WO2007091685A1 - ガスケットおよびその製造方法 - Google Patents

ガスケットおよびその製造方法 Download PDF

Info

Publication number
WO2007091685A1
WO2007091685A1 PCT/JP2007/052399 JP2007052399W WO2007091685A1 WO 2007091685 A1 WO2007091685 A1 WO 2007091685A1 JP 2007052399 W JP2007052399 W JP 2007052399W WO 2007091685 A1 WO2007091685 A1 WO 2007091685A1
Authority
WO
WIPO (PCT)
Prior art keywords
curable resin
curing
semi
gasket
active energy
Prior art date
Application number
PCT/JP2007/052399
Other languages
English (en)
French (fr)
Inventor
Ryoichi Takahasahi
Yasushi Imai
Original Assignee
Bridgestone Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bridgestone Corporation filed Critical Bridgestone Corporation
Priority to CN2007800047631A priority Critical patent/CN101384843B/zh
Priority to JP2007557910A priority patent/JPWO2007091685A1/ja
Publication of WO2007091685A1 publication Critical patent/WO2007091685A1/ja

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16JPISTONS; CYLINDERS; SEALINGS
    • F16J15/00Sealings
    • F16J15/02Sealings between relatively-stationary surfaces
    • F16J15/14Sealings between relatively-stationary surfaces by means of granular or plastic material, or fluid
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • C09K3/10Materials in mouldable or extrudable form for sealing or packing joints or covers

Definitions

  • the present invention relates to a method for manufacturing a gasket, and more specifically, a gasket capable of manufacturing a tall gasket without requiring a sheet punching or bonding process without using a mold, and the gasket. It relates to a manufacturing method.
  • HDD gaskets for hard disk devices
  • a method of forming a desired cross-sectional shape with a mold (see Patent Document 1), a method of sticking a punched piece of a urethane foam sheet or a solid rubber sheet sheet to a cover plate, a solid rubber on both sides of the plate by transfer molding or injection molding
  • the plastic elastomer was manufactured by a method such as injection molding on a plate surface and integration (see Patent Document 2).
  • the dispensing method is a method in which a die having a long lead time to manufacture and an initial cost is unnecessary, and the gasket shape is directly written on the cover plate. Therefore, there is an advantage that a process such as an attaching process is unnecessary.
  • HDD gaskets have already been applied to the manufacture of gaskets for large equipment such as 3.5 inch (88.9mm) HDDs. The majority of 3.5-inch HDD gaskets are manufactured using this method.
  • 2.5-inch (63.5 mm) HDDs are becoming mainstream, and 1.8-inch (45.7 mm) and 1-inch (25.4 mm).
  • Small HDDs have also been commercialized. HDD gaskets used for these small HDDs require wall-like gaskets with a narrower line width and higher height.
  • Patent Document 1 Publication No. 2003-247644
  • Patent Document 1 2001-302874
  • the liquid curable resin extruded from the dispenser force is formed into a gasket shape by a single stroke, so the cross-sectional shape of the gasket is semicircular due to the weight of the liquid curable resin. The shape will be crushed.
  • the present invention provides a gasket manufacturing method capable of forming a gasket having a narrow line width and a high height on the surface of a member to be formed such as a cover body under such circumstances. It is the purpose.
  • the method for manufacturing a gasket according to the first aspect of the present invention includes a first discharge step of discharging a liquid curable resin onto a surface of a member to be formed, and the above-described discharge discharged in the first discharge step.
  • a semi-curing step for semi-curing curable resin a second discharging step for discharging the liquid curable resin on the curable resin semi-cured by the semi-curing step, and the first And a complete curing step of completely curing the curable resin discharged in the discharging step and the curable resin discharged in the second discharging step.
  • the liquid hard The curable resin is discharged onto the surface of the member to be formed, and then the curable resin discharged in the first discharge process is semi-cured in the semi-curing process.
  • liquid curable resin is discharged on the curable resin semi-cured in the semi-curing step, and in the complete curing step, the liquid is discharged in the first discharge step.
  • the cured curable resin (semi-cured) and the curable resin discharged in the second discharge step (uncured) are completely cured.
  • the curable resin discharged in the first discharging process is semi-cured in the semi-curing process, even if the curable resin is discharged on the top to raise the height, the lower semi-cured resin
  • the cured curable resin can maintain the shape after discharge without being crushed by weight, and a high dimensional accuracy gasket with a narrow line width and high height can be obtained on the surface of a member such as a cover body.
  • the curable resin is cured by irradiation with active energy rays, and the irradiation intensity of the active energy rays in the semi-curing step is the same as that in the complete hardening step. It may be set smaller than the irradiation intensity of active energy rays!
  • semi-curing can also be defined as the cured state obtained when the irradiation intensity of 1Z20 to 1Z5 is applied to the irradiation intensity at which complete curing is performed.
  • Irradiation intensity strength of active energy rays in the semi-curing process If the irradiation intensity of the active energy lines in the complete curing process is equal to or greater than the irradiation intensity of the curable resin discharged in the first discharge process, The degree of cure of the curable resin discharged in the second discharge process is greatly different (the degree of cure of the curable resin discharged in the first discharge process is the same as that of the second discharge process). Harder than the degree of curing of the resin), when the gasket is compressed, etc., the curable resin discharged in the first discharge process (cured) and the curability discharged in the second discharge process There is a risk of peeling and the like at the boundary between the fat and resin (cured).
  • the irradiation intensity of the active energy line in the semi-curing process is set lower than the irradiation intensity of the active energy beam in the complete curing process.
  • the difference between the curing degree of the curable resin discharged in the first discharging process and the curing degree of the curable resin discharged in the second discharging process is calculated. It can be made small, and the occurrence of the above-mentioned peeling can be suppressed.
  • the irradiation intensity of the active energy line in the semi-curing step is set to 1Z20 to 1Z5 which is the irradiation intensity of the active energy ray in the complete curing step. It may be set within the range.
  • the curable resin discharged in the first discharging process Peeling can be further suppressed at the boundary between the oil (cured) and the curable resin (cured) discharged in the second discharge step.
  • the discharging process for discharging the liquid curable resin and the curing process for curing the discharged curable resin are alternately performed.
  • the curing process is performed so that all the curable resin is completely cured in the final curing process!
  • the curable resin is semi-cured.
  • the liquid curable resin is discharged, for example, on the surface of the member to be formed in the first discharge process, and the hardening process of the discharged curable resin is performed in the hardening process. Is done.
  • liquid curable resin is discharged so as to be stacked on the semi-cured curable resin, and in the curing step, the stacked curable resin is cured. .
  • a curable resin is stacked. The height becomes higher.
  • the curing process is performed so that all the curable resin is completely cured.
  • the lower curable resin at the time of stacking is semi-cured in the curing process before the final curing process.
  • the lower semi-cured curable resin can maintain the shape after discharge without being crushed by weight. Therefore, according to the gasket manufacturing method of the second aspect, the gasket is obtained on the surface of a member to be formed such as a cover body with a narrow line width, high height and good dimensional accuracy.
  • FIG. 1 is a plan view of a cover body on which a gasket is formed.
  • FIG. 2A is a cross-sectional view of a cover body on which a first layer is formed.
  • FIG. 2B is a cross-sectional view of the cover body on which the second layer is formed (cross-sectional view taken along line 2B-2B in FIG. 1).
  • FIG. 1 shows a cover body 12 in which the gasket 10 is integrated.
  • This gasket 10 is obtained by linearly discharging a liquid curable resin on the surface of the cover body 12 to be hardened.
  • the curable resin it is preferable to use a urethane, an epoxy polymer, silicone, or a resin mainly composed of at least one selected from those modified.
  • the curable resin is most preferably composed mainly of acrylic-modified urethane.
  • the acrylic-modified urethane include a polyether polyol urethane acrylate oligomer, a polyester polyol urethane acrylate oligomer, or a urethane acrylate oligomer having both an ether group and an ester group in the molecule and a carbonate group.
  • examples thereof include urethane acrylate oligomers of carbonate diol.
  • the polyether polyol include polyethylene glycol, polypropylene glycol, polytetramethylene glycol, and polyethylene.
  • Rihexamethylene glycol and 1,3 butylene glycol, 1,4-butylene glycol, 1,6 hexanediol, neopentyl glycol, cyclohexanedimethanol, 2,2 bis (4 hydroxycyclohexyl) propane, bisphenol A compound in which ethylene oxide or propylene oxide is added to A or the like can be used.
  • the polyester polyol can be obtained by reacting an alcohol component and an acid component.
  • an alcohol component for example, polyethylene glycol, polypropylene glycol, polytetramethylene glycol mononore, 1,3 butylene glycolenole, 1,4-butyleneglycol Nole, 1,6-hexanediol, neopentyl glycol, 1,4-cyclohexanedimethanol, 2,2 bis (4-hydroxycyclohexyl) propane, bisphenol A, etc., ethylene oxide or propylene oxide, etc.
  • a compound obtained by simultaneously reacting the above-mentioned alcohol component, acid component, and ⁇ -force prolatatone can also be used as the polyester polyol.
  • Carbonic acid diols include, for example, diphenyl carbonate, bis-black-mouthed phenolate, dinaphtholene carbonate, phenyl root ruyl carbonate, phenyl-chlorophenyl carbonate, 2 tolyl 4 tolyl carbonate, dimethyl.
  • Diaryl carbonate or dialkyl carbonate such as carbonate and jetyl carbonate and diols such as 1,6 hexanediol, neopentyl glycol, 1,4 butanediol, 1,8 octanediol, 1,4-cyclohexane Reaction of xanthodiethanol, 2-methylpropanediol, dipropylene glycol, dibutylene glycol or the above diol compounds with dicarboxylic acids such as oxalic acid, malonic acid, succinic acid, adipic acid, azelaic acid, hexahydrophthalic acid, etc.
  • Product, or a reaction product of ⁇ - force Purorata tons can be obtained by transesterification of the polyester diol.
  • the polycarbonate diol thus obtained is a monocarbonate diol having one carbonate structure in the molecule or a polycarbonate diol having two or more carbonate structures in the molecule.
  • Acrylic-modified urethane is a urethane acrylate oligomer of polyether polyol and polyester polyol
  • organic diisocyanates include isophorone diisocyanate, 4,4'-dicyclohexylenomethane diisocyanate and Kisame chilled diisocyanate is particularly preferred.
  • a known photopolymerization initiator can be blended with the curable resin used in the present invention.
  • photopolymerization initiators include benzoin alkyl ethers such as benzoinethyl ether, benzoin isobutyl ether, and benzoin isopropyl ether; 2, 2 methoxyacetophenone, 4'-phenoxy 2, 2 dichloroacetophenone, etc.
  • Anthraquinone series such as hexyl phenyl ketone, 2-ethyl anthraquinone, and 2-cloanthraquinone; in addition, thixanthone series photopolymerization initiators and the like can be mentioned.
  • photopolymerization initiators can be used alone or in combination of two or more.
  • the blending amount is preferably 0.5 to 5 parts by mass, more preferably 1 to 3 parts by mass, per 100 parts by mass of the acrylic-modified urethane as the main component.
  • the curable resin used in the present invention may contain a photosensitizer, a thermal polymerization inhibitor, a curing accelerator, a pigment and the like as long as the effects of the present invention are not impaired.
  • Viscosity at OZ second is 100 ⁇ 10 OOOPas force S preferred ⁇ , 200 ⁇ 5000Pas force S preferred ⁇ , 500 ⁇ 1000Pas force more preferred Yes. If the viscosity is less than lOOPas, the gasket shape cannot be maintained due to the large fluidity. If this viscosity exceeds lOOOOPas, it will be difficult to shape the gasket shape.
  • the relationship between the common logarithm of viscosity (y) and the common logarithm of shear rate (X) 3 ⁇ 4y —ax + b (a and b are positive numbers)
  • the value of a is preferably 0.3 or more, more preferably 0.35 or more, and still more preferably 0.40 or more. If the value of a is less than 0.3, the shear rate dependence of viscosity is small, so the viscosity is too low to hold the shape Powerful! /, Has a viscosity that is too high to extrude the curable resin, resulting in inconvenience.
  • Examples of the method for adjusting the viscosity of the curable resin containing the components described above and the relationship between the viscosity and the shear rate to the above range include a method for controlling the molecular weight of the polymerized oligomer and a method for controlling the polarity. .
  • the cover body 12 integrated with the gasket 10 formed by extruding and curing a curable resin can be formed of a synthetic resin such as metal or thermoplastic resin.
  • semi-curing can be defined as a cured state obtained when irradiated with irradiation intensity of 1Z20 to 1Z5 with respect to irradiation intensity for complete curing.
  • Table 1 represents the presence or absence of peeling of the formed state, at the boundary surface between the first stage and constriction of the second stage in the case of the gasket height lmm, a fully cured condition and irradiation intensity 2000mjZ cm 2.
  • Peeling at the boundary surface is (0 whether or not it is peeled off at the boundary surface between the first stage and the second stage by soaking in toluene, force that tears at GO Tensilon etc., and peeling occurs at the boundary surface. This is done by testing a test method such as the force at which the gasket material itself breaks (actually, the 0 method can be clearly distinguished).
  • a curable resin having active energy ray curability is used, and this is used with a three-dimensional automatic coating control device, as shown in FIG. 2A.
  • the first layer 10A is formed on the surface of the cover body 12 with a single stroke (discharge process)
  • the first layer 10A is semi-cured by irradiation with active energy rays (semi-curing process).
  • the three-dimensional automatic coating control device used for discharging the liquid curable resin onto the cover body is not particularly limited, but is a pneumatic type, screw type, cylinder type, tube type or the like. Equipped with equipment.
  • the active energy rays used for curing the curable resin include, for example, ultraviolet rays and electron beams,
  • Ionizing radiation such as alpha rays, j8 rays, and zero rays.
  • ultraviolet rays it is preferable to add a photopolymerization initiator and Z or a photosensitizer to the curable resin.
  • ionizing radiation such as an electron beam or an electron beam is used, curing can proceed promptly without the inclusion of a photopolymerization initiator or a photosensitizer.
  • Examples of the ultraviolet ray source include a xenon lamp, a low-pressure mercury lamp, a high-pressure mercury lamp, and an ultra-high pressure mercury lamp.
  • the atmosphere for irradiating ultraviolet rays is an inert gas atmosphere such as nitrogen gas or carbon dioxide gas! / Is preferably an atmosphere with a reduced oxygen concentration.
  • the ultraviolet curable resin can be cured even in the atmosphere.
  • the irradiation atmosphere temperature can usually be 10 to 200 ° C.
  • liquid curable resin is discharged on the semi-cured first layer 10A to form the second layer 10B.
  • the first layer 10A and the second layer 10B are completely cured by irradiation with active energy rays (final curing step), whereby the tall gasket 10 is completed on the cover body 12.
  • the active energy ray is applied to the active energy ray irradiation device so as to move in conjunction with the movement of the extrusion port of the three-dimensional automatic coating control device, that is, immediately after being discharged onto the cover body. It may be controlled to sequentially irradiate the curable resin.
  • the irradiation intensity of the active energy ray when the first layer 10A is semi-cured is 1Z20 to the irradiation intensity of the active energy ray in the complete curing process in which the first layer 10A and the second layer 10B are completely cured.
  • About 1Z5 is preferable.
  • the semi-curing here does not mean that the degree of curing is 50%. Even if a liquid curable resin is layered on the first layer 10A, the shape can be maintained without being crushed by its own weight. It means that it is cured to a certain extent.
  • the first layer 10A may be insufficiently cured and the shape of the first layer 10A may not be maintained. is there.
  • the irradiation intensity of the active energy rays when the first layer 10A is semi-cured exceeds the above range, the degree of curing is extremely different between the first layer 10A and the second layer 10B after the complete curing process. (For example, the first layer 10A is excessively cured), the boundary force between the first layer 10A and the second layer 10B may be peeled off in a compressed state.
  • the gasket 10 of the present embodiment has a force formed by the first layer 10A and the second layer 10B, and further includes a layer formed on the second layer 10B, and is configured by three or more layers. Also good.
  • the curable resin is discharged, it is semi-cured to maintain the shape of the layer, and then discharged to pile up the curable resin. In the final curing process, all layers are cured. Harden the fat.
  • curable resin for example, UV-crosslinked urethane Ecllipse manufactured by Emmenty Specialties of the United States, including acrylic-modified urethane, may be used. Of course, other types of curable resin may be used.
  • CENTURY C7 20 manufactured by NORDSON hereinafter referred to as device 1
  • liquid coating robot 350F-3 manufactured by Suntech hereinafter referred to as device 2
  • the ultraviolet irradiation device for example, a NOVACURE ultraviolet irradiation device manufactured by EFOS can be used.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)
  • Casting Or Compression Moulding Of Plastics Or The Like (AREA)

Abstract

 ガスケットの製造方法は、最初に、液状の硬化性樹脂をカバー体12の表面に吐出し、その後、紫外線照射により半硬化させる(第1層10Aの形成)工程を含む。次に、半硬化させた硬化性樹脂の上に液状の硬化性樹脂を吐出し(第2層10Bの形成)、その後、第1層10A、及び第2層10Bを完全硬化させる。第1層10Aは半硬化されているので、その上に硬化性樹脂を吐出して第2層10Bを積み重ねても下側の第1層10Bは重みで潰れることなく吐出後の形状を保持することができる。したがって、線幅が狭く、かつ高さが高い寸法精度の良いガスケット10がカバー体12の表面に得られる。ディスペンシング法により、高さの高いガスケットを形成するガスケットの製造方法が提供される。

Description

ガスケットおよびその製造方法
技術分野
[0001] 本発明は、ガスケットの製造方法に関し、さらに詳しくは、金型を用いることなぐシ ートの打ち抜きや接着工程を必要とすることなく背の高いガスケットを製造することの できるガスケットおよびその製造方法に関する。
背景技術
[0002] 近年、コンピュータのハードディスク装置にぉ 、ては、高性能化、小型化が進み、 複雑な回路構成を有するようになっており、わずかな塵によっても障害が起こるため、 実用上、防塵の必要性が高まっており、ガスケットを使って塵の侵入を防ぐことが一 般に行われている。
[0003] 従来、ハードディスク装置用ガスケット(以下、 HDDガスケットと称することがある)は
、金型で所望の断面形状に成形する方法 (特許文献 1参照)、ウレタンフォームシート やソリッドゴムシートシートの打ち抜き物をカバープレートに貼り付ける方法、ソリッドゴ ムをトランスファー成形又は射出成形によりプレート両面にブリッジし、プレートと一体 化する方法、ディスペンサーを用いて溶融榭脂又は溶液状榭脂をプレート面に一筆 書きによりガスケット形状に押し出し、一体化するデイスペンシング法、接着性榭脂を 配合した熱可塑性エラストマ一をプレート面に射出成形し、一体化する方法 (特許文 献 2参照)などの方法により製造されて 、た。
[0004] これらの製造方法のうち、デイスペンシング法は、製造までのリードタイムが長ぐか つ初期コストがかかる金型が不要であり、カバープレートに対して直接ガスケット形状 を書き出す方法であるので、貼り付け工程などの工程が不要である、というメリットが ある。
[0005] このディスペンシング法は、工業的に広く使用されており、 HDDガスケットに関して も、すでに 3. 5インチ(88.9mm) HDDなどの大型の装置用ガスケットの製造にディ スペンシング法が適用されており、 3. 5インチ HDDガスケットの大半は、この方法に より製造されている。 [0006] 一方、 HDDの小型化技術の進歩により、現在では 2. 5インチ(63.5mm)の HDD が主流となりつつあり、さらには 1. 8インチ(45. 7mm)、 1インチ(25. 4mm)の小型 HDDも製品化されてきている。これらの小型 HDDに用いる HDDガスケットには、線 幅がより狭ぐかつ高さの高い、壁のようなガスケットが必要とされている。
特許文献 1: 2003 - 247644号公報
特許文献 1: 2001— 302874号公報
発明の開示
発明が解決しょうとする課題
[0007] しかしながら、デイスペンシング法では、ディスペンサー力 押し出された液状の硬 化性榭脂を一筆書きによりガスケット形状とするため、ガスケットの断面形状は、液状 の硬化性榭脂の自重により半円が潰れたような形状のものとなってしまう。
[0008] そのため、線幅が狭ぐかつ高さが高いガスケットを形成することが困難であり、また 、ガスケットの高さや幅の精度を求めることができないため、 3. 5インチ HDDガスケッ トの製造法として主流となっているディスペンシング法は、 2. 5インチ HDDガスケット や、これよりも小さい HDDガスケットの製造には適用できないとされており、実際、そ のような製品は巿場には見られない。
[0009] 本発明は、このような状況下で、線幅が狭ぐかつ高さの高いガスケットをカバー体 等の被形成部材の表面に形成することができるガスケットの製造方法を提供すること を目的とするものである。
課題を解決するための手段
[0010] 本発明の第 1の態様のガスケットの製造方法は、液状の硬化性榭脂を被形成部材 の表面に吐出する第 1の吐出工程と、前記第 1の吐出工程で吐出された前記硬化性 榭脂を半硬化させる半硬化工程と、前記半硬化工程により半硬化させた前記硬化性 榭脂の上に液状の前記硬化性榭脂を吐出する第 2の吐出工程と、前記第 1の吐出 工程で吐出された前記硬化性榭脂、及び前記第 2の吐出工程で吐出された前記硬 化性榭脂を完全に硬化させる完全硬化工程と、を有する。
[0011] 次に、第 1の態様のガスケットの製造方法の作用を説明する。
第 1の態様のガスケットの製造方法では、先ず第 1の吐出工程において、液状の硬 化性榭脂が被形成部材の表面に吐出され、その後、半硬化工程において、第 1の吐 出工程で吐出された硬化性榭脂が半硬化される。
[0012] その後、第 2の吐出工程において、半硬化工程により半硬化させた硬化性榭脂の 上に液状の硬化性榭脂を吐出し、完全硬化工程において、第 1の吐出工程で吐出さ れた硬化性榭脂(半硬化されて ヽる)、及び第 2の吐出工程で吐出された硬化性榭 脂 (未硬化)を完全に硬化させる。
[0013] 第 1の吐出工程で吐出された硬化性榭脂は半硬化工程において半硬化されてい るので、その上に硬化性榭脂を吐出して背を高くしても下側の半硬化された硬化性 榭脂は重みで潰れることなく吐出後の形状を保持することができ、線幅が狭ぐかつ 高さの高い寸法精度の良いガスケットをカバー体等の被形成部材の表面に得られる
[0014] 本発明の第 1の態様において、前記硬化性榭脂の硬化は活性エネルギー線の照 射により行われ、前記半硬化工程での活性エネルギー線の照射強度が前記完全硬 化工程での活性エネルギー線の照射強度よりも小さく設定される、ようにしてもよ!、。 この場合には、半硬化を、完全硬化を行う照射強度に対し、その 1Z20から 1Z5の 照射強度で照射したときに得られる硬化状態として、定義することもできる。
[0015] 上記形態におけるガスケットの製造方法の作用を、以下説明する。
半硬化工程での活性エネルギー線の照射強度力 完全硬化工程での活性ェネル ギ一線の照射強度と同等または、大きい場合、第 1の吐出工程で吐出された硬化性 榭脂の硬化度合いと、第 2の吐出工程で吐出された硬化性榭脂の硬化度合いとが 大きく異なり(第 1の吐出工程で吐出された硬化性榭脂の硬化度合が、第 2の吐出ェ 程で吐出された硬化性榭脂の硬化度合いよりも極端に大)、ガスケットを圧縮した場 合等に、第 1の吐出工程で吐出された硬化性榭脂 (硬化済み)と第 2の吐出工程で 吐出された硬化性榭脂 (硬化済み)との間の境界で剥がれ等を生ずる虞がある。
[0016] これに対し、上記形態によるガスケットの製造方法では、半硬化工程での活性エネ ルギ一線の照射強度を、完全硬化工程での活性エネルギー線の照射強度よりも小さ く設定したので、完全硬化工程後において、第 1の吐出工程で吐出された硬化性榭 脂の硬化度合いと、第 2の吐出工程で吐出された硬化性榭脂の硬化度合いとの差を 小さくすることができ、上記剥がれの発生を抑えることができる。
[0017] 更に、上記形態でのガスケットの製造方法にぉ 、て、前記半硬化工程での活性ェ ネルギ一線の照射強度を、前記完全硬化工程での活性エネルギー線の照射強度の 1Z20〜1Z5の範囲内に設定するようにしてもよい。
[0018] この形態におけるガスケットの製造方法の作用を、以下説明する。
半硬化工程での活性エネルギー線の照射強度を、完全硬化工程での活性エネル ギ一線の照射強度の 1Z20〜1Z5の範囲内に設定することで、第 1の吐出工程で 吐出された硬化性榭脂 (硬化済み)と第 2の吐出工程で吐出された硬化性榭脂 (硬 化済み)との間の境界で剥がれをより一層抑えることが出来る。
[0019] なお、半硬化工程での活性エネルギー線の照射強度力 完全硬化工程での活性 エネルギー線の照射強度の 1Z20未満では、硬化度合いが少なく過ぎて、第 1の吐 出工程で吐出された硬化性榭脂の形状を保持できなくなる虞がある。
一方、半硬化工程での活性エネルギー線の照射強度力 完全硬化工程での活性 エネルギー線の照射強度の 1Z5を超えると、上記剥がれの発生を抑えることができ なくなる虞がある。
[0020] 本発明の第 2の態様のガスケットの製造方法は、液状の硬化性榭脂を吐出する吐 出工程と、吐出された硬化性榭脂を硬化させる硬化工程と、を交互に行うことにより 硬化性榭脂層を積み上げる際に、最終の硬化工程においては全ての硬化性榭脂が 完全に硬化するように硬化処理を行!ヽ、最終の硬化工程よりも前の硬化工程にぉ 、 ては、硬化性榭脂を半硬化させる。
[0021] 次に、本発明の第 2の態様のガスケットの製造方法の作用を説明する。
第 2の態様のガスケットの製造方法では、最初の吐出工程において、液状の硬化 性榭脂が例えば、被形成部材の表面に吐出され、硬化工程において、吐出された硬 化性榭脂の硬化処理が行われる。
[0022] 次の吐出工程においては、半硬化させた硬化性榭脂の上に積み重ねるように液状 の硬化性榭脂を吐出し、硬化工程において、積み重ねた硬化性榭脂の硬化処理が 行われる。
このような吐出工程、及び硬化工程を交互に行うことで、硬化性榭脂が積み重ねら れてその高さが高くなる。なお、最終の硬化工程においては、全ての硬化性榭脂が 完全に硬化するように硬化処理が行われる。
[0023] 積み重ねる際の下側の硬化性榭脂は、最終の硬化工程の前の硬化工程において 半硬化されて ヽるので、その上に硬化性榭脂を吐出して背を高くしても下側の半硬 ィ匕された硬化性榭脂は重みで潰れることなく吐出後の形状を保持することができる。 したがって、第 2の態様のガスケットの製造方法によれば、線幅が狭ぐかつ高さの 高 、寸法精度の良 、ガスケットがカバー体等の被形成部材の表面に得られる。 発明の効果
[0024] 本発明のガスケットの製造方法によれば、金型を用いることなぐシートの打ち抜き や接着工程を必要とすることなぐ高さの高いガスケットを製造することができる。 図面の簡単な説明
[0025] [図 1]ガスケットの形成されたカバー体の平面図である。
[図 2A]第 1層の形成されたカバー体の断面図である。
[図 2B]第 2層の形成されたカバー体の断面図である(図 1の 2B— 2B線断面図)。 発明を実施するための最良の形態
[0026] 図 1には、ガスケット 10が一体化されたカバー体 12が示されている。
このガスケット 10は、液体状の硬化性榭脂をカバー体 12の表面に線状吐出して硬 化させたものである。
[0027] 硬化性榭脂としては、特には、ウレタン、エポキシ系重合体、シリコーンおよびこれ らを変性したものの中力 選ばれる少なくとも 1種を主成分とするものを用いることが 好ましい。
[0028] 硬化性榭脂としては、これらの中でも、アクリル変性されたウレタンを主成分とするも のが最も好ましい。アクリル変性されたウレタンとしては、ポリエーテルポリオールのゥ レタンアタリレートオリゴマー、ポリエステルポリオールのウレタンアタリレートオリゴマ 一、あるいは、エーテル基およびエステル基の両方を分子中に有するウレタンアタリ レートオリゴマーおよびカーボネート基を有するカーボネートジオールのウレタンァク リレートオリゴマー等を挙げることができる。ポリエーテルポリオールとしては、例えば 、ポリエチレングリコール、ポリプロピレングリコール、ポリテトラメチレングリコール、ポ リへキサメチレングリコールおよび 1, 3 ブチレングリコール、 1, 4ーブチレングリコ ール、 1, 6 へキサンジオール、ネオペンチルグリコール、シクロへキサンジメタノー ル、 2, 2 ビス(4 ヒドロキシシクロへキシル)プロパン、ビスフエノール A等に、ェチ レンォキシドまたはプロピレンォキシド等が付加したィ匕合物を用いることができる。
[0029] ポリエステルポリオールは、アルコール成分と酸成分とを反応させて得ることができ 、例えば、ポリエチレングリコール、ポリプロピレングリコール、ポリテトラメチレングリコ 一ノレおよび 1, 3 ブチレングリコーノレ、 1, 4ーブチレングリコーノレ、 1, 6 へキサン ジオール、ネオペンチルグリコール、 1, 4ーシクロへキサンジメタノール、 2, 2 ビス( 4ーヒドロキシシクロへキシル)プロパン、ビスフエノール A等にエチレンォキシドまた はプロピレンォキシド等が付加したィ匕合物、あるいは、 ε—力プロラタトンが付加した 化合物等をアルコール成分とし、アジピン酸、セバシン酸、ァゼライン酸、ドデカンジ カルボン酸等の二塩基酸およびその無水物を酸成分として使用することができる。
[0030] 上記のアルコール成分、酸成分および ε—力プロラタトンの三者を同時に反応させ ることによって得られる化合物も、ポリエステルポリオールとして使用することができる 。また、カーボネートジオールは、例えば、ジフエ-ルカーボネート、ビス クロ口フエ 二ノレカーボネート、ジナフチノレカーボネート、フエ二ルートルイルーカーボネート、フ ェニルークロロフエ二ルーカーボネート、 2 トリル 4 トリル カーボネート、ジメチ ルカーボネート、ジェチルカーボネート等のジァリールカーボネートまたはジアルキ ルカーボネートとジオール類、例えば、 1, 6 へキサンジオール、ネオペンチルグリ コール、 1, 4 ブタンジオール、 1, 8 オクタンジオール、 1, 4ーシクロへキサンジメ タノール、 2—メチルプロパンジオール、ジプロピレングリコール、ジブチレングリコー ルまたは上記のジオール化合物とシユウ酸、マロン酸、コハク酸、アジピン酸、ァゼラ イン酸、へキサヒドロフタル酸等のジカルボン酸の反応生成物、または ε—力プロラタ トンの反応生成物であるポリエステルジオール等とのエステル交換反応によって得る ことができる。
[0031] このようにして得られるポリカーボネートジオールは分子中にカーボネート構造を一 つ有するモノカーボネートジオールまたは分子中にカーボネート構造を二つ以上有 するポリカーボネートジオールである。本発明で用いる硬化性榭脂において、特に好 まし 、アクリル変性されたウレタンは、ポリエーテルポリオールおよびポリエステルポリ オールのウレタンアタリレートオリゴマーであり、有機ジイソシァネートとしては、イソホ ロンジイソシァネート、 4, 4'ージシクロへキシノレメタンジイソシァネートおよびへキサメ チレンジイソシァネートが特に好まし 、。
[0032] 本発明で用いる硬化性榭脂には、公知の光重合開始剤を配合することができる。
光重合開始剤としては、例えば、ベンゾインェチルエーテル、ベンゾインイソブチル エーテル、ベンゾインイソプロピルエーテル等のベンゾインアルキルエーテル系; 2, 2 ジェトキシァセトフェノン、 4 '—フエノキシ 2, 2 ジクロロアセトフエノン等のァセ トフエノン系; 2 -ヒドロキシ 2 メチルプロピオフエノン、 4'—イソプロピル 2 ヒド ロキシ 2 メチルプロピオフエノン、 4'ードデシルー 2 ヒドロキシ 2 メチルプロ ピオフエノン等のプロピオフエノン系;ベンジルジメチルケタール、 1—ヒドロキシシクロ へキシルフェニルケトンおよび 2—ェチルアントラキノン、 2—クロ口アントラキノン等の アントラキノン系;その他、チォキサントン系光重合開始剤等を挙げることができる。
[0033] これらの光重合開始剤は、 1種を単独で、または 2種以上を組み合わせて使用する ことができる。光重合開始剤を使用する場合、その配合量は、主成分であるアクリル 変性されたウレタン 100質量部あたり、 0. 5〜5質量部が好ましぐより好ましくは 1〜 3質量部である。
[0034] また、本発明で用いる硬化性榭脂には、光増感剤、熱重合禁止剤、硬化促進剤、 顔料等を、本発明の効果を損なわない範囲で配合することができる。
[0035] 硬化性榭脂において、温度 23° C、剪断速度 1. OZ秒における粘度は 100〜10 OOOPas力 S好まし <、 200〜5000Pas力 Sより好まし <、 500〜1000Pas力更に好まし い。この粘度が lOOPas未満であると、流動性が大きいために、ガスケット形状を保持 することができない。また、この粘度が lOOOOPas超えると、ガスケット形状に賦形しに くい。
[0036] また、本発明で用いる硬化性榭脂において、粘度の常用対数 (y)と剪断速度の常 用対数 (X)の関係 ¾y=— ax+b (a及び bは正数)としたときに、 aの値は 0. 3以上が 好ましぐ 0. 35以上がより好ましぐ 0. 40以上が更に好ましい。 aの値が 0. 3未満で あると、粘度の剪断速度依存性が小さいため、粘度が低すぎて形状保持ができない 力 ある!/、は粘度が高すぎて硬化性榭脂を押し出すことができな 、と 、う不都合が生 じる。上述した成分を含有する硬化性榭脂の粘度、及び粘度の剪断速度との関係を 上記の範囲に調整する方法としては、重合オリゴマーの分子量を制御する方法、極 性を制御する方法等がある。
[0037] なお、硬化性榭脂を押し出し、硬化させてなるガスケット 10と一体ィ匕されるカバー体 12は、金属や熱可塑性榭脂等の合成樹脂で形成することができる。
[0038] (半硬化)
前記半硬化工程に活性エネルギー線を用いる場合において、半硬化を、完全硬化 を行う照射強度に対し、その 1Z20から 1Z5の照射強度で照射したときに得られる 硬化状態として、定義することができると前述したが、以下、実験例をもとに半硬化に ついて詳述する。表 1は、ガスケット高さ lmm、完全硬化条件を照射強度 2000mjZ cm2とする場合の第 1段目と第 2段目のくびれの形成状態、境界面での剥離の有無 を表している。境界面での剥離状況は、(0トルエンに浸漬させることにより、第 1段目 と第 2段目との境界面で剥離するかどうか、 GOテンシロン等で引裂き、境界面で剥離 が起こる力 剥離が生じず、ガスケットの材料自体が破断する力 等の試験方法を試 みることにより行う(実際には (0の方法の方が明確に区別できる)。
[0039] この実験の結果では、完全硬化条件である照射強度 2000mjZcm2に対し、その 1 Z20以下の強度の場合には、 1段目と 2段目の間にくびれが発生せず、区別がつか ない。また、完全硬化条件の照射強度に対し、 1Z5より大きい場合には、第 1段目と 第 2段目との間で剥離が生じ剥れてしまう。この結果から
、上記の定義が概ね妥当することが理解できる。
[0040] [表 1] 範囲 強度 断面例 1段— 2段 補足 定義
1/40 50 (1)
区別がつかない くびれは 未硬化
1箇所以下
1/20 100 (2) 剥れない
(略同一高
1/10 200 剥れない さの箇所に) 半硬化 くびれが 2箇
1/5 400
Figure imgf000011_0001
剥れない 所ある
3/10 600 断面形状は上記(2)に同じ 剥れる くびれは 2茵
1/2 1000 断面形状は上記(2)に同じ 剥れる 尸; fある。 表面硬化
7/10 1400 断面形状は上記(2)に同じ 剥れる
1/1 2000 断面形状は上記(2)に同じ 剥れる
[0041] (製造工程)
本実施形態のガスケットの製造方法にぉ ヽては、活性エネルギー線硬化性を有す る硬化性榭脂を使用して、これを三次元自動塗装制御装置を用い、図 2Aに示すよう に、カバー体 12の表面に一筆書きで第 1層 10Aを形成させた後(吐出工程)、この第 1層 10Aを活性エネルギー線の照射により半硬化させ(半硬化工程)させる。
[0042] 液状の硬化性榭脂をカバー体上へ吐出する際に用いる三次元自動塗装制御装置 としては、特に制限されるものではなぐ空圧式、スクリュー式、シリンダー式、チュー ブ式等の押し出し装置を備えて 、る。
[0043] 硬化性榭脂の硬化に用いる活性エネルギー線とは、例えば、紫外線及び電子線、
α線、 j8線、 0線等の電離性放射線をいう。紫外線を用いる場合には硬化性榭脂に 光重合開始剤及び Z又は光増感剤を含有させることが好まし 、。電子線や Ί線のよ うな電離性放射線を用いる場合には、光重合開始剤や光増感剤を含有させることな く速やかに硬化を進めることができる。
[0044] 紫外線源としては、キセノンランプ、低圧水銀灯、高圧水銀灯、超高圧水銀灯等を 挙げることができる。紫外線を照射する雰囲気としては、窒素ガス、炭酸ガス等の不 活性ガス雰囲気ある!/、は酸素濃度を低下させた雰囲気が好ま 、が、通常の空気雰 囲気でも紫外線硬化性榭脂を硬化させることができる。照射雰囲気温度は、通常 10 〜200° Cとすることができる。
[0045] 次に、図 2Bに示すように、半硬化させた第 1層 10Aの上に液状の硬化性榭脂を吐 出して第 2層 10Bを形成する。
第 2層 10Bを形成後、第 1層 10A及び第 2層 10Bを活性エネルギー線の照射により 完全硬化させ (最終硬化工程)させることで、カバー体 12に背の高いガスケット 10が 完成する。
[0046] なお、活性エネルギー線照射装置にぉ 、て、活性エネルギー線は、三次元自動塗 装制御装置の押し出し口の動きと連動して動くように、即ち、カバー体上に吐出され た直後の硬化性榭脂に順次照射するように制御しても良い。
[0047] 第 1層 10Aを半硬化させる際の活性エネルギー線の照射強度は、第 1層 10A、及 び第 2層 10Bを完全硬化させる完全硬化工程での活性エネルギー線の照射強度の 1Z20〜1Z5程度が好ましい。また、ここでいう半硬化とは、硬化の度合いが 50% を意味するのではなぐ第 1層 10Aの上に液状の硬化性榭脂を重ねても自重で潰れ ることなく形状を保持可能な程度に硬化されていることを意味する。
[0048] 第 1層 10Aを半硬化させる際の活性エネルギー線の照射強度が上記範囲未満で あると、第 1層 10Aの硬化が不十分となり、第 1層 10Aの形状を保持できなくなる場合 がある。一方、第 1層 10Aを半硬化させる際の活性エネルギー線の照射強度が上記 範囲を上回ると、完全硬化工程後において、第 1層 10Aと第 2層 10Bとの間で硬化 度合いが極端に異なり(例えば、第 1層 10Aが過剰に硬化)、圧縮状態の場合などで 第 1層 10Aと第 2層 10Bとの境界力も剥がれを生じる虞がある。
[0049] なお、本実施形態のガスケット 10は、第 1層 10Aと第 2層 10Bとから構成されている 力 第 2層 10Bの上にさらに層を形成し、 3以上の層から構成しても良い。何れも、硬 化性榭脂を吐出した後に半硬化させて層の形状を保持した上で、硬化性榭脂を積 み重ねるように吐出し、最終の硬化工程において、全ての層の硬化性榭脂を完全硬 化させる。
[0050] なお、硬化性榭脂としては、例えば、アクリル変性されたウレタンを含む、米国のェ ェメンテイススペシャルテイーズ社製の紫外線架橋型ウレタン Ecllipseを用いることが できるが、他の種類の硬化性榭脂を用いても良いのは勿論である。
[0051] 三次元自動塗装制御装置としては、例えば、 NORDSON社製の CENTURY C7 20 (以下、装置 1と称する)又はサンエイテック社製の液剤塗装ロボット 350F— 3 (以 下、装置 2と称する)を用いることが出来る。
また、紫外線照射装置としては、例えば、 EFOS社製の NOVACURE紫外線照射 装置を用いることができる。
符号の説明
[0052] 10 ガスケット

Claims

請求の範囲
[1] 液状の硬化性榭脂を被形成部材の表面に吐出する第 1の吐出工程と、
前記第 1の吐出工程で吐出された前記硬化性榭脂を半硬化させる半硬化工程と、 前記半硬化工程により半硬化させた前記硬化性榭脂の上に液状の前記硬化性榭 脂を吐出する第 2の吐出工程と、
前記第 1の吐出工程で吐出された前記硬化性榭脂、及び前記第 2の吐出工程で 吐出された前記硬化性榭脂を完全に硬化させる完全硬化工程と、
を有するガスケットの製造方法。
[2] 前記硬化性榭脂の硬化が活性エネルギー線の照射により行なわれ、前記半硬化工 程での活性エネルギー線の照射強度は、前記完全硬化工程での活性エネルギー線 の照射強度よりも小さく設定される、請求項 1に記載のガスケットの製造方法。
[3] 前記半硬化工程での活性エネルギー線の照射強度が、前記完全硬化工程での活 性エネルギー線の照射強度の 1Z20〜1Z5の範囲内に設定される、請求項 2に記 載のガスケットの製造方法。
[4] 被形成部材の表面に、液状の硬化性榭脂を吐出する吐出工程と吐出された硬化性 榭脂を硬化させる硬化工程とを交互に行うことにより硬化性榭脂層を積み上げること を含むガスケットの製造方法であって、最終の硬化工程にぉ 、ては全ての硬化性榭 脂が完全に硬化するように硬化処理を行!、、前記最終の硬化工程以前の硬化工程 にお ヽては硬化性榭脂を半硬化させる、ガスケットの製造方法。
[5] 前記吐出工程の第 2回以降の液状の硬化性榭脂の吐出が、既に吐出された硬化性 榭脂の上になされる、請求項 4に記載のガスケットの製造方法。
[6] 前記硬化性榭脂の硬化が活性エネルギー線の照射により行なわれる、請求項 4に記 載のガスケットの製造方法。
[7] 最終の硬化工程以前の硬化工程での前記活性エネルギー線の照射強度は、前記 最終の硬化工程での活性エネルギー線の照射強度よりも小さく設定される、請求項 6 に記載のガスケットの製造方法。
[8] 請求項 1から 7のいずれか 1項の方法を用いて製造されたガスケット。
PCT/JP2007/052399 2006-02-09 2007-02-09 ガスケットおよびその製造方法 WO2007091685A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN2007800047631A CN101384843B (zh) 2006-02-09 2007-02-09 密封垫及其制造方法
JP2007557910A JPWO2007091685A1 (ja) 2006-02-09 2007-02-09 ガスケットおよびその製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006032602 2006-02-09
JP2006-032602 2006-02-09

Publications (1)

Publication Number Publication Date
WO2007091685A1 true WO2007091685A1 (ja) 2007-08-16

Family

ID=38345277

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/052399 WO2007091685A1 (ja) 2006-02-09 2007-02-09 ガスケットおよびその製造方法

Country Status (3)

Country Link
JP (1) JPWO2007091685A1 (ja)
CN (1) CN101384843B (ja)
WO (1) WO2007091685A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009028335A1 (ja) * 2007-08-24 2009-03-05 Bridgestone Corporation 多段ガスケット
WO2015140923A1 (ja) * 2014-03-18 2015-09-24 日本包材株式会社 防水用パッキンの製造方法とこの方法により製造した防水用パッキン
KR20170117469A (ko) * 2015-02-13 2017-10-23 케메탈 게엠베하 황-함유 실링 배합물을 적용하는 방법, 그를 위한 장치, 상응하게 처리된 항공우주선 및 그의 용도

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58194513A (ja) * 1982-05-08 1983-11-12 Kinugawa Rubber Ind Co Ltd 自動車用ウエザーストリップ
JPH03234975A (ja) * 1989-11-07 1991-10-18 Nippon Jitsupaa Chiyuubingu Kk ガスケットの製造法
JPH10288259A (ja) * 1997-04-15 1998-10-27 Ishino Gasket Kogyo Kk メタルガスケット

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002361173A (ja) * 2001-06-11 2002-12-17 Chugoku Marine Paints Ltd 電子線硬化積層塗膜の形成方法、その方法で形成された塗膜およびその塗膜で被覆された基材
JP2003120819A (ja) * 2001-10-15 2003-04-23 Nippon Mektron Ltd ガスケット
JP4636229B2 (ja) * 2003-04-07 2011-02-23 Nok株式会社 ガスケットの製造方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58194513A (ja) * 1982-05-08 1983-11-12 Kinugawa Rubber Ind Co Ltd 自動車用ウエザーストリップ
JPH03234975A (ja) * 1989-11-07 1991-10-18 Nippon Jitsupaa Chiyuubingu Kk ガスケットの製造法
JPH10288259A (ja) * 1997-04-15 1998-10-27 Ishino Gasket Kogyo Kk メタルガスケット

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009028335A1 (ja) * 2007-08-24 2009-03-05 Bridgestone Corporation 多段ガスケット
JP2009052632A (ja) * 2007-08-24 2009-03-12 Bridgestone Corp 多段ガスケット
US8400730B2 (en) 2007-08-24 2013-03-19 Bridgestone Corporation Multistage gasket
CN101784823B (zh) * 2007-08-24 2014-02-26 株式会社普利司通 多级密封垫
WO2015140923A1 (ja) * 2014-03-18 2015-09-24 日本包材株式会社 防水用パッキンの製造方法とこの方法により製造した防水用パッキン
KR20170117469A (ko) * 2015-02-13 2017-10-23 케메탈 게엠베하 황-함유 실링 배합물을 적용하는 방법, 그를 위한 장치, 상응하게 처리된 항공우주선 및 그의 용도
JP2018508003A (ja) * 2015-02-13 2018-03-22 ケメタル ゲゼルシャフト ミット ベシュレンクテル ハフツング 硫黄含有シーリング化合物の施与方法、これに用いられる装置、これにより処理される航空宇宙機、およびその使用法
JP2022095797A (ja) * 2015-02-13 2022-06-28 ケメタル ゲゼルシャフト ミット ベシュレンクテル ハフツング 硫黄含有シーリング化合物の施与方法、これに用いられる装置、これにより処理される航空宇宙機、およびその使用法
JP7186503B2 (ja) 2015-02-13 2022-12-09 ケメタル ゲゼルシャフト ミット ベシュレンクテル ハフツング 硫黄含有シーリング化合物の施与方法、これに用いられる装置
KR102592622B1 (ko) 2015-02-13 2023-10-24 케메탈 게엠베하 황-함유 실링 배합물을 적용하는 방법, 그를 위한 장치, 상응하게 처리된 항공우주선 및 그의 용도

Also Published As

Publication number Publication date
CN101384843B (zh) 2011-07-27
CN101384843A (zh) 2009-03-11
JPWO2007091685A1 (ja) 2009-07-02

Similar Documents

Publication Publication Date Title
CN106515000B (zh) 三维造型物的制备方法以及三维造型用支持材料
JPH0561103B2 (ja)
KR100969024B1 (ko) 하드 디스크 장치용 개스킷의 제조방법 및 개스킷
JP2015078255A (ja) 三次元造形用インクジェットインク組成物および三次元造形物の製造方法
KR20120052416A (ko) 광경화성 전사 시트, 및 이것을 사용한 요철 패턴의 형성 방법
KR20060121812A (ko) 가요성 몰드, 그의 제조 방법 및 미세 구조체의 제조 방법
US10421856B2 (en) Three-dimension forming support material, three-dimension forming composition set, three-dimension forming apparatus, and method of preparing three-dimensional shaped product
JP4956167B2 (ja) 塗膜形成用転写シート及びそれを用いた被覆塗膜の形成方法
JP2012168301A (ja) 金属細線の形成方法及びこれを用いたワイヤグリッド型偏光子の製造方法
KR20060126546A (ko) 전이 금형, 그의 제조 방법 및 미세 구조의 제조 방법
EP3129218B1 (en) Polymeric rule die, and formulations therefor
WO2007091685A1 (ja) ガスケットおよびその製造方法
JP6006066B2 (ja) シート状伸長性有機基材
JP2016020489A (ja) 活性エネルギー線硬化性樹脂組成物
JP6699132B2 (ja) 光硬化性組成物およびそれを用いた積層体、並びに導光板
JP2009090231A (ja) 弾性部材の形成方法および弾性部材形成装置
JP2013110135A (ja) 光硬化性転写シートを用いた凹凸パターンの形成方法、及びその方法に用いる装置
JP4815289B2 (ja) ハードディスク装置用ガスケットの製造方法
JP4605944B2 (ja) ハードディスク装置用ガスケットの製造方法及びガスケット
JP4301487B2 (ja) ハードディスク装置用ガスケットの製造方法およびハードディスク装置用ガスケット
JP5324553B2 (ja) 可とう性成形型
JP2009023276A (ja) シール材成形用金型及びそれを用いたシール材の製造方法
JP2008024765A (ja) ハードディスク装置用ガスケットの製造方法
JP6740686B2 (ja) 積層体の製造方法および積層体、ならびに物品
JP2008307443A (ja) シール部材の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
ENP Entry into the national phase

Ref document number: 2007557910

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 12008501797

Country of ref document: PH

WWE Wipo information: entry into national phase

Ref document number: 200780004763.1

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07714011

Country of ref document: EP

Kind code of ref document: A1