WO2007094138A1 - 心臓酸素消費量自動最小化システムおよびこれを用いた心疾患治療システム - Google Patents

心臓酸素消費量自動最小化システムおよびこれを用いた心疾患治療システム Download PDF

Info

Publication number
WO2007094138A1
WO2007094138A1 PCT/JP2007/000096 JP2007000096W WO2007094138A1 WO 2007094138 A1 WO2007094138 A1 WO 2007094138A1 JP 2007000096 W JP2007000096 W JP 2007000096W WO 2007094138 A1 WO2007094138 A1 WO 2007094138A1
Authority
WO
WIPO (PCT)
Prior art keywords
value
cardiac
oxygen consumption
patient
calculated
Prior art date
Application number
PCT/JP2007/000096
Other languages
English (en)
French (fr)
Inventor
Masaru Sugimachi
Kazunori Uemura
Atsunori Kamiya
Kenji Sunagawa
Michio Yamaji
Original Assignee
Japan Health Sciences Foundation
Fujikin Incorporated
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Health Sciences Foundation, Fujikin Incorporated filed Critical Japan Health Sciences Foundation
Priority to US12/279,753 priority Critical patent/US8340749B2/en
Publication of WO2007094138A1 publication Critical patent/WO2007094138A1/ja

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/021Measuring pressure in heart or blood vessels
    • A61B5/0215Measuring pressure in heart or blood vessels by means inserted into the body
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/026Measuring blood flow
    • A61B5/029Measuring or recording blood output from the heart, e.g. minute volume
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/48Other medical applications
    • A61B5/4866Evaluating metabolism
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/18Applying electric currents by contact electrodes
    • A61N1/32Applying electric currents by contact electrodes alternating or intermittent currents
    • A61N1/36Applying electric currents by contact electrodes alternating or intermittent currents for stimulation
    • A61N1/362Heart stimulators
    • A61N1/365Heart stimulators controlled by a physiological parameter, e.g. heart potential
    • A61N1/36514Heart stimulators controlled by a physiological parameter, e.g. heart potential controlled by a physiological quantity other than heart potential, e.g. blood pressure
    • A61N1/36557Heart stimulators controlled by a physiological parameter, e.g. heart potential controlled by a physiological quantity other than heart potential, e.g. blood pressure controlled by chemical substances in blood

Definitions

  • the present invention can estimate the cardiac oxygen consumption of a patient with high accuracy.
  • the present invention relates to a cardiac oxygen consumption automatic minimization system capable of minimizing cardiac oxygen consumption and a heart disease treatment system using the same.
  • a cardiotonic agent has been widely used as a treatment for improving hemodynamics such as blood pressure, cardiac output, and left atrial pressure in patients who have an abnormality due to heart disease. Treatment with this cardiotonic agent can improve the cardiac function and normalize hemodynamics in patients who have declined.
  • vasodilators In order to solve such problems, treatments that reduce cardiac oxygen consumption by administration of vasodilators and) 8 blockers have been proposed, but vasodilators are Over-administration may result in hypotension.) 8 Blockers were contraindicated in severe heart failure cases because bradycardia and decreased ventricular contraction occurred simultaneously. In addition, the administration of (8) blocking agents must be performed by specialists who are well-versed in their efficacy, which is difficult for non-specialists.
  • the present invention has been made to solve such problems, and can estimate the cardiac oxygen consumption of a patient with high accuracy and minimize the cardiac oxygen consumption.
  • An object of the present invention is to provide a system for automatically minimizing cardiac oxygen consumption that can be performed and a heart disease treatment system using the system.
  • the present invention can also avoid side effects caused by drugs and soaring medical costs, and even non-specialists can easily minimize cardiac oxygen consumption. It is an object of the present invention to provide a system and a heart disease treatment system using the system.
  • the present invention includes an input unit for inputting a hemodynamic index of a patient including at least a heart rate;
  • a cardiac oxygen consumption calculation unit that calculates an estimated value of cardiac oxygen consumption of the patient, a heart rate input from the input unit, and the heart Comparing the heart rate with which the estimated value of cardiac oxygen consumption calculated by the oxygen consumption calculating unit is minimized, and controlling the heart rate of the patient according to the comparison result,
  • This is a system for automatically minimizing cardiac oxygen consumption, which is characterized by comprising:
  • the hemodynamic index further includes a blood pressure value, a cardiac output value, a left atrial pressure value, and a right atrial pressure value
  • the cardiac oxygen consumption calculation unit includes: From the cardiac output value and the left atrial pressure value, a left heart function value is calculated using the following mathematical formula (1), and from the blood pressure value, the right atrial pressure value, and the cardiac output value, The vascular resistance value is calculated using the following formula (2), and the left ventricular end systolic pressure volume relationship is calculated using the following formula (3) from the left heart function value, the vascular resistance value, and the heart rate.
  • the blood pressure value, the left atrial pressure value, the cardiac output value, and the From the heart rate, the left ventricular pressure volume area is calculated using the following formula (4), and the following formula (5) is calculated from the relationship between the heart rate, the left ventricular pressure volume area, and the left ventricular end systolic pressure volume.
  • ⁇ ⁇ ⁇ ⁇ ('t- o X (t- mm) ⁇ «+ (& L, chamber ⁇ + y)) (where ⁇ , ⁇ , and r are constant values.)
  • the present invention is also characterized in that the cardiac oxygen consumption saving unit controls the heart rate of the patient by administering medication to the patient. (1) or (1) This is an automatic heart oxygen consumption minimization system described in 2).
  • the present invention also provides that the cardiac oxygen consumption-reducing unit suppresses spontaneous activity of the sinus node by administering a drug that lowers the heart rate to the patient at the start of treatment.
  • the present invention is also the cardiac oxygen consumption automatic minimization system according to (4), wherein the drug is an 8 blocker, a calcium antagonist, or a specific bradycardic agent.
  • the present invention is also characterized in that the cardiac oxygen consumption saving section controls the heart rate of the patient by giving electrical stimulation to the patient.
  • the cardiac oxygen consumption saving section controls the heart rate of the patient by giving electrical stimulation to the patient.
  • the present invention further includes display means for continuously displaying a hemodynamic index of a patient in time series, (1) to any one of (6) It is an automatic cardiac oxygen consumption minimization system as described in one.
  • the present invention is also characterized in that the cardiac output value is measured by a Swangantz catheter or calculated from a diastolic time constant of an arterial blood pressure waveform.
  • the left atrial pressure value is directly measured by a catheter, or is calculated by continuously estimating from a pulmonary artery wedge pressure or a diastolic pressure value of a swan gantz catheter. It is characterized by being
  • the present invention provides an automatic cardiac oxygen consumption minimizing system according to any one of (1) to (9), and the cardiac output input from the input unit.
  • a first calculating means for calculating a cardiac function value from the right atrial pressure value and the left atrial pressure value, a first functional means for comparing the cardiac functional value calculated by the first calculating means and a target cardiac functional value.
  • a heart disease treatment system comprising: 1 comparison means; and a first medication means for administering medication to the patient according to a comparison result of the first comparison means.
  • the present invention also provides a second calculation for calculating an effective circulating blood volume value from the cardiac output value, the left atrial pressure value, and the right atrial pressure value input from the input unit.
  • the present invention also provides a third calculation means for calculating a vascular resistance value from the cardiac output value, the right atrial pressure value and the blood pressure value input from the input unit, A third comparing means for comparing the vascular resistance value calculated by the third calculating means with a target vascular resistance value; a third dosing means for administering a dose to the patient according to a comparison result of the third comparing means;
  • the cardiac oxygen consumption of the patient can be estimated with high accuracy, and the cardiac oxygen consumption The amount can be minimized.
  • side effects caused by drugs and soaring medical costs can be avoided, and even non-specialists can easily minimize cardiac oxygen consumption.
  • the heart oxygen consumption-reducing unit controls the heart rate of the patient by applying medication to the patient and Z or applying electrical stimulation to the patient, In this way, the patient's heart rate can be controlled quickly and easily.
  • the hemodynamic index of the patient further includes a blood pressure value, a cardiac output value, a left atrial pressure value, and a right atrial pressure value
  • the cardiac oxygen consumption calculating unit includes the From the cardiac output value and the left atrial pressure value, a left heart function value is calculated using the above formula (1), and from the blood pressure value, the right atrial pressure value, and the cardiac output value, the above number
  • the vascular resistance value is calculated using the equation (2), and the left ventricular end systolic pressure-volume relationship is calculated from the left heart function value, the vascular resistance value, and the heart rate using the above equation (3).
  • a left ventricular pressure volume area is calculated using the formula (4), and the heart rate, the left If the estimated value of cardiac oxygen consumption is calculated from the ventricular pressure volume area and the left ventricular end systolic pressure volume relationship using the above equation (5), the estimated value of cardiac oxygen consumption can be calculated with a simple calculation. It can be calculated quickly.
  • the cardiac oxygen consumption reducing unit suppresses the spontaneous activity of the sinus node by administering a drug that lowers the heart rate to the patient at the start of treatment, and spontaneous activity appears. If the bradycardic agent is additionally administered, the heart rate can be efficiently reduced.
  • the display means for continuously displaying the hemodynamic index of the patient is further provided, the patient can be surely diagnosed without missing a time-series change in a numerical value such as a blood pressure value. At the same time, the transition of the state due to medication can be displayed.
  • the cardiac output value is measured by a Swangantz catheter or is calculated from an diastolic time constant of an arterial blood pressure waveform, and the left atrial pressure value is directly measured by a catheter.
  • a system with extremely high accuracy can be provided if it is calculated by continuous estimation from the pulmonary artery wedge pressure or diastolic pressure value of the swan gantz catheter.
  • the cardiac oxygen consumption automatic minimization system and the cardiac function value is calculated from the cardiac output value, the right atrial pressure value, and the left atrial pressure value input from the input unit.
  • the second calculation means for calculating an effective circulating blood volume value from the cardiac output value, the left atrial pressure value, and the right atrial pressure value input from the input unit; (2) Second comparing means for comparing the effective circulating blood volume value calculated by the calculating means with a target effective circulating blood volume value, and a second medication for administering the patient to the patient according to the comparison result of the second comparing means. And a means for comparing the calculated effective circulating blood volume value with the target effective circulating blood volume value, and medication is performed according to the comparison result. Heart oxygen consumption can be minimized while normalizing blood volume abnormalities.
  • the third calculation means for calculating a vascular resistance value from the cardiac output value, the right atrial pressure value and the blood pressure value input from the input unit, and the third calculation means. If further comprising: a third comparison means for comparing the vascular resistance value with a target vascular resistance value; and a third medication means for administering medication to the patient in accordance with the comparison result of the third comparison means.
  • the vascular resistance value is compared with the target vascular resistance value, and the medication is performed according to the comparison result. Therefore, the cardiac oxygen consumption can be minimized while normalizing the vascular resistance value of the patient reliably and accurately. .
  • the cardiac function, the effective circulating blood volume, and the vascular resistance value are treated in a normal state, and as a result, the blood pressure value, cardiac output value, and left atrial pressure of the patient are reliably and accurately obtained. Heart oxygen consumption can be minimized while normalizing values.
  • FIG. 1 is a schematic configuration diagram of a heart disease treatment system according to the present embodiment.
  • FIG. 2 shows a schematic diagram of the heart, and the cardiac disease treatment system 10 according to this embodiment has a cardiac output value, a left atrial pressure value, and a right atrial pressure value shown in FIG. And a blood pressure value and a heart rate not shown.
  • the heart disease treatment system 10 includes an input unit 12, a heart oxygen consumption monitor unit 14 (“cardiac oxygen consumption calculation unit” according to the present invention), a heart An oxygen consumption saving unit 16 (“cardiac oxygen consumption saving part” according to the present invention) and a heart disease treatment unit 18 are configured.
  • the input unit 1 2 includes a blood pressure value, a cardiac output value, a left atrial pressure value, a right atrial pressure value, and a heart This is for inputting the hemodynamic index of the patient 20 including the heart rate.
  • this input unit 1 2 is used to input numerical data of hemodynamic indices of the patient 20 into a cardiac oxygen consumption monitor unit 14 to be described later, a cardiac oxygen consumption reduction unit 16 and a cardiac disease treatment unit.
  • an input device such as a keypad when a user using the heart disease treatment system 10 inputs numerical data such as an actually measured blood pressure value may be applied.
  • a measuring device for example, a sphygmomanometer
  • measures 0 hemodynamics and directly outputs numerical data may be applied.
  • the hemodynamics of patient 20 are measured and the hemodynamic values directly measured. It is preferable to apply a measuring device that outputs data.
  • FIG. 3 is a schematic configuration diagram showing the relationship between the input unit 12 and the cardiac oxygen consumption monitor unit 14 of the heart disease treatment system according to the present embodiment.
  • the input unit 12 is a Swan Gantz catheter 12A that measures the cardiac output value, the left atrial pressure value, and the right atrial pressure value of the patient 20 and the blood pressure value.
  • the blood pressure catheter 1 2 B for measuring and the electrocardiograph 1 2 C for measuring heart rate are configured.
  • the blood pressure value, the cardiac output value, the left atrial pressure value, the right atrial pressure value, and the heart rate can each be measured by a conventionally known measuring device, and are limited to the examples shown in this embodiment. It is not something.
  • the blood pressure value, cardiac output value, left atrial pressure value, right atrial pressure value, and heart rate are continuously measured and used.
  • the left atrial pressure value is continuously estimated from the diastolic pressure value of the pulmonary artery pressure (pulmonary artery diastolic pressure value). It is used as typical numerical data. Specifically, it is understood that the left atrial pressure value has a linear relationship with the pulmonary artery diastolic pressure value. Therefore, the left atrial pressure value can be calculated from the pulmonary artery diastolic pressure value based on the average correlation among multiple individuals.
  • the correlation (linear relationship) between the pulmonary artery diastolic pressure value and the left atrial pressure value changes according to the change in heart rate. It is preferable to be able to correct the average correlation among multiple individuals using the heart rate.
  • the cardiac output value can be used as continuous numerical data by adopting a method of estimating from the diastolic time constant of the peripheral blood pressure waveform.
  • the left atrial pressure value is calculated by continuously estimating the pulmonary artery pressure from the swan gants catheter, and the cardiac output value is calculated from the diastolic time constant of the arterial blood pressure waveform. If so, it is possible to provide an extremely accurate system.
  • the heart oxygen consumption monitor unit 14 is configured by a computer in this embodiment, and is a hemodynamic index (in this embodiment, blood pressure value, heart rate) that is input from the input unit 1 2 through the amplifier 2 2. Based on the stroke volume value, left atrial pressure value, right atrial pressure value, and heart rate), an estimate of cardiac oxygen consumption for patient 20 is calculated. Note that the amplifier 22 is not necessary if the electrical signal of the numerical data output from the input unit 12 is sufficiently large.
  • This cardiac oxygen consumption monitor unit 14 calculates an estimated value of cardiac oxygen consumption of the patient 20 by the following procedure.
  • the cardiac oxygen consumption monitor unit 14 calculates the left ventricular function value from the cardiac output value and the left atrial pressure value input from the input unit 1 2 using the following formula (1). To do.
  • a and B in this equation (1) are constant values set in advance by the user. is there.
  • This constant value is a numerical value that can be appropriately changed according to the medical condition of the patient 20, and the left heart function value calculated by adjusting according to the patient 20 can be corrected.
  • a vascular resistance value is calculated from the blood pressure value, right atrial pressure value, and cardiac output value input from the input unit 12 using the following formula (2).
  • H in Equation (2) is a constant value for correcting the vascular resistance nonlinearity.
  • This constant value is a numerical value that can be appropriately changed according to the medical condition of the patient 20, and by adjusting it according to the patient 20, the normal operation of the system can be achieved even in individuals with strong non-linearity. Can keep.
  • Equation (3) The left ventricular end systolic pressure-volume relationship calculated by Equation (3) represents the ventricular contraction characteristic, and its unit is mmH gZm I.
  • the left ventricular pressure volume area is calculated from the blood pressure value, left atrial pressure value, cardiac output value, and heart rate input from the input unit 1 2 using the following formula (4). To do. [Equation 9] Left 'L ⁇ ffi ⁇ I ⁇
  • Equation (4) The constant values ⁇ , ⁇ , and ⁇ in the equation (4) are as described above.
  • the left ventricular pressure volume area calculated by Equation (4) represents the amount of work stored in the left ventricle, and the unit is mmH g Xm I.
  • This equation (5) is derived from the reference (Sug a. H, ⁇ r, s p ec tive predictiono ⁇ O 2 cons ump tion fr om pressure vol ume area indohearts ", Am JP hysiol. 1 987; 252; H 1 258-64).
  • the cardiac oxygen consumption can be estimated from the ventricular pressure volume area, and the cardiac oxygen consumption per minute can be calculated based on Equation (5).
  • the cardiac oxygen consumption monitor unit 14 calculates the left ventricular function value from the cardiac output value and the left atrial pressure value using the above formula (1), and calculates the blood pressure value and the right atrial value. From the pressure value and the cardiac output value, calculate the vascular resistance value using the above formula (2).
  • the left ventricular end systolic pressure-volume relationship is calculated from the left ventricular function value, vascular resistance value, and heart rate using the above formula (3), and the blood pressure value, left atrial pressure value, cardiac output value, and From the heart rate, the left ventricular pressure volume area is calculated using the above formula (4).
  • the heart is calculated using the above formula (5). Since the estimated value of oxygen consumption is calculated, the estimated value of cardiac oxygen consumption can be quickly calculated with a simple calculation.
  • the inventor of the present invention uses this cardiac oxygen consumption monitor unit 14 to calculate an estimated value of cardiac oxygen consumption and to measure an actual measured value of cardiac oxygen consumption.
  • the measured value of cardiac oxygen consumption was measured using the following formula (6) after administering a cardiotonic agent to a dog or creating heart failure.
  • the coronary blood flow (m l / m i n) in Equation (6) was measured by attaching a blood flow meter to the left coronary artery under thoracotomy.
  • Arterial oxygen content was measured by collecting arterial blood and measuring oxygen content.
  • the venous oxygen content was measured by an oxygen content meter obtained by inserting a catheter into the coronary sinus and collecting venous blood (cardiac venous blood).
  • FIG. 4 is a graph showing the estimated value of the cardiac oxygen consumption of the dog and the measured value of the cardiac oxygen consumption calculated using the cardiac oxygen consumption monitor unit 14 according to the present embodiment. .
  • the estimated value of the cardiac oxygen consumption and the actually measured value are strongly linearly correlated.
  • the cardiac oxygen consumption is It can be seen that it can be estimated with high accuracy. Also, considering the burden on the patient, it is almost impossible to actually measure cardiac oxygen consumption at a normal clinical site, but according to the heart disease treatment system 10 according to this embodiment, Cardiac oxygen consumption can be easily estimated using a measurement device used in the clinical field, and there is no worry of burdening the patient.
  • the absolute values of the estimated values and the actually measured values in Fig. 4 do not completely match, this is due to the fact that the numerical values of Qf, ⁇ , and in Equation (5) differ depending on the individual.
  • the heart calculated by the heart oxygen consumption monitor unit 14 Estimated oxygen consumption follows changes in measured values, and the discrepancy in absolute values is not a problem.
  • FIG. 5 is a schematic configuration diagram showing the relationship between the input unit 12 and the heart oxygen consumption-saving unit 16 of the heart disease treatment system according to the present embodiment.
  • the heart oxygen consumption-reducing unit 16 is a computer in which numerical data of the heart rate measured by the electrocardiograph 12 C is input via the amplifier 22 A 16 A And a bradycardic drug administration pump 16 B for administering a bradycardic drug to the patient 20, an atrial pacing device 16 C, and an atrial pacing catheter 16.
  • This heart oxygen consumption-reducing unit 16 has the minimum heart rate input from the electrocardiograph 12 C and the estimated value of heart oxygen consumption calculated by the heart oxygen consumption monitor unit 14 Compared with the critical heart rate (details will be described later). Then, according to the comparison result, the bradycardia drug administration pump 16 B is used to administer the patient 20, and the atrial pacing device 16 C and the atrial pacing catheter 16 D are installed. Used to apply electrical stimulation to patient 20.
  • the present embodiment it is possible to administer a drug using the bradycardic drug administration pump 16B and to apply an electrical stimulus using the atrial pacing device 16C and the atrial pacing catheter 16D.
  • the cardiac oxygen consumption-saving unit 16 may be provided with only one of them.
  • the cardiac oxygen consumption saving unit 16 can control the heart rate of patient 20 by administering dose to patient 20 and applying electrical stimulation to Z or patient 20.
  • the heart rate of the patient 20 can be quickly and easily controlled with a simple method.
  • the heart rate of the patient 20 may be controlled by a method other than administration of a drug or application of electrical stimulation.
  • the type of drug to be administered to the patient 20 is not particularly limited, and for example, 8 blockers, calcium antagonists, specific bradycardic agents and the like can be administered.
  • the heart disease treatment system 10 By administering a cardiotonic agent to the patient 20 using the cardiac disease treatment unit 18 described later, it is possible to improve the hemodynamics of the patient 20, such as blood pressure, cardiac output, and left atrial pressure. On the other hand, another problem arises, such as patient 20's increased cardiac oxygen consumption. In order to solve such problems, the heart disease treatment system 10 lowers the heart rate by using the heart oxygen consumption reducing unit 16 and controls it so as to be close to the critical heart rate. Minimize heart oxygen consumption.
  • the above formula (1 ) target value of the left ventricular function value - from the formula (5) is 34. 8 m l Z component Zk g, the target value of the vascular resistance value becomes 0. 9mmH g X k gZm I. If the constant value K in Equation (7) above is a constant value (0.0815), then from Equation (7), the left ventricular end systolic pressure-volume relationship (E es) and heart rate are as shown in Fig. 6. .
  • the heart rate is lowered by adjusting the dose of the drug to the patient 20, the intensity of the electrical stimulation to the patient 20, the frequency, etc.
  • negative feedback control is performed so that the heart rate approaches the critical heart rate B
  • the control method is not particularly limited. Therefore, for example, a nonlinear control method based on IF-THEN rules may be applied, and a linear control method such as proportional, integral, and differential may be applied.
  • a bradycardic agent a high dose bradycardic agent is administered at the start of treatment to suppress the spontaneous activity of the sinus node and spontaneous activity appears.
  • FIG. 8 is a schematic configuration diagram of the heart disease treatment unit 18 according to the present embodiment.
  • the heart disease treatment unit 18 includes a calculating means 30, a comparing means 40, and a medication means 50.
  • the calculation means 30 performs a predetermined calculation based on the hemodynamic index input from the input unit 12 and includes a first calculation means 31, a second calculation means 32, and a third calculation. Means 3 3 and are configured.
  • the calculation means 30 may be composed of one calculation unit that performs the calculations of the first calculation means 31, the second calculation means 32, and the third calculation means 33 together.
  • the calculation may be made up of three calculation units that perform the calculation of 1 calculation means 31, second calculation means 3 2, and third calculation means 33 separately.
  • the first calculation means 3 1 calculates a left heart function value and a right heart function value from the cardiac output value, left atrial pressure value and Z or right atrial pressure value input from the input unit 1 2.
  • the second calculating means 32 calculates the effective circulating blood volume value from the cardiac output value, the left atrial pressure value, and the right atrial pressure value input from the input section 12 using the following formula (8). Put out.
  • Minato Tsunaya 41 straight (('L out 3 ⁇ 4 direct) + F X (right atrial pressure control + G X (left atrial pressure value)) X E (8)
  • the third calculation means 3 3 uses the mathematical expression (2) or the mathematical expression (7) from the cardiac output value, the right atrial pressure value and the blood pressure value input from the input unit 12 as follows: Calculate vascular resistance.
  • the comparison means 40 includes a calculation value (cardiac function value (left heart function value and Z or right heart function value), effective circulating blood volume value, vascular resistance value) calculated by the calculation means 30. It compares the target value (target heart function value (target left heart function value and Z or target right heart function value), target effective circulating blood volume value, target vascular resistance value).
  • the first comparison means 41 compares the left heart function value and the Z or right heart function value calculated by the first calculation means 31 with the target heart function value.
  • the second comparing means 42 compares the effective circulating blood volume value calculated by the second calculating means 32 and the target effective circulating blood volume value.
  • the third comparison means 43 compares the vascular resistance value calculated by the third calculation means 33 with the target vascular resistance value.
  • the first comparison means 41, the second comparison means 4 2, and the third comparison means 4 3 have three types of calculated values "large”, “equal”, and "small” with respect to the target value.
  • One of these three comparison results can be transmitted as a comparison result signal to the medication means 50 described later.
  • the signal of the comparison result is
  • the dosing means 50 controls the dosing (adjustment of dosage) to the patient 20 according to the signal of the comparison result from the comparing means 40.
  • the first dosing means 51, The second dosing unit 52 and the third dosing unit 53 are configured.
  • a multi-drug simultaneous infusion porous catheter connected to a plurality of automatic infusion pumps can be applied.
  • the porous catheter is fed to the vein of the patient 20
  • a predetermined drug is administered into the body of the patient 20.
  • the first dosing means 51 is dosed according to the signal of the comparison result of the first comparing means 41, the dosing is started when an abnormal cardiac function is observed.
  • the comparison result that the first dosing means 51 is "small" from the first comparing means 41 (for example, when the calculated left heart function value is lower than the target heart function value). ), It is determined that the cardiac function is in an abnormal state, and the first injection means 51 starts the medication for increasing the cardiac function.
  • the drug used in this case is, for example, a cardiotonic agent, and dobutamine, dopamine, etc. will be administered.
  • the first medication means 51 receives a comparison result (for example, when the calculated left heart function value is equal to the target heart function value) from the first comparison means 41 In this case, it is determined that the cardiac function is in a normal state, and the first dosing means 51 will not increase the dosage, do not take the drug, or stop the dosing
  • the first medication means 51 receives the comparison result of "large” from the first comparison means 41 (for example, when the calculated left heart function value is higher than the target heart function value). In some cases, it is determined that the cardiac function is in a better state than the target, and the first dosing means 51 will decrease the dosage, do not take the drug, or stop the dosing.
  • the heart disease treatment system 10 has a heartbeat input from the input unit 1 2.
  • Left heart calculated by first calculation means 3 1 for calculating left heart function value and right heart function value from output value, left atrial pressure value and right atrial pressure value, and cardiac oxygen consumption calculation monitor unit 14 Comparison between the first comparison means 41 and the first comparison means 4 1 for comparing the target heart function value with the function value and Z or the left heart function value and the right heart function value calculated by the first calculation means 31
  • the first medication means 51 that administers medication to the patient 20 according to the result, and the left and right cardiac function values are compared with the target cardiac function value, and according to the comparison result When medication is administered, it is possible to treat a patient's abnormal cardiac function to a normal state with certainty and accuracy.
  • the administration of the second administration means 52 is performed in accordance with the signal of the comparison result of the second comparison means 42. Therefore, the administration is started when an abnormality in the effective circulating blood volume is observed. .
  • the comparison result that the second dosing means 52 is "larger" than the second comparing means 42 (for example, the calculated effective circulating blood volume value is larger than the target effective circulating blood volume value). Is received), it is determined that the effective circulating blood volume is in an abnormal state, and the second dosing means 52 starts the medication for reducing the effective circulating blood volume.
  • the drug used in this case is a diuretic, for example, and furosemide is administered.
  • the comparison result that the second dosing means 52 is "equal" from the second comparing means 42 (for example, when the calculated effective circulating blood volume value is equal to the target effective circulating blood volume value) Is received, it is determined that the effective circulating blood volume is in a normal state, and the second dosing means 52 does not increase the dosage, do not administer the dosage, or stop the injection.
  • the comparison result that the second dosing means 52 is "smaller" than the second comparing means 42 (for example, when the calculated effective circulating blood volume value is lower than the target effective circulating blood volume value) If it is received, it is determined that the effective circulating blood volume is in an abnormal state, and the second dosing means 52 starts the medication for increasing the effective circulating blood volume.
  • the medication used in this case is, for example, an infusion preparation that increases the effective circulating blood volume, and a low molecular weight dextran or albumin preparation is administered. Will be.
  • the heart disease treatment system 10 calculates the effective circulating blood volume value from the cardiac output value, the left atrial pressure value, and the right atrial pressure value input from the input unit 12.
  • the administration of the third dosing means 53 is performed according to the signal of the comparison result of the third comparing means 43, the dosing is started when an abnormal vascular resistance is observed.
  • the comparison result that the third medication means 5 3 is “large” from the third comparison means 4 3 (for example, when the calculated vascular resistance value is higher than the target vascular resistance value) If it is received, it is determined that the vascular resistance value is in an abnormal state, and the third dosing means 53 starts the medication for lowering the vascular resistance value.
  • the drug used in this case is, for example, a vasodilator, and nitroprusside, nitroglycerin, phentolamine, etc. will be administered. In addition, if a vasoconstrictor such as norepinephrine has already been administered, the dose will be reduced.
  • the third dosing means 53 receives a comparison result (for example, when the calculated vascular resistance value is equal to the target vascular resistance value) from the third comparing means 43, In this case, it is determined that the vascular resistance is in a normal state, and the third dosing means 53 does not increase the dosage, does not perform the dosing, or stops the dosing.
  • a comparison result for example, when the calculated vascular resistance value is equal to the target vascular resistance value
  • the third dosing means 53 receives a comparison result of "small" from the third comparing means 43 (for example, when the calculated vascular resistance value is lower than the target vascular resistance value)
  • the vascular resistance is determined to be abnormal, and Stages 5 and 3 will begin dosing to increase vascular resistance.
  • the medication used in this case is, for example, a vasoconstrictor, such as norepinephrine.
  • a vasodilator such as nitroprusside, nitroglycerin, phentolamine, etc. has already been administered, the dose will be reduced.
  • the cardiac disease treatment system 10 includes the third calculation means for calculating the vascular resistance value from the cardiac output value, the right atrial pressure value, and the blood pressure value input from the input unit 12, and the target blood vessel. Since the third comparison means 4 3 for comparing the resistance value and the third administration means 5 3 for administering the medication to the patient 20 according to the comparison result of the third comparison means 4 3, Comparing the calculated vascular resistance value with the target vascular resistance value, and taking medication according to the comparison result, to reliably and accurately treat the abnormal vascular resistance value of the patient to a normal state Can do.
  • the dosage of the drug administered by dosing means 50 is not particularly limited.
  • the dosage is changed according to the deviation between the calculated value and the target value in comparing means 40. May be.
  • the target value is divided into multiple stages and the dosage of the drug is adjusted according to each stage, administration can be performed with extremely high accuracy.
  • the inventor of the present invention conducted an experiment to minimize cardiac oxygen consumption using the cardiac disease treatment system 10 according to the present embodiment.
  • anesthetized adult dogs with heart failure were used.
  • the cardiac oxygen consumption savings unit 1 The heart rate was controlled by administering a specific bradycardia drug.
  • a high dose of a specific bradycardic agent is administered at the start of treatment to suppress the spontaneous activity of the sinus node, and a specific bradycardia occurs when spontaneous activity appears. Control was performed so that the heart rate was gradually reduced by additional administration of drugs.
  • Fig. 9 shows the results of this experiment.
  • dog blood pressure, cardiac output, and left atrial pressure are the target blood pressure, The target cardiac output and the target left atrial pressure were maintained in the vicinity.
  • the heart rate is
  • the heart disease treatment system 10 further includes a display means for continuously displaying each numerical value of the hemodynamic index as shown in FIG.
  • the patient can be diagnosed reliably without missing time-series changes, and the transition of the state due to medication can be displayed.
  • Figure 10 shows the relationship between the measured value of cardiac oxygen consumption and the heart rate in this experiment. As a result of this experiment, it was possible to reduce the cardiac oxygen consumption of dogs by about 30% from about 3.5 m I 0 2 Z minutes to about 2.4 m I 0 2 Z minutes.
  • the estimated value of cardiac oxygen consumption calculated by the cardiac oxygen consumption monitor 14 and the measured value of cardiac oxygen consumption are also good in this experiment. It can be seen that the cardiac oxygen consumption can be estimated with high accuracy according to the cardiac disease treatment system 10 according to the present embodiment.
  • the cardiac disease treatment system 10 includes an input unit 1 2 for inputting a hemodynamic index of a patient 20 including at least a heart rate, and a hemodynamic index input from the input unit 12
  • the heart oxygen consumption calculation unit (in this embodiment, the heart oxygen consumption monitor unit 14) that calculates the estimated value of the cardiac oxygen consumption of the patient 20, and the heart rate input from the input unit 12.
  • the critical heart rate B that minimizes the estimated value of cardiac oxygen consumption calculated by the cardiac oxygen consumption calculator, and the heart rate of the patient 20 is controlled according to the comparison result.
  • a volume-saving unit in this embodiment, a cardiac oxygen consumption-saving unit 16
  • a cardiac oxygen consumption automatic minimizing system consisting of To prevent the occurrence of myocardial damage Can.
  • the heart disease treatment system 10 is configured to include the heart disease treatment unit 18 in order to achieve normalization of the patient's hemodynamics more effectively.
  • the present invention is not limited to this.
  • a patient may be treated using only a cardiac oxygen consumption automatic minimization system including an input unit, a cardiac oxygen consumption calculation unit, and a cardiac oxygen consumption saving unit.
  • Heart oxygen consumption can be estimated with high accuracy, and heart oxygen consumption can be minimized.
  • side effects caused by drugs and soaring medical costs can be avoided, and even non-specialists can easily minimize cardiac oxygen consumption.
  • the heart oxygen consumption automatic minimization system and heart disease treatment system according to the present invention can be applied to treatment of humans, animals and plants.
  • FIG. 1 is a schematic configuration diagram of a heart disease treatment system according to an embodiment of the present invention.
  • FIG. 2 is a schematic view of the heart.
  • FIG. 3 is a schematic configuration diagram showing a relationship between an input unit of the heart disease treatment system according to the present embodiment and a cardiac oxygen consumption monitor unit.
  • FIG. 4 A graph showing an estimated value of heart oxygen consumption of a dog and an actual value of heart oxygen consumption calculated using the heart oxygen consumption monitor unit according to the present embodiment.
  • FIG. 5 is a schematic configuration diagram showing a relationship between an input unit of the heart disease treatment system according to the present embodiment and a heart oxygen consumption saving unit.
  • FIG.6 Graph showing the relationship between left ventricular end systolic pressure volume (E es) and heart rate It is.
  • FIG. 7 is a graph showing the relationship between cardiac oxygen consumption (V 0 2 ) and heart rate.
  • FIG. 8 is a schematic configuration diagram of a heart disease treatment unit according to the present embodiment.
  • FIG. 9 is a graph showing experimental results using the heart disease treatment system according to the present embodiment.
  • FIG. 10 A graph showing the relationship between the measured value of cardiac oxygen consumption and the heart rate in the same experiment.
  • FIG. 11 A graph showing an estimated value of the heart oxygen consumption of the dog and an actual value of the heart oxygen consumption calculated using the heart oxygen consumption monitor unit in the experiment.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Cardiology (AREA)
  • Molecular Biology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Veterinary Medicine (AREA)
  • Biophysics (AREA)
  • Pathology (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Public Health (AREA)
  • Surgery (AREA)
  • Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • Hematology (AREA)
  • Physiology (AREA)
  • Obesity (AREA)
  • Vascular Medicine (AREA)
  • Measuring Pulse, Heart Rate, Blood Pressure Or Blood Flow (AREA)
  • External Artificial Organs (AREA)
  • Infusion, Injection, And Reservoir Apparatuses (AREA)
  • Electrotherapy Devices (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)

Abstract

【課題】患者の心臓酸素消費量を高い精度で推定することができる上に、心臓酸素消費量を最小化することができる心臓酸素消費量自動最小化システムおよび心疾患治療システムを提供する。 【解決手段】心疾患治療システム10は、少なくとも心拍数を含む、患者20の血行動態指標を入力する入力部12と、入力部12から入力される血行動態指標に基づいて、患者20の心臓酸素消費量の推定値を算出する心臓酸素消費量モニターユニット14と、入力部12から入力される心拍数と心臓酸素消費量モニターユニット14により算出される心臓酸素消費量の推定値が最小となる臨界心拍数とを比較し、この比較結果に応じて患者20の心拍数を制御する心臓酸素消費量節減ユニット16と、を有して構成されている。

Description

明 細 書
心臓酸素消費量自動最小化システムおよびこれを用いた心疾患治療 システム
技術分野
[0001 ] 本発明は、 患者の心臓酸素消費量を高い精度で推定することができる上に
、 心臓酸素消費量を最小化することができる心臓酸素消費量自動最小化シス テムおよびこれを用いた心疾患治療システムに関する。
背景技術
[0002] 従来、 心疾患で異常をきたした患者の血圧、 心拍出量、 左心房圧などの血 行動態を改善する治療として、 強心剤の投与が広く行われている。 この強心 剤の投与による治療では、 低下した患者の心機能を向上させ、 血行動態を正 常化することが可能となる。
発明の開示
発明が解決しょうとする課題
[0003] しかしながら、 このような強心剤の投与による従来の治療では、 患者の血 行動態を正常化することができる反面、 機能の低下した心臓の酸素消費量 ( 心臓のエネルギー消費量) を増大させてしまうといった問題点があり、 この 心臓酸素消費量の増大は、 心筋障害を促進し、 生命予後を悪化させるといつ た報告もある。
[0004] このような問題点を解決すべく、 血管拡張剤や )8遮断剤などの投与によつ て心臓酸素消費量を低減させる治療が提案されているが、 血管拡張剤は、 そ の過度の投与で低血圧となることがあり、 )8遮断剤は徐脈■心室収縮低下を 同時にきたすため、 重度の心不全症例には禁忌であった。 また、 )8遮断剤の 投与は薬効を熟知した専門医によって行われる必要があり、 非専門医には困 難である。
[0005] さらに、 従来の治療は、 定量的■半定量的にも心臓酸素消費量を推定して いなかつたため、 心臓酸素消費量にあわせた適切な治療とはなっていなかつ た。 このため、 必要以上に各種薬剤を大量投与してしまつたり、 必要以上に 各種薬剤を長期間投与してしまう場合があリ、 薬剤による副作用の可能性が 高くなる上に、 医療コス卜が増大するといつた問題点もあった。
[0006] 本発明は、 このような問題点を解決するためになされたものであって、 患 者の心臓酸素消費量を高い精度で推定することができる上に、 心臓酸素消費 量を最小化することができる心臓酸素消費量自動最小化システムおよびこれ を用いた心疾患治療システムを提供することを目的とする。
[0007] 本発明は、 また、 薬剤による副作用や医療コストの高騰を回避することが でき、 非専門医であっても容易に心臓酸素消費量を最小化することができる 心臓酸素消費量自動最小化システムおよびこれを用いた心疾患治療システム を提供することを目的とする。
課題を解決するための手段
[0008] 本発明は、 以下の手段によって、 上記課題を解決したものである。
[0009] ( 1 ) 本発明は、 少なくとも心拍数を含む、 患者の血行動態指標を入力す る入力部と、
[0010] 前記入力部から入力される血行動態指標に基づいて、 前記患者の心臓酸素 消費量の推定値を算出する心臓酸素消費量算出部と、 前記入力部から入力さ れる心拍数と前記心臓酸素消費量算出部により算出される心臓酸素消費量の 推定値が最小となる臨界心拍数とを比較し、 この比較結果に応じて前記患者 の心拍数を制御する心臓酸素消費量節減部と、 を有して構成されていること を特徴とする、 心臓酸素消費量自動最小化システムである。
[0011 ] ( 2 ) 本発明はまた、 前記血行動態指標は、 さらに、 血圧値、 心拍出量値 、 左心房圧値、 および右心房圧値を含み、 前記心臓酸素消費量算出部は、 前 記心拍出量値および前記左心房圧値から、 下記数式 (1 ) を用いて左心機能 値を算出し、 前記血圧値、 前記右心房圧値、 および前記心拍出量値から、 下 記数式 (2 ) を用いて血管抵抗値を算出し、 前記左心機能値、 前記血管抵抗 値、 および前記心拍数から、 下記数式 (3 ) を用いて左心室収縮末期圧容積 関係を算出し、 前記血圧値、 前記左心房圧値、 前記心拍出量値、 および前記 心拍数から、 下記数式 (4) を用いて左心室圧容積面積を算出し、 前記心拍 数、 前記左心室圧容積面積、 および前記左心室収縮末期圧容積関係から、 下 記数式 (5) を用いて前記心臓酸素消費量の推定値を算出することを特徴と する、 (1 ) に記載の心臓酸素消費量自動最小化システムである。
& = (' ¾出 sta / {L0 G ( (左心房田 D -A) +B} (I)
(ただし、 Aおよび Bは定数値である。 )
[数 2] 血管 as値 = { (iuH®― (右心 ®a¾— H) } / (m m (2)
(ただし、 Hは定数値である。 )
[数 3] 左心室 1|5«*»[¾¾醒= (feL棚 » XKX Ok管観怖 / (1— K/ ('L棚 ) (3)
(ただし、 Kは定数値である。 )
[数 4] 左' 麵資
= ( m X ( {Log (佐心房趣 — A) +B} /K+ (雄出麵 / 棚 ) /2 (4)
(ただし、 Α、 Β、 および Κは前記定義どおりである。 )
[数 5]
,ΜΙ^消龍= ('t- o X ( t- mm) χ«+ (&L、室 χβ+y) ) (ただし、 α、 β、 および rま定数値である。 )
[0012] (3) 本発明はまた、 前記心臓酸素消費量節減部は、 前記患者に投薬を施 すことにより、 前記患者の心拍数を制御することを特徴とする、 (1 ) また は (2) に記載の心臓酸素消費量自動最小化システムである。
[0013] (4) 本発明はまた、 前記心臓酸素消費量節減部は、 治療の開始時に、 心 拍数を低下させる薬剤を前記患者に投与して洞結節の自発活動を抑制し、 前 記自発活動が出現した場合に、 前記心拍数を低下させる薬剤を追加投与する ことを特徴とする、 (3) に記載の心臓酸素消費量自動最小化システムであ る。
[0014] (5) 本発明はまた、 前記薬剤は、 8遮断剤、 カルシウム拮抗薬または特 異的徐脈剤である、 (4) に記載の心臓酸素消費量自動最小化システムであ る。
[0015] (6) 本発明はまた、 前記心臓酸素消費量節減部は、 前記患者に電気的刺 激を与えることにより、 前記患者の心拍数を制御することを特徴とする、 ( 1 ) または (2) に記載の心臓酸素消費量自動最小化システムである。
[0016] (7) 本発明はまた、 患者の血行動態指標を時系列的に連続して表示する 表示手段を更に備えていることを特徴とする、 (1 ) 〜 (6) のいずれか 1 つに記載の心臓酸素消費量自動最小化システムである。
[0017] (8) 本発明はまた、 前記心拍出量値は、 スワンガンツ■カテーテルによ リ計測されるまたは動脈血圧波形の拡張期時定数から算出されることを特徴 とする、 (1 ) 〜 (7) のいずれか 1つに記載の心臓酸素消費量自動最小化 システムである。
[0018] (9) 本発明はまた、 前記左心房圧値は、 カテーテルにより直接計測され るか、 またはスワンガンツ■カテーテルによる肺動脈楔入圧もしくは肺動脈 圧の拡張期圧値から連続推定することにより算出されることを特徴とする、
(1 ) 〜 (8) のいずれか 1つに記載の心臓酸素消費量自動最小化システム である。
[0019] (1 0) さらに本発明は、 (1 ) 〜 (9) のいずれか 1つに記載の心臓酸 素消費量自動最小化システムと、 前記入力部から入力される前記心拍出量値 、 前記右心房圧値および前記左心房圧値から心機能値を算出する第 1算出手 段と、 前記第 1算出手段で算出される前記心機能値と、 目標心機能値を比較 する第 1比較手段と、 前記第 1比較手段の比較結果に応じて前記患者へ投薬 を施す第 1投薬手段と、 を有して構成されていることを特徴とする、 心疾患 治療システムである。 [0020] ( 1 1 ) 本発明はまた、 前記入力部から入力される前記心拍出量値、 前記 左心房圧値および前記右心房圧値から、 有効循環血液量値を算出する第 2算 出手段と、 前記第 2算出手段で算出される前記有効循環血液量値と、 目標有 効循環血液量値を比較する第 2比較手段と、 前記第 2比較手段の比較結果に 応じて前記患者へ投薬を施す第 2投薬手段と、 をさらに備えたことを特徴と する、 (1 0 ) に記載の心疾患治療システムである。
[0021] ( 1 2 ) 本発明はまた、 前記入力部から入力される前記心拍出量値、 前記 右心房圧値および前記血圧値から血管抵抗値を算出する第 3算出手段と、 前 記第 3算出手段で算出される前記血管抵抗値と、 目標血管抵抗値を比較する 第 3比較手段と、 前記第 3比較手段の比較結果に応じて前記患者へ投薬を施 す第 3投薬手段と、 をさらに備えたことを特徴とする、 (1 0 ) または (1 1 ) に記載の心疾患治療システムである。
発明の効果
[0022] 本発明に係る心臓酸素消費量自動最小化システムおよびこれを用いた心疾 患治療システムによれば、 患者の心臓酸素消費量を高い精度で推定すること ができる上に、 心臓酸素消費量を最小化することができる。 また、 薬剤によ る副作用や医療コス卜の高騰を回避することができ、 非専門医であっても容 易に心臓酸素消費量を最小化することができる。
[0023] なお、 前記心臓酸素消費量節減部が、 前記患者に投薬を施すことにより、 および Zまたは、 前記患者に電気的刺激を与えることにより、 前記患者の心 拍数を制御すれば、 簡易な方法でありながら患者の心拍数を迅速かつ容易に 制御することができる。
[0024] また、 前記患者の血行動態指標には、 さらに、 血圧値、 心拍出量値、 左心 房圧値、 および右心房圧値が含まれ、 前記心臓酸素消費量算出部が、 前記心 拍出量値および前記左心房圧値から、 上記数式 (1 ) を用いて左心機能値を 算出し、 前記血圧値、 前記右心房圧値、 および前記心拍出量値から、 上記数 式 (2 ) を用いて血管抵抗値を算出し、 前記左心機能値、 前記血管抵抗値、 および前記心拍数から、 上記数式 (3 ) を用いて左心室収縮末期圧容積関係 を算出し、 前記血圧値、 前記左心房圧値、 前記心拍出量値、 および前記心拍 数から、 上記数式 (4 ) を用いて左心室圧容積面積を算出し、 前記心拍数、 前記左心室圧容積面積、 および前記左心室収縮末期圧容積関係から、 上記数 式 (5 ) を用いて前記心臓酸素消費量の推定値を算出すれば、 心臓酸素消費 量の推定値を簡易な演算で迅速に算出することができる。
[0025] また、 前記心臓酸素消費量節減部は、 治療の開始時に、 心拍数を低下させ る薬剤を前記患者に投与して洞結節の自発活動を抑制し、 自発活動が出現し た場合に前記徐脈剤を追加投与すれば、 心拍数を効率的に低下させることが できる。
[0026] また、 前記患者の血行動態指標を連続して表示する表示手段を更に備えて いれば、 血圧値などの数値の時系列的な変化を見逃すことなく確実に患者を 診断することができると共に、 投薬治療による状態の推移を表示することが できる。
[0027] また、 前記心拍出量値が、 スワンガンツ■カテーテルにより計測されるま たは動脈血圧波形の拡張期時定数から算出され、 前記左心房圧値が、 カテー テルにより直接計測されているまたはスワンガンツ■カテーテルによる肺動 脈楔入圧もしくは肺動脈圧の拡張期圧値から連続推定することによリ算出さ れていれば、 極めて精度の高いシステムを提供することができる。
[0028] また、 本発明に係る心臓酸素消費量自動最小化システムと、 前記入力部か ら入力される前記心拍出量値、 前記右心房圧値および前記左心房圧値から心 機能値を算出する第 1算出手段と、 前記第 1算出手段で算出される前記心機 能値と、 目標心機能値を比較する第 1比較手段と、 前記第 1比較手段の比較 結果に応じて前記患者へ投薬を施す第 1投薬手段と、 を有して構成された心 疾患治療システムとすれば、 左右の心機能値と目標心機能値を比較し、 その 比較結果に応じて投薬が行われるため、 確実かつ正確に患者の心機能の異常 を正常化しつつ心臓酸素消費量を最小化できる。
[0029] また、 前記入力部から入力される前記心拍出量値、 前記左心房圧値および 前記右心房圧値から、 有効循環血液量値を算出する第 2算出手段と、 前記第 2算出手段で算出される前記有効循環血液量値と、 目標有効循環血液量値を 比較する第 2比較手段と、 前記第 2比較手段の比較結果に応じて前記患者へ 投薬を施す第 2投薬手段と、 をさらに備えていれば、 算出される有効循環血 液量値と目標有効循環血液量値を比較し、 その比較結果に応じて投薬が行わ れるため、 確実かつ正確に患者の有効循環血液量の異常を正常化しつつ心臓 酸素消費量を最小化できる。
[0030] また、 前記入力部から入力される前記心拍出量値、 前記右心房圧値および 前記血圧値から血管抵抗値を算出する第 3算出手段と、 前記第 3算出手段で 算出される前記血管抵抗値と、 目標血管抵抗値を比較する第 3比較手段と、 前記第 3比較手段の比較結果に応じて前記患者へ投薬を施す第 3投薬手段と 、 をさらに備えていれば、 算出される血管抵抗値と目標血管抵抗値を比較し 、 その比較結果に応じて投薬が行われるため、 確実かつ正確に患者の血管抵 抗値の異常を正常化しつつ心臓酸素消費量を最小化できる。
[0031 ] また、 前記心機能、 前記有効循環血液量および前記血管抵抗値が正常状態 に治療されることにより、 結果として確実かつ正確に患者の血圧値、 心拍出 量値、 および左心房圧値を正常化しつつ心臓酸素消費量を最小化できる。 発明を実施するための最良の形態
[0032] 以下、 図面を用いて、 本発明の実施形態に係る心疾患治療システムについ て説明する。
[0033] 図 1は本実施形態に係る心疾患治療システムの概略構成図である。 また、 図 2は心臓の概略図を示しておリ、 本実施形態に係る心疾患治療システム 1 0は、 この図 2に示される心拍出量値、 左心房圧値、 および右心房圧値と、 図示しない血圧値および心拍数を利用する。
[0034] 図 1に示されるように、 心疾患治療システム 1 0は、 入力部 1 2と、 心臓 酸素消費量モニターユニット 1 4 (本発明に係る 「心臓酸素消費量算出部」 ) と、 心臓酸素消費量節減ユニット 1 6 (本発明に係る 「心臓酸素消費量節 減部」 ) と、 心疾患治療ユニット 1 8と、 を有して構成されている。
[0035] 入力部 1 2は、 血圧値、 心拍出量値、 左心房圧値、 右心房圧値、 および心 拍数を含む患者 2 0の血行動態指標を入力するためのものである。
[0036] なお、 この入力部 1 2は、 患者 2 0の血行動態指標の数値データを、 後述 する心臓酸素消費量モニターュニッ卜 1 4、 心臓酸素消費量節減ュニッ卜 1 6および心疾患治療ュニッ卜 1 8に出力できるものであればよく、 特に限定 されない。 従って、 例えば、 実際に計測された血圧値などの数値データを、 心疾患治療システム 1 0を使用する使用者が入力する際のキーポード等の入 力装置を適用してもよく、 また、 患者 2 0の血行動態を計測して直接的に数 値データを出力する計測装置 (例えば、 血圧計など) を適用してもよい。 な お、 心疾患治療システム 1 0を用いて患者 2 0の心疾患の異常を診断し、 投 薬治療を行うためには、 患者 2 0の血行動態を計測して直接的に血行動態の 数値データを出力する計測装置を適用することが好ましい。
[0037] 図 3は本実施形態に係る心疾患治療システムの入力部 1 2と心臓酸素消費 量モニターュニッ卜 1 4の関係を示す概略構成図である。
[0038] 入力部 1 2は、 本実施形態では、 患者 2 0の心拍出量値、 左心房圧値、 お よび右心房圧値を計測するスワンガンツ■カテーテル 1 2 Aと、 血圧値を計 測する血圧カテーテル 1 2 Bと、 心拍数を計測する心電図計 1 2 Cと、 によ つて構成されている。 なお、 血圧値、 心拍出量値、 左心房圧値、 右心房圧値 、 および心拍数は、 それぞれ従来公知の計測装置によって計測することがで き、 本実施形態で示される例に限定されるものではない。
[0039] 心疾患治療システム 1 0では、 入力部 1 2において連続的に患者を診断す るために、 血圧値、 心拍出量値、 左心房圧値、 右心房圧値、 および心拍数の 各数値を連続的に計測して使用する。
[0040] なお、 血圧値、 右心房圧値、 および心拍数は連続的に計測することができ るが、 従来、 左心房圧値と心拍出量値は連続的に計測することができないと されている。 このため、 本実施形態では、 左心房圧値は、 肺動脈圧の拡張期 圧値 (肺動脈拡張期圧値) から連続推定することによって左心房圧値を連続 的に推定する方法を採用し、 連続的な数値データとして利用する。 具体的に は、 この左心房圧値は、 肺動脈拡張期圧値と線形関係を有していることが解 つているので、 複数個体の平均的相関関係に基づき肺動脈拡張期圧値から左 心房圧値を算出することができる。 なお、 この肺動脈拡張期圧値を利用して 左心房圧値を算出する場合、 心拍数の変化に従って、 肺動脈圧の拡張期圧値 と左心房圧値の相関関係 (線形関係) が変化するので、 複数個体における平 均的相関関係を心拍数で補正することができるようにしておくことが好まし い。
[0041] 一方、 心拍出量値は、 末梢の血圧波形の拡張期時定数から推定する方法を 採用することによって、 連続的な数値データとして利用することができる。
[0042] このように、 左心房圧値が、 スワンガンツ■カテーテルによる肺動脈圧の 拡張期圧値から連続推定することにより算出され、 心拍出量値が、 動脈血圧 波形の拡張期時定数から算出されていれば、 極めて精度の高いシステムを提 供することができる。
[0043] 心臓酸素消費量モニターュニッ卜 1 4は、 本実施形態では、 コンピュータ によって構成され、 入力部 1 2から増幅器 2 2を介して入力される血行動態 指標 (本実施形態では、 血圧値、 心拍出量値、 左心房圧値、 右心房圧値、 お よび心拍数) に基づいて、 患者 2 0の心臓酸素消費量の推定値を算出する。 なお、 入力部 1 2から出力される数値データの電気信号が充分な大きさを有 している場合には、 増幅器 2 2は不要である。
[0044] この心臓酸素消費量モニターュニッ卜 1 4は、 以下の手順で患者 2 0の心 臓酸素消費量の推定値を算出する。
[0045] 最初に、 心臓酸素消費量モニターュニッ卜 1 4は、 入力部 1 2から入力さ れる心拍出量値および左心房圧値から、 下記数式 (1 ) を用いて左心機能値 を算出する。
[数 6]
Figure imgf000011_0001
出麵 / { L o g ( ct心房圧衝 -A) + B} ( 1 )
(ただし、 Aおよび Bは定数値である。 )
[0046] この数式 (1 ) の Aおよび Bは、 予め使用者によって設定される定数値で ある。 なお、 この定数値は、 患者 20の病状に応じて適宜変更することので きる数値であり、 患者 20に応じて調整することによって算出される左心機 能値を補正することができる。
[0047] 次に、 入力部 1 2から入力される血圧値、 右心房圧値、 および心拍出量値 から、 下記数式 (2) を用いて血管抵抗値を算出する。
[数 7] 血管 ί職値 = { m± - (右心班ィ© -H) } / ('[^出 (2)
(ただし、 Hは定数値である。 )
[0048] この数式 (2) の Hは、 血管抵抗非線形性を補正するための定数値である
。 なお、 この定数値は、 患者 20の病状に応じて適宜変更することのできる 数値であり、 患者 20に応じて調整することによつて非線形性が強い個体に おいてもシステムの正常な作動を保つことができる。
[0049] 次に、 数式 (1 ) で算出される左心機能値、 数式 (2) で算出される血管 抵抗値、 および入力部 1 2から入力される心拍数から、 下記数式 (3) を用 いて左心室収縮末期圧容積関係を算出する。
[数 8] 左心室 1|]««£¾¾醒= (fc^i© Kx ( / (ι— ¾^«¾> κ/ m ) θ) (ただし、 κは定数値である。 )
[0050] この数式 (3) で算出される左心室収縮末期圧容積関係は、 心室の収縮特 性を表しており、 単位は mmH gZm Iである。 また、 数式 (3) の定数値 Kは、 左心室硬度を表す定数値であり、 本実施形態では個体間で一定値 (K =0. 081 5) とみなす。
[0051] 次に、 入力部 1 2から入力される血圧値、 左心房圧値、 心拍出量値、 およ び心拍数から、 下記数式 (4) を用いて左心室圧容積面積を算出する。 [数 9] 左' L^ffi^I^
= ( X ( {Log (佐心房赚 -A) +B} /K+ ('L柏出駕 S3 / ('L棚 ) /2 (4)
(ただし、 A、 B、 および Kは前記定義どおりである。 )
[0052] この数式 (4) の定数値 Α、 Β、 及び Κは、 上述の通りである。 また、 こ の数式 (4) で算出される左心室圧容積面積は、 左心室に蓄えられている仕 事量を表しており、 単位は mmH g Xm Iである。
[0053] 最後に、 入力部 1 2から入力される心拍数、 数式 (4) で算出される左心 室圧容積面積、 および数式 (3) で算出される左心室収縮末期圧容積関係か ら、 下記数式 (5) を用いて心臓酸素消費量の推定値を算出する。
[数 10]
'cj ^消魏= ( 棚 X ( ( 'L ± mw χ«+ ^ mam χβ+y) ) (ただし、 α、 β、 および r ま定数値である。 )
[0054] この数式 (5) は、 参考文献 (S u g a. H著、 Γρ rs p e c t i v e p r e d i c t i o n o τ O 2 c o n s ump t i o n f r om p r e s s u r e v o l ume a r e a i n d o h e a r t s 」 、 Am J P h y s i o l . 1 987 ; 252 ; H 1 258-64) の記 載内容を根拠としたものである。 この参考文献によれば、 心室圧容積面積か ら心臓酸素消費量を推定することができ、 1分間当たりの心臓酸素消費量は 、 数式 (5) に基づいて算出することができる。 また、 数式 (5) の Qf、 β 、 および Τ ま、 予め使用者によって設定される定数値である。 本実施形態で は、 参考文献の記載に基づいて、 ひ= 1. 8 X 1 0_5m I 02ZmmH gZm U β = . 00 1 8m l 02ZmmH g Xm l 、 丫 = 0. 0 1 0m l O2と して心臓酸素消費量の推定値を算出する。
[0055] このように、 心臓酸素消費量モニターュニッ卜 1 4は、 心拍出量値および 左心房圧値から、 上記数式 (1 ) を用いて左心機能値を算出し、 血圧値、 右 心房圧値、 および心拍出量値から、 上記数式 (2) を用いて血管抵抗値を算 出し、 左心機能値、 血管抵抗値、 および心拍数から、 上記数式 (3 ) を用い て左心室収縮末期圧容積関係を算出し、 血圧値、 左心房圧値、 心拍出量値、 および心拍数から、 上記数式 (4 ) を用いて左心室圧容積面積を算出し、 心 拍数、 左心室圧容積面積、 および左心室収縮末期圧容積関係から、 上記数式 ( 5 ) を用いて心臓酸素消費量の推定値を算出するため、 心臓酸素消費量の 推定値を簡易な演算で迅速に算出することができる。
[0056] 本発明の発明者は、 この心臓酸素消費量モニターユニット 1 4を用いて心 臓酸素消費量の推定値を算出すると共に、 心臓酸素消費量の実測値を計測し
、 心臓酸素消費量の推定値と実測値の比較を行った。 なお、 心臓酸素消費量 の実測値は、 犬に強心剤を投与または心不全を作成した上で、 下記数式 (6 ) を用いて実測した。
[数川
Figure imgf000014_0001
(6 )
[0057] この数式 (6 ) の冠動脈血流量 (m l /m i n ) は、 開胸下に左冠動脈に血 流計を装着し計測した。 また、 動脈血酸素含量は、 動脈血を採取し酸素含量 計にて計測した。 さらに、 静脈血酸素含量は、 冠状静脈洞にカテーテルを揷 入し、 静脈血 (心臓の静脈血) を採取し酸素含量計にて計測した。
[0058] 図 4は、 本実施形態に係る心臓酸素消費量モニターュニッ卜 1 4を用いて 算出した、 犬の心臓酸素消費量の推定値と、 心臓酸素消費量の実測値を示し たグラフである。
[0059] このグラフからも明らかな通り、 心臓酸素消費量の推定値と実測値は強く 線形相関しており、 本実施形態に係る心疾患治療システム 1 0によれば、 心 臓酸素消費量を高い精度で推定可能な事が分かる。 また、 患者への負担を考 えると、 通常の臨床現場で心臓酸素消費量を実測することはほぼ不可能であ るが、 本実施形態に係る心疾患治療システム 1 0によれば、 通常の臨床現場 で使用される計測装置を用いて心臓酸素消費量を容易に推定することができ 、 患者に負担を与える心配がない。 [0060] なお、 図 4における推定値と実測値の絶対値は完全には一致していないが 、 これは個体によって上記数式 (5 ) の Qf、 β、 および の数値が異なるこ とに起因するものと考えられる。 実際には、 この絶対値の関係よりも、 推定 値が実測値の相対的な変化に追従し得るか否かが重要であり、 この点、 心臓 酸素消費量モニターュニッ卜 1 4によって算出された心臓酸素消費量の推定 値は、 実測値の変化に追従しており、 絶対値の不一致は特に問題とはならな い。
[0061 ] 図 5は本実施形態に係る心疾患治療システムの入力部 1 2と心臓酸素消費 量節減ュニッ卜 1 6の関係を示す概略構成図である。
[0062] 心臓酸素消費量節減ュニッ卜 1 6は、 本実施形態では、 心電図計 1 2 Cに よつて計測された心拍数の数値データが増幅器 2 2を介して入力されるコン ピュータ 1 6 Aと、 患者 2 0に徐脈薬剤を投与するための徐脈薬剤投与ボン プ 1 6 Bと、 心房ぺーシング装置 1 6 Cと、 心房ぺーシングカテーテル 1 6 りと、 によって構成されている。
[0063] この心臓酸素消費量節減ュニッ卜 1 6は、 心電図計 1 2 Cから入力される 心拍数と、 心臓酸素消費量モニターュニッ卜 1 4によって算出された心臓酸 素消費量の推定値が最小となる臨界心拍数 (詳細は後述) とを比較する。 そ して、 この比較結果に応じて、 徐脈薬剤投与ポンプ 1 6 Bを用いて患者 2 0 に投薬を施すと共に、 心房べ一シング装置 1 6 Cおよび心房べ一シングカテ 一テル 1 6 Dを用いて患者 2 0に電気的刺激を与える。
[0064] なお、 本実施形態では、 徐脈薬剤投与ポンプ 1 6 Bによる薬剤の投与と、 心房ぺーシング装置 1 6 Cおよび心房ぺーシングカテーテル 1 6 Dによる電 気的刺激の印加が可能な構成となっているが、 本発明はこれに限定されるも のではなく、 心臓酸素消費量節減ュニッ卜 1 6がいずれか一方だけを備えて いてもよい。 このように、 心臓酸素消費量節減ユニット 1 6が、 患者 2 0に 投薬を施すことにより、 および Zまたは、 患者 2 0に電気的刺激を与えるこ とにより、 患者 2 0の心拍数を制御すれば、 簡易な方法でありながら患者 2 0の心拍数を迅速かつ容易に制御することができる。 [0065] また、 薬剤の投与や電気的刺激の印加以外の方法によって患者 20の心拍 数を制御してもよい。 さらに、 患者 20に投与する薬剤の種類は特に限定さ れないが、 例えば、 8遮断剤、 カルシウム拮抗薬、 特異的徐脈剤などを投与 することができる。
[0066] 後述する心疾患治療ュニッ卜 18などを用いて患者 20に強心剤を投与す ることで、 患者 20の血圧、 心拍出量、 左心房圧などの血行動態を向上する ことが可能であるが、 その一方で、 患者 20の心臓酸素消費量が増大してし まうといった別の問題が生じる。 心疾患治療システム 10は、 このような問 題を解消すべく、 心臓酸素消費量節減ュニッ卜 16を用いて心拍数を低下さ せ、 臨界心拍数に近づけるように制御することによって、 患者 20の心臓酸 素消費量を最小化する。
[0067] ここで、 上記数式 (4) で算出される左心室収縮末期圧容積関係と、 上記 数式 (1) で算出される左心機能値を関連付けると、 下記数式 (7) のよう に表すことができる。
[数 12] 左'
Figure imgf000016_0001
,L健 +血管蘭 » (7)
[0068] この数式 (7) からも明らかなように、 単に心拍数を低下させる制御を行 つたのでは左心機能値を低下させてしまうことになる。 即ち、 左心機能値お よび血管抵抗値を低下させることなく一定に維持し、 かつ、 心拍数を低下さ せるためには、 左心室収縮末期圧容積関係を増加させる必要がある。
[0069] 仮に、 血圧値 90 mm H g、 心拍出量値 100m l Z分 Z k g、 左心房圧 値 1 OmmH gを目標として患者 20に治療を施す場合を考えると、 上記数 式 (1) 〜数式 (5) から左心機能値の目標値は 34. 8m l Z分Zk g、 血管抵抗値の目標値は 0. 9mmH g X k gZm Iとなる。 上記数式 (7) における定数値 Kを一定値 (0. 0815) とすれば、 数式 (7) から、 左 心室収縮末期圧容積関係 (Ee s) と心拍数は図 6に示される関係となる。
[0070] また、 上記数式 (1) 〜数式 (5) から、 心臓酸素消費量 (V02) と心拍 数は図 7に示される関係となる。
[0071 ] これら図 6および図 7から明らかなように、 心拍数を低下させていった場 合、 左心室収縮末期圧容積関係 (E e s ) が上昇しても、 心臓酸素消費量 ( V 0 2) は所定の心拍数 B (本発明に係る 「臨界心拍数」 ) までは低減するこ とが可能である。 即ち、 患者 2 0の心拍数を臨界心拍数 Bに近づけるように 治療を施すことで、 患者 2 0の心臓酸素消費量を低減することができる。 な お、 臨界心拍数 Bの値は、 個体ごとに図 7に相当するグラフを作成すること によって容易に算出可能である。
[0072] この心臓酸素消費量節減ュニッ卜 1 6では、 患者 2 0への薬剤の投与量や 、 患者 2 0への電気的刺激の強度、 周波数などを調整することによって心拍 数を低下させ、 心拍数を臨界心拍数 Bに近づけるように負帰還制御を行うが 、 その制御方法は特に限定されない。 従って、 例えば、 I F— T H E Nル ールに基づいた非線形制御法を適用してもよく、 また、 比例、 積分、 微分な どの線形制御法を適用してもよい。 また、 徐脈剤の投与によって患者 2 0の 心拍数を制御する場合には、 治療開始時に高用量の徐脈剤を投与して洞結節 の自発活動を抑制し、 自発活動が出現した場合に徐脈薬を追加投与して段階 的に心拍数を低下させるように制御すれば、 心拍数を、 よリー層効率的に低 下させることができる。
[0073] 図 8は本実施形態に係る心疾患治療ュニッ卜 1 8の概略構成図である。
[0074] この心疾患治療ュニッ卜 1 8は、 算出手段 3 0と、 比較手段 4 0と、 投薬 手段 5 0と、 によって構成されている。
[0075] 算出手段 3 0は、 入力部 1 2から入力される血行動態指標に基づいて所定 の演算を行うもので、 第 1算出手段 3 1と、 第 2算出手段 3 2と、 第 3算出 手段 3 3と、 によって構成されている。 なお、 算出手段 3 0は、 第 1算出手 段 3 1、 第 2算出手段 3 2および第 3算出手段 3 3の演算をまとめて行う 1 つの演算ュニッ卜で構成してもよく、 また、 第 1算出手段 3 1、 第 2算出手 段 3 2および第 3算出手段 3 3の演算を別々に行う 3つの演算ュニッ卜によ つて構成してもよい。 [0076] 第 1算出手段 3 1は、 入力部 1 2から入力される心拍出量値、 左心房圧値 および Zまたは右心房圧値から、 左心機能値および右心機能値を算出する。 また、 第 2算出手段 3 2は、 入力部 1 2から入力される心拍出量値、 左心房 圧値および右心房圧値から、 下記数式 (8 ) を用いて有効循環血液量値を算 出する。
[数 13]
駕綱夜 41直 = ( ('L 出 ¾直) + F X (右心房圧御 +G X (左心房圧値) ) X E (8 )
(ただし、 E、 F、 および Gは定数値である。 )
[0077] また、 第 3算出手段 3 3は、 入力部 1 2から入力される心拍出量値、 右心 房圧値および血圧値から、 数式 (2 ) または数式 (7 ) を用いて、 血管抵抗 値を算出する。
[0078] 比較手段 4 0は、 算出手段 3 0で算出される算出数値 (心機能値 (左心機 能値および Zまたは右心機能値) 、 有効循環血液量値、 血管抵抗値) と、 目 標値 (目標心機能値 (目標左心機能値および Zまたは目標右心機能値) 、 目 標有効循環血液量値、 目標血管抵抗値) を比較するもので、 第 1比較手段 4 1と、 第 2比較手段 4 2と、 第 3比較手段 4 3と、 によって構成されている
[0079] 第 1比較手段 4 1は、 第 1算出手段 3 1で算出される左心機能値および Z または右心機能値と、 目標心機能値を比較する。 また、 第 2比較手段 4 2は 、 第 2算出手段 3 2で算出される有効循環血液量値と、 目標有効循環血液量 値を比較する。 さらに、 第 3比較手段 4 3は、 第 3算出手段 3 3で算出され る血管抵抗値と、 目標血管抵抗値を比較する。
[0080] これら第 1比較手段 4 1、 第 2比較手段 4 2、 および第 3比較手段 4 3は 、 目標値に対して、 算出数値が 「大きい」 、 「等しい」 、 「小さい」 の 3種 類の比較を行うことができ、 これら 3つの比較結果の中の 1つを、 後述する 投薬手段 5 0に比較結果の信号として送信する。 なお、 比較結果の信号は、
「大きい」 、 「等しい」 、 「小さい」 の 3種類の比較結果に限定されるもの ではなく、 例えば、 目標値に対する算出数値の偏差を定量化した信号を送信 することも可能である。
[0081] 投薬手段 5 0は、 比較手段 4 0からの比較結果の信号に応じて、 患者 2 0 への投薬の制御 (投薬量の調整) を行うもので、 第 1投薬手段 5 1と、 第 2 投薬手段 5 2と、 第 3投薬手段 5 3と、 によって構成されている。
[0082] この投薬手段 5 0には、 例えば、 複数の自動注入ポンプに接続される多薬 剤同時注入用多孔カテーテルを適用することができ、 この場合、 多孔カテー テルを患者 2 0の静脈へ接続することにより、 患者 2 0の体内へ所定の薬剤 を投与する。
[0083] 第 1投薬手段 5 1の投薬は、 第 1比較手段 4 1の比較結果の信号に応じて 行われるため、 心機能の異常が認められる場合に投薬が開始されることにな る。
[0084] よリ具体的には、 第 1投薬手段 5 1が、 第 1比較手段 4 1から 「小さい」 という比較結果 (例えば、 算出された左心機能値が目標心機能値よりも低い 場合) を受け取った場合には、 心機能が異常状態であると判定され、 第 1投 薬手段 5 1は心機能を上げるための投薬を開始することになる。 この場合に 使用される薬剤は、 例えば強心剤であり、 ドブタミンやドーパミンなどが投 与されることになる。
[0085] また、 第 1投薬手段 5 1が、 第 1比較手段 4 1から 「等しい」 という比較 結果 (例えば、 算出された左心機能値と目標心機能値が等しい場合) を受け 取った場合には、 心機能が正常状態であると判定され、 第 1投薬手段 5 1は 投薬量を増加させない、 投薬を行わない、 または投薬を停止することになる
[0086] さらに、 第 1投薬手段 5 1が、 第 1比較手段 4 1から 「大きい」 という比 較結果 (例えば、 算出された左心機能値が目標心機能値よりも高い場合) を 受け取った場合には、 心機能が目標よリもさらに良好な状態であると判定さ れ、 第 1投薬手段 5 1は投薬量を減少させる、 投薬を行わない、 または投薬 を停止することになる。
[0087] このように、 心疾患治療システム 1 0は、 入力部 1 2から入力される心拍 出量値、 左心房圧値および右心房圧値から、 左心機能値および右心機能値を 算出する第 1算出手段 3 1と、 心臓酸素消費量算出モニターュニッ卜 1 4で 算出される左心機能値および Zまたは前記第 1算出手段 3 1で算出される左 心機能値および右心機能値と、 目標心機能値を比較する第 1比較手段 4 1と 、 第 1比較手段 4 1の比較結果に応じて患者 2 0へ投薬を施す第 1投薬手段 5 1と、 を有して構成されているため、 左右の心機能値と目標心機能値を比 較し、 その比較結果に応じて投薬が行われることになリ、 確実かつ正確に患 者の心機能の異常を正常状態へと治療することができる。
[0088] 第 2投薬手段 5 2の投薬は、 第 2比較手段 4 2の比較結果の信号に応じて 行われるため、 有効循環血液量の異常が認められる場合に投薬が開始される ことになる。
[0089] より具体的には、 第 2投薬手段 5 2が、 第 2比較手段 4 2から 「大きい」 という比較結果 (例えば、 算出された有効循環血液量値が目標有効循環血液 量値よりも高い場合) を受け取った場合には、 有効循環血液量が異常状態で あると判定され、 第 2投薬手段 5 2は有効循環血液量を下げるための投薬を 開始することになる。 この場合に使用される薬剤は、 例えば利尿剤であり、 フロセミドなどが投与されることになる。
[0090] また、 第 2投薬手段 5 2が、 第 2比較手段 4 2から 「等しい」 という比較 結果 (例えば、 算出された有効循環血液量値と目標有効循環血液量値が等し い場合) を受け取った場合には、 有効循環血液量が正常状態であると判定さ れ、 第 2投薬手段 5 2は投薬量を増加させない、 投薬を行わない、 または投 薬を停止することになる。
[0091] さらに、 第 2投薬手段 5 2が、 第 2比較手段 4 2から 「小さい」 という比 較結果 (例えば、 算出された有効循環血液量値が目標有効循環血液量値より も低い場合) を受け取った場合には、 有効循環血液量が異常状態であると判 定され、 第 2投薬手段 5 2は有効循環血液量を上げるための投薬を開始する ことになる。 この場合に使用される投薬は、 例えば、 有効循環血液量を増加 させる輸液製剤であり、 低分子デキス卜ランやアルブミン製剤などが投与さ れることになる。
[0092] このように、 心疾患治療システム 1 0は、 入力部 1 2から入力される心拍 出量値、 左心房圧値および右心房圧値から、 有効循環血液量値を算出する第
2算出手段 3 2と、 第 2算出手段 3 2で算出される有効循環血液量値と、 目 標有効循環血液量値を比較する第 2比較手段 4 2と、 第 2比較手段 4 2の比 較結果に応じて患者 2 0へ投薬を施す第 2投薬手段 5 2と、 を有して構成さ れているため、 算出される有効循環血液量値と目標有効循環血液量値を比較 し、 その比較結果に応じて投薬が行われることになリ、 確実かつ正確に患者 の有効循環血液量の異常を正常状態へと治療することができる。
[0093] 第 3投薬手段 5 3の投薬は、 第 3比較手段 4 3の比較結果の信号に応じて 行われるため、 血管抵抗の異常が認められる場合に投薬が開始されることに なる。
[0094] より具体的には、 第 3投薬手段 5 3が、 第 3比較手段 4 3から 「大きい」 という比較結果 (例えば、 算出された血管抵抗値が目標血管抵抗値よりも高 い場合) を受け取った場合には、 血管抵抗値が異常状態であると判定され、 第 3投薬手段 5 3は血管抵抗値を下げるための投薬を開始することになる。 この場合に使用される薬剤は、 例えば、 血管拡張剤であり、 ニトロプルシド やニトログリセリン、 フェントラミンなどが投与されることになる。 また、 既に血管収縮剤、 例えば、 ノルェピネフリンなどが投与されている場合は、 それらが減量されることになる。
[0095] また、 第 3投薬手段 5 3が、 第 3比較手段 4 3から 「等しい」 という比較 結果 (例えば、 算出された血管抵抗値と目標血管抵抗値が等しい場合) を受 け取った場合には、 血管抵抗が正常状態であると判定され、 第 3投薬手段 5 3は投薬量を増加させない、 投薬を行わない、 または投薬を停止することに なる。
[0096] さらに、 第 3投薬手段 5 3が、 第 3比較手段 4 3から 「小さい」 という比 較結果 (例えば、 算出された血管抵抗値が目標血管抵抗値よりも低い場合) を受け取った場合には、 血管抵抗が異常状態であると判定され、 第 3投薬手 段 5 3は血管抵抗を上げるための投薬を開始することになる。 この場合に使 用される投薬は、 例えば血管収縮剤であり、 ノルェピネフリン等が投与され ることになる。 また、 既に血管拡張剤、 例えば、 ニトロプルシドゃニトログ リセリン、 フェントラミンなどが投与されている場合は、 それらが減量され ることになる。
[0097] このように、 心疾患治療システム 1 0は、 入力部 1 2から入力される心拍 出量値、 右心房圧値および血圧値から血管抵抗値を算出する第 3算出手段と 、 目標血管抵抗値を比較する第 3比較手段 4 3と、 第 3比較手段 4 3の比較 結果に応じて患者 2 0へ投薬を施す第 3投薬手段 5 3と、 を有して構成され ているため、 算出される血管抵抗値と目標血管抵抗値を比較し、 その比較結 果に応じて投薬が行われることになリ、 確実かつ正確に患者の血管抵抗値の 異常を正常状態へと治療することができる。
[0098] なお、 投薬手段 5 0によって投与される薬剤の投薬量は、 特に限定される ものではなく、 例えば、 比較手段 4 0における算出数値と目標値の偏差に応 じて投薬量を変化させてもよい。 また、 目標値を多段階に分割し、 各段階に 応じて薬剤の投薬量を調整すれば、 極めて精度良く投薬を行うことができる
[0099] 本発明の発明者は、 本実施形態に係る心疾患治療システム 1 0を用いて、 心臓酸素消費量を最小化する実験を行った。 なお、 本実験には、 心不全状態 の麻酔下成犬を用いた。 また、 心疾患治療ュニッ卜 1 8によって犬の血行動 態 (血圧、 心拍出量、 左心房圧) が正常な状態となるように制御を行うと同 時に、 心臓酸素消費量節減ュニッ卜 1 6によって特異的徐脈薬を投与して心 拍数の制御を行った。 なお、 心臓酸素消費量節減ュニッ卜 1 6では、 治療開 始時に高用量の特異的徐脈剤を投与して洞結節の自発活動を抑制し、 自発活 動が出現した場合に特異的徐脈薬を追加投与して段階的に心拍数を低下させ るように制御を行った。
[0100] この実験結果を図 9に示す。 心疾患治療システム 1 0による治療を約 9 5 分間行った結果、 犬の血圧、 心拍出量、 左心房圧は、 それぞれ目標血圧、 目 標心拍出量、 目標左心房圧の近傍に維持することができた。 また、 心拍数は
、 約 1 6 0 b e a t Z分から約 1 1 0 b e a t Z分に低下し、 臨界心拍数で ある 8 0 b e a t Z分に近づいた。
[0101] なお、 心疾患治療システム 1 0が、 上記図 9に示されるような、 血行動態 指標の各数値を時系列的に連続して表示する表示手段を更に備えていれば、 各数値の時系列的な変化を見逃すことなく確実に患者を診断することができ ると共に、 投薬治療による状態の推移を表示することができる。
[0102] 図 1 0に、 本実験における心臓酸素消費量の実測値と心拍数との関係を示 す。 本実験の結果、 犬の心臓酸素消費量を約 3 . 5 m I 02Z分から約 2. 4 m I 02Z分まで約 3 0 %低下させることができた。
[0103] また、 図 1 1に示されるように、 本実験においても、 心臓酸素消費量モニ ターュニッ卜 1 4によって算出された心臓酸素消費量の推定値と、 心臓酸素 消費量の実測値は良好に線形相関していることが証明され、 本実施形態に係 る心疾患治療システム 1 0によれば、 心臓酸素消費量を高い精度で推定可能 な事が分かる。
[0104] 強心剤投与による血行動態の改善において、 心筋障害を抑制するためには 、 心臓酸素消費量を必要最小限にとどめることが重要である。 この点、 本実 施形態に係る心疾患治療システム 1 0は、 少なくとも心拍数を含む、 患者 2 0の血行動態指標を入力する入力部 1 2と、 入力部 1 2から入力される血行 動態指標に基づいて、 患者 2 0の心臓酸素消費量の推定値を算出する心臓酸 素消費量算出部 (本実施形態では心臓酸素消費量モニターユニット 1 4 ) と 、 入力部 1 2から入力される心拍数と心臓酸素消費量算出部により算出され る心臓酸素消費量の推定値が最小となる臨界心拍数 Bとを比較し、 この比較 結果に応じて患者 2 0の心拍数を制御する心臓酸素消費量節減部 (本実施形 態では心臓酸素消費量節減ユニット 1 6 ) と、 からなる心臓酸素消費量自動 最小化システムを有して構成されているため、 心臓酸素消費量を抑制し (最 小化し) 心筋障害の発生を未然に防止することができる。
[0105] また、 心臓酸素消費量に基づいた治療が可能となるため、 従来の治療のよ うに、 必要以上に各種薬剤を多く投与してしまつたり、 必要以上に各種薬剤 を長期間投与してしまうことがなく、 薬剤による副作用や医療コス卜の高騰 を回避することができる。
[0106] さらに、 心臓酸素消費量に基づいて患者への投薬が適切に行われるため、 非専門医であっても容易に心臓酸素消費量を最小化することができる。
[0107] なお、 本実施形態に係る心疾患治療システム 1 0は、 患者の血行動態の正 常化をよリー層効果的に実現すべく心疾患治療ュニッ卜 1 8を備えた構成と したが、 本発明はこれに限定されるものではない。
従って、 例えば、 入力部、 心臓酸素消費量算出部、 および心臓酸素消費量 節減部からなる心臓酸素消費量自動最小化システムのみを用いて患者の治療 を行ってもよく、 この場合にも、 患者の心臓酸素消費量を高い精度で推定す ることができる上に、 心臓酸素消費量を最小化することができる。 また、 薬 剤による副作用や医療コス卜の高騰を回避することができ、 非専門医であつ ても容易に心臓酸素消費量を最小化することができる。
産業上の利用可能性
[0108] 本発明に係る心臓酸素消費量自動最小化システムおよび心疾患治療システ ムは、 人間や動植物などの治療に適用することができる。
図面の簡単な説明
[0109] [図 1 ]本発明の実施形態に係る心疾患治療システムの概略構成図である。
[図 2]心臓の概略図である。
[図 3]本実施形態に係る心疾患治療システムの入力部と心臓酸素消費量モニタ 一ュニッ卜の関係を示す概略構成図である。
[図 4]本実施形態に係る心臓酸素消費量モニターュニッ卜を用いて算出した、 犬の心臓酸素消費量の推定値と、 心臓酸素消費量の実測値を示したグラフで める。
[図 5]本実施形態に係る心疾患治療システムの入力部と心臓酸素消費量節減ュ ニッ卜の関係を示す概略構成図である。
[図 6]左心室収縮末期圧容積関係 (E e s ) と心拍数との関係を示したグラフ である。
[図 7]心臓酸素消費量 (V 0 2) と心拍数との関係を示したグラフである。
[図 8]本実施形態に係る心疾患治療ュニッ卜の概略構成図である。
[図 9]本実施形態に係る心疾患治療システムを用いた実験結果を示すグラフで ある。
[図 10]同実験における心臓酸素消費量の実測値と心拍数との関係を示すダラ フである。
[図 11 ]同実験において心臓酸素消費量モニターュニッ卜を用いて算出した、 犬の心臓酸素消費量の推定値と、 心臓酸素消費量の実測値を示したグラフで ある。
符号の説明
1 0 心疾患治療システム
1 2 入力部
1 4 心臓酸素消費量モニタ
1 6 心臓酸素消費量節減ュ
1 8 心疾患治療ュニッ卜
2 0 患者
3 0 算出手段
4 0 比較手段
5 0 投薬手段

Claims

請求の範囲
[1 ] 少なくとも心拍数を含む、 患者の血行動態指標を入力する入力部と、 前記入力部から入力される血行動態指標に基づいて、 前記患者の心臓酸素 消費量の推定値を算出する心臓酸素消費量算出部と、
前記入力部から入力される心拍数と前記心臓酸素消費量算出部により算出 される心臓酸素消費量の推定値が最小となる臨界心拍数とを比較し、 この比 較結果に応じて前記患者の心拍数を制御する心臓酸素消費量節減部と、 を有して構成されていることを特徴とする、 心臓酸素消費量自動最小化シ ステム。
[2] 前記血行動態指標は、 さらに、 血圧値、 心拍出量値、 左心房圧値、 および 右心房圧値を含み、
前記心臓酸素消費量算出部は、
前記心拍出量値および前記左心房圧値から、 下記数式 (1 ) を用いて左心 機能値を算出し、
前記血圧値、 前記右心房圧値、 および前記心拍出量値から、 下記数式 (2 ) を用いて血管抵抗値を算出し、
前記左心機能値、 前記血管抵抗値、 および前記心拍数から、 下記数式 (3 ) を用いて左心室収縮末期圧容積関係を算出し、
前記血圧値、 前記左心房圧値、 前記心拍出量値、 および前記心拍数から、 下記数式 (4 ) を用いて左心室圧容積面積を算出し、
前記心拍数、 前記左心室圧容積面積、 および前記左心室収縮末期圧容積関 係から、 下記数式 (5 ) を用いて前記心臓酸素消費量の推定値を算出するこ とを特徴とする、
請求の範囲 1に記載の心臓酸素消費量自動最小化システム。
左' L權瞻 = 出麵 / { L o g ( (左心房圧 « -A) + B} ( 1 )
(ただし、 Aおよび Bは定数値である。 ) [数 2] 血管 ja¾値 = { (jtajH® 一 (右心 ®a¾ -H) } / 出麵 (2)
(ただし、 Hは定数値である。 )
[数 3] 左心室 «*»¾¾«醒= (fell棚 ίϊ) χ (il管観 » / ( 1— Cfe機瞻 K/ ('L棚 ) (3)
(ただし、 Kは定数値である。 )
[数 4] 左'
= (Mm ( { L o g (佐心房細一 A) + B} /K+ (棚出麵 / ('ϋ棚 ) /2 (4)
(ただし、 Α、 Β、 および κは前記定義どおりである。 )
[数 5]
Figure imgf000027_0001
+ γ ) )
(ただし、 α、 β、 および r ま定数値である。 )
[3] 前記心臓酸素消費量節減部は、
前記患者に投薬を施すことにより、 前記患者の心拍数を制御することを特 徴とする、
請求の範囲 1または 2に記載の心臓酸素消費量自動最小化システム。
[4] 前記心臓酸素消費量節減部は、
治療の開始時に、 心拍数を低下させる薬剤を前記患者に投与して洞結節の 自発活動を抑制し、
前記自発活動が出現した場合に、 前記心拍数を低下させる薬剤を追加投与 することを特徴とする、
請求の範囲 3に記載の心臓酸素消費量自動最小化システム。
[5] 前記薬剤は、 8遮断剤、 カルシウム拮抗薬または特異的徐脈剤である、 請求の範囲 4に記載の心臓酸素消費量自動最小化システム。
[6] 前記心臓酸素消費量節減部は、
前記患者に電気的刺激を与えることにより、 前記患者の心拍数を制御する ことを特徴とする、
請求の範囲 1〜 5のいずれか 1項に記載の心臓酸素消費量自動最小化シス テム。
[7] 患者の血行動態指標を時系列的に連続して表示する表示手段を更に備えて いることを特徴とする、
請求の範囲 1〜 6のいずれか 1項に記載の心臓酸素消費量自動最小化シス テム。
[8] 前記心拍出量値は、 スワンガンツ■カテーテルにより計測されるまたは動 脈血圧波形の拡張期時定数から算出されることを特徴とする、
請求の範囲 1〜 7のいずれか 1項に記載の心臓酸素消費量自動最小化シス テム。
[9] 前記左心房圧値は、 カテーテルにより直接計測されるか、 またはスワンガ ンッ■カテーテルによる肺動脈楔入圧もしくは肺動脈圧の拡張期圧値から連 続推定することにより算出されることを特徴とする、
請求の範囲 1〜 8のいずれか 1項に記載の心臓酸素消費量自動最小化シス テム。
[10] 請求の範囲 1〜 9のいずれか 1項に記載の心臓酸素消費量自動最小化シス テムと、
前記入力部から入力される前記心拍出量値、 前記右心房圧値および前記左 心房圧値から心機能値を算出する第 1算出手段と、
前記第 1算出手段で算出される前記心機能値と、 目標心機能値を比較する 第 1比較手段と、
前記第 1比較手段の比較結果に応じて前記患者へ投薬を施す第 1投薬手段 を有して構成されていることを特徴とする、 心疾患治療システム。
前記入力部から入力される前記心拍出量値、 前記左心房圧値および前記右 心房圧値から、 有効循環血液量値を算出する第 2算出手段と、
前記第 2算出手段で算出される前記有効循環血液量値と、 目標有効循環血 液量値を比較する第 2比較手段と、
前記第 2比較手段の比較結果に応じて前記患者へ投薬を施す第 2投薬手段 をさらに備えたことを特徴とする、
請求の範囲 1 0に記載の心疾患治療システム。
前記入力部から入力される前記心拍出量値、 前記右心房圧値および前記血 圧値から血管抵抗値を算出する第 3算出手段と、
前記第 3算出手段で算出される前記血管抵抗値と、 目標血管抵抗値を比較 する第 3比較手段と、
前記第 3比較手段の比較結果に応じて前記患者へ投薬を施す第 3投薬手段 をさらに備えたことを特徴とする、 請求の範囲 1 0または 1 1に記載の心 疾患治療システム。
PCT/JP2007/000096 2006-02-16 2007-02-16 心臓酸素消費量自動最小化システムおよびこれを用いた心疾患治療システム WO2007094138A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US12/279,753 US8340749B2 (en) 2006-02-16 2007-02-16 System for automatically minimizing cardiac oxygen consumption and cardiac disease treating system using the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006038968A JP4581050B2 (ja) 2006-02-16 2006-02-16 心臓酸素消費量自動最小化システムおよびこれを用いた心疾患治療システム
JP2006-038968 2006-02-16

Publications (1)

Publication Number Publication Date
WO2007094138A1 true WO2007094138A1 (ja) 2007-08-23

Family

ID=38371326

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/000096 WO2007094138A1 (ja) 2006-02-16 2007-02-16 心臓酸素消費量自動最小化システムおよびこれを用いた心疾患治療システム

Country Status (3)

Country Link
US (1) US8340749B2 (ja)
JP (1) JP4581050B2 (ja)
WO (1) WO2007094138A1 (ja)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130172774A1 (en) 2011-07-01 2013-07-04 Neuropace, Inc. Systems and Methods for Assessing the Effectiveness of a Therapy Including a Drug Regimen Using an Implantable Medical Device
EP2922465A4 (en) 2012-11-21 2016-07-06 Cardiomems Inc DEVICES, SYSTEMS AND METHODS FOR ASSESSING AND TREATING PULMONARY ARTERIAL HYPERTENSION (PAH)
US9454158B2 (en) 2013-03-15 2016-09-27 Bhushan Somani Real time diagnostics for flow controller systems and methods
WO2014145712A1 (en) 2013-03-15 2014-09-18 Cardiomems, Inc. Methods for the treatment of cardiovascular conditions
WO2017086294A1 (ja) * 2015-11-17 2017-05-26 国立大学法人東北大学 血圧推定装置、情報処理装置、血圧推定方法、及び、血圧推定プログラム
US10983537B2 (en) 2017-02-27 2021-04-20 Flow Devices And Systems Inc. Systems and methods for flow sensor back pressure adjustment for mass flow controller
WO2020018697A1 (en) 2018-07-18 2020-01-23 W. L. Gore & Associates, Inc. Implantable medical device deployment system
WO2020132671A1 (en) 2018-12-21 2020-06-25 W. L. Gore & Associates, Inc. Implantable medical device with adjustable blood flow
US11763947B2 (en) 2020-10-14 2023-09-19 Etiometry Inc. System and method for providing clinical decision support

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04218172A (ja) * 1990-02-21 1992-08-07 Siemens Ag 心臓出力最適化装置
JPH06511418A (ja) * 1992-12-14 1994-12-22 メドトロニック インコーポレーテッド 患者の生理学的デマンドに伴って可変する最適化されたペーシングレートを与えるレート応答型心臓ペースメーカー
JP2001104254A (ja) * 1999-10-13 2001-04-17 Sunnyhealth Co Ltd 体内栄養代謝動態測定方法及びその装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5749831A (en) * 1997-06-23 1998-05-12 Baker; Donald A. Fetal cardiac monitoring utilizing umbilical blood flow parameters and heartbeat information
JP4218172B2 (ja) 2000-03-16 2009-02-04 Jfeスチール株式会社 溶融鉄合金の精錬方法
US7305265B2 (en) * 2002-11-25 2007-12-04 Terumo Kabushiki Kaisha Heart treatment equipment for treating heart failure

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04218172A (ja) * 1990-02-21 1992-08-07 Siemens Ag 心臓出力最適化装置
JPH06511418A (ja) * 1992-12-14 1994-12-22 メドトロニック インコーポレーテッド 患者の生理学的デマンドに伴って可変する最適化されたペーシングレートを与えるレート応答型心臓ペースメーカー
JP2001104254A (ja) * 1999-10-13 2001-04-17 Sunnyhealth Co Ltd 体内栄養代謝動態測定方法及びその装置

Also Published As

Publication number Publication date
JP2007215724A (ja) 2007-08-30
JP4581050B2 (ja) 2010-11-17
US8340749B2 (en) 2012-12-25
US20110098767A1 (en) 2011-04-28

Similar Documents

Publication Publication Date Title
WO2007094138A1 (ja) 心臓酸素消費量自動最小化システムおよびこれを用いた心疾患治療システム
US9943236B2 (en) Methods for guiding heart failure decompensation therapy
JP2007215724A5 (ja)
JP2020523089A (ja) 血液ポンプ支持を調節するための心臓パラメータの決定
US8556819B2 (en) Treatment device with memory-supported control means
KR20210021379A (ko) 체계적 식별을 위한 시스템 및 방법
JP2010519939A (ja) 少なくとも1つの薬剤の注入のための装置
US20210236727A1 (en) Method and system to treat acute decompensated heart failure
JP2005526552A (ja) 臨床での血液動態管理における大動脈脈圧および血流の使用
EP3818996A1 (de) Pumpensystem, steuereinheit und verfahren zum betreiben eines pumpensystems
CA2821779A1 (en) Monitoring volaemic condition in a human or animal subject
US11284836B2 (en) Methods and systems for improved prediction of fluid responsiveness
US20090048576A1 (en) Managing Cross-contamination in Blood Samples Withdrawn from a Multilumen Catheter
AU2020202414A1 (en) Hierarchical adaptive closed-loop fluid resuscitation and cardiovascular drug administration system
JP4892667B2 (ja) 心疾患治療システム
US6682481B2 (en) Resuscitation from shock
CN113301849A (zh) 用于增强心房纤颤检测的系统
Her et al. Heart monitoring using left ventricle impedance and ventricular electrocardiography in left ventricular assist device patients
US20130109955A1 (en) Control unit and medical examination apparatus
RU2373960C2 (ru) Система для лечения заболеваний сердца
EP4335360A1 (en) Non-invasive blood pressure measurement
Park et al. Detection of premature ventricular contractions on a ventricular electrocardiogram for patients with left ventricular assist devices
JP3669160B2 (ja) 心血管系診断装置
Matova et al. [PP. 15.21] CHANGES IN LEFT VENTRICULAR GEOMETRY AND DIASTOLIC FUNCTION IN PATIENTS WITH RESISTANT HYPERTENSION
Burattini et al. Relationship between strength of short-term systemic autoregulation and initial resistance

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07706344

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 12279753

Country of ref document: US