses, sur des fibres, notamment des fibres textiles, ledit procédé étant également adapté au greffage desdites capsules sur tout type de support, présentant directement, ou sous forme latente, ou encore après pré-traitement, des groupements fonctionnels aptes à former des liaisons de covalences avec lesdites capsules.
[0015] La présente invention propose par conséquent un procédé de greffage par liaisons de covalence de capsules polymères, creuses ou pleines, renfermant éventuellement une matière active, sur tout type de
support, notamment des fibres, en particulier des fibres textiles, lequel procédé ne présente pas les inconvénients des procédés connus de l'art antérieur.
[0016] Le procédé de la présente invention permet entre autres de répondre au besoin de disposer de fibres textiles "de fonction", notamment capables d'emmagasiner et de restituer la chaleur, de libérer plus ou moins rapidement des parfums, des agents hydratants, des agents thérapeutiques, ou encore de piéger ou retenir divers composés organiques ou inorganiques venant au contact des fibres, tout en ne présentant pas les inconvénients connus de l'art antérieur.
[0017] Ainsi, un premier objectif de la présente invention consiste à fournir un procédé de greffage de capsules polymères creuses ou pleines, renfermant éventuellement au moins un principe actif, sur un support, naturel, artificiel ou synthétique, organique ou inorganique, le greffage desdites capsules présentant une résistance améliorée par rapport aux techniques de fixation existantes.
[0018] Un objectif de l'invention consiste également à fournir un procédé de greffage de capsules polymères composites creuses, renfermant éventuellement au moins un principe actif liposoluble ou hydrosoluble, sur un support, naturel, artificiel ou synthétique, organique ou inorganique, par l'intermédiaire d'une liaison chimique forte, et de manière définitive. [0019] Un autre objectif de l'invention consiste à fournir un procédé de greffage de capsules polymères composites creuses ou pleines, renfermant éventuellement au moins un principe actif liposoluble ou hydrosoluble, sur un support, naturel, artificiel ou synthétique, organique ou inorganique, tout en respectant la qualité intrinsèque dudit support.
[0020] La présente invention a également pour but de fournir un procédé de greffage de capsules polymères composites creuses ou pleines, renfermant éventuellement au moins un principe actif liposoluble ou hydrosoluble, sur un support, naturel, artificiel ou synthétique, organique ou inorganique, dont les qualités, notamment au toucher, ne sont substantiellement pas modifiées.
[0021] Corollairement, la présente invention a pour but de fournir un procédé de greffage de capsules polymères composites creuses ou pleines, renfermant éventuellement au moins un principe actif liposoluble ou hydrosoluble, sur un support, naturel, artificiel ou synthétique, organique ou inorganique, notamment des fibres, naturelles, artificielles ou synthétiques, organiques ou inorganiques, sans utiliser d'agent d'enrobage sur ledit support ou lesdites fibres.
[0022] Un autre but encore de l'invention consiste à fournir un procédé de greffage de capsules polymères composites creuses ou pleines, renfermant éventuellement au moins un principe actif liposoluble ou hydrosoluble, sur un support, naturel, artificiel ou synthétique, organique ou inorganique, notamment des fibres, lesdites capsules étant greffées sur ledit support ou lesdites fibres, de manière homogène et contrôlée. [0023] D'autres objectifs encore apparaîtront clairement à la lecture de la description de l'invention qui suit. Il a maintenant été découvert que ces buts peuvent être atteints, en totalité ou en partie, grâce au procédé de greffage selon la présente invention.
[0024] Au sens de la présente invention, et comme indiqué ci-dessus, le terme « support » désigne tout substrat, présentant directement, ou sous forme latente, ou après pré-traitement, ou encore après activation, des groupements fonctionnels aptes à former des liaisons de covalences avec lesdites capsules.
[0025] Des exemples de groupements fonctionnels, ou encore groupements réactifs seront décrits dans la suite du présent exposé et comprennent tout type de groupement réactif chimique connu dans le domaine de la chimie, comme étant susceptible de former, avec d'autres groupements, des liaisons chimiques stables, de type liaison de covalence.
De tels groupements sont, de manière non limitative, les groupements hydroxy, thiol, époxy, carboxy, halogéno, amino, amido, oxo, thioxo, cyano, insaturation éthylénique ou acétylénique, et autres.
[0026] Les groupements peuvent être directement présents sur le support, ou bien encore sous forme latente et peuvent être rendus actifs
(étape d'activation) au moyen d'un ou plusieurs traitements chimiques, physiques ou physico-chimiques, connus de l'homme du métier. Le support selon l'invention peut également ne pas présenter, ou peut présenter une quantité insuffisante, de groupements réactifs. Dans ces cas, un prétraitement, également connu dans le domaine, tel que, et de manière non limitative, un traitement au plasma ou un traitement corona, est effectué afin de faire apparaître, ou de multiplier, les groupements réactifs sur le support. [0027] Les supports convenables au sens de l'invention sont avantageusement, et de manière non limitative, le bois, le papier, la pierre, et les minéraux en général, le verre, les végétaux, le cuir, la peau, les polymères et matières plastiques en général, et autres. Les supports composites comprenant deux ou plusieurs de ces supports sont également compris dans la présente invention. [0028] Le support utilisable dans le procédé selon la présente invention peut se présenter sous forme brute, ou encore sous tout type de forme, et en particulier sous forme de film, revêtement, peinture, vernis, feuille, plaque, fibre, fils, et autres.
[0029] Un support tout particulièrement préféré pour le procédé selon l'invention est un support sous forme de fibres, notamment fibres textiles, fibres de bois, de verre, de carbone, et en particulier fibres textiles.
[0030] II convient de rappeler que l'on entend par fibre tout objet dont la longueur est très supérieure, de l'ordre de quelques centaines à 1000 fois ou plus supérieure, à sa section. La section d'une fibre peut être de toute forme, ronde, dentelée ou cannelée, ou encore en forme de haricot, mais aussi multilobée, en particulier trilobée ou pentalobée, en forme de X, de ruban, creuse, carrée, triangulaire, elliptique, ou autre.
[0031] Par "fibre inorganique", on entend une fibre d'origine minérale, comme par exemple la fibre de verre, la fibre de carbone, etc. À l'inverse, le terme "fibre organique" comprend toute fibre qui n'est pas d'origine minérale. [0032] Une fibre naturelle est par définition une fibre naturellement présente dans la nature, directement ou après traitement mécanique et/ou physique. On regroupe dans cette catégorie les fibres d'origine végétale, par
<γ
exemple coton, lin, bois, chanvre, rami, jute, et celles d'origine animale comme laine, soie, angora, etc.
[0033] Les fibres artificielles sont quant à elles issues de fibres naturelles auxquelles on a fait subir un ou plusieurs traitements chimiques afin d'en améliorer notamment les propriétés mécaniques et/ou physico-chimiques. Ainsi, les fibres cellulosiques sont obtenues par régénération ou modification de la cellulose, et sont par exemple les fibres connues sous le nom de viscose, acétate, triacétate, etc. [0034] Les fibres synthétiques regroupent les fibres obtenues par synthèse chimique et sont en général des fibres constituées d'un ou plusieurs polymères et/ou copolymères, mono- ou multi-composants (par exemple de type cœur-peau), qui sont généralement extrudés et/ou étirés jusqu'au diamètre désiré de la fibre. À titre d'exemple, on peut citer comme fibres synthétiques le polyester, le polyamide dont un représentant très connu est le nylon, le poly(chlorure de vinyle), le polyéthylène, le polypropylène, etc.
[0035] Les fibres sont essentiellement caractérisées par leur longueur. Celles-ci peuvent être courtes (coton par exemple) ou longues (laine) ou encore se présenter sous la forme de filaments, comme la soie. Plutôt que de parler de diamètre des fibres, il est d'usage, dans le domaine des fibres textiles, de les caractériser par leur titre. L'unité de titre la plus répandue est le tex, et ses sous-multiples, comme le décitex (ou dtex) ou le millitex (mtex). Une fibre qui titre 1 tex est une fibre de 1 mètre de longueur dont le poids est égal à 1 milligramme (1 tex = 1 mg.m'1).
[0036] La présente invention concerne donc un procédé de greffage de capsules composites polymères creuses ou pleines, sur tout type de support, notamment sur des fibres, en particulier des fibres textiles, telles qu'elles viennent d'être définies. [0037] Par "capsule composite", on entend tout type de particule individualisée constituée par une partie polymère et une partie « principe actif » (ou « matière, ou substance active »). Par « capsule composite creuse », on entend une particule constituée d'une membrane de polymère
solide continue enveloppant un ou plusieurs cœurs contenant éventuellement un ou plusieurs principes actifs (c'est-à-dire un produit encapsulé). Par « capsule composite pleine », on entend une particule constituée d'un matériau polymère continu dans lequel sont dispersés un ou plusieurs principes actifs. Les capsules composites se comportent comme des réservoirs et permettent l'isolation ou la rétention ou la libération du ou desdits principes actifs. Ces particules présentent généralement des tailles comprises entre quelques nanomètres et quelques millimètres. [0038] La capsule est généralement constituée d'une membrane dont le rôle est, d'une part, d'isoler la substance active du milieu extérieur, et d'autre part, de permettre une meilleure conservation de la dite substance active, voire une vectorisation et/ou une libération immédiate, prolongée, retardée et/ou contrôlée de la substance active encapsulée dans les usages classiques qui sont faits des produits encapsulés. Le principe actif peut également servir à « piéger » des molécules extérieures à la capsule qui ont traversé la membrane ou qui ont diffusé au travers de la membrane. [0039] Le terme "produit encapsulé" indique qu'un produit est enfermé, à l'état solide ou liquide, voire gazeux, seul ou en combinaison avec des agents de formulation, dans un corps creux, ou dans un milieu continu, la capsule, afin de l'isoler du milieu extérieur.
[0040] II existe de nombreux procédés de préparation de capsules, et parmi ceux-ci, on peut citer notamment la synthèse de capsules par coacervation simple ou complexe, ou par fusion ou gélification du matériau support (spray coating). D'autres techniques font appel à la polymérisation en émulsion ou en dispersion ou en suspension, à la synthèse de particules pleines, à la synthèse de vésicules, ou encore à la synthèse de capsules par lit fluidisé, par enrobage, par exemple en lit d'air fluidisé. [0041] Un autre procédé fait appel à la technique de polycondensation interfaciale en milieu dispersé, technique divulguée, par exemple par P. W. Morgan et coll., J. Polym. ScL, 40, (1959), 299-327, pour la synthèse de films plans. Cette technique a été adaptée à la synthèse de capsules (R. Arshady, J. Microencap., 6(1 ), (1989), 1-10 et 13-28).
[0042] Tous les types de capsules composites ainsi définies par leur mode d'obtention peuvent convenir, étant entendu que la surface de la capsule présente ou peut présenter, après traitement chimique, physique ou physico-chimique, au moins un groupement réactif susceptible de se lier, directement ou par l'intermédiaire d'un ou plusieurs autres groupements réactifs, à au moins un groupement réactif présent sur la fibre.
[0043] Les polymères constitutifs des membranes des capsules sont avantageusement choisis parmi les polymères courants, comme par exemple, les polyesters, les polyamides, les polyuréthannes ou encore les polymères naturels d'origines végétale ou marine.
[0044] Par exemple, la préparation des capsules par polycondensation interfaciale en milieu dispersé conduit à des capsules particulièrement adaptées au greffage sur fibres selon la présente invention. En effet, les capsules préparées selon cette méthode offrent notamment l'avantage de proposer une très grande diversité de nature de polymère constitutif de la membrane, et par voie de conséquence une très grande diversité de groupements réactifs susceptibles de former des liaisons de covalence avec les groupements réactifs présents sur les fibres.
[0045] II est en effet possible d'obtenir par polycondensation interfaciale en milieu dispersé, des capsules à membrane polyamide, polyester, polyurée, pulyuréthanne, poly(éther-uréthanne), poly(éther-uréthanne-urée), et autres. Chacun de ces polymères procure à la membrane qui en est constituée au moins un groupement réactif requis pour l'établissement d'un liaison covalente avec la fibre.
[0046] Les capsules composites obtenues par polycondensation interfaciale en milieu dispersé possèdent une tenue mécanique particulièrement adaptée aux applications envisagées dans le cadre de la présente invention. Les membranes des capsules obtenues selon ce procédé offrent également un degré de porosité optimal pour lesdites applications.
[0047] Un autre avantage encore des capsules obtenues par polycondensation interfaciale en milieu dispersé est qu'il est possible d'obtenir des capsules biocompatibles, c'est-à-dire parfaitement biotolérées et non toxiques pour l'homme, les animaux, les végétaux et pour le milieu vivant en général. Ceci est particulièrement important lors de l'utilisation de fibres greffées par des capsules composites pour la préparation d'étoffes et de vêtements appelés à venir au contact de tissus vivants, tel que l'épiderme humain, afin d'éviter les problèmes d'allergies ou de toxicité. Le procédé d'obtention de telles capsules composites biocompatibles est décrit plus en détail dans la demande de brevet FR-A-2 837 724.
[0048] La synthèse de capsules par polycondensation interfaciale en milieu dispersé permet également l'encapsulation de quasiment toutes matières actives, lipophiles ou lipophobes, selon le type de dispersion retenu. Selon le degré de porosité de la membrane et la formulation de la substance active encapsulée, il est ainsi possible d'obtenir des capsules largantes (le largage du principe actif est obtenu par rupture de la membrane), des capsules diffusantes- (diffusion du principe actif à travers la membrane) et des capsules à changement de phase permettant le stockage et la restitution d'énergie sous forme de chaleur, grâce au changement de phase du principe actif.
[0049] II a été en outre découvert récemment qu'il était possible de préparer, par polycondensation interfaciale, des capsules renfermant une substance active complexante, comme des éthers-couronne. De telles capsules « pièges » et leur procédé de préparation sont décrits en détail dans la demande de brevet FR-A-2 838 655.
[0050] L'ensemble des avantages exposés ci-dessus, et la grande souplesse des conditions opératoires et de choix des matières premières, font que les capsules composites obtenues par polycondensation interfaciale en milieu dispersé sont de préférence employées dans le procédé de greffage de la présente invention. Tout autre type de capsule peut bien entendu convenir, avec toutefois les conditions précédemment définies et relatives à la présence de groupements réactifs à la surface des membranes
desdites capsules, ces groupements pouvant être initialement présents ou révélés voire créés par un ou plusieurs traitements chimiques, physiques ou physico-chimiques.
[0051] Le diamètre des capsules qui peuvent être greffées sur les fibres peut varier dans de très larges proportions et est généralement compris entre quelques nanomètres et quelques millimètres. Cependant, et afin, par exemple, de conserver à la fibre ses qualités notamment au toucher, les capsules mises en œuvre dans le procédé de l'invention possèdent de préférence un diamètre compris entre environ 0,05 μm et environ 100 μm, avantageusement compris entre environ 0,1 μm et environ 10 μm, de manière particulièrement préférée entre environ 0,5 μm et environ 5 μm et de manière particulièrement préférée un diamètre de l'ordre de 1 μm. [0052] II convient de noter que la taille des capsules doit être adaptée à la taille des fibres, des fibres de diamètre important pouvant supporter des capsules relativement volumineuses, alors que des fibres fines, par exemple des microfibres, seront de préférence greffées par des capsules dont le diamètre est inférieur au micromètre (μm), voire très inférieur au micromètre. [0053] Par exemple, pour des capsules de diamètre d'environ 1 μm, le titre de la fibre sera avantageusement compris entre environ 1 dtex et environ 7 dtex, c'est-à-dire d'un diamètre, selon la nature de la fibre considérée, compris entre environ 10 μm et 30 μm. Dans le cas de microfibres, le diamètre des capsules sera de préférence inférieur à 1 μm. [0054] Quelle que soit la taille des capsules et des fibres, et quelle que soit la nature des capsules et des fibres, le procédé de greffage fait toujours intervenir des liaisons covalentes entre les capsules et les fibres.
[0055] Ainsi, la présente invention concerne un procédé de greffage de capsules composites creuses ou pleines, sur un support, ledit procédé comprenant les étapes de : a) préparation éventuelle des capsules pour adaptation du caractère lipophile/hydrophile de la surface de la capsule en fonction de la nature du support ; b) fonctionnalisation de la surface des capsules ;
c) activation des capsules fonctionnalisées et/ou du support par greffage de groupes réactifs aptes à former des liaisons de covalence avec les groupements réactifs présents à la surface du support et/ou des capsules fonctionnalisées respectivement ; d) mise en contact des capsules fonctionnalisées et éventuellement activées avec le support éventuellement activé et création de liaisons de covalence entre lesdites capsules ledit support ; et e) récupération et rinçage du support comportant des capsules composites greffées par liaisons de covalence.
[0056] II doit être compris que les étapes a) et b) peuvent être effectuées en ordre inverse, c'est-à-dire l'étape b) avant l'étape a). Il est ainsi possible de fonctionnaliser la surface de la capsule, puis de modifier éventuellement le caractère hydrophile/lipophile de la surface de la capsule pour l'adapter à celui du support.
[0057] Le terme « adapter » au sens de la présente invention signifie modifier le caractère lipophile/hydrophile de la membrane de la capsule pour le rendre sensiblement identique au caractère lipophile/hydrophile du support. Le but de cette opération est de rendre les capsules compatibles avec le support, et permet de réduire, voire d'éviter, la formation d'agrégats de capsules, c'est-à-dire d'obtenir une répartition substantiellement homogène, et de manière contrôlée, des capsules sur le support. [0058] Par exemple, dans le cas d'un greffage de capsules polyamide sur des fibres de coton, il peut être avantageux de modifier les capsules pour leur conférer un caractère hydrophile sensiblement égal à celui du coton. Cette modification peut par exemple être réalisée par greffage de fonctions hydrophiles, telles que des groupements hydroxy (-OH), sur la surface des membranes des capsules. [0059] Tout autre type de moyen, connu de l'homme du métier, permettant de modifier le caractère lipophile/hydrophile de la surface des capsules convient dans le cadre du procédé de la présente invention. À titre d'exemple, et de manière non limitative, il est possible de réaliser un traitement ionique, ou de greffer des groupements poly(éthylèneglycol) ou
poly(propylèneglycol), afin d'augmenter le caractère hydrophile ; on peut également procéder à une alkylation de groupements hydroxyle, ou à un greffage de groupements oléfiniques, aromatiques et autres, pour augmenter le caractère lipophile.
[0060] L'étape b) de fonctionnalisation de la surface des capsules consiste à « homogénéiser » les groupements réactifs à la surface de la capsule et/ou améliorer leur disponibilité et/ou augmenter leur nombre. [0061] Par « homogénéisation », on entend un traitement chimique, physique, ou physico-chimique, permettant l'obtention de groupements réactifs à la surface des capsules substantiellement identiques entre eux. [0062] Par exemple, la synthèse de capsules à membrane polyamide par polycondensation interfaciale en phase inverse conduit à la présence de groupements réactifs, disponibles à la surface de la membrane, de type aminé, ammonium, acide carboxylique, carboxylate et chlorure d'acyle. L'action d'un composé de type diamine permet de transformer les groupements porteurs d'une fonction carboxylique en fonctions aminé, et un ajustement de la valeur du pH permet de convertir les fonctions ammonium en fonctions aminé, comme indiqué sur le schéma suivant dans lequel R représente un radical bivalent :
membrane de la capsule
[0063] Ainsi, la surface de la capsule ne présente alors que des groupements réactifs de type aminé, ce qui permet une optimisation et un meilleur contrôle de la réaction ultérieure de greffage sur le support, avec la molécule d'activation. En effet, les groupements fonctionnels, tous
identiques, ne font appel qu'à un seul type de réaction pour la formation de la liaison de covalence entre la capsule et le groupe d'activation. Les groupements réactifs de type aminé sont également plus nombreux (comme on le voit sur le schéma ci-dessus), autorisant ainsi un plus grand nombre de liaisons de covalence.
[0064] II n'est cependant pas obligatoire que tous les groupements fonctionnels, après fonctionnalisation, soient nécessairement identiques, mais il est préférable qu'ils puissent intervenir dans la formation d'une liaison de covalence, par exemple avec le groupe d'activation, selon une réaction chimique, de préférence unique, de cinétique rapide et irréversible.
[0065] Comme indiqué ci-dessus, la fonctionnalisation peut être effectuée par exemple en modifiant le pH, et/ou par greffage de composés, généralement présentant au moins deux groupements réactifs, l'un des groupements permettant une liaison de covalence avec les groupements réactifs présents à la surface des capsules, l'autre groupement réactif restant inchangé dans cette étape et étant susceptible d'être mis en oeuvre dans la formation de la liaison de covalence avec le support, via le groupe d'activation. [0066] Les traitements chimiques, physiques et physico-chimiques impliqués dans le traitement de fonctionnalisation susmentionné sont de tout type et parfaitement connus de l'homme du métier, et sont par exemple des procédés de greffage par liaison de covalence, des ajustements de pH etc. [0067] À titre d'exemple, et de manière non limitative de tels composés présentant au moins deux groupements réactifs, et qui sont plus particulièrement appropriés dans le cas de capsules à membrane polyamide obtenues par polycondensation interfaciale en phase inverse, on peut citer les diamines, les triamines, les tétramines et les polyamines en général, en particulier les α,ω-diamines, y compris les poly(oxyalkylène)amines. [0068] Sans vouloir apporter un quelconque caractère limitatif, les aminés décrites ci-dessus sont, selon un mode de réalisation préférée de la présente invention, choisies parmi l'éthylènediamine, la di-éthylènetriamine, la trï- éthylène-tétramine, la tétra-éthylènepentamine, la tris-amino-éthylamine, les poly(éthy!ène)-imines linéaires, les poly(éthylène)imines branchées et les
— x O — —
poly(oxyalkylène)-amines, en particulier celles connues sous le nom commercial Jeffamine® distribuée par la société Hunstman, plus particulièrement celles des séries ED, EDR, D et T, et notamment la Jeffamine® EDR-148, la Jeffamine® D-230 ou encore la Jeffamine® T-403. [0069] Toutes ces aminés permettent une fonctionnalisation homogène des surfaces des membranes des capsules, les capsules issues de l'étape b) du procédé selon la présente invention, présentent dans ce cas des groupements fonctionnels -NH2, substantiellement tous identiques.
[0070] Les capsules fonctionnalisées telles que décrites ci-dessus, notamment fonctionnalisées par des groupes aminés, en particulier les capsules à membrane polyamide obtenues par polycondensation interfaciale en phase inverse fonctionnalisées par des groupements aminés, font partie intégrante de la présente invention.
[0071] Selon un mode de réalisation particulièrement avantageux du procédé de la présente invention, les étapes a) et b) peuvent être réalisées de manière simultanée, en une seule étape. Il est également possible de réaliser l'adaptation lipophile/hydrophile décrite ci-dessus au moyen du ou des composés utilisés pour le traitement décrit supra d'homogénéisation des groupements réactifs à la surface de la membrane des capsules. [0072]Ainsi, et selon un mode de réalisation avantageux, la présente invention concerne un procédé de greffage de capsules composites creuses ou pleines, sur un support, ledit procédé comprenant les étapes de : a') adaptation du caractère lipophile/hydrophile de la capsule en fonction de la nature du support, et fonctionnalisation simultanée de ladite surface ;
b') activation des capsules fonctionnalisées et/ou du support par greffage de groupes réactifs aptes à former des liaisons de covalence avec les groupements réactifs présents à la surface du support et/ou des capsules fonctionnalisées respectivement ; c') mise en contact des capsules éventuellement activées avec le support éventuellement activé et création de liaisons de covalence entre les groupes
réactifs desdites capsules et les groupes réactifs dudit support ; et d') récupération et rinçage du support comportant des capsules composites greffées par liaisons de covalence.
[0073] En particulier, le greffage de composés de la famille des poly(oxyalkylène)amines à la surface de capsules composites polyamide, obtenues par polycondensation interfaciale en phase inverse, non seulement confère auxdites capsules un caractère hydrophile compatible avec celui de fibres de coton, mais aussi permet une fonctionnalisation homogène des groupements réactifs, en l'espèce des groupements amino (-NH2), à la surface desdites capsules.
[0074] Des résultats tout à fait satisfaisants ont été obtenus par greffage sur des capsules composites creuses polyamide, obtenues par polycondensation interfaciale en phase inverse, de Jeffamine® D-230 ou de Jeffamine® EDR-148 qui répondent aux formules suivantes :
[0075] Les capsules fonctionnalisées telles que définies ci-dessus font également partie de la présente invention. À titre d'exemple, la Figure 1 représente schématiquement une capsule polyamide fonctionnalisée par une aminé de formule H2N-R-NH2, où R représente le résidu du composé de fonctionnalisation. La Figure 2 est une représentation schématique de la capsule fonctionnalisée de la Figure 1 où le composé de fonctionnalisation est la Jeffamine® EDR-148.
[0076] L'étape c) (ou b')) du procédé selon la présente invention est l'étape d'activation des surfaces des capsules qui ont été fonctionnalisées, et dont le caractère lipophile/hydrophile a été éventuellement adapté à celui du support devant être greffé par lesdites capsules. Selon une variante, l'activation peut être réalisée sur le support lui-même, ou bien encore à la fois sur le support et sur les capsules.
[0077] Lors de cette étape d'activation, les groupements fonctionnels présents à la surface des capsules, et/ou du support, sont remplacés et/ou modifiés par un traitement chimique, physique ou physico-chimique, de manière à observer, à la surface des capsules, et/ou du support, des groupements réactifs aptes à former des liaisons de covalence avec les groupements réactifs présents sur le support, et/ou les capsules respectivement, la réaction de formation des liaisons de covalence étant de préférence une réaction totale, irréversible, de cinétique rapide, et avantageusement ne nécessitant pas l'action d'un catalyseur. [0078] Les réactions de création de liaison de covalence seront en outre avantageusement des réactions qui ont lieu à pression atmosphérique et à des températures comprises entre -1O0C et 1000C, préférentiellement au voisinage de la température ambiante. [0079] On préfère ainsi disposer de capsules présentant sur leur surface des groupements réactifs aptes à former des liaisons de covalence avec le support, avantageusement une fibre, de préférence une fibre textile, par réactions chimiques totales, non réversibles et avec une cinétique relativement rapide. On pourra à ce sujet se référer avantageusement aux ouvrages classiques de chimie organique traitant des fonctions chimiques capables de réagir entre elles pour former des liaisons covalentes.
[0080] Les liaisons de covalence évoquées dans la présente invention peuvent être de tout type connu de l'homme du métier, spécialisé dans le domaine de la chimie organique, et sont définies notamment par J. March, "Advanced Organic Chemistry", 3rd édition, pp. 3-9.
[0081] De manière non limitative et à titre d'illustration, le tableau suivant fournit quelques exemples de liaisons de covalence, comprises dans le cadre de la présente invention, résultant de l'interaction entre un groupement réactif A et un groupement réactif B, de tels groupements A et B pouvant être présents indifféremment sur le support ou à la surface de la capsule :
[0082] L'activation des capsules fonctionnalisées et/ou du support peut par exemple être réalisée par greffage, sur les groupements fonctionnels présents à la surface des capsules et/ou du support, de composés (groupes d'activation) présentant au moins un groupement réactif apte à former une liaison de covalence avec les groupements réactifs présents sur le support et/ou des capsules respectivement, ladite réaction étant de préférence totale, irréversible et de cinétique relativement rapide.
[0083] Les composés permettant l'activation des capsules fonctionnalisées et/ou du support peuvent être de tout type connus de l'homme du métier, comprenant au moins deux groupements réactifs, l'un avec les groupements fonctionnels présents à la surface des capsules, l'autre avec les groupements fonctionnels présents à la surface du support. Ces composés peuvent également être des oligomères, voire des polymères. [0084] Selon un mode de réalisation avantageux, les composés permettant l'activation des capsules fonctionnalisées et/ou du support, présentent deux, trois ou même plusieurs groupes réactifs avec les groupements présents sur le support et/ou les capsules respectivement. Ainsi, par exemple, à l'issue de l'étape d'activation des capsules, celles-ci présentent ainsi un nombre de groupements réactifs avec le support égal à deux fois, trois fois, ou plus, le nombre de groupements réactifs normalement observé avec un composé d'activation ne possédant qu'un seul groupement réactif avec ledit support.
[0085] À titre d'exemple et de manière non limitative, le composé organique (groupe d'activation), capable de former une liaison de covalence
entre la surface de la capsule fonctionnalisée et le support, peut être choisi parmi ceux présentés dans le tableau suivant :
[0086] D'autres groupes (ou composés) d'activation qui peuvent être avantageusement utilisés dans le cadre de la présente invention sont par exemple ceux utilisés habituellement dans le domaine des colorants de fibres textiles et sont parfaitement connus de l'homme du métier, spécialisé dans la technique de la coloration des textiles. [0087] Les capsules activées telles que décrites ci-dessus, notamment fonctionnalisées par des groupes aminé, en particulier les capsules à membrane polyamide obtenues par polycondensation interfaciale en phase inverse, fonctionnalisées par des groupements aminé, et activées à l'aide des composés d'activation définis ci-dessus font partie intégrante de la présente invention.
[0088] Un exemple tout particulièrement préféré de capsule activée est une capsule composite polyamide creuse ou pleine, contenant éventuellement au moins un principe actif, fonctionnalisée par des groupements aminé ( -NH2), et activée pour présenter des groupements
chlorés (-CI). La Figure 3 fournit une représentation schématique de la capsule ainsi définie, où R et R' représentent les résidus des composés de fonctionnalisation et d'activation, respectivement, représentés ci-dessous, et n représente un entier égal à 1 , 2 ou 3 :
H2N-R-NH2 CI— R1— (Cl)n
Composé de Composé fonctionnalisation d'activation
[0089] Parmi les capsules fonctionnalisées et activées définies ci-dessus et représentées sur la Figure 3, on préfère celles pour lesquelles le composé de fonctionnalisation est choisi parmi l'éthylènediamine, la di- éthylènetriamine, la tri-éthylènetétramine, la tétra-éthylènepentamine, la trisamino-éthylamine, les poly(éthylène)imines linéaires, les poly(éthylène)imines branchées et les poly(oxyalkylène)amines, de préférence encore parmi l'éthylènediamine, la di-éthylènetriamine, la tri- éthylènetétramine et les poly(oxyalkylène)amines, en particulier celles connues sous le nom commercial Jeffamine® distribuée par la société Hunstman, de manière tout à fait préférée celles des séries .ED, EDR, D et T, et notamment la Jeffamine® EDR-148, la Jeffamine® D-230 ou encore la Jeffamine® T-403.
[0090] Parmi les capsules fonctionnalisées et activées définies ci-dessus et représentées sur la Figure 3, on préfère celles pour lesquelles le composé d'activation est choisi parmi l'acide α-bromo-acrylique, l'acide adipique, la 2,4,6-trichlorotriazine et la dichloroquinoxaline, de préférence la 2,4,6- trichlorotriazine.
[0091] Une capsule composite polyamide particulièrement préférée est celle représentée schématiquement sur la Figure 4, fonctionnalisée avec la Jeffamine® EDR-148, et activée avec la 2,4,6-trichlorotriazine. Cette capsule est notamment tout à fait adaptée pour le greffage sur des fibres de coton, en raison d'une part de son caractère hydrophile (apportée par la Jeffamine®) substantiellement identique à celui de la fibre de coton, et d'autre part en raison de ses groupements réactifs chlorés (2 atomes de chlore pour une Jeffamine®) permettant la formation d'une liaison de covalence par réaction
avec les fonctions hydroxyle de la fibre de coton (cellulose), réaction totale, irréversible et de cinétique relativement rapide.
[0092] Cette réaction de formation de la liaison de covalence entre la capsule fonctionnalisée et activée et le support, en particulier la fibre, correspond au greffage proprement dit de la capsule sur le support, en particulier la fibre.
[0093] Comme indiqué précédemment, avant d'effectuer ledit greffage, il peut s'avérer nécessaire de procéder à un prétraitement du support, notamment dans le cas où les groupements réactifs ne sont pas directement accessibles et/ou sont sous forme protégée à la surface dudit support. Ce prétraitement consiste généralement à "révéler" les groupements réactifs présents sur le support, ou, en cas d'absence ou d'insuffisance de tels groupements réactifs, à les faire apparaître, à les créer, par un ou plusieurs traitements chimiques, physiques ou physico-chimiques.
[0094] Les prétraitements des supports sont bien connus de l'homme du métier et consistent, à titre d'exemples non limitatifs, en des traitements plasma, ou de type corona et autres. Dans le cas des fibres naturelles, synthétiques ou artificielles, en particulier dans le cas des fibres textiles, ces traitements sont généralement similaires, voire identiques aux prétraitements effectués dans le domaine de la coloration et de la teinture des textiles. [0095] On pourra ainsi se référer aux ouvrages traitant de la coloration des textiles pour les détails sur les prétraitements. Ainsi, lorsque le support le support est une fibre textile, celui-ci peut être est soumis à un ou plusieurs traitements choisis parmi flambage, désencollage, débouillissage, blanchiment, lavage, carbonisage, battage, désensimage, fixage, et autres. [0096] À titre d'exemple, une fibre de coton est généralement prétraitée avant greffage, le prétraitement consistant en trois opérations : désencollage, débouillissage et blanchiment. Le tableau suivant donne d'autres exemples de prétraitements possibles, et couramment employés dans l'industrie textile, selon la nature des fibres :
[0097] Bien entendu, d'autres prétraitements sont encore possibles, notamment lorsqu'ils sont destinés à révéler les groupements réactifs à la surface du support ou encore à améliorer leur disponibilité vis-à-vis des groupements réactifs du composé d'activation choisi. Les groupements réactifs présents à la surface du support peuvent être de tout type, selon la nature et/ou l'origine du support, qu'il soit naturel, artificiel ou encore synthétique.
[0098] À titre d'exemples permettant d'illustrer la nature de ces groupements chimiques réactifs, une fibre de coton est une fibre de cellulose, présentant à sa surface, et après traitement éventuel, des fonctions hydroxyle libres. Une fibre de laine présente quant à elle à sa surface au moins une, plusieurs, voire toutes les fonctions des acides aminés, c'est-à-dire les fonctions acide carboxylique, aminé, thiol, phénol, amide, etc.
[0099] Des groupements chimiques réactifs sont bien entendu également présents sur les fibres synthétiques, et par exemple, des groupements aminé et acide carboxylique, s'agissant de fibres de polyamide, ou encore des groupements alcool et acide carboxylique sur les fibres de polyester. Les
fibres de verre présentent également des groupements réactifs, tels que des groupements silanol Si-OH.
[0100] Ces groupements chimiques sur les fibres sont ainsi susceptibles de former des liaisons de covalence avec les groupements réactifs présents sur les capsules fonctionnalisées et activées, comme indiqué précédemment, les réactions de création de liaison de covalence possédant avantageusement les caractéristiques décrites plus haut dans cette description. [0101] La réaction de greffage des capsules fonctionnalisées et activées sur un support est donc réalisée de manière classique et bien connue de l'homme du métier, par exemple, dans le cas de fibres textiles, selon un procédé similaire, voir identique, à celui utilisé pour la teinture des fibres et des textiles, par exemple selon la technique en plein bain, ou encore par foulardage. Comme on le verra plus loin, la réaction de greffage peut être effectuée soit sur les fibres soit directement sur le textile élaboré à partir des fibres, et en règle générale, soit directement sur le support tel qu'il a été défini précédemment, soit sur un produit fini incluant un support tel qu'il a été défini précédemment. [0102] Selon une variante du procédé de greffage de la présente invention, le support, après éventuel(s) pré-traitements peut être activé, par exemple au moyen d'un ou plusieurs groupes d'activation, tels qu'ils ont été définis plus haut pour l'activation des capsules fonctionnalisées. Dans ce cas, la réaction de greffage proprement dite, c'est-à-dire la formation de la liaison de la capsule avec le support est effectuée entre la capsule fonctionnalisée et le support activé.
[0103] II peut être également envisagé d'effectuer la réaction de greffage proprement dite entre une capsule fonctionnalisée et activée et un support lui-même activé. Selon encore une autre variante, il est également possible d'effectuer la réaction de greffage proprement dite entre une capsule non fonctionnalisée et non activée, dont le caractère lipophile/hydrophile aura cependant été préalablement adapté, et un support activé. Cette dernière variante, ne constitue toutefois pas un mode de réalisation préféré de la présente invention.
[0104] La Figure 5 est une représentation schématique d'une fibre de coton activée par la 2,4,6-trichlorotriazine apte à être greffée par des capsules fonctionnalisées, avantageusement des capsules présentant majoritairement des fonctions aminés libres sur leur surface, et par exemple les capsules fonctionnalisées telles que celles représentées sur la Figure 1 ou la Figure 2.
[0105] Les conditions réactionnelles de greffage dépendent du type de support et du type de capsules utilisés. La réaction peut être effectuée en milieu aqueux, hydro-organique ou organique, par exemple dans l'eau ou dans le cyclohexane, dans des zones de pH adaptées.
[0106] II peut également être avantageux de conduire la réaction en présence d'un électrolyte et/ou d'un agent tensio-actif, afin de faciliter encore l'affinité entre les capsules et le support, c'est-à-dire de favoriser le contact entre les capsules et le support. Des sels minéraux, tels que par exemple le carbonate de sodium (Na2CU3) sont par exemple utilisables en tant qu'électrolytes, dans le cas de greffage de capsules polyamide sur des fibres de coton. L'utilisation de tensio-actifs, tels que l'Hypermer® 1083 ou encore le Tween® 20 s'est avérée également efficace, notamment pour le greffage de capsules composites polyamide creuses ou pleines, fonctionnalisées par une Jeffamine® et activées par la 2,4,6-trichlorotriazine, sur des fibres de coton.
[0107] Un support greffé par des capsules composites, fonctionnalisées et activées est un autre objet de la présente invention. En particulier, une fibre de coton greffée par des capsules composites polyamide creuses ou pleines, fonctionnalisées par la Jeffamine® EDR-148 et activées avec la 2,4,6-trichlorotriazine forme un mode de réalisation particulièrement préféré de la présente invention.
[0108] En variante, la présente invention concerne également un support activé et greffé par des capsules composites fonctionnalisées et dont le caractère lipophile/hydrophile a été éventuellement préalablement adapté à celui dudit support.
[0109] La Figure 6 est une représentation schématique d'une fibre de coton greffée. Cette fibre greffée peut être obtenue soit par greffage de
capsules fonctionnalisées telles que représentées à la Figure 2 avec une fibre de coton activée telle que représentée à la Figure 5, ou encore par greffage de capsules fonctionnalisées et activées telles que représentées à la Figure 4 avec une fibre de coton simplement pré-traitée, c'est-à-dire présentant à sa surface des fonctions hydroxy libres.
[0110] Les fibres obtenues possèdent ainsi sur leur surface des capsules composites greffées par liaisons covalentes. Ce type de liaison assure ainsi une résistance chimique et mécanique, notamment aux lavages prolongés et répétés. [0111] Ce type de greffage par liaison de covalence permet en outre le travail de la fibre, tel qu'il est pratiqué dans l'industrie textile. Les fibres greffées peuvent être ainsi parallélisées puis tordues entre elles pour former des fils, qui pourront ensuite être assemblés, par tissage ou tricotage, pour former le support à deux dimensions qu'est l'étoffe. Les fibres peuvent également être directement entrecroisées de manière à obtenir les matériaux de type non-tissé.
[0112] Selon un schéma classique et bien connu dans le domaine du textile, les étoffes subissent, avant les post-traitements classiques, d'autres étapes d'ennoblissement et notamment de coloration (teinture et/ou impression). L'impression est généralement effectuée grâce à des cylindres rotatifs ou encore par jet d'encre. Quant à la teinture, celle-ci est habituellement réalisée en plein bain ("jigger") ou par foulardage. [0113] À ce sujet, et devant la similitude entre le procédé de coloration classique des textiles et le procédé de greffage des capsules selon la présente invention, il peut être envisagé d'effectuer le greffage des capsules sur les fibres après ou pendant les opérations classiques d'ennoblissement et de confection, c'est-à-dire directement sur les fils ou encore sur l'étoffe, les articles de confection et autres matériaux textiles. Une telle alternative du procédé de greffage de capsules sur fils, sur l'étoffe, sur les articles de confection et autres matériaux textiles à base de fibres est également comprise dans le champ de la présente invention.
[0114] Le procédé de greffage de capsules sur les fils ou sur l'étoffe est identique au procédé de greffage des capsules sur les fibres et résulte
également en la formation d'une ou plusieurs liaisons covalentes entre les capsules et les fibres qui constituent les fils et/ou l'étoffe. Un des avantages du greffage de capsules sur étoffe réside dans le fait qu'il est possible de greffer des capsules sur des matériaux textiles qui ne sont pas élaborés à partir de fibres. Il est ainsi possible de greffer des capsules composites selon le procédé de la présente invention sur des matériaux textiles tels que le cuir, naturel, artificiel ou synthétique.
[0115] Les étoffes et autres matériaux textiles ainsi greffés par des capsules composites se comportent tout à fait comme des étoffes classiques du domaine textile et à ce titre peuvent ensuite entrer dans la phase de confection. Cette opération consiste à transformer les étoffes et autres matériaux textiles en articles textiles, par exemple articles de confection tels que vêtements, pièces de passementerie, de ganterie, de bonneterie, collants, foulards, mais aussi, tout article à base textile, par exemple couvre- chef, chaussures, capes, et articles en toile (tentes, auvents) ou encore les moquettes, tapis, revêtements muraux, linge de lit, cartouches de masques à gaz, étoffes et textiles militaires, patches, pansements, prothèses tissées, etc. [0116] Les divers supports envisagés dans la présente description, notamment les fibres, fils, étoffes, matériaux textiles et de confection, mais aussi le cuir, le bois, le papier, le verre, les matières plastiques polymères, les revêtements, les peintures, les vernis, et autres, greffés par liaison de covalence à des capsules composites, selon le procédé de la présente invention, trouvent une utilisation tout à fait intéressante dans de très nombreux domaines pour l'élaboration d'articles possédant des propriétés particulièrement intéressantes, en fonction de la nature du support, de la nature chimique du polymère de la capsule et du type de matière active éventuellement présente dans les capsules. [0117] À titre d'exemple, lorsque le support est une fibre textile ou un fil, un tissu, une étoffe, etc, le procédé de la présente invention permet l'élaboration de textiles dits de fonction, c'est-à-dire apportant une fonctionnalité supplémentaire nouvelle auxdits textiles.
[0118] Les applications possibles peuvent être tout d'abord liées aux propriétés mécaniques et/ou physico-chimiques des capsules greffées elles- mêmes, c'est-à-dire en l'absence de principe actif encapsulé. De telles capsules creuses ou pleines greffées notamment sur fibres, fils, étoffes et autres matériaux textiles peuvent ainsi trouver des utilisations particulièrement intéressantes pour l'élaboration de textiles adhésifs, ou antiadhésifs, anti-dérapants, etc.
[0119] D'autres domaines d'application encore sont liés à la nature chimique du polymère de la capsule. En particulier lorsque la capsule est biocompatible (voir demande de brevet n° FR-A-2 837 724), des applications en thérapeutiques humaine ou animale sont envisageables. [0120] En outre, les capsules peuvent également renfermer en leur cœur un ou plusieurs principes actifs, liposolubles ou hydrosolubles pouvant être libérés, de manière immédiate, retardée, libérée ou prolongée, voire également ne pas être libérés et rester à l'intérieur des capsules ; les dites capsules confèrent ainsi aux divers supports sur lesquelles elles sont greffées, des propriétés particulières et spécifiques à grande valeur ajoutée dans divers types de domaines d'application, tels que par exemple les domaines industriel, domestique, médical, paramédical, cosmétique, ainsi que celui de la défense civile et militaire.
[0121] II doit être également compris que les capsules envisagées dans le procédé de la présente invention qui contiennent une ou plusieurs substances actives, peuvent être « rechargées ». Par ce terme, on entend que la ou les matières actives présentes à l'origine et qui ont diffusé au dehors de la capsule ou qui ont été éliminées par tout moyen chimique, physique ou physico-chimique, (par exemple par lavage(s)) du support greffé, peuvent être introduites à nouveau à l'intérieur des capsules. Il peut ainsi être envisagé de traiter les supports par trempage, bain, ou pulvérisation de matière active afin de « recharger » lesdites capsules. [0122] II convient en outre de différencier les supports, tels que les fibres, fils, étoffes et autres matériaux textiles, greffés par des capsules susceptibles de libérer un ou plusieurs principes actifs et ceux greffés par des capsules dont le principe actif produit son action au sein de la capsule sans être libéré.
[0123] Dans le premier cas de figure (libération du principe actif), celle-ci peut s'effectuer par rupture mécanique de la membrane (cisaillement), par rupture chimique (digestion, dégradation photochimique) ou encore par diffusion. [0124] Ainsi, selon la nature du principe actif libérable par les capsules, les supports, tels que les fibres, fils, étoffes, articles de confections et autres matériaux textiles comprenant ces fibres greffées, trouvent par exemple une utilisation possible en tant que textiles désinfectants, textiles bactéricides, textiles parfumés, textiles rafraîchissants, hydratants, amincissants, textiles à action dépilatoire, anti-UV, textiles anti-acariens, insecticides, textiles antistress, textiles anti-fatigue, textiles contenant des agents anti-dérapants, ou encore des agents adhésifs, textiles contenant des additifs de lavage, par exemple des agents anti-statiques, adoucissants, de blanchiments ou encore des enzymes, etc.
[0125] Ces exemples, non limitatifs et donnés à titre purement illustratif, présentent quelques applications possibles. Plus spécifiquement, les fibres greffées selon la présente invention peuvent également être utilisées pour la préparation de fils, étoffes, articles de confection et autres matériaux textiles, utiles dans le domaine médical et dans le domaine paramédical en tant que textiles antalgiques, veinotoniques, vasculoprotecteurs, anti-inflammatoires, etc.
[0126] Dans le cas de fibres, fils, étoffes et autres matériaux textiles greffés par des capsules composites à principe actif non libérable, les applications possibles sont également très diverses et variées et comprennent, entre autres leur utilisation en tant que matériaux textiles paramagnétiques, antiseptiques, anti-rejets, anti-coagulants, en ce qui concerne plus particulièrement le domaine paramédical et médical. [0127] Dans le domaine industriel ou de la protection civile et militaire, les applications comprennent par exemple les textiles contre agents chimiques d'attaque susceptibles de fixer des agents polluants, tels que métaux lourds ou éléments radioactifs.
[0128] II est également envisageable de produire des textiles ininflammables par exemple, par incorporation dans le cœur des capsules greffées des agents retardant à la flamme tels que l'acide méthylphosphonique. D'autres applications peuvent encore être envisagées et sont également comprise dans le cadre de la présente invention.
[0129] II doit être de plus compris que de telles applications peuvent être combinées, soit par mélange de différents principes actifs au sein d'une même capsule, soit par greffage de capsules composites de nature différente sur les fibres, fils, étoffes et matériaux textiles, soit encore par mélanges de fibres différentes entre elles par la nature des capsules qui y sont greffées. La combinaison de deux ou trois des techniques exposées ci-dessus est également possible.
[0130] Les supports envisageables dans le procédé de la présente invention peuvent également être des supports composites. De tels supports peuvent par exemple être greffés par des capsules contenant un agent adhésif, afin de renforcer lesdits supports dans le but d'obtenir une meilleure cohésion au cours du vieillissement sous contrainte, par exemple pour le colmatage de micro-fissures du béton, du ciment, des matières plastiques, du bois, et autres.
[0129] La présente invention est décrite plus en détail dans les exemples particuliers de réalisation qui suivent. Ces exemples ne présentent qu'un caractère purement illustratif et n'ont aucunement pour but de limiter l'invention de quelque manière que ce soit.
EXEMPLES
Synthèse de capsules composites polyamide par polvcondensation interfaciale en système inverse.
[0130] La synthèse de capsules est réalisée conformément au mode opératoire décrit dans les demandes brevets français n° FR-A-2 837 724 et FR-A-2 838 655, ou encore dans la publication de R. Arshady, J. Microencap., 6(1), (1989), 1-10 et 13-28, avec les conditions particulières suivantes :
Étape a) : Dispersion
[0131] On introduit, dans un homogénéiseur de type Waring-Blendor, 85 mL de cyclohexane et de l'Hypermer® 1083 à 10 g/L. Sont introduits ensuite 70 mL d'eau, 0.5 M d'hexaméthylènediamine et 1 M d'hydrogénocarbonate de sodium. L'agitation est fixée à 18 000 tr/min pendant 5 minutes.
[0132] On transvase ensuite la dispersion dans un bêcher de 1 L au sein d'une cuve à ultrasons dans laquelle un fond d'eau et de glace a été introduit. On réalise la sonification de la dispersion pendant 5 minutes, tout en agitant à 100 tr/min à l'aide d'une pale horizontale en polytétrafluoroéthylène.
Étape b) : Polycondensation interfaciale (20 % d'eau, 80 % de cyclohexane) Début de la réaction au sein de la cuve à ultrasons : [0133] On introduit 20O mL de cyclohexane, de l'Hypermer® 1083 à 10 g/L, 0,15 M de dichlorure de téréphtaloyle (DCT) et 15 % de trichlorure de mésoyle (TCM) (pourcentage en fonctions chlorure d'acide (COCI) du TCM par rapport à la totalité des fonctions COCI apportées par les monomères DCT et TCM), au goutte-à-goutte sur la dispersion, au sein même de la cuve à ultrasons. Le mélange réactionnel est toujours sonifié pendant l'introduction de cette solution, et l'agitation à 100 tr/min dans le bêcher est maintenue de façon à assurer une bonne homogénéisation au cours de la synthèse. Cette opération dure une trentaine de minutes.
Poursuite de la réaction dans le réacteur Sovirel
[0134] Le milieu réactionnel est transvasé dans un réacteur Sovirel thermostaté à 25°C et l'agitation est fixée à 200 tr/min jusqu'à la fin de la synthèse (24 heures).
Étape c) : Lavage des capsules
[0135] En fin de réaction, les capsules sont centrifugées à 2500 tr/min pendant 5 min, afin de séparer les capsules du milieu réactionnel. Une première étape de lavage consiste à reprendre le culot par 200 mL de
chloroforme contenant de l'Hypermer® 1083 à 10 g/L, à agiter la dispersion ainsi obtenue à 200 tr/min pendant 15 min puis à la centrifuger à 2500 tr/min pendant 5 min.
[0136] Dans une deuxième étape, le culot est repris par 500 ml_ de cyclohexane contenant de l'Hypermer® 1083 à 10 g/L, la dispersion est agitée à 200 tr/min pendant 15 min puis centrifugée à 2500 tr/min pendant 5 min. Cette deuxième étape de lavage est réitérée trois fois. [0137] Afin de stocker les capsules, le culot est repris par 20O mL de cyclohexane contenant de l'Hypermer® 1083 à 10 g/L et la dispersion est agitée à 200 tr/min pendant 5 min. Les capsules peuvent être conservées dans cette solution.
[0138] On obtient des capsules de diamètre d'environ 1 μm dont la membrane est un polymère polyamide et dont le cœur, exempt de principe actif, est rempli d'eau.
Modification de la membrane
Fonctionnalisation de la membrane par greffage d'éthylènediamine [0139] Les capsules (culot de centrifugation, soit environ 70 mL) sont reprises dans 20O mL d'un mélange cyclohexane et Hypermer® 1083 à 10 g/L. L'ensemble est introduit dans un réacteur Sovirel thermostaté à 25°C puis 7O mL d'un mélange de cyclohexane, d'Hypermer® 1083 à 10 g/L et d'une solution 0,5 M d'éthylènediamine (EDA) sont ajoutés. L'agitation est maintenue à 200 tr/min pendant 1 heure puis la réaction est arrêtée. Le milieu réactionnel est ensuite centrifugé. Les capsules sont ensuite lavées selon le protocole décrit ci-dessus (étape c) : lavage des capsules).
[0140] D'autres capsules fonctionnalisées ont été ainsi préparées, en remplaçant l'éthylènediamine par la triéthylènetétramine, la tris-amino- éthylamine et la Jeffamine®-EDR 148.
Activation des capsules fonctionnalisées par greffage de trichlorotriazine
[0141] Les capsules fonctionnalisées obtenues précédemment (culot de centrifugation) sont reprises dans 200 mL d'un mélange de cyclohexane et d'Hypermer® 1083 à 10 g/L
[0142] L'ensemble est introduit dans un réacteur Sovirel thermostaté à 250C et 70 mL de mélange de cyclohexane, d'Hypermer® 1083 à 10 g/L et d'une solution 0,5 M de 2,4,6-trichlorotriazine sont ajoutés. L'agitation est maintenue à 200 tr/min pendant 45 minutes. Après arrêt de la réaction, le milieu réaction nel est centrifugé et les capsules sont lavées selon le protocole décrit ci-dessus (étape c) : lavage des capsules).
[0143] On obtient ainsi des capsules à membrane polyamide, obtenue par polycondensation interfaciale en système inverse, sur laquelle sont greffées, par liaison covalente, des molécules de trichlorotriazine.
Ces capsules présentent à leur surface des groupements réactifs chlorés susceptibles de former des liaisons covalentes avec les fonctions hydroxyle de la cellulose de la fibre de coton.
Prétraitement du coton
Étape 1 : Désencollage
[0144] Un échantillon de tissu en coton est* placé dans un bêcher contenant 600 mL d'eau avec 20% de détergent. La solution est portée à 60° C et agitée pendant une heure. L'échantillon est repris et rincé à l'eau. Étape 2 : Débouillissage
[0145] L'échantillon de tissu désencollé est repris et plongé dans une solution d'hydroxyde de sodium 2,5 M. La solution est portée à 95°C et agitée pendant une heure. L'échantillon est repris et rincé à l'eau. Étape 3 : Blanchiment [0146] L'échantillon de tissu désencollé et débouilli est repris et plongé dans une solution d'hypochlorite de sodium à 48° chlorométriques à 0,5 mL/L. La solution est portée à 6O0C et agitée pendant 30 minutes. L'échantillon est repris et rincé à l'eau.
Greffage des capsules sur l'échantillon de coton
Étape 1 : Préparation des capsules
[0147] Le greffage des capsules est effectué selon un procédé similaire à une teinture de fibres de coton, telle que décrite par exemple dans "Basic
principles of textile coloration" de A. D. Broadbent, édité par "Society of dyers and colourists", 2001.
[0148] Les capsules conservées en phase cyclohexane/Hypermer® 1083 à 10 g/L sont centrifugées à 2500 tr/mn pendant 5 minutes afin de les séparer du milieu organique.
[0149] Le culot est récupéré puis dispersé dans 600 mL d'eau à pH 5 (milieu tampon : hydrogénophtalate de potassium et hydroxyde de sodium) contenant du Tween®20, à 5% (v/v). La dispersion obtenue est agitée pendant 15 mn à 500 tr/mn. Le Tween® 20 permet l'élimination du cyclohexane. La dispersion est centrifugée à 2500 tr/min pendant 5 minutes. Ces trois opérations sont réitérées trois fois afin d'éliminer toute trace de cyclohexane.
[0150] Le culot est récupéré puis dispersé dans 600 mL d'eau à pH 5. La dispersion est agitée pendant 15 mn à 500 tr/mn. La dispersion est à nouveau centrifugée à 2500 tr/mn pendant 5 mn. Ces trois opérations sont réitérées trois fois afin d'éliminer toute trace de Tween® 20. Finalement, les microcapsules sont récupérées dans 600 mL d'eau à pH 5.
Étape 2 : Greffage [0151] On utilise une machine d'échantillonnage Ahiba® Color de type Nuance TS programmable, équipée de 12 biberons (autoclaves destinées à contenir le bain de greffage) fixés sur un tambour. Cette machine est normalement utilisée pour réaliser des teintures par épuisement en plein bain. [0152] Un volume V (mL) de la dispersion des microcapsules obtenues à l'étape 1 ci-dessus est prélevé et introduit dans un biberon contenant l'échantillon de tissu. Le rapport de masse de tissu (MtiSSU en g) sur le volume du bain (volume Vbain = V prélevé en mL) définit le rapport de bain Rbain :
R _ Mtissu (g) Kbain " Vbain (mL) "
[0153] Le rapport de bain pour le greffage de cet exemple est fixé à 1 : 15. Du Na2Cθ3 à 30 g/L est ajouté, afin de favoriser l'adsorption des
microcapsules sur le tissu de coton. La montée en température sur la machine est programmée à raison de 3°C/mn. La température finale de greffage des microcapsules sur les fibres de coton est fixée à 500C. Le bain est maintenu sous agitation (10 tr/mn) pendant 15 mn à la température fixée. [0154] À la fin de cette étape d'adsorption, le biberon est sorti de la machine. Un ajout d'hydroxyde de sodium (NaOH) est effectué pour augmenter le pH et permettre la réaction chimique entre les groupements réactifs à la surface des capsules (atomes de chlore de la 2,4,6- trichlotriazine) et les groupements hydroxyle des fibres du coton.
[0155] Le biberon est remis dans la machine, la température du bain est reportée à 500C, et le pH est d'environ 10,5-11. La réaction est conduite pendant environ 45 à 90 mn.
[0156] En fin de réaction, le tissu est récupéré puis rincé à l'eau jusqu'à neutralisation, c'est-à-dire une valeur de pH en surface du tissu voisine de 7. Cette dernière étape permet également d'éliminer les particules non fixées sur le tissu.
Contrôle du greffage
[0157] Pour cette opération, la présence de capsules greffées sur les fibres est attestée par suivi visuel sur photographie prise au microscope électronique à balayage.
La Figure 7 présente des fibres de coton greffées par des capsules composites polyamide préparées par polycondensation interfaciale en système inverse, fonctionnalisées par de l'éthylènediamine, et activées par la
2,4,6-trichlorotriazine.
La Figure 8 présente des fibres de coton greffées par des capsules composites polyamide préparées par polycondensation interfaciale en système inverse, fonctionnalisées par de la Jeffamine® D-230, une poly(oxyalkylène)amine, et activées par la 2,4,6-trichlorotriazine.
qc
[0158] La comparaison des fibres obtenues montre d'une part l'absence d'agglomérats de capsules sur les fibres dans les deux cas de figure. D'autre part, l'utilisation d'une aminé de fonctionnalisation à caractère hydrophile permet un meilleur greffage, en terme de nombre de capsules greffées, sur les fibres.
[0159] Le procédé de la présente invention permet ainsi de réaliser un greffage de capsules composites creuses ou pleines sur tout type de support, en particulier des fibres, organiques ou inorganiques (verre, carbone, fibre textile naturelle, artificielle ou synthétique), de manière contrôlée et homogène.
[0160] En effet, la procédé de greffage permet d'une part de contrôler le taux de greffage sur le support et d'autre part d'obtenir une répartition des capsules sur le support, homogène, ou tout au moins plus homogène qu'avec les procédés de greffage par liaison de covalence connus de l'art antérieur, en particulier pour le greffage de capsules sur des fibres textiles.
Claims
1. Procédé de greffage de capsules composites creuses ou pleines, sur un support, ledit procédé comprenant les étapes de : a) préparation éventuelle des capsules pour adaptation du caractère lipophile/hydrophile de la membrane de la capsule en fonction de la nature du support ; b) fonction nalisation de la membrane des capsules ; c) activation des capsules fonctionnalisées et/ou du support par greffage de groupes réactifs aptes à former des liaisons de covalence avec les groupements réactifs présents à la surface du support et/ou des capsules fonctionnalisées respectivement ; d) mise en contact des capsules fonctionnalisées et éventuellement activées avec le support éventuellement activé et création de liaisons de covalence entre lesdites capsules ledit support ; et e) récupération et rinçage du support comportant des capsules composites greffées par liaisons de covalence.
2. Procédé selon la revendication 1 , dans lequel l'étape c) correspond à une activation des capsules.
3. Procédé selon la revendication 1 , dans lequel l'étape c) correspond à une activation du support.
4. Procédé selon l'une quelconque des revendications précédentes, dans lequel les capsules sont des capsules composites creuses ou pleines, de préférence issues de polycondensation interfaciale, avantageusement en système inverse.
5. Procédé selon l'une quelconque des revendications précédentes, dans lequel les capsules sont des capsules polyamide composites creuses ou pleines.
6. Procédé selon l'une quelconque des revendications précédentes, dans lequel le support est une fibre.
7. Procédé selon l'une quelconque des revendications précédentes, dans lequel le support est une fibre textile.
8. Procédé selon l'une quelconque des revendications précédentes, dans lequel le support est une fibre textile de coton.
9. Procédé selon l'une quelconque des revendications précédentes, dans lequel le support est une fibre textile de coton présentant des groupements hydroxyle libres en surface.
10. Procédé selon l'une quelconque des revendications précédentes, dans lequel l'étape b) de fonctionnalisation est réalisée par greffage de composés de fonctionnalisation, présentant au moins deux groupements réactifs, l'un des groupements permettant une liaison de covalence avec les groupements réactifs présents à la surface des capsules, l'autre groupement réactif restant inchangé dans cette étape et étant susceptible d'être mis en œuvre dans la formation de la liaison de covalence avec les groupes réactifs d'activation.
11. Procédé selon l'une quelconque des revendications précédentes, dans lequel le composé de fonctionnalisation est choisi parmi les diamines, les triamines, les tétramines et les polyamines en général, en particulier les α,ω-diamines, y compris les poly(oxyalkylène)amines.
12. Procédé selon l'une quelconque des revendications précédentes, dans lequel le composé de fonctionnalisation est choisi parmi l'éthylènediamine, la di-éthylènetriamine, la tri-éthylènetétramine, la tétra- éthylènepentamine, la tris-amino-éthylamine, les poly(éthylène)imines linéaires, les poly(éthylène)imines branchées et les poly(oxyalkylène)amines, de préférence choisi parmi l'éthylènediamine, la di-éthylènetriamine, et les poly(oxyalkylène)amines de formules :
13. Procédé selon l'une quelconque des revendications précédentes, comprenant les étapes de : a') adaptation du caractère lipophile/hydrophile de la capsule en fonction de la nature du support, et fonctionnalisation simultanée de ladite surface ; b') activation des capsules fonctionnalisées et/ou du support par greffage de groupes réactifs aptes à former des liaisons de covalence avec les groupements réactifs présents à la surface du support et/ou des capsules fonctionnalisées respectivement ; c') mise en contact des capsules éventuellement activées avec le support éventuellement activé et création de liaisons de covalence entre les groupes réactifs desdites capsules et les groupes réactifs dudit support ; et d') récupération et rinçage du support comportant des capsules composites greffées par liaisons de covalence.
14. Procédé selon l'une quelconque des revendications précédentes, dans lequel l'étape de fonctionnalisation est effectuée par modification du pH et/ou par greffage de composés présentant au moins deux groupements réactifs, l'un des groupements permettant une liaison de covalence avec les groupements réactifs présents à la surface des capsules, l'autre groupement réactif restant inchangé dans cette étape et étant susceptible d'être mis en œuvre dans la formation de la liaison de covalence avec le support, via le groupe d'activation.
15. Procédé selon l'une quelconque des revendications précédentes, dans lequel l'étape d'activation consiste à remplacer et/ou modifier par traitement chimique, physique ou physico-chimique, la surface des capsules, les groupements fonctionnalisés en groupements réactifs aptes à former des liaisons de covalence avec les groupements réactifs présents sur le support.
16. Procédé selon l'une quelconque des revendications précédentes, dans lequel l'étape d'activation correspond au greffage d'un composé d'activation, avantageusement choisi parmi l'acide α-bromo-acrylique, l'acide adipique, la 2,4,6-trichlorotriazine et la dichloroquinoxaline, de préférence la 2,4,6-trichlorotriazine.
17. Procédé selon l'une quelconque des revendications précédentes, dans lequel, préalablement au greffage par les capsules, le support est soumis à un ou plusieurs traitements chimiques, physiques ou physicochimiques.
18. Procédé selon l'une quelconque des revendications précédentes, dans lequel, préalablement au greffage par les capsules, le support est soumis à un ou plusieurs traitements choisis parmi traitement plasma, traitement corona, et autres.
19. Procédé selon l'une quelconque des revendications 1 à 14, dans lequel, préalablement au greffage par les capsules, lorsque le support est une fibre textile, celui-ci est soumis à un ou plusieurs prétraitements choisis parmi flambage, désencollage, débouillissage, blanchiment, lavage, carbonisage, battage, désensimage, fixage, et autres.
20. Procédé selon l'une quelconque des revendications précédentes, dans lequel l'étape de greffage des capsules sur le support est effectuée en présence d'un sel minéral.
21. Procédé selon l'une quelconque des revendications précédentes, dans lequel la réaction de greffage entre le support et les capsules est une réaction entre des groupements acide carboxylique et hydroxy, halogénure d'acyle et aminé, halogénure et hydroxy, isocyanate et aminé ou isocyanate et hydroxy, de préférence entre des groupements halogénure et hydroxy.
22. Procédé selon l'une quelconque des revendications précédentes, dans lequel le greffage des capsules est effectué directement sur des fils, une étoffe, des articles de confection et autres matériaux textiles.
23. Capsule composite polyamide, de préférence obtenue par polycondensation interfaciale en système inverse, fonctionnalisée par des groupements aminé, lesdits groupements aminé provenant d'un composé de fonctionnalisation choisi parmi l'éthylènediamine, la di-éthylènetriamine, et les poly(oxyalkylène)amines de formules :
24. Capsule composite polyamide, de préférence obtenue par polycondensation interfaciale en système inverse, fonctionnalisée par la diamine suivante :
25. Capsule composite polyamide, de préférence obtenue par poiycondensation interfaciale en système inverse, activée par greffage d'un composé d'activation choisi parmi l'acide α-bromo-acrylique, l'acide adipique, la 2,4,6-trichlorotriazine et la dichloroquinoxaline, de préférence la 2,4,6-trichlorotriazine.
26. Capsule selon la revendication 25, fonctionnalisée par la diamine suivante :
H2 H2 H2 H2 H2 H2
H2N ^O O NH2 et activée par la 2,4,6-trichlorotriazine.
27. Support greffé obtenu selon le procédé de l'une quelconque des revendications 1 à 22.
28. Support greffé par liaison de covalence à au moins une capsule composite selon l'une quelconque des revendications 23 à 26.
29. Support selon la revendication 27 ou la revendication 28 qui est un support organique, inorganique, naturel, artificiel ou synthétique, choisi parmi revêtement, peinture, verni, film, feuille, plaque, cuir, pierre et fibre.
30. Fibre, de préférence fibre de coton, obtenue selon le procédé de l'une quelconque des revendications 1 à 22.
31. Fibre, de préférence fibre de coton, greffée par au moins une capsule de l'une quelconque des revendications 23 à 26.
32. Utilisation d'un support selon l'une quelconque des revendications 27 à 29 pour l'élaboration d'un article de fonction.
33. Utilisation selon la revendication 32, dans laquelle le support est une fibre, un fil, une étoffe, un matériau textile ou de confection, pour l'élaboration de textiles de fonction.
34. Article comprenant des capsules greffées par liaisons de covalence sur un support selon le procédé fibres obtenues selon le procédé de l'une quelconque des revendications 1 à 22.
35. Article selon la revendication 34 qui est un article textile.
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP20070731010 EP1994217B1 (fr) | 2006-02-20 | 2007-02-19 | Capsules a surface modifiee pour greffage sur fibres |
US12/279,990 US8586143B2 (en) | 2006-02-20 | 2007-02-19 | Capsules with a modified surface for grafting onto fibres |
JP2008554817A JP5358192B2 (ja) | 2006-02-20 | 2007-02-19 | 繊維にグラフトするために表面を改質したカプセル |
AT07731010T ATE553244T1 (de) | 2006-02-20 | 2007-02-19 | Kapseln mit modifizierter oberfläche zum pfropfen auf fasern |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR0601467 | 2006-02-20 | ||
FR0601467A FR2897617B1 (fr) | 2006-02-20 | 2006-02-20 | Capsules a surface modifiee pour greffage sur des fibres |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2007096513A1 true WO2007096513A1 (fr) | 2007-08-30 |
Family
ID=37105645
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/FR2007/000299 WO2007096513A1 (fr) | 2006-02-20 | 2007-02-19 | Capsules a surface modifiee pour greffage sur fibres |
Country Status (6)
Country | Link |
---|---|
US (1) | US8586143B2 (fr) |
EP (1) | EP1994217B1 (fr) |
JP (1) | JP5358192B2 (fr) |
AT (1) | ATE553244T1 (fr) |
FR (1) | FR2897617B1 (fr) |
WO (1) | WO2007096513A1 (fr) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
PT103265B (pt) * | 2005-04-22 | 2007-02-28 | Univ Do Minho | Microcápsulas com grupos funcionais reactivos de ligação a fibras têxteis e processo de aplicação e fixação |
CN113338030A (zh) * | 2021-06-08 | 2021-09-03 | 东华大学 | 一种基于纳米胶囊原位固化技术的芳香纺织品及其制备方法 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2001006054A1 (fr) * | 1999-07-19 | 2001-01-25 | Avantgarb, Llc | Traitement permanent de textiles à base de nanoparticules |
WO2003097228A1 (fr) * | 2002-05-16 | 2003-11-27 | Rhodia Chimie | Procede de preparation de particules de polyamide, ou de polyurethane, ou de polyester, ou de polyuree par polycondensation interfaciale dans une emulsion avec application d'ultrasons |
EP1398074A1 (fr) * | 2002-09-10 | 2004-03-17 | Cognis Iberia, S.L. | Microcapsules de polyamide (III) |
WO2006013165A1 (fr) * | 2004-08-04 | 2006-02-09 | Ciba Specialty Chemicals Holding Inc. | Particules fonctionnalisees |
Family Cites Families (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4534783A (en) * | 1984-01-03 | 1985-08-13 | Monsanto Co. | High concentration encapsulation of water soluble-materials |
US4882220A (en) * | 1988-02-02 | 1989-11-21 | Kanebo, Ltd. | Fibrous structures having a durable fragrance |
JPH0693570A (ja) * | 1992-07-31 | 1994-04-05 | Matsui Shikiso Kagaku Kogyosho:Kk | 着香方法及び発香繊維製品 |
CA2324949A1 (fr) * | 1998-03-24 | 1999-09-30 | Avantgarb, Llc | Tissu et autres matieres modifiees, procedes d'obtention |
AR032424A1 (es) * | 2001-01-30 | 2003-11-05 | Procter & Gamble | Composiciones de recubrimiento para modificar superficies. |
DE10117671A1 (de) * | 2001-04-09 | 2002-10-10 | Bayer Ag | Mit duftstoffhaltigen Mikrokapseln ausgerüstetes Leder |
CA2455911A1 (fr) * | 2001-09-10 | 2003-03-27 | The Procter & Gamble Company | Composition et procede de traitement de tissu |
JP2003239175A (ja) * | 2002-02-14 | 2003-08-27 | Shohi Kagaku Kenkyusho:Kk | 植物性蛋白質によるセルロース系繊維材料の改質加工法 |
FR2850880B1 (fr) * | 2003-02-07 | 2006-06-23 | Cerexagri | Fabrication de microbilles de pesticides et utilisation de ces microbilles dans la protection des cultures |
PT103265B (pt) * | 2005-04-22 | 2007-02-28 | Univ Do Minho | Microcápsulas com grupos funcionais reactivos de ligação a fibras têxteis e processo de aplicação e fixação |
-
2006
- 2006-02-20 FR FR0601467A patent/FR2897617B1/fr not_active Expired - Fee Related
-
2007
- 2007-02-19 WO PCT/FR2007/000299 patent/WO2007096513A1/fr active Application Filing
- 2007-02-19 JP JP2008554817A patent/JP5358192B2/ja not_active Expired - Fee Related
- 2007-02-19 EP EP20070731010 patent/EP1994217B1/fr not_active Not-in-force
- 2007-02-19 AT AT07731010T patent/ATE553244T1/de active
- 2007-02-19 US US12/279,990 patent/US8586143B2/en not_active Expired - Fee Related
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2001006054A1 (fr) * | 1999-07-19 | 2001-01-25 | Avantgarb, Llc | Traitement permanent de textiles à base de nanoparticules |
US20030013369A1 (en) * | 1999-07-19 | 2003-01-16 | Soane David S. | Nanoparticle-based permanent treatments for textiles |
WO2003097228A1 (fr) * | 2002-05-16 | 2003-11-27 | Rhodia Chimie | Procede de preparation de particules de polyamide, ou de polyurethane, ou de polyester, ou de polyuree par polycondensation interfaciale dans une emulsion avec application d'ultrasons |
EP1398074A1 (fr) * | 2002-09-10 | 2004-03-17 | Cognis Iberia, S.L. | Microcapsules de polyamide (III) |
WO2006013165A1 (fr) * | 2004-08-04 | 2006-02-09 | Ciba Specialty Chemicals Holding Inc. | Particules fonctionnalisees |
Also Published As
Publication number | Publication date |
---|---|
JP2009527654A (ja) | 2009-07-30 |
EP1994217B1 (fr) | 2012-04-11 |
ATE553244T1 (de) | 2012-04-15 |
EP1994217A1 (fr) | 2008-11-26 |
US20090325438A1 (en) | 2009-12-31 |
JP5358192B2 (ja) | 2013-12-04 |
US8586143B2 (en) | 2013-11-19 |
FR2897617B1 (fr) | 2008-05-16 |
FR2897617A1 (fr) | 2007-08-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5788503B2 (ja) | ウェブ材料及びその製造方法 | |
WO2020229744A1 (fr) | Procede de preparation de microcapsules biodegradables et microcapsules ainsi obtenues | |
US20160348280A1 (en) | Functionalized molded cellulose body and method for producing the same | |
FR2985274A1 (fr) | Structures fibreuses comprenant des particules et leur procede de fabrication | |
TW200806848A (en) | Capsules | |
US11932829B2 (en) | Articles of manufacture comprising nanocellulose elements | |
CN109468851A (zh) | 一种微胶囊整理织物的方法 | |
WO2022107016A1 (fr) | Procede de preparation de microcapsules biodegradables et utilisation des microcapsules ainsi obtenues | |
WO2003056923A1 (fr) | Utilisation du sulfure de zinc comme agent antiacarien | |
EP1994217B1 (fr) | Capsules a surface modifiee pour greffage sur fibres | |
LU83947A1 (fr) | Composition aqueuse de polyurethanne et son application a la production d'une matiere composite en feuille | |
EP2393978B1 (fr) | Procédé d'enduction de microsphères sur un matériau souple | |
JP2014510848A (ja) | 結合剤および当該結合剤によって固定されているシクロデキストリンを含有する布地の製造方法 | |
US12122980B2 (en) | Articles of manufacture comprising nanocellulose elements | |
EP3172375B1 (fr) | Support fibreux comportant des particules contenant un agent actif partiellement soluble dans l'eau, particules et méthodes de fabrication des particules | |
BE682956A (fr) | ||
WO2011010038A1 (fr) | Association de produits cationiques et anioniques naturels comme liant pour support textile | |
EP2213786B1 (fr) | Matériau filamenteux ou fibreux imprégné de substances actives | |
WO2012107694A1 (fr) | Microparticules cationiques et utilisation dans le domaine des cosmeto - textiles | |
FR2828896A1 (fr) | Substrat non tisse pouvant degager un arome et/ou une saveur | |
FR2961720A1 (fr) | Immobilisation d'especes chimiques ou particules sur un support soumis a un effet corona |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
WWE | Wipo information: entry into national phase |
Ref document number: 2007731010 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2008554817 Country of ref document: JP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 12279990 Country of ref document: US |