WO2007094514A1 - 酸化触媒用複合酸化物およびフィルター - Google Patents

酸化触媒用複合酸化物およびフィルター Download PDF

Info

Publication number
WO2007094514A1
WO2007094514A1 PCT/JP2007/053329 JP2007053329W WO2007094514A1 WO 2007094514 A1 WO2007094514 A1 WO 2007094514A1 JP 2007053329 W JP2007053329 W JP 2007053329W WO 2007094514 A1 WO2007094514 A1 WO 2007094514A1
Authority
WO
WIPO (PCT)
Prior art keywords
oxidation catalyst
heat
molar ratio
oxide
catalyst
Prior art date
Application number
PCT/JP2007/053329
Other languages
English (en)
French (fr)
Inventor
Yuki Kaneshiro
Takuya Yano
Original Assignee
Dowa Electronics Materials Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dowa Electronics Materials Co., Ltd. filed Critical Dowa Electronics Materials Co., Ltd.
Publication of WO2007094514A1 publication Critical patent/WO2007094514A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/002Mixed oxides other than spinels, e.g. perovskite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • B01D53/9445Simultaneously removing carbon monoxide, hydrocarbons or nitrogen oxides making use of three-way catalysts [TWC] or four-way-catalysts [FWC]
    • B01D53/945Simultaneously removing carbon monoxide, hydrocarbons or nitrogen oxides making use of three-way catalysts [TWC] or four-way-catalysts [FWC] characterised by a specific catalyst
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/18Arsenic, antimony or bismuth
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G29/00Compounds of bismuth
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/021Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
    • F01N3/033Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters in combination with other devices
    • F01N3/035Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters in combination with other devices with catalytic reactors, e.g. catalysed diesel particulate filters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/206Rare earth metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2523/00Constitutive chemical elements of heterogeneous catalysts
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/80Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70
    • C01P2002/88Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70 by thermal analysis data, e.g. TGA, DTA, DSC
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2370/00Selection of materials for exhaust purification
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Definitions

  • the present invention relates to a composite oxide suitable for an oxidation catalyst for burning particulate matter (hereinafter referred to as “PM”) discharged from an automobile / diesel engine, and an oxidation catalyst and a diesel exhaust gas purification filter using the same. .
  • PM particulate matter
  • Patent literature Discloses a catalyst carrying Pt as a catalytic metal.
  • the present invention is a composite oxide for an oxidation catalyst capable of burning diesel engine exhaust gas PM at a low temperature without containing noble metal elements such as Pt, and also heat generation during PM combustion.
  • the aim is to develop and provide composite oxides that have low heat degradation due to (ie, high heat resistance).
  • the composite oxide has a crystallite diameter of less than 19 nm in the (111) plane of the oxyhycerium structure after being subjected to an 800 ° C. X 2 h heating experiment in the atmosphere.
  • those having a property of 15 nm or less have particularly excellent heat resistance. It is assumed that those having such excellent heat resistance function as oxides in which cerium oxide and Bi oxide are combined.
  • Oxidation catalysts using these composite oxides as catalyst materials can be used as PM combustion catalysts in diesel engine exhaust gas, and supported on porous materials such as alumina, cordierite, or silicon carbide. As a result, a diesel exhaust gas purification filter is constructed. ,
  • the composite acid compound of the present invention which is mainly composed of Ce and typical metallic elements of Bi, greatly reduces the PM autoignition start temperature. be able to. This can reduce the heat applied to the filter by lowering the PM combustion temperature, which leads to a reduction in the load on various exhaust gas components, and even a little heat is applied to the heat energy addition device. Since the desired effect can be obtained with this, a compact device is sufficient instead of a large-scale device. '
  • the material cost of the catalyst substance is reduced.
  • the composite acid of the present invention has little thermal deterioration even when it receives a high-temperature thermal history due to ignition during PM combustion. Therefore, when this is used as a catalyst material, the catalytic activity of the oxidation catalyst is prolonged for a long time. It is expected to be able to maintain a high level a
  • the present invention represents a longer life of exhaust gas purification mechanism using DPF and a reduction in total cost. Brief description of the drawings.
  • Fig. ⁇ is a diagram schematically showing the calculation method of the TG curve and the combustion start temperature.
  • FIG. 2 is a diagram illustrating an X-ray diffraction pattern of a heat-treated product at 800 ° C.
  • Fig. 3 is a graph showing the relationship between Bi addition ratio (X) and Kibonbon Black 'combustion start temperature for a 600 ° C heat-treated product.
  • Fig. 4 is a graph showing the relationship between the Bi addition ratio (X) and the carbon black combustion start temperature for the 800 ° C heat-treated product. '
  • FIG. 6 is a TEM photograph of the heat treated product at 600 ° C. in Example 1.
  • Fig. 7 is a TEM photograph of the 800 ° C heat-treated product of Example 1.
  • Figure 8 is a graph showing the relationship between the Bi addition ratio (X) and the crystallite diameter on the ⁇ 111 ⁇ face of the cerium oxide structure for the 800 ° C heat-treated product.
  • the composite oxide according to the present invention is mainly composed of Ce and a typical metal element, especially Bi.
  • B i exhibiting the above characteristics will be described. It has an oxide phase having a structure in which part of Ce of the cerium oxide structure is substituted with B i.
  • Bi that does not replace Ce in the cerium oxide structure may be present in the composite oxide.
  • the molar ratio of Ce and Bi satisfies the following [a], preferably the following [b].
  • the oxide having this composite structure exhibits catalytic activity as an oxidation catalyst from a lower temperature range than that of a simple structure oxide containing no Bi.
  • the cation of complex oxides mainly composed of cerium atoms is the same as what is considered as the mechanism of catalytic effect in other complex oxides containing Ce.
  • Typical gold that shows the catalytic activity improvement effect in the low temperature range that is, the PM combustion start temperature reduction effect
  • Bi is used as a genus element
  • a higher catalytic activity effect is exhibited even if the amount of Bi added is small.
  • the amount of Bi added is too high, the effect does not improve, but rather the catalyst substance may melt when exposed to high temperatures. This is thought to be due to the decrease in the melting point caused by the decrease in the Ce ratio due to the addition of Bi to the composite oxide. Whether the amount of Bi added is appropriate can be determined by X-ray diffraction in the sample after exposure to high temperature.
  • the addition ratio of Bi to the composite oxide is in the range of 0 ⁇ x ⁇ 0.9 as in the above [a].
  • X exceeds 0.9, it is not preferable because a heterogeneous phase due to Bi tends to be formed during firing, and generation of a single cerium oxide phase is not observed.
  • This can be confirmed by, for example, the X-ray diffraction that, in addition to the cerium oxide structure, a diffraction peak of a different phase considered to be a phase mainly composed of Bi oxide becomes conspicuous.
  • a heterogeneous phase is detected, it means that there is a large amount of Bi that is not dissolved in the cerium oxide structure.
  • the catalytic action that lowers the combustion temperature of PM is weakened, which is preferable.
  • the Bi content is more preferably in the range of 0.05 ⁇ x ⁇ 0.85.
  • PM combustion catalyst it is desirable that it has the characteristics of less thermal degradation when it receives a heat history that is suddenly exposed to high temperatures, that is, it has excellent heat resistance.
  • heat-resistant treatment a composite oxide synthesized at a firing temperature of around 600 ° C is heated in the atmosphere at 800 ° C for 2 hours (hereinafter referred to as "heat-resistant treatment"). It is effective to see how much the catalyst activity changes after firing and after heat treatment.
  • the catalytic activity for PM can be evaluated, for example, at the PM combustion start temperature described later, and the PM combustion start temperature after receiving a heat history of 800 ° C and the PM when using the as-fired complex oxide
  • the degree of heat resistance of the catalyst material can be determined by examining the difference in the combustion start temperature.
  • the baking temperature is 600.
  • the composite oxide before receiving the above heat treatment (800 ° C) only receives a heat history of 600 ° C. Therefore, the difference in PM combustion start temperature before and after heat treatment when the heat treatment at 800 ° C is applied to a 600 ° C fired product is expressed as “ ⁇ (800-600) J” in this specification.
  • ⁇ (800-600) J in this specification.
  • it is preferable that ⁇ (800-600) is as small as possible because this indicates that the catalyst is excellent in heat resistance. I just need it.
  • the crystallite diameter in the (1 1 1) plane of the cerium oxide structure is less than 19 nm. And what has a property which the said crystallite diameter maintains less than 17 nm after the said heat-resistant process becomes a more preferable object, and what becomes 15 nm or less is still more preferable.
  • the complex oxide containing Ce and B i as the main components which has excellent heat resistance, has a B i content of 0.1 ⁇ X ⁇ 0.7 as shown in [b] above. It can be realized in the composition range. Outside this composition range, it is difficult to stably realize a remarkable improvement in heat resistance.
  • the Bi content is more preferably controlled to 0.2 ⁇ x ⁇ 0.6 from the viewpoint of achieving both heat resistance and initial activity.
  • a water-soluble salt of Ce and a water-soluble salt of a typical metal element are precipitated with a precipitating agent, and the precipitate It can be produced by a method of heat-treating a “precursor” obtained by drying
  • B i is to filter, wash and dry the precipitation product obtained by reacting the water-soluble salt of Ce and the water-soluble salt of B i with an alkali carbonate. To obtain the precursor.
  • the upper limit for the ion concentration of Ce and Bi in the solution that forms the precipitate is determined by the solubility. However, if the concentration is too high, there is a possibility that the reaction will not occur uniformly during stirring, and it may become uneven, and the load on the device may become excessive during stirring, which is not realistic.
  • alkali carbonate it is recommended to use alkali carbonate to obtain a precipitate.
  • Specific examples include the use of a mixture of carbonated water such as carbonated water, carbon dioxide, sodium carbonate, carbonated lithium, sodium hydrogen carbonate, and a water-soluble salt of ammonia water or ammonium.
  • an ammonium carbonate compound having both of them specifically, ammonium carbonate, hydrogen carbonate ammonium, etc.
  • the pH of the liquid at that time is controlled in the range of 6 to 11. It is good to do. In the region where pH is less than 6, B i and Ce may not coprecipitate. It ’s not.
  • Such a method of obtaining a precipitate using an alkali carbonate is advantageous in that a desired complex oxide can be easily obtained without using a large-scale facility such as autoclave.
  • the obtained precipitate is filtered, washed with water as necessary, and dried by vacuum drying or ventilation drying to obtain a precursor.
  • the drying process can be performed in the form of filtration, and after the granulation to a predetermined shape, the drying process can be performed.
  • the obtained precursor is heat-treated at, for example, 400 to 100 ° C., preferably 500 to 80 ° C. in a powder form or in a granulated state.
  • the atmosphere at the time of heat treatment is not particularly limited as long as it is a condition capable of forming a composite oxide.
  • an atmosphere in which air is combined with water vapor in air, nitrogen, or argon is used.
  • an atmosphere in air, nitrogen and a combination thereof with water vapor can be used.
  • the obtained precipitate was filtered, washed with water, and dried at 125 ° C. for about 15 hours.
  • the obtained powder is called a precursor.
  • this precursor was calcined at 60 ° C. for 2 h in an air atmosphere to obtain a composite oxide powder containing Ce and Bi as main components. This is called “600 ° C heat-treated product”.
  • a part of the heat treated product at 600 ° C. was subjected to a heat treatment that was further heated at 80 ° C. for 2 hours in an air atmosphere to obtain “800 heat treated product”.
  • Alumina powder and dinitrodiamineplatinum solution with respect to A 1 2 0 3 Pt becomes 3% by mass In this state, the mixture was maintained in this state for 2 hours, and Pt was impregnated with A 1 2 0 3 .
  • Pt was supported on alumina by evaporating to dryness at 110 ° C. for 2 hours using an evaporator, and dried at 110 ° C.
  • the Pt content in alumina is 3.42% by mass.
  • the obtained dried product was calcined at 600 ° C for 2 hours in the atmosphere, and a part of the dried product was heat-treated at 800 ° C for 2 hours in the atmosphere. In this way, “600 ° C heat-treated product” and “800 ° C heat-treated product” were obtained.
  • a cerium oxide IV reagent (manufactured by Kanto Chemical Co., Inc., purity 99. 99%) was heat-treated at 600 ° C for 2 h at 600 ° C in air or at 800 ° C for 2 h in air.
  • Tube Co tube (C o—— ⁇ ray used)
  • Tube voltage 40 kV
  • Tube current 30 mA
  • Example 2 illustrates the composite oxide having the cerium oxide (Ce0 2 ) structure even after receiving a thermal history of 800 ° C, except for Example 2 (B i: 0.75). It was.
  • the Bi molar ratio (X) is as high as 0.75, 800.
  • the peak of the hetero phase mainly composed of Bi oxide became much more conspicuous than the peak of the cerium oxide structure.
  • FIG. 2 illustrates the X-ray diffraction patterns of Example 2 and Example 4 Comparative Example 2. ⁇ Calculation of crystallite diameter>
  • X-ray diffraction measurement was performed on the “800 DC heat-treated product” obtained in each example (excluding Example 7 and Comparative Example 1) in the vicinity of 20 that satisfies the Bragg condition of the (111) plane of the cerium oxide structure. Do, crystallite The diameter was calculated. The measurement conditions are the same as those described in ⁇ Measurement of X-ray diffraction pattern >> above. The total number of measurements was 5 times.
  • the crystallite size is calculated using X-ray diffraction analysis software JAD E 6 manufactured by MDI.
  • the number of smoothing points during peak smoothing was 45 points.
  • t crystallite diameter (diameter of crystal grain) (nm)
  • Figure 8 shows the relationship between Bi addition ratio (molar ratio) X and crystallite size.
  • Example 7 For each of the “600 ° C heat-treated product” and “800 ° C heat-treated product” obtained in each Example and Comparative Example (however, only “600 ° C heat-treated product” in Example 7) was mixed with carbon black. A portion of the sample was collected, and a TG / DTA device was used to evaluate the initial firing temperature. Specifically, it was as follows.
  • Fig. 1 schematically shows the weight change curve (TG curve) and explains how to calculate the combustion start temperature. Showed. As illustrated, the carbon black combustion start temperature is the temperature at the point where the tangential line before the weight reduction starts and the tangent line at the point where the weight reduction rate (slope) is maximum intersect in the TG curve ( refer graph1) .
  • Figures 3 and 4 show the relationship between the Bi addition ratio X and the carbon black combustion start temperature for the “600 ° C heat-treated product” and “800 ° C heat-treated product”, respectively.
  • Figure 5 shows the relationship between the Bi addition ratio X and ⁇ (800-600).
  • Example 2 where ⁇ (800-600) was relatively high at 42 ° C, the carbon black combustion start temperature of “800 ° C heat-treated product” was significantly lower than that of the comparative example. It can be said that each example has good heat resistance. Especially small crystallite size. In addition, Examples 1 and 3 to 6 in which no heterogeneous formation was observed had extremely good heat resistance. In these cases, it is considered that even after giving a thermal history of 800 ° C., Bi is almost dissolved in the phase of the cerium oxide structure or coexists so as not to adversely affect the activity. This is presumed to have led to the maintenance of excellent heat resistance.
  • Figures 6 and 7 show TEM (transmission electron microscope) photographs of the "600 ° C heat-treated product” and "800 ° C heat-treated product” in Example 1, respectively. Is 1740,000 times, and the transmission electron microscope uses JEM-10 OC XMark-II type manufactured by JEOL Ltd.). Comparing Fig. 6 and Fig. 7, it can be seen that the coarsening of the particles is almost unnoticeable even in the “800 ° C heat-treated product”. As far as the photograph is concerned, the force at which the particles seem to form aggregates. After the primary particles were subjected to either a baking process at 600 ° C. or a subsequent heat treatment at 80 ° C. The morphology of the particles is maintained, and the coarsening of the particles due to sintering is suppressed.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Combustion & Propulsion (AREA)
  • Analytical Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Biomedical Technology (AREA)
  • Environmental & Geological Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Health & Medical Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Catalysts (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Filtering Materials (AREA)
  • Processes For Solid Components From Exhaust (AREA)
  • Exhaust Gas After Treatment (AREA)

Description

明細書 酸化触媒用複合酸化物およびフィルター 技術分野 '
本発明は、 自動車^ディーゼルエンジンから排出される粒子状物質(以下「PM」 とい う) を燃焼させる酸化触媒に適した複合酸化物、並びにそれを用いた酸化触媒およびディー ゼル排ガス浄化用フィルターに関する。 従来技術
ディーゼルエンジンの排ガスが有する問題としては、特に窒素酸化物 (N〇x ) と ΡΜ が挙げられる。 なかでも、 ΡΜはカーボンを主体とする微粒子であり、 現時点において広く 用いられている除去方法として、 排気ガス流路に多孔質体セラミヅクスからなるディーゼ ル.パーディキュレート 'フィルター (.D P F) を設置して ΡΜを捕集する方法が挙げられ る。捕集された PMは外部ヒーター等を用いて間欠的または 続的に燃焼処理され、 当該 D P Fは PM捕集前の状態に再生される。 、.
.この D P F再生処理には、上述のように電気ヒ ターやバーナー等、 外部からの強制加熱 により PMを撚焼させる方法、 D P Fよりもエンジン側に酸化触媒を設置し、排ガス中に含 まれる N Oを酸化触媒 fcより N 02にし、 N02の酸化力により P Mを燃焼させる方法などが 一般的に用いられている。 し力、し、 電気ヒーターやバーナ などで作用させるには外部に動 力源を設置する必要があり、 それらを確保、動作するための機 が別途必要になるためシ ステムそのものが複雑化する。 また、酸化触媒につい は触媒活性が十分発揮されるほど排 ガス温度が高くないことや、ある一^の運転状況下でなければ ΡΜ燃焼に必要な N Oが排ガ ス中に含まれてこないことな 、解決すべき種々の問題がある。 そ ®ような中、 D P Fその ものに蝕媒を担持させ'、その触媒作用により PMの燃焼開始温度を低下させた上で、 究極的 な目標 しては排ガス温度にて連続的に燃焼させる方法が望ましいとされている。
特許文献;!には触媒金属として P tを担持したものが開示されている。 し力し、 排ガス温
度レベルでは P tは PMを燃焼させる触媒作用が低いため、燃料排ガス温度にて PMを連続 的に燃焼させるのは困難と考えられる。 また、 貴金属を使用じているためコストの増大が避 けられない。
特" F文 1 :特開平 11— 253757号公報 発明が解決しょうとする課題
DPFにトラップされた PMを燃焼除去させるための酸ィヒ触媒( P M燃焼触媒)としては、 一般的に高比表面積のアルミナ等に触媒金属の P tを担持させたものが現在では広く使用 されている。 しかし上述のように、 P tは排ガス温度レベ^での PM燃焼に対する触—媒作用 が低く、 また高価であるためコスト増を招くという問題がある。
一方、 燃焼時め発熱により触媒温度が急激に上昇した場合を考慮すると、 その温度上 昇に伴う触媒機能の低下 (熱劣化) ができるだけ少ない触媒物質の開発が待たれている。 本発明はこのような現状に鑑み、 P t等の貴金属元素を含まずにディーゼルエンジン排ガ スの PMを低温で燃焼させることができる酸化触媒用の複合酸化物、 さらには PM燃焼時の 発熱による熱劣化の少ない けなわち高い耐熱性を備えた) 複合酸化物を開発し、提供しよ うというものである。 - 、 課題を解決^"るための手段
発明者らは詳細な検討の結果、. P tよりも PM燃焼温度を大幅に低減させることのでき る酸化触媒用の複合酸ィ匕物として、 Ceおよび典型金属元素 (すなわち、遷移元素以外の元 素) ¾ ^かでも B iと、 ^素とで構成される複合酸化物を得るに至った。 具体的には、 Ceお よび典型金属元素と、酸素から構成される複合酸化物が好ましく使用できる。本亮明者らの 知見によると、典型金属元素のなかでも B iが好ましく利用される。 とりわけ良好な触媒活 性を示す P iと C eの構成割合について検討したところ、 C eおよび B iのモル比が下記 [ a ] 、 好ましくは下記 [b] を満 す複合酸化物が提供される。
[a] C eおよび B iのモル比を、 C e : B i = (1— X) : xと'するとき、 0 < x≤ 0. '9が成立する。 .
[b!UC eおよび B iのモル比を、 C e : B i = (1— X) : χ'とするとき、 0. 1≤χ ≤0. 7が成立する。 ',
前記複合酸化物としてぐ大気中 800°CX 2 h加熱する実験に供した後に、酸ィヒセリゥム 構造の (111) 面における結晶子径が 19 nm未満となるものが好ましく、 17nm以下 あるいはさらに 1 5 n m以下となる性質を有するものは特に優れた耐熱性を有する。 このよ うな優 た耐熱性を有するものにおいては、酸化セリウムと B i酸化物が複合化された酸化 物として機能していると推測される。
これらの複合酸化物を触媒物質として用いた酸化触媒は、ディーゼルエンジン排ガス中の PM燃焼触媒として使用 き、 それをアルミナやコーデイエライト、 あるいはシリコンカー バイドなどの多孔質体に担持等を行うことによりディ一ゼル排ガス浄化用ブイルターが構 築される。 、
C eと典型金属元素なかでも B iを主成分とする本発明の複合酸ィヒ物は、従来の P tを用 いた酸化触媒'と比べ、 PMの自己発火開始温度を大幅に俾減させることができる。 このこと によって P Mの燃焼温度が低下することによりフィルターに加える熱を抑制することがで き、 これは各種排ガス系部材に対する負荷の軽減につながり、熱エネルギーの付加装置につ いても、少しの加熱で所望の効果を得ることができるため、 装置としても大がかりな装置で なくコンパクトなもので足るようになる。 '
また、高価な白金族元素を使用する必要がないので、触媒物質の材料コストが低減される。 さらに、本発明の複合酸ィヒ物は PM燃焼時の発火によって高温の熱履歴を受けた場合でも 熱劣化が少な、いので、 これを触媒物質として使用すると、酸化触媒の触媒活性を長期間にわ たり高く維持することができることが期待される a
したがって本発明は、 D P Fを用いた排ガス浄化機構の長寿命化およびトータルコストの 削減 表与するもので る。 図面の簡単な説明 .
図 ίは T G曲線と燃焼開始温度の算出方法を模式的に示した図である。
図 2は 8 0 0 °C熱処理品の X線回折パターンを例示した図である。
: 図 3は 6 0 0 °C熱処理品につ'いて B i添加比率( X ) と力一ボンブラック'燃焼開始温度の 関係を示したグラフである。
図 4は 8 0 0°C熱処理品について B i添加比率(X ) とカーボンブラック燃焼開始温度の 係を示したグラフである。 '
図 5は B'i添加比率 ( ) と Δ Τ ( 8 0 0— 6 0 0 ) の関係を示したグラフである。 図' 6は実施例 1の 6 0 0 °C熱処理品についての T EM写真である。 図 7は実施例 1の 800°C熱処理品についての T EM写真である。
図 8は 800°C熱処理品について B i添加比率 (X) と酸化セリゥム構造 {111} 面に おける結晶子径の関係を示したグラフである。
図 9は 800 °C熱処理品について 20 = 31. 5〜35. 5° の範囲で測定された X線 回折パターンを例示した図である。 発明の好ましい態様
本発明に従う複合酸化物は Ceと典型金属元素、なかでも B iを主成分とするものである。 発明者らの知見により、上記にそった特性を発現する B iに関して述べれば、酸化セリゥム 構造体の C eの一部を B iで置換した構造の酸化物相を有するものである。酸化セリウム構 造体の C eを置換していない B iが複合酸化物の中に存在していても構わない。 これらの複 合酸化物は、 Ceおよび B iのモル比が下記 [a] 好ましくは下記 [b] を満たすものであ る。
[a] Ceおよび B iのモル比を、 Ce : B i = (1— x) : xとするとき、 0<x≤0. 9が成立する。
[b] Ceおよび B iのモル比を、 Ce : B i= (l— X) : xとするとき、 0. l≤x ≤0. 7が成立する。
あるいは Ce、 B i、 および酸素のモル比で表現すれば、 例えば下記 (1) 式で表すこと もできる。
(1 -x) C e O 2 - x B i y O z (1)
ただし、 0<x≤0. 9好ましくは 0. 1≤χ≤0. 7、 0<y≤4、 0< z≤7である。 発明者らの研究によると、 この複合構造の酸化物は、 B iを含有しない単純構造の酸化セ リゥムと比べ、 より低温域から酸化触媒として、 触媒活性が発揮されることが確認された。 そのメカニズムについては不明な点も多いが、他の C eを含む複合酸化物において触媒効果 発現機構として考えられているものと同様に、セリゥム原子を主とする複合酸化物の陽ィォ ンの見かけ上の価数変化が起こり、 また、 イオン半径が異なる元素同士の置換による格子の 歪のため、格子中の酸素が格子外に放出されやすい状態となり、 これによつて比較的低温の 温度域から酸化に必要な活性酸素が供給されるようになるのではないかと推察される。
低温度域での触媒活性の向上作用、すなわち PMの燃焼開始温度の低減効果を示す典型金 属元素として B iを使用した場合、 B iの添加量は少量であってもより高い触媒活性効果を 示す。 し力し、 あまり B i添加量が高すぎてもその効果は向上せず、 むしろ高温に曝された ときに触媒物質が溶融してしまう恐れがあることがわかってきた。 これは、複合酸化物中へ の B iの添加により、 C e割合が低下したことによって融点の低下が発生するためではない かと考えられる。 B iの添加量が適正か否かについては、高温にさらした後の試料における X線回折により知ることができる。 こうした評価により検討したところ、複合酸化物中への B iの添加割合は、 前記 [a] のように 0<x≤0. 9の範囲とすることが好ましい。 Xが 0. 9を超えると焼成時に B iに起因する異相が生成しやすくなり、単一での酸化セリゥム 相の生成がみられなくなるため好ましくない。 このことは、 例えば X線回折により、 酸化セ リゥム構造の他に B i酸化物主体の相と考えられる異相の回折ピークが目立つようになる こと力ら確認できる。 このような異相が検出される場合は酸化セリウム構造に固溶していな い B iが多く存在することを意味し、 その場合、 PMの燃焼温度を低下させる触媒作用が弱 まるので好ましくなレ、。 B i含有量は 0. 05≤x≤0. 85の範囲とすることがより望ま しい。 PM燃焼触媒の用途を考慮すると、急激に高温に曝されるような熱履歴を受けたと きに熱劣化の少ない特性を具備すること、すなわち耐熱性に優れることが望ましレ、。 このよ うな耐熱性を評価するには、例えば 600°C前後の焼成温度で合成された複合酸化物を大気 中 800°Cで 2h加熱する処理(以下これを「耐熱処理」 とレヽう)に供し、焼成後のままと、 耐熱処理を受けた後とで、 触媒活性がどの程度変化するかを見る方法が有効である。 PMに 対する触媒活性は例えば後述する PM燃焼開始温度にて評価でき、 800°Cの熱履歴を受け. た後の PM燃焼開始温度と、焼成したままの複合酸化物を使用した場合との PM燃焼開始温 度の差を調べることにより当該触媒物質の耐熱性の程度を知ることができる。焼成温度が 6 00。Cの場合、 上記耐熱処理 (800°C) を受ける前の複合酸化物は 600°Cの熱履歴を受 けているのみである。 そこで、 600°C焼成品に対して上記 800°Cの耐熱処理を施した場 合の、 耐熱処理前後の PM燃焼開始温度の差を、 本明細書では 「ΔΤ (800— 600) J と表示する。 酸化触媒において、 ΔΤ (800-600) ができるだけ小さい値を示すこと が当該触媒が耐熱性に優れていることを示すので好ましい。実用的な特性の見地から言うと、 15 °C以下であればよい。
発明者らは 600°Cで焼成された種々の Ceと B iを生成分とする複合酸化物について、 AT (800-600) と、 耐熱処理後の酸化物構造の関係について詳細に調査した。 その 結果、 6 0 0 °Cで焼成された状態で B iに起因する異相が検出されなくても、 8 0 0 °C X 2 hの上記耐熱処理を施した後に新たに異相が確認される場合がある。 そのような場合は、 良 好な耐熱性を示さない場合が多いことがわかってきた。詳細な検討の結果、 C eと B iを主 成分とする複合酸化物の耐熱性を評価する指標として、 上記耐熱処理後の試料についての、 酸ィ匕セリウム構造 ( 1 1 1 ) 面における結晶子径を検討することにより、 ある程度の傾向が 与えられることがわかってきた。発明者らの知見によると、 C e^ B iを主成分とする複合 酸化物において、 良好な耐熱性を呈するためには、 大気中 8 0 0 °C X 2 hの熱履歴を受けた 後に、 酸化セリウム構造の (1 1 1 ) 面における結晶子径が 1 9 n m未満であることが望ま しい。 そして、上記耐熱処理後に前記結晶子径が 1 7 n m未満を維持する性質を有するもの がより好ましい対象となり、 1 5 n m以下となるものが一層好ましい。
特に優れた耐熱性を具備する C eと B iを主成分とする系複合酸ィ匕物は、 前記 [ b ] のよ うに、 B i含有量が 0. 1≤ X≤ 0. 7を満たす組成範囲で実現できる。 この組成範囲外で は耐熱性の顕著な向上を安定して実現することが難しくなる。 B i含有量は耐熱性と初期活 性両立の見地から 0. 2≤x≤0. 6にコントロールすることが一層好ましい。
本発明の複合酸化物を湿式法で製造する場合は、例えば、 C eの水溶性塩と典型金属元素 の水溶性塩(例えば B iの水溶性塩)を沈殿剤により沈殿させ、その沈殿物を乾燥させた「前 駆体」 を熱処理する方法によつて製造することができる。
具体的に B iについて述べると、 C eの水溶性塩と B iの水溶性塩を溶解した水溶液と、 炭酸アルカリとを反応させることによって得られる沈殿生成物を濾過、洗浄 ·乾燥すること. によって前駆体を得る。 沈殿を生成させる液中の C eおよび B iのイオン濃度は、溶解度に よって上限が決まる。 しカゝし、 あまり濃度が濃すぎると、攪拌時に均一に反応が生じず不均 —になる可能性があり、 また攪拌時に装置の負荷が過大になる場合があるので、 現実的では ない。
沈殿物を得るためには炭酸アルカリを用いることが推奨される。 具体的に例示すると、炭 酸水、 炭酸ガス、 炭酸ナトリゥム、 炭酸力リゥム、 炭酸水素ナトリゥムなど炭酸を主成分と するものと、 アンモニア水もしくはアンモニゥムの各水溶性塩を混合して使用すること、 あ るいはその双方を併せ持つ炭酸アンモ-ゥム化合物、具体的には炭酸アンモニゥム、炭酸水 素アンモニゥムなどを使用することが好ましく、そのときの液の p Hは 6〜1 1の範囲に制 御するのがよい。 p Hが 6未満の領域では、 B iと C eが共沈しない場合があるので好まし くない。 このような炭酸アルカリを用いて沈殿物を得る方法によると、 オートクレープ等の 大がかりな設備を用いなくても、容易に所望の複合酸化物を得ることができる点で有利であ る。
得られた沈殿物は必要に応じて濾過、水洗され、真空乾燥や通風乾燥などにより乾燥させ、 前駆体とする。 この際、 乾燥による脱水効果を高めるため、濾過の形態のまま乾燥処理する 力、、 所定の形状に造粒した後に乾燥処理させることができる。 その後、 得られた前駆体を、 粉末形状あるいは造粒した状態のまま、例えば 4 0 0〜1 0 0 0 °C、好ましくは 5 0 0〜8 0 0 °Cで熱処理することにより、 目的とする複合酸化物を得ることができる。 この際、 熱処 理時の雰囲気は複合酸化物が生成できるような条件であれば特に制限されず、例えば、 空気 中、窒素中、アルゴン中おょぴそれらに水蒸気を組み合わせた雰囲気を使用することができ、 好ましくは空気中、 窒素中およびそれらに水蒸気を組み合わせた雰囲気が使用できる。 実施例
《触媒物質の作製》
各実施例、 比較例の触媒物質を以下のようにして作製した。
〔実施例:!〜 7〕
硝酸セリウム六水和物 (C e (N03) 3 · 6 H2 0) 、 硝酸ビスマス五水和物 (B i (N 03) 3 · 5 H2 0)を、 C eと B iのモル比が表 1に示す各実施例の値になるように抨量し、 混合した。 この混合物を、 C eと B iの液中モル濃度の合計が 0. 2 m o l / Lとなるよう に水に添加して原料溶液を得た。 この溶液を攪拌しながら沈殿剤として炭酸アンモニゥムの 水溶液を添加した。 その後、 3 0 m i n攪拌を継続することにより、 沈殿反応を十分に進行 させた。 得られた沈殿をろ過、 水洗し、 1 2 5 °Cで約 1 5 h乾燥した。 得られた粉末を前駆 体という。 次に、 この前駆体を大気雰囲気下 6 0 0 °Cで 2 h焼成して C eと B iを主成分と する複合酸化物粉体を得た。 これを 「6 0 0 °C熱処理品」 という。 また 6 0 0 °C熱処理品の 一部を大気雰囲気下 8 0 0 °Cでさらに 2 h加熱する耐熱処理に供し、 「8 0 0 熱処理品」 を得た。
〔比較例 1〕
アルミナ粉とジニトロジアミン白金溶液を A 1 2 03に対して P tが質量%で 3 %になる ように水に投入し、 この状態で 2h維持して、 P tを A 1203に含浸させた。次に、エバポ レーターを使用して 110°Cで 2 h蒸発乾固することによって P tをアルミナに担持させ、 110°Cで乾燥した。 アルミナ中の P t含有量は 3. 42質量%である。 得られた乾燥品を 大気中 600°Cで 2 h焼成し、 その一部を大気中 800°Cでさらに 2 h加熱処理した。 この ようにして 「600°C熱処理品」 と 「800°C熱処理品」 を得た。
〔比較例 2〕
酸化セリウム IVの試薬 (関東化学株式会社製、 純度 99. 99%) を、 大気雰囲気下 60 0 °Cで 2 h、 または大気雰囲気下 800 °Cで 2 h熱処理して、 「600 °C熱処理品」 と 「 8 00°C熱処理品」 を得た。
以上のようにして得られた触媒物質を用いて以下の実験を行った。
《X線回折パターンの測定》
各例で得られた 「800 °C熱処理品」 (比較例 1を除く) につレ、て、 X線回折測定を行つ た。 測定条件は以下のとおりである。
• X線回折装置: 株式会社リガク製、 R I NT— 2100
'測定範囲: 2 Θ = 10〜90°
'スキャンスピード: 8. 0° ノ mi n
' .サンプリング幅: 0. 02°
•管球: C o管球 (C o— Κ α線使用)
•管電圧: 40 k V
•管電流: 30 mA
測定の結果、 実施例 2 (B i : 0. 75) を除き、 800°Cの熱履歴を受けた後において も酸化セリウム (Ce02) 構造の複合酸化物が維持されていることが確認された。 実施例 2は B iのモル比 (X) が 0. 75と高いものであり、 800。Cの熱履歴を受けると B i酸 化物主体の異相のピークが、 酸化セリゥム構造のピークよりも大幅に目立つようになった。 図 2に、 実施例 2、 実施例 4 比較例 2の X線回折パターンを例示してある。 《結晶子径 の算出》
各例で得られた 「800 DC熱処理品」 (実施例 7、 比較例 1を除く) について、 酸化セリ ゥム構造の (111) 面のブラッグ条件を満たす 20の近傍で X線回折測定を行い、 結晶子 径を算出した。 測定条件は、 上記《X線回折パターンの測定》で示した内容で行っている。 測定の積算回数は 5回とした。
また、結晶子径の算出は、 MD I社製の X線回折解析ソフトウェア J AD E 6を使用して 実施している。 ピークの平滑ィ匕時における平滑化点数は 45点で実施した。
なお、 C e 02 の (1 1 1) 面における回折ピークは 2 Θ = 3 3° 付近に確認されるの で、 測定範囲は 2 0 = 31. 5〜35. 5° の間の測定で行ってもかまわない。
結晶子径の算出には下記のシエラーの式を用いた。
t = 0. 9 λ/Β · c o s θ
ただし、 t :結晶子径 (結晶粒の直径) (nm)
ぇ : 。0の!:0; 1 の波長 (nm)
B : ピークの半価幅 (回折線の広がり幅) (° )
Θ : C e 02 の (1 1 1) 面のプラグ条件を満たす角度 (° ) 結果を表.1に示す。
また、 図 8に B i添加比率 (モル比) Xと結晶子径の関係を示す。 図 9には 2 Θ == 3 1. 5〜35. 5° の範囲で測定された X線回折パターンを例示する。
《PM燃焼開始温度評価》
各実施例、 比較例で得られた 「600°C熱処理品」 および 「80 0°C熱処理品」 (ただし 実施例 7は 「600°C熱処理品」 のみ) について、 カーボンブラックとの混合粉を作り、 そ の中の一部を規定量分取した上、 T G/D T A装置を用いて力一ボンブラック燃焼開始温度 . を求めることによって評価した。 具体的には以下のようにした。
模擬 PMとして市販のカーボンブラック (三菱化学製、 平均粒径 2· 09 μια) を用い、 触媒物質の粉体とカーボンブラックの質量比が 6 : 1になるように秤量し、 自動乳鉢機 (石 川工場製 AG Α型) で 20分混合し、 カーボンブラックと各試料粉体の混合粉体を得た。 こ の混合粉体について熱重量測萆 (TG) を行い、 カーボンブラックの燃焼に伴う重量減少か らカーボンブラックの燃焼温度を求めた。 評価方法は TGZDTA装置(セイコーインスッ ルメンッ社製、 TG/DTA6 300型) を用い、 混合粉体 20^1 §を昇温速度10°CZm i nにて常温から 700°Cまで大気中で昇温し、重量減少量の測定を行った (カーボンブラ ックは燃焼により二酸化炭素として系外に排出されるので、 初期重量からは減少傾向にな る) 。 図 1に、 重量変化曲線 (TG曲線) を模式的に示し、 燃焼開始温度の算出方法につい て示した。 例示するとおり、 カーボンブラック燃焼開始温度は、 TG曲線において、 重量減 少が始まる前の接線と、 重量減少率(傾き) が最大となる点での接線とが交わる点の温度と している (図 1参照) 。
結果を表 1に示す。
また、 図 3および図 4に、 それぞれ 「600°C熱処理品」 および 「800°C熱処理品」 に ついての B i添加比率 Xとカーボンブラック燃焼開始温度の関係を示す。図 5には B i添加 比率 Xと ΔΤ (800-600) の関係を示す。
《BET比表面積の測定》
各実施例、 比較例で得られた 「600°C熱処理品」 および 「800。C熱処理品」 (ただし 実施例 7は 「600°C熱処理品」 のみ) について、 メノウ乳鉢で解粒し、 粉末とした後、 B' ET法により比表面積を求めた。測定はユアサイォニタス製の 4ソープ USを用いて行った c 表 1
Figure imgf000012_0001
* Bi203が析出 表 1、 図 3、 図 4からわかるように、 各実施例の Ceと B iを主成分とする複合酸化物を 触媒物質に使用すると、 P tを触媒物質に用いた比較例 1や、 B iを添加していなレ、試薬の 酸化セリウムを触媒物質に用レ、た比較例 2と比べ、 「600 °C熱処理品」 および「 800 °C 熱処理品」 のカーボンブラック燃焼開始温度が大幅に低減した。 したがって、 〇6と81を 主成分とする複合酸化物は P M燃焼温度の低減に大きく寄与しうると評価される。
また、 表 1からわかるように、 ΔΤ (800— 600) が 42°Cと比較的高かった実施例 2でも 「800°C熱処理品」 のカーボンブラック燃焼開始温度は比較例のものより大幅に低 い値を維持しており、各実施例ものは良好な耐熱性を有すると言える。特に結晶子径が小さ く、異相の生成が見られなかった実施例 1、 3〜 6は極めて良好な耐熱性を有していた。 こ れらのものでは、 8 0 0 °Cの熱履歴を与えた後も B iがほとんど酸化セリゥム構造の相に固 溶、 もしくは活性に悪影響のでない程度に共存して存在するものと考えられ、 これが優れた 耐熱性の維持をもたらしているものと推察される。
図 6および図 7には、 それぞれ実施例 1の 「6 0 0 °C熱処理品」 および「8 0 0 熱処理 品」 についての T EM (透過形電子顕微鏡) 写真を示す (掲載した写真の撮影倍率は 1 7 4 0 0 0倍、透過形電子顕微鏡は日本電子 (株)製の J EM- 1 0 O C XM a r k—II形を使 用) 。 図 6と図 7を比較すると、 「8 0 0 °C熱処理品」 でも粒子の粗大化はほとんど目立た ないことがわかる。写真を見る限りにおいては、粒子は凝集体を形成しているとみられる力 一次粒子については 6 0 0 °Cの焼成処理、又その後の 8 0 0 °Cの耐熱処理のいずれを行った 後でも、 粒子の形態は保持されており、 焼結による粒子の粗大化は抑制されている。

Claims

請求の範囲
1. C eおよび典型金属元素と、 酸素とで構成される酸化触媒用複合酸化物。
2. C eおよび B iと、 酸素とで構成される酸化触媒用複合酸化物。
3. Ceおよび B iと、 酸素で構成され、 Ceおよび B iのモル比が下記 [a] を満たす酸 化触媒用複合酸化物。
[a] Ceおよび B iのモル比を、 Ce : B i= (1— x) : xとするとき、 0<x≤0. 9が成立する。
4. Ceおよび B iと、 酸素で構成され、 Ceおよび B iのモル比が下記 [b] を満たす酸 化触媒用複合酸化物。
[b] C eおよび B iのモル比を、 C e : B i = (1— X) : xとするとき、 0. l≤x ≤0. 7が成立する。
5. 大気中 800°CX 2 hの加熱処理に供した後に、酸化セリウム構造における結晶子径が 19 nm未満となる性質を有する請求項 1〜4のいずれかに記載の酸化触媒用複合酸化物。
6. 請求項 1〜 5のいずれかに記載の複合酸化物を触媒物質として用いた酸化触媒。
7.前記酸化触媒はデイーゼルエンジン排ガス中の P Mを燃焼させる触媒である請求項 6に 載の酸化触媒。
8. 請求項 6に記載の酸化触媒を用いたディ一ゼル排ガス浄化用フィルタ一。
PCT/JP2007/053329 2006-02-16 2007-02-16 酸化触媒用複合酸化物およびフィルター WO2007094514A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006-039999 2006-02-16
JP2006039999A JP2007216150A (ja) 2006-02-16 2006-02-16 酸化触媒用複合酸化物およびフィルター

Publications (1)

Publication Number Publication Date
WO2007094514A1 true WO2007094514A1 (ja) 2007-08-23

Family

ID=38371682

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/053329 WO2007094514A1 (ja) 2006-02-16 2007-02-16 酸化触媒用複合酸化物およびフィルター

Country Status (2)

Country Link
JP (1) JP2007216150A (ja)
WO (1) WO2007094514A1 (ja)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5031642B2 (ja) * 2008-04-03 2012-09-19 国立大学法人東北大学 触媒の製造方法
JP5444755B2 (ja) * 2009-02-24 2014-03-19 三菱化学株式会社 排ガス浄化用触媒
JP5427443B2 (ja) * 2009-03-19 2014-02-26 Dowaエレクトロニクス株式会社 排ガス浄化触媒用複合酸化物および排ガス浄化触媒用塗料とディーゼル排ガス浄化用フィルタ
JP5564962B2 (ja) * 2010-01-28 2014-08-06 三菱化学株式会社 排ガス浄化用フィルター
WO2012050192A1 (ja) * 2010-10-15 2012-04-19 三井金属鉱業株式会社 一酸化炭素の製造方法及び製造装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS532424A (en) * 1976-06-28 1978-01-11 Mitsubishi Chem Ind Ltd Preparation of p-xylene
JPH06211525A (ja) * 1992-09-15 1994-08-02 Rhone Poulenc Chim 酸化第二セリウムをベースにした組成物、製法及び用途
JPH06218283A (ja) * 1993-01-23 1994-08-09 Sekiyu Sangyo Kasseika Center 排ガス浄化用触媒
JPH06345692A (ja) * 1993-06-15 1994-12-20 Nitto Chem Ind Co Ltd α−ヒドロキシイソ酪酸エステルの製造法
JPH09271665A (ja) * 1996-04-04 1997-10-21 Nippon Soken Inc 排気ガス浄化触媒

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS532424A (en) * 1976-06-28 1978-01-11 Mitsubishi Chem Ind Ltd Preparation of p-xylene
JPH06211525A (ja) * 1992-09-15 1994-08-02 Rhone Poulenc Chim 酸化第二セリウムをベースにした組成物、製法及び用途
JPH06218283A (ja) * 1993-01-23 1994-08-09 Sekiyu Sangyo Kasseika Center 排ガス浄化用触媒
JPH06345692A (ja) * 1993-06-15 1994-12-20 Nitto Chem Ind Co Ltd α−ヒドロキシイソ酪酸エステルの製造法
JPH09271665A (ja) * 1996-04-04 1997-10-21 Nippon Soken Inc 排気ガス浄化触媒

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
MASUI T. ET AL.: "Cerium-Zirconium-Bismuth Fukugo Sankabutsu ni yoru Biryushi Carbon Nensho", DAI 94 KAI SHOKUBAI TORONKAI TORONKAI A YOKOSHU, 27 September 2004 (2004-09-27), pages 10, XP003016655 *
OISHI T. ET AL.: "CeO-kei Fukugo Sankabutsu no Particulate Sanka Tokusei", DAI 97 KAI SHOKUBAI TORONKAI TORONKAI A YOKOSHU, 19 March 2006 (2006-03-19), pages 17, XP003016654 *

Also Published As

Publication number Publication date
JP2007216150A (ja) 2007-08-30

Similar Documents

Publication Publication Date Title
JP4382482B2 (ja) 酸化第二セリウム及びその製造法並びに排ガス浄化用触媒
JP5528040B2 (ja) 排ガス浄化触媒用複合酸化物とその製造方法および排ガス浄化触媒用塗料とディーゼル排ガス浄化用フィルタ
JP5063980B2 (ja) 排ガス浄化触媒用複合酸化物およびフィルター
JP5190196B2 (ja) 排ガス浄化触媒用複合酸化物および排ガス浄化触媒、並びにディーゼル排ガス浄化用フィルター
JP4416830B2 (ja) 排ガス浄化触媒用複合酸化物とその製造方法および排ガス浄化触媒用塗料とディーゼル排ガス浄化用フィルタ
JPH08217461A (ja) ペロブスカイト型複合酸化物の製造方法
WO2007113981A1 (ja) 触媒組成物
WO2007094514A1 (ja) 酸化触媒用複合酸化物およびフィルター
JP4904458B2 (ja) Pm燃焼触媒用複合酸化物およびフィルター
JP4768475B2 (ja) Pm燃焼触媒用複合酸化物およびフィルター
JP2003265958A (ja) 排ガス浄化用触媒
JP5345063B2 (ja) セリウム含有複合酸化物およびその製造方法、pm燃焼用触媒、並びに、ディーゼルパティキュレートフィルタ
JP5871817B2 (ja) 排気ガス浄化用触媒の製造方法および排気ガス浄化装置
JP2010221091A (ja) 排ガス浄化触媒用複合酸化物および排ガス浄化触媒用塗料とディーゼル排ガス浄化用フィルタ
JP5541843B2 (ja) 排ガス浄化触媒用複合酸化物およびそれを用いた排ガス浄化用フィルタ
JP6806588B2 (ja) 自動車排気ガス浄化用助触媒およびその製造方法
JP5444755B2 (ja) 排ガス浄化用触媒
JP5154890B2 (ja) 排気ガス浄化用複合酸化物およびディーゼル機関の排気ガス浄化用フィルター
JP2020033246A (ja) デラフォサイト型酸化物及びその製造方法
JP2013111492A (ja) 排ガス浄化用触媒及びその製造方法
JP2015174022A (ja) 排気ガス浄化用触媒、及びフィルタ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07737322

Country of ref document: EP

Kind code of ref document: A1