WO2007094050A1 - 携帯無線装置 - Google Patents

携帯無線装置 Download PDF

Info

Publication number
WO2007094050A1
WO2007094050A1 PCT/JP2006/302553 JP2006302553W WO2007094050A1 WO 2007094050 A1 WO2007094050 A1 WO 2007094050A1 JP 2006302553 W JP2006302553 W JP 2006302553W WO 2007094050 A1 WO2007094050 A1 WO 2007094050A1
Authority
WO
WIPO (PCT)
Prior art keywords
reception
matching condition
antenna
diversity
matching
Prior art date
Application number
PCT/JP2006/302553
Other languages
English (en)
French (fr)
Inventor
Kenji Takagi
Toshiteru Hayashi
Tsukasa Takahashi
Yutaka Saito
Original Assignee
Matsushita Electric Industrial Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co., Ltd. filed Critical Matsushita Electric Industrial Co., Ltd.
Priority to US12/094,865 priority Critical patent/US20090267842A1/en
Priority to PCT/JP2006/302553 priority patent/WO2007094050A1/ja
Priority to JP2007533805A priority patent/JPWO2007094050A1/ja
Priority to EP06713694A priority patent/EP1986344A1/en
Publication of WO2007094050A1 publication Critical patent/WO2007094050A1/ja

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/06Receivers
    • H04B1/16Circuits
    • H04B1/18Input circuits, e.g. for coupling to an antenna or a transmission line
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/08Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station
    • H04B7/0802Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station using antenna selection
    • H04B7/0817Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station using antenna selection with multiple receivers and antenna path selection
    • H04B7/082Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station using antenna selection with multiple receivers and antenna path selection selecting best antenna path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/08Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station
    • H04B7/0837Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station using pre-detection combining
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/08Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station
    • H04B7/0868Hybrid systems, i.e. switching and combining
    • H04B7/0871Hybrid systems, i.e. switching and combining using different reception schemes, at least one of them being a diversity reception scheme

Definitions

  • the present invention relates to a portable radio apparatus equipped with a diversity receiver, and a portable radio apparatus equipped with a multiple input multiple output (MIMO) or a MIMO type receiver.
  • MIMO multiple input multiple output
  • a mobile radio apparatus for example, a diversity antenna mounted on a mobile telephone, generally has a configuration in which two antennas are mounted on a housing of the mobile telephone.
  • a selection diversity scheme for selecting the better one of the signals received by each antenna and the simultaneous reception of two branch signals as shown in Patent Document 1, for example,
  • a combining diversity scheme to combine.
  • the distance between the antennas should be separated by about ⁇ 2 ( ⁇ ; wavelength).
  • wavelength
  • Patent Document 2 in the selection diversity method, means for suppressing coupling deterioration can be achieved by grounding the power supply signal line of one of the V and N antennas. It has been known.
  • Patent Document 3 in a combined diversity system in which one antenna is used as a common antenna for transmission and reception, and a plurality of antennas are mixed, a reception-only antenna is provided to the common antenna for transmission and reception during transmission operation. It is known that the influence can be suppressed by the phase circuit loaded on the receiving antenna.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2004-320528
  • Patent Document 2 Japanese Patent Application Laid-Open No. 9-289483
  • Patent Document 3 Publication No. 2005-151194
  • the present invention has been made in view of the above circumstances, and is a portable radio apparatus capable of reducing efficiency deterioration due to inter-antenna coupling, obtaining high diversity gain, and high transmission rate and communication capacity in the MIMO system. Intended to be provided.
  • a portable radio apparatus comprises a plurality of antenna elements, a combination diversity processing unit for combining received signals received by the respective antenna elements, and the respective antennas according to the reception quality at the respective antennas. Different from the initial matching condition set individually for the device Matching condition switching means for applying a predetermined matching condition to each of the antenna elements.
  • the matching condition switching means switches the matching condition of each antenna element to the predetermined matching condition, and the combining processing operation of the combining diversity processing unit And control means for controlling the switching means in accordance with the operation state.
  • control means applies the initial matching condition to each of the antenna elements when the combining processing operation of the combining diversity processing unit is stopped. Controlling the switching means to apply the predetermined matching condition different from the initial matching condition to the respective antenna elements when the combining diversity processing unit performs the combining process operation. It is.
  • a portable radio apparatus includes a plurality of antenna elements, a signal processing unit for processing a received signal received by each of the antenna elements according to a multi-input multi-output system (MIMO system); And matching condition switching means for applying a predetermined matching condition to each of the antenna elements, which is different from the initial matching condition set individually for each of the antenna elements in accordance with the reception quality of It is.
  • MIMO system multi-input multi-output system
  • the predetermined matching condition switching means switches the matching condition of each antenna element to the predetermined matching condition, and the processing operation of the signal processing unit.
  • MIMO reception and single branch reception specifically, single input multiple output (SIMO) or single input single output (SISO) reception can be performed. It becomes possible to set an antenna matching condition suitable for this in accordance with the operation state of the signal processing unit.
  • control means of the portable radio apparatus of the present invention applies the initial matching condition to each of the antenna elements when the processing operation of a part of the signal processing unit is stopped.
  • the switching unit is configured to apply the predetermined matching condition different from the initial matching condition individually set to each of the antenna elements when the signal processing unit is performing the processing operation. Control means.
  • a matching circuit different from the predetermined matching condition is applied during MIMO reception to suppress efficiency degradation due to inter-antenna coupling, and also during single branch reception (SIMO or SI SO reception) or partial reception ( In MIMO reception where the number of receptions is reduced), it is possible to apply matching conditions suitable for individual antenna elements, and ensure high antenna performance in both MIMO reception and single branch reception. It becomes possible. Effect of the invention
  • a portable radio apparatus capable of reducing efficiency deterioration due to inter-antenna coupling and obtaining high transmission rate and communication capacity, high efficiency, diversity gain, and MIMO system. it can.
  • FIG. 1 is a basic configuration diagram of a portable radio equipped with a diversity receiver according to a first embodiment of the present invention.
  • FIG. 3 A block diagram showing a modification of the matching circuit of the portable wireless device
  • FIG. 5 A graph of frequency vs. V SWR characteristic showing matching conditions applied at diversity reception of the same portable radio
  • FIG. 6 A block diagram showing the configuration of the control unit of the portable wireless device
  • FIG. 7 A flow chart showing the operation at the time of single branch reception of the portable wireless device
  • FIG. 8 A flowchart showing the operation of the portable radio at the time of diversity reception
  • FIG. 9 An explanatory view showing the antenna efficiency at the time of switching the matching circuit in the same portable wireless device
  • FIG. 10 A basic configuration diagram of a portable radio equipped with a diversity receiver according to a second embodiment of the present invention
  • FIG. 11 A block diagram showing the configuration of the control unit of the portable wireless device
  • FIG. 12 A basic configuration diagram of a portable wireless device equipped with a receiver of the MIMO method according to a third embodiment of the present invention
  • Control unit (control means)
  • SW, SW1, SW2, SW3, SW4 switch switching means
  • FIG. 1 A portable wireless device which is one of the portable wireless devices according to the first embodiment of the present invention is shown in FIG.
  • the portable wireless device 10 includes a plurality of antennas 11A and 11B for receiving digital modulation signals, a matching circuit 12A and a matching circuit 12B individually set for each of two types of antennas 11A and 1IB.
  • the input digital signal power is also received and demodulated by each of a plurality of tuners 13A and 13B that perform channel selection for a desired channel, a plurality of demodulation units 14A and 14B that demodulate the selected signal, and respective reception systems.
  • the carrier-to-noise ratio (Carrier) from the signal demodulated in each branch or the signal after combining is composed of combining signals that compose the combined signal, combining unit 15 that configures combining diversity processing unit, error correction unit 16 that performs error correction processing, to Noise Ratio; hereinafter referred to as “CZN”), reception quality judgment units 17A, 17B and 17C that calculate a numerical value representing reception quality (hereinafter referred to as “reception quality value”), and reception quality Determination unit 17A, 17B
  • Control unit 18 that switches the matching condition of the control and matching circuit 12A, 12B of the reception system according to the reception quality value obtained in step 17C, and the control unit 18 that constitutes the control means, and single branch reception and combination as determined by the control unit 18 It consists of a switch SW that constitutes switching means for switching diversity reception.
  • FIGS. 2 and 3 shows the configuration when the reactance element 122A (122B) is loaded in series
  • FIG. 3 shows the configuration when the reactance element 122A (122B) is loaded in parallel. The same effect can be obtained with either of the configurations shown in FIGS. 2 and 3 and therefore will be described in detail with reference to FIG.
  • matching circuit 12A (12B) shown in FIG. 2 has a circuit configuration in which PIN diode 121A (121B) and reactance element 122A (122B), which are high-frequency switches, are loaded in series. That is, the matching circuit 12A (12B) is a rear that is configured of a coil or a capacitor For the digital modulation signal received, a choke coil L that has a high impedance and cuts off the digital modulation signal, a capacitor C1 that cuts off the DC signal from the control unit 18, and a digital modulation signal A capacitor C2 that grounds the signal line 19 at a high frequency in a low impedance, a resonant element 122A (122B) made of a coil or a capacitor, and a PIN diode 121A (control) that turns on or off the reactive element 122A (122B). 121B) and a resistor R for adjusting a current value flowing to the PIN diode 121A (121B).
  • the error correction unit 16 performs, for example, an error correction process using a digital signal processor (DSP) using a Vidabi code, a turbo code, or the like.
  • DSP digital signal processor
  • Fig. 4 shows the characteristics for "frequency vs. Voltage Standing Wave Ratio” (hereinafter referred to as "VSWR”) (hereinafter referred to as "frequency vs. VSWR characteristics”, which shows the matching condition that can ensure the highest antenna performance. Is a graph showing “).
  • FIG. 5 is a characteristic graph of frequency vs. VSWR showing that a predetermined matching condition different from the matching condition (referred to as “initial matching condition”) capable of securing the highest antenna performance is applied. It is.
  • the resonant frequency f is of the desired channel
  • the matching condition with the highest antenna performance can be obtained if ⁇ is about 70 MHz. It has been confirmed that the matching degradation of the other antenna is improved with a mismatch loss of about ldB with respect to the matching condition).
  • control unit 18 Next, the configuration of the control unit 18 will be described in detail with reference to FIG.
  • the control unit 18 as shown in FIG. A stage 182 and a diversity effect judging means 183 are provided.
  • the determination parameter storage means 181 stores in advance parameters necessary for control configured by the ROM and the RAM.
  • the diversity effect determination means 183 determines whether there is a diversity effect based on the reception quality values calculated from the reception quality determination units 17A, 17B and 17C and the effect determination threshold recorded in the determination parameter storage means 181. The determination is made and the determination result is output to the reception method switching means 182.
  • the reception method switching means 182 is recorded in the determination parameter storage means 181 as the reception quality value calculated from the reception quality judgment units 17A, 17B and 17C and the result of the effect judgment from the diversity effect judgment means 183. Based on the reception state determination threshold value, switching determination of the reception method is performed, and when it is determined that switching is necessary, switching of the power supply of the combining unit 15 is switched or switching condition of the matching circuit 12A (12B) is switched.
  • the reception quality judgment unit 17A obtains the reception quality value of the branch currently being received (step S11).
  • the reception quality value obtained and the reception state judgment threshold value recorded in the judgment parameter storage means 181 are compared by the reception system switching means 182 (step S12). Then, if the current reception quality value is smaller than the high level reception condition determination threshold and larger than the low level reception condition determination threshold, it is determined that diversity reception is necessary, and the process proceeds to step S13. Do. Otherwise, it is determined that diversity reception is unnecessary, and the process proceeds to step S15.
  • the control unit 18 turns on the power of the combining unit 15 (step S 13).
  • the switch SW is switched to perform diversity reception, and the matching condition of the matching circuits 12A and 12B is switched to the condition shown in FIG. 5 by turning off the PIN diode 121A (or 121B) (step S14). .
  • the processing at the time of diversity reception shown in FIG. 8 is performed.
  • step S15 the operation at single branch reception as it is Repeat.
  • the reception quality judgment units 17A, 17B, and 17C obtain the reception quality values of the branches ⁇ , ⁇ , and the post-combination (step S21).
  • the reception quality of the obtained branch A and branch B is compared by the reception method switching means 182, and a branch with a good reception quality is determined (step S22).
  • the reception quality value of the branch with good reception quality is compared with the reception state determination threshold value recorded in the determination parameter storage means 181 (step S23). If the reception quality value of the branch with good reception quality is above the high level reception condition judgment threshold or below the low level reception condition judgment threshold, it is judged that diversity reception is unnecessary, otherwise diversity reception is necessary. I will judge.
  • Step S24 When it is determined that diversity reception is not required, the reception quality is good, and the switch SW is switched to the branch, and the matching conditions of the matching circuits 12A and 12B are set by turning on the PIN diodes 121A and 121B. Switch to the condition shown in FIG. 4 and set it as single branch reception (Step S24) 0 Next, turn off the power of the combining unit 15 by the control unit 18 and perform processing at single branch reception shown in FIG. 7 (Step S25) .
  • the difference between the reception quality value of the branch with good reception quality and the reception quality value after combining by diversity effect judgment means 183 (hereinafter referred to as “diversity effect”). Is calculated (step S26). Next, the obtained diversity effect is compared with the effect determination threshold value recorded in the determination parameter storage means 181 (step S 27).
  • step S28 if the diversity effect is smaller than the effect determination threshold! /, it is determined that there is no effect of diversity reception, and the process proceeds to step S28. That is, when there is no diversity effect, the switch SW is switched to the branch having good reception quality, and the matching condition of the matching circuits 12A and 12B is switched to the condition shown in FIG. 4 by turning on the PIN diodes 121A and 121B. , Single branch reception (step S28). Next, the control unit 18 turns off the power supply of the combining unit 15, and performs the processing at the time of single branch reception shown in FIG. 7 (step S29). On the other hand, other than that, it is judged that the effect of diversity reception is effective, and the process proceeds to step S30. That is, when there is an effect of diversity reception, it is as it is at diversity reception. Do the processing.
  • the antenna efficiency in the case of application 22 degrades by? 7-1 for the antenna 11 ⁇ , and for the antenna 11B, the efficiency is ⁇ 7 or 2 Suppose that it has deteriorated. At that time, if the decrease amount of antenna efficiency? R ⁇ ⁇ ⁇ 2 is significantly larger than the decrease amount 1 7 1 1, the level difference between the branches becomes large, and the combining diversity effect becomes low.
  • the antenna 11A having a smaller efficiency loss due to the inter-antenna coupling can be obtained.
  • the antenna efficiency when this matching condition is applied is ex 3.
  • the loss due to the inter-antenna coupling is ⁇ 7-3 for antenna 11A and ⁇ 7-4 for antenna 11B, and the level difference between the branches of antenna efficiency ⁇ 3 (
  • ) is
  • the loss ⁇ 7-2 due to inter-antenna coupling in antenna 11B and the matching conditions of Fig. 4 and Fig. 5 are applied to two types of antennas, respectively.
  • the loss due to the inter-antenna coupling is between ⁇ 7 and 4
  • one or both of the matching conditions can be obtained at the time of single diversity reception only when combining diversity is activated, and the antenna performance can be obtained (initial matching condition) In order to apply a predetermined matching condition different from It is possible to reduce inter-antenna coupling degradation at the start of combining diversity while maintaining antenna performance.
  • CZN value when used as the threshold value, the same applies to the case where a parameter representing reception quality other than CZN, such as the power packet error and bit error described above, is used. An effect is obtained.
  • the matching condition in FIG. 5 may be applied when the reception quality is good.
  • the matching condition of FIG. 5 is applied to one or both antennas.
  • the gain antenna may be switched to a higher gain antenna configured to switch to a branch with good reception quality in steps S24 and S28 in FIG.
  • it may be calculated using an average value for a certain period of time which is not an instantaneous value.
  • the resonant frequency f is set to the frequency f of the receiving channel without switching the matching conditions.
  • the PIN diodes 121A and 121B are used to switch the matching conditions of the matching circuits 12A and 12B, the same effect can be obtained by using other variable reactance elements such as varactors.
  • the switching condition of the force combining unit 15 is not switched when the matching condition is switched according to the turning on and off of the combining unit 15, and only the matching condition is switched. The same effect can be obtained. The same effect can be obtained when there are three or more types of receiving antennas.
  • the same effect can be obtained with a matching circuit formed of other numbers of reactance elements.
  • the coil L and the capacitor C2 are loaded in the matching circuits 12A and 12B in FIG. 2, the same effect can be obtained even when the elements are not loaded. Also, as long as the resistance R can adjust the current flowing to the PIN diodes 121A and 121B, the same effect can be obtained even if it is loaded at other places.
  • the portable radio 20 combines the two antennas 11 A and 1 IB, the two tuners 13 A and 13 B, and the two demodulators 14 A and 14 B, as in the first embodiment.
  • a unit 15 an error correction unit 16, reception quality judgment units 17A, 17B and 17C, a control unit 18 for controlling the reception method, and a switch SW for switching between single branch reception and combined diversity reception.
  • matching circuits 21A and 21C that apply matching conditions that can ensure the highest antenna performance to each of antennas 11A and 11B, and a predetermined matching condition different from the matching conditions set for each of antennas 11A and 11B.
  • the matching circuit 21A and the matching circuit 21C apply the matching conditions shown in FIG.
  • the matching circuit 21B and the matching circuit 21D apply the matching conditions shown in FIG.
  • control unit 18 Next, the configuration of the control unit 18 will be described in detail with reference to FIG.
  • control unit 18 has the same configuration as that of the first embodiment, and includes a determination parameter storage unit 181, a reception method switching unit 182, and a diversity effect determination unit 183.
  • the output of the reception method switching unit 182 is connected to the switches SW1 to SW4 in addition to the switch SW.
  • the reception quality judgment unit 17A obtains the reception quality value of the branch currently being received (step S11).
  • the reception method switching means 182 compares the obtained reception quality value with the reception state judgment threshold value recorded in the judgment parameter storage means 181. And the current reception quality value is smaller than the high level reception condition determination threshold, If it is larger than the low level reception condition determination threshold, it is determined that diversity reception is necessary, and the process goes to step S13. Otherwise, it is determined that diversity reception is unnecessary, and the process proceeds to step S15 (step S12).
  • control unit 18 turns on the power of the combining unit 15 (step S13).
  • switch SW is switched to perform diversity reception, and the switches SW1, SW2, SW3 and SW4 are switched and set in the matching circuits 21B and 21D in the matching state shown in FIG. 5 (step S14). Then, the processing at the time of diversity reception shown in FIG. 8 is performed.
  • step S15 the operation at single branch reception is repeated as it is.
  • the reception quality judgment units 17A, 17B, and 17C obtain branch A, B, and respective reception quality values after combination (step S21).
  • the reception quality of the obtained branch A and branch B is compared by the reception method switching means 182 to determine whether the reception quality is good or not (step S22).
  • the reception quality value of the branch with good reception quality is compared with the reception condition judgment threshold value recorded in the judgment parameter storage means 181. If the reception quality value of the branch with good reception quality is equal to or higher than the high level reception condition determination threshold or lower than the low level reception condition determination threshold, it is determined that diversity reception is unnecessary, and the process proceeds to step S24. Otherwise, it is determined that diversity reception is necessary, and the process proceeds to step S26 (step S23).
  • the switch SW is switched to a branch with good reception quality and switch SW1, SW2, SW3, SW4 are switched in step S24, and the matching state shown in FIG. 4 is obtained.
  • the control unit 18 turns off the power supply of the combining unit 15 (step S25), and performs processing for single branch reception shown in FIG.
  • step S26 the diversity effect determining means 183 determines whether or not the “diversity effect (reception after combining) is performed. Calculate the difference between the quality values). Next, the obtained diversity effect is compared with the effect determination threshold value recorded in the determination parameter storage means 181. Then, if the diversity effect is smaller than the effect determination threshold value, it is determined that there is no effect of diversity reception, and the process directly proceeds to step S28. Other than that, it is judged that there is an effect of diversity reception (step S27).
  • step S28 the control unit 18 turns off the power supply of the combining unit 15, and performs the processing at the time of single branch reception shown in FIG. 7 (step S29).
  • step S30 processing for diversity reception is performed as it is (step S30).
  • the antenna 11 A and the antenna 11 B As shown in FIG.
  • the antenna efficiency a 2 when the matching condition is applied is degraded by ⁇ 7 -1 in the antenna 11 ⁇ compared to the antenna efficiency ⁇ 1 in the absence of one antenna, and the efficiency is ⁇ 7 in the antenna 11 B.
  • ⁇ 7 ⁇ 2 is significantly larger than ⁇ 7 ⁇ 1, the level difference between the branches becomes large, and the synthesis diversity effect becomes low.
  • the switches SW1 to SW4 are switched by the control unit 18, and the matching condition of FIG. 5 is applied to the antenna 11A having small efficiency deterioration due to inter-antenna coupling, and the matching condition of FIG. 4 is applied to the antenna 11B.
  • the loss due to inter-antenna coupling is ⁇ 7-3 for antenna 11A and ⁇ 7-4 for antenna 11B, and the difference in antenna efficiency ⁇ 3 between the branches is The above equation (1) is established.
  • one or both of the matching conditions are high at the time of single diversity reception only when combining diversity is activated, and conditions different from the predetermined conditions for obtaining antenna performance.
  • the CZN value as the threshold
  • the same effect can be obtained by using a parameter representing reception quality other than CZN, such as a packet error or a bit error.
  • the matching condition of FIG. 4 is applied at the time of single branch reception also in this embodiment, the matching condition of FIG. 5 may be applied when the reception quality is good. Also, although the configuration shown in FIG. 5 is applied to one or both antennas during diversity reception, the matching conditions shown in FIG. 4 may be applied if the reception quality is good. Also in the present embodiment, switching may be made to the branch with good reception quality in steps S24 and S28 of FIG.
  • reception quality and diversity effect judgment it may be calculated using an average value for a certain period of time which is not an instantaneous value.
  • the switching condition of the force combining unit 15 that switches the matching condition according to the determination result of the receiving method switching unit 182 according to the ON and OFF of the combining unit 15 is not switched, and the matching condition is The same effect can be obtained by switching only.
  • the present invention can be applied to a MIMO type portable radio apparatus having a plurality of antennas, and in the present embodiment, a MIMO type reception configuration in which four receiving antennas are provided is shown. Further, in the present embodiment, the same parts as those in the first and second embodiments are denoted by the same reference numerals and duplicating Avoid the explanation.
  • the mobile phone 30 of the present embodiment sets matching conditions that can ensure the highest antenna performance for each of the four types of antennas 11 A to 11 D and each of the four types of antennas.
  • Four matching circuits 12A to 12D respectively provided corresponding to the respective antennas, a reception quality judgment unit 17 for calculating CZN or communication speed (throughput) representing the received signal strength and the reception quality, and a control unit 18 , And further includes a signal processing circuit 31 of MIMO, SIMO, and SISO type, and an application detection circuit 32.
  • the reception quality judgment unit 17 judges the appropriate scheme from the conditions (communication capacity) required for the application used by the user while monitoring the CZN or the situation of the throughput.
  • the SISO method when performing communication with a small communication capacity such as voice, the SISO method is determined, and when performing communication with a large communication capacity such as a movie, the MIMO method is determined.
  • the reception quality is determined according to the reception quality, such as the 2 X 2 MIMO system or 4 X 4 MIMO system, in which the number of receptions is reduced.
  • determination of a method may be performed for the purpose of reducing signal processing load and power consumption. Also, the determination may be made according to the reception quality status (reception level) of the whole or individual antennas. Alternatively, the moving speed of the portable wireless device 30 may be detected from the received signal, and the determination may be made according to the speed. Then, control is performed by sending control signals to the signal processing circuit 31 and the matching circuits 12A to 12D in accordance with the receiving system and the antenna determined by the reception quality determining unit 17.
  • the signal processing circuit 31 performs signal processing of the MIMO, SIMO or SISO method from the input digital signal.
  • the application detection circuit 32 detects an application used by the user.
  • a portable wireless device 30 of the present embodiment it is necessary to operate a plurality of antennas simultaneously as in the case of the combining diversity method.
  • MIMO method using a plurality of antennas MIMO reception is performed while maintaining the antenna function during single branch reception, in order to apply a condition different from a predetermined condition that can obtain high antenna performance during single branch reception, in partial or all matching conditions only during reception in the MIMO system. It is possible to reduce the inter-antenna coupling degradation at the same time.
  • the present invention applies a predetermined matching condition different from the initial matching condition set for each antenna element individually to one or both antennas at diversity activation only.
  • This has the effect of reducing coupling deterioration between antennas when the diver is activated while maintaining the antenna performance during single branch reception, and is useful as a portable wireless device or the like for diversity reception of digitally modulated signals.
  • at the time of single branch reception by applying a predetermined matching condition different from the initial matching condition set for each antenna element individually.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Radio Transmission System (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

 アンテナ間の電磁結合影響による効率劣化を軽減し、高いダイバーシチ利得、及びMIMO方式において高い伝送速度や通信容量を得ることができるようにする。デジタル変調信号を受信する2種類のアンテナ11A、11Bと、これらのアンテナ11A、11Bそれぞれに対して個別に設定される整合回路12A、12Bと、チューナ13A、13Bと、復調部14A、14Bと、復調された信号を合成する合成部15と、各ブランチ及び合成後の受信品質を出力する受信品質判定部17A、17B、17Cを有する携帯無線機において、合成後の受信品質と単ブランチ受信での受信品質を用いてダイバーシチ効果判定を行い、その結果に応じて、アンテナ11Aまたはアンテナ11Bの整合回路12Aまたは整合回路12Bの整合条件を制御する。

Description

明 細 書
携帯無線装置
技術分野
[0001] 本発明は、ダイバーシチ受信機を搭載した携帯無線装置、及び多入力多出力方 式(Multiple Input Multiple Output方式、または MIMO方式)の受信機を搭載した携 帯無線装置に関する。
背景技術
[0002] 携帯無線装置、例えば携帯電話機に搭載されるダイバーシチアンテナは、 2つのァ ンテナが携帯電話機の筐体に搭載される構成が一般的である。ダイバーシチの主な 方法としては、それぞれのアンテナで受信した信号のうち、受信品質が良いほうを選 択する選択ダイバーシチ方式と、例えば特許文献 1に示されるような 2ブランチの信 号を同時受信し合成する、合成ダイバーシチ方式が挙げられる。一般的に、ダイバ ーシチアンテナを構成するためには、アンテナ間距離を λ Ζ2( λ;波長)程度離して 設置するが、携帯電話機の場合は筐体が小型であるため、アンテナ間距離を確保す ることは物理的に困難である。このようにアンテナ間距離が短いと、アンテナ間で電 磁的に結合し、アンテナ性能が劣化する問題がある。
[0003] この場合、例えば特許文献 2に示すように、選択ダイバーシチ方式では、選択して V、な 、方のアンテナの給電用信号線を接地することで、結合劣化を抑えることができ る手段が知られている。また、特許文献 3に示すように、一つのアンテナが送受信共 用アンテナとして用いられて!/ヽる複数のアンテナで構成される合成ダイバーシチ方式 で、送信動作時に受信専用アンテナが送受信共用アンテナに与える影響を、受信専 用アンテナに装荷した位相回路により抑えることができる方法が知られている。
[0004] また、近年、通信速度をより増大させる技術や、伝送容量をより増大させる技術の 一つとして、 ΜΙΜΟ方式が知られている。この ΜΙΜΟ方式では、送信側及び受信側 の双方に複数のアンテナを設けることにより、無線伝搬路を介した多入力多出力系を 構成するようになっている。これにより、送信及び受信に使用するアンテナ数を増や すことで、空間の利用効率が高まり、通信速度及び伝送容量の改善を図ることが可 能である。一般的に、 MIMO方式のアンテナを用いる場合、複数のアンテナを用い るほど通信速度及び伝送容量の改善度が高い反面、ダイバーシチアンテナを用いる 場合と同様に、携帯電話機の場合は筐体が小型であるため、アンテナ間距離を確保 することは物理的に困難である。このように、アンテナ間距離が短い場合、アンテナ 間で電磁的に結合し、アンテナ性能が劣化するといつた問題がある。
[0005] 特許文献 1:特開 2004— 320528号公報
特許文献 2:特開平 9 - 289483号公報
特許文献 3 : 2005- 151194号公報
発明の開示
発明が解決しょうとする課題
[0006] し力しながら、特許文献 1に記載の 2つのアンテナを同時に動作させる必要がある 合成ダイバーシチ方式の場合、両アンテナが常に無線回路インピーダンスで終端さ れることになり、結合劣化時に一方のアンテナの給電用信号線を接地する結合劣化 対策を適用できず、両アンテナの効率が低下するという課題があった。
[0007] また、特許文献 3に記載の位相回路を用いた結合劣化対策では、受信動作時のァ ンテナ間結合によるアンテナ効率劣化を改善できない課題があった。
[0008] さらに、複数のアンテナを同時に動作させる必要がある MIMO方式の場合、合成 ダイバーシチ方式の場合と同様に、複数のアンテナが常に無線回路インピーダンス で終端されることになり、結合劣化時に一方のアンテナの給電用信号線を接地する 結合劣化対策を適用できず、相互のアンテナの効率が低下するという問題があった
[0009] 本発明は、上記事情に鑑みてなされたもので、アンテナ間結合による効率劣化を 軽減し、高いダイバーシチ利得、及び MIMO方式において高い伝送速度及び通信 容量を得ることができる携帯無線装置を提供することを目的とする。
課題を解決するための手段
[0010] 本発明の携帯無線装置は、複数のアンテナ素子と、前記各アンテナ素子で受信し た受信信号を合成する合成ダイバーシチ処理部と、前記各アンテナでの受信品質に 応じて、前記各アンテナ素子に個別に設定されている初期整合条件とは異なる、所 定の整合条件を前記各アンテナ素子に適用する整合条件切替手段と、を備えるもの である。
この構成により、複数のアンテナを同時に動作させつつ、アンテナ間結合による効 率劣化を抑えることが可能となる。
[0011] また、本発明の携帯無線装置は、前記整合条件切替手段は、前記各アンテナ素子 の整合条件を、前記所定の整合条件に切替える切替手段と、前記合成ダイバーシチ 処理部の合成処理動作の動作状態に対応して前記切替手段を制御する制御手段と 、を備えるものである。
この構成により、合成ダイバーシチ受信時及び単ブランチ受信時に適したアンテナ の整合条件を、合成ダイバーシチ処理部の動作状態に対応して設定することが可能 となる。
[0012] また、本発明の携帯無線装置は、前記制御手段は、前記合成ダイバーシチ処理部 の合成処理動作が停止しているときに、前記各アンテナ素子に対してそれぞれ前記 初期整合条件を適用し、前記合成ダイバーシチ処理部が合成処理動作を行って ヽ るときに、前記各アンテナ素子に対して前記初期整合条件とは異なる、前記所定の 整合条件を適用するように前記切替手段を制御するものである。
この構成により、合成ダイバーシチ受信時に、所定の整合条件とは異なる所定の整 合条件を適用しアンテナ間結合による効率劣化を抑えると共に、単ブランチ受信時 には、アンテナ素子個別に対して適した整合条件を適用することが可能となり、合成 ダイバーシチ受信時、及び単ブランチ受信時共に高 、アンテナ性能を確保すること が可能となる。
[0013] また、本発明の携帯無線装置は、複数のアンテナ素子と、前記各アンテナ素子で 受信した受信信号を多入力多出力方式 (MIMO方式)により処理する信号処理部と 、前記各アンテナでの受信品質に応じて、前記各アンテナ素子に対してそれぞれ個 別に設定されている初期整合条件とは異なる、所定の整合条件を前記各アンテナ素 子に適用する整合条件切替手段と、を備えるものである。
この構成により、 MIMO方式において、複数のアンテナを同時に動作させつつ、ァ ンテナ間結合による効率劣化を抑えることが可能となる。 [0014] また、本発明の携帯無線装置は、所定の整合条件切替手段は、前記各アンテナ素 子の整合条件を、前記所定の整合条件に切替える切替手段と、前記信号処理部の 処理動作の動作状態に対応して前記切替手段を制御する制御手段と、を備えるもの である。
この構成により、 MIMO受信時、及び単ブランチ受信時、具体的には単入力多出 力(Single Input Multiple Output,または SIMO)または単入力単出力(Single Input S ingle Output,または SISO)受信時に、これに適したアンテナの整合条件を信号処 理部の動作状態に対応して設定することが可能となる。
[0015] また、本発明の携帯無線装置の前記制御手段は、前記信号処理部の一部の処理 動作が停止しているときに、前記各アンテナ素子に対してそれぞれ前記初期整合条 件を適用し、前記信号処理部が処理動作を行っているときに、前記各アンテナ素子 に対してそれぞれ個別に設定されている前記初期整合条件とは異なる、前記所定の 整合条件を適用するように前記切替手段を制御するものである。
この構成により、 MIMO受信時に、所定の整合条件とは異なる整合回路を適用し アンテナ間結合による効率劣化を抑えると共に、単ブランチ受信時 (SIMOまたは SI SO受信時)または一部のブランチ受信時 (受信本数を減らした MIMO受信時)には 、アンテナ素子個別に対して適した整合条件を適用することが可能となり、 MIMO受 信時、及び単ブランチ受信時共に高 、アンテナ性能を確保することが可能となる。 発明の効果
[0016] 本発明によれば、アンテナ間結合による効率劣化を軽減し、高 、ダイバーシチ利 得、及び MIMO方式にぉ 、て高 、伝送速度及び通信容量を得ることが可能な携帯 無線装置を提供できる。
図面の簡単な説明
[0017] [図 1]本発明の第 1の実施形態に係るダイバーシチ受信機を搭載した携帯無線機の 基本構成図
[図 2]同携帯無線機の整合回路の構成図
[図 3]同携帯無線機の整合回路の変形例を示す構成図
[図 4]同携帯無線機の単ブランチ受信時に適用される整合条件を示す周波数対 VS WR特'性のグラフ
[図 5]同携帯無線機のダイバーシチ受信時に適用される整合条件を示す周波数対 V SWR特'性のグラフ
[図 6]同携帯無線機の制御部の構成を示すブロック図
[図 7]同携帯無線機の単ブランチ受信時における動作を示すフローチャート
[図 8]同携帯無線機のダイバーシチ受信時における動作を示すフローチャート
[図 9]同携帯無線機での整合回路の切替えの際のアンテナ効率を示す説明図
[図 10]本発明の第 2の実施形態に係るダイバーシチ受信機を搭載した携帯無線機の 基本構成図
[図 11]同携帯無線機の制御部の構成を示すブロック図
[図 12]本発明の第 3の実施形態に係る MIMO方式の受信機を搭載した携帯無線機 の基本構成図
符号の説明
10、 20、 30 携帯無線機
11A、 11B、 11C、 11D アンテナ
12A、 12B、 12C、 12D、 21A、 21B、 21C、 21D 整合回路
121A、 121B PINダイオード(高周波スィッチ)
122A、 122B リアクタンス素子
13 A, 13B チューナ
14A、 14B 復調部
15 合成部 (合成ダイバーシチ処理部)
16 誤り訂正部
17A、 17B、 17C、 17D 受信品質判定部
18 制御部 (制御手段)
181 判定パラメータ記憶手段
182 受信方式切替手段
183 ダイバーシチ効果判定手段
31 信号処理回路(MIMOおよび SIMOおよび SISO方式) 32 アプリケーション検出回路
SW、 SW1、 SW2、 SW3、 SW4 スィッチ(切替手段)
発明を実施するための最良の形態
[0019] 以下、本発明について、添付図面を参照しながら詳細に説明する。
(第 1の実施形態)
本発明の第 1の実施形態に係る携帯無線装置の一つである携帯無線機を図 1に示 す。
本実施形態の携帯無線機 10は、デジタル変調信号を受信する複数のアンテナ 11 Aおよび 11Bと、 2種類のアンテナ 11 A、 1 IBのそれぞれに個別に設定された整合 回路 12Aおよび整合回路 12Bと、入力されたデジタル信号力も所望のチャンネルの 選局を行う複数のチューナ 13Aおよび 13Bと、選局された信号の復調を行う複数の 復調部 14Aおよび 14Bと、それぞれの受信系で受信、復調された信号を合成する、 合成ダイバーシチ処理部を構成する合成部 15と、誤り訂正処理を行う誤り訂正部 16 と、各ブランチで復調された信号または、合成後の信号から搬送波対雑音比 (Carrie r to Noise Ratio ;以下、「CZN」と表記する)で、受信品質を表す数値 (以下、これを 「受信品質値」とよぶ)を算出する受信品質判定部 17A、 17Bおよび 17Cと、受信品 質判定部 17A、 17Bおよび 17Cで得られた受信品質値により受信方式の制御及び 整合回路 12A、 12Bの整合条件を切替える、制御手段を構成する制御部 18と、制 御部 18での判定により単ブランチ受信、および合成ダイバーシチ受信を切替える、 切替手段を構成するスィッチ SWで構成される。
[0020] 次に、整合回路 12A (整合回路 12Bについても同様であるので、以下、ここでは括 弧書きとする)の構成について、図 2及び図 3を用いて説明する。なお、図 2はリアクタ ンス素子 122A ( 122B)を直列に装荷した場合の構成を示し、図 3はリアクタンス素 子 122A(122B)を並列に装荷した場合の構成を示す。図 2及び図 3のどちらの構成 でも同様の効果が得られるため、ここでは、図 2を用いて詳細に説明する。
[0021] 図 2に示す整合回路 12A(12B)は、前述したように、高周波スィッチである PINダ ィオード 121 A ( 121B)及びリアクタンス素子 122A ( 122B)を直列に装荷した回路 構成である。即ち、整合回路 12A(12B)は、コイル又はコンデンサで構成されるリア クタンス素子 XI、 X2及び X3と、受信したデジタル変調信号に対し、インピーダンス が高くデジタル変調信号を遮断するチョークコイル Lと、制御部 18からの直流信号を 遮断するコンデンサ C1と、デジタル変調信号に対し低いインピーダンスとなり、信号 線 19を高周波的に接地するコンデンサ C2と、コイル又はコンデンサで構成されるリ ァククンス素子 122A(122B)と、リアクタンス素子 122A (122B)の ONまたは OFF を制御する PINダイオード 121A(121B)と、 PINダイオード 121A(121B)に流れる 電流値を調整する抵抗 Rと、を備えている。
[0022] 誤り訂正部 16は、例えば、 DSP(Digital Signal Processor)がビダビ符号やターボ符 号などを用いた誤り訂正処理を行う。
[0023] 制御部 18からの信号が ONの場合、 PINダイオード 121A(121B)にデジタル変調 信号が流れ、アンテナ Ι ΙΑ(Ι ΙΒ)の整合条件は、リアクタンス素子 XI, X2, X3で設 定される。一方、制御部 18からの信号が OFFの場合、アンテナ Ι ΙΑ(Ι ΙΒ)の整合 条件は、リアクタンス素子 XI, X2, X3、 122A (122B)で設定される。
[0024] 次に、整合回路 12A、 12Bの整合条件を、図 4及び図 5を用いて説明する。
図 4は、アンテナ性能が最も高く確保できる整合条件を示した、「周波数」対「Voltag e Standing Wave Ratio」(以下、「VSWR」と表記する)についての特性 (以下、「周波 数対 VSWR特性」とよぶ)を示すグラフである。共振周波数 f を所望のチャンネルの
0
周波数 f とほぼ等しく設定し、 f における VSWR値が最小となるように整合回路の定 d 0
数を設定する。一方、図 5は、アンテナ性能が最も高く確保できる整合条件 (これを「 初期整合条件」とよぶ)とは異なる所定の整合条件を適用されていることを示した周 波数対 VSWRについての特性グラフである。共振周波数 f は、所望のチャンネルの
0
周波数 f と だけずらして設定する。
d
[0025] 本発明者らの実験によれば、受信アンテナにホイップアンテナを用い、受信信号の 周波数力470MHzから 770MHzの場合、 Δίは 70MHz程度であれば、アンテナ性 能が最も高い整合条件 (初期整合条件)に対して、 ldB程度の不整合損失で、かつ 他方のアンテナの結合劣化が改善されることを確認している。
[0026] 次に、制御部 18の構成について、図 6を用いて詳細に説明する。
制御部 18は、図 6に示すように、判定パラメータ記憶手段 181と、受信方式切替手 段 182と、ダイバーシチ効果判定手段 183と、を備えている。
このうち、判定パラメータ記憶手段 181は、 ROMや RAMで構成される制御に必要 なパラメータを予め記憶して 、る。
一方、ダイバーシチ効果判定手段 183は、受信品質判定部 17A、 17B、 17Cから 算出されたそれぞれの受信品質値、および判定パラメータ記憶手段 181に記録され ている効果判定閾値により、ダイバーシチ効果があるかを判定し、判定結果を受信方 式切替手段 182へ出力する。
他方、受信方式切替手段 182は、受信品質判定部 17A、 17B、 17Cから算出され たそれぞれの受信品質値、およびダイバーシチ効果判定手段 183からの効果判定 結果、判定パラメータ記憶手段 181に記録されている受信状態判定閾値により、受 信方式の切替判定を行い、切替が必要と判断された場合には合成部 15の電源の O N又は OFFの切替や、整合回路 12A ( 12B)の整合条件を切替える。
[0027] 以上のように構成された携帯無線機 10につ 、て、図 7から図 9を用いてその動作を 説明する。
(I)まず、単ブランチ受信時の動作について、図 7を用いて説明する。
初めに、受信品質判定部 17A (または 17B)により、現在受信中のブランチの受信 品質値を得る (ステップ S 11)。次に、受信方式切替手段 182によって、得られた受信 品質値と、判定パラメータ記憶手段 181に記録されている受信状態判定閾値とを比 較する (ステップ S12)。そして、現在の受信品質値が、高レベルの受信状態判定閾 値よりも小さい、かつ、低レベルの受信状態判定閾値よりも大きい場合は、ダイバー シチ受信が必要と判断し、ステップ S 13へ移行する。それ以外の場合は、ダイバーシ チ受信は不要と判断し、ステップ S 15へ移行する。
[0028] ダイバーシチ受信が必要と判断されると、制御部 18によって、合成部 15の電源を ONする (ステップ S 13)。次に、スィッチ SWを切替え、ダイバーシチ受信を行うと共に 、整合回路 12A、 12Bの整合条件を、 PINダイオード 121A (または 121B)を OFFに することにより、図 5に示す条件に切替える (ステップ S 14)。そして、図 8に示すダイバ ーシチ受信時の処理を行う。
一方、ダイバーシチ受信は不要と判断されると、そのまま単ブランチ受信時の動作 を繰り返す (ステップ S 15)。
[0029] (Π)次にダイバーシチ受信時の動作を、図 8を用いて説明する。
初めに、受信品質判定部 17A、 17B、 17Cにおいてブランチ Α、 Β、および合成後 の各受信品質値を得る (ステップ S21)。次に、受信方式切替手段 182によって、得ら れたブランチ Aとブランチ Bの受信品質を比較し、受信品質の良いブランチを判定す る (ステップ S22)。次に、受信品質が良いブランチの受信品質値と、判定パラメータ 記憶手段 181に記録されている受信状態判定閾値とを比較する (ステップ S23)。 受信品質が良いブランチの受信品質値が高レベル受信状態判定閾値以上、もしく は低レベル受信状態判定閾値以下の場合は、ダイバーシチ受信は不要と判断し、そ れ以外の場合はダイバーシチ受信が必要と判断する。
[0030] ダイバーシチ受信が不要と判断された場合は、受信品質が良 、ブランチへスィッチ SWを切替えると共に、整合回路 12A、 12Bの整合条件を、 PINダイオード 121A、 1 21 Bを ONにすることにより図 4に示す条件に切替え、単ブランチ受信とする (ステップ S24)0次に制御部 18によって、合成部 15の電源を OFFし、図 7に示す単ブランチ 受信時の処理を行う (ステップ S25)。
一方、ダイバーシチ受信が必要と判断された場合には、ダイバーシチ効果判定手 段 183によって、受信品質の良いブランチの受信品質値と、合成後の受信品質値の 差 (以下、「ダイバーシチ効果」という)を計算する (ステップ S26)。次に、得られたダイ バーシチ効果と、判定パラメータ記憶手段 181に記録されている効果判定閾値とを 比較する (ステップ S 27)。
[0031] ここで、ダイバーシチ効果が効果判定閾値より小さ!/、場合は、ダイバーシチ受信の 効果がないと判断し、ステップ S28へ移行する。即ち、ダイバーシチ効果のない場合 は、受信品質が良いブランチへスィッチ SWを切替えると共に、整合回路 12A、 12B の整合条件を、 PINダイオード 121A、 121Bを ONにすることにより、図 4に示す条件 に切替え、単ブランチ受信とする (ステップ S28)。次に、制御部 18によって、合成部 15の電源を OFFし、図 7に示す単ブランチ受信時の処理を行う(ステップ S29)。 一方、それ以外は、ダイバーシチ受信の効果があると判断し、ステップ S30へ移行 する。即ち、ダイバーシチ受信の効果がある場合は、そのままダイバーシチ受信時の 処理を行う。
[0032] ここで、図 9を用いて、整合条件の切替えの具体例を説明する。
アンテナ 11 Aとアンテナ 11Bの 2種類のアンテナで構成される合成ダイバーシチ受 信機を搭載した携帯無線機 10において、アンテナ間結合による損失が生じる状態で 、 2種類のアンテナに図 4の整合条件を適用した場合のアンテナ効率《2は、一方の アンテナがない場合のアンテナ効率 α 1と比較し、アンテナ 11 Αでは効率が△ 7? 1だ け劣化し、アンテナ 11Bでは効率が△ 7? 2だけ劣化したとする。その際、アンテナ効 率の低下量△ r? 2が低下量△ 7? 1に対して著しく大きい場合、ブランチ間レベル差が 大きくなり、合成ダイバーシチ効果が低くなる。
[0033] そこで、制御部 18により整合回路 12Aの PINダイオード 121Aを ON、整合回路 12 Bの PINダイオード 121Bを OFFに設定することにより、アンテナ間結合による効率劣 ィ匕が小さい方のアンテナ 11Aに図 5の整合条件を適用し、かつ、アンテナ 11Bに図 4 の整合条件を適用する。このような整合条件を適用した場合のアンテナ効率を ex 3と する。その際、アンテナ間結合による損失は、アンテナ 11Aで△ 7? 3、アンテナ 11B で△ 7? 4となり、アンテナ効率 α 3のブランチ間レベル差(| rjCl- η C2|)は、
[0034] (数 1)
|r?Cl- 7}C2|< Bl- 7}B2|
但し、 |r?Bl— 7}B2|;アンテナ効率 α2での差
••• (1)
[0035] となる。
また、 2種類のアンテナに図 4の整合条件を適用した場合のアンテナ 11Bでのアン テナ間結合による損失△ 7? 2と、 2種類のアンテナにそれぞれ図 4、図 5の整合条件 を適用した場合のアンテナ 11Bでのアンテナ間結合による損失△ 7? 4との間には、
Δη4<Δη 2 ··· (2)
が成立する。
[0036] このように、本実施形態の携帯無線機 10によれば、合成ダイバーシチ起動時のみ 、一方又は両方の整合条件を単ブランチ受信時に高 、アンテナ性能が得られる条 件 (初期整合条件)と異なる所定の整合条件を適用するため、単ブランチ受信時のァ ンテナ性能を維持しつつ、合成ダイバーシチ起動時のアンテナ間結合劣化を軽減 することが可能となる。
[0037] なお、本実施の形態では、 CZN値を閾値に使用した場合にっ 、て説明した力 パ ケットエラーやビットエラーなど CZN以外の受信品質を表すパラメータを用いた場合 にも、同様の効果が得られる。
また、単ブランチ受信時に、図 4の整合条件 (初期整合条件)を適用するとしたが、 受信品質が良い場合は、図 5の整合条件を適用してもよい。また、ダイバーシチ受信 時には、片側若しくは両方のアンテナに図 5の整合条件を適用する構成としたが、受 信品質が良い場合は図 4の整合条件 (初期整合条件)を適用してもよい。また、図 8 のステップ S24、 S28にて受信品質が良いブランチへ切替える構成とした力 アンテ ナの利得が高い方へ切替えても良い。また、受信品質やダイバーシチ効果判定を算 出する際は、瞬時値ではなぐある一定時間の平均値を用いて算出しても良い。 また、単ブランチ受信時の利得低下がある程度許容できる場合は、整合条件の切 替えを行わなくても、図 5に示すように共振周波数 f を受信チャンネルの周波数 f 力
0 d らずらしておけば、ダイバーシチ受信時は高 、利得が得られる。
[0038] また、整合回路 12A、 12Bの整合条件の切替えに PINダイオード 121 A、 121Bを 用いたが、バラクタなどの他の可変リアクタンス素子を用いても同様の効果が得られ る。また、受信方式切替手段 182の判定結果により、合成部 15の ON, OFFに伴つ て、整合条件を切替える構成とした力 合成部 15の ON, OFFの切替を行わず、整 合条件のみ切替えても同様の効果が得られる。また、受信アンテナが 3種類以上ある 場合においても、同様の効果が得られる。
[0039] また、本実施形態では、整合回路 12A、 12Bのリアクタンス素子の数力 種類の場 合で説明したが、それ以外の数のリアクタンス素子で構成される整合回路でも同様の 効果が得られる。また、図 2の整合回路 12A、 12Bにコイル Lとコンデンサ C2を装荷 したが、当該素子を装荷しない場合でも同様の効果が得られる。また、抵抗 Rは PIN ダイオード 121A、 121Bに流れる電流を調整できれば、他の箇所に装荷しても同様 の効果が得られる。
[0040] (第 2の実施形態) 次に、本発明の第 2の実施形態に係る携帯無線機について、説明する。なお、本 実施形態において、第 1の実施形態と同一部分には同一符号を付して重複説明を 避ける。
まず、本実施形態の携帯無線機の基本構成について図 10を用いて説明する。 携帯無線機 20は、図 10に示すように、第 1の実施形態と同じ、 2つのアンテナ 11 A 及び 1 IBと、 2つのチューナ 13Aおよび 13Bと、 2つの復調部 14Aおよび 14Bと、合 成部 15と、誤り訂正部 16と、受信品質判定部 17A、 17B及び 17Cと、受信方式の制 御を行う制御部 18と、各単ブランチ受信および合成ダイバーシチ受信を切替えるス イッチ SWとの他に、アンテナ 11A及び 11Bのそれぞれに対してアンテナ性能が最も 高く確保できる整合条件を適用させる整合回路 21Aおよび整合回路 21Cと、アンテ ナ 11A及び 11Bのそれぞれに対して設定される整合条件とは異なる所定の整合条 件を適用させる整合回路 21Bおよび整合回路 21Dと、制御部 18での判定により整 合回路 21Aまたは整合回路 21B、及び整合回路 21Cまたは整合回路 21Dを切替え るスィッチ SW1、スィッチ SW2、スィッチ SW3及びスィッチ SW4と、を備えている。 なお、整合回路 21Aと整合回路 21Cは、図 4に示す整合条件を適用する。一方、 整合回路 21Bと整合回路 21Dは、図 5に示す整合条件を適用する。
[0041] 次に、制御部 18の構成について、図 11を用いて詳細に説明する。
制御部 18は、図 11に示すように、第 1の実施形態と同一構成のものであり、判定パ ラメータ記憶手段 181と、受信方式切替手段 182と、ダイバーシチ効果判定手段 18 3と、を備えているが、第 1の実施形態とは異なり、受信方式切替手段 182の出力が、 スィッチ SWの他に、スィッチ SW1〜SW4にも接続されている。
[0042] 以上のように構成された携帯無線機 20につ 、て、図 7から図 9を用いてその動作を 説明する。
(I)まず、単ブランチ受信時の動作について、図 7を用いて説明する。
初めに、受信品質判定部 17A (または 17B)により、現在受信中のブランチの受信 品質値を得る (ステップ S 11)。次に、受信方式切替手段 182によって、得られた受信 品質値と、判定パラメータ記憶手段 181に記録されている受信状態判定閾値とを比 較する。そして、現在の受信品質値が、高レベルの受信状態判定閾値よりも小さい、 かつ、低レベルの受信状態判定閾値よりも大きい場合は、ダイバーシチ受信が必要 と判断し、ステップ S 13へ移行する。それ以外の場合は、ダイバーシチ受信は不要と 判断し、ステップ S 15へ移行する (ステップ S 12)。
[0043] ダイバーシチ受信が必要と判断されると、制御部 18によって、合成部 15の電源を ONする (ステップ S 13)。次に、スィッチ SWを切替え、ダイバーシチ受信を行うと共に 、スィッチ SW1、 SW2、 SW3、 SW4を切替え、図 5に示す整合状態の整合回路 21 B、 21Dに設定する (ステップ S14)。そして、図 8に示すダイバーシチ受信時の処理を 行う。
一方、ダイバーシチ受信を不要と判断してステップ S15へ移行すると、そのまま単 ブランチ受信時の動作を繰り返す。
[0044] (Π)次にダイバーシチ受信時の動作を、図 8を用いて説明する。
初めに、受信品質判定部 17A、 17B、 17Cによりブランチ A、 B、および合成後の 各受信品質値を得る (ステップ S21)。
次に、受信方式切替手段 182によって、得られたブランチ Aとブランチ Bの受信品質 を比較し、受信品質の良 、ブランチを判定する (ステップ S 22)。
次に、受信品質が良いブランチの受信品質値と、判定パラメータ記憶手段 181に記 録されている受信状態判定閾値とを比較する。そして、受信品質が良いブランチの 受信品質値が高レベル受信状態判定閾値以上、もしくは低レベル受信状態判定閾 値以下の場合は、ダイバーシチ受信は不要と判断し、ステップ S24へ移行する。それ 以外の場合は、ダイバーシチ受信が必要と判断し、ステップ S26へ移行する (ステツ プ S23)。
[0045] ダイバーシチ受信が不要と判断された場合は、ステップ S24にお 、て、受信品質が 良いブランチへスィッチ SWを切替えると共に、スィッチ SW1、 SW2、 SW3、 SW4を 切替え、図 4に示す整合状態の整合回路 21A、 21Cに設定し、単ブランチ受信とす る。次に制御部 18によって、合成部 15の電源を OFFし (ステップ S25)、図 7に示す 単ブランチ受信時の処理を行う。
[0046] 一方、ダイバーシチ受信が必要と判断された場合には、ステップ S26において、ダ ィバーシチ効果判定手段 183によって、前述した「ダイバーシチ効果 (合成後の受信 品質値の差)」を計算する。次に、得られたダイバーシチ効果と、判定パラメータ記憶 手段 181に記録されている効果判定閾値とを比較する。そして、ダイバーシチ効果が 効果判定閾値より小さい場合は、ダイバーシチ受信の効果がないと判断し、そのまま ステップ S28へ移行する。それ以外は、ダイバーシチ受信の効果があると判断する( ステップ S27)。
[0047] ダイバーシチ効果のな 、場合は、受信品質が良 、ブランチへスィッチ SWを切替え ると共に、スィッチ SW1、 SW2、 SW3、 SW4を切替え、図 4に示す整合状態の整合 回路 21A、 21Cに設定し、単ブランチ受信とする (ステップ S28)。次に、制御部 18に よって、合成部 15の電源を OFFし、図 7に示す単ブランチ受信時の処理を行う(ステ ップ S29)。
一方、ダイバーシチ受信の効果がある場合は、そのままダイバーシチ受信時の処 理を行う(ステップ S 30)。
[0048] ここで、図 9を用いて、整合条件の切替えの具体例を説明する。
アンテナ 11 Aとアンテナ 11Bの 2種類のアンテナで構成される合成ダイバーシチ受 信機を搭載した本実施形態の携帯無線機 20において、アンテナ間結合による損失 が生じる状態で、 2種類のアンテナに図 4の整合条件を適用した場合のアンテナ効率 a 2は、一方のアンテナがない場合のアンテナ効率 α 1と比較し、アンテナ 11 Αでは 効率が△ 7? 1だけ劣化し、アンテナ 11Bでは効率が△ 7? 2だけ劣化したとする。その 際、 Δ 7? 2が Δ 7? 1に対して著しく大きい場合、ブランチ間レベル差が大きくなり、合 成ダイバーシチ効果が低くなる。
[0049] そこで、制御部 18によりスィッチ SW1〜SW4を切替え、アンテナ間結合による効 率劣化が小さいアンテナ 11Aの方に図 5の整合条件を適用し、かつアンテナ 11Bに 図 4の整合条件を適用する。その際、第 1の実施形態と同様に、アンテナ間結合によ る損失は、アンテナ 11Aで△ 7? 3、アンテナ 11Bで△ 7? 4となり、ブランチ間のアンテ ナ効率 α 3での差は、前述した(1)式が成立する。
また、第 1の実施形態と同様に、 2種類のアンテナに図 4の整合条件を適用した場 合のアンテナ 11Bでのアンテナ間結合による損失△ 7? 2と、 2種類のアンテナにそれ ぞれ図 4、図 5の整合条件を適用した場合のアンテナ 11Bでのアンテナ間結合による 損失△ 7? 4との間には、前述した(2)式が成立する。
[0050] このように、本実施形態の携帯無線機 20によれば、合成ダイバーシチ起動時のみ 、一方又は両方の整合条件を単ブランチ受信時に高 、アンテナ性能が得られる所 定の条件と異なる条件を適用するため、単ブランチ受信時のアンテナ性能を維持し つつ、合成ダイバーシチ起動時のアンテナ間結合劣化を軽減することが可能となる。 なお、本実施形態でも、 CZN値を閾値に使用した場合について説明したが、パケ ットエラーやビットエラーなど CZN以外の受信品質を表すパラメータを用いた場合に も、同様の効果が得られる。
[0051] また、本実施形態でも、単ブランチ受信時に、図 4の整合条件を適用する構成とし たが、受信品質が良い場合は、図 5の整合条件を適用してもよい。また、ダイバーシ チ受信時には、片側若しくは両方のアンテナに図 5の整合条件を適用する構成とし たが、受信品質が良い場合は図 4の整合条件を適用してもよい。また、本実施形態 でも、図 8のステップ S24、 S28にて受信品質が良いブランチへ切替える構成とした 力 アンテナの利得が高い方へ切替えても良い。
また、本実施形態でも、受信品質や、ダイバーシチ効果判定を算出する際は、瞬時 値ではなぐある一定時間の平均値を用いて算出しても良い。
また、本実施形態でも、受信方式切替手段 182の判定結果により、合成部 15の O N, OFFに伴って、整合条件を切替えるとした力 合成部 15の ON, OFFの切替を 行わず、整合条件のみ切替えても同様の効果が得られる。
また、本実施形態でも、受信アンテナが 3種類以上ある場合においても、同様の効 果が得られる。
[0052] (第 3の実施形態)
次に、本発明の第 3の実施形態に係る携帯無線機について、図 12を参照しながら 説明する。
まず、本実施形態の携帯無線機 30の基本構成について説明する。なお、本発明 は複数アンテナを有する MIMO方式の携帯無線機に適応できるものであり、本実施 形態では、受信アンテナが 4本とする MIMO方式の受信構成のものを示す。また、 本実施形態において、第 1、第 2の実施形態と同一部分には同一符号を付して重複 説明を避ける。
[0053] 本実施形態の携帯電話機 30は、図 12に示すように、 4種類のアンテナ 11 A〜 11 Dと、 4種類のアンテナそれぞれに対してアンテナ性能が最も高く確保できる整合条 件を設定させる、各アンテナに対応してそれぞれ設けた 4つの整合回路 12A〜 12D と、復調された信号力 受信品質を表す CZNまたは通信速度 (スループット)を算出 する受信品質判定部 17と、制御部 18とを備えるほか、さらに、 MIMO、 SIMO、 SIS O方式の信号処理回路 31と、アプリケーション検出回路 32とを備えている。
[0054] 受信品質判定部 17では、 CZNまたはスループットの状況を監視しつつ、ユーザが 使用しているアプリケーションに必要とされる条件 (通信容量)から、適切な方式を判 定する。
例えば、音声などの通信容量が小さい通信を行う場合は SISO方式を判定し、映画 などの通信容量が大きい通信を行う場合は MIMO方式を判定する。また、同じアプリ ケーシヨンにぉ 、ても、受信品質により 2 X 2MIMO方式や 4 X 4MIMO方式のよう に受信本数を減らした受信方式を判定する。また、信号処理負荷や消費電力などの 低減を目的とした方式の判定を行ってもよい。また、全体の、または個々のアンテナ の受信品質の状況 (受信レベル)に応じて判定を行ってもよい。また、受信信号から 携帯無線機 30の移動速度を検出して、その速度に応じて判定を行ってもよい。そし て、受信品質判定部 17で判定された受信する方式及びアンテナに応じて、信号処 理回路 31および整合回路 12A〜 12Dへ制御信号を送ることで制御する。
[0055] 信号処理回路 31は、入力されたデジタル信号から MIMOまたは SIMOまたは SIS O方式の信号処理を行う。アプリケーション検出回路 32は、ユーザが使用しているァ プリケーシヨンの検出を行う。
[0056] 従って、このような本実施形態の携帯無線機 30によれば、合成ダイバーシチ方式 の場合と同様に、複数のアンテナを同時に動作させる必要がある MIMO方式の場合 、複数のアンテナを用いて MIMO方式の受信時のみ、一部または全ての整合条件 を単ブランチ受信時に高いアンテナ性能が得られる所定の条件と異なる条件を適用 するため、単ブランチ受信時のアンテナ機能を維持しつつ、 MIMO受信時のアンテ ナ間結合劣化を軽減することが可能となる。 [0057] 本発明を詳細にまた特定の実施態様を参照して説明したが、本発明の精神と範囲 を逸脱することなく様々な変更や修正を加えることができることは当業者にとって明ら かである。
産業上の利用可能性
[0058] 本発明は、例えば 2本のアンテナの場合、ダイバーシチ起動時のみ、片側又は両 方のアンテナに、アンテナ素子それぞれ個別に対して設定される初期整合条件とは 異なる所定の整合条件を適用することにより、単ブランチ受信時のアンテナ性能を維 持しつつ、ダイバー起動時のアンテナ間結合劣化を軽減できるという効果を有し、デ ジタル変調信号をダイバーシチ受信する携帯無線機等として有用である。また、 Ml MO方式の受信機を搭載した携帯無線機にお 、ても、アンテナ素子それぞれ個別 に対して設定される初期整合条件とは異なる所定の整合条件を適用することにより、 単ブランチ受信時 (SIMOまたは SISO受信時)または一部のブランチ受信時 (受信 本数を減らした MIMO受信時)のアンテナ性能を維持しつつ、 MIMO動作時のアン テナ間結合劣化を軽減できると!、う効果を有し、デジタル変調信号を MIMO受信す る携帯無線機等として有用である。

Claims

請求の範囲
[1] 複数のアンテナ素子と、
前記各アンテナ素子で受信した受信信号を合成する合成ダイバーシチ処理部と、 前記各アンテナでの受信品質に応じて、前記各アンテナ素子に個別に設定されて いる初期整合条件とは異なる、所定の整合条件を前記各アンテナ素子に適用する整 合条件切替手段と、
を備える携帯無線装置。
[2] 前記整合条件切替手段は、
前記各アンテナ素子の整合条件を、前記所定の整合条件に切替える切替手段と、 前記合成ダイバーシチ処理部の合成処理動作の動作状態に対応して前記切替手 段を制御する制御手段と、
を備える請求項 1記載の携帯無線装置。
[3] 前記制御手段は、
前記合成ダイバーシチ処理部の合成処理動作が停止して!/、るときに、前記各アン テナ素子に対してそれぞれ前記初期整合条件を適用し、
前記合成ダイバーシチ処理部が合成処理動作を行って!/ヽるときに、前記各アンテ ナ素子に対して前記初期整合条件とは異なる、前記所定の整合条件を適用するよう に前記切替手段を制御する請求項 2に記載の携帯無線装置。
[4] 複数のアンテナ素子と、
前記各アンテナ素子で受信した受信信号を多入力多出力方式 (MIMO方式)によ り処理する多入力多出力方式の信号処理部と、
前記各アンテナでの受信品質に応じて、前記各アンテナ素子に対してそれぞれ個 別に設定されている初期整合条件とは異なる、所定の整合条件を前記各アンテナ素 子に適用する整合条件切替手段と、
を備える携帯無線装置。
[5] 所定の整合条件切替手段は、
前記各アンテナ素子の整合条件を、前記所定の整合条件に切替える切替手段と、 前記信号処理部の処理動作の動作状態に対応して前記切替手段を制御する制御 手段と、
を備える請求項 4に記載の携帯無線装置。
前記制御手段は、
前記信号処理部の一部の処理動作が停止しているときに、前記各アンテナ素子に 対してそれぞれ前記初期整合条件を適用し、
前記信号処理部が処理動作を行っているときに、前記各アンテナ素子に対してそ れぞれ個別に設定されている前記初期整合条件とは異なる、前記所定の整合条件 を適用するように前記切替手段を制御する請求項 5に記載の携帯無線装置。
PCT/JP2006/302553 2006-02-14 2006-02-14 携帯無線装置 WO2007094050A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US12/094,865 US20090267842A1 (en) 2006-02-14 2006-02-14 Portable wireless apparatus
PCT/JP2006/302553 WO2007094050A1 (ja) 2006-02-14 2006-02-14 携帯無線装置
JP2007533805A JPWO2007094050A1 (ja) 2006-02-14 2006-02-14 携帯無線装置
EP06713694A EP1986344A1 (en) 2006-02-14 2006-02-14 Mobile radio apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2006/302553 WO2007094050A1 (ja) 2006-02-14 2006-02-14 携帯無線装置

Publications (1)

Publication Number Publication Date
WO2007094050A1 true WO2007094050A1 (ja) 2007-08-23

Family

ID=38371245

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/302553 WO2007094050A1 (ja) 2006-02-14 2006-02-14 携帯無線装置

Country Status (4)

Country Link
US (1) US20090267842A1 (ja)
EP (1) EP1986344A1 (ja)
JP (1) JPWO2007094050A1 (ja)
WO (1) WO2007094050A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009100058A (ja) * 2007-10-12 2009-05-07 Fujitsu Ltd 放送復調装置
JP2009159071A (ja) * 2007-12-25 2009-07-16 Kyocera Corp 無線通信装置およびその制御方法
WO2011077611A1 (ja) * 2009-12-25 2011-06-30 パナソニック株式会社 無線受信装置
JP2012109752A (ja) * 2010-11-17 2012-06-07 Nec Corp アレイアンテナ装置およびそのインピーダンス整合方法

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5191719B2 (ja) * 2007-10-31 2013-05-08 株式会社日立製作所 無線icタグシステムおよび無線icタグ動作方法
ES2358406B1 (es) * 2009-07-07 2012-03-22 Vodafone España, S.A.U. Controlador de red radio y método para seleccionar una tecnolog�?a de transmisión para una conexión hsdpa.
US20110012792A1 (en) * 2009-07-17 2011-01-20 Motorola, Inc. Antenna arrangement for multimode communication device
JP5496864B2 (ja) * 2010-11-30 2014-05-21 富士通コンポーネント株式会社 ダイバーシティアンテナ装置
US20130100885A1 (en) * 2011-10-24 2013-04-25 Qualcomm Incorporated Selectively invoking receive diversity during power-up/initial acquisition and out of service modes
US9077418B2 (en) * 2012-01-21 2015-07-07 Intel Mobile Communications GmbH Method for controlling receiving diversity of a receiver and a mobile station
CN103812540B (zh) * 2012-11-12 2017-06-27 华为技术有限公司 阵列天线及发射接收信号方法、装置
JP6481292B2 (ja) * 2014-09-03 2019-03-13 株式会社ソシオネクスト 受信回路及び受信方法
JP6559078B2 (ja) * 2016-02-11 2019-08-14 アルパイン株式会社 受信装置
CN109906560B (zh) * 2016-11-11 2021-12-10 三星电子株式会社 执行无线通信的车辆及其通信方法
CN113497643B (zh) * 2020-04-02 2022-10-18 华为技术有限公司 天线调谐方法、装置、电子设备和网络侧设备

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08321716A (ja) * 1995-05-25 1996-12-03 Mitsubishi Electric Corp アンテナ装置
JPH09289483A (ja) 1996-04-23 1997-11-04 Saitama Nippon Denki Kk ダイバーシティ受信機
JP2001119239A (ja) * 1999-10-21 2001-04-27 Kenwood Corp 携帯電話機用アンテナ共振防止回路
JP2003046407A (ja) * 2002-05-15 2003-02-14 Sharp Corp 携帯無線機
JP2003244043A (ja) * 2002-02-18 2003-08-29 Nippon Telegr & Teleph Corp <Ntt> ダイバーシチ受信回路
JP2003318702A (ja) * 2002-04-24 2003-11-07 Matsushita Electric Ind Co Ltd ディジタル信号受信装置
JP2004320528A (ja) 2003-04-17 2004-11-11 Mitsubishi Electric Corp ダイバーシチ受信装置
JP2005151194A (ja) 2003-11-17 2005-06-09 Sony Ericsson Mobilecommunications Japan Inc 無線通信端末装置

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0964639A (ja) * 1995-08-25 1997-03-07 Uniden Corp ダイバーシチ・アンテナ回路
US6023615A (en) * 1995-11-29 2000-02-08 Motorola, Inc. Method for controlling a diversity receiver apparatus in a radio subscriber unit
WO1998039856A1 (en) * 1997-03-03 1998-09-11 Celletra Ltd. Method and system for improving communication
JP2001057529A (ja) * 1999-08-18 2001-02-27 Mitsubishi Electric Corp 無線装置
JP4598978B2 (ja) * 2001-03-28 2010-12-15 株式会社東芝 無線受信機
JP3672196B2 (ja) * 2002-10-07 2005-07-13 松下電器産業株式会社 アンテナ装置
US7649953B2 (en) * 2003-02-13 2010-01-19 Ntt Docomo, Inc. Differential multiple-length transmit and reception diversity
US7239275B2 (en) * 2004-03-22 2007-07-03 The Aerospace Corporation Methods and systems for tracking signals with diverse polarization properties
US7760146B2 (en) * 2005-03-24 2010-07-20 Nokia Corporation Internal digital TV antennas for hand-held telecommunications device

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08321716A (ja) * 1995-05-25 1996-12-03 Mitsubishi Electric Corp アンテナ装置
JPH09289483A (ja) 1996-04-23 1997-11-04 Saitama Nippon Denki Kk ダイバーシティ受信機
JP2001119239A (ja) * 1999-10-21 2001-04-27 Kenwood Corp 携帯電話機用アンテナ共振防止回路
JP2003244043A (ja) * 2002-02-18 2003-08-29 Nippon Telegr & Teleph Corp <Ntt> ダイバーシチ受信回路
JP2003318702A (ja) * 2002-04-24 2003-11-07 Matsushita Electric Ind Co Ltd ディジタル信号受信装置
JP2003046407A (ja) * 2002-05-15 2003-02-14 Sharp Corp 携帯無線機
JP2004320528A (ja) 2003-04-17 2004-11-11 Mitsubishi Electric Corp ダイバーシチ受信装置
JP2005151194A (ja) 2003-11-17 2005-06-09 Sony Ericsson Mobilecommunications Japan Inc 無線通信端末装置

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009100058A (ja) * 2007-10-12 2009-05-07 Fujitsu Ltd 放送復調装置
JP2009159071A (ja) * 2007-12-25 2009-07-16 Kyocera Corp 無線通信装置およびその制御方法
WO2011077611A1 (ja) * 2009-12-25 2011-06-30 パナソニック株式会社 無線受信装置
US8693599B2 (en) 2009-12-25 2014-04-08 Panasonic Corporation Wireless receiving apparatus
JP2012109752A (ja) * 2010-11-17 2012-06-07 Nec Corp アレイアンテナ装置およびそのインピーダンス整合方法

Also Published As

Publication number Publication date
JPWO2007094050A1 (ja) 2009-07-02
EP1986344A1 (en) 2008-10-29
US20090267842A1 (en) 2009-10-29

Similar Documents

Publication Publication Date Title
WO2007094050A1 (ja) 携帯無線装置
JP4637502B2 (ja) 無線通信端末およびアンテナ切替制御方法
US9559756B2 (en) Antenna system optimized for SISO and MIMO operation
US7535969B2 (en) Frequency selective transmit signal weighting for multiple antenna communication systems
CA2519370C (en) Wireless telephone antenna diversity system
US7702298B2 (en) Method and apparatus to provide multiple-mode spatial processing in a radio receiver
AU2002314955B2 (en) Method and apparatus for frequency selective beam forming
US8116259B2 (en) Method and system for diversity processing based on antenna switching
US20080214243A1 (en) Communication device with diversity antenna
JP2003504957A (ja) 制御式アンテナダイバーシチ
JPH08154062A (ja) 信号品質を用いた帯域切り換え受信方式
AU2003287326A1 (en) Multi-mode terminal in a wireless MIMO system with spatial multiplexing
US8767860B2 (en) Frequency selective transmit signal weighting for multiple antenna communication systems
US8396044B2 (en) Method and system for antenna architecture for WCDMA/HSDPA/HSUDPA diversity and enhanced GSM/GPRS/edge performance
AU4479299A (en) Antenna impedance adjuster
EP1398887B1 (en) Dual band diversity receiver
WO2007141878A1 (ja) ダイバーシチ受信装置及びダイバーシチ受信方法
JP2008011329A (ja) 携帯通信機およびアンテナ制御方法
JPH11150497A (ja) ダイバーシティ受信機
JP4598978B2 (ja) 無線受信機
JP2001119222A (ja) 小型無線機
US20120108195A1 (en) Method for matching an antenna of a portable terminal and apparatus for same
JP3601302B2 (ja) ダイバーシチ受信装置
KR100609588B1 (ko) 다이버시티 기능을 가지는 트리플 밴드 타입의 이동 통신단말기
JP2001094492A (ja) 多様な偏波で信号を受信するための少なくとも2つのアンテナを備えた移動無線通信端末装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2007533805

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 12094865

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2006713694

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE