WO2007091307A1 - 差動信号伝送装置、差動信号送信装置、差動信号受信装置 - Google Patents

差動信号伝送装置、差動信号送信装置、差動信号受信装置 Download PDF

Info

Publication number
WO2007091307A1
WO2007091307A1 PCT/JP2006/302127 JP2006302127W WO2007091307A1 WO 2007091307 A1 WO2007091307 A1 WO 2007091307A1 JP 2006302127 W JP2006302127 W JP 2006302127W WO 2007091307 A1 WO2007091307 A1 WO 2007091307A1
Authority
WO
WIPO (PCT)
Prior art keywords
differential signal
resistance value
circuit
resistor
transmission
Prior art date
Application number
PCT/JP2006/302127
Other languages
English (en)
French (fr)
Inventor
Yasushi Mizutani
Original Assignee
Fujitsu Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Limited filed Critical Fujitsu Limited
Priority to PCT/JP2006/302127 priority Critical patent/WO2007091307A1/ja
Publication of WO2007091307A1 publication Critical patent/WO2007091307A1/ja

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/08Modifications for reducing interference; Modifications for reducing effects due to line faults ; Receiver end arrangements for detecting or overcoming line faults
    • H04L25/085Arrangements for reducing interference in line transmission systems, e.g. by differential transmission
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/0264Arrangements for coupling to transmission lines
    • H04L25/0272Arrangements for coupling to multiple lines, e.g. for differential transmission

Definitions

  • Differential signal transmission device differential signal transmission device, differential signal reception device
  • the present invention relates to a differential signal transmission device, a differential signal transmission device, and a differential signal reception device that transmit differential signals.
  • differential signal transmission that transmits two signals having different polarities is used.
  • Patent Document 1 Japanese Patent Laid-Open No. 9-191243
  • the board material has a low loss
  • the output circuit has a drive capability control
  • an equalizer circuit using an operational amplifier feedback loop is adopted for the receiving circuit, etc. Measures were taken, but these had problems such as cost and circuit complexity.
  • FIG. 7 is a circuit diagram showing an example of the configuration of a conventional differential signal transmission device.
  • This differential signal transmission device includes a transmission circuit 1, a reception circuit 2, transmission lines 5a (positive) and 5b (negative), a terminating resistor 6, and capacitors 10a and 10b.
  • a transmission circuit 1 As shown in this figure, if AC coupling capacitors 10a and 10b are connected in series to transmission lines 5a and 5b, respectively, the DC component of the waveform cannot be maintained, and it is impossible to obtain a clock stop state.
  • the present invention has been made to solve the above-described problems, and provides a differential signal transmission device, a differential signal transmission device, and a differential signal reception device that improve the quality of a differential signal waveform. For the purpose.
  • the present invention provides a differential signal transmission device that is connected between a transmission circuit and a reception circuit and transmits a differential signal through two transmission lines, the transmission line Provided in each case, connected in series to the transmission line, to the on-resistance value of the transmission circuit, the resistance value of the termination resistor of the reception circuit, and the minimum value of the potential difference of the termination resistor that does not cause the reception circuit to malfunction. Based on a resistance having a resistance value determined on the basis of each of the transmission lines, connected in parallel with the resistance, and determined based on a period of the differential signal and a resistance value of the termination resistor. And a capacitor having an electrostatic capacity.
  • the on-resistance value of the transmission circuit is R on
  • the resistance value of the termination resistor of the reception circuit is Rt
  • the reception circuit does not malfunction.
  • the resistance value of the resistor is Vdd XRt / (2 X (Ron + R) + Rt)> Vimin.
  • the resistance value of the resistor is Vdd / (2 X (Ron + R ) + Rt) Irmax is satisfied.
  • the capacitance of the capacitor satisfies P / 2 and C XRt and P. To do.
  • the differential signal is a differential clock signal.
  • the present invention is a differential signal transmission device that transmits a differential signal and is connected to a reception circuit via two transmission lines, the transmission circuit transmitting a differential signal, Provided for each transmission line, connected in series to the transmission line, the on-resistance value of the transmission circuit, the resistance value of the termination resistor of the reception circuit, and the electric power of the termination resistor that does not cause the reception circuit to malfunction.
  • a resistor having a resistance value determined based on the minimum value of the potential difference, and provided for each transmission line, connected in parallel with the resistor, and the period of the differential signal and the termination resistor.
  • a capacitor having a capacitance determined based on the resistance value.
  • the on-resistance value of the transmission circuit is R on
  • the resistance value of the termination resistor of the reception circuit is Rt
  • the reception circuit does not malfunction.
  • the resistance value of the resistor is Vdd XRt / (2 X (Ron + R) + Rt)> Vimin.
  • the resistance value of the resistor is Vdd / (2 X (Ron + R ) + Rt) Irmax is satisfied.
  • the capacitance of the capacitor satisfies P / 2 and C XRt and P. To do.
  • the differential signal is a differential clock signal.
  • the present invention is a differential signal receiving apparatus that receives a differential signal and is connected to a transmitting circuit via two transmission lines, the receiving circuit receiving the differential signal, Provided for each transmission line, connected in series to the transmission line, the minimum value of the on-resistance value of the transmission circuit, the resistance value of the termination resistance of the reception circuit, and the potential difference of the termination resistance that does not cause the reception circuit to malfunction Based on the resistance of each of the transmission lines, connected in parallel with the resistance, and based on the period of the differential signal and the resistance of the termination resistor. And a capacitor having a capacitance determined by the above.
  • the on-resistance value of the transmission circuit is R on
  • the resistance value of the termination resistor of the reception circuit is Rt
  • the potential difference of the termination resistor that prevents the reception circuit from malfunctioning When the minimum value of Vimin is Vdd, the power supply voltage of the transmitter circuit is Vdd, and the ground voltage of the transmitter circuit is Vss, the resistance value of the resistor is Vdd XRt / (2 X (Ron + R) + Rt)> Vimin It is characterized by satisfying.
  • the resistance value of the resistor is Vdd / (2 X (Ron + R ) + Rt
  • the capacitance of the capacitor satisfies P / 2 and C XRt and P. To do.
  • the differential signal is a differential clock signal.
  • FIG. 1 is a circuit diagram showing an example of a configuration of a differential signal transmission device according to the present embodiment.
  • FIG. 2 is a circuit diagram showing the relationship between Vp, Vn and R according to the present embodiment.
  • FIG. 3 is a diagram showing an example of mounting of an insertion circuit according to the present embodiment.
  • FIG. 4 is a waveform showing an example of a simulation result immediately after the clock operation in the differential signal transmission device according to the present embodiment.
  • FIG. 5 is a waveform showing an example of a simulation result during a clock operation in which a sufficient time has elapsed from the start of the clock operation in the differential signal transmission device according to the present embodiment.
  • FIG. 6 is a waveform showing an example of a simulation result at the time of a single clock in the differential signal transmission device according to the present embodiment.
  • FIG. 7 is a circuit diagram showing an example of a configuration of a conventional differential signal transmission device.
  • FIG. 1 is a circuit diagram showing an example of the configuration of the differential signal transmission device according to the present embodiment.
  • the same reference numerals as those in FIG. 7 denote the same or corresponding parts as those in FIG. 7, and a description thereof will be omitted here.
  • FIG. 1 includes insertion circuits 3a and 3b instead of capacitors 10a and 10b.
  • the insertion circuit 3a is a resistor 11a and a capacitor 12a connected in parallel.
  • the insertion circuit 3b is a resistor Lib and a capacitor 12b connected in parallel.
  • R is the value of resistors 11a and l ib
  • C is the value of capacitors 12a and 12b Let the value of resistor 6 be Rt.
  • the value of R is determined based on the driving capability of the transmission circuit 1 such that a sufficient differential signal potential difference before the clock operation (stop state) in the termination resistor 6 is ensured.
  • the power supply voltage of the transmitter circuit 1 is Vdd
  • the ground voltage is Vss
  • the On resistance is Ron
  • the potentials at both ends of the termination resistor 6 are Vp (positive side), Vn (negative side)
  • the value of R is determined so that the receiving end amplitude Vp-Vn exceeds Vimin.
  • FIG. 2 is a circuit diagram showing the relationship between Vp, Vn and R according to the present embodiment. In other words, the value of R is determined so as to satisfy the following formula.
  • the value of C is set large, the effect of adding R cannot be obtained because low frequency components are passed. Therefore, considering the variation of the clock duty in the transmission circuit 1, the value of c is determined so as to satisfy the range of time constant force S clock pulse width to clock cycle. In other words, if the clock period value is P, the value of C is determined to satisfy the following equation.
  • Capacitors 12a and 12b are of the low ESL (Equivalent Series Inductance) type.
  • FIG. 3 is a diagram showing an example of mounting of the insertion circuits 3a and 3b according to the present embodiment. In order to reduce the inductance components of the lead wires and lead vias of the capacitors 12a and 12b so that the high frequency components of the waveform can easily pass, the following mounting is performed.
  • a resistor is mounted on the opposite side of the capacitor.
  • FIG. 4 is a waveform showing an example of a simulation result immediately after the clock operation in the differential signal transmission device according to the present embodiment. This figure shows the waveform immediately after the clock operation, and shows the waveforms when the value of C is 0. lpF, 18pF, 38pF, and 200pF.
  • C 0. lp F
  • C 18pF and 38pF ensure stable clock quality in all simulation results.
  • the differential signal transmission device, the differential signal transmission device, and the differential signal reception device according to the present embodiment can be easily applied to high-frequency signal transmission such as a clock in the information processing device.
  • the performance of the information processing apparatus can be further improved.
  • the information processing apparatus can include, for example, a server, a workstation, a personal computer, and the like.
  • the quality of the differential signal waveform can be improved.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Dc Digital Transmission (AREA)

Abstract

 送信回路1と受信回路2の間に接続され、2本の伝送線路で差動信号を伝送する差動信号伝送装置であって、伝送線路5a,5b毎に備えられ、伝送線路5a,5bに直列に接続され、送信回路1のオン抵抗値と受信回路2側の終端抵抗6の抵抗値と受信回路2が誤動作しない終端抵抗6の両端の電位差の最小値とに基づいて決定される抵抗値を持つ抵抗11a,11bと、伝送線路5a,5b毎に備えられ、抵抗11a,11bと並列に接続され、差動信号の周期と終端抵抗6の抵抗値とに基づいて決定される静電容量を持つコンデンサ12a,12bとを備えた。

Description

明 細 書
差動信号伝送装置、差動信号送信装置、差動信号受信装置
技術分野
[0001] 本発明は、差動信号の伝送を行う差動信号伝送装置、差動信号送信装置、差動 信号受信装置に関するものである。
背景技術
[0002] クロック等の高周波信号を伝送するために、互いに極性の異なる 2つの信号を伝送 する差動信号伝送が用いられて 、る。
[0003] なお、本発明の関連ある従来技術として、差動クロック信号のための信号伝送回路 がある (例えば、特許文献 1参照)。
特許文献 1:特開平 9— 191243号公報
発明の開示
発明が解決しょうとする課題
[0004] しカゝしながら、電圧駆動型の差動送信回路による高速、長距離のクロック伝送にお いて、信号伝搬時の高周波損失が原因で、差動クロック信号の交差が浅くなる。これ により、 DUTY崩れや位相ずれが発生し、クロック動作直後のタイミング問題やクロッ ク抜け等の問題が起こる。また、試験のためにシングルクロックを供給する場合にお いても、クロック動作直後と同様の問題が発生する。
[0005] 従来、この問題に対して、ボード材料の低損失ィ匕を行う、出力回路の駆動能力コン トロールを行う、受信回路にオペアンプのフィードバックループを利用したイコライザ 回路の採用を行う、等の対策を行っていたが、これらはコスト、回路の複雑化等の問 題があった。
[0006] 図 7は、従来の差動信号伝送装置の構成の一例を示す回路図である。この差動信 号伝送装置は、送信回路 1、受信回路 2、伝送線路 5a (正: Positive) , 5b (負: Negati ve)、終端抵抗 6、コンデンサ 10a, 10bを備える。この図に示すように、 ACカップリン グ用のコンデンサ 10a, 10bをそれぞれ伝送線路 5a, 5bに直列接続すると、波形の 直流成分が保持できず、クロック停止状態を得ることが不可能となる。 [0007] 本発明は上述した問題点を解決するためになされたものであり、差動信号波形の 品質を向上させる差動信号伝送装置、差動信号送信装置、差動信号受信装置を提 供することを目的とする。
課題を解決するための手段
[0008] 上述した課題を解決するため、本発明は、送信回路と受信回路の間に接続され、 2 本の伝送線路で差動信号を伝送する差動信号伝送装置であって、前記伝送線路毎 に備えられ、前記伝送線路に直列に接続され、前記送信回路のオン抵抗値と前記 受信回路の終端抵抗の抵抗値と前記受信回路が誤動作しない前記終端抵抗の電 位差の最小値とに基づ!ヽて決定される抵抗値を持つ抵抗と、前記伝送線路毎に備 えられ、前記抵抗と並列に接続され、前記差動信号の周期と前記終端抵抗の抵抗 値とに基づいて決定される静電容量を持つコンデンサとを備えたものである。
[0009] また、本発明に係る差動信号伝送装置にお!ヽて、前記送信回路のオン抵抗値を R on,前記受信回路の終端抵抗の抵抗値を Rt、前記受信回路が誤動作しない前記 終端抵抗の電位差の最小値を Vimin、前記送信回路の電源電圧を Vdd、前記送信 回路のグランド電圧を Vssとするとき、前記抵抗の抵抗値は、 Vdd XRt/ (2 X (Ron +R) +Rt) >Viminを満たすことを特徴とするものである。
[0010] また、本発明に係る差動信号伝送装置において、更に、前記終端抵抗に流れる電 流の最大値を Irmaxとするとき、前記抵抗の抵抗値は、 Vdd/ (2 X (Ron+R) +Rt )く Irmaxを満たすことを特徴とするものである。
[0011] また、本発明に係る差動信号伝送装置において、前記差動信号の周期を Pとすると き、前記コンデンサの静電容量は、 P/2く C XRtく Pを満たすことを特徴とするもの である。
[0012] また、本発明に係る差動信号伝送装置において、前記差動信号は差動クロック信 号であることを特徴とするものである。
[0013] また、本発明は、 2本の伝送線路を介して受信回路と接続され、差動信号を送信す る差動信号送信装置であって、差動信号を送信する送信回路と、前記伝送線路毎 に備えられ、前記伝送線路に直列に接続され、前記送信回路のオン抵抗値と前記 受信回路の終端抵抗の抵抗値と前記受信回路が誤動作しない前記終端抵抗の電 位差の最小値とに基づ!ヽて決定される抵抗値を持つ抵抗と、前記伝送線路毎に備 えられ、前記抵抗と並列に接続され、前記差動信号の周期と前記終端抵抗の抵抗 値とに基づいて決定される静電容量を持つコンデンサとを備えたものである。
[0014] また、本発明に係る差動信号送信装置にお!ヽて、前記送信回路のオン抵抗値を R on,前記受信回路の終端抵抗の抵抗値を Rt、前記受信回路が誤動作しない前記 終端抵抗の電位差の最小値を Vimin、前記送信回路の電源電圧を Vdd、前記送信 回路のグランド電圧を Vssとするとき、前記抵抗の抵抗値は、 Vdd XRt/ (2 X (Ron +R) +Rt) >Viminを満たすことを特徴とするものである。
[0015] また、本発明に係る差動信号送信装置において、更に、前記終端抵抗に流れる電 流の最大値を Irmaxとするとき、前記抵抗の抵抗値は、 Vdd/ (2 X (Ron+R) +Rt )く Irmaxを満たすことを特徴とするものである。
[0016] また、本発明に係る差動信号送信装置において、前記差動信号の周期を Pとすると き、前記コンデンサの静電容量は、 P/2く C XRtく Pを満たすことを特徴とするもの である。
[0017] また、本発明に係る差動信号伝送装置において、前記差動信号は差動クロック信 号であることを特徴とするものである。
[0018] また、本発明は、 2本の伝送線路を介して送信回路と接続され、差動信号を受信す る差動信号受信装置であって、差動信号を受信する受信回路と、前記伝送線路毎 に備えられ、前記伝送線路に直列に接続され、前記送信回路のオン抵抗値と前記 受信回路の終端抵抗の抵抗値と前記受信回路が誤動作しない前記終端抵抗の電 位差の最小値とに基づ!ヽて決定される抵抗値を持つ抵抗と、前記伝送線路毎に備 えられ、前記抵抗と並列に接続され、前記差動信号の周期と前記終端抵抗の抵抗 値とに基づいて決定される静電容量を持つコンデンサとを備えたものである。
[0019] また、本発明に係る差動信号受信装置において、前記送信回路のオン抵抗値を R on,前記受信回路の終端抵抗の抵抗値を Rt、前記受信回路が誤動作しない前記 終端抵抗の電位差の最小値を Vimin、前記送信回路の電源電圧を Vdd、前記送信 回路のグランド電圧を Vssとするとき、前記抵抗の抵抗値は、 Vdd XRt/ (2 X (Ron +R) +Rt) >Viminを満たすことを特徴とするものである。 [0020] また、本発明に係る差動信号受信装置において、更に、前記終端抵抗に流れる電 流の最大値を Irmaxとするとき、前記抵抗の抵抗値は、 Vdd/ (2 X (Ron+R) +Rt
)く Irmaxを満たすことを特徴とするものである。
[0021] また、本発明に係る差動信号受信装置において、前記差動信号の周期を Pとすると き、前記コンデンサの静電容量は、 P/2く C XRtく Pを満たすことを特徴とするもの である。
[0022] また、本発明に係る差動信号受信装置において、前記差動信号は差動クロック信 号であることを特徴とするものである。
図面の簡単な説明
[0023] [図 1]本実施の形態に係る差動信号伝送装置の構成の一例を示す回路図である。
[図 2]本実施の形態に係る Vp, Vnと Rの関係を表す回路図である。
[図 3]本実施の形態に係る挿入回路の実装の一例を示す図である。
[図 4]本実施の形態に係る差動信号伝送装置におけるクロック動作直後のシミュレ一 シヨン結果の一例を示す波形である。
[図 5]本実施の形態に係る差動信号伝送装置におけるクロック動作開始後から十分 な時間が経過したクロック動作中のシミュレーション結果の一例を示す波形である。
[図 6]本実施の形態に係る差動信号伝送装置におけるシングルクロック時のシミュレ ーシヨン結果の一例を示す波形である。
[図 7]従来の差動信号伝送装置の構成の一例を示す回路図である。
発明を実施するための最良の形態
[0024] 以下、本発明の実施の形態について図面を参照しつつ説明する。
[0025] まず、本実施の形態に係る差動信号伝送装置の構成について説明する。
[0026] 図 1は、本実施の形態に係る差動信号伝送装置の構成の一例を示す回路図であ る。図 1において、図 7と同一符号は図 7に示された対象と同一又は相当物を示して おり、ここでの説明を省略する。図 7と比較すると図 1は、コンデンサ 10a, 10bの代わ りに挿入回路 3a, 3bを備える。挿入回路 3aは、抵抗 11aとコンデンサ 12aを並列接 続したものであり、同様に、挿入回路 3bは、抵抗 l ibとコンデンサ 12bを並列接続し たものである。ここで、抵抗 11a, l ibの値を R、コンデンサ 12a, 12bの値を C、終端 抵抗 6の値を Rtとする。
[0027] 次に、 Rの値の決定方法について説明する。
[0028] Rの値は、送信回路 1の駆動能力に基づいて、終端抵抗 6におけるクロック動作前( 停止状態)の差動信号電位差が十分確保されるような値に決定される。ここで、送信 回路 1の電源電圧を Vdd、グランド電圧を Vss、 On抵抗を Ron、終端抵抗 6の両端の 電位を Vp (正側), Vn (負側)、電位差を Vi= (Vp— Vn)、受信回路 2が誤動作しな いための Viの最小値を Viminとする。 Rの値は、受信端振幅 Vp—Vnが Viminを超 えるように決定される。図 2は、本実施の形態に係る Vp, Vnと Rの関係を表す回路図 である。つまり、 Rの値は、以下の式を満足するように決定される。
[0029] Vp-Vn
=VddXRt/ (2 X (Ron+R) +Rt) > Vimin
[0030] また、 Zonと Rの和が伝送線路 5a, 5bのインピーダンス Zoに近い値で、かつ終端抵 抗 6に流す電流 Irに制限がある場合、終端抵抗 6に流す電流 Irの最大値 Irmaxは、 以下の式を満足するように決定される。
[0031] Vdd/ ( 2 X (Ron + R) + Rt) < Irmax
[0032] 次に、 Cの値の決定方法について説明する。
[0033] Cの値を大きく設定すると、低周波成分まで通過してしまうため、 Rを入れた効果が 得られない。従って、送信回路 1内部のクロック DUTYのばらつきも考慮し、時定数 力 Sクロックパルスの幅〜クロック周期の範囲を満足するように cの値を決定する。つま り、クロック周期の値を Pとすると、 Cの値は、以下の式を満足するように決定される。
[0034] P/2< C XRt< P
[0035] 次に、挿入回路 3a, 3bの実装方法について説明する。
[0036] コンデンサ 12a, 12bは、低 ESL (Equivalent Series Inductance)タイプのものを選 択する。図 3は、本実施の形態に係る挿入回路 3a, 3bの実装の一例を示す図である 。波形の高周波成分が通過しやすいように、コンデンサ 12a, 12bの引き出し配線や 引き出し Viaのインダクタンス成分を低減することを目的として、以下のような実装を 行う。
[0037] 1.引き出し配線や引き出し Viaが最短になるように配置する。 2.引き出しパターン幅を太ぐ短くする。
3.引き出し Via近傍に Vdd Viaと GND Viaを配置する。
[0038] また、両面実装可能な場合は、抵抗をコンデンサの反対側に搭載する。
[0039] ここで、 Vdd = 2. 5V、 Ron= 20 Ω , Rt= 100 Ω , Vp- Vn>0. 7Vを期待値とす ると、 Rの値は R= 100 Ωと決定される。また、クロック周期 = 3. 76ns (クロック周波数 = 266MHz)のクロックを伝送すると、 Cの値は 18〜38pFと決定される。
[0040] 図 4は、本実施の形態に係る差動信号伝送装置におけるクロック動作直後のシミュ レーシヨン結果の一例を示す波形である。この図は、クロック動作直後の波形を示し、 Cの値が 0. lpF, 18pF, 38pF, 200pFの場合の波形をそれぞれ示す。 C = 0. lp Fの場合、常に振幅が小さいことが分かる。 C = 200pFの場合、ー且振幅が大きくな るもののすぐに振幅が小さくなることが分かる。
[0041] 図 5は、本実施の形態に係る差動信号伝送装置におけるクロック動作中のシミュレ ーシヨン結果の一例を示す波形である。この図は、クロック動作開始から十分な時間 が経過した後の波形を示す。同様に、 C = 0. lpFの場合、常に振幅が小さいことが 分かる。
[0042] 図 6は、本実施の形態に係る差動信号伝送装置におけるシングルクロック時のシミ ユレーシヨン結果の一例を示す波形である。この図は、シングルクロック時の波形を示 す。同様に、 C = 0. lpFの場合、常に振幅が小さいことが分かる。
[0043] 一方、 C= 18pF, 38pFは、全てのシミュレーション結果において安定したクロック 品質を確保して ヽることが分かる。
[0044] 従って、上述した方法で決定される Rと Cの値を用いることにより、クロック動作直後 、クロック動作中、シングルクロック時における差動信号の波形は、交差が深く、クロッ ク停止中も差動間の電位差を確保しており、波形の品質が向上する。
[0045] また、本実施の形態に係る差動信号伝送装置、差動信号送信装置、差動信号受 信装置は、情報処理装置におけるクロック等の高周波信号伝送に容易に適用するこ とができ、情報処理装置の性能をより高めることができる。ここで、情報処理装置には 、例えばサーバ、ワークステーション、パーソナルコンピュータ等が含まれ得る。
産業上の利用可能性 以上説明したように、本発明によれば、差動信号波形の品質を向上させることがで きる。

Claims

請求の範囲
[1] 送信回路と受信回路の間に接続され、 2本の伝送線路で差動信号を伝送する差動 信号伝送装置であって、
前記伝送線路毎に備えられ、前記伝送線路に直列に接続され、前記送信回路の オン抵抗値、前記受信回路の終端抵抗の抵抗値及び前記受信回路が誤動作しな!ヽ 前記終端抵抗の電位差の最小値とに基づいて決定される抵抗値を持つ抵抗と、 前記伝送線路毎に備えられ、前記抵抗と並列に接続され、前記差動信号の周期と 前記終端抵抗の抵抗値とに基づいて決定される静電容量を持つコンデンサと を備える差動信号伝送装置。
[2] 請求項 1に記載の差動信号伝送装置にお!、て、
前記送信回路のオン抵抗値を Ron、前記受信回路の終端抵抗の抵抗値を Rt、前 記受信回路が誤動作しな!ヽ前記終端抵抗の電位差の最小値を Vimin、前記送信回 路の電源電圧を Vdd、前記送信回路のグランド電圧を Vssとするとき、前記抵抗の抵 抗値は、 Vdd XRt/ (2 X (Ron+R) +Rt) >Viminを満たすことを特徴とする差動 信号伝送装置。
[3] 請求項 2に記載の差動信号伝送装置にお 、て、
更に、前記終端抵抗に流れる電流の最大値を Irmaxとするとき、前記抵抗の抵抗 値は、 VddZ(2 X (Ron+R) +Rt)く Irmaxを満たすことを特徴とする差動信号伝 送装置。
[4] 請求項 2または請求項 3に記載の差動信号伝送装置にお 、て、
前記差動信号の周期を Pとするとき、前記コンデンサの静電容量は、 P/2< C XR t< Pを満たすことを特徴とする差動信号伝送装置。
[5] 請求項 1乃至請求項 4のいずれかに記載の差動信号伝送装置において、
前記差動信号は差動クロック信号であることを特徴とする差動信号伝送装置。
[6] 2本の伝送線路を介して受信回路と接続され、差動信号を送信する差動信号送信 装置であって、
差動信号を送信する送信回路と、
前記伝送線路毎に備えられ、前記伝送線路に直列に接続され、前記送信回路の オン抵抗値と前記受信回路の終端抵抗の抵抗値と前記受信回路が誤動作しない前 記終端抵抗の電位差の最小値とに基づいて決定される抵抗値を持つ抵抗と、 前記伝送線路毎に備えられ、前記抵抗と並列に接続され、前記差動信号の周期と 前記終端抵抗の抵抗値とに基づいて決定される静電容量を持つコンデンサと を備える差動信号送信装置。
[7] 請求項 6に記載の差動信号送信装置において、
前記送信回路のオン抵抗値を Ron、前記受信回路の終端抵抗の抵抗値を Rt、前 記受信回路が誤動作しな!ヽ前記終端抵抗の電位差の最小値を Vimir 前記送信回 路の電源電圧を Vdd、前記送信回路のグランド電圧を Vssとするとき、前記抵抗の抵 抗値は、 Vdd XRt/ (2 X (Ron+R) +Rt) >Viminを満たすことを特徴とする差動 信号送信装置。
[8] 請求項 7に記載の差動信号送信装置において、
更に、前記終端抵抗に流れる電流の最大値を Irmaxとするとき、前記抵抗の抵抗 値は、 VddZ(2 X (Ron+R) +Rt)く Irmaxを満たすことを特徴とする差動信号送 信装置。
[9] 請求項 7または請求項 8に記載の差動信号送信装置にお 、て、
前記差動信号の周期を Pとするとき、前記コンデンサの静電容量は、 P/2< C XR t< Pを満たすことを特徴とする差動信号送信装置。
[10] 請求項 6乃至請求項 9のいずれかに記載の差動信号伝送装置において、
前記差動信号は差動クロック信号であることを特徴とする差動信号伝送装置。
[11] 2本の伝送線路を介して送信回路と接続され、差動信号を受信する差動信号受信 装置であって、
差動信号を受信する受信回路と、
前記伝送線路毎に備えられ、前記伝送線路に直列に接続され、前記送信回路の オン抵抗値と前記受信回路の終端抵抗の抵抗値と前記受信回路が誤動作しない前 記終端抵抗の電位差の最小値とに基づいて決定される抵抗値を持つ抵抗と、 前記伝送線路毎に備えられ、前記抵抗と並列に接続され、前記差動信号の周期と 前記終端抵抗の抵抗値とに基づいて決定される静電容量を持つコンデンサと を備える差動信号受信装置。
[12] 請求項 11に記載の差動信号受信装置にお!、て、
前記送信回路のオン抵抗値を Ron、前記受信回路の終端抵抗の抵抗値を Rt、前 記受信回路が誤動作しな!ヽ前記終端抵抗の電位差の最小値を Vimir 前記送信回 路の電源電圧を Vdd、前記送信回路のグランド電圧を Vssとするとき、前記抵抗の抵 抗値は、 Vdd XRt/ (2 X (Ron+R) +Rt) >Viminを満たすことを特徴とする差動 信号受信装置。
[13] 請求項 12に記載の差動信号受信装置において、
更に、前記終端抵抗に流れる電流の最大値を Irmaxとするとき、前記抵抗の抵抗 値は、 VddZ(2 X (Ron+R) +Rt)く Irmaxを満たすことを特徴とする差動信号受 信装置。
[14] 請求項 12または請求項 13に記載の差動信号受信装置において、
前記差動信号の周期を Pとするとき、前記コンデンサの静電容量は、 P/2< C XR t< Pを満たすことを特徴とする差動信号受信装置。
[15] 請求項 11乃至請求項 14のいずれかに記載の差動信号受信装置において、 前記差動信号は差動クロック信号であることを特徴とする差動信号受信装置。
PCT/JP2006/302127 2006-02-08 2006-02-08 差動信号伝送装置、差動信号送信装置、差動信号受信装置 WO2007091307A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2006/302127 WO2007091307A1 (ja) 2006-02-08 2006-02-08 差動信号伝送装置、差動信号送信装置、差動信号受信装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2006/302127 WO2007091307A1 (ja) 2006-02-08 2006-02-08 差動信号伝送装置、差動信号送信装置、差動信号受信装置

Publications (1)

Publication Number Publication Date
WO2007091307A1 true WO2007091307A1 (ja) 2007-08-16

Family

ID=38344915

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/302127 WO2007091307A1 (ja) 2006-02-08 2006-02-08 差動信号伝送装置、差動信号送信装置、差動信号受信装置

Country Status (1)

Country Link
WO (1) WO2007091307A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012050818A1 (en) 2010-10-13 2012-04-19 Cooper Technologies Company High voltage electric double layer capacitor device and methods of manufacture
JP2013219543A (ja) * 2012-04-09 2013-10-24 Fujitsu Ltd 伝送システム

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH025629A (ja) * 1988-06-24 1990-01-10 Matsushita Electric Ind Co Ltd 伝送線路終端器
JPH02111126A (ja) * 1988-10-19 1990-04-24 Nec Corp 伝送回路

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH025629A (ja) * 1988-06-24 1990-01-10 Matsushita Electric Ind Co Ltd 伝送線路終端器
JPH02111126A (ja) * 1988-10-19 1990-04-24 Nec Corp 伝送回路

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012050818A1 (en) 2010-10-13 2012-04-19 Cooper Technologies Company High voltage electric double layer capacitor device and methods of manufacture
JP2013219543A (ja) * 2012-04-09 2013-10-24 Fujitsu Ltd 伝送システム

Similar Documents

Publication Publication Date Title
US7750666B2 (en) Reduced power differential type termination circuit
JP4656263B1 (ja) 信号伝達装置
JP3828652B2 (ja) 差動信号伝送回路
JP3629346B2 (ja) 信号伝送方式及び伝送線路駆動回路
JP4616861B2 (ja) 信号伝送回路及び信号伝送システム
US8358156B1 (en) Voltage mode line driver and pre-emphasis circuit
US7545652B2 (en) Printed circuit board and differential signaling structure
US7683691B2 (en) Clock supplying apparatus
WO2014097479A1 (ja) 超音波送受信装置
KR20070022395A (ko) 전송 회로 및 이를 포함하는 통신 파트너 디바이스
JP5499716B2 (ja) 半導体装置
WO2007091307A1 (ja) 差動信号伝送装置、差動信号送信装置、差動信号受信装置
JP2002033775A (ja) インターフェース回路
US9407321B2 (en) Method for communication and validation of electrical signals
JP5070511B2 (ja) インダクタ対の磁気結合を利用したシリアルデータ伝送装置
US9459648B2 (en) AC coupled single-ended LVDS receiving circuit comprising low-pass filter and voltage regulator
JP5245145B2 (ja) ノイズ対策方法
KR102228329B1 (ko) 소스 종단을 갖는 송신 장치
JP4443392B2 (ja) 送信切り換え回路および半導体集積回路
WO2020218472A1 (ja) ヒステリシス比較器、及び通信回路
WO2016197640A1 (zh) 一种抗噪声干扰系统
JP2012205041A (ja) インターフェース回路
JP2005217840A (ja) 出力ドライバ回路
JP4343665B2 (ja) 伝送線路
JP2019033349A (ja) 伝搬モード変換抑制回路およびその抑制方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06713270

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP