WO2007082781A1 - Bilderfassungssystem und verfahren zur herstellung mindestens eines bilderfassungssystems - Google Patents

Bilderfassungssystem und verfahren zur herstellung mindestens eines bilderfassungssystems Download PDF

Info

Publication number
WO2007082781A1
WO2007082781A1 PCT/EP2007/000813 EP2007000813W WO2007082781A1 WO 2007082781 A1 WO2007082781 A1 WO 2007082781A1 EP 2007000813 W EP2007000813 W EP 2007000813W WO 2007082781 A1 WO2007082781 A1 WO 2007082781A1
Authority
WO
WIPO (PCT)
Prior art keywords
detectors
image acquisition
acquisition system
detector
microlenses
Prior art date
Application number
PCT/EP2007/000813
Other languages
English (en)
French (fr)
Inventor
Jacques DUPARRÉ
Peter Dannberg
Andreas Brückner
Andreas BRÄUER
Original Assignee
Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. filed Critical Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V.
Priority to JP2008551737A priority Critical patent/JP2009524263A/ja
Priority to US12/223,024 priority patent/US7897903B2/en
Priority to ES07711414T priority patent/ES2373063T3/es
Priority to EP07711414A priority patent/EP1979769B1/de
Priority to AT07711414T priority patent/ATE523802T1/de
Publication of WO2007082781A1 publication Critical patent/WO2007082781A1/de
Priority to KR1020087017828A priority patent/KR101275076B1/ko

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses
    • G02B3/0006Arrays
    • G02B3/0037Arrays characterized by the distribution or form of lenses
    • G02B3/0056Arrays characterized by the distribution or form of lenses arranged along two different directions in a plane, e.g. honeycomb arrangement of lenses
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses
    • G02B3/0006Arrays
    • G02B3/0012Arrays characterised by the manufacturing method
    • G02B3/0031Replication or moulding, e.g. hot embossing, UV-casting, injection moulding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14603Special geometry or disposition of pixel-elements, address-lines or gate-electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14603Special geometry or disposition of pixel-elements, address-lines or gate-electrodes
    • H01L27/14605Structural or functional details relating to the position of the pixel elements, e.g. smaller pixel elements in the center of the imager compared to pixel elements at the periphery
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14625Optical elements or arrangements associated with the device
    • H01L27/14627Microlenses
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/50Constructional details
    • H04N23/55Optical parts specially adapted for electronic image sensors; Mounting thereof
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making

Definitions

  • the invention relates to an image acquisition system according to the preamble of the main claim and to a method for producing at least one image acquisition system.
  • Such an image acquisition system is known from WO 2005/069607 A1, in which regularly arranged optical channels each having a microlens and at least one detector lying in the image plane thereof are provided, wherein at least one pixel is extracted from the microimage behind the microlens.
  • the optical axes of the individual optical channels each having a microlens and at least one detector lying in the image plane thereof are provided, wherein at least one pixel is extracted from the microimage behind the microlens.
  • Channels have different slopes such that they represent a function of the distance of the optical channel from the center of the image-facing side of the imaging system. That's it Ratio of the size of the field of view to the image field size specifically determinable. Detectors with such high sensitivity are used that they have a large center distance or pitch with a small active area.
  • a linear increase in the inclination of the optical axes is achieved from channel to channel, for example, by a difference in the center distance or center distance of the microlenses and the detectors.
  • Each optical channel, to which a microlens, an aperture diaphragm associated therewith, and a detector, possibly with a perforated diaphragm, is assigned, thereby "sees" in the adjacent direction of the channels adjoining it.
  • the smallest resolvable angular distance or, if the object distance is known, the smallest resolvable structure size is twice the viewing angle difference in the case of the image capture system described in WO 2005/069607. the tilt difference of the optical axes between adjacent channels.
  • the angular resolution of an ultra-flat camera system is determined for a desired field of view and the like. limited by the edge lengths of the detector array and the associated maximum number of channels in the main axes of symmetry. Increasing the angular resolution by increasing the number of optical channels requires costly enlargement of the silicon area of the detector array. For many simple imaging tasks, e.g. Lane detection, edge position detection or the like requires a moderate resolution over a large field of view. Imaging systems using these
  • the invention is based on the object of the present invention to provide an image acquisition system according to the preamble of the main claim, which permits ghost suppression and which provides an enlarged scannable image field.
  • the image capturing system solves the problem of ghost suppression by additionally staggered aperature apertures introduced between microlenses and their associated aperture stops and detectors, which are defined as detector pixels alone or as detector pixels with these constricting apertured apertures.
  • one or more additional aperture diaphragm arrays between the microlens array and the detector array whose center distance is between the microlenses and the detectors may be provided, so that in the channel provided light of a certain angle of incidence, for all just Aperturblendenö Stammen with lens and lie detector on a straight line, is focused by a lens on its associated detector and all other angles of incidence are blocked by the one additional aperture or by several additional Apertur- blends just before the image plane of the microlens, ie absorbed or reflected.
  • a continuous, unbroken objective body can be used which improves the stability of the objective arrangement, inter alia also by means of an adapted thermal expansion coefficient of the objective body with respect to that of the optoelectronic image sensor.
  • Each lens can focus through the additional associated aperture diaphragm exclusively on its associated detector, but not on the detector of the neighboring lenses, since only for each of the channel provided angle of incidence or all aperture apertures are on an axis.
  • the size of the aperture apertures in the case of a plurality of superimposed aperture diaphragm arrays in the different layers, is adapted in each case to the diameter of the focused light cone at the corresponding distance behind the microlens, the offset of the respective aperture stop relative to the lens or to the detector at the with the respective channel to be imaged angle of incidence.
  • the type, shape and parameters of the microlenses for correcting off-axis Marshfeh- learning by channel-wise adaptation to the respective viewing direction can be used.
  • arrays of variable elliptical (anamorphic) lenses for correcting astigmatism and field curvature and aspheric off-axis lens segments can be used to increase the field of view and resolution with full aberration correction for each viewing direction.
  • the apertures of the microlenses may be centered directly below them, but may also have a pitch difference therefrom.
  • the pitch difference i.e., the difference between the respective center distances
  • the pitch difference between lenses and detector pixels or pinholes may be positive or negative, the optical axes are then directed either inward or outward, and the resulting image is inverted or upright.
  • the light emission, concentration and shaping illumination of the object to be detected may be integrated with the image capture system or camera, for example by leaving some space between the optical channels to mount light sources or at some distance between groups channels or as a ring around the camera.
  • the lens plane e.g. in the dead zones between square packed, e.g. round lenses to attach light sources.
  • only some lenses of the arrangement according to the invention are used to focus on a detector and other adjacent lenses to focus, direct and / or to the light of sources located in the image plane of the microlenses on the object to be observed to distribute.
  • As light sources laser diodes, LEDs or OLEDs or VCSEL or the like can be used.
  • CMOS or CCD sensors As detector pixel arrays, CMOS or CCD sensors, but also arrays of polymer photodiodes can be used, the latter being advantageous since a large total sensor area does not cause such high costs as with Si receivers. Since these receivers can be manufactured using printing technology, as are the lens arrays and also the various aperture diaphragm arrays, long-term printing of the entire camera as a production technology seems to be an option.
  • Such an image sensor is in contrast to the conventional color-receiving CMOS or CCD sensors in which color filters are arranged side by side on otherwise similar pixels.
  • the detector pixels do not necessarily have to be square or rectangular in order to be packed as densely as possible in a Cartesian grid. Rather, other considerations may be taken into account in the design of the detector pixels, such as e.g. a geometry of the PN junction, which causes only a very low dark current and thus has an advantageous effect on the signal-to-noise ratio.
  • a geometry of the PN junction which causes only a very low dark current and thus has an advantageous effect on the signal-to-noise ratio.
  • circular pixels or pixels are used with a circular boundary of the PN junction.
  • the image acquisition system according to the invention can also be used for imaging near (a few cm) or very close (a few mm) objects with a magnification of 1 or a small magnification or reduction. Then the difference of the pitch of the ele- ments, ie in the center distance of the different layers, such as microlens array, aperture diaphragm array, detector array zero or only very small, however, depending on the size of the object to be imaged a large image sensor is needed.
  • the object-side solid angle which is assigned to each channel as a pixel, just as large in size that at the object distance from the imaging system, the lateral object extent corresponding to this solid angle just like great as the pitch of the channels is.
  • Such systems can be used, for example, via correlation algorithms as an optical mouse or as a low-resolution planar microscope or static scanner of near flat objects.
  • the different inclinations of the optical axes of the channels can be achieved in a variety of ways.
  • the individual microlenses can differ in terms of decentring with respect to the detector, the focal length, the conical and / or aspherical parameters.
  • Microprisms can also be integrated into the individual microlenses; after all, the individual microlenses can be arranged on a convexly or concavely shaped base surface.
  • the detectors can also be arranged on a convexly or concavely shaped base surface.
  • An advantageous application of the invention is the highly accurate position determination of point sources and position and orientation determination of edges, wherein the ultra-flat camera system for two-dimensional image acquisition based on 2D microlens arrays is modified so that the faces of adjacent optical channels overlap each other in part , This is done, for example, by the Position of the center distance between lens array and detectors or by increasing the diameter of pinhole achieved, as long as they have a smaller surface area than the photosensitive detector pixels. Both measures ensure that the viewing angle difference between adjacent optical channels becomes smaller than half the effective width of the visual field of a channel.
  • an angular position determination of the simply structured objects located in the common visual field area is achieved by evaluating ratios of the intensity values measured in adjacent channels with an accuracy that is beyond that of the resolution of the imaging optical system predetermined smallest dissolvable structure size is.
  • a highly accurate position determination is possible.
  • FIG. 1 shows a schematic side view of the image acquisition system according to the invention
  • Figure 2 is a plan view of the invention
  • Figure 3 is a partial view of the invention
  • Image acquisition system in which the detector is arranged in a highly offset manner relative to the associated microlens is,
  • Figure 4 is a schematic side view of a
  • Figure 5 is a schematic representation of the optical system of the image acquisition system with partially overlapping fields of adjacent channels in side view (Figure 5A) and a representation of the angular sensitivity plotted against the angle in the field of view ( Figure 5B) and
  • Figure 6 is a schematic representation of
  • the image acquisition system shown in FIGS. 1 and 2 has a transparent objective body 3 onto which a microlens array 1 having a multiplicity of individual lenses 1 'is applied, wherein in the exemplary embodiment shown (FIG
  • Lenses 1 ' are designed as round microlenses. Directly beneath the microlens array 1 is a Aper- turblendenarray between microlenses 2 I 1 and arranged lens body. 3 Below the objective body 3 are aperture diaphragms 4 ', likewise in the form of an array 4, for ghost suppression shortly before Image plane of the microlenses I 1 are provided, wherein in the image plane detectors lie, which are formed in the embodiment of detector pixels 8 on a detector pixel substrate 7 and pinhole 6 'of a pinhole 6. The pinhole array 6 can be omitted if the area of the detector pixels 8 is small enough, ie the associated detector is then the detector pixel 8 itself.
  • a spacer layer 5 is arranged between spacer aperture array 4 for ghost suppression and the pinhole array 6, a spacer layer 5 is arranged.
  • a microlens I 1 with an underlying aperture diaphragm 2 ', a detector pixel 8 associated with the lens 1' with pinhole 6 'and aperture diaphragm 4' form an optical channel, as can be seen from Figure 2, several optical channels are next to each other in a matrix.
  • the optical axes of each optical channel are regularly provided with different inclinations in a radial direction from the center of the image sensing system in the radial direction.
  • the optical axis of each channel is a connecting line between the vertex of a microlens 1 'and the center of the associated detector, i. the center of the associated pinhole 6 'defined.
  • the round aperture diaphragm 2 'of a microlens is represented by the large dashed circle
  • the round aperture diaphragm 4 1 just in front of the image plane of a microlens 1' for suppressing the crosstalk is shown as a small dotted circle
  • the detector, ie that of FIG Aperture plate 6 1 covered detector pixels 8 is executed with a full dot. It can be seen that both the aperture stops 4 'for ghost suppression and the detectors depending on the center of the camera in the X and Y direction, that are arranged differently depending on the position of the respective channel in the plan view. It can thus be said that the inclination or direction of the optical
  • Axes of an optical channel defined between a microlens 1 'and a detector 6, 8 extracting a pixel from the microimage behind this lens is a function of the radial coordinate in the array from a vertical optical axis channel.
  • the aperture diaphragm array 4 between the microlens array 1 and the detector plane serves to separate the optical channels, wherein a plurality of layers of aperture diaphragm arrays 4 can be provided.
  • the center distance of the holes or openings of an array 4 is just chosen so that only one bundle is focused at the angle of incidence provided by the lens on the associated detector, but other angles of incidence are blocked.
  • the regions of the aperture diaphragms 4 'within the respective circles are transparent, the regions outside correspondingly absorbing or reflecting, but preferably designed to be absorbent, in order to reduce the scattered light level.
  • FIG. 1 also shows the mode of operation of the aperture diaphragm array 4.
  • the continuous beams shown represent the main viewing directions of each optical channel and the focusing of the respective bundles.
  • the dashed beams are intended to exemplify the formation of ghosts by the crosstalk of light from microlenses I 1 unrelated to them, ie their predetermined viewing direction appropriate Detectors without the presence of Aperturblende- 4 show.
  • the crosstalk of light would be generated by focusing on adjacent and / or even further away detectors.
  • FIG. 3 shows that a detector associated with a microlens 1 'or a channel, consisting of detector pixels 8 and pinhole 6 1 in the exemplary embodiment, does not necessarily have to be located directly in the footprint, ie directly behind this microlens l r , but rather to reach it a larger viewing angle of the channel, which is defined by the solid beam, can also be arranged behind the neighboring lens or behind its neighbor lens, without ghosting caused by crosstalk represented by the beam shown in dashed lines. This effectively makes the scannable image field of the microlenses 1 'larger, which has a very advantageous effect with respect to resolution, field of view and light intensity of the imaging system.
  • the number of optical channels may be of the order of 10x10 to 1000x1000 depending on the fields of application, and a square shape corresponding to Figure 2 is not required.
  • the size of the microlenses 1 ' also defines the size of the optical channels, wherein a diameter of the microlenses in a range between 10 .mu.m to 1 mm.
  • the microlens array 1 is made of a plastic and can be manufactured by a variety of technologies, such as pressing, spraying or the like.
  • the lens body 3 can be used as glass or as be formed transparent plastic material, the aperture diaphragm and pinhole arrays may be formed as metal coatings, but also as a black polymer.
  • the imaging system is formed by the front and back structuring on a thin lens body 3, preferably made of glass.
  • the aperture body 3 is firstly provided on the front side with the aperture diaphragm array 2 assigned to the microlens array and on the rear side with the aperture diaphragm array for ghost suppression, e.g. in the thin, absorbent polymer or in a metal applied by coating and lithography.
  • the lens array 1 is produced on the front side by UV replication and on the back the spacer layer 5 in a photopatternable polymer.
  • the pinhole array 6 is e.g. applied as a metal or black polymer with photostructured holes on the back of the entire assembly on the spacer layer.
  • the radius of curvature of the microlenses 1 ' is set precisely such that they focus on the detector pixels 8 or the pinhole diaphragms 6' covering them.
  • an opto-wafer is produced with which a plurality of flat cameras can be realized.
  • a photostructuring of the spacer layer 5 for the wafer scale installation of the manufactured Optowa fers with a wafer on which the detector pixels 8 are located advantageous.
  • This structuring is carried out in such a way that a gap is created between two adjacent arrangements for the future flat camera.
  • bonding pads 12 are applied, which are required for later contacting the detector pixel matrix.
  • the produced optical wafer is then connected to the wafer on which the detector arrays are located, for example by gluing and curing, such that the gap between the spacer layers 5 over the bonding pads 12 and a cavity of the height of the spacer layer 5 is formed.
  • the cameras are separated by means of a chip saw. Through the cavity ensures that with a saw blade 13, although the layers 1-4 are severed, but not accidentally damage the layers 6-8. Subsequently, the camera is separated from the wafer composite with a plurality of juxtaposed and differently deep cuts corresponding to the saw blade 14. Thus, the lens is sawn narrower than the chip of the detector array. As a result, a camera chip can be produced in which, after singulation, the detector chip protrudes laterally under the flat objective and thus the later contactability of the bonding pads 12 is ensured.
  • FIG. 5 shows a part of a camera in which the fields of view of adjacent optical channels partially overlap, whereby such a camera is used for the most accurate position determination of point sources or position and orientation determination of edges.
  • Such an imaging system can detect in areas where one or more simple structured objects, such as such point sources and edges, with a compact imaging optical system and the angular positions or the lateral positions with known object distance within the same field of view with high accuracy and low Effort, ie small amount of data and short processing time must be used.
  • an edge position detection is of great interest, furthermore lane mark recognition in the automotive or monitoring tasks in the production process are conceivable.
  • Fig. 5A with 9a, the viewing direction of a channel, i. the optical axis, with 9b the field of view of the single optical channel and with 9c the overlap region of adjacent fields of view.
  • the angle sensitivity is plotted against the angle in the field of view of the ultra-flat camera of FIG. 5A, where 10a denotes the angular sensitivity curve of a channel, 10b the angular axis, 10c the effective width of the visual field of a channel, and 10d the overlap range of the angular sensitivity curve.
  • 10a denotes the angular sensitivity curve of a channel
  • 10b the angular axis
  • 10c the effective width of the visual field of a channel
  • 10d the overlap range of the angular sensitivity curve.
  • FIG. 6 shows the schematic illustration for determining an angular position of a point source within the field of view of three optical channels with overlapping fields of view.
  • IIa denotes the projected into the image plane position of the point sources.
  • IIb are the points of contact of the optical axes of the three channels with the image coordinate plane projected over the focal length.
  • He is the connection axis of horizontal adjacent channels (X-axis) and Hf is the connection axis of vertical adjacent channels (Y-axis).
  • Hd denotes the radii of the projected point source position within the visual fields of the individual optical channels.
  • the ratios of the intensity values measured in the pinhole apertures 6 'of adjacent optical channels of a camera according to FIG. 5 are independent of the absolute brightness of the object or the emissivity of the object
  • the angular position of the objects located in the common field of view can be determined. If such an object is located in the common field of view of three optical channels according to FIG. 6 (several optical channels are possible), then, depending on the lateral distance
  • Light quantity is transmitted at given angular distance from the optical axis in the image plane, is known from theoretical considerations using the angular sensitivity corresponding to 5B. This knowledge is used to determine from the ratios of the intensities of two adjacent apertured apertures 6 'the coordinate x p , y p of the point source projected on their connecting axes over the focal length. After the calculation of the horizontal and vertical coordinates x p , y p of the point source is their
  • ⁇ P describes therein the angular position of the point source in the field of view, r P the radial distance from the point of contact of the optical axis with that over the
  • Focal length projected coordinate plane and f the focal length of the lens are as in Figure 6 noted the coordinate of the point source on the second coordinate axis.
  • the intensity distribution in the image plane of each channel of the objective results from the mathematical convolution of the object intensity distribution with the angular sensitivity function (10a in FIG. 5B) of the corresponding channel.
  • the result of the convolution is a relationship that is based on the absolute brightness (or the absolute emissivity) of the source. Ie and the value of the angular sensitivity function at the position of the point source (x P , or r P or ⁇ P ), or for edges additionally from an integral expression on the angular sensitivity function at the position of the edge composed.
  • This procedure is carried out analogously for the second coordinate axis Hf in FIG. 6 in order to obtain y P and from this the radial distance from the contact point of the optical axis with the focal plane projected by the focal length (r P ) and the angular position of the source in the field of vision of the central channel (FIG. ⁇ P ).
  • the orientation of the edge to the transverse principal symmetry axes of the camera must additionally be determined. This is achieved in a relatively simple manner by searching for equal intensity or contrast values in the image. Perpendicular to the orientation of the edges found in this way, the intensity ratios of different detector pixels are then evaluated in accordance with the method described above, in order to determine the channels. in the field of view of the camera with high accuracy.
  • the above-mentioned positioning method can also be used in a simplified form with a camera which is designed as only one line. It is e.g. possible to detect the movement of a contrasting edge in the field of view of this line with high angular resolution.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Signal Processing (AREA)
  • Multimedia (AREA)
  • Optics & Photonics (AREA)
  • Manufacturing & Machinery (AREA)
  • Solid State Image Pick-Up Elements (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Studio Devices (AREA)

Abstract

Erfindungsgemäß enthält das Bilderfassungssystem nebeneinander angeordnete optische Kanäle mit jeweils zugeordneter Mikrolinse mit Apertur und jeweils mindestens einem in der Bildebene liegenden Detektor, wobei die Detektoren derart angeordnet sind, dass die Richtungen der jeweils die Verbindungslinien zwischen Linsenscheiteln und Zentrum der Detektoren bildenden optischen Achsen eine Funktion der Position des jeweiligen optischen Kanals darstellen, wobei zwischen den Mikrolinsen (1') mit Apertur (2') und den Detektoren (61, 8) mindestens eine Aperturblendenanordnung (4) vorgesehen ist, wobei der Mittenabstand der Aperturblenden (4') zwischen dem Scheitelabstand der Mikrolinsen (1') und dem Mittenabstand der Detektoren (6', 8) liegt, derart, dass je nach Position der Kanäle die Aperturblenden (41) unterschiedlich versetzt zu den Mikrolinsen (1') und den Detektoren (6', 8) angeordnet sind und mit diesen jeweils auf einer Geraden liegen.

Description

Bilderfassungssystem und Verfahren zur Herstellung mindestens eines Bilderfassungssystems
Die Erfindung betrifft ein Bilderfassungssystem nach dem Oberbegriff des Hauptanspruchs sowie ein Verfahren zur Herstellung mindestens eines Bilderfassungssystems .
Ein solches Bilderfassungssystem ist aus der WO 2005/069607 Al bekannt, bei dem regelmäßig angeordnete optische Kanäle mit jeweils einer Mikrolinse und mindestens einem in deren Bildebene liegenden Detektor vorgesehen sind, wobei aus dem Mikrobild hinter der Mikrolinse mindestens ein Bildpunkt extrahiert wird. Die optischen Achsen der einzelnen optischen
Kanäle weisen unterschiedliche Neigungen derart auf, dass sie eine Funktion des Abstandes des optischen Kanals vom Mittelpunkt der zum Bild gewandten Seite des Bilderfassungssystems darstellen. Damit ist das Verhältnis der Größe des Gesichtsfeldes zur Bildfeldgröße gezielt bestimmbar. Es werden Detektoren mit derart hoher Empfindlichkeit eingesetzt, dass diese einen großen Mittenabstand bzw. Pitch bei kleiner ak- tiver Fläche aufweisen.
Bei diesem bekannten Bilderfassungssystem wird zum Beispiel durch eine Differenz im Zentrumsabstand bzw. Mittenabstand der Mikrolinsen und der Detektoren ein lineares Anwachsen der Neigung der optischen Achsen von Kanal zu Kanal erreicht. Jeder optische Kanal, dem eine Mikrolinse, eine dieser zugeordneten Aper- tur-blende und ein Detektor, ggf. mit Lochblende, zugeordnet ist, "sieht" dadurch in die benachbarte Richtung der an ihn anschließenden Kanäle. Durch Auslesen der Detektorsignale in Form einer Matrix, in der in Reihe und ggf. Spalte nach die Signale der Detektoren eingetragen sind, folgt ohne weitere Sortierung der Signale der Detektoren das Bild des betrach- teten Objektes. Es ist damit möglich, aus der Koordinate eines Kanals im Array formelmäßig seine Blickrichtung innerhalb des gesamten Gesichtsfeldes der Kamera bzw. des Bilderfassungssystems zu bestimmen, ein zweidimensionales Bild eines begrenzten Gesichts- feldes entsteht.
Im Falle großer Einfallswinkel von Bereichen außerhalb des Gesichtsfeldes des Objektivs kommt es bei fehlender optischer Isolation der Kanäle zum Über- sprechende des Lichts von Linsen eines Kanals auf Detektoren ggf. mit Lochblenden benachbarter Kanäle und damit zur Ausbildung von Geisterbildern. Um dies zu verhindern, wurden in der genannten WO 2005/069607 verschiedene Anordnungen, im speziellen absorbierende Trennwände zwischen den Kanälen vorgeschlagen. Diese Anordnung ist jedoch mit einem hohen technologischen Aufwand, besonders bei der Herstellung der Replika- tionswerkzeuge, bzw. durch die Notwendigkeit von Photolithographieprozessen mit hohen Aspektverhältnissen verbunden. Außerdem ist das Bildfeld begrenzt, da der zugeordnete Detektorpixel in der Projektion der Mik- rolinse liegen muss.
Der kleinste auflösbare Winkelabstand bzw. bei bekanntem Objektabstand die kleinste auflösbare Struk- turgröße beträgt bei dem in der WO 2005/069607 beschriebenen Bilderfassungssystem das Doppelte der Blickwinkeldifferenz, d.h. der Neigungsdifferenz der optische Achsen zwischen benachbarten Kanälen. Das Winkelauflösungsvermögen eines ultra-flachen Kamera- Systems wird für ein gewünschtes Gesichtsfeld u.a. durch die Kantenlängen des Detektorarrays und der damit verbundenen maximalen Anzahl von Kanälen in den Hauptsymmetrieachsen begrenzt. Eine Steigerung des Winkelauflösungsvermögens durch Erhöhung der Anzahl an optischen Kanälen erfordert die kostspielige Vergrößerung der Siliziumfläche des Detektorarrays. Bei vielen einfachen Abbildungsaufgaben, z.B. Fahrstreifenerkennung, Kantenpositionsdetektion oder dgl. wird ein moderates Auflösungsvermögen über ein großes Ge- sichtsfeld benötigt. Bildgebende Systeme, die diese
Spezifikationen mit wenigen, parallel abbildenden Kanälen umsetzen, zeichnen sich gegenüber hochauflösenden Megapixel-Kameras durch eine geringere Komplexität sowie schnelle Bildverarbeitung und nicht zuletzt niedrigere Herstellungskosten aus. Herkömmliche makroskopische Objektive für eine verzeichnungsfreie Abbildung eines großen Gesichtsfeldes sind sehr aufwendig und teuer. Die Bildqualität nimmt bei diesen Objektiven zum Rand des Gesichtsfeldes hin ab und nicht korrigierte Verzeichnung verzerrt das Bild, so dass Objekte nicht mehr eindeutig identifiziert wer- den können. Durch die in der genannten Druckschrift beschriebenen Freiheitsgrade kanalweise abbildender Systeme können diese Probleme durch die individuelle Korrektur jedes Kanals auf seine individuelle Blick- richtung teilweise kompensiert werden. Die planare Bauweise bietet hier den zusätzlichen Vorteil der Raumersparnis .
Der Erfindung liegt unter Berücksichtigung des ge- nannten Standes der Technik die Aufgabe zugrunde, ein Bilderfassungssystem entsprechend dem Obergriff des Hauptanspruchs zu schaffen, das eine Geisterbildunterdrückung gestattet und das ein vergrößertes abtastbares Bildfeld zur Verfügung stellt.
Diese Aufgabe wird erfindungsgemäß durch die kennzeichnenden Merkmale des Hauptanspruchs in Verbindung mit den Merkmalen des Oberbegriffs gelöst.
Durch die in den Unteransprüchen angegebenen Maßnahmen sind vorteilhafte Weiterbildungen und Verbesserungen möglich.
Das erfindungsgemäße Bilderfassungssystem löst das Problem der Geisterbildunterdrückung durch zusätzlich zwischen Mikrolinsen und diesen zugeordneten Aperturblenden und Detektoren, die als Detektorpixel allein oder als Detektorpixel mit diese einschnürenden Lochblenden definiert sind, eingebrachte, versetzte Aper- turblenden. Dabei können ein- oder mehrere zusätzliche Aperturblendenarrays zwischen dem Mikrolinsenar- ray und den Detektorarray, deren Zentrumsabstand zwischen dem der Mikrolinsen und der Detektoren liegt, vorgesehen sein, so dass in dem dafür vorgesehenen Kanal Licht eines bestimmten Einfallswinkels, für den gerade alle Aperturblendenöffnungen mit Linse und De- tektor auf einer Geraden liegen, von einer Linse auf den ihr zugeordneten Detektor fokussiert wird und alle anderen Einfallswinkel durch die eine zusätzliche Aperturblende oder durch mehrere zusätzliche Apertur- blenden kurz vor der Bildebene der Mikrolinse gesperrt, d.h. absorbiert oder reflektiert werden. Dadurch ergibt sich für das gesamte Konzept des beschriebenen flachbauenden Bilderfassungssystems im Gegensatz zur Einführung von absorbierenden Trennwän- den zwischen den Kanälen entsprechend dem Stand der Technik ein wesentlicher Vorteil, der darin liegt, dass ein einer Linse oder einem Kanal zugeordneter Detektor sich nicht notwendigerweise direkt im "Fußabdruck" (Projektion), also direkt hinter dieser Mik- rolinse befinden muss, sondern kann zur Erreichung eines größeren Blickwinkels des Kanals auch stark versetzt hinter der Nachbarlinse oder übernächste Nachbarlinse oder weiterer angeordnet sein kann, ohne dass Geisterbilder durch Übersprechen des Lichts ent- stehen. Damit wird effektiv das abtastbare Bildfeld der Mikrolinsen größer und es folgt ein größeres Orts-Bandbreite-Produkt, was sich vorteilhaft hinsichtlich Auflösungsvermögen, Gesichtsfeldgröße und Lichtstärke des abbildenden Systems auswirkt. Weiter- hin kann, da keine Trennwände vorgesehen werden müssen, ein durchgehender ununterbrochener Objektivkörper verwendet werden, der die Stabilität der Objektivanordnung verbessert, u.a. auch durch einen ange- passten thermischen Ausdehnungskoeffizienten des Ob- jektivkörpers bezüglich dem des optoelektronischen Bildsensors .
Jede Linse kann durch die zusätzliche zugeordnete Aperturblende ausschließlich auf den ihr zugeordneten Detektor, nicht aber auf den Detektor der Nachbarlinsen fokussieren, da nur für den jeweils für den Kanal vorgesehen Einfallswinkel die oder alle Aperturblendenöffnungen auf einer Achse liegen. Die Größe der Aperturblendenöffnungen, bei mehreren übereinander- liegenden Aperturblendenarrays in den verschiedenen Lagen, ist jeweils an den Durchmesser des fokussier- ten Lichtkegels in dem entsprechenden Abstand hinter der Mikrolinse angepasst, der Versatz der jeweiligen Aperturblende relativ zur Linse bzw. zu dem Detektor an den mit dem jeweiligen Kanal abzubildenden Ein- fallswinkel.
In vorteilhafter Weise können Art, Form und Parameter der Mikrolinsen zur Korrektur von off-axis-Bildfeh- lern durch kanalweise Anpassung an die jeweilige Blickrichtung verwendet werden. Neben der standardmäßigen Nutzung von Arrays runder Linsen können Arrays variabler elliptischer (anamorphotischer) Linsen zur Korrektur von Astigmatismus und Bildfeldwölbung und asphärische off-axis-Linsensegmente zur Steigerung des Gesichtsfeldes und der Auflösung bei vollständiger Aberrationskorrektur für die jeweilige Blickrichtung eingesetzt werden.
Es gibt verschiedene Varianten der Pitchabstufungen zwischen den verschiedenen Elementen, d.h. der verschiedenen Ebenen, so können die Aperturblenden der Mikrolinsen direkt unter diesen zentriert sein, aber auch eine Pitchdifferenz zu diesen besitzen. Die Pitchdifferenz (d.h. die Differenz zwischen den je- weiligen Mittenabständen) zwischen Linsen und Detektorpixeln bzw. Lochblenden kann positiv oder negativ sein, die optischen Achsen sind dann entweder nach innen oder außen gerichtet, das entstehende Bild ist umgekehrt oder aufrecht.
Grundsätzlich können alle Maßnahmen und Vorteile der WO 2005/069607, bis auf das Vorsehen von Trennwänden zwischen den optischen Kanälen, auch bei der vorliegenden Anmeldung verwendet werden, wobei deshalb die Offenbarung dieser Druckschrift in die vorliegende Anmeldung mit eingeschlossen sein soll.
Vorteilhafterweise kann die Beleuchtung hinsichtlich Lichtemission, -konzentration und -formung des zu erfassenden Objektes mit in das Bilderfassungssystem bzw. in die Kamera integriert werden, beispielsweise indem zwischen den optischen Kanälen etwas Platz gelassen wird, um Lichtquellen anzubringen oder sie kann in gewissem Abstand zwischen Gruppen von Kanälen oder als Ring um die Kamera vorgesehen werden. Wei- terhin ist es denkbar, auf die Linsenebene, z.B. in die Totzonen zwischen quadratisch gepackten, z.B. runden Linsen, Lichtquellen anzubringen. Ebenso ist es möglich, dass nur manche Linsen der erfindungsgemäßen Anordnung benutzt werden, um auf einen Detektor zu fokussieren und andere dazu benachbarte Linsen das Licht von in der Bildebene der Mikrolinsen befindlichen Quellen auf das zu beobachtende Objekt zu bündeln, zu richten und/oder zu verteilen. Als Lichtquellen können Laserdioden, LEDs oder OLEDs oder VCSEL oder dergleichen verwendet werden.
Als Detektorpixelarrays können CMOS- oder CCD-Sensoren, aber auch Arrays aus Polymerphotodioden verwendet werden, wobei letztere vorteilhaft sind, da eine große Sensorgesamtfläche nicht so hohe Kosten wie bei Si-Empfängern verursacht. Da diese Empfänger in Drucktechnik hergestellt werden können, ebenso die Linsenarrays und auch die verschiedenen Aperturblen- denarrays, scheint langfristig das Drucken der gesam- ten Kamera als Herstellungstechnologie in Frage zu kommen . In vorteilhafter Weise kann für Farbaufnahmen das beschriebene abbildende System ohne Änderungen übernommen' werden, wenn ein Bildsensor, der verschiedene Farben direkt in drei übereinanderliegenden Pixelschichten getrennt aufnimmt, statt ein herkömmlicher Schwarz/Weiß CMOS oder CCD-Sensor als Empfängerarray vorgesehen wird. Solch ein Bildsensor steht im Gegensatz zur herkömmlichen farbaufnehmenden CMOS- oder CCD-Sensoren, bei denen Farbfilter nebeneinander auf sonst gleichartigen Pixeln angeordnet sind.
Da bei dem erfindungsgemäßen Bilderfassungssystem der benötigte Füllfaktor der Detektorpixel in der BiId- ebene gering ist, müssen die Detektorpixel nicht notwendig quadratisch oder rechteckig sein, um in einem kartesischen Raster möglichst dicht gepackt zu sein. Vielmehr können andere Gesichtspunkte bei dem Design der Detektorpixel berücksichtigt werden, wie z.B. ei- ne Geometrie des PN-Überganges, die nur einen sehr geringen Dunkelstrom bewirkt und sich damit vorteilhaft auf das Signal-Rausch-Verhältnis auswirkt. So können z.B. kreisrunde Pixel bzw. Pixel mit einer kreisrunden Begrenzung des PN-Überganges verwendet werden.
Das erfindungsgemäße Bilderfassungssystem ist auch zur Abbildung naher (wenige cm) bzw. sehr naher (einige wenige mm) Objekte mit einer Vergrößerung von 1 oder geringer Vergrößerung oder Verkleinerung ein- setzbar. Dann ist der Unterschied des Pitches der E- lemente, d.h. im Mittenabstand der verschiedenen Schichten, wie Mikrolinsenarray, Aperturblendenarray, Detektorarray Null oder nur sehr gering, allerdings wird je nach Größe des abzubildenden Objektes ein großflächiger Bildsensor benötigt . Für das Optikdesign in dieser ca. 1:1 abbildenden Konfiguration ist es vorteilhaft, den objektseitigen Raumwinkel, der jedem Kanal als Bildpunkt zugeordnet wird, genau so in seiner Größe einzustellen, dass im Objektabstand von dem abbildenden System die diesem Raumwinkel entsprechende laterale Objektausdehnung gerade so groß wie der Pitch der Kanäle ist. Solche Systeme können beispielsweise über Korrelationsalgo- rithmen als optische Maus oder als gering auflösenden flächiges Mikroskop oder statischer Scanner von nahen, ebenen Objekten eingesetzt werden.
In vorteilhafter Weise können die unterschiedlichen Neigungen der optischen Achsen der Kanäle auf die verschiedensten Arten erzielt werden. So können sich die einzelnen Mikrolinsen hinsichtlich der Dezentrie- rung gegenüber dem Detektor, der Brennweite, der konischen und/oder asphärischen Parameter unterschei- den. Es können auch in die einzelnen Mikrolinsen Mik- roprismen integriert sein, schließlich können die einzelnen Mikrolinsen auf einer konvex oder konkav geformten Basisfläche angeordnet sein.
Zur Beeinflussung der Größe des Gesichtsfeldes können die Detektoren auch auf einer konvex oder konkav geformten Basisfläche angeordnet sein.
Eine vorteilhafte Anwendung der Erfindung ist die höchstgenaue Positionsbestimmung von Punktquellen und Positions- und Orientierungsbestimmung von Kanten, wobei das ultraflache Kamerasystem zur zweidimensionalen Bilderfassung auf Basis von 2D-Mikrolinsen- arrays so modifiziert wird, dass sich die Gesichts- felder benachbarter optischer Kanäle gegenseitig teilweise überlappen. Dies wird z.B. durch die Ein- Stellung des Zentrumsabstandes zwischen Linsenarray und Detektoren oder durch die Vergrößerung der Durchmesser von Lochblenden erreicht, solange diese eine kleinere Flächenausdehnung als die fotosensitiven De- tektorpixel besitzen. Beide Maßnahmen sorgen dafür, dass die Blickwinkeldifferenz zwischen benachbarten optischen Kanälen kleiner wird als die halbe effektive Breite des Gesichtsfeldes eines Kanals. Dadurch wird eine Winkelpositionsbestimmung der im gemeinsa- men Gesichtsfeldbereich befindlichen einfach strukturierten Objekte, wie Punktquellen, Kanten, niedrig- frequenter Rechteckgitter durch die Auswertung von Verhältnissen der in benachbarten Kanälen gemessenen Intensitätswerte mit einer Genauigkeit erreicht, die jenseits der durch das Auflösungsvermögen des bildgebenden optischen Systems vorgegebenen kleinsten auflösbaren Strukturgröße liegt. Dadurch wird eine höchstgenaue Positionsbestimmung möglich.
Ausführungsbeispiele der Erfindung sind der Zeichnung dargestellt und werden in der nachfolgenden Beschreibung näher erläutert.
Es zeigen
Figur 1 eine schematische Seitenansicht des erfindungsgemäßen Bilderfassungssystems,
Figur 2 eine Aufsicht auf das erfindungsgemäße
Bilderfassungssystem nach Figur 1,
Figur 3 eine Teilansicht des erfindungsgemäßen
Bilderfassungssystems nach Figur 1, bei der der Detektor stark versetzt zu der zugehörigen Mikrolinse angeordnet ist ,
Figur 4 eine schematische Seitenansicht eines
Optowafers und eines Wafers, auf dem sich die Detektorarrays befinden, aus denen durch Vereinzelung das erfindungsgemäße Bilderfassungssystem hergestellt wird,
Figur 5 eine schematische Darstellung des optischen Systems des Bilderfassungssystems mit teilweise überlappenden Gesichtsfeldern benachbarter Kanäle in Seitenansicht (Figur 5A) und eine Darstellung der Winkelempfindlichkeit, aufgetragen über dem Winkel im Gesichtsfeld (Figur 5B) und
Figur 6 eine schematisierte Darstellung der
Bestimmung der Winkelposition einer Punktquelle innerhalb des Gesichtsfeldes dreier optischer Kanäle mit überlappenden Gesichtsfeldern.
Das in den Figuren 1 und 2 dargestellte Bilderfassungssystem weist einen transparenten Objektivkörper 3 auf, auf den ein Mikrolinsenarray 1 mit einer Vielzahl von einzelnen Linsen 1' aufgebracht ist, wobei im dargestellten Ausführungsbeispiel (Figur 2) die
Linsen 1' als runde Mikrolinsen ausgebildet sind. Direkt unterhalb des Mikrolinsenarrays 1 ist ein Aper- turblendenarray 2 zwischen Mikrolinsen I1 und Objektivkörper 3 angeordnet. Unterhalb des Objektivkörpers 3 sind Aperturblenden 4 ' , ebenfalls in Form eines Ar- rays 4, zur Geisterbildunterdrückung kurz vor der Bildebene der Mikrolinsen I1 vorgesehen, wobei in der Bildebene Detektoren liegen, die im Ausführungsbeispiel von Detektorpixeln 8 auf einem Detektorpixelsubstrat 7 und von Lochblenden 6' eines Lochblenden- arrays 6 gebildet werden. Das Lochblendenarray 6 kann weggelassen werden, wenn die Fläche der Detektorpixel 8 klein genug ist, d.h. der zugeordnete Detektor ist dann der Detektorpixel 8 selbst. Zwischen Aper- turblendenarray 4 zur Geisterbildunterdrϋckung und dem Lochblendenarray 6 ist eine Abstandsschicht 5 angeordnet. Eine Mikrolinse I1 mit darunterliegender Aperturblende 2', ein der Linse 1' zugeordneter Detektorpixel 8 mit Lochblende 6' und Aperturblende 4' bilden einen optischen Kanal, wobei wie aus Figur 2 zu erkennen ist, mehrere optische Kanäle matrixweise nebeneinander liegen.
Wie aus den Figuren 1 und 2 zu erkennen ist, sind die optischen Achsen jedes optischen Kanals ausgehend von der Mitte des Bilderfassungssystems in radialer Richtung in regelmäßiger Weise mit unterschiedlichen Neigungen versehen. Dabei ist die optische Achse jedes Kanals als Verbindungslinie zwischen den Scheitel einer Mikrolinse 1' und der Mitte des zugeordneten De- tektors, d.h. der Mitte der zugeordneten Lochblende 6' definiert.
In Figur 2 ist die runde Aperturblende 2' einer Mikrolinse durch den großen gestrichelten Kreis darge- stellt, die runde Aperturblende 41 kurz vor der Bildebene einer Mikrolinse 1' zur Unterdrückung des Übersprechens ist als kleiner punktierter Kreis und der Detektor, d.h. der von der Lochblende 61 abgedeckte Detektorpixel 8 ist mit einem vollen Punkt ausge- führt. Es ist zu erkennen, dass sowohl die Aperturblenden 4 ' zur Geisterbildunterdrückung als auch die Detektoren abhängig von der Mitte der Kamera in X- und Y-Richtung, d.h. abhängig von der Position des jeweiligen Kanals unterschiedlich in der Draufsicht versetzt angeordnet sind. Es kann somit gesagt wer- den, dass die Neigung bzw. Richtung der optischen
Achsen eines optischen Kanals, der zwischen einer Mi- krolinse 1 ' und einem aus dem Mikrobild hinter diese Linse einen Bildpunkt extrahierenden Detektor 6, 8 definiert wird, eine Funktion der radialen Koordinate im Array ausgehend von einem Kanal mit senkrechter optischer Achse ist.
Wie aus Figur 1 zu erkennen ist, dient das Apertur- blendenarray 4 zwischen dem Mikrolinsenarray 1 und der Detektorebene zur Trennung der optischen Kanäle, wobei mehrere Lagen von Aperturblendenarrays 4 vorgesehen sein können. Der Zentrumsabstand der Löcher bzw. Öffnungen eines Arrays 4 wird gerade so gewählt, dass nur ein Bündel unter dem dafür vorgesehen Ein- fallswinkel von der Linse auf den zugehörigen Detektor fokussiert wird, andere Einfallswinkel aber blockiert werden. Die Bereiche der Aperturblenden 4' innerhalb der jeweiligen Kreise sind transparent, die Bereiche außerhalb entsprechend absorbierend oder re- flektierend, bevorzugt aber absorbierend ausgebildet, um den Streulichtpegel zu reduzieren.
In Figur 1 ist auch die Funktionsweise des Aperturblendenarrays 4 erkennbar. Die gezeigten durchgehen- den Strahlenbündel stellen die Hauptblickrichtungen jedes optischen Kanals und die Fokussierung der entsprechenden Bündel dar. Im Gegensatz dazu sollen die gestrichelten Strahlenbündel beispielhaft die Entstehung von Geisterbildern durch das Übersprechen von Licht von Mikrolinsen I1 auf ihnen nicht zugeordnete, d.h. ihrer vorbestimmten Blickrichtung entsprechenden Detektoren ohne das Vorhandensein des Aperturblende- narrays 4 zeigen. Das Übersprechen von Licht würde bei Fokussierung auf benachbarte und/oder auch noch weiter weg liegende Detektoren erzeugt werden. Durch die Einführung des Aperturblendenarrays 4 wird das
Übersprechen und damit die Entstehung von Geisterbildern beseitigt.
In Figur 3 ist dargestellt, dass ein einer Mikrolinse 1' bzw. einem Kanal zugeordneter Detektor, bestehend aus Detektorpixel 8 und Lochblende 61 im Ausführungsbeispiel, sich nicht notwendigerweise direkt im Fußabdruck, d.h. direkt hinter dieser Mikrolinse lr befinden muss, sondern zur Erreichung eines größeren Blickwinkels des Kanals, der durch das durchgezogene Strahlenbündel definiert ist, auch stark versetzt hinter der Nachbarlinse oder hinter deren Nachbarlinse angeordnet sein kann, ohne dass Geisterbilder durch Übersprechen, die durch das gestrichelt darge- stellte Strahlenbündel repräsentiert sind, entstehen. Damit wird effektiv das abtastbare Bildfeld der Mik- rolinsen 1 ' größer, was sich sehr vorteilhaft hinsichtlich Auflösungsvermögen, Gesichtsfeldgröße und Lichtstärke des abbildenden Systems auswirkt.
Die Zahl der optischen Kanäle kann entsprechend den Anwendungsgebieten in der Größenordnung von 10 x 10 bis 1.000 x 1.000 liegen, wobei eine quadratische Form entsprechend Figur 2 nicht verlangt wird. Die Größe der Mikrolinsen 1 ' definiert auch die Größe der optischen Kanäle, wobei ein Durchmesser der Mikrolinsen in einem Bereich zwischen 10 μm bis 1 mm auf. Das Mikrolinsenarray 1 besteht aus einem Kunststoff und kann durch die unterschiedlichsten Technologien, wie Pressen, Spritzen oder dergleichen hergestellt werden. Der Objektivkörper 3 kann als Glas oder als transparentes Kunststoffmaterial ausgebildet sein, die Aperturblenden- und Lochblendenarrays können als Metallbeschichtungen, aber auch als schwarzes Polymer ausgebildet sein.
Anhand der Figur 4 soll die Herstellung einer Ausführungsform der flachen Kamera mit Geisterbildunterdrü- ckung beschrieben werden. In dieser Ausführungsform wird das abbildende System durch die vorder- und rückseitige Strukturierung auf einem dünnen Objektivkörper 3, vorzugsweise aus Glas, erzeugt. Dabei werden auf den Objektivkörper 3 zuerst auf der Vorderseite das dem Mikrolinsenarray zugeordnete Apertur- blendenarray 2 und auf der Rückseite das Apertur- blendenarray zur Geisterbildunterdrückung, z.B. im dünnen, absorbierenden Polymer oder in einem Metall durch Beschichtung und Lithographie aufgebracht. Anschließend wird vorderseitig das Linsenarray 1 durch UV-Replikation und rückseitig die Abstandsschicht 5 in einem photostrukturierbaren Polymer hergestellt. Falls die Detektorpixel 8 des Sensorarray durch ein zusätzliches Lochblendenarray 6 in ihrer Größe eingeschränkt werden müssen und falls Letzteres nicht auf dem Detektorsubstrat erzeugt werden kann, wird das Lochblendenarray bzw. die Lochblendenschicht 6 z.B. als Metall oder schwarzes Polymer mit photostrukturierten Löchern auf der Rückseite der gesamten Anordnung auf die Abstandsschicht aufgebracht. Der Krümmungsradius der Mikrolinsen 1' ist genau so einge- stellt, dass sie auf die Detektorpixel 8 bzw. die diese abdeckenden Lochblenden 6' fokussieren.
Es wird somit ein Optowafer hergestellt, mit dem eine Mehrzahl von flachen Kameras realisierbar ist. Dabei ist eine Photostrukturierung der Abstandsschicht 5 für die Waferscale-Montage des hergestellten Optowa- fers mit einem Wafer, auf dem sich die Detektorpixel 8 befinden, vorteilhaft. Diese Strukturierung wird so vorgenommen, dass zwischen zwei benachbarten Anordnungen für die spätere flache Kamera eine Lücke her- gestellt wird. Auf das Substrat 7 mit den Detektorpixeln 8 werden Bondingpads 12 aufgebracht, die zur späteren Kontaktierung der Detektorpixelmatrix benötigt sind. Der hergestellte Optowafer wird anschließend mit dem Wafer, auf dem sich die Detektorarrays befinden, z.B. durch Kleben und Aushärten verbunden, derart, dass die Lücke zwischen den Abstandsschichten 5 über den Bondingpads 12 liegen und ein Hohlraum von der Höhe der Abstandsschicht 5 gebildet wird. Anschließend werden die Kameras mittels einer Chipsäge vereinzelt. Durch den Hohlraum wird sichergestellt, dass mit einem Sägeblatt 13 zwar die Schichten 1-4 durchtrennt werden, aber nicht ungewollt die Schichten 6-8 beschädigt werden. Anschließend wird die Kamera mit mehreren nebeneinanderliegenden und unter- schiedlich tiefen Schnitten entsprechend dem Sägeblatt 14 aus dem Waferverbund vereinzelt. So wird das Objektiv schmaler ausgesägt als der Chip des Detektorarrays. Dadurch kann ein Kamerachip hergestellt werden, bei dem nach Vereinzelung der Detektorchip unter dem flachen Objektiv seitlich übersteht und damit die spätere Kontaktierbarkeit der Bondingpads 12 gewährleistet ist.
Im Folgenden werden die Parameter für dieses Beispiel entsprechend Figur 4 angegeben:
Dicken der verschiedenen Schichten bzw. Arrays [μm] : 1: 45; 2: 1,5; 3: 215; 4: 1,5; 5: 30; 6: 0,2; Pitches (Mittenabstand bzw. Scheitelabstand) der verschiedenen Elemente in einem Array [μm] : 1: 107,2; 2: 107,2; 4: 106,15; 6: 106,0; 8: 106,0; Durchmesser der Öffnungen der verschiedenen Elemente in einem Array [μm] : 1: 105; 2: 90; 4: 16; 6: 2; Zahl der Elemente in einem Array: 84 x 64; Krümmungsradius der Mikrolinsen I1: 103 μm; Materialien: 1,5: UV-härtbares Photopolymer; 2,4: Black matrix polymer; 3: Glas; 7,8: CMOS Sensor
In Figur 5 ist ein Teil einer Kamera dargestellt, bei dem sich die Gesichtsfelder benachbarter optischer Kanäle teilweise überlappen, wobei eine solche Kamera für die höchstgenaue Positionsbestimmung von Punkt- quellen bzw. Positions- und Orientierungsbestimmung von Kanten dient. Ein solches bildgebendes System kann in Bereichen, in denen ein oder mehrere einfach strukturierten Objekte, wie solche Punktquellen und Kanten, mit einem kompakten abbildenden optischen System erfasst und die Winkelpositionen bzw. die lateralen Positionen bei bekanntem Objektabstand derselben innerhalb des Gesichtsfeldes mit hoher Genauigkeit und geringem Aufwand, d.h. geringer Datenmenge und kurzer Verarbeitungszeit bestimmt werden müssen, eingesetzt werden. Im industriellen Bereich ist eine Kantenpositionserkennung von großem Interesse, weiterhin sind Fahrstreifenmarkierungserkennung im Automobil oder Überwachungsaufgaben im Produktionsablauf denkbar.
Die Überlappung der Gesichtsfelder entsprechend Figur
5 wird beispielsweise durch Einstellung des Zentrumsabstandes zwischen Linsenarray 1 und Lochblendenarray
6 bzw. Detektorarray oder durch die Vergrößerung der Lochblendendurchmesser erreicht, solange diese eine kleinere Flächenausdehnung aus die photosensitiven Detektorpixel 8 besitzen.
In Figur 5A ist mit 9a die Blickrichtung eines Kanals, d.h. die optische Achse, mit 9b das Gesichts- feld des einzelnen optischen Kanals und mit 9c der Überlappungsbereich benachbarter Gesichtsfelder bezeichnet .
In Figur 5B ist die Winkelempfindlichkeit über den Winkel im Gesichtsfeld der ultra-flachen Kamera entsprechend Figur 5A aufgetragen, wobei 10a die Winkelempfindlichkeitskurve eines Kanals, 10b die Winkelachse, 10c die effektive Breite des Gesichtsfeldes eines Kanals und 10d den Überlappungsbereich der Win- kelempfindlichkeitskurve bezeichnen. Die zuvor beschriebenen Maßnahmen zur Überlappung der Gesichtsfelder benachbarter optischer Kanäle sorgen dafür, dass die Blickwinkeldifferenz zwischen benachbarten optischen Kanälen kleiner wird als die halbe, effek- tive Breite des Gesichtsfeldes eines Kanals. Eine solche Überlappung ist notwendig, damit ein Objektpunkt gleichzeitig mit verschiedenen Kanälen gesehen wird und unterschiedlich starke Signale gemessen werden können.
In Figur 6 ist die schematisierte Darstellung zur Bestimmung einer Winkelposition einer Punktquelle innerhalb des Gesichtsfeldes dreier optischer Kanäle mit überlappenden Gesichtsfeldern dargestellt. Dabei bezeichnet IIa die in die Bildebene projizierte Position der Punktquellen. IIb sind die Berührungspunkte der optischen Achsen der drei Kanäle mit der über die Brennweite projizierten Bildkoordinatenebene. He ist die Verbindungsachse von horizontalen benachbarten Kanälen (X-Achse) und Hf ist die Verbindungsachse von vertikalen benachbarten Kanälen (Y-Achse) . Mit dem Bezugszeichen Hd sind die Radien der projizierten Punktquellenposition innerhalb der Gesichtsfelder der einzelnen optischen Kanäle bezeichnet.
Bei der Bestimmung von Punktquellen oder punktförmigen Objekten ist zu beachten, dass die Verhältnisse der in den Lochblenden 6' benachbarter optischer Kanäle einer Kamera entsprechend Figur 5 gemessenen Intensitätswerte unabhängig von der absoluten Hellig- keit des Objekts bzw. dem Emissionsvermögen der
Lichtquelle sowie unabhängig von Schwankungen der absoluten Helligkeit bzw. des Emissionsvermögens ist, solange diese über die Integrationszeit des Detektors vernachlässigbar sind. Durch Auswertung eines Inten- sitätsverhältnisses können die Winkelposition der im gemeinsamen Gesichtsfeldbereich befindlichen Objekte bestimmt werden. Befindet sich ein solches Objekt im gemeinsamen Gesichtsfeld dreier optischer Kanäle entsprechend Figur 6 (mehrere optische Kanäle sind mög- lieh) , so wird je nach lateraler Entfernung der
Punktquelle von der optischen Achse des jeweiligen Kanals eine spezifische Intensität in der zugehörigen Lochblende β1 bzw. im nachfolgenden Detektorpixel 8 gemessen. Der formelmäßige Zusammenhang, welcher An- teil einer auf den optischen Kanal eingestrahlten
Lichtmenge bei gegebenen Winkelabstand von der optischen Achse in die Bildebene übertragen wird, ist aus theoretischen Betrachtungen unter Benutzung der Winkelempfindlichkeit entsprechend 5B bekannt. Dieses Wissen wird benutzt, um aus den Verhältnissen der Intensitäten zweier benachbarter Lochblenden 6' die auf deren Verbindungsachsen über die Brennweite projizierte Koordinate xp, yp der Punktquelle zu bestimmen. Nach der Berechnung der horizontalen und verti- kalen Koordinaten xp, yp der Punktquelle ist deren
Winkelposition im Gesichtsfeld eines Bezugskanals und über die Zuordnung der Kanäle und ihrer Blickrichtung somit auch im Gesichtsfeld der gesamten ultra-flachen Kamera bekannt.
Das Berechnungsverfahren soll im folgenden Beispiel genauer erläutert werden.
Betrachtet man eine Achse der über die Brennweite projizierten Koordinaten im Gesichtsfeld des zentra- len Kanals (Kennzeichnung lle) in Figur 6, so wird die auf dieser Achse gemessene Position einer Punktquelle mit Xp bezeichnet. Sie hängt mit der Winkelposition der Punktquelle im Gesichtsfeld des zentralen Kanals über die Beziehungen:
P = arctan und rP = -yXp+yp zusammen.
Figure imgf000022_0001
φP beschreibt darin die Winkelposition der Punktquelle im Gesichtsfeld, rP die radiale Entfernung vom Be- rührungspunkt der optischen Achse mit der über die
Brennweite projizierten Koordinatenebene sowie f die Brennweite des Objektivs. yP ist wie in Figur 6 vermerkt die Koordinate der Punktquelle auf der zweiten Koordinatenachse .
Aus theoretischen Grundlagen ist bekannt, dass sich die Intensitätsverteilung in der Bildebene jedes Kanals des Objektivs aus der mathematischen Faltung von der Objektintensitätsverteilung mit der Winkelemp- findlichkeitsfunktion (10a in Figur 5B) des entsprechenden Kanals ergibt. Für Objekte die mathematisch (näherungsweise) als Punktquellen bzw. Kanten beschrieben werden können, ist das Ergebnis der Faltung ein Zusammenhang, der sich aus der absoluten Hellig- keit (bzw. dem absoluten Emissionsvermögen) der Quel- Ie und dem Wert der Winkelempfindlichkeitsfunktion an der Position der Punktquelle (xP, bzw. rP oder φP) , bzw. für Kanten zusätzlich aus einem Integralausdruck über die Winkelempfindlichkeitsfunktion an der Posi- tion der Kante, zusammensetzt. Durch den Überlapp der Gesichtsfelder benachbarter Kanäle werden in den jeweiligen Lochblenden 6 bzw. nachfolgenden Detektorpixeln 8 im Allgemeinen verschieden hohe Intensitäten gemäß dem beschriebenen Zusammenhang gemessen, wenn sich die Quelle im gemeinsamen Gesichtsfeldbereich der Kanäle befindet. Der Ausdruck, der durch das Verhältnis der in zwei benachbarten Kanälen gemessenen Intensitätswerte entsteht, ist unabhängig von der absoluten Helligkeit bzw. dem Emissionsvermögen der Quelle und kann nach der Koordinate der Punktquelle bzw. Kante in der projizierten Koordinatenebene (xP) umgestellt werden.
Dieses Vorgehen wird für die zweite Koordinatenachse Hf in Figur 6 analog durchgeführt um yP zu erhalten und daraus die radiale Entfernung vom Berührungspunkt der optischen Achse mit der über die Brennweite projizierten Koordinatenebene (rP) sowie die Winkelposition der Quelle im Gesichtsfeld des zentralen Kanals (φP) zu bestimmen.
Wenn das beschriebene Verfahren zur Kantenpositions- detektion verwendet werden soll, muss zusätzlich die Orientierung der Kante zu der transversalen Hauptsym- metrieachsen der Kamera ermittelt werden. Dies wird in relativ einfacher Weise durch die Suche nach gleich großen Intensitäts- oder Kontrastwerten im Bild erreicht. Senkrecht zur auf diese Weise gefundenen Orientierung der Kanten werden dann nach dem oben beschriebenen Verfahren die Intensitätsverhältnisse verschiedener Detektorpixel ausgewertet, um die Kan- ten im Gesichtsfeld der Kamera mit hoher Genauigkeit zu ermitteln.
Das genannte Verfahren zur Positionsbestimmung kann in vereinfachter Form auch mit einer Kamera verwendet werden, die nur als eine Zeile ausgeführt ist. Es ist z.B. möglich, die Bewegung einer Kontrastkante im Gesichtsfeld dieser Zeile mit hoher Winkelauflόsung zu erfassen.

Claims

Patentansprüche
1. Bilderfassungssystem aus nebeneinander angeordneten optischen Kanälen mit jeweils zugeordneter Mikrolinse mit Apertur und jeweils mindestens einem in der Bildebene liegenden Detektor, wobei die Detektoren derart angeordnet sind, dass die
Richtungen der jeweils die Verbindungslinien zwischen Linsenscheiteln und Zentrum der Detektoren bildenden optischen Achsen eine Funktion der Position des jeweiligen optischen Kanals darstellen, d a d u r c h g e k e n n z e i c h n e t, dass zwischen den Mikrolinsen (1') mit Apertur (2 ') und den Detektoren (61, 8) mindestens eine Aperturblendenanordnung (4) vorgesehen ist, wobei der Mittenabstand der Aperturblenden (4') zwischen dem Scheitelabstand der Mikrolinsen (I1) und dem Mittenabstand der Detektoren (61, 8) liegt, derart, dass je nach Position der Kanäle die Aperturblenden (41) unterschiedlich versetzt zu den Mikrolinsen (I1) und den Detektoren (6?, 8) angeordnet sind und mit diesen jeweils auf einer Geraden liegen.
2. Bilderfassungssystem nach Anspruch 1, dadurch gekennzeichnet, dass die den jeweiligen Kanälen zugeordneten Detektoren (β1, 8) zumindest teilweise derart angeordnet sind, dass sie in der Projektion der Mikrolinsen von jeweils benachbarten oder noch weiter weg liegenden Kanälen liegen.
3. Bilderfassungssystem nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die Detektoren direkt als Detektorpixel (8) auf einem Substrat (7) o- der als Detektorpixel mit vorgesetzter Lochblen- de ( 6 ' ) ausgebildet sind.
4. Bilderfassungssystem nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass jeder optische Kanal mindestens ein bestimmtes Raumwinkelsegment als korrespondierenden Bildpunkt er- fasst, derart, dass die Gesamtheit der übertragenen Bildpunkte auf der Detektoranordnung eine Rekonstruktion des Objektes erlaubt.
5. Bilderfassungssystem nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass die Mikro- linsen unterschiedliche Formen, wie rund, elliptisch, asphärisch und dergleichen aufweisen.
6. Bilderfassungssystem nach einem Ansprüche 1 bis 5, dadurch gekennzeichnet, dass in die Mikrolin- sen Mikroprismen integriert sind.
7. Bilderfassungssystem nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass die Mikro- linsen auf einer konvex oder konkav geformten Basisflache und die Detektoren (6', 8) auf einer gekrümmten Substratfläche angeordnet sind.
8. Bilderfassungssystem nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass der Versatz der Aperturblenden zur Geisterbildunterdrückung in Bezug auf die Mikrolinsen (I1) bzw. die Detektoren (6', 8) an den mit dem jeweiligen opti- sehen Kanal abzubildenden Einfallswinkel ange- passt ist.
9. Bilderfassungssystem nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, dass zwischen den optischen Kanälen oder Gruppen von optischen Kanälen oder um die optischen Kanälen Lichtquellen angeordnet sind.
10. Bilderfassungssystem nach einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, dass in der Bildebene der Mikrolinsen (I1) mindestens ein Detektor (6', 8) durch eine Lichtquelle ersetzt ist, die Licht von der Bildebene über die Mikrolinse
(1') auf das zu beobachtende Objekt richtet, bündelt und/oder verteilt.
11. Bilderfassungssystem nach Anspruch 9 oder Anspruch 10, dadurch gekennzeichnet, dass die Lichtquellen als LEDs, OLEDs, VCSEL oder als Laserdioden ausgebildet sind.
12. Bilderfassungssystem nach einem der Ansprüche 1 bis 11, dadurch gekennzeichnet, dass die Detektoren als CMOS- oder CCD-Sensoren oder als aus einem Polymer bestehenden Photodiodenarray ausgebildet sind.
13. Bilderfassungssystem nach einem der Ansprüche 1 bis 12, dadurch gekennzeichnet, dass für Farbaufnahmen die Detektoren als Bildsensor ausge- bildet sind, der verschiedene Farben direkt in drei übereinanderliegenden Pixelschichten getrennt aufnimmt.
14. Bilderfassungssystem nach einem der Ansprüche 1 bis 13, dadurch gekennzeichnet, dass sich die Gesichtsfelder benachbarter optischer Kanäle teilweise gegenseitig überlappen.
15. Bilderfassungssystem nach Anspruch 14, dadurch gekennzeichnet, dass die durch die optischen Achsen vorgegebenen Blickwinkeldifferenz zwischen benachbarten optischen Kanälen kleiner ist als halbe Breite des Gesichtsfeldes eines Kanals .
16. Bilderfassungssystem nach einem der Ansprüche 1 bis 15, dadurch gekennzeichnet, dass mehrere Aperturblendenanordnungen (4) in unterschiedli- chen Ebenen zwischen Mikrolinsen und Detektoren angeordnet sind.
17. Bilderfassungssystem nach Anspruch 16, dadurch gekennzeichnet, dass die Aperturblendenanordnungen (4) unterschiedliche Mittenabstände aufwei- sen und/oder mit unterschiedlichen Abstandsschichten zueinander und zu den Detektoren oder den Mikrolinsen beabstandet sind.
18. Bilderfassungssystem nach einem der Ansprüche 1 bis 17, dadurch gekennzeichnet, dass die opti- sehen Kanäle und die Mikrolinsen (I1) für eine
Vergrößerung von etwa 1 ausgebildet sind, wobei der Objektseitige Raumwinkel, der jedem Kanal als Bildpunkt zugeordnet ist, in seiner Größe so eingestellt ist, dass im Objektabstand des ab- bildenden Systems die diesem Raumwinkel entsprechende laterale Ausdehnung des Objekts gerade so groß wie der Abstand der Kanäle ist.
19. Bilderfassungssystem nach einem der Ansprüche 1 bis 18, dadurch gekennzeichnet, dass auf einen transparenten Objektivkörper (3) vorder- und rückseitig ein den Mikrolinsen zugeordnetes erstes Aperturblendenarray (2) und eines zweites Aperturblendenarray (4) durch Beschichtung auf- gebracht sind, auf das erste Aperturblendenarray (2) ein Mikrolinsenarray (1) und auf das zweite Aperturblendenarray eine transparente Abstandsschicht (5) angeordnet ist und unter der Ab- Standsschicht ein Substrat (7) mit einem Array aus Detektorpixeln (8) liegt, wobei ggf. ein Lochblendenarray (6) auf der Abstandsschicht (5) oder dem Substrat mit den Detektorpixeln aufgebracht ist.
20. Bilderfassungssystem nach Anspruch 19, dadurch gekennzeichnet, dass der Objektivkörper (3) aus Glas, das Linsenarray und die Abstandsschicht aus einem strukturierbaren Polymer, die Aperturblendenarray (2, 4) aus einem absorbierenden Polymer oder Metall und das Lochblendenarray (6) aus einer Metall- oder Polymerschicht hergestellt ist.
21. Verfahren zur Herstellung mindestens eines Bilderfassungssystems mit einem transparenten Ob- jektivkörper, auf dessen Vorder- und Rückseite ein erstes und ein zweites Aperturblendenarray aus dünnem absorbierenden Polymer oder einem Metall durch Beschichtung und Lithographie aufgebracht werden, dann vorderseitig ein Mikrolin- senarray durch UV-Replikation und rückseitig eine Abstandsschicht, beide aus einem photostruku- rierbaren Polymer, hergestellt werden und die Abstandsschicht mit einem mit einem Detektorpi- xelarray versehenen Substrat verbunden wird.
22. Verfahren nach Anspruch 21, dadurch gekennzeichnet, dass zur Bildung eines Optowafers auf einen durchgehenden Objektivkörper mehrere erste und zweite Aperturblendenarrays, mehrere Mikrolin- senarrays und mehrere mit Abstand zueinander an- geordnete Abstandsschichten aufgebracht werden, die mit einem Detektorwafer mit einer Mehrzahl von Detektorpixelarrays und zwischen dem Detek- torpixelarrays auf dem Waver aufgebrachten Bon- dingpads derart verbunden werden, dass die freibleibenden Räume zwischen den Abstandschichten über den Bondingpads liegen und dass die so verbundenen Opto- und Detektorwaver durch mehrere nebeneinanderliegende und unterschiedlich tiefe Schnitte mit einer Säge so vereinzelt werden, dass Kamerachips hergestellt werden, bei denen die Bondingpads auf den Detektorchips seitlich über die übrige Anordnung herausragen.
23. Verwendung eines Bilderfassungssystems nach ei- nem Ansprüche 14 bis 20 mit einer Auswerteeinrichtung zur Positionsbestimmung von punktförmigen Objekten unter Heranziehung der Verhältnisse der von den Detektoren erfassten Intensitäten benachbarter optischer Kanäle.
24. Verwendung eines Bilderfassungssystems nach einem Ansprüche 14 bis 20 mit einer Auswerteeinrichtung zur Orientierungs- und Positionsbestimmung von Kanten durch Auswertung von den Detektoren erfassten Intensitätswerten oder Kontrast- werten und unter Heranziehung der Verhältnisse der Intensität benachbarter optischer Kanäle.
PCT/EP2007/000813 2006-01-23 2007-01-23 Bilderfassungssystem und verfahren zur herstellung mindestens eines bilderfassungssystems WO2007082781A1 (de)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2008551737A JP2009524263A (ja) 2006-01-23 2007-01-23 画像検出システムおよびそれを製造する方法
US12/223,024 US7897903B2 (en) 2006-01-23 2007-01-23 Image detection system of optical channels arranged next to one another
ES07711414T ES2373063T3 (es) 2006-01-23 2007-01-23 Sistema de detección de imágenes y procedimiento para la producción de al menos un sistema de detección de imágenes.
EP07711414A EP1979769B1 (de) 2006-01-23 2007-01-23 Bilderfassungssystem und verfahren zur herstellung mindestens eines bilderfassungssystems
AT07711414T ATE523802T1 (de) 2006-01-23 2007-01-23 Bilderfassungssystem und verfahren zur herstellung mindestens eines bilderfassungssystems
KR1020087017828A KR101275076B1 (ko) 2006-01-23 2008-07-21 이미지 검출 시스템 및 적어도 하나의 이미지 검출시스템을 생성하는 방법

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102006004802.4 2006-01-23
DE102006004802A DE102006004802B4 (de) 2006-01-23 2006-01-23 Bilderfassungssystem und Verfahren zur Herstellung mindestens eines Bilderfassungssystems

Publications (1)

Publication Number Publication Date
WO2007082781A1 true WO2007082781A1 (de) 2007-07-26

Family

ID=37969955

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2007/000813 WO2007082781A1 (de) 2006-01-23 2007-01-23 Bilderfassungssystem und verfahren zur herstellung mindestens eines bilderfassungssystems

Country Status (8)

Country Link
US (1) US7897903B2 (de)
EP (1) EP1979769B1 (de)
JP (1) JP2009524263A (de)
KR (1) KR101275076B1 (de)
AT (1) ATE523802T1 (de)
DE (1) DE102006004802B4 (de)
ES (1) ES2373063T3 (de)
WO (1) WO2007082781A1 (de)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009052980A1 (de) 2007-10-19 2009-04-30 Fraunhofer-Gesellschaft Zur Förderung Der Angewandten Forschung Mikrolinsen-array mit integrierter beleuchtung
JP2009145401A (ja) * 2007-12-11 2009-07-02 Sony Corp 撮像素子および撮像装置
JP2010541197A (ja) * 2007-09-24 2010-12-24 フラウンホーファーゲゼルシャフト ツール フォルデルング デル アンゲヴァンテン フォルシユング エー.フアー. イメージセンサ
US20120026093A1 (en) * 2009-01-19 2012-02-02 Fraunhofer-Gesellschaft Zur Foerderung Der Angewandten Forschung E.V. Optical navigation device and use thereof
EP2455782A1 (de) * 2010-11-17 2012-05-23 Joo Hyun Lee Linsenmatrixplatte
WO2013101556A1 (en) * 2011-12-30 2013-07-04 Qualcomm Mems Technologies, Inc. Light direction distribution sensor
JP2019519922A (ja) * 2016-05-25 2019-07-11 ヴイカンシー (ベイジン) テクノロジー カンパニー リミテッド 撮像素子、画像取得装置、指紋取得装置および表示装置
EP2185994B1 (de) * 2007-09-10 2020-01-15 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Vorrichtung zur optischen navigation
CN111095279A (zh) * 2019-07-12 2020-05-01 深圳市汇顶科技股份有限公司 指纹检测装置和电子设备
US11889046B2 (en) * 2016-06-27 2024-01-30 Intel Corporation Compact, low cost VCSEL projector for high performance stereodepth camera

Families Citing this family (135)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008261790A (ja) * 2007-04-13 2008-10-30 Hitachi High-Technologies Corp 欠陥検査装置
US8019215B2 (en) * 2007-08-06 2011-09-13 Adobe Systems Incorporated Method and apparatus for radiance capture by multiplexing in the frequency domain
US8866920B2 (en) 2008-05-20 2014-10-21 Pelican Imaging Corporation Capturing and processing of images using monolithic camera array with heterogeneous imagers
US11792538B2 (en) 2008-05-20 2023-10-17 Adeia Imaging Llc Capturing and processing of images including occlusions focused on an image sensor by a lens stack array
EP3876510A1 (de) 2008-05-20 2021-09-08 FotoNation Limited Aufnahme und verarbeitung von bildern mittels monolithischer kamera anordnung mit heterogenem bildwandler
US8244058B1 (en) 2008-05-30 2012-08-14 Adobe Systems Incorporated Method and apparatus for managing artifacts in frequency domain processing of light-field images
US8189089B1 (en) 2009-01-20 2012-05-29 Adobe Systems Incorporated Methods and apparatus for reducing plenoptic camera artifacts
DE102009016234B4 (de) * 2009-04-03 2014-03-13 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Strahlformer
US8633432B2 (en) * 2009-09-21 2014-01-21 California Institute Of Technology Reflective focusing and transmissive projection device
WO2011047053A2 (en) * 2009-10-13 2011-04-21 California Institute Of Technology Holographically illuminated imaging devices
DE102009049387B4 (de) * 2009-10-14 2016-05-25 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Vorrichtung, Bildverarbeitungsvorrichtung und Verfahren zur optischen Abbildung
EP2502115A4 (de) 2009-11-20 2013-11-06 Pelican Imaging Corp Aufnahme und verarbeitung von bildern mittels eines monolithischen kameraarrays mit heterogenem bildwandler
US8817015B2 (en) 2010-03-03 2014-08-26 Adobe Systems Incorporated Methods, apparatus, and computer-readable storage media for depth-based rendering of focused plenoptic camera data
CN103004180A (zh) 2010-05-12 2013-03-27 派力肯影像公司 成像器阵列和阵列照相机的架构
DE102010031535A1 (de) 2010-07-19 2012-01-19 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Bildaufnahmevorrichtung und Verfahren zum Aufnehmen eines Bildes
US8803164B2 (en) * 2010-08-06 2014-08-12 Semiconductor Energy Laboratory Co., Ltd. Solid-state image sensing device and semiconductor display device
US8724000B2 (en) * 2010-08-27 2014-05-13 Adobe Systems Incorporated Methods and apparatus for super-resolution in integral photography
US8749694B2 (en) 2010-08-27 2014-06-10 Adobe Systems Incorporated Methods and apparatus for rendering focused plenoptic camera data using super-resolved demosaicing
US8803918B2 (en) 2010-08-27 2014-08-12 Adobe Systems Incorporated Methods and apparatus for calibrating focused plenoptic camera data
US8665341B2 (en) 2010-08-27 2014-03-04 Adobe Systems Incorporated Methods and apparatus for rendering output images with simulated artistic effects from focused plenoptic camera data
US8536545B2 (en) 2010-09-09 2013-09-17 California Institute Of Technology Delayed emission detection devices and methods
US8878950B2 (en) 2010-12-14 2014-11-04 Pelican Imaging Corporation Systems and methods for synthesizing high resolution images using super-resolution processes
GB2488519A (en) * 2011-02-16 2012-09-05 St Microelectronics Res & Dev Multi-channel image sensor incorporating lenslet array and overlapping fields of view.
JP5861257B2 (ja) * 2011-02-21 2016-02-16 ソニー株式会社 撮像素子および撮像装置
US9197798B2 (en) 2011-03-25 2015-11-24 Adobe Systems Incorporated Thin plenoptic cameras using microspheres
US8305456B1 (en) 2011-05-11 2012-11-06 Pelican Imaging Corporation Systems and methods for transmitting and receiving array camera image data
WO2013003276A1 (en) 2011-06-28 2013-01-03 Pelican Imaging Corporation Optical arrangements for use with an array camera
US20130265459A1 (en) 2011-06-28 2013-10-10 Pelican Imaging Corporation Optical arrangements for use with an array camera
JP2013044885A (ja) * 2011-08-23 2013-03-04 Hitachi High-Technologies Corp 拡大系イメージング装置及びイメージセンサ
US20130070060A1 (en) 2011-09-19 2013-03-21 Pelican Imaging Corporation Systems and methods for determining depth from multiple views of a scene that include aliasing using hypothesized fusion
KR102002165B1 (ko) 2011-09-28 2019-07-25 포토내이션 리미티드 라이트 필드 이미지 파일의 인코딩 및 디코딩을 위한 시스템 및 방법
WO2013126578A1 (en) 2012-02-21 2013-08-29 Pelican Imaging Corporation Systems and methods for the manipulation of captured light field image data
US9210392B2 (en) 2012-05-01 2015-12-08 Pelican Imaging Coporation Camera modules patterned with pi filter groups
KR20150023907A (ko) 2012-06-28 2015-03-05 펠리칸 이매징 코포레이션 결함있는 카메라 어레이들, 광학 어레이들 및 센서들을 검출하기 위한 시스템들 및 방법들
US20140002674A1 (en) 2012-06-30 2014-01-02 Pelican Imaging Corporation Systems and Methods for Manufacturing Camera Modules Using Active Alignment of Lens Stack Arrays and Sensors
EP3869797B1 (de) 2012-08-21 2023-07-19 Adeia Imaging LLC Verfahren zur tiefenerkennung in mit array-kameras aufgenommenen bildern
US20140055632A1 (en) 2012-08-23 2014-02-27 Pelican Imaging Corporation Feature based high resolution motion estimation from low resolution images captured using an array source
US9214013B2 (en) 2012-09-14 2015-12-15 Pelican Imaging Corporation Systems and methods for correcting user identified artifacts in light field images
WO2014052974A2 (en) 2012-09-28 2014-04-03 Pelican Imaging Corporation Generating images from light fields utilizing virtual viewpoints
US9143711B2 (en) 2012-11-13 2015-09-22 Pelican Imaging Corporation Systems and methods for array camera focal plane control
CN103076709B (zh) * 2013-01-16 2016-06-29 瑞声声学科技(深圳)有限公司 阵列照相机
US9462164B2 (en) 2013-02-21 2016-10-04 Pelican Imaging Corporation Systems and methods for generating compressed light field representation data using captured light fields, array geometry, and parallax information
US9253380B2 (en) 2013-02-24 2016-02-02 Pelican Imaging Corporation Thin form factor computational array cameras and modular array cameras
US9638883B1 (en) 2013-03-04 2017-05-02 Fotonation Cayman Limited Passive alignment of array camera modules constructed from lens stack arrays and sensors based upon alignment information obtained during manufacture of array camera modules using an active alignment process
WO2014138697A1 (en) 2013-03-08 2014-09-12 Pelican Imaging Corporation Systems and methods for high dynamic range imaging using array cameras
US8866912B2 (en) 2013-03-10 2014-10-21 Pelican Imaging Corporation System and methods for calibration of an array camera using a single captured image
US9521416B1 (en) 2013-03-11 2016-12-13 Kip Peli P1 Lp Systems and methods for image data compression
US9519972B2 (en) 2013-03-13 2016-12-13 Kip Peli P1 Lp Systems and methods for synthesizing images from image data captured by an array camera using restricted depth of field depth maps in which depth estimation precision varies
US9106784B2 (en) 2013-03-13 2015-08-11 Pelican Imaging Corporation Systems and methods for controlling aliasing in images captured by an array camera for use in super-resolution processing
US9888194B2 (en) 2013-03-13 2018-02-06 Fotonation Cayman Limited Array camera architecture implementing quantum film image sensors
US9124831B2 (en) 2013-03-13 2015-09-01 Pelican Imaging Corporation System and methods for calibration of an array camera
WO2014153098A1 (en) 2013-03-14 2014-09-25 Pelican Imaging Corporation Photmetric normalization in array cameras
US9578259B2 (en) 2013-03-14 2017-02-21 Fotonation Cayman Limited Systems and methods for reducing motion blur in images or video in ultra low light with array cameras
US9633442B2 (en) 2013-03-15 2017-04-25 Fotonation Cayman Limited Array cameras including an array camera module augmented with a separate camera
US9497429B2 (en) 2013-03-15 2016-11-15 Pelican Imaging Corporation Extended color processing on pelican array cameras
US10122993B2 (en) 2013-03-15 2018-11-06 Fotonation Limited Autofocus system for a conventional camera that uses depth information from an array camera
US9445003B1 (en) 2013-03-15 2016-09-13 Pelican Imaging Corporation Systems and methods for synthesizing high resolution images using image deconvolution based on motion and depth information
WO2014150856A1 (en) 2013-03-15 2014-09-25 Pelican Imaging Corporation Array camera implementing quantum dot color filters
WO2014145856A1 (en) 2013-03-15 2014-09-18 Pelican Imaging Corporation Systems and methods for stereo imaging with camera arrays
US10898070B2 (en) * 2013-07-07 2021-01-26 Real Time Imaging Technologies, Llc Imaging apparatus and methods
JP2015060068A (ja) * 2013-09-18 2015-03-30 株式会社東芝 撮像レンズ及び固体撮像装置
WO2015048694A2 (en) 2013-09-27 2015-04-02 Pelican Imaging Corporation Systems and methods for depth-assisted perspective distortion correction
US9880391B2 (en) * 2013-10-01 2018-01-30 Heptagon Micro Optics Pte. Ltd. Lens array modules and wafer-level techniques for fabricating the same
US9185276B2 (en) 2013-11-07 2015-11-10 Pelican Imaging Corporation Methods of manufacturing array camera modules incorporating independently aligned lens stacks
WO2015074078A1 (en) 2013-11-18 2015-05-21 Pelican Imaging Corporation Estimating depth from projected texture using camera arrays
US9426361B2 (en) 2013-11-26 2016-08-23 Pelican Imaging Corporation Array camera configurations incorporating multiple constituent array cameras
JP6417809B2 (ja) * 2014-03-05 2018-11-07 ソニー株式会社 撮像装置
WO2015134996A1 (en) 2014-03-07 2015-09-11 Pelican Imaging Corporation System and methods for depth regularization and semiautomatic interactive matting using rgb-d images
US9955050B2 (en) * 2014-04-07 2018-04-24 William J. Warren Movement monitoring security devices and systems
US9972182B2 (en) 2014-04-07 2018-05-15 William J. Warren Movement monitoring security devices and systems
US9247117B2 (en) 2014-04-07 2016-01-26 Pelican Imaging Corporation Systems and methods for correcting for warpage of a sensor array in an array camera module by introducing warpage into a focal plane of a lens stack array
US9521319B2 (en) 2014-06-18 2016-12-13 Pelican Imaging Corporation Array cameras and array camera modules including spectral filters disposed outside of a constituent image sensor
WO2016054089A1 (en) 2014-09-29 2016-04-07 Pelican Imaging Corporation Systems and methods for dynamic calibration of array cameras
CN204423387U (zh) * 2014-11-14 2015-06-24 深圳印象认知技术有限公司 成像板、图像采集器及终端
EP3029494A1 (de) 2014-12-02 2016-06-08 Sick Ag Optoelektronischer Sensor
EP3244800A1 (de) 2015-01-12 2017-11-22 Real Time Imaging Technologies, LLC Niedrigdosiertes röntgenbildgebungssystem
US9942474B2 (en) 2015-04-17 2018-04-10 Fotonation Cayman Limited Systems and methods for performing high speed video capture and depth estimation using array cameras
JPWO2016208403A1 (ja) * 2015-06-23 2018-04-12 ソニー株式会社 イメージセンサ、および電子機器
US10063849B2 (en) 2015-09-24 2018-08-28 Ouster, Inc. Optical system for collecting distance information within a field
US9992477B2 (en) 2015-09-24 2018-06-05 Ouster, Inc. Optical system for collecting distance information within a field
JP6703387B2 (ja) * 2015-10-02 2020-06-03 エルジー ディスプレイ カンパニー リミテッド 薄膜光センサ、2次元アレイセンサ、および指紋センサ付きモバイル用ディスプレイ
KR101759971B1 (ko) * 2015-11-26 2017-07-24 주식회사 선진기술 평행광을 이용한 축오차 측정장치
KR101738883B1 (ko) * 2016-01-06 2017-05-23 한국과학기술원 초박형 디지털 카메라 및 그 제조 방법
US10331932B2 (en) 2016-06-08 2019-06-25 Novatek Microelectronics Corp. Optical sensor device and a fingerprint sensor apparatus
CN109843500B (zh) 2016-08-24 2021-06-29 奥斯特公司 用于收集场内的距离信息的光学系统
US10270947B2 (en) * 2016-09-15 2019-04-23 Microsoft Technology Licensing, Llc Flat digital image sensor
KR101850222B1 (ko) * 2016-12-28 2018-05-31 창원대학교 산학협력단 삼차원 프린터의 축 오차 보정 장치 및 방법
DE102017201139A1 (de) 2017-01-25 2018-07-26 Robert Bosch Gmbh Bauelement zum Begrenzen eines Einfallswinkels von Licht, Verfahren zum Herstellen desselben und Mikrospektrometer
WO2018204917A1 (en) 2017-05-05 2018-11-08 Ball Aerospace & Technologies Corp. Spectral sensing and allocation using deep machine learning
KR102657365B1 (ko) 2017-05-15 2024-04-17 아우스터, 인크. 휘도 향상된 광학 이미징 송신기
TWI639022B (zh) * 2017-05-18 2018-10-21 吳志彥 光學元件的製作方法及光學感應裝置
US10482618B2 (en) 2017-08-21 2019-11-19 Fotonation Limited Systems and methods for hybrid depth regularization
US10481269B2 (en) 2017-12-07 2019-11-19 Ouster, Inc. Rotating compact light ranging system
JP6508385B2 (ja) * 2018-03-30 2019-05-08 株式会社ニコン 撮像素子および撮像装置
KR102614907B1 (ko) * 2018-04-04 2023-12-19 삼성전자주식회사 이미지 센서 및 이미지 센서 제조 방법
US10916575B2 (en) 2018-04-04 2021-02-09 Samsung Electronics Co., Ltd. Image sensor and method of manufacturing image sensor
EP3951649A1 (de) 2018-05-07 2022-02-09 O-Net WaveTouch Limited Kompakter optischer sensor zur fingerabdruckerkennung
FR3084207B1 (fr) * 2018-07-19 2021-02-19 Isorg Systeme optique et son procede de fabrication
US10760957B2 (en) 2018-08-09 2020-09-01 Ouster, Inc. Bulk optics for a scanning array
US10739189B2 (en) 2018-08-09 2020-08-11 Ouster, Inc. Multispectral ranging/imaging sensor arrays and systems
CN211045441U (zh) * 2018-08-21 2020-07-17 神盾股份有限公司 光学传感系统
US11182672B1 (en) * 2018-10-09 2021-11-23 Ball Aerospace & Technologies Corp. Optimized focal-plane electronics using vector-enhanced deep learning
US11851217B1 (en) 2019-01-23 2023-12-26 Ball Aerospace & Technologies Corp. Star tracker using vector-based deep learning for enhanced performance
US11412124B1 (en) 2019-03-01 2022-08-09 Ball Aerospace & Technologies Corp. Microsequencer for reconfigurable focal plane control
JP2020182139A (ja) * 2019-04-26 2020-11-05 ソニー株式会社 撮像システム及び撮像素子
US11488024B1 (en) 2019-05-29 2022-11-01 Ball Aerospace & Technologies Corp. Methods and systems for implementing deep reinforcement module networks for autonomous systems control
US11303348B1 (en) 2019-05-29 2022-04-12 Ball Aerospace & Technologies Corp. Systems and methods for enhancing communication network performance using vector based deep learning
WO2021024452A1 (ja) * 2019-08-08 2021-02-11 マクセル株式会社 撮像装置および方法
US11828598B1 (en) 2019-08-28 2023-11-28 Ball Aerospace & Technologies Corp. Systems and methods for the efficient detection and tracking of objects from a moving platform
WO2021035714A1 (zh) * 2019-08-30 2021-03-04 京东方科技集团股份有限公司 纹路图像获取装置、显示装置及准直部件
BR112022004811A2 (pt) 2019-09-17 2022-06-21 Boston Polarimetrics Inc Sistemas e métodos para modelagem de superfície usando indicações de polarização
CN211555889U (zh) * 2019-09-23 2020-09-22 神盾股份有限公司 图像感测模块
CN211320102U (zh) * 2019-09-23 2020-08-21 神盾股份有限公司 集成光学传感器
CN114746717A (zh) 2019-10-07 2022-07-12 波士顿偏振测定公司 利用偏振进行表面法线感测的系统和方法
FR3102007B1 (fr) * 2019-10-14 2021-10-29 Commissariat Energie Atomique Capteur d’images
JP7444174B2 (ja) * 2019-10-30 2024-03-06 ソニーグループ株式会社 撮像素子、表示装置、及び、撮像システム
WO2021108002A1 (en) 2019-11-30 2021-06-03 Boston Polarimetrics, Inc. Systems and methods for transparent object segmentation using polarization cues
KR102429987B1 (ko) 2020-01-06 2022-08-05 엘아이지넥스원 주식회사 마이크로 렌즈 어레이 및 이를 포함하는 이미지 센서모듈과 그 제조방법
JP7462769B2 (ja) 2020-01-29 2024-04-05 イントリンジック イノベーション エルエルシー 物体の姿勢の検出および測定システムを特徴付けるためのシステムおよび方法
WO2021154459A1 (en) 2020-01-30 2021-08-05 Boston Polarimetrics, Inc. Systems and methods for synthesizing data for training statistical models on different imaging modalities including polarized images
KR102147279B1 (ko) * 2020-02-20 2020-08-24 국방과학연구소 물체 이동 탐지 장치, 방법, 컴퓨터 판독 가능한 기록 매체 및 컴퓨터 프로그램
CN114096801B (zh) * 2020-04-24 2023-10-20 达闼机器人股份有限公司 镜头模块和物体探测装置
US11328150B2 (en) 2020-04-30 2022-05-10 Omnivision Technologies, Inc. Lens-array imager
WO2021243088A1 (en) 2020-05-27 2021-12-02 Boston Polarimetrics, Inc. Multi-aperture polarization optical systems using beam splitters
KR102455520B1 (ko) 2020-06-05 2022-10-17 한국과학기술원 마이크로렌즈 어레이를 이용한 초박형 카메라 장치 그리고 이의 다기능 이미징 방법
DE112021007141T5 (de) 2021-02-25 2023-12-14 Mitsubishi Electric Corporation Bildlesevorrichtung
US11954886B2 (en) 2021-04-15 2024-04-09 Intrinsic Innovation Llc Systems and methods for six-degree of freedom pose estimation of deformable objects
US11290658B1 (en) 2021-04-15 2022-03-29 Boston Polarimetrics, Inc. Systems and methods for camera exposure control
US11689813B2 (en) 2021-07-01 2023-06-27 Intrinsic Innovation Llc Systems and methods for high dynamic range imaging using crossed polarizers
TWI786753B (zh) * 2021-07-30 2022-12-11 新鉅科技股份有限公司 紅外投影透鏡組及紅外投影模組
CN114002769A (zh) * 2021-10-20 2022-02-01 武汉华星光电技术有限公司 滤光准直复合膜及其制造方法、显示装置
WO2023112479A1 (ja) * 2021-12-14 2023-06-22 ソニーセミコンダクタソリューションズ株式会社 受光装置および電子機器
EP4213116A1 (de) 2022-01-14 2023-07-19 WaveTouch Denmark A/S Kompakter optischer sensor
CN115291305A (zh) * 2022-07-20 2022-11-04 湖北宜美特全息科技有限公司 一种大幅面离轴裸眼3d显示光学薄膜及其制备方法
CN117358926B (zh) * 2023-12-05 2024-02-13 天津大学 一种锗光阑阵列的制备方法及光场成像系统

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0840502A2 (de) * 1996-11-04 1998-05-06 Eastman Kodak Company Kompakte Digitalkamera mit segmentierten Blickfeldern
DE19755565A1 (de) * 1996-12-20 1998-06-25 Eastman Kodak Co Linsenanordnungssystem
JP2001237404A (ja) * 2000-02-23 2001-08-31 Matsushita Electric Ind Co Ltd 増幅型固体撮像装置
US20010026322A1 (en) * 2000-01-27 2001-10-04 Hidekazu Takahashi Image pickup apparatus
WO2005069607A1 (de) * 2004-01-20 2005-07-28 Frauhofer-Gesellschaft Zur Förderung Der Angewandten Forschung E.V. Bilderfassungssystem und dessen verwendung

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100541028B1 (ko) * 2003-07-21 2006-01-11 주식회사 옵토메카 이미지 센서 및 그 제조 방법

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0840502A2 (de) * 1996-11-04 1998-05-06 Eastman Kodak Company Kompakte Digitalkamera mit segmentierten Blickfeldern
DE19755565A1 (de) * 1996-12-20 1998-06-25 Eastman Kodak Co Linsenanordnungssystem
US20010026322A1 (en) * 2000-01-27 2001-10-04 Hidekazu Takahashi Image pickup apparatus
JP2001237404A (ja) * 2000-02-23 2001-08-31 Matsushita Electric Ind Co Ltd 増幅型固体撮像装置
WO2005069607A1 (de) * 2004-01-20 2005-07-28 Frauhofer-Gesellschaft Zur Förderung Der Angewandten Forschung E.V. Bilderfassungssystem und dessen verwendung

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2185994B1 (de) * 2007-09-10 2020-01-15 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Vorrichtung zur optischen navigation
JP2010541197A (ja) * 2007-09-24 2010-12-24 フラウンホーファーゲゼルシャフト ツール フォルデルング デル アンゲヴァンテン フォルシユング エー.フアー. イメージセンサ
US8792174B2 (en) 2007-10-19 2014-07-29 Fraunhofer-Gesellschaft Zur Foerderung Der Angewandten Forschung Array of microlenses with integrated illumination
WO2009052980A1 (de) 2007-10-19 2009-04-30 Fraunhofer-Gesellschaft Zur Förderung Der Angewandten Forschung Mikrolinsen-array mit integrierter beleuchtung
JP2009145401A (ja) * 2007-12-11 2009-07-02 Sony Corp 撮像素子および撮像装置
US20120026093A1 (en) * 2009-01-19 2012-02-02 Fraunhofer-Gesellschaft Zur Foerderung Der Angewandten Forschung E.V. Optical navigation device and use thereof
US9454261B2 (en) * 2009-01-19 2016-09-27 Fraunhofer-Gesellschaft Zur Foerderung Der Angewandten Forschung E.V. Optical navigation device and use thereof
EP2455782A1 (de) * 2010-11-17 2012-05-23 Joo Hyun Lee Linsenmatrixplatte
WO2013101556A1 (en) * 2011-12-30 2013-07-04 Qualcomm Mems Technologies, Inc. Light direction distribution sensor
JP2019519922A (ja) * 2016-05-25 2019-07-11 ヴイカンシー (ベイジン) テクノロジー カンパニー リミテッド 撮像素子、画像取得装置、指紋取得装置および表示装置
US11889046B2 (en) * 2016-06-27 2024-01-30 Intel Corporation Compact, low cost VCSEL projector for high performance stereodepth camera
CN111095279A (zh) * 2019-07-12 2020-05-01 深圳市汇顶科技股份有限公司 指纹检测装置和电子设备
CN111095279B (zh) * 2019-07-12 2023-09-08 深圳市汇顶科技股份有限公司 指纹检测装置和电子设备

Also Published As

Publication number Publication date
ATE523802T1 (de) 2011-09-15
US20090179142A1 (en) 2009-07-16
DE102006004802A1 (de) 2007-08-02
KR101275076B1 (ko) 2013-06-14
DE102006004802B4 (de) 2008-09-25
JP2009524263A (ja) 2009-06-25
US7897903B2 (en) 2011-03-01
KR20080089604A (ko) 2008-10-07
ES2373063T3 (es) 2012-01-31
EP1979769B1 (de) 2011-09-07
EP1979769A1 (de) 2008-10-15

Similar Documents

Publication Publication Date Title
DE102006004802B4 (de) Bilderfassungssystem und Verfahren zur Herstellung mindestens eines Bilderfassungssystems
EP2429176B1 (de) Bildverarbeitungsvorrichtung
EP2185994B1 (de) Vorrichtung zur optischen navigation
EP2507662B1 (de) Vorrichtung zur optischen abbildung
EP2387744B1 (de) Vorrichtung zur optischen navigation
EP2406825B1 (de) Verfahren zur herstellung einer vielzahl von mikrooptoelektronischen bauelementen und mikrooptoelektronisches bauelement
DE69723542T2 (de) Bildsensor
EP2210132B1 (de) Mikrolinsen-array mit integrierter beleuchtung
DE102009016234A1 (de) Strahlformer
WO2014053573A1 (de) Verfahren und vorrichtung zur beleuchtung und messung eines objektes
WO2017190919A1 (de) Beleuchtungsmodul für winkelselektive beleuchtung
DE2917253C2 (de)
DE112017001734T5 (de) Bilderfassungsvorrichtung und Bilderfassungsverfahren
DE102016208975A1 (de) Vorrichtung und Verfahren zum Detektieren von Infrarotstrahlung
DE102020207302A1 (de) Vorrichtung und Verfahren zur Aufnahme eines projizierten Punktmusters in einer Anzeigevorrichtung
DE112021007141T5 (de) Bildlesevorrichtung
DE112019007693T5 (de) Bildleseeinrichtung
DE102022127849A1 (de) Optischer expander eines lidarsystems und lidarsystem
DE112021006916T5 (de) Bildlesevorrichtung

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1020087017828

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2008551737

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2007711414

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 12223024

Country of ref document: US