WO2007079764A1 - Gleichlaufdrehgelenk mit innerer vorspannung - Google Patents

Gleichlaufdrehgelenk mit innerer vorspannung Download PDF

Info

Publication number
WO2007079764A1
WO2007079764A1 PCT/EP2005/014123 EP2005014123W WO2007079764A1 WO 2007079764 A1 WO2007079764 A1 WO 2007079764A1 EP 2005014123 W EP2005014123 W EP 2005014123W WO 2007079764 A1 WO2007079764 A1 WO 2007079764A1
Authority
WO
WIPO (PCT)
Prior art keywords
joint
ball
tracks
shaft
joint part
Prior art date
Application number
PCT/EP2005/014123
Other languages
English (en)
French (fr)
Inventor
Stephan Maucher
Original Assignee
Gkn Driveline International Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Gkn Driveline International Gmbh filed Critical Gkn Driveline International Gmbh
Priority to PCT/EP2005/014123 priority Critical patent/WO2007079764A1/de
Publication of WO2007079764A1 publication Critical patent/WO2007079764A1/de

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D3/00Yielding couplings, i.e. with means permitting movement between the connected parts during the drive
    • F16D3/84Shrouds, e.g. casings, covers; Sealing means specially adapted therefor
    • F16D3/843Shrouds, e.g. casings, covers; Sealing means specially adapted therefor enclosed covers
    • F16D3/845Shrouds, e.g. casings, covers; Sealing means specially adapted therefor enclosed covers allowing relative movement of joint parts due to the flexing of the cover
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D3/00Yielding couplings, i.e. with means permitting movement between the connected parts during the drive
    • F16D3/16Universal joints in which flexibility is produced by means of pivots or sliding or rolling connecting parts
    • F16D3/20Universal joints in which flexibility is produced by means of pivots or sliding or rolling connecting parts one coupling part entering a sleeve of the other coupling part and connected thereto by sliding or rolling members
    • F16D3/22Universal joints in which flexibility is produced by means of pivots or sliding or rolling connecting parts one coupling part entering a sleeve of the other coupling part and connected thereto by sliding or rolling members the rolling members being balls, rollers, or the like, guided in grooves or sockets in both coupling parts
    • F16D3/223Universal joints in which flexibility is produced by means of pivots or sliding or rolling connecting parts one coupling part entering a sleeve of the other coupling part and connected thereto by sliding or rolling members the rolling members being balls, rollers, or the like, guided in grooves or sockets in both coupling parts the rolling members being guided in grooves in both coupling parts
    • F16D3/2237Universal joints in which flexibility is produced by means of pivots or sliding or rolling connecting parts one coupling part entering a sleeve of the other coupling part and connected thereto by sliding or rolling members the rolling members being balls, rollers, or the like, guided in grooves or sockets in both coupling parts the rolling members being guided in grooves in both coupling parts where the grooves are composed of radii and adjoining straight lines, i.e. undercut free [UF] type joints
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D3/00Yielding couplings, i.e. with means permitting movement between the connected parts during the drive
    • F16D3/16Universal joints in which flexibility is produced by means of pivots or sliding or rolling connecting parts
    • F16D3/20Universal joints in which flexibility is produced by means of pivots or sliding or rolling connecting parts one coupling part entering a sleeve of the other coupling part and connected thereto by sliding or rolling members
    • F16D3/22Universal joints in which flexibility is produced by means of pivots or sliding or rolling connecting parts one coupling part entering a sleeve of the other coupling part and connected thereto by sliding or rolling members the rolling members being balls, rollers, or the like, guided in grooves or sockets in both coupling parts
    • F16D3/223Universal joints in which flexibility is produced by means of pivots or sliding or rolling connecting parts one coupling part entering a sleeve of the other coupling part and connected thereto by sliding or rolling members the rolling members being balls, rollers, or the like, guided in grooves or sockets in both coupling parts the rolling members being guided in grooves in both coupling parts
    • F16D3/224Universal joints in which flexibility is produced by means of pivots or sliding or rolling connecting parts one coupling part entering a sleeve of the other coupling part and connected thereto by sliding or rolling members the rolling members being balls, rollers, or the like, guided in grooves or sockets in both coupling parts the rolling members being guided in grooves in both coupling parts the groove centre-lines in each coupling part lying on a sphere
    • F16D3/2245Universal joints in which flexibility is produced by means of pivots or sliding or rolling connecting parts one coupling part entering a sleeve of the other coupling part and connected thereto by sliding or rolling members the rolling members being balls, rollers, or the like, guided in grooves or sockets in both coupling parts the rolling members being guided in grooves in both coupling parts the groove centre-lines in each coupling part lying on a sphere where the groove centres are offset from the joint centre
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D3/00Yielding couplings, i.e. with means permitting movement between the connected parts during the drive
    • F16D3/16Universal joints in which flexibility is produced by means of pivots or sliding or rolling connecting parts
    • F16D3/20Universal joints in which flexibility is produced by means of pivots or sliding or rolling connecting parts one coupling part entering a sleeve of the other coupling part and connected thereto by sliding or rolling members
    • F16D3/22Universal joints in which flexibility is produced by means of pivots or sliding or rolling connecting parts one coupling part entering a sleeve of the other coupling part and connected thereto by sliding or rolling members the rolling members being balls, rollers, or the like, guided in grooves or sockets in both coupling parts
    • F16D3/223Universal joints in which flexibility is produced by means of pivots or sliding or rolling connecting parts one coupling part entering a sleeve of the other coupling part and connected thereto by sliding or rolling members the rolling members being balls, rollers, or the like, guided in grooves or sockets in both coupling parts the rolling members being guided in grooves in both coupling parts
    • F16D2003/22306Universal joints in which flexibility is produced by means of pivots or sliding or rolling connecting parts one coupling part entering a sleeve of the other coupling part and connected thereto by sliding or rolling members the rolling members being balls, rollers, or the like, guided in grooves or sockets in both coupling parts the rolling members being guided in grooves in both coupling parts having counter tracks, i.e. ball track surfaces which diverge in opposite directions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D3/00Yielding couplings, i.e. with means permitting movement between the connected parts during the drive
    • F16D3/16Universal joints in which flexibility is produced by means of pivots or sliding or rolling connecting parts
    • F16D3/20Universal joints in which flexibility is produced by means of pivots or sliding or rolling connecting parts one coupling part entering a sleeve of the other coupling part and connected thereto by sliding or rolling members
    • F16D3/22Universal joints in which flexibility is produced by means of pivots or sliding or rolling connecting parts one coupling part entering a sleeve of the other coupling part and connected thereto by sliding or rolling members the rolling members being balls, rollers, or the like, guided in grooves or sockets in both coupling parts
    • F16D3/223Universal joints in which flexibility is produced by means of pivots or sliding or rolling connecting parts one coupling part entering a sleeve of the other coupling part and connected thereto by sliding or rolling members the rolling members being balls, rollers, or the like, guided in grooves or sockets in both coupling parts the rolling members being guided in grooves in both coupling parts
    • F16D2003/22316Means for fastening or attaching the bellows or gaiters

Definitions

  • the invention relates to a constant velocity joint as a fixed joint with an outer joint part with first ball tracks, an inner joint part with second ball tracks, held in pairs of first and second ball tracks balls and a ball cage, which holds the balls in cage windows in a common plane, and a bellows on the outer joint part on the one hand and a shaft connected to the inner joint part on the other hand is fixed on the other hand for sealing the joint, wherein at least a part of the pairs of tracks extend in the direction of the connection side of the shaft.
  • common Rzeppa joints AC joints
  • UF joints undercut-free ball tracks
  • the above definition also detects counter-track joints, in which only half of the pairs of tracks of first and second ball tracks extend in the direction of the connection side of the shaft.
  • a resulting axial force between the inner joint part and outer joint part which is supported on the outer joint part and acts as a biasing force on the inner joint part.
  • the ball cage under torque with the joint extended due to the opening angle between the ball tracks in the region of the ball contacts, which opens from the joint bottom to the joint opening, the ball cage has the tendency to shift to the opening of the outer joint part, on which it is supported, while thereby the The inner joint part has a tendency to shift to the joint bottom.
  • the present invention has for its object to propose a joint, are used in the means for reducing the rotational clearance with low torque load.
  • the solution to this consists in a constant velocity universal joint with an outer joint part with first ball tracks, a joint inner part with second ball tracks, balls held in pairs of first and second ball tracks and a ball cage, which holds the balls in cage windows in a common plane, and a bellows on the outer joint part, on the one hand, and a shaft connected to the inner joint part, on the other hand, are fixed for sealing the joint, at least part of the pairs of tracks widening in the direction of the connection side of the shaft, wherein an elastic element between shaft and outer joint part is installed in such a way that a biasing force F is effective, which is supported on the outer joint part and acts on the shaft in the direction of the extension of said pairs of tracks.
  • the inventive relative axial movement between the inner joint part, cage and outer joint part is not hindered by an immediate stop possibility between ball cage and inner joint part.
  • the prestressing force built up by the elastic element can be kept relatively low. At higher torques on the joint, it is overdriven by the usual functioning of the joint, so that then the preloading force according to the invention, which exerts the elastic element according to the invention, becomes negligible.
  • the elastic element can be formed by the elastically shortened bellows installed.
  • the bellows may consist of relatively stiff thermoplastic elastomer (TPE).
  • the elastic element is formed by an elastically shortened built-in coil spring, which in particular can be conically wound and thus can adapt to the shape of the bellows.
  • the bellows As with the bellows here is the larger end to connect directly to the outer joint part and the smaller end directly to the shaft.
  • the spring may preferably lie within the bellows.
  • the bellows may have a helically wound endless fold, in which the coil spring is inserted properly.
  • the manufacturing length LO ie the length of the relaxed component
  • the length LM of the component mounted between the outer joint part and the shaft due to the design of the joint as a fixed joint in operation is substantially unchanged.
  • the joint can be designed as AC joint, UF joint or counter track joint, reference being made to the drawings and the following description of the drawing with regard to the meaning of these terms.
  • Figure 1 shows a fully assembled inventive constant velocity universal joint as AC joint in longitudinal section
  • Figure 2 shows the investment conditions in the joint of Figure 1 under the influence of the pre-clamping force as a schematic diagram in the longitudinal half section;
  • Figure 3 shows an AC joint with its details a) in axial view b) in longitudinal section;
  • Figure 4 shows a UF joint with its details a) in axial view b) in longitudinal section;
  • Figure 5 shows a counter track joint with its details a) in axial view b) in longitudinal section.
  • 1 shows a joint 11 according to the invention in the form of a ball joint of the type AC, which is shown in the extended position, ie with coincident longitudinal axes A12 of the outer joint part 12 and A16 of the inner joint part 16 and the shaft 18, respectively.
  • the outer joint part 12 comprises a joint bottom 13 and an integrally formed thereon pivot pin 14 for torque-fixed connection with first drive parts. Opposite to the joint bottom 13, the joint opening 15 is indicated.
  • the inner joint part 16 is seated, in which an insertion opening 17 is formed.
  • the shaft 18 is inserted and secured axially with a retaining ring 19, wherein the rotationally fixed connection is made with formein- grip means.
  • the shaft 18 establishes the connection to second drive parts.
  • outer ball tracks 21 are provided in the inner joint part 16 inner ball tracks 22.
  • Each pair of outer and inner ball tracks takes a ball 20 on.
  • the pairs of tracks extend in the direction of the connection side of the shaft, ie in the figure to the left.
  • the torque-transmitting balls are held in a common plane E by a ball cage 27, which has individual circumferentially-distributed cage windows 28.
  • the space between the outer joint part 12 and shaft 18 is bridged by a bellows 23 which is fixed with a first strap 24 on the outer joint part and is fixed with a second clamping band 25 on the shaft.
  • the installed installation length of the bellows is designated LM.
  • the larger manufacturing length LO of the bellows is shown, which illustrates that the bellows is installed elastic shortened. In this way, the bellows 23, which is supported on the firmly assumed outer joint part 12, exerts on the shaft and thus on the outer joint part in the figure to the left directed biasing force.
  • an AC (Angular Contact) joint (also called Rzeppa joint) similar to that shown in Figure 1, wherein like details are designated by like reference numerals as in Figure 1.
  • the description is hereby incorporated by reference.
  • the median plane E of the joint 11 accommodates the centers of the balls 20.
  • the joint center M represents the fixed intersection between the axis A12 of the outer joint part and the axis A16 of the inner joint part.
  • FIG 4 a UF joint similar to that shown in Figure 3, wherein like details are denoted by the same reference numerals as in Figure 3. Reference is made to the description to that extent.
  • the median plane E of the joint 11 accommodates the centers of the balls 20.
  • the joint center M represents the fixed point of intersection between the axis A12 of the outer joint part and the axis A16 of the inner joint part.
  • FIG. 5 shows a counter-track joint similar to that shown in FIG. 3, wherein the same details are denoted by the same reference numerals as in FIG. The description is hereby incorporated by reference.
  • the median plane E of the joint accommodates the centers of the balls 20.
  • the joint center M represents the fixed point of intersection between the axis A12 of the outer joint part and the axis A16 of the inner joint part.
  • first pairs of tracks of first outer ball tracks 21 1 and first inner ball tracks 222 are provided with an extension in the direction of the opening 15, the correspond to the pairs of tracks of the joint of Figure 3, and second pairs of tracks of second outer ball tracks 21 2 and second inner ball tracks 22 2 , which extend to the first pairs of tracks mirror image with respect to the joint center plane E.
  • First and second pairs of tracks alternate over the circumference.
  • the track shape reference is made to the centers of curvature Z1 of the first outer ball tracks and second inner ball tracks and Z2 of the first inner ball tracks and second outer ball tracks which are offset axially in opposite directions with respect to the plane E, so that in each case a control angle or results in an opening angle of the pairs of tracks, which opens in the direction of the joint opening 15 (first pairs of tracks) and in the direction of the joint bottom 13 (second pairs of tracks).
  • the ball tracks lie in meridian planes through the axes A12 and A16 of the joint components 12, 16 LIST OF REFERENCE NUMBERS

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Steering Controls (AREA)

Abstract

Gleichlaufdrehgelenk (11) als Festgelenk mit einem Gelenkaußenteil (12) mit ersten Kugelbahnen (21), einem Gelenkinnenteil (16) mit zweiten Kugelbahnen (22), in Bahn­-paaren aus ersten und zweiten Kugelbahnen gehaltenen Kugeln (20) und einem Ku­gelkäfig (27), der die Kugeln (20) in Käfigfenstern (28) in einer gemeinsamen Ebene hält, sowie einem Faltenbalg (23), der auf dem Gelenkaußenteil (12) einerseits und einer mit dem Gelenkinnenteil (16) verbundenen Welle (18) andererseits zur Abdichtung des Ge­lenks (11) festgelegt ist, wobei zumindest ein Teil der Bahnpaare sich in Richtung zur (10) Anschlußseite der Welle (18) erweitern, wobei ein elastisches Element zwischen Welle (18) und Gelenkaußenteil (12) so eingebaut ist, daß eine Vorspannkraft wirksam ist, die sich am Gelenkaußenteil (12) abstützt und auf die Welle (18) in Richtung des Erweiterns der genannten Bahnpaare einwirkt.

Description

Gleichlaufdrehgelenk mit innerer Vorspannung
Beschreibung
Die Erfindung betrifft ein Gleichlaufdrehgelenk als Festgelenk mit einem Gelenkaußenteil mit ersten Kugelbahnen, einem Gelenkinnenteil mit zweiten Kugelbahnen, in Paaren aus ersten und zweiten Kugelbahnen gehaltenen Kugeln und einem Kugelkäfig, der die Kugeln in Käfigfenstern in einer gemeinsamen Ebene hält, sowie einem Faltenbalg, der auf dem Gelenkaußenteil einerseits und einer mit dem Gelenkinnenteil verbundenen Welle andererseits zur Abdichtung des Gelenks festgelegt ist, wobei zumindest ein Teil der Bahnpaare sich in Richtung zur Anschlußseite der Welle erweitern. Die genannte Definition trifft auf übliche Rzeppa-Gelenke (AC-Gelenke) und Gelenke mit hinterschnittfreien Kugelbahnen (UF-Gelenke) zu, bei denen sich alle Bahnpaare aus ersten und zweiten Kugelbahnen vom Gelenkboden zur Gelenköffnung entsprechend der Anschlußseite der Welle hin erweitern. Die genannte Definition erfaßt auch Gegenbahngelenke, bei denen sich nur die Hälfte der Bahnpaare aus ersten und zweiten Kugelbahnen in Richtung zur Anschlußseite der Welle erweitern. Unter höherer Drehmomentbelastung entsteht bei solchen Gelenken der Bauarten AC und UF eine resultierende Axialkraft zwischen Gelenkinnenteil und Gelenkaußenteil, die sich am Gelenkaußenteil abstützt und als Vorspannkraft auf das Gelenkinnenteil einwirkt. Hierbei hat unter Drehmoment bei gestrecktem Gelenk auf- grund des Öffnungswinkels zwischen den Kugelbahnen im Bereich der Kugelkontakte, der sich vom Gelenkboden zur Gelenköffnung öffnet, der Kugelkäfig die Tendenz, sich zur Öffnung des Gelenkaußenteils zu verlagern, an dem er sich abstützt, während dadurch das Gelenkinnenteil die Tendenz hat, sich zum Gelenkboden zu verlagern. Bei geringer Drehmomentbelastung und bei Drehmomentfreiheit des Gelenks kommen die genannten Axialkräfte nicht zur Wirkung, die im übrigen bei Gegenbahnge- lenken ohnehin aufgrund der unterschiedlichen Arten der Bahnpaare aufgehoben werden. Gelenkaußenteil und Gelenkinnenteil verhalten sich dadurch unter diesen Bedingungen zueinander axial indifferent mit unbestimmter Relativposition. Infolge fertigungsbedingter Spiele zwischen Kugeln und Bahnpaaren hat das Gelenk dadurch ein Drehspiel zwischen Gelenkaußenteil und Gelenkinnenteil, das zu Geräuschentwicklungen am eingebauten Gelenk führen kann. Dies ist sehr nachteilig für Gelenke, die im Betrieb überwiegend drehmomentfrei sind oder nur gering bela- stet sind, wie zum Beispiel in Lenkwellen von Kraftfahrzeugen eingesetzte Gelenke.
Der vorliegenden Erfindung liegt die Aufgabe zugrunde, ein Gelenk vorzuschlagen, bei dem Mittel zur Reduzierung des Drehspiels bei geringer Drehmomentbelastung eingesetzt sind. Die Lösung hierfür besteht in einem Gleichlaufdrehgelenk mit einem Gelenkaußenteil mit ersten Kugelbahnen, einem Gelenkinnenteil mit zweiten Kugelbahnen, in Paaren aus ersten und zweiten Kugelbahnen gehaltenen Kugeln und einem Kugelkäfig, der die Kugeln in Käfigfenstern in einer gemeinsamen Ebene hält, sowie einem Faltenbalg, der auf dem Gelenkaußenteil einerseits und einer mit dem Gelenkinnenteil verbundenen Welle andererseits zur Abdichtung des Gelenks festge- legt ist, wobei zumindest ein Teil der Bahnpaare sich in Richtung zur Anschlußseite der Welle erweitern, wobei ein elastisches Element zwischen Welle und Gelenkaußenteil so eingebaut ist, daß eine Vorspannkraft F wirksam ist, die sich am Gelenkaußenteil abstützt und auf die Welle in Richtung des Erweitems der genannten Bahnpaare einwirkt.
Hiermit wird erfindungsgemäß mit einfachsten Mitteln, die in den gegebenen Aufbau und die gegebene Konstruktion des Gelenkes selber in keiner Weise eingreifen, erreicht, daß das Gelenk auch in drehmomentfreiem Zustand spielfrei ist. Zu diesem Zweck wird eine axiale Anlage der Kugeln in den Bahnpaaren erzwungen, die sich zur Öffnung des Gelenkes hin erweitem, bei gleichzeitiger Anlage des Kugelkäfigs am Gelenkaußenteil. Aufgrund der axialen Anlage der Kugeln in den Kugelbahnen, die sich im Querschnitt mehrfach oder linienförmig abstützen, wird das fertigungsbedingte Drehspiel überwunden. Um diesen Zustand zu ermöglichen, wird insbesondere vorgeschlagen, daß bei einer spielfreien Anlage der Kugeln an den ersten und zweiten Kugelbahnen der genannten Bahnpaare und einer axialen Anlage des Kugelkäfigs am Gelenkaußenteil das Gelenkinnenteil axiales Spiel gegenüber dem Kugelkäfig hat. Damit wird die erfindungsgemäße relative Axialbewegung zwischen Gelenkinnenteil, Käfig und Gelenkaußenteil nicht durch eine unmittelbare Anschlagmöglichkeit zwischen Kugelkäfig und Gelenkinnenteil behindert. Die durch das elastische Element aufgebaute Vorspannkraft kann relativ gering gehalten werden. Bei höheren Drehmomenten am Ge- lenk wird sie durch die übliche Funktionsweise des Gelenks übersteuert, so daß dann die erfindungsgemäße Vorspannkraft, die das erfindungsgemäße elastische Element ausübt, vernachlässigbar wird.
Nach einer ersten Ausgestaltungsform kann das elastische Element von dem ela- stisch verkürzt eingebauten Faltenbalg gebildet werden. Der Faltenbalg kann hierbei aus relativ steifem thermoplastischen Elastomer (TPE) bestehen.
Nach einer zweiten Ausführungsform, die auch in Ergänzung zur ersten hinzutreten kann, wird vorgeschlagen, daß das elastische Element von einer elastisch verkürzt eingebauten Schraubenfeder gebildet wird, die insbesondere konisch gewickelt sein kann und sich damit der Form des Faltenbalgs anpassen kann. Ebenso wie beim Faltenbalg ist hierbei das größere Ende unmittelbar mit dem Gelenkaußenteil zu verbinden und das kleinere Ende unmittelbar mit der Welle. Die Feder kann bevorzugt innerhalb des Faltenbalges liegen. Hierbei kann der Faltenbalg eine schraubenförmig gewundene endlose Falte aufweisen, in die die Schraubenfeder passend eingelegt ist.
Mit der genannten Definition „verkürzt eingebaut", sowohl auf den Faltenbalg bezogen als auch auf die Schraubenfeder, wird bedeutet, daß die Herstellänge LO, d. h. die Länge des entspannten Bauteils, größer ist als die Länge LM des zwischen Gelenkaußenteil und Welle montierten Bauteils, die aufgrund der Bauform des Gelenks als Festgelenk im Betrieb im wesentlichen unverändert ist. Wie bereits eingangs erwähnt, kann das Gelenk als AC-Gelenk, UF-Gelenk oder Gegenbahngelenk ausgeführt werden, wobei bezüglich der Bedeutung dieser Begriffe auf die Zeichnungen und die nachfolgende Zeichnungsbeschreibung verwiesen wird.
Die erfindungsgemäße Verwendung eines Gelenks der hiermit beschriebenen Art liegt im Einsatz in einer Lenkwelle eines Kraftfahrzeuges, die im Betrieb überwiegend drehmomentfrei ist oder mit geringen Drehmomenten belastet ist. Während in derartigen Lenkwellen herkömmlich überwiegend Kardangelenke eingesetzt werden, wird nunmehr erfindungsgemäß die Verwendung eines geeigneten Gleichlaufdrehgelenks als Kugelfestgelenk vorgeschlagen.
Die Erfindung wird nachstehend anhand der Zeichnungen beispielhaft beschrieben und näher erläutert.
Figur 1 zeigt ein vollständig montiertes erfindungsgemäßes Gleichlaufdrehgelenk als AC-Gelenk im Längsschnitt;
Figur 2 zeigt die Anlageverhältnisse im Gelenk nach Figur 1 unter Einfluß der Vor- Spannkraft als Prinzipbild im Längshalbschnitt;
Figur 3 zeigt ein AC-Gelenk mit seinen Einzelheiten a) in axialer Ansicht b) im Längsschnitt;
Figur 4 zeigt ein UF-Gelenk mit seinen Einzelheiten a) in axialer Ansicht b) im Längsschnitt;
Figur 5 zeigt ein Gegenbahngelenk mit seinen Einzelheiten a) in axialer Ansicht b) im Längsschnitt. Figur 1 zeigt ein erfindungsgemäßes Gelenk 11 in Form eines Kugelfestgelenkes der Bauart AC, das in gestreckter Position, d. h. mit übereinstimmenden Längsachsen A12 des Gelenkaußenteils 12 und A16 des Gelenkinnenteils 16 bzw. der Welle 18 dargestellt ist. Das Gelenkaußenteil 12 umfaßt einen Gelenkboden 13 und einen ein- stückig daran angeformten Gelenkzapfen 14 zur drehmomentfesten Verbindung mit ersten Antriebsteilen. Gegenüberliegend zum Gelenkboden 13 ist die Gelenköffnung 15 angedeutet. Im Gelenkaußenteil 12 sitzt das Gelenkinnenteil 16 ein, in dem eine Einstecköffnung 17 ausgebildet ist. In diese ist die Welle 18 eingesteckt und mit einem Sicherungsring 19 axial gesichert, wobei die drehfeste Verbindung mit Formein- griffsmitteln hergestellt wird. Die Welle 18 stellt die Verbindung zu zweiten Antriebsteilen her. Im Gelenkaußenteil 12 sind äußere Kugelbahnen 21 vorgesehen, im Gelenkinnenteil 16 innere Kugelbahnen 22. Jeweils ein Bahnpaar aus äußeren und inneren Kugelbahnen nimmt eine Kugel 20 auf. Die Bahnpaare erweitern sich in Richtung zur Anschlußseite der Welle, d. h. in der Figur nach links. Die drehmoment- übertragenden Kugeln werden von einem Kugelkäfig 27, der einzelne umfangsver- teilte Käfigfenster 28 hat, in einer gemeinsamen Ebene E gehalten. Der Zwischenraum zwischen Gelenkaußenteil 12 und Welle 18 ist von einem Faltenbalg 23 überbrückt, der mit einem ersten Spannband 24 auf dem Gelenkaußenteil festgelegt ist und mit einem zweiten Spannband 25 auf der Welle festgelegt ist. Die montierte Ein- baulänge des Faltenbalgs ist mit LM bezeichnet. Zum Vergleich dazu ist die größere Herstellänge LO des Faltenbalges gezeigt, wodurch verdeutlicht wird, daß der Faltenbalg elastisch verkürzt eingebaut ist. Hierdurch übt der Faltenbalg 23, der sich am fest angenommenen Gelenkaußenteil 12 abstützt, auf die Welle und damit auf das Gelenkaußenteil eine in der Figur nach links gerichtete Vorspannkraft aus.
In Figur 2 ist an einem Gelenk nach Figur 1 , das allerdings seitenverkehrt im Halbschnitt dargestellt ist, die relative Anlagesituation zwischen Gelenkaußenteil 12, Kugelkäfig 27 und Gelenkinnenteil 16 sowie den Kugeln 20 gezeigt. Hierbei ist mit F die vom vorgespannt eingebauten Faltenbalg bei fest angenommenem Gelenkaußenteil 12 auf das Gelenkinnenteil 16 ausgeübte Vorspannkraft eingezeichnet. Über den Kontakt K1 zwischen innerer Kugelbahn 22 und Kugel 20 wird die Kugel nach rechts gedrückt. Sie wirkt hierbei auf das Käfigfenster 28 am Kontakt K2 ein. Der dadurch nach rechts verlagerte Käfig 27 stützt sich in der inneren Führungsfläche des Gelenkaußenteils 12 am Kontakt K3 ab. Infolge der Abstützsituation von Kugel und Kugelkäfig wird die Kugel 20 zugleich nach radial außen gedrückt und stützt sich in der äußeren Kugelbahn 21 am Kontakt K4 ab. Damit diese Konfiguration der aktiven Kontakte K zustandekommt, muß zwischen dem Kugelkäfig 27 und dem Gelenkinnenteil 16 ein nur prinzipiell angezeigtes Spiel S in axialer Richtung vorhanden sein. Das hiermit gezeigte Gelenk ist aufgrund der Axialkraft F, die das Innenteil 16 aus dem Außenteil 12 in Richtung zur nicht dargestellten Welle bzw. zur Gelenköffnung 15 hin zieht, auch in drehmomentfreiem Zustand ohne Drehspiel und damit geräuschfrei.
In Figur 3 ist ein AC(angular contact)-Gelenk (auch Rzeppa-Gelenk genannt) ähnlich dem in Figur 1 dargestellt, wobei gleiche Einzelheiten mit gleichen Bezugsziffern wie in Figur 1 bezeichnet sind. Auf die Beschreibung wird insoweit Bezug genommen. Die Mittelebene E des Gelenks 11 nimmt die Mittelpunkte der Kugeln 20 auf. Der Gelenkmittelpunkt M stellt den festliegenden Schnittpunkt zwischen der Achse A12 des Gelenkaußenteils und der Achse A16 des Gelenkinnenteils dar. Zur Erzeugung der Bahnform, die die Erweiterung der Bahnpaare aus äußeren Kugelbahnen 21 und inneren Kugelbahnen 22 in Richtung zur Öffnung 15 hin erzeugt, wird auf die Krüm- mungsmittelpunkte Z21 der äußeren Kugelbahnen 21 und Z22 der inneren Kugelbahnen 22 hingewiesen, die gegenüber der Ebene E in entgegengesetzten Richtungen axial versetzt liegen. Hierdurch bilden Tangenten an die Kugeln 20 in den Kugelkontaktpunkten mit den Kugelbahnen (nicht gezeigt) einen Steuerwinkel bzw. einen Öffnungswinkel (angular contact), der sich in Richtung zur Gelenköffnung 15 öffnet. Die Bahngrundlinien bzw die Bahnmittellinien (nicht gezeigt) bestehen bei diesem Gelenk einheitlich aus Kreisbögen mit den genannten Mittelpunkten.
In Figur 4 ist ein UF-Gelenk ähnlich dem in Figur 3 dargestellt, wobei gleiche Einzelheiten mit gleichen Bezugsziffem wie in Figur 3 bezeichnet sind. Auf die Beschrei- bung wird insoweit Bezug genommen. Die Mittelebene E des Gelenks 11 nimmt die Mittelpunkte der Kugeln 20 auf. Der Gelenkmittelpunkt M stellt den festliegenden Schnittpunkt zwischen der Achse A12 des Gelenkaußenteils und der Achse A16 des Gelenkinnenteils dar. Zur Erzeugung der Bahnform, die die Erweiterung der Bahn- paare aus äußeren Kugelbahnen 21 und inneren Kugelbahnen 22 in Richtung zur Öffnung 15 hin erzeugt, wird auf die Krümmungsmittelpunkte Z21 der äußeren Kugelbahnen 21 und Z22 der inneren Kugelbahnen 22 hingewiesen, die gegenüber der Ebene E in entgegengesetzten Richtungen axial versetzt liegen, so daß sich an den Kugeln in den Kugelkontaktpunkten mit den Kugelbahnen ein Steuerwinkel bzw. ein Öffnungswinkel der Bahnen ergibt, der sich in Richtung zur Gelenköffnung 15 öffnet. Die Bahngrundlinien bzw. die Bahnmittellinien (nicht gezeigt) bestehen bei diesem UF-Gelenk aus Kreisbögen mit den genannten Mittelpunkten Z21 , Z22 und jeweils tangential daran anschließenden Geraden, wodurch die Bahnen axial hinterschnittfrei (undercut-free) sind.
In Figur 5 ist ein Gegenbahngelenk ähnlich dem in Figur 3 dargestellt, wobei gleiche Einzelheiten mit gleichen Bezugsziffern wie in Figur 3 bezeichnet sind. Auf die Beschreibung wird insoweit Bezug genommen. Die Mittelebene E des Gelenks nimmt die Mittelpunkte der Kugeln 20 auf. Der Gelenkmittelpunkt M stellt den festliegenden Schnittpunkt zwischen der Achse A12 des Gelenkaußenteils und der Achse A16 des Gelenkinnenteils dar. Bei diesem Gelenk sind erste Bahnpaare aus ersten äußeren Kugelbahnen 211 und ersten inneren Kugelbahnen 222 mit einer Erweiterung in Richtung zur Öffnung 15 hin vorgesehen, die den Bahnpaaren des Gelenks nach Figur 3 entsprechen, sowie zweite Bahnpaare aus zweiten äußeren Kugelbahnen 212 und zweiten inneren Kugelbahnen 222, die zu den ersten Bahnpaaren spiegelbildlich in Bezug auf die Gelenkmittelebene E verlaufen. Erste und zweite Bahnpaare wechseln über dem Umfang einander ab. Zur Bahnform wird auf die Krümmungsmittelpunkte Z1 der ersten äußeren Kugelbahnen und zweiten inneren Kugelbahnen und Z2 der ersten inneren Kugelbahnen und zweiten äußeren Kugelbahnen hingewiesen, die gegenüber der Ebene E in entgegengesetzten Richtungen axial versetzt liegen, so daß sich an den Kugeln jeweils ein Steuerwinkel bzw. ein Öffnungswinkel der Bahnpaare ergibt, der sich in Richtung zur Gelenköffnung 15 (erste Bahnpaare) bzw. in Richtung zum Gelenkboden 13 (zweite Bahnpaare) öffnet.
Bei allen dargestellten Gelenken liegen die Kugelbahnen in Meridianebenen durch die Achsen A12 bzw. A16 der Gelenkbauteile 12, 16 Bezugszeichenliste
11 Gelenk
12 Gelenkaußenteil
13 Gelenkboden
14 Gelenkzapfen
15 Gelenköffnung
16 Gelenkinnenteil
17 Einstecköffnung
18 Welle
19 Sicherungsring
20 Kugel
21 äußere Kugelbahn
22 innere Kugelbahn
23 Faltenbalg
24 Spannband
25 Spannband
26
27 Kugelkäfig
28 Käfigfenster

Claims

Gleichlaufdrehgelenk mit innerer VorspannungPatentansprüche
1. Gleichlaufdrehgelenk (11) als Festgelenk mit einem Gelenkaußenteil (12) mit ersten Kugelbahnen (21), einem Gelenkinnenteil (16) mit zweiten Kugelbahnen (22), in Bahnpaaren aus ersten und zweiten Kugelbahnen gehaltenen Kugeln (20) und einem Kugelkäfig (27), der die Kugeln (20) in Käfigfenstern (28) in einer gemeinsamen Ebene hält, sowie einem Faltenbalg (23), der auf dem Gelenkaußenteil (12) einerseits und einer mit dem Gelenkinnenteil (16) verbundenen Welle (18) andererseits zur Abdichtung des Gelenks (11) festgelegt ist, wobei zumindest ein Teil der Bahnpaare sich in Richtung zur Anschlußseite der Welle (18) erweitern,
dadurch gekennzeichnet,
daß ein elastisches Element zwischen Welle (18) und Gelenkaußenteil (12) so eingebaut ist, daß eine.Vorspannkraft F wirksam ist, die sich am Gelenkaußenteil (12) abstützt und auf die Welle (18) in Richtung des Erweiterns der genannten Bahnpaare einwirkt.
2. Gelenk nach Anspruch 1 ,
dadurch gekennzeichnet,
daß bei einer spielfreien Anlage der Kugeln (20) an den ersten und zweiten Kugelbahnen (21 , 22) der genannten Bahnpaare und einer axialen Anlage des Kugelkäfigs (27) am Gelenkaußenteil (12) das Gelenkinnenteil (16) axiales Spiel gegenüber dem Kugelkäfig (27) hat.
3. Gelenk nach einem der Ansprüche 1 oder 2,
dadurch gekennzeichnet,
daß das elastische Element von dem elastisch verkürzt eingebauten Faltenbalg (23) gebildet wird.
4. Gelenk nach Anspruch 3,
dadurch gekennzeichnet,
daß ein Faltenbalg (23) aus thermoplastischem Elastomer (TPE) verwendet wird.
5. Gelenk nach einem der Ansprüche 1 bis 4,
dadurch gekennzeichnet,
daß das elastische Element von einer elastisch verkürzt eingebauten Schraubenfeder gebildet wird.
6. Gelenk nach Anspruch 5,
dadurch gekennzeichnet,
daß eine konisch gewickelte Schraubenfeder verwendet wird.
7. Gelenk nach einem der Ansprüche 1 bis 6,
dadurch gekennzeichnet, daß das Gelenk ein AC-Gelenk ist.
8. Gelenk nach einem der Ansprüche 1 bis 6,
dadurch gekennzeichnet,
daß das Gelenk ein UF-Gelenk ist.
9. Gelenk nach einem der Ansprüche 1 bis 6,
dadurch gekennzeichnet,
daß das Gelenk ein Gegenbahngelenk ist.
10. Verwendung eines Gelenks nach einem der Ansprüche 1 bis 9 in einer Lenkwelle eines Kraftfahrzeuges.
PCT/EP2005/014123 2005-12-29 2005-12-29 Gleichlaufdrehgelenk mit innerer vorspannung WO2007079764A1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/EP2005/014123 WO2007079764A1 (de) 2005-12-29 2005-12-29 Gleichlaufdrehgelenk mit innerer vorspannung

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/EP2005/014123 WO2007079764A1 (de) 2005-12-29 2005-12-29 Gleichlaufdrehgelenk mit innerer vorspannung

Publications (1)

Publication Number Publication Date
WO2007079764A1 true WO2007079764A1 (de) 2007-07-19

Family

ID=36822720

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2005/014123 WO2007079764A1 (de) 2005-12-29 2005-12-29 Gleichlaufdrehgelenk mit innerer vorspannung

Country Status (1)

Country Link
WO (1) WO2007079764A1 (de)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4608028A (en) * 1981-04-09 1986-08-26 Lohr & Bromkamp Gmbh Rotary constant velocity universal joint
GB2200722A (en) * 1987-01-30 1988-08-10 Loehr & Bromkamp Gmbh Constant velocity universal joints
US5643092A (en) * 1994-08-18 1997-07-01 Girguis; Sobhy Labib Assembly for axially fixing a splined hub on a splined shaft
JP2000266072A (ja) * 1999-03-12 2000-09-26 Ntn Corp 等速自在継手
US20030083135A1 (en) * 2001-10-26 2003-05-01 Kenta Yamazaki Fixed constant velocity joint
US20030146591A1 (en) * 2000-05-31 2003-08-07 Hideo Ouchi Wheel driving unit and method of manufacturing the same
WO2006013011A1 (de) * 2004-07-28 2006-02-09 Gkn Driveline Deutschland Gmbh Gleichlaufdrehgelenk mit vorgespanntem faltenbalg

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4608028A (en) * 1981-04-09 1986-08-26 Lohr & Bromkamp Gmbh Rotary constant velocity universal joint
GB2200722A (en) * 1987-01-30 1988-08-10 Loehr & Bromkamp Gmbh Constant velocity universal joints
US5643092A (en) * 1994-08-18 1997-07-01 Girguis; Sobhy Labib Assembly for axially fixing a splined hub on a splined shaft
JP2000266072A (ja) * 1999-03-12 2000-09-26 Ntn Corp 等速自在継手
US20030146591A1 (en) * 2000-05-31 2003-08-07 Hideo Ouchi Wheel driving unit and method of manufacturing the same
US20030083135A1 (en) * 2001-10-26 2003-05-01 Kenta Yamazaki Fixed constant velocity joint
WO2006013011A1 (de) * 2004-07-28 2006-02-09 Gkn Driveline Deutschland Gmbh Gleichlaufdrehgelenk mit vorgespanntem faltenbalg

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
PATENT ABSTRACTS OF JAPAN vol. 2000, no. 12 3 January 2001 (2001-01-03) *

Similar Documents

Publication Publication Date Title
DE112006003997B4 (de) Gleichlaufdrehgelenkverbinder mit direkter Drehmomentübertragung durch eine Stirnverzahnung
EP1481175B1 (de) Gegenbahngelenk
WO2007039259A1 (de) Gelenkanordnung
DE102006016843B4 (de) Spielfreies Gleichlaufdrehgelenk
WO2007028435A1 (de) Gegenbahngelenk mit begrenzter axialverschiebung
WO1987002435A1 (fr) Differentiel avec articulations de transmission rotative homocinetique
DE3604672A1 (de) Element zum abdichten von drehgelenken
DE3419456A1 (de) Kupplung
DE10132658C1 (de) Längsverschiebeeinheit
DE3446173A1 (de) Daempfungsscheibe mit grossem verdrehwinkelbereich
DE102006016867B4 (de) Spielfreies Gleichlaufdrehgelenk
DE102006016841A1 (de) Spielfreies Gleichlaufdrehgelenk
WO2007028436A1 (de) Gelenkwelle, umfassend ein gegenbahngelenk mit begrenzter axialverschiebung
DE19915417C2 (de) Tripodegelenk mit elastischen Mitteln
DE3135132A1 (de) Kupplungsvorrichtung
DE10220715B4 (de) Seitenwelle mit einem Gegenbahngelenk mit gleicher Orientierung von gegenüberliegenden Bahnpaaren
WO2007079764A1 (de) Gleichlaufdrehgelenk mit innerer vorspannung
DE10325411A1 (de) Anordnung aus Gleichaufgelenk, Schmierfettabdeckung und Flansch
WO2005045270A1 (de) Kugelverschiebegelenk mit geschrägten kugellaufbahnen
DE202004021771U1 (de) Gegenbahngelenk mit optimiertem Bauraum
EP1914433A2 (de) Drehmomentübertragungsbaugruppe, insbesondere für einen Antriebsstrang eines Fahrzeugs
WO2006048029A1 (de) Längsverschiebeeinheit mit axialer positionierung des käfigs
WO2007042053A1 (de) Tripodegelenk mit federnd abgestützten rollenanordnungen
EP1286072B1 (de) Tripodegelenk
WO2018014889A1 (de) Steckverzahnung

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 05825520

Country of ref document: EP

Kind code of ref document: A1