JP2020182139A - 撮像システム及び撮像素子 - Google Patents

撮像システム及び撮像素子 Download PDF

Info

Publication number
JP2020182139A
JP2020182139A JP2019085074A JP2019085074A JP2020182139A JP 2020182139 A JP2020182139 A JP 2020182139A JP 2019085074 A JP2019085074 A JP 2019085074A JP 2019085074 A JP2019085074 A JP 2019085074A JP 2020182139 A JP2020182139 A JP 2020182139A
Authority
JP
Japan
Prior art keywords
pixel
light
pixels
image
incident
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2019085074A
Other languages
English (en)
Inventor
佳孝 宮谷
Yoshitaka Miyatani
佳孝 宮谷
新之介 速水
Shinnosuke Hayami
新之介 速水
和幸 丸川
Kazuyuki Marukawa
和幸 丸川
美保 駒井
Miho KOMAI
美保 駒井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP2019085074A priority Critical patent/JP2020182139A/ja
Priority to US17/594,467 priority patent/US20220180615A1/en
Priority to PCT/JP2020/016360 priority patent/WO2020218074A1/ja
Publication of JP2020182139A publication Critical patent/JP2020182139A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/1463Pixel isolation structures
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R11/00Arrangements for holding or mounting articles, not otherwise provided for
    • B60R11/04Mounting of cameras operative during drive; Arrangement of controls thereof relative to the vehicle
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V10/00Arrangements for image or video recognition or understanding
    • G06V10/10Image acquisition
    • G06V10/12Details of acquisition arrangements; Constructional details thereof
    • G06V10/14Optical characteristics of the device performing the acquisition or on the illumination arrangements
    • G06V10/147Details of sensors, e.g. sensor lenses
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14603Special geometry or disposition of pixel-elements, address-lines or gate-electrodes
    • H01L27/14607Geometry of the photosensitive area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/1462Coatings
    • H01L27/14621Colour filter arrangements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/1462Coatings
    • H01L27/14623Optical shielding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14625Optical elements or arrangements associated with the device
    • H01L27/14627Microlenses
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14634Assemblies, i.e. Hybrid structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14643Photodiode arrays; MOS imagers
    • H01L27/14645Colour imagers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/50Constructional details
    • H04N23/54Mounting of pick-up tubes, electronic image sensors, deviation or focusing coils
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/80Camera processing pipelines; Components thereof
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/90Arrangement of cameras or camera modules, e.g. multiple cameras in TV studios or sports stadiums
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N7/00Television systems
    • H04N7/18Closed-circuit television [CCTV] systems, i.e. systems in which the video signal is not broadcast
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N7/00Television systems
    • H04N7/18Closed-circuit television [CCTV] systems, i.e. systems in which the video signal is not broadcast
    • H04N7/183Closed-circuit television [CCTV] systems, i.e. systems in which the video signal is not broadcast for receiving images from a single remote source
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R11/00Arrangements for holding or mounting articles, not otherwise provided for
    • B60R2011/0001Arrangements for holding or mounting articles, not otherwise provided for characterised by position
    • B60R2011/0003Arrangements for holding or mounting articles, not otherwise provided for characterised by position inside the vehicle
    • B60R2011/0026Windows, e.g. windscreen
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V20/00Scenes; Scene-specific elements
    • G06V20/50Context or environment of the image
    • G06V20/56Context or environment of the image exterior to a vehicle by using sensors mounted on the vehicle
    • G06V20/58Recognition of moving objects or obstacles, e.g. vehicles or pedestrians; Recognition of traffic objects, e.g. traffic signs, traffic lights or roads
    • GPHYSICS
    • G08SIGNALLING
    • G08BSIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
    • G08B13/00Burglar, theft or intruder alarms
    • G08B13/18Actuation by interference with heat, light, or radiation of shorter wavelength; Actuation by intruding sources of heat, light, or radiation of shorter wavelength
    • G08B13/189Actuation by interference with heat, light, or radiation of shorter wavelength; Actuation by intruding sources of heat, light, or radiation of shorter wavelength using passive radiation detection systems
    • G08B13/194Actuation by interference with heat, light, or radiation of shorter wavelength; Actuation by intruding sources of heat, light, or radiation of shorter wavelength using passive radiation detection systems using image scanning and comparing systems
    • G08B13/196Actuation by interference with heat, light, or radiation of shorter wavelength; Actuation by intruding sources of heat, light, or radiation of shorter wavelength using passive radiation detection systems using image scanning and comparing systems using television cameras
    • G08B13/19617Surveillance camera constructional details
    • G08B13/19626Surveillance camera constructional details optical details, e.g. lenses, mirrors or multiple lenses

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Electromagnetism (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Theoretical Computer Science (AREA)
  • Vascular Medicine (AREA)
  • General Health & Medical Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Studio Devices (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)

Abstract

【課題】車内から車両の周囲の撮像を行う場合に、映り込みを防止しつつ、適切な画角での撮像を可能にする。【解決手段】撮像システムは、撮像レンズ及びピンホールのいずれも介さず入射する被写体からの入射光を受光し、前記入射光の入射角によって変調された出力画素値を示す検出信号を出力する画素を複数備え、受光面が車両のウインドシールドの車内側の面に対向し、かつ、接触又は近接するように取り付けられる撮像素子を備え、前記複数の画素の前記入射光の入射角に対する指向性を示す入射角指向性の重心の平均が、前記画素の中心から一方の方向に偏っている。本技術は、例えば、車載システムに適用できる。【選択図】図18

Description

本技術は、撮像システム及び撮像素子に関し、特に、車内から車両の周囲の撮像を行う場合に用いて好適な撮像システム及び撮像素子に関する。
従来、車両のウインドシールドに車室内側から取り付けて、車両の前方の撮像を行うカメラ装置が提案されている(例えば、特許文献1参照)。
特開2016−203952号公報
しかしながら、特許文献1に記載のカメラ装置では、カメラ装置に設けられているカメラモジュールのレンズとウインドシールドとの間に空間ができるため、入射光が反射し、ウインドシールドへの映り込みが発生するおそれがある。一方、映り込みを防止するために、カメラモジュールのレンズをウインドシールドに近接させると、撮像方向が上方を向いてしまい、車両の前方を適切な画角で撮像できなくなる。
本技術は、このような状況に鑑みてなされたものであり、車内から車両の周囲の撮像を行う場合に、映り込みを防止しつつ、適切な画角での撮像を可能にするものである。
本技術の第1の側面の撮像システムは、撮像レンズ及びピンホールのいずれも介さず入射する被写体からの入射光を受光し、前記入射光の入射角によって変調された出力画素値を示す検出信号を出力する画素を複数備え、受光面が車両のウインドシールドの車内側の面に対向し、かつ、接触又は近接するように取り付けられる撮像素子を備え、前記複数の画素の前記入射光の入射角に対する指向性を示す入射角指向性の重心の平均が、前記画素の中心から一方の方向に偏っている。
本技術の第2の側面の撮像素子は、撮像レンズ及びピンホールのいずれも介さず入射する被写体からの入射光を受光し、前記入射光の入射角によって変調された出力画素値を示す検出信号を出力する画素を複数備え、前記複数の画素の前記入射光の入射角に対する指向性を示す入射角指向性の重心の平均が、前記画素の中心から偏っている。
本技術の第1の側面においては、車両の正面方向から偏った方向が撮像される。
本技術の第2の側面においては、正面方向から偏った方向が撮像される。
本技術を適用した車載システムの構成例を示すブロック図である。 図1の車載システムの撮像部の構成例を示すブロック図である。 図2の撮像素子における撮像の原理を説明する図である。 図2の撮像素子の画素アレイ部の構成例を示す図である。 図2の撮像素子の第1の構成例を説明する図である。 図2の撮像素子の第2の構成例を説明する図である。 入射角指向性の発生の原理を説明する図である。 オンチップレンズを利用した入射角指向性の変化を説明する図である。 狭画角画素と広画角画素との関係を説明する図である。 狭画角画素と広画角画素との関係を説明する図である。 狭画角画素と広画角画素との関係を説明する図である。 狭画角画素と広画角画素の画質の違いを説明するための図である。 狭画角画素と広画角画素の画質の違いを説明するための図である。 複数の画角の画素を組み合わせる例を説明する図である。 図1のフロントカメラモジュールのハードウエア構成例を示す図である。 図1のフロントカメラモジュールの取付方法の例を示す図である。 図1のフロントカメラモジュールの取付方法の例を示す図である。 図2の撮像素子の画素アレイ部の第1の実施の形態を示す図である。 図18の画素の遮光パターンの例を示す図である。 図18の撮像素子の撮像範囲を示す図である。 図2の撮像部による撮像処理を説明するフローチャートである。 図2の撮像素子の画素アレイ部の第2の実施の形態を示す図である。 図22の画素の遮光パターンの例を示す図である。 図22の撮像素子の撮像範囲を示す図である。 図2の撮像素子の画素アレイ部の第3の実施の形態を示す図である。 図25の画素の遮光パターンの例を示す図である。 図25の撮像素子の撮像範囲を示す図である。 フロントカメラモジュールの設置方法の変形例を示す図である。 図2の撮像素子の第3の構成例を説明する図である。 撮像素子の変形例を示す図である。 撮像素子の変形例を示す図である。 撮像素子の変形例を示す図である。 撮像素子の変形例を示す図である。 撮像素子の変形例を示す図である。
以下に添付図面を参照しながら、本技術の好適な実施の形態について詳細に説明する。なお、本明細書及び図面において、実質的に同一の機能構成を有する構成要素については、同一の符号を付することにより重複説明を適宜省略する。
また、以下の順序で説明を行う。
1.第1の実施の形態
2.第2の実施の形態
3.第3の実施の形態
4.変形例
5.その他
<<1.第1の実施の形態>>
まず、図1乃至図21を参照して、本技術の第1の実施の形態について説明する。
<車載システム11の構成例>
図1は、本技術を適用した車載システム11の構成例を示すブロック図である。
車載システム11は、車両に設けられ、車両の制御等を行うシステムである。
車載システム11は、フロントカメラモジュール21、通信ユニット22、自動運転ECU(Electronic Control Unit)23、ADAS(Advanced Driver Assistance System) ECU24、ステアリング機構25、ヘッドランプ26、制動装置27、エンジン28、及び、モータ29を備える。フロントカメラモジュール21、通信ユニット22、自動運転ECU23、ADAS ECU24、ステアリング機構25、ヘッドランプ26、制動装置27、エンジン28、及び、モータ29は、CAN(Controller Area Network)通信用のバスB1を介して相互に接続されている。
なお、以下、説明を簡単にするために、車載システム11の各部がバスB1を介してデータの送受信等を行う場合のバスB1の記載を省略する。例えば、ADAS ECU24がバスB1を介してステアリング機構25にデータを供給する場合、ADAS ECU24がステアリング機構25にデータを供給すると記載する。
フロントカメラモジュール21は、後述するように、車両のウインドシールドの車室内側に設置され、車両の前方の撮像、画像認識等の処理を行い、処理の結果を示すデータを車載システム11の各部に供給する。フロントカメラモジュール21は、撮像部41、フロントカメラECU42、及び、MCU(Micro Control Unit)43を備える。
撮像部41は、後述するように、撮像レンズ及びピンホールを用いないLLC(Lenz Less Camera)により構成される。撮像部41は、後述するように、撮像することにより得られた検出画像から被写体の像が結像された復元画像を復元し、車両の前方をセンシングしたセンシング画像として復元画像をフロントカメラECU42に供給する。
フロントカメラECU42は、撮像部41から供給されたセンシング画像に対して、例えばゲイン調整やホワイトバランス調整、HDR(High Dynamic Range)処理、交通信号のフリッカ補正処理などの画質調整処理を施した後、センシング画像に対して画像認識を行う。なお、画質調整処理は、フロントカメラECU42で実行されることに限定されず、撮像部41内部で実行されてもよい。
画像認識では、例えば、歩行者、自転車等の軽車両、車両、ヘッドランプ、ブレーキランプ、歩道、ガードレール、信号機、区画線等の道路標示、道路標識等の任意の物体の検出や、前方車両との衝突までの時間の検出等が行われる。フロントカメラECU42は、画像認識による検出結果を示す信号を生成し、MCU43を介して、自動運転ECU23に供給する。
また、フロントカメラECU42は、センシング画像に対する画像認識による検出結果に基づいて、各種の運転の支援を行うための制御信号を生成し、MCU43を介して、ADAS ECU24に供給する。例えば、フロントカメラECU42は、画像認識により得られた道路の区画線、縁石、歩行者等の検出結果に基づいて、対象物への衝突、走行車線(レーン)からの逸脱等の危険を回避するために、進行方向の変更、減速、急ブレーキ、警告通知等を指示する制御信号を生成し、MCU43を介して、ADAS ECU24に供給する。また、例えば、フロントカメラECU42は、画像認識により得られた対向車のヘッドライトの有無に基づいて、ロービームとハイビームの切り替え等を指示する制御信号を生成し、MCU43を介して、ADAS ECU24に供給する。
MCU43は、フロントカメラECU42から供給される信号を、CAN通信用の形式の信号に変換し、バスB1に出力する。また、MCU43は、バスB1から受信した信号を、フロントカメラECU42用の形式の信号に変換し、フロントカメラECU42に供給する。
通信ユニット22は、車車間通信、車歩間通信、路車間通信等の各種の無線通信により、周辺車両や、歩行者が所持する携帯型端末装置、路側機、外部のサーバとの間で情報の送受信を行う。例えば通信ユニット22は、周辺車両と車車間通信を行って、周辺車両から乗員数や走行状態を示す情報を含む周辺車両情報を受信し、自動運転ECU23に供給する。
自動運転ECU23は、車両の自動運転(Self driving)機能の実行に用いられるECUである。例えば、自動運転ECU23は、フロントカメラECU42による物体検出結果、車両の位置情報、通信ユニット22から供給される周辺車両情報等の各種の情報、車両が備える各種のセンサからのセンサデータ、車速の検出結果等に基づいて、車両の自動運転の制御を行う。例えば、自動運転ECU23は、ステアリング機構25、ヘッドランプ26、制動装置27、エンジン28、モータ29等を制御して、走行方向の変更、ブレーキ、加速、発進等の運転制御や、警告通知制御、ビームの切り替え制御等を行う。
ADAS ECU24は、車両のADAS(Advanced Driving Assistant System)機能の実行に用いられるECUである。ADAS ECU24は、例えば、フロントカメラECU42からの制御信号に基づいて、ステアリング機構25、ヘッドランプ26、制動装置27、エンジン28、モータ29等を制御して、各種の運転支援の制御を行う。
ステアリング機構25は、運転者によるステアリングホイールの操作、又は、自動運転ECU23若しくはADAS ECU24から供給された制御信号に応じて動作し、車両の走行方向の制御、すなわち、舵角制御を行う。
ヘッドランプ26は、自動運転ECU23又はADAS ECU24から供給された制御信号に応じて動作し、ビームを出力することで車両の前方を照明する。
制動装置27は、運転者によるブレーキ操作、又は、自動運転ECU23若しくはADAS ECU24から供給された制御信号に応じて動作し、車両を停止させたり減速させたりする。
エンジン28は、車両の動力源であり、自動運転ECU23又はADAS ECU24から供給される制御信号に応じて駆動する。
モータ29は、車両の動力源であり、図示せぬ発電機やバッテリから電力の供給を受け、自動運転ECU23又はADAS ECU24からの制御信号に応じて駆動する。
なお、車両の走行時にエンジン28を駆動させるか、又は、モータ29を駆動させるかは、適宜、自動運転ECU23により切り替えられる。
<撮像部41の構成例>
図2は、フロントカメラモジュール21の撮像部41の構成例を示すブロック図である。
撮像部41は、撮像素子121、復元部122、制御部123、記憶部124、及び、通信部125を備える。また、復元部122、制御部123、記憶部124、及び、通信部125により、信号処理や撮像部41の制御等を行う信号処理制御部111が構成される。なお、撮像部41は、撮像レンズを含まない(撮像レンズフリー)。
また、撮像素子121、復元部122、制御部123、記憶部124、及び、通信部125は、バスB2介して相互に接続されており、バスB2を介してデータの送受信等を行う。なお、以下、説明を簡単にするために、撮像部41の各部がバスB2を介してデータの送受信等を行う場合のバスB2の記載を省略する。例えば、通信部125がバスB2を介して制御部123にデータを供給する場合、通信部125が制御部123にデータを供給すると記載する。
撮像素子121は、各画素の検出感度に入射角指向性を持たせた撮像素子であり、入射光の光量に応じた検出信号レベルを示す検出信号からなる画像を復元部122又はバスB2に出力する。各画素の検出感度に入射角指向性を持たせるとは、各画素への入射光の入射角度に応じた受光感度特性を画素毎に異なるものとすることである。ただし、全ての画素の受光感度特性が完全に異なるものである必要はなく、一部の画素の受光感度特性が同一であってもよい。
より具体的には、撮像素子121は、基本的な構造において、一般の、例えば、CMOS(Complementary Metal Oxide Semiconductor)イメージセンサなどの撮像素子からなるものと同様のものであっても良い。ただし、撮像素子121は、画素アレイ部を構成する各画素の構成が一般のものと異なり、例えば、図4乃至図6を参照して後述するように、入射角指向性を持たせる構成を有している。そして、撮像素子121は、画素毎に入射光の入射角度に応じて受光感度が異なり(変化し)、画素単位で入射光の入射角度に対する入射角指向性を有している。
ここで、例えば、全ての被写体は点光源の集合であり、各点光源からあらゆる方向に光が出射されているものとする。例えば、図3の左上の被写体の被写体面102が、点光源PA乃至点光源PCにより構成され、点光源PA乃至点光源PCが、それぞれ光強度a乃至光強度cの複数の光線を周囲に発しているものとする。また、以下、撮像素子121が、位置Pa乃至位置Pcに入射角指向性がそれぞれ異なる画素(以下、画素Pa乃至画素Pcと称する)を備えるものとする。
この場合、図3の左上に示されるように、同一の点光源より発せられた同一の光強度の光線が、撮像素子121の各画素に入射される。例えば、点光源PAから発せられた光強度aの光線が、撮像素子121の画素Pa乃至画素Pcにそれぞれ入射される。一方、同一の点光源より発せられた光線は、画素毎にそれぞれ異なる入射角度で入射される。例えば、点光源PAからの光線は、画素Pa乃至画素Pcにそれぞれ異なる入射角度で入射される。
これに対して、画素Pa乃至画素Pcの入射角指向性がそれぞれ異なるため、同一の点光源より発せられた同一の光強度の光線が、各画素で異なる感度で検出される。その結果、同一の光強度の光線が画素毎に異なる検出信号レベルで検出される。例えば、点光源PAからの光強度aの光線に対する検出信号レベルが、画素Pa乃至画素Pcでそれぞれ異なる値になる。
そして、各点光源からの光線に対する各画素の受光感度レベルは、その光線の光強度に、その光線の入射角度に対する受光感度(すなわち、入射角指向性)を示す係数を乗じることにより求められる。例えば、点光源PAからの光線に対する画素Paの検出信号レベルは、点光源PAの光線の光強度aに、当該光線の画素Paへの入射角度に対する画素Paの入射角指向性を示す係数を乗じることにより求められる。
従って、画素Pc,Pb,Paの検出信号レベルDA,DB,DCは、それぞれ以下の式(1)乃至式(3)で表される。
DA=α1×a+β1×b+γ1×c ・・・(1)
DB=α2×a+β2×b+γ2×c ・・・(2)
DC=α3×a+β3×b+γ3×c ・・・(3)
ここで、係数α1は、点光源PAから画素Pcへの光線の入射角度に対する画素Pcの入射角指向性を示す係数であり、当該入射角度に応じて設定される。また、α1×aは、点光源PAからの光線に対する画素Pcの検出信号レベルを示している。
係数β1は、点光源PBから画素Pcへの光線の入射角度に対する画素Pcの入射角指向性を示す係数であり、当該入射角度に応じて設定される。また、β1×bは、点光源PBからの光線に対する画素Pcの検出信号レベルを示している。
係数γ1は、点光源PCから画素Pcへの光線の入射角度に対する画素Pcの入射角指向性を示す係数であり、当該入射角度に応じて設定される。また、γ1×cは、点光源PCからの光線に対する画素Pcの検出信号レベルを示している。
このように、画素Paの検出信号レベルDAは、画素Pcにおける点光源PA,PB,PCからの光線のそれぞれの光強度a,b,cと、それぞれの入射角度に応じた入射角指向性を示す係数α1,β1,γ1との積和により求められる。
同様に、画素Pbの検出信号レベルDBは、式(2)に示されるように、画素Pbにおける点光源PA,PB,PCからの光線のそれぞれの光強度a,b,cと、それぞれの入射角度に応じた入射角指向性を示す係数α2,β2,γ2との積和により求められる。また、画素Pcの検出信号レベルDCは、式(3)に示されるように、画素Paにおける点光源PA,PB,PCからの光線のそれぞれの光強度a,b,cと、それぞれの入射角度に応じた入射角指向性を示す係数α2,β2,γ2との積和により求められる。
ただし、画素Pa,Pb,Pcの検出信号レベルDA、DB、DCは、式(1)乃至式(3)に示されるように、点光源PA,PB,PCのそれぞれより発せられた光線の光強度a,b,cが入り交じっている。従って、図3の右上に示されるように、撮像素子121における検出信号レベルは、被写体面102上の各点光源の光強度とは異なる。従って、撮像素子121により得られる画像は、被写体面102の像が結像されたものとは異なるものとなる。
一方、式(1)乃至式(3)からなる連立方程式を作成し、作成した連立方程式を解くことにより、各点光源PA乃至点光源PCの光線の光強度a乃至光強度cが求められる。そして、求めた光強度a乃至光強度cに応じた画素値を有する画素を点光源PA乃至点光源PCの配置(相対位置)に合わせて並べることにより、図3の右下に示されるように、被写体面102の像が結像された復元画像が復元される。
このようにして、撮像レンズ及びピンホールを必要とせず、各画素において入射角指向性を有する撮像素子121を実現することが可能となる。
以下、連立方程式を構成する式毎に係数をまとめたもの(例えば、係数α1、β1、γ1)を係数セットと称する。以下、連立方程式に含まれる複数の式に対応する複数の係数セットをまとめたもの(例えば、係数セットα1、β1、γ1、係数セットα2、β2、γ2、係数セットα3、β3、γ3)を係数セット群と称する。
ここで、被写体面102から撮像素子121の受光面までの被写体距離が異なると、被写体面102の各点光源からの光線の撮像素子121への入射角が異なるため、被写体距離毎に異なる係数セット群が必要となる。
従って、撮像部41においては、撮像素子121からの被写体面までの距離(被写体距離)毎の係数セット群を予め用意しておき、被写体距離毎に係数セット群を切り替えて連立方程式を作成し、作成した連立方程式を解くことで、1個の検出画像に基づいて、様々な被写体距離の被写体面の復元画像を得ることが可能となる。例えば、検出画像を1回撮像し、記録した後、記録した検出画像を用いて、被写体面までの距離に応じて係数セット群を切り替えて、復元画像を復元することにより、任意の被写体距離の被写体面の復元画像を生成することが可能である。
また、同じ被写体距離の被写体面102であっても、設定する点光源の数や配置が異なると、各点光源からの光線の撮像素子121への入射角が異なる。従って、同じ被写体距離の被写体面102に対して、複数の係数セット群が必要となる場合がある。さらに、各画素121aの入射角指向性は、上述した連立方程式の独立性を確保できるように設定する必要がある。
また、撮像素子121が出力する画像は、図3の右上に示されるように被写体の像が結像されていない検出信号により構成される画像となるので、目視により被写体を認識することができない。すなわち、撮像素子121が出力する検出信号からなる検出画像は、画素信号の集合ではあるが、ユーザが目視しても被写体を認識できない(被写体を視認不可能な)画像である。
そこで、以下、図3の右上に示されるように被写体の像が結像されていない検出信号より構成される画像、すなわち、撮像素子121により撮像される画像を、検出画像と称する。
なお、入射角指向性は必ずしも画素単位で全て異なる必要はなく、入射角指向性が同じ画素を含んでいてもよい。
復元部122は、例えば、図3における撮像素子121から被写体面102(復元画像に対応する被写体面)までの距離に相当する被写体距離に対応し、上述した係数α1乃至α3,β1乃至β3,γ1乃至γ3に相当する係数セット群を記憶部124から取得する。また、復元部122は、撮像素子121から出力される検出画像の各画素の検出信号レベルと、取得した係数セット群とを用いて、上述した式(1)乃至式(3)で示されるような連立方程式を作成する。そして、復元部122は、作成した連立方程式を解くことにより、図3の右下に示される被写体の像が結像された画像を構成する各画素の画素値を求める。これにより、ユーザが目視して被写体を認識できる(被写体を視認可能な)画像が検出画像から復元される。
以下、この検出画像から復元される画像を復元画像と称する。ただし、撮像素子121が紫外線などの視認可能な波長帯域以外の光のみに感度を有する場合、復元画像も通常の画像のように被写体を識別できるような画像とはならないが、この場合も復元画像と称する。
また、以下、被写体の像が結像された状態の画像である復元画像であって、デモザイク処理等の色分離や同時化処理前の画像をRAW画像と称し、撮像素子121により撮像された検出画像については、色フィルタの配列に従った画像ではあるが、RAW画像ではないものとして区別する。
なお、撮像素子121の画素数と、復元画像を構成する画素の画素数とは、必ずしも同一である必要はない。
また、復元部122は、必要に応じて、復元画像に対してデモザイク処理、γ補正、ホワイトバランス調整、所定の圧縮形式への変換処理等を行う。そして、復元部122は、復元画像をバスB2に出力する。
制御部123は、例えば、各種のプロセッサを備え、撮像部41の各部を制御したり、各種の処理を実行したりする。
記憶部124は、ROM(Read Only Memory)、RAM(Random Access Memory)、フラッシュメモリ等の記憶装置を1つ以上備え、例えば、撮像部41の処理に用いられるプログラムやデータ等を記憶する。例えば、記憶部124は、様々な被写体距離に対応付けて、上述した係数α1乃至α3,β1乃至β3,γ1乃至γ3に相当する係数セット群を記憶している。より具体的には、例えば、記憶部124は、各被写体距離における被写体面102毎に、被写体面102上に設定した各点光源に対する撮像素子121の各画素121aに対する係数を含む係数セット群を記憶している。
通信部125は、所定の通信方式により、フロントカメラECU42と通信を行う。
<撮像素子121の第1の構成例>
次に、図4及び図5を参照して、図2の撮像部41の撮像素子121の第1の構成例について説明する。
図4は、撮像素子121の画素アレイ部の一部の正面図を示している。なお、図4においては、画素アレイ部の画素数が縦6画素×横6画素である場合の例を示しているが、画素アレイ部の画素数は、これに限るものではない。また、図4の画素アレイ部の構成例は、撮像素子121の第1の構成例を説明するためのものであり、実際の画素アレイ部の構成例については後述する。
図4の撮像素子121では、画素121a毎に、そのフォトダイオードの受光領域(受光面)の一部を覆うように変調素子の1つである遮光膜121bが設けられており、各画素121aに入射する入射光が、入射角度に応じて光学的に変調される。そして、例えば、画素121a毎に異なる範囲に遮光膜121bを設けることにより、画素121a毎に入射光の入射角度に対する受光感度が異なるものとなり、各画素121aが異なる入射角指向性を有するようになる。
例えば、画素121a−1と画素121a−2とでは、設けられている遮光膜121b−1と遮光膜121b−2とによりフォトダイオードの受光領域を遮光する範囲が異なる(遮光する領域(位置)、及び、遮光する面積の少なくともいずれかが異なる)。すなわち、画素121a−1においては、フォトダイオードの受光領域の左側の一部を所定の幅だけ遮光するように遮光膜121b−1が設けられている。一方、画素121a−2においては、受光領域の右側の一部を所定の幅だけ遮光するように遮光膜121b−2が設けられている。なお、遮光膜121b−1がフォトダイオードの受光領域を遮光する幅と、遮光膜121b−2がフォトダイオードの受光領域を遮光する幅とは、異なっていてもよいし、同じであってもよい。その他の画素121aにおいても、同様に、遮光膜121bが、画素毎に受光領域の異なる範囲を遮光するように、画素アレイ部内でランダムに配置されている。
図5の上段は、撮像素子121の第1の構成例における側面断面図であり、図5の中段は、撮像素子121の第1の構成例における上面図である。また、図5の上段の側面断面図は、図5の中段におけるAB断面となる。さらに、図5の下段は、撮像素子121の回路構成例である。
図5の上段の撮像素子121においては、図中の上方から下方に向けて入射光が入射する。隣接する画素121a−1,121a−2は、それぞれ図中の最下層に配線層Z12が設けられており、その上に光電変換層Z11が設けられている、いわゆる、裏面照射型である。
なお、以下、画素121a−1,121a−2を区別する必要がない場合、符号の末尾の数字の記載を省略し、単に、画素121aと称する。以下、明細書内において、他の構成についても、同様に符号の末尾の数字やアルファベットを省略する場合がある。
また、図5は、撮像素子121の画素アレイ部を構成する2画素分の側面図および上面図のみを示しており、いうまでもなく、これ以上の数の画素121aが配置されているが図示が省略されている。
さらに、画素121a−1,121a−2は、それぞれ光電変換層Z11に光電変換素子としてフォトダイオード121e−1,121e−2を備えている。また、フォトダイオード121e−1,121e−2の上には、それぞれ上からオンチップレンズ121c−1,121c−2、およびカラーフィルタ121d−1,121d−2が積層されている。
オンチップレンズ121c−1,121c−2は、入射光をフォトダイオード121e−1,121e−2上に集光させる。
カラーフィルタ121d−1,121d−2は、例えば、赤色、緑色、青色、赤外および白色等の特定の波長の光を透過させる光学フィルタである。なお、白色の場合、カラーフィルタ121d−1,121d−2は、透明のフィルタでもよいし、無くてもよい。
画素121a−1,121a−2の光電変換層Z11における、それぞれ画素間の境界には、遮光膜121g−1乃至121g−3が形成されており、例えば、図5に示されるように、入射光Lが隣接する画素に入射し、クロストークが発生するのを抑制する。
また、図5の上段及び中段に示されるように、遮光膜121b−1,121b−2が、上面から見て受光面Sの一部を遮光している。画素121a−1,121a−2におけるフォトダイオード121e−1,121e−2の受光面Sにおいては、遮光膜121b−1,121b−2により、それぞれ異なる範囲が遮光されており、これにより異なる入射角指向性が画素毎に独立に設定される。ただし、遮光される範囲は、撮像素子121の全画素121aで異なっている必要はなく、一部で同一の範囲が遮光される画素121aが存在していてもよい。
なお、図5の上段に示されるように、遮光膜121b−1と遮光膜121g−1とは互いに接続されており、側面から見てL字型に構成されている。同様に、遮光膜121b−2と遮光膜121g−2とは互いに接続されており、側面から見てL字型に構成されている。また、遮光膜121b−1、遮光膜121b−2、及び、遮光膜121g−1乃至121g−3は、金属により構成されており、例えば、タングステン(W)、アルミニウム(Al)、またはAlと銅(Cu)との合金により構成される。また、遮光膜121b−1、遮光膜121b−2、及び、遮光膜121g−1乃至121g−3は、半導体プロセスにおける配線が形成されるプロセスと同一のプロセスで、配線と同一の金属により同時に形成されるようにしてもよい。なお、遮光膜121b−1、遮光膜121b−2、及び、遮光膜121g−1乃至121g−3の膜厚は、位置に応じて同一の厚さにしなくてもよい。
また、図5の下段に示されるように、画素121aは、フォトダイオード161(フォトダイオード121eに対応する)、転送トランジスタ162、FD(Floating Diffusion:フローティングディフュージョン)部163、選択トランジスタ164、増幅トランジスタ165、およびリセットトランジスタ166を備え、垂直信号線167を介して電流源168に接続されている。
フォトダイオード161は、アノード電極が接地され、カソード電極が、転送トランジスタ162を介して増幅トランジスタ165のゲート電極に接続されている。
転送トランジスタ162は、転送信号TGに従って駆動する。例えば、転送トランジスタ162のゲート電極に供給される転送信号TGがハイレベルになると、転送トランジスタ162はオンとなる。これにより、フォトダイオード161に蓄積されている電荷が転送トランジスタ162を介してFD部163に転送される。
FD部163は、転送トランジスタ162と増幅トランジスタ165との間に設けられる電荷容量C1を有する浮遊拡散領域であり、転送トランジスタ162を介してフォトダイオード161から転送される電荷を一時的に蓄積する。FD部163は、電荷を電圧に変換する電荷検出部であって、FD部163に蓄積されている電荷が増幅トランジスタ165において電圧に変換される。
選択トランジスタ164は、選択信号SELに従って駆動し、ゲート電極に供給される選択信号SELがハイレベルになるとオンとなって、増幅トランジスタ165と垂直信号線167とを接続する。
増幅トランジスタ165は、フォトダイオード161での光電変換によって得られる信号を読み出す読出し回路であるソースフォロワの入力部となり、FD部163に蓄積されている電荷に応じたレベルの検出信号(画素信号)を垂直信号線167に出力する。すなわち、増幅トランジスタ165は、ドレイン端子が電源VDDに接続され、ソース端子が選択トランジスタ164を介して垂直信号線167に接続されることで、垂直信号線167の一端に接続される電流源168とソースフォロワを構成する。この検出信号の値(出力画素値)は、被写体からの入射光の入射角に応じて変調されており、入射角により特性(指向性)が異なる(入射角指向性を有する)。
リセットトランジスタ166は、リセット信号RSTに従って駆動する。例えば、リセットトランジスタ166は、ゲート電極に供給されるリセット信号RSTがハイレベルになるとオンとなり、FD部163に蓄積されている電荷を電源VDDに排出して、FD部163をリセットする。
なお、各画素121aの遮光膜121bの形状は、図4の例に限定されるものではなく、任意の形状に設定することが可能である。例えば、図4の水平方向に延びる形状、垂直方向及び水平方向に延びるL字型の形状、矩形の開口部が設けられた形状等にすることが可能である。
<撮像素子121の第2の構成例>
図6は、撮像素子121の第2の構成例を示す図である。図6の上段には、第2の構成例である撮像素子121の画素121aの側面断面図が示されており、図6の中段には、撮像素子121の上面図が示されている。また、図6の上段の側面断面図は、図6の中段におけるAB断面となる。さらに、図6の下段は、撮像素子121の回路構成例である。
図6の撮像素子121は、1つの画素121aに4つのフォトダイオード121f−1乃至121f−4が形成され、遮光膜121gがフォトダイオード121f−1乃至121f−4同士を分離する領域に形成されている点で、図5の撮像素子121と異なる構成となっている。即ち、図6の撮像素子121では、遮光膜121gは、上面から見て「+」形状に形成されている。なお、それらの共通の構成については図5と同一の符号を付しており、詳細な説明は省略する。
図6の撮像素子121では、遮光膜121gによりフォトダイオード121f−1乃至121f−4が分離されることによって、フォトダイオード121f−1乃至121f−4間の電気的および光学的なクロストークの発生が防止される。すなわち、図6の遮光膜121gは、図5の撮像素子121の遮光膜121gと同様にクロストークを防止するためのものであって、入射角指向性を与えるためのものではない。
また、図6の撮像素子121では、1個のFD部163が4個のフォトダイオード121f−1乃至121f−4で共有される。図6の下段は、1個のFD部163を4個のフォトダイオード121f−1乃至121f−4で共有するようにした回路構成例を示している。なお、図6の下段において、図5の下段と同一の構成については、その説明を省略する。
図6の下段において、図5の下段の回路構成と異なる点は、フォトダイオード161(図5の上段におけるフォトダイオード121eに対応する)および転送トランジスタ162に代えて、フォトダイオード161−1乃至161−4(図6の上段におけるフォトダイオード121f−1乃至121f−4に対応する)および転送トランジスタ162−1乃至162−4を設け、FD部163を共有する構成としている点である。
このような構成により、フォトダイオード121f−1乃至121f−4に蓄積された電荷は、フォトダイオード121f−1乃至121f−4と増幅トランジスタ165のゲート電極との接続部に設けられる所定の容量を有する共通のFD部163に転送される。そして、FD部163に保持されている電荷のレベルに応じた信号が検出信号(画素信号)として読み出される。
このため、フォトダイオード121f−1乃至121f−4で蓄積された電荷を様々な組み合わせで選択的に画素121aの出力、すなわち検出信号に寄与させることができる。すなわち、フォトダイオード121f−1乃至121f−4毎に独立して電荷を読み出すことができる構成とし、出力に寄与するフォトダイオード121f−1乃至121f−4(フォトダイオード121f−1乃至121f−4が出力に寄与する度合い)を互いに異ならせることで、異なる入射角指向性を得ることができる。
例えば、フォトダイオード121f−1とフォトダイオード121f−3の電荷をFD部163に転送し、それぞれを読み出して得られる信号を加算することにより、左右方向の入射角指向性を得ることができる。同様に、フォトダイオード121f−1とフォトダイオード121f−2の電荷をFD部163に転送し、それぞれを読み出して得られる信号を加算することにより、上下方向の入射角指向性を得ることができる。
また、4つのフォトダイオード121f−1乃至121f−4から独立して選択的に読み出される電荷に基づいて得られる信号は、検出画像を構成する1画素分に相当する検出信号となる。
なお、各フォトダイオード121f(の電荷)の検出信号への寄与は、例えば、各フォトダイオード121fの電荷(検出値)をFD部163に転送するか否かだけでなく、電子シャッタ機能を用いてFD部163への転送前にフォトダイオード121fに蓄積された電荷をリセットすること等でも実現することができる。例えば、FD部163への転送直前にフォトダイオード121fの電荷をリセットすれば、そのフォトダイオード121fは、検出信号に全く寄与しない状態となる。一方、フォトダイオード121fの電荷をリセットとFD部163への電荷の転送との間に時間を持たせることにより、そのフォトダイオード121fは、部分的に検出信号に寄与する状態となる。
以上のように、図6の撮像素子121の場合、4つのフォトダイオード121f−1乃至121f−4のうち、検出信号に用いるものの組み合わせを変更することで、画素毎に異なる入射角指向性を持たせることができる。また、図6の撮像素子121の各画素121aから出力される検出信号は、被写体からの入射光の入射角に応じて変調された値(出力画素値)となり、入射角により特性(指向性)が異なる(入射角指向性を有する)。
なお、図6の撮像素子121では、入射光が光学的に変調されずに全てのフォトダイオード121f−1乃至121f−4に入射されるため、検出信号は、光学的な変調により得られる信号ではない。また、以降において、検出信号に寄与しないフォトダイオード121fのことを、画素又は出力に寄与しないフォトダイオード121fとも称する。
また、図6には、画素(画素121a)の受光面を4等分して、各領域にそれぞれ受光面が同じ大きさのフォトダイオード121fを配置した例、すなわち、フォトダイオードを4等分した例を示しているが、フォトダイオードの分割数や分割位置は任意に設定することが可能である。
例えば、フォトダイオードを必ずしも等分する必要はなく、画素毎にフォトダイオードの分割位置を異ならせてもよい。これにより、例えば、複数の画素間で同じ位置のフォトダイオード121fを出力に寄与させるようにしたとしても、画素間で入射角指向性が異なるようになる。また、例えば、画素間で分割数を異なるものとすることにより、より自由に入射角指向性を設定することが可能になる。さらに、例えば、画素間で分割数及び分割位置の両方を異ならせるようにしてもよい。
また、図5の撮像素子121及び図6の撮像素子121のいずれも、各画素が入射角指向性を独立に設定可能な構成を有している。なお、図5の撮像素子121では、各画素の入射角指向性が、遮光膜121bにより製造時に設定される。一方、図6の撮像素子121では、各画素のフォトダイオードの分割数や分割位置は製造時に設定されるが、各画素の入射角指向性(出力に寄与させるフォトダイオードの組合せ)は使用時(例えば、撮像時)に設定することができる。なお、図5の撮像素子121及び図6の撮像素子121のいずれにおいても、必ずしも全ての画素が、入射角指向性を持たせる構成を備える必要はない。
なお、以下、図5の撮像素子121において、各画素121aの遮光膜121bの形状を遮光パターンと称する。また、以下、図6の撮像素子121において、各画素121a内の出力に寄与しないフォトダイオード121fの領域の形状を遮光パターンと称する。
<撮像素子121の基本特性等について>
次に、図7乃至図14を参照して、撮像素子121の基本特性等について説明する。
<入射角指向性を生じさせる原理について>
撮像素子121の各画素の入射角指向性は、例えば、図7に示されるような原理により発生する。なお、図7の左上部および右上部は、図5の撮像素子121における入射角指向性の発生原理を説明する図であり、図7の左下部および右下部は、図6の撮像素子121における入射角指向性の発生原理を説明する図である。
図7の左上部および右上部の画素は、いずれも1個のフォトダイオード121eを備える。これに対して、図7の左下部および右下部の画素は、いずれも2個のフォトダイオード121fを備える。なお、ここでは、1画素が2個のフォトダイオード121fを備える例を示しているが、これは説明の便宜上であり、1画素が備えるフォトダイオード121fの数は、その他の個数であってもよい。
図7の左上部の画素においては、フォトダイオード121e−11の受光面の右半分を遮光するように遮光膜121b−11が形成されている。また、図7の右上部の画素においては、フォトダイオード121e−12の受光面の左半分を遮光するように遮光膜121b−12が形成されている。なお、図中の一点鎖線は、フォトダイオード121eの受光面の水平方向の中心を通り、受光面に対して垂直な補助線である。
例えば、図7の左上部の画素においては、図中の一点鎖線に対して入射角θ1を成す右上方向からの入射光は、フォトダイオード121e−11の遮光膜121b−11により遮光されていない左半分の範囲により受光され易い。これに対して、図中の一点鎖線に対して入射角θ2を成す左上方向からの入射光は、フォトダイオード121e−11の遮光膜121b−11により遮光されていない左半分の範囲により受光されにくい。したがって、図7の左上部の画素は、図中の右上方からの入射光に対して受光感度が高く、左上方からの入射光に対して受光感度が低い入射角指向性を備えることになる。
一方、例えば、図7の右上部の画素においては、入射角θ1を成す右上方向からの入射光は、フォトダイオード121e−12の遮光膜121b−12により遮光されている左半分の範囲により受光されにくい。これに対して、入射角θ2を成す左上方向からの入射光は、フォトダイオード121e−12の遮光膜121b−12により遮光されていない右半分の範囲により受光され易い。したがって、図7の右上部の画素は、図中の右上方からの入射光に対して受光感度が低く、左上方からの入射光に対して受光感度が高い入射角指向性を備えることになる。
また、図7の左下部の画素は、図中の左右にフォトダイオード121f−11,121f−12が設けられており、いずれか一方の検出信号を読み出すようにすることで、遮光膜121bを設けることなく入射角指向性を有する構成とされている。
すなわち、図7の左下部の画素では、図中の左側に設けられたフォトダイオード121f−11の信号のみを読み出すようにすることで、図7の左上部の画素と同様の入射角指向性を得ることができる。すなわち、図中の一点鎖線に対して入射角θ1を成す右上方向からの入射光は、フォトダイオード121f−11に入射し、受光量に対応する信号がフォトダイオード121f−11から読み出されるため、この画素から出力される検出信号に寄与する。これに対して、図中の一点鎖線に対して入射角θ2を成す左上方向からの入射光は、フォトダイオード121f−12に入射するが、フォトダイオード121f−12から読み出されないため、この画素から出力される検出信号に寄与しない。
同様に、図7の右下部の画素のように、2個のフォトダイオード121f−13,121f−14を備える場合、図中の右側に設けられたフォトダイオード121f−14の信号のみを読み出すようにすることで、図7の右上部の画素と同様の入射角指向性を得ることができる。すなわち、入射角θ1を成す右上方向からの入射光は、フォトダイオード121f−13に入射するが、フォトダイオード121f−13から信号が読み出されないため、この画素から出力される検出信号に寄与しない。これに対して、入射角θ2を成す左上方向からの入射光は、フォトダイオード121f−14に入射し、受光量に対応する信号がフォトダイオード121f−14から読み出されるため、この画素から出力される検出信号に寄与する。
なお、図7の上部の画素においては、画素(フォトダイオード121eの受光面)の水平方向の中心位置で遮光される範囲と遮光されない範囲が分かれる例を示したが、その他の位置で分かれるようにしてもよい。また、図7の下部の画素においては、画素の水平方向の中心位置で、2つのフォトダイオード121fが分かれる例を示したが、その他の位置で分かれるようにしてもよい。このように、遮光範囲又はフォトダイオード121fが分かれる位置を変えることにより、異なる入射角指向性を生じさせることができる。
<オンチップレンズを含む構成における入射角指向性について>
次に、図8を参照して、オンチップレンズ121cを含めた構成における入射角指向性について説明する。
図8の上段のグラフは、図8の中段及び下段の画素の入射角指向性を示している。なお、横軸が入射角度θであり、縦軸が検出信号レベルを示している。なお、入射角度θは、入射光の方向が、図8の中段左側の一点鎖線と一致する場合を0度とし、図8の中段左側の入射角度θ21側を正の方向とし、図8の中段右側の入射角度θ22側を負の方向とする。したがって、オンチップレンズ121cに対して、右上方より入射する入射光については、左上方より入射する入射光よりも入射角度が大きくなる。すなわち入射角度θは、入射光の進行方向が左に傾くほど大きくなり(正の方向に大きくなり)、右に傾くほど小さくなる(負の方向に大きくなる)。
また、図8の中段左部の画素は、図7の上段左部の画素に、入射光を集光するオンチップレンズ121c−11、及び、所定の波長の光を透過させるカラーフィルタ121d−11を追加したものである。すなわち、この画素では、オンチップレンズ121c−11、カラーフィルタ121d−11、遮光膜121b−11、フォトダイオード121e−11が、図中上方の光の入射方向から順に積層されている。
同様に、図8の中段右部の画素、図8の下段左部の画素、及び、図8の下段右部の画素は、それぞれ、図7の上段右部の画素、図7の下段左部の画素、及び、図7の下段右部の画素に、オンチップレンズ121c−11及びカラーフィルタ121d−11、又は、オンチップレンズ121c−12及びカラーフィルタ121d−12を追加したものである。
図8の中段左部の画素では、図8の上段の実線の波形で示されるように、入射光の入射角度θに応じてフォトダイオード121e−11の検出信号レベル(受光感度)が変化する。すなわち、図中の一点鎖線に対して入射光のなす角である入射角度θが大きいほど(入射角度θが正の方向に大きいほど(図中の右方向に傾くほど))、遮光膜121b−11が設けられていない範囲に光が集光されることで、フォトダイオード121e−11の検出信号レベルが大きくなる。逆に、入射光の入射角度θが小さいほど(入射角度θが負の方向に大きいほど(図中の左方向に傾くほど))、遮光膜121b−11が設けられている範囲に光が集光されることで、フォトダイオード121e−11の検出信号レベルが小さくなる。
また、図8の中段右部の画素では、図8の上段の点線の波形で示されるように、入射光の入射角度θに応じてフォトダイオード121e−12の検出信号レベル(受光感度)が変化する。すなわち、入射光の入射角度θが大きいほど(入射角度θが正の方向に大きいほど)、遮光膜121b−12が設けられている範囲に光が集光されることで、フォトダイオード121e−12の検出信号レベルが小さくなる。逆に、入射光の入射角度θが小さいほど(入射角度θが負の方向に大きいほど)、遮光膜121b−12が設けられていない範囲に光が入射することで、フォトダイオード121e−12の検出信号レベルが大きくなる。
この図8の上段に示される実線および点線の波形は、遮光膜121bの範囲に応じて変化させることができる。従って、遮光膜121bの範囲により、画素単位で相互に異なる入射角指向性を持たせることが可能となる。
上述したように、入射角指向性とは、入射角度θに応じた各画素の受光感度の特性であるが、これは、図8の中段の画素では、入射角度θに応じた遮光値の特性であるとも言える。すなわち、遮光膜121bは、特定の方向の入射光は高いレベルで遮光するが、それ以外の方向からの入射光は十分に遮光できない。この遮光できるレベルの変化が、図8の上段に示されるような入射角度θに応じた異なる検出信号レベルを生じさせる。したがって、各画素において最も高いレベルで遮光可能な方向を各画素の遮光方向と定義すると、画素単位で相互に異なる入射角指向性を持つということは、換言すれば、画素単位で相互に異なる遮光方向を持つということになる。
また、図8の下段左部の画素では、図7の下段左部の画素と同様に、図中左部のフォトダイオード121f−11のみの信号を用いるようにすることで、図8の中段左部の画素と同様の入射角指向性を得ることができる。すなわち、入射光の入射角度θが大きくなると(入射角度θが正の方向に大きくなると)、信号が読み出されるフォトダイオード121f−11の範囲に光が集光されることで、検出信号レベルが大きくなる。逆に、入射光の入射角度θが小さいほど(入射角度θが負の方向に大きいほど)、信号が読み出されないフォトダイオード121f−12の範囲に光が集光されることで、検出信号レベルが小さくなる。
また、同様に、図8の下段右部の画素では、図7の下段右部の画素と同様に、図中右部のフォトダイオード121f−14のみの信号を用いるようにすることで、図8の中段右部の画素と同様の入射角指向性を得ることができる。すなわち、入射光の入射角度θが大きくなると(入射角度θが正の方向に大きくなると)、出力(検出信号)に寄与しないフォトダイオード121f−13の範囲に光が集光されることで、画素単位の検出信号のレベルが小さくなる。逆に、入射光の入射角度θが小さいほど(入射角度θが負の方向に大きいほど)、出力(検出信号)に寄与するフォトダイオード121f−14の範囲に光が集光されることで、画素単位の検出信号のレベルが大きくなる。
ここで、画素121aの入射角指向性の重心を以下のように定義する。
入射角指向性の重心は、画素121aの受光面に入射する入射光の強度の分布の重心である。画素121aの受光面は、図8の中段の画素121aでは、フォトダイオード121eの受光面となり、図8の下段の画素121aでは、フォトダイオード121fの受光面となる。
例えば、図8の上段のグラフの縦軸の検出信号レベルをa(θ)とし、次式(4)により算出される入射角θgの光線を重心光線とする。
θg=Σ(a(θ)×θ)/Σa(θ) ・・・(4)
そして、重心光線が画素121aの受光面と交わる点が、画素121aの入射角指向性の重心となる。
また、図8の下段の画素のように、画素内に複数のフォトダイオードを設け、出力に寄与するフォトダイオードを変更可能な画素において、各フォトダイオードに入射光の入射角に対する指向性を持たせ、画素単位での入射角指向性を生じさせるために、各画素にオンチップレンズ121cが必須構成となる。
なお、以下の説明では、図5の画素121aのように、遮光膜121bを用いて入射角指向性を実現する画素121aを用いる場合の例を中心に説明する。ただし、遮光膜121bが必須となる場合を除いて、基本的にフォトダイオードを分割して入射角指向性を実現する画素121aを用いることも可能である。
<遮光範囲と画角の関係について>
次に、図9及び図14を参照して、画素121aの遮光範囲と画角の関係について説明する。
例えば、図9の上段に示されるように、4辺のそれぞれの端部から幅d1だけ遮光膜121bにより遮光されている画素121aと、図9の下段に示されるように、4辺のそれぞれの端部から幅d2(>d1)だけ遮光膜121bにより遮光されている画素121a’とを考える。
図10は、撮像素子121の中心位置C1への被写体面102からの入射光の入射角度の例を示している。なお、図10においては、水平方向の入射光の入射角度の例を示しているが、垂直方向についてもほぼ同様となる。また、図10の右部には、図9における画素121a,121a’が示されている。
例えば、図9の画素121aが撮像素子121の中心位置C1に配置されている場合、被写体面102から画素121aへの入射光の入射角の範囲は、図10の左部に示されるように角度A1となる。従って、画素121aは、被写体面102の水平方向の幅W1分の入射光を受光することができる。
これに対して、図9の画素121a’が撮像素子121の中心位置C1に配置されている場合、画素121a’は画素121aよりも遮光される範囲が広いため、被写体面102から画素121a’への入射光の入射角の範囲は、図10の左部に示されるように角度A2(<A1)となる。従って、画素121a’は、被写体面102の水平方向の幅W2(<W1)分の入射光を受光することができる。
つまり、遮光範囲が狭い画素121aは、被写体面102上の広い範囲を撮像するのに適した広画角画素であるのに対して、遮光範囲が広い画素121a’は、被写体面102上の狭い範囲を撮像するのに適した狭画角画素である。なお、ここでいう広画角画素および狭画角画素は、図9の画素121a,121a’の両者を比較する表現であって、その他の画角の画素を比較する上ではこの限りではない。
従って、例えば、画素121aは、図9の画像I1を復元するために用いられる。画像I1は、図11の上段の被写体となる人物H101の全体を含み、被写体幅W1に対応する画角SQ1の画像である。これに対して、例えば、画素121a’は、図9の画像I2を復元するために用いられる。画像I2は、図11の上段の人物H101の顔の周辺がズームアップされた被写体幅W2に対応する画角SQ2の画像である。
また、例えば、図11の下段に示されるように、撮像素子121の点線で囲まれた範囲ZAに、図9の画素121aを、一点鎖線で囲まれた範囲ZBに画素121a’を、それぞれ所定画素数ずつ集めて配置することが考えられる。そして、例えば、被写体幅W1に対応する画角SQ1の画像を復元するときには、範囲ZA内の各画素121aの検出信号を用いるようにすることで、適切に画角SQ1の画像を復元することができる。一方、被写体幅W2に対応する画角SQ2の画像を復元するときには、範囲ZB内の各画素121a’の検出信号を用いるようにすることで、適切に画角SQ2の画像を復元することができる。
なお、画角SQ2は、画角SQ1よりも狭いので、画角SQ2と画角SQ1の画像を同一の画素数で復元する場合、画角SQ1の画像よりも、画角SQ2の画像を復元する方が、より高画質な復元画像を得ることができる。
つまり、同一画素数を用いて復元画像を得ることを考えた場合、より画角の狭い画像を復元する方が、より高画質な復元画像を得ることができる。
例えば、図12の右部は、図11の撮像素子121の範囲ZA内の構成例を示している。図12の左部は、範囲ZA内の画素121aの構成例を示している。
図12において、黒色で示された範囲が遮光膜121bであり、各画素121aの遮光範囲は、例えば、図12の左部に示される規則に従って決定される。
図12の左部の主遮光部Z101(図12の左部の黒色部)は、各画素121aにおいて共通に遮光される範囲である。具体的には、主遮光部Z101は、画素121aの左辺及び右辺から画素121a内に向かって、それぞれ幅dx1の範囲、並びに、画素121aの上辺及び下辺から画素121a内に向かって、それぞれ高さdy1の範囲である。そして、各画素121aにおいて、主遮光部Z101の内側の範囲Z102内に、遮光膜121bにより遮光されない矩形の開口部Z111が設けられる。従って、各画素121aにおいて、開口部Z111以外の範囲が、遮光膜121bにより遮光される。
ここで、各画素121aの開口部Z111は規則的に配置されている。具体的には、各画素121a内における開口部Z111の水平方向の位置は、同じ垂直方向の列の画素121a内において同一になる。また、各画素121a内における開口部Z111の垂直方向の位置は、同じ水平方向の行の画素121a内において同一になる。
一方、各画素121a内における開口部Z111の水平方向の位置は、画素121aの水平方向の位置に応じて所定の間隔でずれている。すなわち、画素121aの位置が右方向に進むに従って、開口部Z111の左辺が、画素121aの左辺からそれぞれ幅dx1、dx2、・・・、dxnだけ右方向にずれた位置に移動する。幅dx1と幅dx2の間隔、幅dx2と幅dx3の間隔、・・・、幅dxn−1と幅dxnの間隔は、それぞれ範囲Z102の水平方向の幅から開口部Z111の幅を引いた長さを水平方向の画素数n−1で割った値となる。
また、各画素121a内における開口部Z111の垂直方向の位置は、画素121aの垂直方向の位置に応じて所定の間隔でずれている。すなわち、画素121aの位置が下方向に進むに従って、開口部Z111の上辺が、画素121aの上辺からそれぞれ高さdy1、dy2、・・・、dynだけ下方向にずれた位置に移動する。高さdy1と高さdy2の間隔、高さdy2と高さdy3の間隔、・・・、高さdyn−1と高さdynの間隔は、それぞれ範囲Z102の垂直方向の高さから開口部Z111の高さを引いた長さを垂直方向の画素数m−1で割った値となる。
図13の右部は、図11の撮像素子121の範囲ZB内の構成例を示している。図13の左部は、範囲ZB内の画素121a’の構成例を示している。
図13において、黒色で示された範囲が遮光膜121b’であり、各画素121a’の遮光範囲は、例えば、図13の左部に示される規則に従って決定される。
図13の左部の主遮光部Z151(図13に左部の黒色部)は、各画素121a’において共通に遮光される範囲である。具体的には、主遮光部Z151は、画素121a’の左辺及び右辺から画素121a’内に向かって、それぞれ幅dx1’の範囲、並びに、画素121a’の上辺及び下辺から画素121a’内に向かって、それぞれ高さdy1’の範囲である。そして、各画素121a’において、主遮光部Z151の内側の範囲Z152内に、遮光膜121b’により遮光されない矩形の開口部Z161が設けられる。従って、各画素121a’において、開口部Z161以外の範囲が、遮光膜121b’により遮光される。
ここで、各画素121a’の開口部Z161は、図12の各画素121aの開口部Z111と同様に、規則的に配置されている。具体的には、各画素121a’内における開口部Z161の水平方向の位置は、同じ垂直方向の列の画素121a’内において同一になる。また、各画素121a’内における開口部Z161の垂直方向の位置は、同じ水平方向の行の画素121a’内において同一になる。
一方、各画素121a’内における開口部Z161の水平方向の位置は、画素121a’の水平方向の位置に応じて所定の間隔でずれている。すなわち、画素121a’の位置が右方向に進むに従って、開口部Z161の左辺が、画素121a’の左辺からそれぞれ幅dx1’、dx2’、・・・、dxn’だけ右方向にずれた位置に移動する。幅dx1’と幅dx2’の間隔、幅dx2’と幅dx3’の間隔、・・・、幅dxn−1’と幅dxn’の間隔は、それぞれ範囲Z152の水平方向の幅から開口部Z161の幅を引いた長さを水平方向の画素数n−1で割った値となる。
また、各画素121a’内における開口部Z161の垂直方向の位置は、画素121a’の垂直方向の位置に応じて所定の間隔でずれている。すなわち、画素121a’の位置が下方向に進むに従って、開口部Z161の上辺が、画素121a’の上辺からそれぞれ高さdy1’,dy2’、・・・、dyn’だけ下方向にずれた位置に移動する。高さdy1’と高さdy2’の間隔、高さdy2’と高さdy3’の間隔、・・・、高さdyn−1’と高さdyn’の間隔は、それぞれ範囲Z152の垂直方向の高さから開口部Z161の高さを引いた長さを垂直方向の画素数m−1で割った値となる。
ここで、図12の画素121aの範囲Z102の水平方向の幅から開口部Z111の幅を引いた長さは、図13の画素121a’の範囲Z152の水平方向の幅から開口部Z161の幅を引いた幅より大きくなる。従って、図12の幅dx1、dx2・・・dxnの変化の間隔は、図13の幅dx1’、dx2’・・・dxn’の変化の間隔より大きくなる。
また、図12の画素121aの範囲Z102の垂直方向の高さから開口部Z111の高さを引いた長さは、図13の画素121a’の範囲Z152の垂直方向の高さから開口部Z161の高さを引いた長さより大きくなる。従って、図12の高さdy1、dy2・・・dynの変化の間隔は、図13の高さdy1’、dy2’・・・dyn’の変化の間隔より大きくなる。
このように、図12の各画素121aの遮光膜121bの開口部Z111の水平方向および垂直方向の位置の変化の間隔と、図13の各画素121a’の遮光膜121b’の開口部Z161の水平方向および垂直方向の位置の変化の間隔とは異なる。そして、この間隔の違いが、復元画像における被写体分解能(角度分解能)の違いとなる。すなわち、図13の各画素121a’の遮光膜121b’の開口部Z161の水平方向および垂直方向の位置の変化の間隔の方が、図12の各画素121aの遮光膜121bの開口部Z111の水平方向および垂直方向の位置の変化の間隔より狭くなる。従って、図13の各画素121a’の検出信号を用いて復元される復元画像は、図12の各画素121aの検出信号を用いて復元される復元画像より、被写体分解能が高くなり、高画質となる。
このように、主遮光部の遮光範囲と開口部の開口範囲との組み合わせを変化させることで、様々な画角の(様々な入射角指向性を持った)画素からなる撮像素子121を実現することが可能となる。
なお、以上においては、画素121aと画素121a’を範囲ZAと範囲ZBに分けて配置する例を示したが、これは説明を簡単にするためであり、異なる画角に対応する画素121aが同じ領域内に混在して配置されることが望ましい。
例えば、図14に示されるように、点線で示される2画素×2画素からなる4画素を1個の単位Uとして、それぞれの単位Uが、広画角の画素121a−W、中画角の画素121a−M、狭画角の画素121a−N、極狭画角の画素121a−ANの4画素から構成されるようにする。
この場合、例えば、全画素121aの画素数がXである場合、4種類の画角ごとにX/4画素ずつの検出画像を用いて復元画像を復元することが可能となる。この際、画角毎に異なる4種類の係数セット群が使用されて、4種類の異なる連立方程式により、それぞれ異なる画角の復元画像が復元される。
従って、復元する復元画像の画角の撮像に適した画素から得られる検出画像を用いて復元画像を復元することで、4種類の画角に応じた適切な復元画像を得ることが可能となる。
また、4種類の画角の中間の画角や、その前後の画角の画像を、4種類の画角の画像から補間生成するようにしてもよく、様々な画角の画像をシームレスに生成することで、疑似的な光学ズームを実現するようにしてもよい。
なお、例えば、画角の広い画像を復元画像として得る場合、広画角画素を全て用いるようにしてもよいし、広画角画素の一部を用いるようにしてもよい。また、例えば、画角の狭い画像を復元画像として得る場合、狭画角画素を全て用いるようにしてもよいし、狭画角画素の一部を用いるようにしてもよい。
<フロントカメラモジュール21の実装例>
次に、図15乃至図17を参照して、フロントカメラモジュール21の実装例について説明する。
<フロントカメラモジュール21のハードウエア構成例>
図15は、フロントカメラモジュール21のハードウエアの構成例を示している。
図15のフロントカメラモジュール21では、LLCチップ202及び信号処理チップ203の2つの半導体チップが、同じ基板201上に実装されている。
LLCチップ202は、図1の撮像部41を備える半導体チップである。
信号処理チップ203は、図1のフロントカメラECU42及びMCU43を備える半導体チップである。
このように、LLCチップ202と信号処理チップ203を同一の基板201に配置することにより、フレキシブル基板が不要となり、不要輻射が低減される。
<フロントカメラモジュール21の取付方法>
次に、図16及び図17を参照して、フロントカメラモジュール21の取付方法の例について説明する。図16は、フロントカメラモジュール21が取り付けられている車両のウインドシールド221を横から見た図であり、図17は、ウインドシールド221を正面から見た図である。
フロントカメラモジュール21は、ブラケット222を用いて、LLCチップ202が実装されている面がウインドシールド221の車内側の面に沿うように、脱着可能に取り付けられている。これにより、LLCチップ202の表面に設けられている撮像素子121の受光面が、ウインドシールド221の車内側の面に対向し、かつ、接触又は近接し、ウインドシールド221の車内側の面に対して略平行になる。
従って、撮像素子121の受光面とウインドシールド221との間の空間がなくなるか、又は、非常に狭くなる。その結果、入射光の反射によるウインドシールド221の映り込みや、撮像素子121の受光面とウインドシールド221との間の結露の発生が防止される。
また、フロントカメラモジュール21は、ケーブル223を介して、車載システム11のバスB1に接続される。
なお、フロントカメラモジュール21は、車両の運転者等の搭乗者の視界を遮らない位置に設置することが望ましい。また、図17に示されるように、フロントカメラモジュール21は、車両のワイパ(不図示)によりウインドシールド221の水滴が除去される領域W1又は領域W2と重なる位置に設置されることが望ましい。例えば、フロントカメラモジュール21は、ウインドシールド221の中央の上端付近に設けられる。
<撮像素子121の画素アレイ部の第1の実施の形態>
次に、図18乃至図20を参照して、撮像素子121の画素アレイ部の第1の実施の形態について説明する。
図18は、撮像素子121の画素アレイ部の遮光パターンの第1の実施の形態を示している。図19は、図18の画素アレイ部を構成する画素121aの第1の実施の形態である画素Paの遮光パターンの例を示している。
各画素Paの遮光膜Saの開口部Aaは、点線で示される矩形の開口設定範囲Ra内に設定される。従って、各画素Paの遮光膜Saの開口設定範囲Ra以外の領域が、遮光膜Saの主遮光部となる。
開口設定範囲Raの大きさ、形、及び、位置は、各画素Paで共通である。開口設定範囲Raの垂直方向の高さは、画素Paの高さの1/2弱であり、水平方向の幅は、画素Paの幅より若干狭くなっている。また、開口設定範囲Raは、画素Pa内の水平方向の中央、かつ、垂直方向において上方向に偏った位置に設定されている。従って、開口設定範囲Raの重心は、画素Paの中心から上方向に偏っている。
矩形の開口部Aaの形及び大きさは、各画素Paで共通である。また、開口部Aaは、図12及び図13を参照して上述した規則と同様の規則に従って、各画素Paの開口設定範囲Ra内に配置される。
具体的には、開口部Aaは、画素アレイ部の左端の列の画素Paにおいて、開口設定範囲Raの左端に配置され、画素アレイ部の上端の行の画素Paにおいて、開口設定範囲Raの上端に配置される。そして、開口部Aaは、画素Paの位置が右に進むにつれて、開口設定範囲Ra内において等間隔に右方向にシフトし、画素アレイ部の右端の列の画素Paにおいて、開口設定範囲Raの右端に配置される。また、開口部Aaは、画素Paの位置が下に進むにつれて、開口設定範囲Ra内において等間隔に下方向にシフトし、画素アレイ部の下端の行の画素Paにおいて、開口設定範囲Raの下端に配置される。
従って、開口部Aaの水平方向の位置は、同じ垂直方向の列の画素Pa内において同一になる。また、開口部Aaの垂直方向の位置は、同じ水平方向の行の画素Pa内において同一になる。従って、各画素Pa内における開口部Aaの位置、すなわち、各画素Paに入射光が入射する位置が画素Pa毎に異なり、その結果、各画素Paの入射角指向性は、それぞれ異なる。
また、各画素Paの開口部Aaにより、開口設定範囲Raがカバーされる。すなわち、各画素Paの開口部Aaを重ね合わせた領域が、開口設定範囲Raと等しくなる。なお、開口部Aaの配置パターンについては、上述の構成に限定されず、開口部Aaを重ね合わせた領域が、開口設定範囲Raと等しくなればどのような配置であっても良い。例えば、開口部Aaが開口設定範囲Ra内においてランダムに配置されても良い。
ここで、各画素Paの入射角指向性の重心は、各画素Paの開口部Aaの重心と略一致し、各画素Paの中心から上方向に偏る。従って、各画素Paの入射角指向性の重心の平均が、画素Paの中心から上方向に偏る。すなわち、各画素Paの重心光線の入射角の平均が、画素アレイ部の受光面の法線方向に対して下方向に傾く。
従って、LLCチップ202がウインドシールド221に対して平行に設置され、撮像素子121の画素アレイ部の受光面が上方向を向いているにも関わらず、車両の前方を適切な画角で撮像することが可能になる。より具体的には、図20に示されるように、車両の前方斜め下方向の視野(FOV(Field Of View))Faを撮像することが可能になる。その結果、撮像部41により得られるセンシング画像に基づいて、車両の前方の監視が可能になる。
なお、開口設定範囲Raの位置、すなわち、開口設定範囲Raの重心の画素Paの中心からのオフセット量は、ウインドシールド221の傾斜、及び、撮像したい被写体までの距離等に合わせて設定される。また、開口設定範囲Raの形及び大きさは、撮像したい画角に基づいて設定される。
また、LLCチップ202(撮像素子121の受光面)を車両の前方に向けなくても、車両の前方の撮像が可能であり、撮像レンズが不要である。従って、図15を参照して上述したように、LLCチップ202と信号処理チップ203を同一の基板に実装し、フロントカメラモジュール21のLLCチップ202の実装面をウインドシールド221に接触又は近接させて取り付けることができる。
<撮像部41による撮像処理>
次に、図21のフローチャートを参照して、図2の撮像部41による撮像処理について説明する。
ステップS1において、撮像素子121は、被写体の撮像を行う。これにより、異なる入射角指向性を備える撮像素子121の各画素121a(画素Pa)から、被写体からの入射光の光量に応じた検出信号レベルを示す検出信号が出力され、撮像素子121は、各画素121aの検出信号からなる検出画像を復元部122に供給する。
ステップS2において、復元部122は、画像の復元に用いる係数を求める。具体的には、復元部122は、復元対象となる被写体面102までの距離、すなわち被写体距離を設定する。なお、被写体距離の設定方法には、任意の方法を採用することができる。例えば、復元部122は、ユーザにより設定された被写体距離、又は、各種のセンサにより検出された被写体距離を、復元対象となる被写体面102までの距離に設定する。
次に、復元部122は、設定した被写体距離に対応付けられている係数セット群を記憶部124から読み出す。
ステップS3において、復元部122は、検出画像及び係数を用いて、画像の復元を行う。具体的には、復元部122は、検出画像の各画素の検出信号レベルと、ステップS2の処理で取得した係数セット群とを用いて、上述した式(1)乃至式(3)を参照して説明した連立方程式を作成する。次に、復元部122は、作成した連立方程式を解くことにより、設定した被写体距離に対応する被写体面102上の各点光源の光強度を算出する。そして、復元部122は、算出した光強度に応じた画素値を有する画素を被写体面102の各点光源の配置に従って並べることにより、被写体の像が結像された復元画像を生成する。
ステップS4において、撮像部41は、復元画像に対して各種の処理を行う。例えば、復元部122は、必要に応じて、復元画像に対して、デモザイク処理、γ補正、ホワイトバランス調整、所定の圧縮形式への変換処理等を行う。また、復元部122は、得られた復元画像をセンシング画像として、通信部125を介してフロントカメラECU42に供給する。
その後、撮像処理は終了する。
<<2.第2の実施の形態>>
次に、図22乃至図24を参照して、本技術の第2の実施の形態について説明する。
第2の実施の形態は、第1の実施の形態と比較して、撮像素子121の画素アレイ部の遮光パターンが異なる。
図22は、撮像素子121の画素アレイ部の遮光パターンの第2の実施の形態を示している。図23は、図22の画素アレイ部を構成する画素121aの第2の実施の形態である画素Pb及び画素Pcの遮光パターンの例を示している。
画素Pbは、画素アレイ部の奇数列に配置され、画素Pcは、画素アレイ部の偶数列に配置されている。
画素Pbと画素Pcとは、開口設定範囲の位置が異なる。具体的には、画素Pbの遮光膜Sbの開口設定範囲Rb及び画素Pcの遮光膜Scの開口設定範囲Rcの形及び大きさは、図19の画素Paの遮光膜Saの開口設定範囲Raと同じである。
一方、開口設定範囲Rbは、開口設定範囲Raより、画素Pb内において上方向にシフトした位置に設定されている。また、開口設定範囲Rcは、開口設定範囲Raより、画素Pc内において下方向にシフトした位置に設定されている。ただし、開口設定範囲Rcの重心は、開口設定範囲Raと同様に、画素Pcの中心より上方向に偏っている。このように、開口設定範囲Rbと開口設定範囲Rcとは、画素内における垂直方向の位置が異なる。
そして、画素Pbの開口部Abは、画素Paの開口部Aaと同じ形及び大きさであり、図12及び図13を参照して上述した規則と同様の規則に従って、開口設定範囲Rb内に配置される。
具体的には、開口部Abは、画素アレイ部の左端の列の画素Pbにおいて、開口設定範囲Rbの左端に配置され、画素アレイ部の上端の行の画素Pbにおいて、開口設定範囲Rbの上端に配置される。そして、開口部Abは、画素Pbの位置が右に進むにつれて、開口設定範囲Rb内において等間隔に右方向にシフトし、画素アレイ部の右から2列目の画素Pbにおいて、開口設定範囲Rbの右端に配置される。また、開口部Abは、画素Pbの位置が下に進むにつれて、開口設定範囲Rb内において等間隔に下方向にシフトし、画素アレイ部の下端の行の画素Pbにおいて、開口設定範囲Rbの下端に配置される。
従って、各画素Pb内における開口部Abの水平方向の位置は、同じ垂直方向の列の画素Pb内において同一になる。また、各画素Pb内における開口部Abの垂直方向の位置は、同じ水平方向の行の画素Pb内において同一になる。従って、各画素Pb内における開口部Abの位置、すなわち、各画素Pbに入射光が入射する位置が画素Pb毎に異なり、その結果、各画素Paの入射角指向性は、それぞれ異なる。
また、各画素Pbの開口部Abにより、開口設定範囲Rbがカバーされる。すなわち、各画素Pbの開口部Abを重ね合わせた領域が、開口設定範囲Rbと等しくなる。なお、開口部Abの配置パターンについては、上述の構成に限定されず、開口部Abを重ね合わせた領域が、開口設定範囲Rbと等しくなればどのような配置であっても良い。例えば、開口部Abが開口設定範囲Rb内においてランダムに配置されても良い。
さらに、画素Pcの開口部Acは、画素Paの開口部Aaと同じ形及び大きさであり、図12及び図13を参照して上述した規則と同様の規則に従って、開口設定範囲Rc内に配置される。
具体的には、開口部Acは、画素アレイ部の左から2列目の画素Pcにおいて、開口設定範囲Rcの左端に配置され、画素アレイ部の上端の行の画素Pcにおいて、開口設定範囲Rcの上端に配置される。そして、開口部Acは、画素Pcの位置が右に進むにつれて、開口設定範囲Rc内において等間隔に右方向にシフトし、画素アレイ部の右端の列の画素Pcにおいて、開口設定範囲Rcの右端に配置される。また、開口部Acは、画素Pcの位置が下に進むにつれて、開口設定範囲Rc内において等間隔に下方向にシフトし、画素アレイ部の下端の行の画素Pcにおいて、開口設定範囲Rcの下端に配置される。
従って、各画素Pc内における開口部Acの水平方向の位置は、同じ垂直方向の列の画素Pc内において同一になる。また、各画素Pc内における開口部Acの垂直方向の位置は、同じ水平方向の行の画素Pc内において同一になる。従って、各画素Pc内における開口部Acの位置、すなわち、各画素Pcに入射光が入射する位置が画素Pc毎に異なり、その結果、各画素Pcの入射角指向性は、それぞれ異なる。
また、各画素Pcの開口部Acにより、開口設定範囲Rcがカバーされる。すなわち、各画素Pcの開口部Acを重ね合わせた領域が、開口設定範囲Rcと等しくなる。なお、開口部Acの配置パターンについては、上述の構成に限定されず、開口部Acを重ね合わせた領域が、開口設定範囲Rcと等しくなればどのような配置であっても良い。例えば、開口部Acが開口設定範囲Rc内においてランダムに配置されても良い。
ここで、各画素Pbの入射角指向性の重心は、各画素Pbの開口部Abの重心と略一致し、画素Pbの中心から上方向に偏る。従って、各画素Pbの入射角指向性の重心の平均が、画素Pbの中心から上方向に偏る。すなわち、各画素Pbの重心光線の入射角の平均が、画素アレイ部の受光面の法線方向に対して下方向に傾く。
また、各画素Pcの入射角指向性の重心は、各画素Pcの開口部Acの重心と略一致し、大部分の画素Pcにおいて画素Pcの中心から上方向に偏る。従って、各画素Pcの入射角指向性の重心の平均が、画素Pcの中心から上方向に偏る。すなわち、各画素Pcの重心光線の入射角の平均が、画素アレイ部の受光面の法線方向に対して下方向に傾く。
一方、開口設定範囲Rbの画素Pbの中心からのオフセット量は、開口設定範囲Rcの画素Pcの中心からのオフセット量より大きい。従って、各画素Pbの重心光線の入射角の平均は、各画素Pcの重心光線の入射角の平均より下方向に傾く。
従って、図24に示されるように、撮像素子121の画素Pb及び画素Pcにより、上下方向に異なる視野の撮像が可能になる。具体的には、撮像素子121の画素Pbにより、図20の視野Faより少し下方向の視野Fbの撮像が可能になる。また、撮像素子121の画素Pcにより、図20の視野Faより少し上方向の視野Fcの撮像が可能になる。
これにより、例えば、撮像素子121の画素Pbにより得られるセンシング画像により、車両の前方下方向の路面の区画線等の検出を重点的に行い、検出精度を上げることができる。また、例えば、撮像素子121の画素Pcにより得られるセンシング画像により、車両の前方の車両、歩行者、障害物等の検出を重点的に行い、検出精度を上げることができる。
なお、例えば、各画素Pb及び各画素Pcをそれぞれ独立に駆動させる駆動部を設け、各画素Pbによる撮像及び各画素Pcによる撮像を同時に行ったり、個別に行ったりするようにしてもよい。
また、各画素Pbによる撮像及び各画素Pcによる撮像を同時に行う場合、例えば、不要な場合には、一方の画素の復元画像の復元を停止してもよい。例えば、路面の区画線等の検出のみを行う場合、画素Pbの復元画像の復元のみを行い、画素Pcの復元画像の復元を停止するようにしてもよい。逆に、信号機や道路標識等の検出のみを行う場合、画素Pcの復元画像の復元のみを行い、画素Pbの復元画像の復元を停止するようにしてもよい。これにより、撮像部41の処理を軽減することができる。
さらに、各画素Pbによる撮像及び各画素Pcによる撮像を個別に行う場合、例えば、交互に撮像したり、必要に応じて一方の撮像を停止したりしてもよい。例えば、路面の区画線等の検出のみを行う場合、画素Pbによる撮像のみを行い、画素Pcによる撮像を停止するようにしてもよい。これにより、撮像部41の処理を軽減することができる。
なお、この場合、例えば、被写体距離に加えて、復元画像の画角に対応する係数セット群をさらに用意して、被写体距離および画角に応じた係数セット群を用いて、復元画像が復元される。例えば、画素Pbに対応する係数セット群と、画素Pcに対応する係数セット群とを個別に用意して、各係数セット群を使い分けることにより、各画素に対応する復元画像がそれぞれ復元される。
<<3.第3の実施の形態>>
次に、図25乃至図27を参照して、本技術の第3の実施の形態について説明する。
第3の実施の形態は、第1の実施の形態及び第2の実施の形態と比較して、撮像素子121の画素アレイ部の遮光パターンが異なる。
図25は、撮像素子121の画素アレイ部の遮光パターンの第3の実施の形態を示している。図26は、図25の画素アレイ部を構成する画素121aの第3の実施の形態である画素Pd及び画素Peの遮光パターンの例を示している。
画素Pdは、画素アレイ部の奇数列に配置され、画素Peは、画素アレイ部の偶数列に配置されている。
画素Pdと画素Peとは、開口設定範囲の形及び大きさが異なる。具体的には、画素Pdの遮光膜Sdの開口設定範囲Rdの形、大きさ、及び、位置は、図19の画素Paの遮光膜Saの開口設定範囲Raと同じである。一方、画素Peの遮光膜Seの開口設定範囲Reは、画素Pdの遮光膜Sdの開口設定範囲Rdと比較して、垂直方向の高さは同じであるが、水平方向の幅は狭くなっている。また、画素Pdの開口設定範囲Rdと画素Peの開口設定範囲Reとは、垂直方向の位置は同じである。さらに、画素Pdの開口設定範囲Rdと画素Peの開口設定範囲Reとは、水平方向の中心の位置は同じである。
そして、画素Pdの開口部Adは、画素Paの開口部Aaと同じ形及び大きさであり、図12及び図13を参照して上述した規則と同様の規則に従って、開口設定範囲Rd内に設定される。
具体的には、開口部Adは、画素アレイ部の左端の列の画素Pdにおいて、開口設定範囲Rdの左端に配置され、画素アレイ部の上端の行の画素Pdにおいて、開口設定範囲Rdの上端に配置される。そして、開口部Adは、画素Pdの位置が右に進むにつれて、開口設定範囲Rd内において等間隔に右方向にシフトし、画素アレイ部の右から2列目の画素Pdにおいて、開口設定範囲Rdの右端に配置される。また、開口部Adは、画素Pdの位置が下に進むにつれて、開口設定範囲Rd内において等間隔に下方向にシフトし、画素アレイ部の下端の行の画素Pdにおいて、開口設定範囲Rdの下端に配置される。
従って、各画素Pd内における開口部Adの水平方向の位置は、同じ垂直方向の列の画素Pd内において同一になる。また、各画素Pd内における開口部Adの垂直方向の位置は、同じ水平方向の行の画素Pd内において同一になる。従って、各画素Pd内における開口部Adの位置、すなわち、各画素Pdに入射光が入射する位置が画素Pd毎に異なり、その結果、各画素Pdの入射角指向性は、それぞれ異なる。
また、各画素Pdの開口部Adにより、開口設定範囲Rdがカバーされる。すなわち、各画素Pdの開口部Adを重ね合わせた領域が、開口設定範囲Rdと等しくなる。なお、開口部Adの配置パターンについては、上述の構成に限定されず、開口部Adを重ね合わせた領域が、開口設定範囲Rdと等しくなればどのような配置であっても良い。例えば、開口部Adが開口設定範囲Rd内においてランダムに配置されても良い。
さらに、画素Peの開口部Aeは、画素Paの開口部Aaと同じ形及び大きさであり、図12及び図13を参照して上述した規則と同様の規則に従って、開口設定範囲Re内に配置される。
具体的には、開口部Aeは、画素アレイ部の左から2列目の画素Peにおいて、開口設定範囲Reの左端に配置され、画素アレイ部の上端の行の画素Peにおいて、開口設定範囲Reの上端に配置される。そして、開口部Aeは、画素Peの位置が右に進むにつれて、開口設定範囲Re内において等間隔に右方向にシフトし、画素アレイ部の右端の列の画素Peにおいて、開口設定範囲Reの右端に配置される。また、開口部Aeは、画素Peの位置が下に進むにつれて、開口設定範囲Re内において等間隔に下方向にシフトし、画素アレイ部の下端の行の画素Peにおいて、開口設定範囲Reの下端に配置される。
従って、各画素Pe内における開口部Aeの水平方向の位置は、同じ垂直方向の列の画素Pe内において同一になる。また、各画素Pe内における開口部Aeの垂直方向の位置は、同じ水平方向の行の画素Pe内において同一になる。従って、各画素Pe内における開口部Aeの位置、すなわち、各画素Peに入射光が入射する位置が画素Pe毎に異なり、その結果、各画素Peの入射角指向性は、それぞれ異なる。
また、各画素Peの開口部Aeにより、開口設定範囲Reがカバーされる。すなわち、各画素Pbの開口部Abを重ね合わせた領域が、開口設定範囲Reと等しくなる。なお、開口部Aeの配置パターンについては、上述の構成に限定されず、開口部Aeを重ね合わせた領域が、開口設定範囲Reと等しくなればどのような配置であっても良い。例えば、開口部Aeが開口設定範囲Re内においてランダムに配置されても良い。
ここで、各画素Pdの入射角指向性の重心の平均は、図18の各画素Paの入射角指向性の重心の平均と略一致する。また、各画素Peの入射角指向性の重心は、各画素Peの開口部Aeの重心と略一致する。従って、各画素Peの入射角指向性の重心の平均は、各画素Pdの入射角指向性の重心の平均と略一致する。その結果、各画素Pdの重心光線の入射角の平均、及び、各画素Peの重心光線の入射角の平均は、図18の各画素Paの重心光線の入射角の平均と略一致する。
従って、図27に示されるように、撮像素子121の画素Pd及び画素Peにより、水平方向に異なる視野の撮像が可能になる。具体的には、車両251の前方において、撮像素子121の画素Pdにより、画素Peの視野Feより広い視野Fdの撮像が可能になる。従って、画素Pdにより得られるセンシング画像に基づいて、車両251の前方のより広い範囲の監視が可能になる。
一方、上述したように、画素Pdの数と画素Peの数が同じ場合、画角の狭い画素Peを用いて撮像した画像を復元する方が、画角の狭い画素Pdを用いて撮像した画像を復元するより、より高画質な(被写体分解能が高い)復元画像を得ることができる。従って、画素Peにより得られるセンシング画像に基づいて、車両251の前方のより遠方を監視することが可能になる。
なお、第2の実施の形態と同様に、各画素Pdによる撮像及び各画素Peによる撮像を同時に行ってもよいし、個別に行ってもよい。
また、画素Pdに対応する係数セット群と、画素Peに対応する係数セット群とを個別に用意して、各画素に対応する復元画像をそれぞれ復元するようにしてもよい。
<<4.変形例>>
以下、上述した本技術の実施の形態の変形例について説明する。
<遮光パターンに関する変形例>
図22及び図25では、撮像素子121に2種類の開口設定範囲を設定する例を示したが、3種類以上の開口設定範囲を設定するようにしてもよい。
また、例えば、高さが異なる開口設定範囲を組み合わせたり、幅と高さが異なる開口設定範囲を組み合わせたりするようにしてもよい。さらに、例えば、垂直方向だけでなく、開口設定範囲の水平方向の位置を変えるようにしてもよい。
また、図22及び図25では、開口設定範囲が異なる画素を1列置きに配置する例を示したが、例えば、1行置きに配置したり、1画素毎に交互に配置したりするようにしてもよい。さらに、例えば、開口設定範囲が異なる画素をランダムに配置したり、図11の下段の例のように、それぞれ異なる領域に分けて配置したりするようにしてもよい。
さらに、図18、図22、及び、図25では、各画素の開口部の位置が、行方向及び列方向に進むにつれて規則的に変化する例を示したが、規則的に変化させずに、例えば、ランダムに変化させるようにしてもよい。また、例えば、開口部の形や大きさを画素毎に変えるようにしてもよい。ただし、各画素の開口部により、開口設定範囲をカバーすることが必須となる。
<フロントカメラモジュール21に関する変形例>
以上の説明では、撮像部41とフロントカメラECU42及びMCU43とを異なる2つの半導体チップに設ける例を示したが、これ以外の構成をとることも可能である。例えば、撮像部41の撮像素子121と、撮像部41の信号処理制御部111、フロントカメラECU42、及び、MCU43とを異なる2つの半導体チップに設けたり、撮像素子121と、撮像部41の信号処理制御部111と、フロントカメラECU42及びMCU43とを3つの異なる半導体チップに設けるようにしてもよい。また、例えば、撮像部41、フロントカメラECU42、及び、MCU43を1つの半導体チップに設けるようにしてもよい。
また、例えば、フロントカメラモジュール21を、ウインドシールド221以外の車両の窓(例えば、サイドウインドウ、リアウインドウ等)に取り付けて、車両の前方以外の方向の撮像を行うようにしてもよい。また、入射角指向性の重心が偏る方向は、鉛直方向に対して上方に限定されず、左右方向や鉛直方向に対して下方であっても良い。特に、サイドウインドウに当該カメラモジュール21を取り付けた場合、入射角指向性の重心を左右方向に偏心させることで、車両の死角を撮像することが可能となる。
さらに、例えば、図28に示されるように、2つのフロントカメラモジュール21a及びフロントカメラモジュール21bを車内に設けて、車外と車内の両方を撮像できるようにしてもよい。
例えば、フロントカメラモジュール21aは、図16のフロントカメラモジュール21と同様の位置に取り付けられ、車外の撮像及び画像認識等を行う。一方、フロントカメラモジュール21bは、LLCチップ202bの表面(撮像素子121の受光面)が車内を向くように、フロントカメラモジュール21aの裏面に取り付けられ、車内の撮像及び画像認識等を行う。
また、本技術は、車両の窓以外にも、板状の透明又は半透明な部材に接触又は近接するように取り付けられ、部材の面の法線方向とは異なる方向を部材越しに撮像する場合に適用することができる。例えば、建物の室内から窓越しに窓の正面以外の方向(例えば、下方向又は上方向等)を撮像する場合に、本技術を適用することができる。
なお、例えば、上方向の撮像を行う場合、各画素の入射角指向性の重心の平均が各画素の中心より下方向に偏り、右方向の撮像を行う場合には、各画素の入射角指向性の重心の平均が各画素の中心より左方向に偏り、左方向の撮像を行う場合には、各画素の入射角指向性の重心の平均が各画素の中心より右方向に偏るように、画素アレイ部の遮光パターンが設定される。
<撮像素子121に関する変形例>
例えば、図5の画素121aにおいて、カラーフィルタ121dと遮光膜121bとの間に、平坦化膜を設けるようにしてもよい。また、例えば、図6の画素121aにおいて、カラーフィルタ121dとフォトダイオード121fの間に、平坦化膜を設けるようにしてもよい。
さらに、図29に示される表面照射型の画素121aを撮像素子121に用いることが可能である。
図29の画素121aでは、図5の画素121aと比較して、光電変換層Z11と配線層Z12の積層順が逆になっている。すなわち、図29の画素121aでは、上から順に、オンチップレンズ121c、カラーフィルタ(CF)121d、配線層Z12、光電変換層Z11の順に積層されている。光電変換層Z11では、上から順に、遮光膜121b、フォトダイオード(PD)121eが積層されている。
また、図5では、変調素子として遮光膜121bを用いたり、出力に寄与するフォトダイオードの組合せを変更したりすることにより画素毎に異なる入射角指向性を持たせる例を示したが、本技術では、例えば、図30に示されるように、撮像素子901の受光面を覆う光学フィルタ902を変調素子として用いて、各画素に入射角指向性を持たせるようにすることも可能である。
具体的には、光学フィルタ902は、撮像素子901の受光面901Aから所定の間隔を空けて、受光面901Aの全面を覆うように配置されている。被写体面102からの光は、光学フィルタ902で変調されてから、撮像素子901の受光面901Aに入射する。
例えば、光学フィルタ902には、図31に示される白黒の格子状のパターンを有する光学フィルタ902BWを用いることが可能である。光学フィルタ902BWには、光を透過する白パターン部と光を遮光する黒パターン部がランダムに配置されている。各パターンのサイズは、撮像素子901の画素のサイズとは独立して設定されている。
図32は、光学フィルタ902BWを用いた場合の被写体面102上の点光源PA及び点光源PBからの光に対する撮像素子901の受光感度特性を示している。点光源PA及び点光源PBからの光は、それぞれ光学フィルタ902BWで変調されてから、撮像素子901の受光面901Aに入射する。
例えば、点光源PAからの光に対する撮像素子901の受光感度特性は、波形Saのようになる。すなわち、光学フィルタ902BWの黒パターン部により影が生じるため、点光源PAからの光に対する受光面901A上の像に濃淡のパターンが生じる。同様に、点光源PBからの光に対する撮像素子901の受光感度特性は、波形Sbのようになる。すなわち、光学フィルタ902BWの黒パターン部により影が生じるため、点光源PBからの光に対する受光面901A上の像に濃淡のパターンが生じる。
なお、点光源PAからの光と点光源PBからの光とは、光学フィルタ902BWの各白パターン部に対する入射角度が異なるため、受光面に対する濃淡のパターンの現れ方にズレが生じる。従って、撮像素子901の各画素は、被写体面102の各点光源に対して入射角指向性を持つようになる。
この方式の詳細は、例えば、「M. Salman Asif、他4名、“Flatcam: Replacing lenses with masks and computation”、“2015 IEEE International Conference on Computer Vision Workshop (ICCVW)”、2015年、663-666ページ」に開示されている。
なお、光学フィルタ902BWの黒パターン部の代わりに、図33の光学フィルタ902HWを用いるようにしてもよい。光学フィルタ902HWは、偏光方向が等しい直線偏光素子911Aと直線偏光素子911B、及び、1/2波長板912を備え、1/2波長板912は、直線偏光素子911Aと直線偏光素子911Bの間に挟まれている。1/2波長板912には、光学フィルタ902BWの黒パターン部の代わりに、斜線で示される偏光部が設けられ、白パターン部と偏光部がランダムに配置されている。
直線偏光素子911Aは、点光源PAから出射されたほぼ無偏光の光のうち、所定の偏光方向の光のみを透過する。以下、直線偏光素子911Aが、偏光方向が図面に平行な光のみを透過するものとする。直線偏光素子911Aを透過した偏光光のうち、1/2波長板912の偏光部を透過した偏光光は、偏光面が回転されることにより、偏光方向が図面に垂直な方向に変化する。一方、直線偏光素子911Aを透過した偏光光のうち、1/2波長板912の白パターン部を透過した偏光光は、偏光方向が図面に平行な方向のまま変化しない。そして、直線偏光素子911Bは、白パターン部を透過した偏光光を透過し、偏光部を透過した偏光光をほとんど透過しない。従って、偏光部を透過した偏光光は、白パターン部を透過した偏光光より光量が減少する。これにより、光学フィルタBWを用いた場合とほぼ同様の濃淡のパターンが、撮像素子901の受光面901A上に生じる。
また、図34のAに示されるように、光干渉マスクを光学フィルタ902LFとして用いることが可能である。被写体面102の点光源PA,PBから出射された光は、光学フィルタ902LFを介して撮像素子901の受光面901Aに照射される。図34のAの下方の拡大図に示されるように、光学フィルタ902LFの例えば光入射面には、波長程度の凹凸が設けられている。また、光学フィルタ902LFは、鉛直方向から照射された特定波長の光の透過が最大となる。被写体面102の点光源PA,PBから出射された特定波長の光の光学フィルタ902LFに対する入射角の変化(鉛直方向に対する傾き)が大きくなると光路長が変化する。ここで、光路長が半波長の奇数倍であるときは光が弱めあい、半波長の偶数倍であるときは光が強めあう。すなわち、点光源PA,PBから出射されて光学フィルタ902LFを透過した特定波長の透過光の強度は、図34のBに示すように、光学フィルタ902LFに対する入射角に応じて変調されて撮像素子901の受光面901Aに入射する。したがって、撮像素子901の各画素から出力される検出信号は、画素毎に各点光源の変調後の光強度を合成した信号となる。
この方式の詳細は、例えば、上述した特表2016-510910号公報に開示されている。
<その他の変形例>
また、本技術は、赤外光等の可視光以外の波長の光の撮像を行う撮像装置や撮像素子にも適用することが可能である。この場合、復元画像は、ユーザが目視して被写体を認識できる画像とはならず、ユーザが被写体を視認できない画像となる。この場合も、本技術を用いることにより、被写体を認識可能な画像処理装置等に対して、復元画像の画質が向上する。なお、通常の撮像レンズは遠赤外光を透過することが困難であるため、本技術は、例えば、遠赤外光の撮像を行う場合に有効である。したがって、復元画像は遠赤外光の画像であっても良く、また、遠赤外光に限らず、その他の可視光や非可視光の画像であっても良い。
さらに、例えば、ディープラーニング等の機械学習を適用することにより、復元後の復元画像を用いずに、復元前の検出画像を用いて画像認識等を行うようにすることも可能である。この場合も、本技術を用いることにより、復元前の検出画像を用いた画像認識の精度が向上する。換言すれば、復元前の検出画像の画質が向上する。
この場合、例えば、図1のフロントカメラECU42が、検出画像を用いた画像認識を行う。
<<5.その他>>
上述した一連の処理は、ハードウエアにより実行することもできるし、ソフトウェアにより実行することもできる。一連の処理をソフトウェアにより実行する場合には、そのソフトウェアを構成するプログラムが、コンピュータにインストールされる。ここで、コンピュータには、専用のハードウエアに組み込まれているコンピュータ(例えば、制御部123等)などが含まれる。
コンピュータが実行するプログラムは、例えば、パッケージメディア等としての記録媒体に記録して提供することができる。また、プログラムは、ローカルエリアネットワーク、インターネット、デジタル衛星放送といった、有線または無線の伝送媒体を介して提供することができる。
なお、コンピュータが実行するプログラムは、本明細書で説明する順序に沿って時系列に処理が行われるプログラムであっても良いし、並列に、あるいは呼び出しが行われたとき等の必要なタイミングで処理が行われるプログラムであっても良い。
また、本技術の実施の形態は、上述した実施の形態に限定されるものではなく、本技術の要旨を逸脱しない範囲において種々の変更が可能である。
例えば、本技術は、1つの機能をネットワークを介して複数の装置で分担、共同して処理するクラウドコンピューティングの構成をとることができる。
さらに、上述のフローチャートで説明した各ステップは、1つの装置で実行する他、複数の装置で分担して実行することができる。
また、1つのステップに複数の処理が含まれる場合には、その1つのステップに含まれる複数の処理は、1つの装置で実行する他、複数の装置で分担して実行することができる。
なお、本技術は、以下のような構成も取ることができる。
(1)
撮像レンズ及びピンホールのいずれも介さず入射する被写体からの入射光を受光し、前記入射光の入射角によって変調された出力画素値を示す検出信号を1つ出力する画素を複数備え、受光面が車両のウインドシールドの車内側の面に対向し、かつ、接触又は近接するように取り付けられる撮像素子を
備え、
前記複数の画素の前記入射光の入射角に対する指向性を示す入射角指向性の重心の平均が、前記画素の中心から一方の方向に偏っている
撮像システム。
(2)
前記複数の画素は、前記画素の中心から一方の方向に重心が偏っている第1の範囲内のそれぞれ異なる位置に前記入射光が入射する複数の第1の画素を含む
前記(1)に記載の撮像システム。
(3)
前記複数の画素のそれぞれは、
1つの光電変換素子と、
前記入射光の一部の前記光電変換素子への入射を遮る遮光膜と
を備え、
前記複数の第1の画素の前記遮光膜の開口部が、前記第1の範囲内のそれぞれ異なる位置に配置されている
前記(2)に記載の撮像システム。
(4)
前記複数の画素は、前記画素の中心から一方の方向に重心が偏り、前記第1の範囲と異なる第2の範囲内の異なる位置に前記遮光膜の開口部がそれぞれ配置されている複数の第2の画素をさらに含む
前記(3)に記載の撮像システム。
(5)
前記第1の範囲と前記第2の範囲とは、前記画素内における垂直方向の位置が異なる
前記(4)に記載の撮像システム。
(6)
前記第1の範囲と前記第2の範囲とは、同じ形及び大きさである
前記(5)に記載の撮像システム。
(7)
前記第1の範囲と前記第2の範囲とは、水平方向の幅が異なる
前記(4)乃至(6)のいずれかに記載の撮像システム。
(8)
前記複数の第1の画素と前記複数の第2の画素とをそれぞれ独立に駆動させる駆動部をさらに備える
前記(4)乃至(7)のいずれかに記載の撮像システム。
(9)
前記複数の画素の前記検出信号に基づいて生成される検出画像の処理を行う第1の信号処理部を
さらに備える前記(1)乃至(8)のいずれかに記載の撮像システム。
(10)
前記第1の信号処理部は、前記検出画像から復元画像を復元する
前記(9)に記載の撮像システム。
(11)
前記復元画像に基づいて、前記車両の前方の画像認識を行う第2の信号処理部を
さらに備える前記(10)に記載の撮像システム。
(12)
前記撮像素子を備える第1の半導体チップと、
前記第2の信号処理部を備える第2の半導体チップと、
前記第1の半導体チップ及び前記第2の半導体チップが実装されている基板と
をさらに備える前記(11)に記載の撮像システム。
(13)
前記第1の信号処理部は、前記検出画像に基づいて前記車両の前方の画像認識を行う
前記(9)に記載の撮像システム。
(14)
前記撮像素子を備える第1の半導体チップと、
前記第1の信号処理部を備える第2の半導体チップと、
前記第1の半導体チップ及び前記第2の半導体チップが実装されている基板と
をさらに備える前記(13)に記載の撮像システム。
(15)
前記複数の画素の前記入射角指向性の重心の平均が、前記ウインドシールドの傾斜に合わせて、前記画素の中心から一方の方向に偏っている
前記(1)に記載の撮像システム。
(16)
前記複数の画素の前記入射角指向性の重心が、それぞれ前記画素の中心から一方の方向に偏っている
前記(1)に記載の撮像システム。
(17)
前記入射角指向性の重心の平均は、前記撮像素子が前記車両に取り付けられた状態において、鉛直方向に対して上方向に偏っている
前記(1)乃至(16)のいずれかに記載の撮像システム。
(18)
前記撮像素子は、ブラケットを介して、前記ウインドシールドに対して脱着可能に取り付けられる
前記(1)乃至(17)のいずれかに記載の撮像システム。
(19)
撮像レンズ及びピンホールのいずれも介さず入射する被写体からの入射光を受光し、前記入射光の入射角によって変調された出力画素値を示す検出信号を出力する画素を複数備え、
前記複数の画素の前記入射光の入射角に対する指向性を示す入射角指向性の重心の平均が、前記画素の中心から偏っている
撮像素子。
(20)
前記撮像素子は、受光面が車両のウインドシールドの車内側の面に対向し、かつ、接触又は近接するように取り付けられ、
前記複数の画素の前記入射光の前記入射角指向性の重心の平均が、前記画素の中心から上方向に偏っている
前記(19)に記載の撮像素子。
なお、本明細書に記載された効果はあくまで例示であって限定されるものではなく、他の効果があってもよい。
11 車載システム, 21 フロントカメラモジュール, 41 撮像部, 42 フロントカメラECU, 43 MCU, 111 信号処理制御部, 121 撮像素子, 122 復元部, 123 制御部, 201 基板, 202 LLCチップ, 203 信号処理チップ, 221 ウインドシールド, Pa乃至Pe 画素, Aa乃至Ae 開口部, Ra乃至Re 開口設定範囲, Sa乃至Se 遮光膜

Claims (20)

  1. 撮像レンズ及びピンホールのいずれも介さず入射する被写体からの入射光を受光し、前記入射光の入射角によって変調された出力画素値を示す検出信号を出力する画素を複数備え、受光面が車両のウインドシールドの車内側の面に対向し、かつ、接触又は近接するように取り付けられる撮像素子を
    備え、
    前記複数の画素の前記入射光の入射角に対する指向性を示す入射角指向性の重心の平均が、前記画素の中心から一方の方向に偏っている
    撮像システム。
  2. 前記複数の画素は、前記画素の中心から一方の方向に重心が偏っている第1の範囲内のそれぞれ異なる位置に前記入射光が入射する複数の第1の画素を含む
    請求項1に記載の撮像システム。
  3. 前記複数の画素のそれぞれは、
    1つの光電変換素子と、
    前記入射光の一部の前記光電変換素子への入射を遮る遮光膜と
    を備え、
    前記複数の第1の画素の前記遮光膜の開口部が、前記第1の範囲内のそれぞれ異なる位置に配置されている
    請求項2に記載の撮像システム。
  4. 前記複数の画素は、前記画素の中心から一方の方向に重心が偏り、前記第1の範囲と異なる第2の範囲内の異なる位置に前記遮光膜の開口部がそれぞれ配置されている複数の第2の画素をさらに含む
    請求項3に記載の撮像システム。
  5. 前記第1の範囲と前記第2の範囲とは、前記画素内における垂直方向の位置が異なる
    請求項4に記載の撮像システム。
  6. 前記第1の範囲と前記第2の範囲とは、同じ形及び大きさである
    請求項5に記載の撮像システム。
  7. 前記第1の範囲と前記第2の範囲とは、水平方向の幅が異なる
    請求項4に記載の撮像システム。
  8. 前記複数の第1の画素と前記複数の第2の画素とをそれぞれ独立に駆動させる駆動部をさらに備える
    請求項4に記載の撮像システム。
  9. 前記複数の画素の前記検出信号に基づいて生成される検出画像の処理を行う第1の信号処理部を
    さらに備える請求項1に記載の撮像システム。
  10. 前記第1の信号処理部は、前記検出画像から復元画像を復元する
    請求項9に記載の撮像システム。
  11. 前記復元画像に基づいて、前記車両の前方の画像認識を行う第2の信号処理部を
    さらに備える請求項10に記載の撮像システム。
  12. 前記撮像素子を備える第1の半導体チップと、
    前記第2の信号処理部を備える第2の半導体チップと、
    前記第1の半導体チップ及び前記第2の半導体チップが実装されている基板と
    をさらに備える請求項11に記載の撮像システム。
  13. 前記第1の信号処理部は、前記検出画像に基づいて前記車両の前方の画像認識を行う
    請求項9に記載の撮像システム。
  14. 前記撮像素子を備える第1の半導体チップと、
    前記第1の信号処理部を備える第2の半導体チップと、
    前記第1の半導体チップ及び前記第2の半導体チップが実装されている基板と
    をさらに備える請求項13に記載の撮像システム。
  15. 前記複数の画素の前記入射角指向性の重心の平均が、前記ウインドシールドの傾斜に合わせて、前記画素の中心から一方の方向に偏っている
    請求項1に記載の撮像システム。
  16. 前記複数の画素の前記入射角指向性の重心が、それぞれ前記画素の中心から一方の方向に偏っている
    請求項1に記載の撮像システム。
  17. 前記入射角指向性の重心の平均は、前記撮像素子が前記車両に取り付けられた状態において、鉛直方向に対して上方向に偏っている
    請求項1に記載の撮像システム。
  18. 前記撮像素子は、ブラケットを介して、前記ウインドシールドに対して脱着可能に取り付けられる
    請求項1に記載の撮像システム。
  19. 撮像レンズ及びピンホールのいずれも介さず入射する被写体からの入射光を受光し、前記入射光の入射角によって変調された出力画素値を示す検出信号を出力する画素を複数備え、
    前記複数の画素の前記入射光の入射角に対する指向性を示す入射角指向性の重心の平均が、前記画素の中心から偏っている
    撮像素子。
  20. 前記撮像素子は、受光面が車両のウインドシールドの車内側の面に対向し、かつ、接触又は近接するように取り付けられ、
    前記複数の画素の前記入射光の前記入射角指向性の重心の平均が、前記画素の中心から上方向に偏っている
    請求項19に記載の撮像素子。
JP2019085074A 2019-04-26 2019-04-26 撮像システム及び撮像素子 Pending JP2020182139A (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2019085074A JP2020182139A (ja) 2019-04-26 2019-04-26 撮像システム及び撮像素子
US17/594,467 US20220180615A1 (en) 2019-04-26 2020-04-14 Imaging system and imaging device
PCT/JP2020/016360 WO2020218074A1 (ja) 2019-04-26 2020-04-14 撮像システム及び撮像素子

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019085074A JP2020182139A (ja) 2019-04-26 2019-04-26 撮像システム及び撮像素子

Publications (1)

Publication Number Publication Date
JP2020182139A true JP2020182139A (ja) 2020-11-05

Family

ID=72942487

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019085074A Pending JP2020182139A (ja) 2019-04-26 2019-04-26 撮像システム及び撮像素子

Country Status (3)

Country Link
US (1) US20220180615A1 (ja)
JP (1) JP2020182139A (ja)
WO (1) WO2020218074A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210044961A (ko) * 2019-10-15 2021-04-26 현대자동차주식회사 자율주행차량의 차선변경 전략 결정 장치 및 그 방법

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ITTO20020950A1 (it) * 2002-11-05 2004-05-06 Fiat Ricerche Sistema di visione integrato multifunzionale, con matrice
DE102006004802B4 (de) * 2006-01-23 2008-09-25 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Bilderfassungssystem und Verfahren zur Herstellung mindestens eines Bilderfassungssystems
US9503698B2 (en) * 2013-08-01 2016-11-22 Harvest Imaging bvba Image sensor with shading detection
DE102014212104A1 (de) * 2014-06-24 2015-12-24 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Vorrichtung und verfahren zur relativen positionierung einer multiaperturoptik mit mehreren optischen kanälen relativ zu einem bildsensor
JP6447011B2 (ja) * 2014-10-29 2019-01-09 株式会社デンソー 運転情報表示装置および運転情報表示方法
US10404908B2 (en) * 2015-07-13 2019-09-03 Rambus Inc. Optical systems and methods supporting diverse optical and computational functions
WO2018012492A1 (ja) * 2016-07-13 2018-01-18 ソニー株式会社 撮像装置、撮像素子、および画像処理装置
US20180035046A1 (en) * 2016-07-29 2018-02-01 Xin Yuan Block-based lensless compressive image acquisition
CN106653802B (zh) * 2016-11-11 2019-07-30 京东方科技集团股份有限公司 显示面板及其制作方法、显示设备
GB2567164A (en) * 2017-10-04 2019-04-10 Continental Automotive Gmbh Display system in a vehicle
US11431911B2 (en) * 2017-10-19 2022-08-30 Sony Corporation Imaging device and signal processing device
US11350053B2 (en) * 2017-11-30 2022-05-31 Sony Corporation Imaging device, method thereof, and imaging element
US10887537B1 (en) * 2018-08-21 2021-01-05 Perceive Corporation Compressive sensing based image capture using dynamic masking
CN113614732A (zh) * 2019-03-29 2021-11-05 索尼集团公司 信息处理设备及信息处理方法
EP3965159A4 (en) * 2019-06-04 2022-06-15 Sony Group Corporation IMAGING ELEMENT, SIGNAL PROCESSING DEVICE, SIGNAL PROCESSING METHOD, PROGRAM AND IMAGING DEVICE
WO2021085173A1 (ja) * 2019-10-30 2021-05-06 ソニー株式会社 撮像素子、表示装置、及び、撮像システム

Also Published As

Publication number Publication date
US20220180615A1 (en) 2022-06-09
WO2020218074A1 (ja) 2020-10-29

Similar Documents

Publication Publication Date Title
US11888004B2 (en) Imaging apparatus having phase difference detection pixels receiving light transmitted through a same color filter
US20210183930A1 (en) Solid-state imaging device, distance measurement device, and manufacturing method
US7385680B2 (en) Camera module
JP2018201015A (ja) 固体撮像装置、及び電子機器
TWI822909B (zh) 固態攝像裝置及電子機器
JP4876812B2 (ja) 車載用カラーセンサおよびその製造方法
WO2018221443A1 (ja) 固体撮像装置、及び電子機器
WO2020195825A1 (ja) 撮像装置および電子機器
KR102590054B1 (ko) 고체 촬상 장치 및 전자 기기
US11928848B2 (en) Light receiving device, solid-state imaging apparatus, electronic equipment, and information processing system
WO2021085173A1 (ja) 撮像素子、表示装置、及び、撮像システム
WO2019026718A1 (en) IMAGING APPARATUS AND ELECTRONIC DEVICE
WO2020218074A1 (ja) 撮像システム及び撮像素子
US11469518B2 (en) Array antenna, solid-state imaging device, and electronic apparatus
CN113169198A (zh) 摄像器件和电子设备
JP7484904B2 (ja) 撮像素子、信号処理装置、信号処理方法、プログラム、及び、撮像装置
WO2021085152A1 (ja) 情報処理装置、情報処理方法、プログラム、及び、情報処理システム
JP5590457B2 (ja) 撮像装置並びにこれを備えた物体検出装置及び車載機器制御装置
JP2013069987A (ja) 撮像素子
JP2003274422A (ja) イメージセンサ
WO2021020156A1 (ja) 撮像素子、撮像装置、信号処理装置、及び、信号処理方法
WO2023189459A1 (ja) 光検出装置およびその製造方法、並びに電子機器
WO2023243252A1 (ja) 光検出装置
WO2023132151A1 (ja) 撮像素子および電子機器
JP2022089279A (ja) 受光素子の配置構造