WO2007088885A1 - 呼気ガス測定分析方法及び装置 - Google Patents

呼気ガス測定分析方法及び装置 Download PDF

Info

Publication number
WO2007088885A1
WO2007088885A1 PCT/JP2007/051590 JP2007051590W WO2007088885A1 WO 2007088885 A1 WO2007088885 A1 WO 2007088885A1 JP 2007051590 W JP2007051590 W JP 2007051590W WO 2007088885 A1 WO2007088885 A1 WO 2007088885A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
cell
measurement
pressure
exhalation
Prior art date
Application number
PCT/JP2007/051590
Other languages
English (en)
French (fr)
Inventor
Yasuhiro Kubo
Masaaki Mori
Original Assignee
Otsuka Pharmaceutical Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Otsuka Pharmaceutical Co., Ltd. filed Critical Otsuka Pharmaceutical Co., Ltd.
Priority to CA002640717A priority Critical patent/CA2640717A1/en
Priority to JP2007556889A priority patent/JP4847479B2/ja
Priority to EP07713750.3A priority patent/EP1985993B1/en
Priority to CN2007800043325A priority patent/CN101379388B/zh
Priority to EP14189179.6A priority patent/EP2835628B8/en
Priority to US12/223,539 priority patent/US20090306527A1/en
Priority to ES07713750T priority patent/ES2530636T3/es
Priority to AU2007210591A priority patent/AU2007210591B2/en
Publication of WO2007088885A1 publication Critical patent/WO2007088885A1/ja
Priority to HK09103718.6A priority patent/HK1126000A1/xx
Priority to US13/565,437 priority patent/US9591992B2/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/08Detecting, measuring or recording devices for evaluating the respiratory organs
    • A61B5/083Measuring rate of metabolism by using breath test, e.g. measuring rate of oxygen consumption
    • A61B5/0836Measuring rate of CO2 production
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/02Devices for withdrawing samples
    • G01N1/22Devices for withdrawing samples in the gaseous state
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/08Detecting, measuring or recording devices for evaluating the respiratory organs
    • A61B5/097Devices for facilitating collection of breath or for directing breath into or through measuring devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/35Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
    • G01N21/3504Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light for analysing gases, e.g. multi-gas analysis
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/483Physical analysis of biological material
    • G01N33/497Physical analysis of biological material of gaseous biological material, e.g. breath

Definitions

  • the metabolic function of the living body can be measured by measuring the change in the concentration ratio of the isotope. It is used for diagnosis.
  • the present invention focuses on the difference in the light absorption characteristics of isotopes, and carbon dioxide in human breath 13
  • the present invention relates to a gas measurement analysis method and apparatus.
  • HP is present in the patient's stomach, it must be sterilized with antibiotics. Therefore, it is important to check whether the patient has the power to have HP.
  • carbon has an isotope with a mass number of 13 or 14 in addition to a mass number of 12.
  • the isotope 13 C with a mass number of 13 is easy to handle because it is stable and lacks radioactivity.
  • the concentration of 13 CO in the exhaled breath of the patient is measured.
  • the concentration ratio between 13 co and 12 CO is as high as 1: 100 in nature.
  • the method described in Japanese Patent Laid-Open No. 53-42890 prepares two long and short cells, and the cell length is such that the absorption of CO in one cell is equal to the absorption of 12 CO in the other cell. And each The cell is irradiated with light having a wavelength suitable for each analysis, and the intensity of transmitted light is measured. According to this method, the light absorption ratio at the natural concentration ratio can be made 1, and if the concentration ratio deviates from this, the light absorption ratio changes by the deviated amount, so that the change in the concentration ratio is known. Is possible.
  • Patent Document 1 JP-A-53-42890
  • Patent Document 2 JP 2002-98629 A
  • Patent Document 3 International Publication WO1997 / 14029 Pamphlet
  • Patent Document 4 International Publication WO1998 / 30888 Pamphlet
  • Patent Document 5 International Publication WO2002 / 25250 Pamphlet
  • Patent Document 6 International Publication WO2005 / 41769 Pamphlet
  • the shape of the exhalation bag satisfying exhalation is visually observed to determine whether or not exhalation is insufficient. Since the exhalation bag is flexible, its shape is a force that divides whether or not the exhalation gas is filled.
  • the present invention includes carbon dioxide 13 CO and carbon dioxide 12 CO as component gases.
  • the breath gas measurement and analysis method of the present invention comprises carbon dioxide 13 CO and carbon dioxide 12 CO.
  • the amount of exhaled gas collected in the exhalation bag is insufficient by inhaling the patient's exhalation into a gas injector and measuring the exhalation pressure. Judge the power. For this reason, it is possible to determine the amount of shortage of expiration with good accuracy. Therefore, it is possible to prevent a situation in which the reliability data is displayed by performing infrared spectroscopic measurement with insufficient expiration.
  • the maximum capacity of the exhalation bag is preferably equal to or larger than the “constant volume” sucked into the gas injector. If the maximum capacity of the exhalation bag is smaller than the “constant volume”, the exhalation pressure measurement in the gas injector is always below atmospheric pressure, and the measurement is stopped.
  • a fixed volume of exhaled air collected in the exhalation bag is sucked into the gas injector!
  • the valve is opened to communicate with the gas injector and the inside of the cell maintained at atmospheric pressure by being filled with a predetermined gas, and the pressure of the gas after the communication is It is good also as measuring with the pressure sensor attached to the said cell.
  • measurement can be performed using a pressure sensor attached to the cell.
  • this pressure sensor can be used. Therefore, it is not necessary to attach a pressure sensor directly to the gas injector, and the configuration of the apparatus can be simplified.
  • the predetermined gas usually does not absorb light having a wavelength that passes through the component gases, and is a reference gas.
  • This reference gas may use air.
  • nitrogen gas is used.
  • the exhalation in the gas injector is pressurized to atmospheric pressure, and the volume of the gas injector required for pressurization is changed.
  • the quantity can be shown to the measurer as a deficiency. Therefore, the measurer is once again exhaled Can be used as a reference when exhaling.
  • An expiration gas measurement and analysis apparatus is an apparatus according to the invention that is substantially the same as the expiration gas measurement and analysis method.
  • FIG. 1 is a block diagram showing an overall configuration of an exhaled gas measurement analyzer according to the present invention.
  • FIG. 2 is a plan view showing a gas injector for quantitatively injecting a gas to be measured.
  • FIG. 3 is a front view showing a gas injector.
  • FIG. 4 is a diagram showing gas flow paths in reference measurement.
  • FIG. 5 is a diagram showing gas flow paths in reference measurement.
  • FIG. 6 is a diagram showing a gas flow path in gas pressure measurement.
  • FIG. 7 is a diagram showing a gas flow path in gas pressure measurement.
  • FIG. 8 is a diagram showing a gas flow path when measuring gas pressure.
  • FIG. 9 is a flowchart showing each step of the base gas pressure measurement process.
  • FIG. 10 is a diagram showing a gas flow path when measuring the light quantity.
  • Fig. 11 is a diagram showing a gas flow path when the light quantity is measured.
  • FIG. 12 is a graph plotting the relationship between the average value in the cell pressure and the shortage of the sample gas in the example.
  • the patient's exhalation before the urea diagnostic agent is administered is collected in an exhalation bag. Thereafter, the urea diagnostic agent is orally administered, and about 20 minutes later, exhalation is collected in the exhalation bag in the same manner as before the administration.
  • the exhalation bag is telescopic and is made of a flexible container such as a synthetic resin or an elastic container such as rubber.
  • the exhalation bag can be inflated with the patient's exhalation.
  • the relationship between the maximum volume VBag of the exhaled breath that enters the inflated exhalation bag and the volume Va that is sucked in and sucked in by the piston described later is as follows!
  • j8 is a non-negative constant and is set in the range 0 ⁇ ⁇ ⁇ j8 max.
  • exhalation bags before and after the administration are respectively set to predetermined nozzles of the exhalation gas measurement analyzer, and the following automatic measurement is performed.
  • FIG. 1 is a block diagram showing the overall configuration of an exhaled gas measurement analyzer.
  • sample gas an exhalation bag that collects exhaled gas after administration
  • base gas an exhalation bag that collects exhaled gas before administration
  • nozzles Nl and N2 respectively. Is done.
  • the nozzle Nl is connected to an electromagnetic valve (hereinafter simply “valve”) V4 through a metal pipe (hereinafter simply “pipe”), and the nozzle N2 is connected to the valve V3 through a pipe.
  • a valve V5 is connected to a pipe that takes in air through the dust filter 15.
  • a reference gas supplied from a reference gas supply unit 30 (here, air from which CO is removed) is connected to a valve VI.
  • Valves VI, V3, V4 and V5 are connected to a gas injector 21 for quantitative injection of reference gas, sample gas or base gas.
  • the gas injector 21 is shaped like a syringe having a piston and a cylinder.
  • the piston is driven by a feed screw 21e connected to the pulse motor 21f and a nut 21d fixed to the piston. This is done by working (see below).
  • the gas injector 21 is connected to the first sample cell l la and the second sample cell 1 lb through the valve V2.
  • the cell chamber 11 is a short first sample for measuring the absorption of 12 CO as shown in Figure 1.
  • the first sample cell 11a and the second sample cell l ib communicate with each other, and the gas guided to the first sample cell 11a directly enters the second sample cell l ib and is exhausted through the exhaust valve V6. It is like this.
  • a pressure sensor 16 for measuring the gas pressure in the first sample cell 11a and the second sample cell l ib is attached in front of the exhaust valve V6.
  • the detection method of the pressure sensor 16 is not limited, for example, a pressure sensor of a method of sensing the movement of the diaphragm with a piezoelectric element can be used.
  • the capacity of the first sample cell 11a is about 0.085 ml, and the capacity of the second sample cell l ib is about 3.915 ml.
  • the length of the first sample cell 11a is specifically 5 mm, the length of the second sample cell 1 lb is specifically 140 mm, and the length of the dummy cell 1 lc is specifically 35 mm. .
  • the cell chamber 11 is surrounded by a heat insulating material (not shown).
  • Symbol L indicates an infrared light source device.
  • Infrared light source device L emits infrared light It has a light source. Any infrared ray generation method can be used. For example, a ceramic heater (surface temperature 700 ° C) can be used.
  • a chopper 22 that cuts off and passes infrared rays at regular intervals is attached. The chopper 22 is rotated by a pulse motor 23.
  • the optical path formed by the first sample cell 11a and the dummy cell 1 lc is defined as "first optical path Ll" t ⁇ , and the second sample cell 1 lb
  • the optical path formed by the passing object is the “second optical path L2” (see Fig. 1).
  • An infrared detector that detects infrared rays that have passed through the cell includes a first wavelength filter 24a and a first detection element 25a that are placed in a first optical path, and a second wavelength filter 24b that is placed in a second optical path.
  • the second detection element 25b is provided.
  • the first wavelength filter 24a has a 12 CO absorption wavelength band for measuring 12 CO absorption.
  • the second wavelength filter 24b measures the absorption of 13 CO.
  • the first detection element 25a and the second detection element 25b are light receiving elements that detect infrared rays, and are configured by PIN diodes or the like.
  • the first wavelength filter 24a, the first detection element 25a, the second wavelength filter 24b, and the second detection element 25b are kept at a constant temperature by a temperature control block 27 using a Peltier element.
  • the heat radiated from the Peltier element of the temperature control block is exhausted out of the device by the fan 28.
  • a reference gas supply unit 30 is provided.
  • the reference gas supply unit 30 has a configuration in which a dustproof filter 31 and a carbon dioxide absorption unit 36 are connected in series.
  • the carbon dioxide absorbing section 36 uses, for example, soda lime (a mixture of sodium hydroxide and calcium hydroxide) as a carbon dioxide absorbent.
  • FIGS. 2 and 3 are a plan view and a front view showing a gas injector 21 for quantitatively injecting a gas to be measured.
  • a cylinder 21b containing a piston 21c is arranged on a base 21a, and a movable nut 21d and a nut 21d connected to the piston 21c are placed under the base 21a. It is a structure in which a matching feed screw 21e and a Norse motor 21f for rotating the feed screw 21e are arranged.
  • the noise motor 21f is driven forward and backward by a drive circuit (not shown).
  • the measurement is performed in the order of reference gas measurement ⁇ base gas measurement ⁇ reference gas measurement ⁇ sample gas measurement ⁇ reference gas measurement ⁇ . This will be described with reference to FIGS. In each figure, the arrow means that gas is flowing.
  • valve VI is opened, the other nozzles are closed, and reference gas is aspirated using gas injector 21. At this time, the piston 21c is moved back and forth to clean the inside of the cylinder 21b.
  • the valve VI is closed, the valve V2 and the exhaust valve V6 are opened, and the reference gas in the gas injector 21 is introduced into the first sample cell 11a and the second sample cell l ib. Transfer. In this way, the gas flow path and the cell chamber 11 are washed by flowing a clean reference gas through the gas flow path and the cell chamber 11.
  • a measurement reference gas is injected from the gas injector 21 into the first sample cell 11a and the second sample cell l ib, and the light quantity is measured from the detection elements 25a and 25b.
  • valve V3 is opened and the other valves are closed and called using gas injector 21.
  • the base gas of the air bag is sucked in by the volume Va necessary for the measurement, and the piston is stopped (Step S1).
  • This volume Va is, for example, 35 ml.
  • valve V3 is closed and the nozzle V2 is opened, so that the gas injector 21 is in communication with the first sample cell 1 la and the second sample cell 1 lb. .
  • step S2 If the exhalation bag contains only exhalation of volume less than Va under atmospheric pressure! /, The volume under the atmospheric pressure of the base gas sucked using the gas injector 21 becomes less than Va, and the gas injector 21 The inside is lower than atmospheric pressure.
  • the valve V2 When the valve V2 is opened, the reference gas in the first sample cell 1 la and the second sample cell 1 lb flows back to the gas injector 21, and the atmospheric pressure is applied to the gas injector 21 and the first sample cell 11 a as a whole. Lower than. This pressure value is read by the pressure sensor 16.
  • the gas injector 21 is used to inhale!
  • the volume of the introduced base gas under atmospheric pressure becomes Va.
  • the gas injector 21 is at atmospheric pressure, and when the valve V2 is opened, the atmospheric pressure combined with the reference gas in the first sample cell 11a and the second sample cell 1 lb is also atmospheric pressure.
  • the measured value of the pressure sensor 16 becomes atmospheric pressure, and the expiratory bag force also increases to the gas injector 21.
  • the measured value of the pressure sensor 16 becomes less than atmospheric pressure.
  • the pressure measurement is performed in the sealed space as described above, the pressure measurement can be performed accurately without being affected by the external environment. Therefore, even if the amount of expiration is small, it can be detected.
  • the measured value of the pressure sensor 16 is less than the atmospheric pressure, it means that the base gas is not in the exhalation bag enough for the measurement. In this case, measure the shortage of base gas. That is, as shown in FIG. 8, the valve V2 is opened, the other valves are closed, and the pressure is measured by the pressure sensor 16 to measure the first sample cell 1 la and the second sample from the gas injector 21. Transfer base gas to 1 lb of cell! /, (Step S3).
  • This volume Vx is the amount of base gas that is insufficient.
  • a display (not shown) indicates that the measurement is to be stopped, and the volume of the base gas with sufficient force is displayed. Then, the subsequent base gas measurement process is stopped (step S4).
  • the measurer can see that the base gas is strong enough, that the measurement has been stopped, and know the shortage of the base gas by looking at the display. Then, the patient is informed of this and the exhalation bag collects the base gas again.
  • step S5 If the measured value of the pressure sensor 16 is atmospheric pressure, the next base gas measurement process is performed (step S5).
  • valves V2 and V6 are opened, the other valves are closed, and the base gas is mechanically pushed out by the gas injector 21 by a volume corresponding to Vc (in this example, 4 ml).
  • Vc in this example, 4 ml
  • valve V6 is closed and the piston is moved as shown in FIG. Since the exhaust valve V6 remains closed, the pressure in the gas injector 21, the first sample cell 11a, and the second sample cell l ib is thereby increased.
  • the pressure in the first sample cell 11a and the second sample cell l ib is measured by the pressure sensor 16.
  • P be this pressure measurement.
  • P0 a specified pressure
  • stop the piston movement close the valve V2
  • measure the light intensity the first detection element 25a 12 B and the resulting amount of light
  • the amount of light obtained by the second detection element 25b are the 13 B.
  • the sample gas of volume Va cannot be sucked in from the exhalation bag under atmospheric pressure, it means that the sample gas contained in the exhalation bag contained the necessary amount for measurement. In this case, the amount of the sample gas that is insufficient is measured, and a display (not shown) is displayed to indicate that the measurement is to be stopped, and the volume of the sample gas that is insufficient is displayed. Then, the subsequent processing is stopped.
  • the measurer looks at the display and knows that the sample gas has become sufficiently powerful and that the measurement has been stopped. Then, the patient is informed of this, and the exhalation bag collects sample gas again.
  • the light intensity of the sample gas is measured in the same procedure as the base gas measurement in III-3.
  • valves V2 and V6 are opened, the other valves are closed, and the sample gas is mechanically pushed out by the gas injector 21 by a volume corresponding to Vc (4 ml in this example).
  • the reference gas in the first sample cell l la and the second sample cell l ib is replaced with the sample gas.
  • valve V6 is closed, the piston is moved, and the pressure in the first sample cell 11a and the second sample cell 1 lb is increased.
  • the pressure sensor 16 stops the movement of the piston when the pressure measurement value in the first sample cell 11a and the second sample cell l ib reaches a predetermined pressure P0, for example, 4 atm. In this state, the valve V2 is closed and the light quantity is measured by the respective detection elements 25a and 25b.In this way, the light quantity obtained by the first detection element 25a is obtained by 12 S and the second detection element 25b. Write the light intensity as 13 S.
  • the light quantity obtained by the first detection element 25a is written as 12 R3
  • the light quantity obtained by the second detection element 25b is written as 13 R3.
  • the reference gas transmitted light 12 Rl, 13 R1, the base gas transmitted light 12 B, 13 B, and the reference gas transmitted light 12 R2, 13 R2 are used to absorb 12 CO in the base gas.
  • the amount of transmitted light 12 R2 of the reference gas, 13 R2 the amount of transmitted light of the sample gas 12 S, 1 3 S, with the amount of transmitted light 12 R3, 13 R2 of the reference gas, 12 CO in the sample gas
  • the calibration curve consists of the gas to be measured having 12 CO concentration and the gas having 13 CO concentration.
  • the calibration curve is created at a predetermined pressure P0 (for example, 4 atm).
  • P0 for example, 4 atm.
  • the 12 CO concentrations try changing the range of about 0% to 8%, the 12 CO
  • the horizontal axis is 12 CO concentration and the vertical axis is 12 CO absorbance.
  • the horizontal axis is 13 CO concentration
  • the vertical axis is 13 CO absorbance, plotted, and the least square
  • the concentration of 12 CO in the base gas determined using the calibration curve, is 12 Conc (B),
  • the concentration ratio in the base gas is 13 Conc (B) / 12 Conc (B)
  • the concentration ratio in the sample gas is
  • the concentration ratio is 13 Conc (B) / ( 12 Conc (B) + 13 Conc (B)), 13 Conc (S) / ( 12 Conc (S)
  • the change of 13 c which compares the sample gas and the base gas, can be calculated by the following formula.
  • ⁇ 13 C [Concentration ratio of sample gas—Concentration ratio of base gas] X 10 3 / [Concentration ratio of base gas] (Unit: Permill (percentage))
  • sample gas the base gas or sample gas in the gas injector 21
  • the pressure value read by the pressure sensor 16 can be accurately obtained. I verified this.
  • the volume Va of the sample gas sucked from the gas injector 21 was 35 ml.
  • the gas shortage amount is 1, 2, 3,..., 25, 35 ml, respectively.
  • Fig. 12 shows a plot of the average pressure in the cell against the shortage of the sample gas.
  • the present invention can accurately determine the shortage of the sample gas.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Pathology (AREA)
  • Molecular Biology (AREA)
  • Biomedical Technology (AREA)
  • General Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • Biophysics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Animal Behavior & Ethology (AREA)
  • Surgery (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Physiology (AREA)
  • Pulmonology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Hematology (AREA)
  • Medicinal Chemistry (AREA)
  • Urology & Nephrology (AREA)
  • Food Science & Technology (AREA)
  • Emergency Medicine (AREA)
  • Obesity (AREA)
  • Investigating Or Analysing Biological Materials (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Sampling And Sample Adjustment (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)

Abstract

 伸縮自在な呼気バッグ内に収集された呼気を、ガス注入器21の中に一定体積Va吸い込んだ後、ガス注入器21と、サンプルガス又はリファレンスガスがあらかじめ満たされることにより大気圧に保たれたセル11内とを、バルブV2で連通させ、連通後のガスの圧力を、前記セル11に取り付けられた圧力センサ16で測定する。呼気バッグ内に採取した呼気が一定量よりも不足しているかどうかを正確に判断することができる。

Description

呼気ガス測定分析方法及び装置
技術分野
[0001] 同位体の入った薬物を生体に投与した後、同位体の濃度比の変化を測定すること により、生体の代謝機能が測定できるので、同位体の分析は、医療の分野で病気の 診断に利用されている。
本発明は、同位体の光吸収特性の相違に着目して、人の呼気の中の二酸化炭素13
COの濃度、又は二酸化炭素13 COと二酸化炭素12 CO との濃度比を測定する呼気
2 2 2
ガス測定分析方法及び装置に関するものである。
背景技術
[0002] 一般に、胃潰瘍、胃炎の原因として、ヘリコバクタピロリー (HP)と言われて 、るバタ テリアが存在することが知られて 、る。
患者の胃の中に HPが存在すれば、抗生物質の投与による除菌治療を行う必要が ある。したがって、患者に HPが存在する力否かを確認することが重要である。 HPは
、強いゥレアーゼ活性を持っていて、尿素を二酸ィ匕炭素とアンモニアに分解する。
[0003] 一方、炭素には、質量数が 12のものの他、質量数が 13や 14の同位体が存在する
1S これらの同位体の中で質量数が 13の同位体13 Cは、放射性がなぐ安定して存在 するため取り扱いが容易である。
そこで、同位体13 Cでマーキングした尿素を生体に投与した後、最終代謝産物であ る患者の呼気中の13 COの濃度、具体的には13 COと12 COとの濃度比を測定するこ
2 2 2
とができれば、 HPの存在を確認することができる。
[0004] ところが、 13coと12 COとの濃度比は、自然界では 1: 100もあり、このため患者の呼
2 2
気中の濃度比を精度よく測定することは難しい。
従来、 13coと12 COとの濃度比又は13 COの濃度を求める方法として、赤外分光を
2 2 2
用いる方法が知られて 、る(特開昭 53-42890号公報参照)。
特開昭 53-42890号公報記載の方法は、長短 2本のセルを用意し、一方のセルでの COの吸収と、他方のセルでの12 COの吸収が等しくなるようなセルの長さにし、各 セルに、それぞれの分析に適した波長の光を当てて、透過光の強度を測定する。こ の方法によれば、自然界の濃度比での光吸収比を 1にすることができ、これから濃度 比がずれると、ずれた分だけ光吸収比が変化するので、濃度比の変化を知ることが できる。
特許文献 1:特開昭 53-42890号公報
特許文献 2:特開 2002-98629号公報
特許文献 3:国際公開 WO1997/14029号パンフレット
特許文献 4 :国際公開 WO1998/30888号パンフレット
特許文献 5:国際公開 WO2002/25250号パンフレット
特許文献 6 :国際公開 WO2005/41769号パンフレット
発明の開示
発明が解決しょうとする課題
[0005] 前記のような赤外分光方法を採用した場合、患者から採取された呼気が一定量より 不足して!/ヽれば、測定したデータの信頼性が低下する。
そこで、現状では、呼気を満たした呼気バッグの形状を目視して、呼気が不足して いるかどうかを判断している。呼気バッグは可撓性なので、その形状から、呼気ガス が満たされて 、るかどうか分力る力 である。
[0006] ところが、目視で判断すると、呼気が前記一定量より多いのか少ないのか、前記一 定量からどれだけ不足して 、るかを正確に評価することはできな!、。
そこで、本発明は、二酸化炭素13 COと二酸化炭素12 CO とを成分ガスとして含む
2 2
呼気をセルに導き、各成分ガスの濃度を赤外分光測定する場合に、採取した呼気が 一定量よりも不足しているかどうかを正確に判断し、誤ったデータの導出を防止する ことのできる呼気ガス測定分析方法及び装置を提供することを目的とする。
課題を解決するための手段
[0007] 本発明の呼気ガス測定分析方法は、二酸化炭素13 COと二酸化炭素12 CO とを成
2 2 分ガスとして含む人の呼気を伸縮自在な呼気バッグに収集し、前記呼気バッグ内に 収集された呼気を、ガス注入器の中に、一定体積吸い込み、前記ガス注入器の中の 呼気の圧力を測定し、測定された圧力値が大気圧よりも低ければ、前記呼気バッグ 内に収集された呼気の量が不足としていると判断して、測定を中止し、測定された圧 力値が大気圧であれば、前記ガス注入器を押し出してセル内を前記呼気で満たし、 各成分ガスを透過する波長において、前記セルを透過した光の強度を測定し、デー タ処理することによって、二酸化炭素13 COの濃度、又は二酸ィ匕炭素13 COと二酸ィ匕
2 2 炭素12 CO との濃度比を測定する方法である。
2
[0008] この方法によれば、患者の呼気を、ガス注入器の中に一定体積吸い込み、前記呼 気の圧力を測定することにより、呼気バッグ内に収集された呼気の量が不足している 力どうかを判断する。このため、呼気の不足量を良好な精度で判断することができる。 したがって、呼気が不足したまま赤外分光測定を行って信頼性のデータが表示させ てしまうという事態を未然に防止できる。
[0009] 前記呼気バッグの最大収容可能体積は、前記ガス注入器の中に吸 、込まれる「一 定体積」と等しいか又はそれより大きいことが好ましい。もし、前記呼気バッグの最大 収容可能体積が前記「一定体積」よりも小さければ、前記ガス注入器の中の呼気の 圧力測定値は常に大気圧未満になり、測定が中止される力 である。
前記呼気バッグ内に収集された呼気を、前記ガス注入器の中に一定体積吸!ヽ込ん だ後、前記ガス注入器と、所定のガスであら力じめ満たされることにより大気圧に保た れた前記セル内とをバルブを開いて連通させ、連通後のガスの圧力を、前記セルに 取り付けられた圧力センサで測定することとしてもよい。この場合、前記セルに取り付 けられた圧力センサを利用して、測定することができる。通常、前記セルには圧力セ ンサが設けられているので、この圧力センサを流用することができる。したがって、前 記ガス注入器に直接圧力センサを取り付ける必要がなくなり、装置の構成を簡単に することができる。
[0010] 前記所定のガスは、通常、前記各成分ガスを透過する波長の光を吸収しな!、リファ レンスガスである。このリファレンスガスは空気を用いてもよい。これ以外に窒素ガスを 用いることちでさる。
前記呼気バッグ内に収集された呼気の量が不足としていると判断した場合、前記ガ ス注入器内の呼気を、大気圧になるまで加圧し、加圧に要したガス注入器の体積変 化量を不足量として測定者に示すことができる。したがって、測定者がもう一度呼気 を吐き出すときの参考にすることができる。
[0011] また、本発明の呼気ガス測定分析装置は、前記呼気ガス測定分析方法と実質同一 の発明に係る装置である。
本発明における上述の、又はさらに他の利点、特徴及び効果は、添付図面を参照 して次に述べる実施形態の説明により明らかにされる。
図面の簡単な説明
[0012] [図 1]図 1は本発明の呼気ガス測定分析装置の全体構成を示すブロック図である。
[図 2]図 2は被測定ガスを定量的に注入するためのガス注入器を示す平面図である。
[図 3]図 3はガス注入器を示す正面図である。
[図 4]図 4はリファレンス測定におけるガス流路を示す図である。
[図 5]図 5はリファレンス測定におけるガス流路を示す図である。
[図 6]図 6はガス圧力測定におけるガス流路を示す図である。
[図 7]図 7はガス圧力測定におけるガス流路を示す図である。
[図 8]図 8はガス圧力測定をするときのガス流路を示す図である。
[図 9]図 9はベースガス圧力測定処理の各工程を示すフローチャートである。
[図 10]図 10は光量測定をするときのガス流路を示す図である。
[図 11]図 11は光量測定をするときのガス流路を示す図である。
[図 12]図 12は実施例における、セル内圧力平均値と試料ガスの不足量との関係をプ ロットしたグラフである。
符号の説明
[0013] L 赤外線光源装置
Nl , N2 ノズル
VI〜V6 バルブ
11a 第 1サンプルセル
l ib 第 2サンプルセル
11c ダミーセノレ
15 フイノレタ
16 圧力センサ 21 ガス注入器
21a シリンダー
21b ピストン
24a 第 1の波長フィルタ
24b 第 2の波長フィルタ
25a 第 1の検出素子
25b 第 2の検出素子
発明を実施するための最良の形態
[0014] 以下、同位体13 Cでマーキングしたゥレア診断薬を人間に投与した後、呼気中の13 C O
2の濃度を分光測定する場合の、本発明の実施の形態を、添付図面を参照しなが ら詳細に説明する。
I.呼気テスト
まず、ゥレア診断薬を投与する前の患者の呼気を呼気バッグに採集する。その後、 ゥレア診断薬を経口投与し、約 20分後、投与前と同様の方法で呼気バッグに呼気を 採集する。
[0015] 呼気バッグは伸縮自在であり、合成樹脂などの可撓性の容器又はゴムなどの弾力 性のある容器でできている。呼気バッグは、患者の呼気で膨らませることができる。そ の膨らんだ状態の呼気バッグに入る呼気の最大体積 VBagと、後述するピストンで吸 V、込む体積 Vaとの関係は次のようになって!/、る。
Figure imgf000007_0001
ここに j8は非負の定数で、 0≤ β < j8 maxの範囲に設定される。上限値 j8 maxは正の 定数である。例えば j8 max=0. 5とする。
[0016] 投与前と投与後の呼気バッグをそれぞれ呼気ガス測定分析装置の所定のノズルに セットし、以下の自動測定を行う。
II.呼気ガス測定分析装置
図 1は、呼気ガス測定分析装置の全体構成を示すブロック図である。
投与後の呼気 (以下「サンプルガス」 t ヽぅ)を採集した呼気バッグと投与前の呼気 ( 以下「ベースガス」という)を採集した呼気バッグとはそれぞれノズル Nl , N2にセット される。ノズル Nlは、金属パイプ(以下単に「パイプ」と 、う)を通して電磁バルブ(以 下単に「バルブ」という) V4につながり、ノズル N2は、パイプを通してバルブ V3につ ながっている。さらに、防塵フィルタ 15を通して空気を取り込むパイプにバルブ V5が つながつている。
[0017] 一方、リファレンスガス供給部 30 (後述)カゝら供給されるリファレンスガス (ここでは C Oを除去した空気を用いる)はバルブ VIに通じている。
2
バルブ VI、 V3、 V4、 V5は、リファレンスガス、サンプルガス又はベースガスを定 量的に注入するためのガス注入器 21につながっている。このガス注入器 21は、ビス トンとシリンダーを有する注射器のような形状のもので、ピストンの駆動は、パルスモ ータ 21fに連結された送りネジ 21eと、ピストンに固定されたナット 21dとの共働によつ て行われる (後述)。
[0018] ガス注入器 21は、バルブ V2を通して、第 1サンプルセル l la、第 2サンプルセル 1 lbにつながっている。
セル室 11は、図 1に示すように、 12CO の吸収を測定するための短い第 1サンプル
2
セル l la、13CO の吸収を測定するための長い第 2サンプルセル l ib、及び CO の
2 2 吸収帯で吸収を示さな!/、ガスの入って!/、るダミーセル 1 lcからなる。第 1サンプルセ ル 11aと第 2サンプルセル l ibとは連通しており、第 1サンプルセル 11aに導かれたガ スは、そのまま第 2サンプルセル l ibに入り、排気バルブ V6を通して排気されるように なっている。
[0019] 排気バルブ V6の手前には、第 1サンプルセル 11a及び第 2サンプルセル l ib内の ガス圧力を測定する圧力センサ 16が付属して 、る。この圧力センサ 16の検出方式 は限定されないが、例えばダイヤフラムの動きを圧電素子で感知する方式の圧力セ ンサを用いることができる。
第 1サンプルセル 11aの容量は約 0. 085ml、第 2サンプルセル l ibの容量は約 3. 915mlである。第 1サンプルセル 11aの長さは具体的には 5mmであり、第 2サンプル セル 1 lbの長さは具体的には 140mmであり、ダミーセル 1 lcの長さは具体的には 1 35mmである。セル室 11は、断熱材(図示せず)で包囲されている。
[0020] 符号 Lは、赤外線光源装置を示す。赤外線光源装置 Lは赤外線を照射する 2つの 光源を備えている。赤外線発生の方式は、任意のものでよぐ例えばセラミックスヒー タ (表面温度 700° C)等が使用可能である。また、赤外線を一定周期ごとにしゃ断、 通過させるチヨッパ 22が取り付けられている。チヨッパ 22は、パルスモータ 23によつ て回転する。
[0021] 赤外線光源装置 Lから照射された赤外線のうち、第 1サンプルセル 11a及びダミー セル 1 lcを通るものが形成する光路を「第 1の光路 Ll」 t ヽ、第 2サンプルセル 1 lb を通るものが形成する光路を「第 2の光路 L2」 、う(図 1参照)。
セルを通過した赤外線を検出する赤外線検出装置は、第 1の光路に置かれた第 1 の波長フィルタ 24aと第 1の検出素子 25a、第 2の光路に置かれた第 2の波長フィルタ 24bと第 2の検出素子 25bを備えて 、る。
[0022] 第 1の波長フィルタ 24aは、12 CO の吸収を測定するため12 CO の吸収波長帯であ
2 2
る約 4280nmの波長の赤外線を通し、第 2の波長フィルタ 24bは、 13CO の吸収を測
2
定するため13 CO の吸収波長帯である約 4412nmの波長の赤外線を通すように設
2
計されている。第 1の検出素子 25a、第 2の検出素子 25bは赤外線を検出する受光 素子であり、 PINダイオードなどで構成される。
[0023] 第 1の波長フィルタ 24a、第 1の検出素子 25a、第 2の波長フィルタ 24b、第 2の検出 素子 25bは、ペルチェ素子を用いた温調ブロック 27により一定温度に保たれている。 また、温調ブロックのペルチェ素子より放熱される熱をファン 28で装置外へ排気し ている。
[0024] さらに、呼気ガス測定分析装置の本体に付属して、 COを除いた空気を供給するリ
2
ファレンスガス供給部 30が設けられている。リファレンスガス供給部 30は、防塵フィル タ 31、炭酸ガス吸収部 36を直列につないだ構成となっている。
炭酸ガス吸収部 36は、例えばソーダライム (水酸ィ匕ナトリウムと水酸ィ匕カルシウムと を混合したもの)を炭酸ガス吸収剤として用いて 、る。
[0025] 図 2、図 3は、被測定ガスを定量的に注入するためのガス注入器 21を示す平面図と 正面図である。
ガス注入器 21は、基台 21aの上に、ピストン 21cの入ったシリンダー 21bが配置さ れ、基台 21aの下に、ピストン 21cと連結した移動自在なナット 21d、ナット 21dと嚙み 合う送りネジ 21e、及び送りネジ 21eを回転させるノ ルスモータ 21fが配置された構造 である。
[0026] 前記ノ ルスモータ 21fは、図示しない駆動回路によって、正転、逆転駆動される。
パルスモータ 21fの回転によって送りネジ 21eが回転すると、回転方向に応じてナット 21dが前後移動し、これによつて、ピストン 21cが任意の位置に前後移動する。したが つて、シリンダー 21bへの被測定ガスの導入と、シリンダー 21bからの被測定ガスの 導出を自在に制御することができる。
III .測定手順
測定は、リファレンスガス測定→ベースガス測定→リファレンスガス測定→サンプル ガス測定→リファレンスガス測定→· · ·という手順で行う。図 4から図 8を用いて説明す る。各図において、矢印は、気体の流れていることを意味する。
III - 1.リファレンスガス柳』定
図 4に示すように、バルブ VIを開き、他のノ レブは閉じ、ガス注入器 21を用いてリ ファレンスガスを吸引する。このとき、ピストン 21cを前後移動させて、シリンダー 21b 内を洗浄する。
[0027] つぎに図 5に示すように、バルブ VIを閉じ、バルブ V2と排気バルブ V6を開き、ガス 注入器 21内のリファレンスガスを、第 1サンプルセル 11a及び第 2サンプルセル l ib 内に移す。このようにして、ガス流路及びセル室 11に、清浄なリファレンスガスを流し てガス流路及びセル室 11の洗浄をする。
そして、第 1サンプルセル 11a及び第 2サンプルセル l ib内に、ガス注入器 21から 測定用のリファレンスガスを注入し、それぞれの検出素子 25a, 25b〖こより、光量測定 をする。
[0028] このようにして、第 1の検出素子 25aで得られた光量を12 R1、第 2の検出素子 25bで 得られた光量を13 R1と書く。
III- 2.ベースガス圧力測定
次に、ベースガス圧力測定処理を、図 6〜図 8の各工程図、及び図 9のフローチヤ ートを用いて説明する。
[0029] 図 6に示すように、バルブ V3を開き、他のバルブは閉じ、ガス注入器 21を用いて呼 気バッグのベースガスを測定に必要な体積 Vaだけ吸い込み、ピストンを静止させる( ステップ S1)。この体積 Vaは例えば 35mlである。
このとき、セル室 11内は、バルブ V2, V6は閉じられているので大気圧のリファレン スガスが入ったままである。
[0030] つぎに図 7に示すように、バルブ V3を閉じ、ノ レブ V2を開き、ガス注入器 21内と 第 1サンプルセル 1 la及び第 2サンプルセル 1 lbとを連通させた状態にする。
すなわち、ガス注入器 21内と第 1サンプルセル 1 la及び第 2サンプルセル 1 lbで密 閉した空間を作る。この状態で、圧力センサ 16で圧力を測定する (ステップ S2)。 呼気バッグに大気圧下の体積 Va未満の呼気しか入って!/、なかったとき、ガス注入 器 21を用いて吸い込んだベースガスの大気圧下の体積は Vaに満たなくなり、ガス注 入器 21の中は大気圧よりも低くなつている。バルブ V2を開いたときに、第 1サンプル セル 1 la及び第 2サンプルセル 1 lb内のリファレンスガスが、ガス注入器 21に逆流し 、ガス注入器 21と第 1サンプルセル 11a全体として、大気圧よりも低くなる。この気圧 値を圧力センサ 16で読む。
[0031] 呼気バッグに大気圧下の体積 Va以上の呼気が入っているならば、ガス注入器 21 を用いて吸!、込んだベースガスの大気圧下の体積は Vaとなる。ガス注入器 21内は 大気圧であり、バルブ V2を開いたときに、第 1サンプルセル 11a及び第 2サンプルセ ル 1 lb内のリファレンスガスと合わせた気圧も大気圧となる。
以上をまとめると、呼気バッグ力もガス注入器 21へ大気圧下の体積 Vaのベースガ スを吸い込むことができたとき、圧力センサ 16の測定値は大気圧となり、呼気バッグ 力もガス注入器 21へ大気圧下の体積 Vaのベースガスを吸い込むことができなかった とき、圧力センサ 16の測定値は大気圧未満となる。
[0032] この場合、前述したように密閉した空間内で圧力測定を行うため、外部環境の影響 を受けないで、精度よく圧力測定ができる。したがって、呼気の不足量がわずかであ つても、その不足を検知することができる。
圧力センサ 16の測定値は大気圧未満の場合は、呼気バッグにベースガスが測定 に必要量入っていな力つたということである。この場合は、ベースガスの不足量を測 定する。 [0033] すなわち、図 8に示すように、バルブ V2を開き、他のバルブを閉じて、圧力センサ 1 6で圧力を測定しながら、ガス注入器 21から第 1サンプルセル 1 la及び第 2サンプル セル 1 lbにベースガスを移して!/、く(ステップ S3)。
圧力センサ 16の読みが大気圧になると、ガス注入器 21の動作をストップする。 この状態で、ガス注入器 21のピストン移動量に相当する体積 Vxを測定する。
[0034] この体積 Vxが足りなかったベースガスの量になる。
ディスプレイ(図示せず)に、測定を中止することを示す表示を行うとともに、足りな 力つたベースガスの体積を表示する。そして、以後のベースガス測定処理を中止する (ステップ S4)。
測定者は、ディスプレイの表示を見て、ベースガスが足りな力つたこと、測定が中止 されたことを知ることができるとともに、ベースガスの不足量を知ることができる。そして おそらぐこの旨を患者に伝えて呼気バッグに再びベースガスを収集する動作を行わ せる。
[0035] 圧力センサ 16の測定値が大気圧の場合は、次のベースガス測定処理に行く(ステ ップ S5)。
III 3.ベースガス測定
図 10に示すように、バルブ V2, V6を開いて、他のバルブは閉じ、ガス注入器 21を 用いてベースガスを Vcに相当する体積 (この例では 4ml)だけ機械的に押し出す。こ れにより、第 1サンプルセル l la、第 2サンプルセル l ibのリファレンスガスをベースガ スで入れ替える。
[0036] この状態で、バルブ V6を閉じ、図 11に示すように、ピストンを移動させる。排気バル ブ V6は閉じたままであるので、これによつて、ガス注入器 21内、第 1サンプルセル 11 a及び第 2サンプルセル l ib内は加圧される。
圧力センサ 16によって、第 1サンプルセル 11a及び第 2サンプルセル l ib内の圧力 を測定する。この圧力測定値を Pとする。 Pの値が所定圧力 P0、例えば 4気圧になつ た時点でピストンの移動を停止させ、バルブ V2を閉じ、光量測定する。このようにして 、第 1の検出素子 25aで得られた光量を12 B、第 2の検出素子 25bで得られた光量を13 Bと書く。 III -4.リファレンス柳』定
再び、ガス流路及びセルの洗浄と、リファレンスガスの光量測定をする(図 4(b)参照 ) oこのようにして、第 1の検出素子 25aで得られた光量を12 R2、第 2の検出素子 25b で得られた光量を13 R2と書く。
III - 5.サンプルガス圧力測定
III— 2の圧力測定と同じことを行う。ただ、ベースガスでなぐサンプルガスの収集さ れた呼気バッグをノズル N1にセットし、バルブ V3の代わりに、バルブ V4を開閉する ところが違うだけである。
[0037] 呼気バッグから、大気圧下で体積 Vaのサンプルガスを吸い込むことができたとき、 次のサンプルガス測定に進む。
呼気バッグから、大気圧下で体積 Vaのサンプルガスを吸 、込むことができなかった ときは、呼気バッグにサンプルガスが測定に必要な量入って 、なかったと 、うことであ る。この場合は、足りなかったサンプルガスの量を測定し、ディスプレイ(図示せず)に 、測定を中止することを示す表示を行うとともに、足りな力つたサンプルガスの体積を 表示する。そして、以後の処理を中止する。
[0038] 測定者は、ディスプレイの表示を見て、サンプルガスが足りな力つたこと、測定が中 止されたことを知る。そしておそらぐこの旨を患者に伝えて呼気バッグに再びサンプ ルガスを収集する動作を行わせる。
III -6.サンプルガス測定
III 3のベースガス測定と同じ手順で、サンプルガスの光量測定を行う。
[0039] すなわち、バルブ V2, V6を開いて、他のバルブは閉じ、ガス注入器 21を用いてサ ンプルガスを Vcに相当する体積 (この例では 4ml)だけ機械的に押し出し、これによ り、第 1サンプルセル l la、第 2サンプルセル l ibのリファレンスガスをサンプルガスで 入れ替える。
この状態で、バルブ V6を閉じ、ピストンを移動させて、第 1サンプルセル 11a及び第 2サンプルセル 1 lb内は加圧する。
[0040] 圧力センサ 16によって、第 1サンプルセル 11a及び第 2サンプルセル l ib内の圧力 測定値が所定圧力 P0、例えば 4気圧になった時点でピストンの移動を停止させ、この 状態で、バルブ V2を閉じて、それぞれの検出素子 25a, 25bにより、光量測定をする このようにして、第 1の検出素子 25aで得られた光量を12 S、第 2の検出素子 25bで 得られた光量を13 Sと書く。
III - 7.リファレンス柳』定
再び、ガス流路及びセルの洗浄と、リファレンスガスの光量測定をする(図 4参照)。
[0041] このようにして、第 1の検出素子 25aで得られた光量を12 R3、第 2の検出素子 25bで 得られた光量を13 R3と書く。
IV.データ処理
IV- 1.ベースガスの吸光度の算出
まず、前記リファレンスガスの透過光量12 Rl、 13R1、ベースガスの透過光量12 B、 13B 、リファレンスガスの透過光量12 R2、 13R2を使って、ベースガスにおける12 CO の吸
2 光度12 Abs(B)と、 13CO の吸光度13 Abs(B)とを求める。
2
[0042] ここで12 CO の吸光度12 Abs(B)は、
2
12Abs(B) =— log [212B/ (12R1 +12R2 )〕
で求められ、 13CO の吸光度13 Abs(B)は、
2
13Abs(B) =— log [213B/ (13R1 +13R2 )〕
で求められる。
[0043] このように、吸光度を算出するときに、前後で行ったリファレンス測定の光量の平均 値 (Rl +R2 ) Z2をとり、その平均値と、ベースガス測定で得られた光量とを用いて 吸光度を算出しているので、ドリフト(時間変化が測定に影響を及ぼすこと)の影響を 相殺することができる。したがって、装置の立ち上げ時に完全に熱平衡になるまで( 通常数時間かかる)待たなくても、速やかに測定を始めることができる。
IV— 2.サンプルガスの吸光度の算出
次に、前記リファレンスガスの透過光量12 R2、 13R2、サンプルガスの透過光量12 S、 1 3S、リファレンスガスの透過光量12 R3、 13R2を使って、サンプルガスにおける12 CO
2 の吸光度12 Abs(S)と、 13CO の吸光度13 Abs(S)とを求める。
2
[0044] ここで12 CO の吸光度12 Abs(S)は、 12Abs(S) =— log [212S/( 12R2 +12R3 )〕
で求められ、 13CO の吸光度13 Abs(S)は、
2
13Abs(S) =— log [213S/ (13R2 +13R3 )〕
で求められる。
[0045] このように、吸光度を算出するときに、前後で行ったリファレンス測定の光量平均値 をとり、その平均値と、サンプルガス測定で得られた光量とを用いて吸光度を算出し ているので、ドリフトの影響を相殺することができる。
IV— 3.濃度の算出
二酸化炭素13 CO及び12 COの吸光度と濃度との関係を規定する検量線を使って、
2 2
12co の濃度と13 CO の濃度を求める。
2 2
[0046] 検量線は、12 CO 濃度の分力つている被測定ガスと、13 CO 濃度の分力つている被
2 2
測定ガスを用いて、作成したものである。
検量線は、所定圧力 P0 (例えば 4気圧)において作成されているものとする。この検 量線における吸光度と濃度との関係のデータ及び圧力 P0の値は、呼気ガス測定分 析装置内の分析コンピュータによって記憶されている。
[0047] 検量線を求めるには、 12CO 濃度を 0%〜8%程度の範囲で変えてみて、 12CO の
2 2 吸光度を測定する。横軸を12 CO 濃度にとり、縦軸を12 CO 吸光度にとり、プロットし
2 2
、最小自乗法を用いて曲線を決定する。
また、 13CO 濃度を 0%〜0. 08%程度の範囲で変えてみて、 13CO の吸光度を測
2 2
定する。横軸を13 CO 濃度にとり、縦軸を13 CO 吸光度にとり、プロットし、最小自乗
2 2
法を用いて曲線を決定する。
[0048] 2次式で近似したもの力 比較的誤差の少ない曲線となったので、本実施形態では 、 2次式で近似した検量線を採用している。
前記検量線を用いて求められた、ベースガスにおける12 CO の濃度を12 Conc(B)、
2
ベースガスにおける13 CO の濃度を13 Conc(B)、サンプルガスにおける12 CO の濃度
2 2 を12 Conc(S)、サンプルガスにおける13 CO の濃度を13 Conc(S)と書く。
2
IV— 4.濃度比の算出
13co と12 CO との濃度比を求める。ベースガスにおける濃度比は、 13Conc(B) /12Conc(B)
サンプルガスにおける濃度比は、
13Conc(S) /12Conc(S)
で求められる。
[0049] なお、濃度比は、 13Conc(B) / (12Conc(B) +13Conc(B)) , 13Conc(S) / (12Conc(S)
+ 13Conc(S)) と定義してもよい。12 CO の濃度のほうが13 CO の濃度よりはるかに大
2 2
き 、ので、 、ずれもほぼ同じ値となるからである。
IV— 5. 13Cの変化分の決定
サンプルガスとベースガスを比較した、 13cの変化分は次の式で求められる。
[0050] Δ 13C=〔サンプルガスの濃度比—ベースガスの濃度比〕 X 103 /〔ベースガスの濃 度比〕(単位:パーミル (千分率))
実施例
[0051] ガス注入器 21内のベースガス又はサンプルガス(以下まとめて「試料ガス」 t\、う) の不足量と、圧力センサ 16で読まれた圧力値との関係が正確に求まるかどうかを検 証してみた。
24個の呼気バッグを用意し、 8個ずつ 3つの群に分けた。
各群ごとに、 8個の呼気バッグに、表 1の「サンプル量」の欄に示すように、 34, 33, 32, . . . 10, Omlの試料ガスを注入した。
[0052] ガス注入器 21から吸!、込む試料ガスの体積 Vaを 35mlとした。
した力つて、ガス不足量 ίま、表 1に示すように、それぞれ 1, 2, 3, . . . , 25, 35ml となる。
3台の呼気ガス測定分析装置 No.l,No.2,No.3を用意した。
呼気ガス測定分析装置 No.1にお 、て、呼気バッグ力もガス注入器 21に試料ガスを 吸い込み、バルブ V2を開いて、圧力センサ 16でセル内圧力を測定したところ、表 1 のようなセル内圧力値が得られた。セル内圧力値は 1気圧からの差 (単位 MPa)で示 している。
[0053] 他の呼気ガス測定分析装置 No.2,No.3においても、同様に呼気バッグ力もガス注入 器 21に試料ガスを吸い込み、バルブ V2を開いて、圧力センサ 16でセル内圧力を測 定したところ、表 1のようなセル内圧力値が得られた。
試料ガスの不足量が同じ場合の、 3台の呼気ガス測定分析装置についてセル内圧 力値の平均値を求めると、表 1のように、セル内圧力平均値と標準偏差が得られた。
[0054] [表 1]
【表 1】
単位: MPa
Figure imgf000017_0001
[0055] このセル内圧力平均値を、試料ガスの不足量に対してプロットすると、図 12のように なった。
このグラフを見れば判るように、試料ガスの不足量に対して、セル内圧力平均値が 、直線により、きわめて精度よく再現されているといえる。また、標準偏差も小さな値が 得られている。
[0056] したがって、本発明によって、試料ガスの不足判定を正確に行えることが実証でき

Claims

請求の範囲
[1] (a)二酸ィ匕炭素13 COと二酸化炭素12 CO とを成分ガスとして含む、人の呼気を伸縮
2 2
自在な呼気バッグに収集し、
(b)前記呼気バッグ内に収集された呼気を、ガス注入器の中に、一定体積吸い込み
(C)前記ガス注入器の中の呼気の圧力を測定し、
(d)測定された圧力値が大気圧よりも低ければ、前記呼気バッグ内に収集された呼 気の量が不足としていると判断して、測定を中止し、
(e)測定された圧力値が前記大気圧であれば、前記ガス注入器を押し出して、前記 ガス注入器と連通する前記セル内を前記呼気で満たし、
(D各成分ガスを透過する波長にぉ 、て、前記セルを透過した光の強度を測定し、 データ処理することによって、二酸化炭素13 COの濃度、又は二酸ィ匕炭素13 COと二
2 2 酸化炭素12 CO との濃度比を測定する呼気ガス測定分析方法。
2
[2] 前記呼気バッグの最大収容可能体積は、前記ガス注入器の中に吸 ヽ込まれる前 記一定体積と等しいか又はそれより大きい請求項 1記載の呼気ガス測定分析方法。
[3] 前記工程 (b)にお ヽて、前記呼気バッグ内に収集された呼気を、前記ガス注入器の 中に一定体積吸い込んだ後、前記ガス注入器と、所定のガスであら力じめ満たされ ることにより大気圧に保たれた前記セル内とを、前記ガス注入器から前記セルにつな 力 ¾バルブを開 、て連通させ、
前記工程 (c)において、連通後のガスの圧力を、前記セルに取り付けられた圧力セ ンサで測定する、請求項 1記載の呼気ガス測定分析方法。
[4] 前記所定のガスは、前記各成分ガスを透過する波長の光を吸収しないリファレンス ガスである、請求項 3記載の呼気ガス測定分析方法。
[5] 前記リファレンスガスは空気である、請求項 4記載の呼気ガス測定分析方法。
[6] 前記呼気バッグ内に収集された呼気の量が不足としていると判断した場合、前記ガ ス注入器内の呼気を、大気圧になるまで加圧し、
加圧に要したガス注入器の体積変化量を不足量として測定者に示す、請求項 1記 載の呼気ガス測定分析方法。
[7] 前記呼気バッグ内に収集された呼気の量が不足としていると判断した場合、前記ガ ス注入器内の呼気を、大気圧になるまで加圧し、
加圧に要したガス注入器の体積変化量を不足量として測定者に示す、請求項 3記 載の呼気ガス測定分析方法。
[8] 試薬投与前の人の呼気を呼気バッグに収集して、前記 (b)カゝら (Dの呼気ガス測定分 析を行い、
試薬投与後の人の呼気を他の呼気バッグに収集して、前記 (b)カゝら (Dの呼気ガス測 定分析を行い、
両測定の結果を比較することにより、 13co 濃度の変化、又は二酸化炭素13 COと
2 2 二酸化炭素12 CO との濃度比の変化を求める、請求項 1記載の呼気ガス測定分析方
2
法。
[9] 二酸化炭素13 COと二酸化炭素12 CO とを成分ガスとして含む人の呼気をセルに導
2 2
き、各成分ガスを透過する波長において、前記セルを透過した光の強度を測定し、 データ処理することによって、二酸化炭素13 COの濃度、又は二酸ィ匕炭素13 COと二
2 2 酸化炭素12 CO との濃度比を測定する呼気ガス測定分析装置において、
2
伸縮自在な呼気バッグ内に収集された人の呼気を前記セルに注入するためのガス 注入器と、
前記呼気バッグと前記ガス注入器とを連通させるための第一のバルブと、 前記ガス注入器と前記セルとを連通させるための第二のバルブと、
前記セル内の圧力を測定する圧力センサと、
前記呼気を、ガス注入器の中に、一定体積吸い込むガス注入器駆動手段と、 前記第一のバルブ、第二のバルブを駆動するバルブ駆動手段と、
前記ガス注入器と連通した後の前記セル内のガスの圧力を、前記圧力センサで測 定する圧力測定手段と、
前記圧力測定手段により測定された圧力が大気圧よりも低ければ、前記呼気バッ グ内に収集された呼気の量が不足としていると判断して測定を中止し、測定された圧 力値が大気圧であれば、ガス注入器を押し出してセル内を前記呼気で満たして呼気 ガス測定分析を行う測定分析手段とを備える、呼気ガス測定分析装置。 [10] 前記呼気バッグ内に収集された呼気の量が不足としていると判断した場合、前記ガ ス注入器駆動手段は、前記ガス注入器内の呼気を、大気圧になるまで加圧するもの であり、
加圧に要したガス注入器の体積変化量を不足量として測定者に示す表示手段をさ らに備える、請求項 9記載の呼気ガス測定分析装置。
PCT/JP2007/051590 2006-02-03 2007-01-31 呼気ガス測定分析方法及び装置 WO2007088885A1 (ja)

Priority Applications (10)

Application Number Priority Date Filing Date Title
CA002640717A CA2640717A1 (en) 2006-02-03 2007-01-31 Method of exhaled gas measuring and analysis and apparatus therefor
JP2007556889A JP4847479B2 (ja) 2006-02-03 2007-01-31 呼気ガス測定分析方法及び装置
EP07713750.3A EP1985993B1 (en) 2006-02-03 2007-01-31 Method of exhaled gas measuring and analysis and apparatus therefor
CN2007800043325A CN101379388B (zh) 2006-02-03 2007-01-31 呼出气体测定分析方法及装置
EP14189179.6A EP2835628B8 (en) 2006-02-03 2007-01-31 Apparatus for exhaled gas measurement
US12/223,539 US20090306527A1 (en) 2006-02-03 2007-01-31 Method of Exhaled Gas Measurement and Analysis and Apparatus Therefor
ES07713750T ES2530636T3 (es) 2006-02-03 2007-01-31 Método de medición y análisis de gas exhalado y aparato para el mismo
AU2007210591A AU2007210591B2 (en) 2006-02-03 2007-01-31 Method of exhaled gas measurement and analysis and apparatus therefor
HK09103718.6A HK1126000A1 (en) 2006-02-03 2009-04-22 Method of exhaled gas measuring and analysis and apparatus therefor
US13/565,437 US9591992B2 (en) 2006-02-03 2012-08-02 Method of exhaled gas measurement and analysis and apparatus therefor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006027365 2006-02-03
JP2006-027365 2006-02-03

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US12/223,539 A-371-Of-International US20090306527A1 (en) 2006-02-03 2007-01-31 Method of Exhaled Gas Measurement and Analysis and Apparatus Therefor
US13/565,437 Division US9591992B2 (en) 2006-02-03 2012-08-02 Method of exhaled gas measurement and analysis and apparatus therefor

Publications (1)

Publication Number Publication Date
WO2007088885A1 true WO2007088885A1 (ja) 2007-08-09

Family

ID=38327456

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/051590 WO2007088885A1 (ja) 2006-02-03 2007-01-31 呼気ガス測定分析方法及び装置

Country Status (10)

Country Link
US (2) US20090306527A1 (ja)
EP (2) EP1985993B1 (ja)
JP (1) JP4847479B2 (ja)
CN (1) CN101379388B (ja)
AU (1) AU2007210591B2 (ja)
CA (2) CA2871892A1 (ja)
ES (2) ES2668293T3 (ja)
HK (1) HK1126000A1 (ja)
TW (1) TW200740411A (ja)
WO (1) WO2007088885A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011169633A (ja) * 2010-02-16 2011-09-01 Hamamatsu Photonics Kk ガス濃度算出装置およびガス濃度計測モジュール
WO2016117173A1 (ja) * 2015-01-20 2016-07-28 株式会社 東芝 呼気測定装置および呼気測定方法、並びにガスセル
JP2017138221A (ja) * 2016-02-04 2017-08-10 ホシデン株式会社 呼気成分計測装置
US9829432B2 (en) 2014-09-22 2017-11-28 Kabushiki Kaisha Toshiba Gas measuring apparatus
JP2019507869A (ja) * 2016-02-26 2019-03-22 深▲ゼン▼市先亜生物科技有限公司 赤血球の寿命測定方法及び装置
WO2020059100A1 (ja) * 2018-09-21 2020-03-26 大塚電子株式会社 測定装置、および測定方法
US11324954B2 (en) 2019-06-28 2022-05-10 Covidien Lp Achieving smooth breathing by modified bilateral phrenic nerve pacing

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2871892A1 (en) 2006-02-03 2007-08-09 Yasuhiro Kubo Method of exhaled gas measurement and analysis and apparatus therefor
CN101520384B (zh) * 2009-03-19 2011-05-18 河南汉威电子股份有限公司 肺深部气体的采集方法
US9532731B2 (en) 2009-10-22 2017-01-03 Koninklijke Philips N.V. Method and apparatus for measuring the concentration of a gas in exhaled air
EP2529203A4 (en) 2010-01-29 2014-09-03 Univ Texas COMPACT RAMAN ANALYZER FOR RECORDING DEFROSTED GASES IN LIQUIDS WITH HIGH SENSITIVITY AND SPECTRUM RESOLUTION
CA2825998C (en) * 2010-01-29 2017-03-07 Board Of Regents, The University Of Texas System Superior analyzer for raman spectra with high acceptance cone, resolution, transmission, and quantum efficiency, and strong background reduction
EP2562532B1 (en) * 2010-04-23 2017-10-04 Zhejiang University Optical detecting method and device for long-term continuously monitoring liquid concentration
US9988691B2 (en) 2010-07-06 2018-06-05 Deton Corp. System for airborne bacterial sample collection and analysis
WO2014165184A1 (en) * 2013-03-12 2014-10-09 Deton Corp. System for breath sample collection and analysis
US10925515B2 (en) 2014-05-22 2021-02-23 Picomole Inc. Alveolar breath collection apparatus
WO2016125338A1 (ja) * 2015-02-06 2016-08-11 株式会社 東芝 ガス分析方法およびガス分析装置
EP3193166B1 (en) * 2016-01-13 2019-12-18 Inficon GmbH Wide range gas detection using an infrared gas detector
US20170347918A1 (en) * 2016-06-02 2017-12-07 Pulmostics Limited Breath capture device
DE102016209798A1 (de) * 2016-06-03 2017-12-07 Robert Bosch Gmbh Mikroelektronische Sensorvorrichtung und Verfahren zum Herstellen einer mikroelektronischen Sensorvorrichtung
CN106053387B (zh) * 2016-06-29 2019-04-23 南京青辰光电科技有限公司 一种呼出气体检测方法及装置
CN106442022A (zh) * 2016-08-31 2017-02-22 中国电建集团贵阳勘测设计研究院有限公司 气相二氧化碳中碳元素的固化和取样方法
US10666012B2 (en) 2017-03-13 2020-05-26 Picomole Inc. Apparatus and method of optimizing laser system
US20180348155A1 (en) * 2017-06-02 2018-12-06 Ngk Spark Plug Co., Ltd. Gas detection apparatus
IT201800007477A1 (it) * 2018-07-24 2020-01-24 Apparecchiatura per lo stoccaggio di un campione di respiro umano e relativo procedimento di stoccaggio di un campione di respiro umano
EP3667315A1 (en) * 2018-12-12 2020-06-17 HORIBA, Ltd. Exhaust gas analysis apparatus, exhaust gas analysis method, and correction expression creation method
US11035789B2 (en) 2019-04-03 2021-06-15 Picomole Inc. Cavity ring-down spectroscopy system and method of modulating a light beam therein
IT201900011511A1 (it) * 2019-07-11 2021-01-11 Mahle Int Gmbh Apparato e metodo per identificare un fluido refrigerante presente in un serbatoio o cella di misura di un sistema di ricarica di un impianto di condizionamento
US11782049B2 (en) 2020-02-28 2023-10-10 Picomole Inc. Apparatus and method for collecting a breath sample using a container with controllable volume
US11957450B2 (en) 2020-02-28 2024-04-16 Picomole Inc. Apparatus and method for collecting a breath sample using an air circulation system
CN111329483B (zh) * 2020-03-18 2020-12-25 南京润楠医疗电子研究院有限公司 一种便携式潮汐二氧化碳图记录设备
CN114235779B (zh) * 2021-12-17 2024-02-20 重庆重科大分析仪器有限公司 一种采用拉曼光谱技术的天然气质量检测装置

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5342890A (en) 1976-09-30 1978-04-18 Nippon Bunko Kogyo Kk Measuring method of methabolism function of organ
WO1997014029A2 (en) 1995-10-09 1997-04-17 Otsuka Pharmaceutical Co., Ltd. Method for spectrometrically measuring isotopic gas and apparatus thereof
WO1998030888A1 (en) 1997-01-14 1998-07-16 Otsuka Pharmaceutical Co., Ltd. Stable isotope measurement method and apparatus by spectroscopy
JPH10197443A (ja) * 1997-01-14 1998-07-31 Otsuka Pharmaceut Co Ltd 同位体ガス分光測定方法及び測定装置
JPH10197445A (ja) * 1997-01-07 1998-07-31 Jasco Corp 呼気分析方法およびその装置
JPH1176202A (ja) * 1997-09-10 1999-03-23 Isao Nishi 安定同位体呼気ガス採取方法およびそれに使用するための装置
WO2000072754A1 (en) 1999-05-28 2000-12-07 Orca Diagnostics Corporation Cardiopulmonary exercise testing apparatus and method
WO2002025250A2 (en) 2000-09-25 2002-03-28 Otsuka Pharmaceutical Co., Ltd. Isotopic gas analyzer and method of judging absorption capacity of carbon dioxide absorbent
JP2002098629A (ja) 2000-09-25 2002-04-05 Otsuka Pharmaceut Co Ltd 同位体ガス分析測定装置
JP2005003387A (ja) * 2003-06-09 2005-01-06 Nikkiso Co Ltd 気体成分分析における試料導入方法および装置
WO2005041769A1 (en) 2003-10-31 2005-05-12 Otsuka Pharmaceutical Co., Ltd. Gas injection amount determining method in isotope gas analysis, and isotope gas analyzing and measuring method and apparatus

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1032119A (en) * 1962-09-07 1966-06-08 Nat Res Dev Improvements relating to breath-alcohol analysing apparatus
JPS443554Y1 (ja) 1966-09-07 1969-02-08
US4313445A (en) * 1977-10-25 1982-02-02 Ivac Corporation Electronic sphygmomanometer
US5109167A (en) 1990-12-28 1992-04-28 International Business Machines Corp. PNP word line driver
JPH0915248A (ja) 1995-06-29 1997-01-17 Nissho Corp 分注動作判別装置及びその方法
IL121793A (en) * 1997-09-17 2008-06-05 Lewis Coleman Isotopic gas analyzer
CN1249036A (zh) * 1997-03-11 2000-03-29 菲舍尔分析仪器有限公司 碳同位素分析仪
KR100490378B1 (ko) * 2003-07-21 2005-05-18 (주)포인트메디칼 C-14 요소 호기 검사법을 이용하여 헬리코박터파이로리를 진단하는데 사용되는 헬리코박터 파이로리검출 시스템
US20050177057A1 (en) * 2004-02-05 2005-08-11 Mitchell Friedman Automated breath collection device
CA2871892A1 (en) 2006-02-03 2007-08-09 Yasuhiro Kubo Method of exhaled gas measurement and analysis and apparatus therefor

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5342890A (en) 1976-09-30 1978-04-18 Nippon Bunko Kogyo Kk Measuring method of methabolism function of organ
WO1997014029A2 (en) 1995-10-09 1997-04-17 Otsuka Pharmaceutical Co., Ltd. Method for spectrometrically measuring isotopic gas and apparatus thereof
JPH10197445A (ja) * 1997-01-07 1998-07-31 Jasco Corp 呼気分析方法およびその装置
WO1998030888A1 (en) 1997-01-14 1998-07-16 Otsuka Pharmaceutical Co., Ltd. Stable isotope measurement method and apparatus by spectroscopy
JPH10197443A (ja) * 1997-01-14 1998-07-31 Otsuka Pharmaceut Co Ltd 同位体ガス分光測定方法及び測定装置
JPH1176202A (ja) * 1997-09-10 1999-03-23 Isao Nishi 安定同位体呼気ガス採取方法およびそれに使用するための装置
WO2000072754A1 (en) 1999-05-28 2000-12-07 Orca Diagnostics Corporation Cardiopulmonary exercise testing apparatus and method
WO2002025250A2 (en) 2000-09-25 2002-03-28 Otsuka Pharmaceutical Co., Ltd. Isotopic gas analyzer and method of judging absorption capacity of carbon dioxide absorbent
JP2002098629A (ja) 2000-09-25 2002-04-05 Otsuka Pharmaceut Co Ltd 同位体ガス分析測定装置
JP2005003387A (ja) * 2003-06-09 2005-01-06 Nikkiso Co Ltd 気体成分分析における試料導入方法および装置
WO2005041769A1 (en) 2003-10-31 2005-05-12 Otsuka Pharmaceutical Co., Ltd. Gas injection amount determining method in isotope gas analysis, and isotope gas analyzing and measuring method and apparatus

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1985993A4

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011169633A (ja) * 2010-02-16 2011-09-01 Hamamatsu Photonics Kk ガス濃度算出装置およびガス濃度計測モジュール
US9829432B2 (en) 2014-09-22 2017-11-28 Kabushiki Kaisha Toshiba Gas measuring apparatus
WO2016117173A1 (ja) * 2015-01-20 2016-07-28 株式会社 東芝 呼気測定装置および呼気測定方法、並びにガスセル
JP2017138221A (ja) * 2016-02-04 2017-08-10 ホシデン株式会社 呼気成分計測装置
JP2019507869A (ja) * 2016-02-26 2019-03-22 深▲ゼン▼市先亜生物科技有限公司 赤血球の寿命測定方法及び装置
WO2020059100A1 (ja) * 2018-09-21 2020-03-26 大塚電子株式会社 測定装置、および測定方法
JPWO2020059100A1 (ja) * 2018-09-21 2021-08-30 大塚電子株式会社 測定装置、および測定方法
JP7108327B2 (ja) 2018-09-21 2022-07-28 大塚電子株式会社 測定装置、および測定方法
US11324954B2 (en) 2019-06-28 2022-05-10 Covidien Lp Achieving smooth breathing by modified bilateral phrenic nerve pacing

Also Published As

Publication number Publication date
US20140194765A1 (en) 2014-07-10
JPWO2007088885A1 (ja) 2009-06-25
AU2007210591A1 (en) 2007-08-09
CN101379388B (zh) 2012-05-30
CA2640717A1 (en) 2007-08-09
EP2835628B8 (en) 2019-05-15
HK1126000A1 (en) 2009-08-21
EP1985993A4 (en) 2013-09-25
US9591992B2 (en) 2017-03-14
ES2668293T3 (es) 2018-05-17
JP4847479B2 (ja) 2011-12-28
ES2530636T3 (es) 2015-03-04
EP1985993A1 (en) 2008-10-29
TW200740411A (en) 2007-11-01
CA2871892A1 (en) 2007-08-09
AU2007210591B2 (en) 2011-07-28
US20090306527A1 (en) 2009-12-10
EP2835628B1 (en) 2018-03-07
EP2835628A1 (en) 2015-02-11
CN101379388A (zh) 2009-03-04
EP1985993B1 (en) 2014-12-03

Similar Documents

Publication Publication Date Title
WO2007088885A1 (ja) 呼気ガス測定分析方法及び装置
KR100772291B1 (ko) 동위체 가스의 분광 분석을 위한 안정한 동위체 측정방법
JP4435782B2 (ja) 同位体ガス分析におけるガス注入量決定方法並びに同位体ガス分析測定方法及び装置
AU2013359271A1 (en) Determination of location of bacterial load in the lungs
JPH10197443A (ja) 同位体ガス分光測定方法及び測定装置
JP4460134B2 (ja) 同位体ガス分析測定方法
JP2947742B2 (ja) 同位体ガス分光測定方法及び測定装置
JP4481469B2 (ja) 同位体ガス分析測定における炭酸ガス吸収剤の能力判定方法
JP2947737B2 (ja) 同位体ガス分光測定方法及び測定装置
JPH10197444A (ja) 同位体ガス分光測定方法
JP2969066B2 (ja) 同位体ガス分光測定装置
JP3090412B2 (ja) 同位体ガス分光測定方法及び測定装置
Paldus et al. Practical applications of CRDS in medical diagnostics
JPH09105721A (ja) 同位体ガス分光測定装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2640717

Country of ref document: CA

ENP Entry into the national phase

Ref document number: 2007556889

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2007210591

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 200780004332.5

Country of ref document: CN

Ref document number: 6713/DELNP/2008

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: MX/a/2008/010056

Country of ref document: MX

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2007713750

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 12223539

Country of ref document: US