WO2007074609A1 - 電池用非水電解液及びそれを備えた非水電解液電池、並びに電気二重層キャパシタ用電解液及びそれを備えた電気二重層キャパシタ - Google Patents

電池用非水電解液及びそれを備えた非水電解液電池、並びに電気二重層キャパシタ用電解液及びそれを備えた電気二重層キャパシタ Download PDF

Info

Publication number
WO2007074609A1
WO2007074609A1 PCT/JP2006/324104 JP2006324104W WO2007074609A1 WO 2007074609 A1 WO2007074609 A1 WO 2007074609A1 JP 2006324104 W JP2006324104 W JP 2006324104W WO 2007074609 A1 WO2007074609 A1 WO 2007074609A1
Authority
WO
WIPO (PCT)
Prior art keywords
ionic liquid
battery
double layer
electric double
layer capacitor
Prior art date
Application number
PCT/JP2006/324104
Other languages
English (en)
French (fr)
Inventor
Masashi Otsuki
Hiroshi Kanno
Original Assignee
Bridgestone Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2006138044A external-priority patent/JP5134783B2/ja
Priority claimed from JP2006139198A external-priority patent/JP2007201394A/ja
Application filed by Bridgestone Corporation filed Critical Bridgestone Corporation
Priority to US12/159,036 priority Critical patent/US7951495B2/en
Priority to CN2006800517897A priority patent/CN101336495B/zh
Priority to EP06833874.8A priority patent/EP1970990B1/en
Publication of WO2007074609A1 publication Critical patent/WO2007074609A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/54Electrolytes
    • H01G11/58Liquid electrolytes
    • H01G11/62Liquid electrolytes characterised by the solute, e.g. salts, anions or cations therein
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/022Electrolytes; Absorbents
    • H01G9/035Liquid electrolytes, e.g. impregnating materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0561Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of inorganic materials only
    • H01M10/0563Liquid materials, e.g. for Li-SOCl2 cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0569Liquid materials characterised by the solvents
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M6/00Primary cells; Manufacture thereof
    • H01M6/14Cells with non-aqueous electrolyte
    • H01M6/16Cells with non-aqueous electrolyte with organic electrolyte
    • H01M6/162Cells with non-aqueous electrolyte with organic electrolyte characterised by the electrolyte
    • H01M6/164Cells with non-aqueous electrolyte with organic electrolyte characterised by the electrolyte by the solvent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/002Inorganic electrolyte
    • H01M2300/0022Room temperature molten salts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0025Organic electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0025Organic electrolyte
    • H01M2300/0028Organic electrolyte characterised by the solvent
    • H01M2300/0034Fluorinated solvents
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0025Organic electrolyte
    • H01M2300/0028Organic electrolyte characterised by the solvent
    • H01M2300/0037Mixture of solvents
    • H01M2300/004Three solvents
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Definitions

  • the present invention relates to a battery non-aqueous electrolyte, a non-aqueous electrolyte battery including the same, and an electric double-layer capacitor electrolyte and an electric double-layer capacitor including the same. It contains an ionic liquid containing nitrogen and is safe and has no danger of ignition or ignition.
  • a non-aqueous electrolyte battery using lithium as a negative electrode active material has a large electric capacity per unit volume where the electrode potential of lithium is the lowest among metals.
  • Many types of primary batteries and secondary batteries are actively studied, and some are put into practical use and supplied to the factory.
  • non-aqueous electrolyte primary batteries are used as power sources for cameras, electronic watches, and various memory backups.
  • non-aqueous electrolyte secondary batteries are used as drive power sources for notebook computers and mobile phones, and are also being considered for use as main power sources or auxiliary power sources for electric vehicles and fuel cell vehicles.
  • the negative electrode active material lithium reacts violently with water and a compound having an active proton such as alcohol, so that the electrolyte used in the battery is an ester compound and It is limited to aprotic organic solvents such as ether compounds.
  • aprotic organic solvent has low reactivity with the negative electrode active material lithium, for example, when a battery suddenly generates a large current and the battery abnormally generates heat. There is a high risk of gas being generated by vaporization and decomposition, rupture and ignition of the battery due to the generated gas and heat, and ignition of a spark caused by a short circuit.
  • An electric double layer capacitor uses an electric double layer formed between an electrode and an electrolyte.
  • This is a capacitor that has a charge / discharge cycle in which the electrode that electrically adsorbs ions from the electrolyte on the electrode surface is a charge / discharge cycle. Is different. For this reason, in addition to being superior in instantaneous charge / discharge characteristics compared to batteries, the electric double layer capacitor is not accompanied by a chemical reaction, and therefore the instantaneous charge / discharge characteristics are hardly deteriorated even after repeated charge / discharge. Because there is no charge / discharge overvoltage during charge / discharge
  • aqueous electrolytes include aqueous electrolytes, non-aqueous electrolytes, and solid electrolytes.
  • an ionic liquid has attracted attention as a substance that is liquid at room temperature and has excellent ionic conductivity.
  • the cation and the anion are combined by electrostatic attraction, and the number of ion carriers is very large and the viscosity is relatively low, so that the ion mobility is high even at room temperature. It has the characteristic that it is very high.
  • the ionic liquid is composed only of cations and anions, the temperature range in which a liquid state with a high boiling point can be maintained is very wide. Furthermore, since the ionic liquid has almost no vapor pressure, it has low flammability and excellent thermal stability (J.
  • the conventional ionic liquid has low flammability, but usually contains an organic group because it is a liquid at room temperature, and thus there is a risk of combustion. I found that there was. For this reason, it has been found that the risk of ignition and ignition of the electrolyte cannot be sufficiently reduced even when a conventional ionic liquid is added. Also, regarding the viscosity, the electric double layer capacitor using an ionic liquid that is relatively high as the electrolytic solution of the electric double layer capacitor has insufficient low temperature characteristics or has high capacitor characteristics at high rate discharge. It was found that there were problems such as inadequate.
  • a first object of the present invention is to provide a non-aqueous electrolyte solution for a battery that is safe and without the risk of ignition and ignition, and a non-aqueous electrolyte battery that includes such an electrolyte solution and has high safety. There is to do.
  • the second object of the present invention is to provide an electrolytic solution for an electric double layer capacitor capable of improving the low temperature characteristics of the electric double layer capacitor having a low risk of combustion and the capacitor characteristics at a high rate discharge, and such an electrolyte.
  • An object of the present invention is to provide an electric double layer capacitor having an electrolyte solution and having high safety and low temperature characteristics and high rate discharge characteristics.
  • the present inventors have added an ionic liquid containing phosphorus and nitrogen in the cation portion to the electrolytic solution, or only the ionic liquid and the supporting salt are encapsulated.
  • the risk of non-aqueous electrolyte combustion can be greatly reduced.
  • the safety of the non-aqueous electrolyte battery can be reduced. Has been found to be greatly improved, and the present invention has been completed.
  • the nonaqueous electrolytic solution for a battery of the present invention contains an ionic liquid that also has a cation part and a cation part force, and a supporting salt, and contains a cation part of the ionic liquid and nitrogen.
  • the non-aqueous electrolyte battery of the present invention includes the above-described non-aqueous electrolyte for a battery, a positive electrode, and a negative electrode.
  • the non-aqueous electrolyte for a battery of the present invention preferably comprises only the ionic liquid and a supporting salt.
  • the battery non-aqueous electrolyte of the present invention may further contain an aprotic organic solvent.
  • the nonaqueous electrolytic solution for a battery of the present invention contains an aprotic organic solvent
  • the nonaqueous electrolytic solution for a battery preferably contains 5% by volume or more of the ionic liquid.
  • the ionic liquid has a cation moiety S phosphorus nitrogen double bond.
  • S phosphorus nitrogen double bond As an ionic liquid having a phosphorus-nitrogen double bond in the cation part, the following general formula (I):
  • R 1 is independently a halogen element or a monovalent substituent, and at least one R 1 is represented by the following general formula (II):
  • R 2 is each independently a monovalent substituent or hydrogen, provided that at least one R 2 is not hydrogen, and R 2 may be bonded to each other to form a ring; — Represents a monovalent cation), and n represents an ionic liquid represented by 3-15.
  • n is preferably 3 or 4.
  • R 1 in the general formula (I) is an ion represented by at least one of the general formula (II). Of these, the other is preferably fluorine.
  • the present inventors have added an ionic liquid containing phosphorus and nitrogen to the cationic portion to the electrolytic solution or only from the ionic liquid.
  • the risk of combustion of the electrolytic solution can be greatly reduced.
  • the electrolytic solution by applying the electrolytic solution to the electric double layer capacitor, the low temperature characteristics of the electric double layer capacitor and high rate discharge can be achieved. The inventors have found that the capacitor characteristics are greatly improved, and have completed the present invention.
  • the electrolytic solution for an electric double layer capacitor of the present invention contains an ionic liquid composed of a cation portion and a cation portion, and the cation portion of the ionic liquid contains phosphorus and nitrogen.
  • the electric double layer capacitor of the present invention is characterized by comprising the above-mentioned electrolytic solution for electric double layer capacitor, a positive electrode, and a negative electrode.
  • the electrolytic solution for an electric double layer capacitor of the present invention is powered only by the ionic liquid.
  • the ionic liquid The cation moiety has a phosphorus-nitrogen double bond.
  • the ionic liquid represented by the above general formula (I) is particularly preferable.
  • n in the general formula (I) is preferably 3 or 4
  • R 1 in the general formula (I) is an ionicity represented by at least one of the general formula (II).
  • the others are preferably fluorine.
  • nonaqueous electrolytic solution for a battery that contains an ionic liquid containing phosphorus and nitrogen in the cation portion and has a low risk of combustion.
  • a non-aqueous electrolyte battery with a high level of safety provided with a covering electrolyte.
  • the cation portion contains an ionic liquid containing phosphorus and nitrogen, the risk of combustion is low, and the low temperature characteristics of the electric double layer capacitor and the capacitor characteristics at high rate discharge are improved.
  • An electrolytic solution for an electric double layer capacitor that can be provided can be provided.
  • FIG. 1 is a result of 1 H-NMR of the product obtained in Synthesis Example 1 of ionic liquid.
  • FIG. 2 shows 31 P-NMR results of the product obtained in Ionic Liquid Synthesis Example 1.
  • FIG. 3 shows the result of 19 F-NMR of the product obtained in Example 1 of ionic liquid synthesis.
  • FIG. 4 is the result of 1 H-NMR of the product obtained in Synthesis Example 2 of ionic liquid.
  • FIG. 5 shows 31 P-NMR results of the product obtained in Ionic Liquid Synthesis Example 2.
  • FIG. 6 shows the results of 1 H-NMR of the product obtained in Synthesis Example 3 of ionic liquid.
  • FIG. 7 is a 31 P-NMR result of the product obtained in Synthesis Example 3 of ionic liquid.
  • FIG. 8 shows the result of 1 H-NMR of the product obtained in Synthesis Example 4 of ionic liquid.
  • FIG. 9 is a 31 P-NMR result of the product obtained in Synthesis Example 4 of ionic liquid.
  • FIG. 10 shows the result of 1 H-NMR of the product obtained in Example 5 of ionic liquid synthesis.
  • FIG. 11 shows 31 P-NMR results of the product obtained in Ionic Liquid Synthesis Example 5.
  • Nonaqueous battery for battery of the present invention contains an ionic liquid having a cation part and a cation part and a supporting salt, and the cation part of the ionic liquid contains phosphorus and nitrogen.
  • the cation part of the ionic liquid contained in the nonaqueous electrolyte for batteries of the present invention is decomposed to generate nitrogen gas, phosphoric acid ester, etc., the risk of the electrolyte solution burning by the action of the generated nitrogen gas
  • the chain decomposition of the polymer material constituting the battery is suppressed by the action of the generated phosphoric acid ester and the like, so that the risk of ignition and ignition of the battery can be effectively reduced.
  • the cation portion of the ionic liquid contains halogen
  • the halogen functions as an active radical scavenger in the unlikely event of combustion, reducing the risk of electrolyte combustion.
  • the cation portion of the ionic liquid contains an organic substituent, it also has an oxygen blocking effect because it forms a carbide on the separator during combustion.
  • the ionic liquid constituting the nonaqueous electrolyte for a battery of the present invention has at least a melting point of 50 ° C or lower and preferably a melting point of 20 ° C or lower.
  • the ionic liquid has a cation part and a key-on force, and the cation part and the key-on part are bonded by an electrostatic bow I force.
  • the ionic liquid is more preferably an ionic compound represented by the above general formula (I), which is preferably a ionic compound having a phosphorus-nitrogen double bond in the cation portion.
  • the compound of the general formula (I) is a kind of cyclic phosphazene compound having a plurality of phosphorus-nitrogen double bonds, it has a high combustion suppressing effect, and at least one of R 1 is represented by the formula (II) Since it is an ionic substituent, it has ionicity.
  • each R 1 is independently a halogen element or a monovalent substituent, provided that at least one R 1 is an ion represented by the general formula (II). Sex substituent.
  • preferred examples of the halogen element in R 1 include fluorine, chlorine, bromine, etc. Among these, fluorine is particularly preferred.
  • Examples of the monovalent substituent in R 1 include an alkoxy group, an alkyl group, an aryloxy group, an aryl group, a carboxyl group, and an acyl group.
  • alkoxy group examples include a methoxy group, an ethoxy group, a methoxyethoxy group, a propoxy group and the like, a allyloxy group and a vinyloxy group containing a double bond, and an alkoxy-substituted alkoxy group such as a methoxyethoxy group and a methoxyethoxyethoxy group.
  • alkyl group examples include methyl group, ethyl group, propyl group, butyl group, pen
  • the aryl group examples include a phenoxy group, a methyl phenoxy group, and a methoxy phenoxy group.
  • aryl group examples include a phenyl group, a tolyl group, and a naphthyl group.
  • asil group examples include a formyl group, a acetyl group, a propiol group, a petityl group, an isoptylyl group, and a valeryl group.
  • the halogen element in the monovalent substituent is preferably substituted with a halogen element, and preferred examples of the halogen element include fluorine, chlorine, bromine and the like.
  • n in the general formula (I) is 3 to 15, and 3 to 4 is preferable from the viewpoint of easy availability of the raw material, and 3 is particularly preferable.
  • NR 2 and X are mainly due to electrostatic attraction.
  • the compound of the formula (I) having the ionic substituent of the formula ( ⁇ ) has ionicity.
  • each R 2 is independently a monovalent substituent or hydrogen, provided that at least one R 2 is not hydrogen, and R 2 is bonded to each other to form a ring. May be formed.
  • the monovalent substituent in R 2 include an alkyl group and an aryl group.
  • the alkyl group include a methyl group, an ethyl group, a propyl group, a butyl group, and a pentyl group.
  • the aryl group include a phenyl group, a tolyl group, and a naphthyl group.
  • any of the two R 2 forces can be combined to form an aziridine ring, azetidine ring, pyrrolidine ring, piperidine ring.
  • azacycloalkanone ring having a structure in which the methylene group of the azacycloalkane ring is replaced with a carbonyl group.
  • Examples of the ring formed by combining R 2 include a pyridine ring.
  • the hydrogen element in the monovalent substituent may be substituted with a halogen element or the like.
  • X- represents a monovalent key-on.
  • the monovalent key in X— in formula (II) includes F—, Cl—, Br—, ⁇ , BF—, PF—, AsF—, SbF—, CF SO—, (CF SO) N ⁇ ⁇ (
  • At least one R 1 is an ionic substituent of the above formula (II), but the ionic compound is nonflammable. From the point of view that the other is fluorine preferable.
  • the method for producing the ionic compound is not particularly limited.
  • R 3 is independently a halogen element or a monovalent substituent, and at least one R 3 is chlorine; n represents 3 to 15, and a cyclic phosphazene compound represented by: The following general formula (IV):
  • R 4 is independently a halogen element or a monovalent substituent, and at least one R 4 is represented by the following general formula (VI):
  • a + represents a monovalent cation, and represents a monovalent cation
  • the ionicity represented by the general formula (V) can be obtained by simply mixing the cyclic phosphazene compound represented by the general formula (III) and the amine represented by the general formula (IV).
  • the ionic compound of formula (V) since the ionic compound of formula (V) is unstable and difficult to isolate, it may be composed of an aqueous phase and an organic phase.
  • the cyclic phosphazene compound represented by the above general formula (III) and the amine represented by the above general formula (IV) are added and reacted, and the above one is obtained. It is preferable to produce an ionic compound represented by the general formula (V).
  • the cyclic phosphazene compound of the formula (III) and the amine of the formula (IV) are mainly present in the organic phase, while the compound of the formula (V) to be formed is mainly present in the aqueous phase because of its ionic nature. . Therefore, after separating the aqueous phase and the organic phase, the water of the aqueous phase is dried by a known method, whereby the ionic compound of formula (V) can be isolated and isolated. In addition, the ionic compound of formula (V) exists stably even in the atmosphere.
  • each R 3 is independently a halogen element or a monovalent substituent, and at least one R 3 is chlorine.
  • the amine of the formula (IV) is added to the portion of the formula (III) where R 3 is chlorine, it binds to the skeleton phosphorus of the cyclic phosphazene compound of the formula (III) which is the starting material.
  • the number of introduced ionic substituents represented by the formula (VI) in the ionic compound of the formula (V) can be controlled by adjusting the number of chlorines to be produced.
  • examples of the halogen element include fluorine, bromine and the like in addition to chlorine. Among these, chlorine and fluorine are preferable.
  • the monovalent substituent in R 3 those exemplified in the section of the monovalent substituent in R 1 can be similarly exemplified.
  • n is 3 to 15, and 3 to 4 is preferable from the viewpoint of availability, and 3 is particularly preferable.
  • the cyclic phosphazene compounds represented by the above general formula (III) include, for example, all the chlorines starting from commercially available phosphazene compounds in which R 3 in the formula (III) is all chlorine. After fluorinating with a fluorinating agent, and then introducing an alkoxy group or amine group into the target chlorine substitution site and then chlorinating again with a chlorinating agent such as HC1 or phosgene, or the formula (II After calculating the equivalent amount of fluorine to be introduced into a commercially available phosphazene compound in which all R 3 in I) is chlorine, it may be synthesized by adding a necessary amount of a fluorinating agent. it can.
  • the number of chlorine in R 3 in formula (III) can be controlled by changing the amount of chlorinating agent used in rechlorination, the amount of fluorinating agent used in fluorination, and the reaction conditions.
  • R 2 is a R 2 as defined in the above formula (II), are each independently a monovalent substituent or hydrogen, provided that at least one of R 2 Is not hydrogen, and R 2 may be bonded to each other to form a ring.
  • Examples of the monovalent substituent in R 2 of the formula (IV) include those exemplified in the section of the monovalent substituent in R 2 of the formula (II).
  • the! Three R 2 in Formula (IV) As the ring ring and three R 2 are two displacement force formed by the bonding formed by combining any of the three R 2 of formula (II) Examples of the ring formed by combining these two with each other and the ring formed by combining three R 2 may be the same.
  • amine represented by the formula (IV) include aliphatic tertiary amines such as trimethylamine, triethylamine, trippyramine, and tributylamine, N-methyl-2-pyrrolidone, N-ethyl- Examples include cyclic tertiary amines such as 2-pyrrolidone, dialkyl-substituted amines such as dimethylamine, aromatic tertiary amines such as pyridine, and aromatic primary amines such as aryline. Among these, 3 Grade amine is preferred.
  • each R 4 is independently a halogen element or a monovalent substituent, and at least one R 4 is an ionic substituent represented by the general formula (VI). It is.
  • the halogen element in R 4 include fluorine, chlorine, bromine and the like. Note that a part of R 4 can be made chlorine by adjusting the amount of amine used in formula (IV).
  • the monovalent substituent in R 4 those exemplified in the section of the monovalent substituent in R 1 can be similarly mentioned.
  • n in the formula (V) is 3 to 15, and 3 to 4 is particularly preferable from the viewpoint of easy availability of raw materials.
  • R 2 is, by R 2 as defined in the above formula (II), are each independently a monovalent substituent or hydrogen, provided that at least one of R 2 Is not hydrogen, and R 2 may be bonded to each other to form a ring.
  • Formula Examples of the monovalent substituent in R 2 of (VI), can similarly be illustrated those which have been exemplified in the section of the monovalent substituent in R 2 of Formula (II), it was or formula (VI) !
  • the amount of amine used in formula (IV) can be appropriately selected according to the amount of the target amine introduced, for example, in formula (III) A range of 1 to 2.4 mol per mol of chlorine at R 3 in the cyclic phosphazene compound is preferable.
  • the reaction temperature in the reaction of the cyclic phosphazene compound of formula (III) with the amine of formula (IV) is not particularly limited, but ranges from 20 ° C to 80 ° C. Even at the preferred room temperature The reaction proceeds. Further, the reaction pressure is not particularly limited, and the reaction can be performed under atmospheric pressure.
  • the organic solvent used in the organic phase is a cyclic phosphazene compound of the formula (III) that is not miscible with water and the formula (IV Specifically, a solvent having a low polarity such as chloroform or toluene is preferable.
  • the amount of the aqueous phase and organic phase used is not particularly limited, and the volume of the aqueous phase is preferably in the range of 0.2 to 5 mL with respect to 1 mL of the cyclic phosphazene compound of formula (III). The volume is preferably in the range of 2 to 5 mL with respect to 1 mL of the cyclic phosphazene compound of formula (III).
  • a / represents a monovalent cation
  • X— represents a monovalent anion.
  • Examples of the monovalent cation in A + in the formula (VII) include Ag + and Li +.
  • monovalent anion in X— of the formula (VII) monovalent anions other than C1—, specifically, BF—, PF—, AsF—, SbF—, CF SO— , (CF SO) N ⁇ , (CF SO) N ⁇ , (CFS
  • Examples include imide ions such as 2 2 3 2 2 5 2 3 2 3 7 2 2 5 2 3 7 2.
  • imide ion is preferable as X-.
  • the imide ion has a large ionic radius, which is affected by the difference in ionic radius between the cation and the anion (soft'hard base / acid relationship). It is the force that reacts well and the substitution reaction proceeds.
  • a + is Ag +
  • Ag + X is used as the salt of formula (VII), since AgCl precipitates, impurities can be removed easily.
  • the amount of the salt of the formula (VII) used can be appropriately selected according to the amount of the chlorine ion in the ionic compound of the formula (V).
  • the range of 1 to 1.5 mol per mol of chloride ion of the ionic compound of formula (V) is preferred.
  • the reaction temperature in the reaction of the ionic compound of the formula (V) and the salt of the formula (VII) is not particularly limited, but is preferably room temperature to 50 ° C. However, the reaction proceeds sufficiently. Further, the reaction pressure is not particularly limited, and the reaction can be performed under atmospheric pressure.
  • reaction of the ionic compound of formula (V) with the salt of formula (VII) is preferably carried out in an aqueous phase.
  • an ionic compound of the above formula (V) and a silver salt represented by the formula (VII) and A + is Ag +
  • silver chloride is produced as a by-product, but the silver chloride has a very low solubility in water, so that when the reaction is carried out in the aqueous phase, the by-product can be easily separated.
  • Isolation of the target substance, the ionic compound of formula (I), from the aqueous phase may be carried out by evaporating the water in the aqueous phase by a known method.
  • the volume of the aqueous phase is not particularly limited, but is preferably in the range of 2 to 5 mL with respect to 1 mL of the ionic compound of formula (V)! /.
  • the supporting salt used in the non-aqueous electrolyte for a battery of the present invention is preferably a supporting salt that serves as an ion source of lithium ions.
  • the supporting salt is not particularly limited.
  • LiCIO LiCIO
  • LiBF LiPF, LiCF SO, LiAsF, LiC F SO, Li (CF SO) N and Li (C F SO
  • Preferred examples include lithium salts such as N. These supporting salts may be used alone
  • the concentration of the supporting salt in the battery non-aqueous electrolyte of the present invention is preferably in the range of 0.2 to 1.5 mol / L (M), more preferably in the range of 0.5 to 1 mol / L. If the concentration of the supporting salt is less than 0.2 mol / L, the conductivity of the electrolyte cannot be sufficiently ensured, and the discharge characteristics and charging characteristics of the battery may be hindered. In addition, since the viscosity of the electrolyte increases and the mobility of lithium ions cannot be sufficiently ensured, the conductivity of the electrolyte cannot be sufficiently ensured as described above, and the discharge characteristics and charging characteristics of the battery are hindered. Sometimes.
  • the non-aqueous electrolyte for a battery of the present invention is preferably composed of only the ionic liquid and the supporting salt, but depending on the purpose, a known additive used for the non-aqueous electrolyte for a battery It can contain agents. Specifically, the nonaqueous electrolytic solution for a battery of the present invention can contain an aprotic organic solvent.
  • aprotic organic solvent examples include dimethyl carbonate (DMC), jetyl carbonate (DEC), diphenyl carbonate, ethyl methyl carbonate (EMC), ethylene carbonate (EC), propylene carbonate (PC), y ⁇
  • DMC dimethyl carbonate
  • DEC jetyl carbonate
  • EMC ethyl methyl carbonate
  • EC ethylene carbonate
  • PC propylene carbonate
  • Preferable examples include esters such as buta-mouthed ratatatone (GBL), ⁇ -valerolatatatone, and methyl formate (MF), and ethers such as 1,2-dimethoxyethane (DME) and tetrahydrofuran (THF).
  • DME 1,2-dimethoxyethane
  • THF tetrahydrofuran
  • propylene carbonate, 1,2-dimethoxyethane, and ⁇ -butyrorataton are preferred as aprotic organic solvents for the non-aqueous electrolyte of the primary battery, while non-aqueous electrolysis of the secondary battery.
  • liquid aprotic organic solvents include ethylene carbonate, propylene carbonate, jetyl carbonate, dimethyl carbonate, and ethyl methacrylate. Dicarbonate and methyl formate are preferred. Cyclic esters are preferred in that they have a high relative dielectric constant and excellent support salt solubility, while chain esters and chain ethers have a low viscosity, so It is suitable in terms of lowering the viscosity.
  • These aprotic organic solvents may be used alone or in combination of two or more.
  • the content of the ionic liquid in the electrolytic solution is preferably 5% by volume or more from the viewpoint of the safety of the electrolytic solution.
  • the nonaqueous electrolyte battery of the present invention is a nonaqueous electrolyte battery of the present invention.
  • the battery includes a non-aqueous electrolyte for a battery, a positive electrode, and a negative electrode, and may include other members that are usually used in the technical field of non-aqueous electrolyte batteries, such as a separator.
  • It may be a primary battery or a secondary battery.
  • the positive electrode active material of the nonaqueous electrolyte battery of the present invention is partially different between the primary battery and the secondary battery.
  • the positive electrode active material of the nonaqueous electrolyte primary battery fluorinated graphite [( CF)], MnO
  • MnO has a high discharge potential and a high discharge potential and excellent wettability of the electrolyte.
  • Black lead fluoride is preferred. These positive electrode active materials may be used alone or in combination of two or more.
  • Metal oxides such as 2 5 6 13 2 3, lithium such as LiCoO, LiNiO, LiMn O, LiFeO and LiFePO
  • Containing complex oxides metal sulfides such as TiS and MoS, conductive polymers such as polyarrin, etc.
  • the lithium-containing composite oxide may be a composite oxide containing two or three transition metals selected from the group consisting of Fe, Mn, Co, and N.
  • the composite oxide Is LiFe Co Ni O (where 0 ⁇ x ⁇ 1, 0 ⁇ v ⁇ 1, 0 ⁇ x + yxy (1-xy) 2
  • LiCoO, LiNiO, and LiMn O are particularly suitable because of their excellent electrolyte wettability.
  • These positive electrode active materials may be used alone or in combination of two or more.
  • the negative electrode active material of the nonaqueous electrolyte battery of the present invention is partially different between the primary battery and the secondary battery.
  • examples of the negative electrode active material of the non-aqueous electrolyte primary battery include lithium metal, lithium alloy, and the like.
  • examples of metals that form alloys with lithium include Sn, Pb, Al, Au, Pt, In, Zn, Cd, Ag, and Mg.
  • Al, Zn, and Mg are preferable from the viewpoints of reserves and toxicity.
  • These negative electrode active materials may be used alone or in combination of two or more.
  • the negative electrode active material of the non-aqueous electrolyte secondary battery lithium metal itself, an alloy of lithium and A1, In, Sn, Si, Pb, Zn or the like, or a carbon material such as graphite doped with lithium Among these, graphite, which is preferable for carbon materials such as Kurofune, is particularly preferable because it has higher safety and excellent wettability of the electrolyte.
  • graphite include natural black lead, artificial graphite, mesophase carbon microbeads (MCMB) and the like, and widely include easily graphitized carbon and non-graphite carbon.
  • These negative electrode active materials may be used alone or in combination of two or more.
  • a conductive agent and a binder can be mixed in the positive electrode and the negative electrode as necessary.
  • the conductive agent include acetylene black and the like
  • the binder include polyvinylidene fluoride ( PVDF), polytetrafluoroethylene (PTFE), styrene butadiene rubber (SBR), strong ruboxymethylcellulose (CMC) and the like. These additives can be used at the same mixing ratio as before.
  • the shape of the positive electrode and the negative electrode can be appropriately selected from shapes known as an electrode without particular limitation.
  • a sheet shape, a columnar shape, a plate shape, a spiral shape, and the like can be given.
  • a separator that is interposed in the non-aqueous electrolyte battery between the positive and negative electrodes in a role of preventing a short circuit of current due to contact between both electrodes.
  • a material that can reliably prevent contact between both electrodes and that can pass or contain an electrolyte solution such as polytetrafluoroethylene, polypropylene, polyethylene, cenorelose, polybutylene terephthalate, polyethylene
  • a non-woven fabric made of a synthetic resin such as phthalate, a thin layer film and the like are preferable.
  • polypropylene or polyethylene microporous films with a thickness of about 20-50 ⁇ m such as cenololose, polybutylene terephthalate, polyethylene terephthalate, etc. Is particularly preferred.
  • known members that are normally used in batteries can be suitably used.
  • the form of the non-aqueous electrolyte battery of the present invention described above has various known forms such as a coin-type, button-type, paper-type, square-type or spiral-type cylindrical battery that is not particularly limited. Are preferable.
  • a non-aqueous electrolyte battery can be produced by preparing a sheet-like positive electrode and negative electrode and sandwiching a separator between the positive electrode and the negative electrode.
  • a non-aqueous electrolyte battery can be manufactured by preparing a sheet-like positive electrode, sandwiching a current collector, and stacking and winding up the sheet-like negative electrode on the current collector. it can.
  • the electrolytic solution for an electric double layer capacitor of the present invention includes an ionic liquid having a cation part and a cation part, and the cation part of the ionic liquid contains phosphorus and nitrogen.
  • the ionic liquid functions as an ion source for forming the electric double layer, it is not necessary to add a supporting salt separately.
  • the electrolyte for the electric double layer capacitor of the present invention has a relatively low viscosity, the low temperature characteristics of the capacitor can be improved, and the number of ion carriers in the electrolyte is very large.
  • the ionic conductivity is high even at room temperature, the high-rate discharge characteristics of the capacitor can be improved. Furthermore, since the cation portion of the ionic liquid contained in the electrolytic solution for electric double layer capacitor of the present invention is decomposed to generate nitrogen gas, phosphate ester, etc., the electrolytic solution is generated by the action of the generated nitrogen gas. The risk of combustion is reduced and the chain decomposition of the polymer material that composes the capacitor is suppressed by the action of the generated phosphoric acid ester, etc., effectively reducing the risk of ignition and ignition of the capacitor. can do.
  • the ionic liquid constituting the electrolytic solution for an electric double layer capacitor of the present invention has at least a melting point of 50 ° C or less and preferably a melting point of 20 ° C or less.
  • the ionic liquid is composed of a force thione part and a key-on part, and the cation part and the key-on part are bonded by electrostatic attraction.
  • an ion represented by the general formula (I) described in detail in the section of the non-aqueous electrolyte for a battery in which an ionic compound having a phosphorus-nitrogen double bond in the cation portion is preferred is used. Sexual combination is more preferred.
  • the electrolytic solution for electric double layer capacitor of the present invention is preferably powered only by the ionic liquid.
  • a known additive agent used for the electrolytic solution for electric double layer capacitor, etc. Can be contained.
  • the content of the ionic liquid in the electrolytic solution is preferably 3% by volume or more from the viewpoint of the safety of the electrolytic solution.
  • the electric double layer capacitor of the present invention comprises the above electrolyte, a positive electrode, and a negative electrode, and, if necessary, other members that are usually used in the technical field of electric double layer capacitors such as a separator. Since the electric double layer capacitor of the present invention includes the above-described electrolytic solution containing the ionic liquid, it is excellent in low temperature characteristics and high rate discharge characteristics with high safety.
  • the positive electrode and the negative electrode of the electric double layer capacitor of the present invention are not particularly limited, but a porous carbon-based polarizable electrode is usually preferable.
  • the electrode is preferably an electrode having characteristics such as a large specific surface area and bulk specific gravity, electrochemical inactivity, and low resistance. Suitable examples of the porous carbon include activated carbon.
  • the positive electrode and the negative electrode of the electric double layer capacitor of the present invention can be obtained by using graphite in addition to the porous carbon.
  • the electrode generally contains porous carbon such as activated carbon and, if necessary, other components such as a conductive agent and a binder.
  • the raw material of activated charcoal that can be suitably used for the electrode is not particularly limited, and examples thereof include various heat-resistant resins, pitches and the like in addition to phenol resin.
  • heat-resistant resins include polyimide, polyamide, polyamideimide, polyetherimide, polyethersulfone, polyetherketone, bismaleimide triazine, aramid, fluorine resin, polyphenylene, polyphenylene sulfide, etc. Of these, rosin is preferred. These may be used alone or in combination of two or more.
  • the activated carbon is preferably in the form of powder, fiber cloth or the like from the viewpoint of increasing the specific surface area and increasing the capacitance of the electric double layer capacitor.
  • these activated carbons may be subjected to treatments such as heat treatment, stretch forming, vacuum high temperature treatment, and rolling for the purpose of increasing the capacitance of the electric double layer capacitor.
  • the conductive agent used for the electrode is not particularly limited, and examples thereof include graphite and acetylene black.
  • the binder used for the electrode is not particularly limited, but poly (vinylidene fluoride) (PVDF), polytetrafluoroethylene (PTFE), styrene / butadiene rubber (SBR), carboxymethyl cellulose (CMC) ) And the like.
  • the electric double layer capacitor of the present invention preferably includes a separator, a current collector, a container and the like in addition to the positive electrode, the negative electrode, and the electrolyte described above, and is usually used for an electric double layer capacitor.
  • a separator is interposed between the positive and negative electrodes for the purpose of preventing a short circuit of the electric double layer capacitor.
  • the separator is not particularly limited, and a known separator that is usually used as a separator for electric double layer capacitors is preferably used.
  • a material for the separator for example, a microporous film, a nonwoven fabric, paper, and the like are preferable.
  • a nonwoven fabric made of a synthetic resin such as polytetrafluoroethylene, polypropylene, and polyethylene, a thin layer film, and the like are preferable.
  • a microporous film made of polypropylene or polyethylene having a thickness of about 20 to 50 / ⁇ ⁇ is particularly suitable.
  • the current collector a known one that is used as a current collector of a normal electric double layer capacitor without particular limitation is preferably used.
  • the current collector is preferably one having excellent electrochemical corrosion resistance, chemical corrosion resistance, workability, mechanical strength, and low cost.
  • current collectors such as aluminum, stainless steel, and conductive resin Layers are preferred.
  • the container is preferably a known container that is usually used as a container for an electric double layer capacitor without any particular limitation.
  • As the material of the container for example, aluminum, stainless steel, conductive grease and the like are suitable.
  • the form of the electric double layer capacitor of the present invention known forms such as a cylinder type (cylindrical type, square type) and a flat type (coin type) are not particularly limited.
  • These electric Air double layer capacitors are, for example, main or auxiliary power sources for electric vehicles and fuel cell vehicles, memory backups for various electronic equipment, industrial equipment, aircraft equipment, toys, cordless equipment, gas equipment, etc. It can be used as a power source for electromagnetic holding of instant water heaters, and for clocks such as arm clocks, wall clocks, solar clocks, AGS watches, etc.
  • a two-phase system composed of 5 g of water and 5 g of black mouth form is prepared, and the two-phase system is represented by 5 mL of triethylamine, represented by the above general formula (III), where n is 3, and six R 3 5 mL of a cyclic phosphazene compound, one of which is chlorine and five of which is fluorine, was successively added dropwise.
  • the two-phase system was stirred with a stirrer, an exotherm was observed with the reaction. After stirring for 3 minutes, the aqueous phase was collected and the water was evaporated to form white crystals, which were further dried under reduced pressure to obtain 5.2 g of white crystals (yield 53%).
  • 2 g of the obtained white crystals and 2.2 g of AgBF were dissolved in 20 mL of water.
  • ionic liquid A was dissolved in heavy water and analyzed by NMR, 31 P-NMR and 19 F-NMR.
  • the ionic liquid A was represented by the above general formula (I), and n in the formula 3 and 6 out of 6 R 1 were fluorine and 1 was N + (CH 2 CH 3) BF—. 1 H-NMR of the product
  • a two-phase system consisting of 5 g of water and 5 g of black mouth form is prepared, and N-methyl-2-pyrrolide is added to the two-phase system.
  • the two-phase system was stirred with a stirrer, an exotherm was observed with the reaction.
  • the aqueous phase was collected and the water was evaporated to form white crystals, which were further dried under reduced pressure to obtain 3.6 g (yield 35.7%) of white crystals.
  • 2 g of the obtained white crystals and 2.3 g of AgBF were added to water.
  • the aqueous phase was collected using a pipette, evaporated, and then water was distilled off using a vacuum pump to obtain 5.2 g (yield 57%) of white crystals.
  • 2 g of the obtained white crystals and 2.3 g of AgBF were dissolved in 20 mL of water, and after stirring for 30 minutes, an aqueous phase was collected.
  • FIG. 6 shows the results of 1 H-NMR
  • FIG. 7 shows the results of 31 P-NMR
  • the reaction scheme is shown below.
  • the aqueous phase was collected using a pipette and evaporated, and then water was distilled off using a vacuum pump to obtain 4.8 g of white crystals (yield 54%). Next, 2 g of the obtained white crystals and 2.3 g of AgBF were dissolved in 20 mL of water, and after stirring for 30 minutes, an aqueous phase was collected.
  • the aqueous phase was collected using a pipette and evaporated, and then water was distilled off using a vacuum pump to obtain 5.1 g of white crystals (yield 52%).
  • 2 g of the obtained white crystals and 2.3 g of AgBF were dissolved in 20 mL of water, and after stirring for 30 minutes,
  • ionic liquid E Yield 65%.
  • the ionic liquid E was represented by the above general formula (I), and n in the formula was 3, Ensure that 5 of the 1 R are fluorine and one is N + (CH 2) 2 CH BF—.
  • 2 g of a reaction product with a cyclic phosphazene compound in which n is 3 and 1 of 6 R 3 is chlorine and 5 is fluorine is reacted with 1.5 g of LiCF SO, and lg reaction
  • ionic liquid F represented by the above general formula (I), wherein n is 3, 5 of 6 R 1 are fluorine and 1 is N + (CH 2 CH 2) -CF 2 SO— ionic liquid] 1.
  • On-liquid H was obtained.
  • the obtained ionic liquid H was analyzed by 1 H-NMR, represented by the above general formula (I), in which n is 3, 5 out of 6 R 1 are fluorine and 1 is —N + HCHP
  • the safety of the electrolyte was evaluated based on the combustion behavior of flames ignited in an atmospheric environment using a method based on the UL94HB method of UL (underwriting laboratory) standards. At that time, ignitability, combustibility, carbide formation, and secondary ignition phenomena were also observed. Concrete Specifically, based on UL test standards, non-flammable quartz fiber was impregnated with 1 mL of electrolyte solution, and 127 mm X 12.7 mm test pieces were prepared.
  • test flame does not ignite the test piece (combustion length: Omm), it is “nonflammable”, and if the fired flame does not reach the 25 mm line and the fallen object is not ignited, it is “Flammability”, “Self-extinguishing” when the fired flame extinguishes in the 25-100mm line and no fallen objects are ignited, and “flammable” when the fired flame exceeds the 100mm line evaluated.
  • lithium cobalt composite oxide LiCoO
  • lithium cartoon lithium cobalt composite oxide
  • an aluminum foil as a positive electrode current collector obtained by mixing 90 wt.% And fluorocoagulant as a binder in a mass ratio of 90: 5: 5 and dispersing the mixture in N-methylpyrrolidone. After coating and drying, a positive electrode was fabricated by punching into a disk shape of ⁇ 16 mm. On the other hand, the negative electrode was made by punching lithium foil (thickness 0.5 mm) to ⁇ 16 mm.
  • the positive electrode and the negative electrode are stacked and accommodated in a stainless steel case that also serves as a positive electrode terminal through a separator (microporous film: made of polypropylene) impregnated with an electrolytic solution, and the negative electrode terminal is inserted through a polypropylene gasket.
  • a CR2016 type coin-type battery (lithium secondary battery) with a capacity of 4 mAh was produced by sealing with a stainless steel sealing plate.
  • the initial discharge capacity and discharge capacity after 10 cycles of the obtained battery were measured by the following method, and the results shown in Table 1 were obtained.
  • LiPF supporting salt
  • a non-aqueous electrolyte was prepared.
  • the safety of the obtained nonaqueous electrolytic solution was evaluated by the above method.
  • a lithium secondary battery was produced in the same manner as in Example 1, and the discharge capacity at the initial stage and after 10 cycles was measured. Results in Table 1 Show.
  • an electrolyte composed of an ionic liquid containing phosphorus and nitrogen in the cation portion and a supporting salt is very safe, and the electrolyte can be used for a lithium secondary battery. It can be seen that the cycle characteristics of the battery can be improved.
  • EC / PC / DMC represents a mixed organic solvent containing ethylene carbonate (EC), propylene carbonate (PC), and dimethyl carbonate (DMC) in a volume ratio of 1Z1Z3.
  • EC ethylene carbonate
  • PC propylene carbonate
  • DMC dimethyl carbonate
  • MnO positive electrode active material
  • acetylene black conductive agent
  • polyvinylidene fluoride binding
  • a positive electrode was produced by cutting with a ⁇ 16 mm punching machine. The mass of the positive electrode is 20 mg.
  • the negative electrode used was a lithium foil (thickness 0.5 mm) punched to ⁇ 16 mm, and the current collector used nickel foil.
  • the positive and negative electrodes were placed face-to-face through a cellulose separator [TF4030 made by Nihon Kogyo Kogyo Co., Ltd.] and the electrolyte was injected and sealed to produce a CR2016 type lithium primary battery (non-aqueous electrolyte primary battery). .
  • the obtained battery was discharged at 0.2 C at a lower limit voltage of 1.5 V in an environment of 25 ° C., and the discharge capacity was measured. Further, the battery produced in the same manner as described above was stored at 120 ° C. for 60 hours, and the room temperature discharge capacity after storage was measured in the same manner as described above. Furthermore, the room temperature discharge capacity after storage at 120 ° C. for 60 hours was divided by the room temperature discharge capacity immediately after production, and the discharge capacity remaining rate after high temperature storage was calculated. The results are shown in Table 2.
  • LiBF supporting salt
  • a non-aqueous electrolyte was prepared.
  • the safety of the obtained nonaqueous electrolytic solution was evaluated by the above method.
  • a lithium primary battery was produced in the same manner as in Example 17, the discharge capacity immediately after production and after storage at high temperature was measured, and the discharge capacity remaining rate after storage at high temperature was further determined. Calculated. The results are shown in Table 3.
  • PC Propylene carbonate
  • DME 1,2 dimethoxy E Tan
  • the safety of the obtained nonaqueous electrolytic solution was evaluated by the above method.
  • the electrolyte solution of the present invention is extremely safe, and further, by using the electrolyte solution in a lithium primary battery, the room temperature discharge capacity after high temperature storage of the battery can be improved and the high temperature storage characteristics of the battery can be improved. I understand.
  • the ionic liquids A to F synthesized as described above are soaked in a non-flammable quartz fiber so that the safety of the ionic liquids A to F itself is the same as the safety of the electrolyte solution described above. And evaluated. For comparison, the safety of commercially available ionic liquid J was evaluated.
  • the ionic liquid J as a comparison is ⁇ , ⁇ -jetyl-N-methyl-N- (2-methoxyethyl) ammotetrafluoroborate [manufactured by Kanto Chemical Co., Ltd.]. The results are shown in Table 4.
  • activated carbon [AC, trade name: Kuractive-1500, manufactured by Kuraray Chemical Co., Ltd.], acetylene black (conductive agent), and polyvinylidene fluoride (binder) are each in a mass ratio (activated carbon: conductive agent: binder).
  • Adhesive was mixed to 8: 1: 1 to obtain a mixture. LOOmg of the obtained mixture was collected, put into a 20 mm ⁇ pressure carbon container, and compacted under conditions of a pressure of 150 kgf / cm 2 and a normal temperature to prepare a positive electrode and a negative electrode (electrode).
  • the capacitor discharge capacity under each time rate of 1C and 5C was measured, and the ratio of the capacity, namely: (5C capacity) Z (ic capacity) X 100 (%)
  • 1C indicates the condition for discharging the full capacity of the fabricated capacitor in 1Z1 hour (60 minutes)
  • 5C indicates the condition for discharging the full capacity of the fabricated capacitor in 1Z5 time (12 minutes).
  • electrolysis also has ionic liquid power including phosphorus and nitrogen in the cation part. It can be seen that the liquid is very safe and that the low temperature characteristics and high rate discharge characteristics of the capacitor can be improved by using the electrolytic solution in an electric double layer capacitor.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Power Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • Secondary Cells (AREA)

Abstract

 本発明は、発火・引火の危険性がなく安全な電解液に関し、より詳しくは、カチオン部及びアニオン部からなるイオン液体と、支持塩とを含有し、前記イオン液体のカチオン部がリンと窒素を含有することを特徴とする電池用非水電解液、並びにカチオン部及びアニオン部からなるイオン液体を含有し、該イオン液体のカチオン部がリンと窒素を含有することを特徴とする電気二重層キャパシタ用電解液に関するものである。

Description

明 細 書
電池用非水電解液及びそれを備えた非水電解液電池、並びに電気二重 層キャパシタ用電解液及びそれを備えた電気二重層キャパシタ
技術分野
[0001] 本発明は、電池用非水電解液及びそれを備えた非水電解液電池、並びに電気二 重層キャパシタ用電解液及びそれを備えた電気二重層キャパシタに関し、特にカチ オン部にリン及び窒素を含むイオン液体を含有し、発火'引火の危険性がなく安全な 電解液に関するものである。
背景技術
[0002] 近年、電気自動車や燃料電池自動車の主電源若しくは補助電源として、又は小型 電子機器の電源として、軽量且つ長寿命で、高エネルギー密度の電池が求められて いる。これに対し、リチウムを負極活物質とする非水電解液電池は、リチウムの電極電 位が金属中で最も低ぐ単位体積当りの電気容量が大きいために、エネルギー密度 の高い電池の一つとして知られており、 1次電池 · 2次電池を問わず多くの種類のも のが活発に研究され、一部が実用化し巿場に供給されている。例えば、非水電解液 1次電池は、カメラ、電子ウォッチ及び各種メモリーバックアップ用電源として用いられ ている。また、非水電解液 2次電池は、ノート型パソコン及び携帯電話等の駆動電源 として用いられており、更には、電気自動車や燃料電池自動車の主電源若しくは補 助電源として用いることが検討されて 、る。
[0003] これらの非水電解液電池においては、負極活物質のリチウムが水及びアルコール 等の活性プロトンを有する化合物と激しく反応するため、該電池に使用される電解液 は、エステルイ匕合物及びエーテル化合物等の非プロトン性有機溶媒に限られて ヽる 。し力しながら、上記非プロトン性有機溶媒は、負極活物質のリチウムとの反応性が 低いものの、例えば、電池の短絡時等に大電流が急激に流れ、電池が異常に発熱し た際に、気化,分解してガスを発生したり、発生したガス及び熱により電池の破裂,発 火を引き起こしたり、短絡時に生じる火花が引火する等の危険性が高い。
[0004] また、電気二重層キャパシタは、電極と電解質との間に形成される電気二重層を利 用したコンデンサであり、電極表面にお 、て電解質から電気的にイオンを吸着するサ イタルが充放電サイクルである点で、物質移動を伴う酸化還元反応のサイクルが充放 電サイクルである電池とは異なる。このため、電気二重層キャパシタは、電池と比較し て瞬間充放電特性に優れることに加え、化学反応を伴わないため、充放電を繰り返 しても瞬間充放電特性が殆ど劣化しな 、こと、充放電時に充放電過電圧がな 、ため
、簡単で且つ安価な電気回路で足りること、更には、残存容量が分かり易いこと、 -30 〜90°Cの広範囲の温度条件下に渡って耐久温度特性を有すること、無公害性であ ること等、電池に比較して優れた点が多い。そのため、電気二重層キャパシタは、メ モリーバックアップ用等の小容量タイプから、電気自動車のパワーアシスト用等の中 容量タイプ及び電力貯蔵用蓄電池の代替等の大容量タイプまで幅広く検討されてい る。
[0005] 上記電気二重層キャパシタの電極と電解質との接触界面では、極めて短い距離を 隔てて正'負の電荷が対向して配列し、電気二重層を形成している。従って、電解質 は、電気二重層を形成するためのイオン源としての役割を担うため、電極と同様に、 電気二重層キャパシタの基本特性を左右する重要な物質である。そして、該電解質 としては、従来、水系電解液、非水電解液及び固体電解質等が知られている。
[0006] 一方、 1992年の Wilkesらの報告以来、常温で液体であり、イオン伝導性に優れた 物質として、イオン液体が注目を集めている。該イオン液体は、陽イオンと陰イオンが 静電気的引力で結合しており、イオンキャリア数が非常に多ぐ更には粘度も比較的 低いため、イオンの移動度が常温でも高ぐ従って、イオン伝導性が非常に高いとい う特性を有する。また、イオン液体は、陽イオンと陰イオンのみで構成されているため 、沸点が高ぐ液体状態を保持できる温度範囲が非常に広い。更に、該イオン液体 は、蒸気圧が殆どないため、引火性が低ぐ熱的安定性も非常に優れている (J. Elec trochem. So , 144 (1997) 3881及び「イオン性液体の機能創成と応用」,ェヌ.ティー .エス, (2004)参照)。これら様々な利点を有するため、イオン液体は、昨今、非水 電解液 2次電池や電気二重層キャパシタの電解液への適用が検討されており(特開 2004— 111294号公報及び特開 2004— 146346号公報参照)、特に、電気二重 層キャパシタの電解液にイオン液体を用いた場合には、イオン液体が電気二重層を 形成するためのイオン源としても機能するため、別途支持電解質を添加する必要が ないという利点もある。
発明の開示
[0007] し力しながら、本発明者らが検討したところ、従来のイオン液体は、引火性が低いも のの、常温で液体であるために通常有機基を含んでおり、燃焼の危険性があることが 分った。そのため、従来のイオン液体を添加しても、電解液の発火'引火の危険性を 十分に低減できないことが分った。また、粘度に関しても、電気二重層キャパシタの 電解液としては比較的高ぐイオン液体を電解液とした電気二重層キャパシタは、低 温特性が不十分であったり、高率放電でのキャパシタ特性が不十分である等の問題 があることが分った。
[0008] そこで、本発明の第一の目的は、発火'引火の危険性がなく安全な電池用非水電 解液、並びにかかる電解液を備え、安全性が高い、非水電解液電池を提供すること にある。また、本発明の第二の目的は、燃焼の危険性が低ぐ電気二重層キャパシタ の低温特性及び高率放電でのキャパシタ特性を改善することが可能な電気二重層 キャパシタ用電解液、並びにかかる電解液を備え、安全性が高ぐ低温特性及び高 率放電特性に優れた電気二重層キャパシタを提供することにある。
[0009] 本発明者らは、上記第一の目的を達成するために鋭意検討した結果、カチオン部 にリン及び窒素を含むイオン液体を電解液に添加したり或いは該イオン液体と支持 塩のみカゝら電解液を構成することで、非水電解液の燃焼の危険性を大幅に低減でき 、更に、該電解液を非水電解液電池に適用することで、非水電解液電池の安全性が 大幅に改善されることを見出し、本発明を完成させるに至った。
[0010] 即ち、本発明の電池用非水電解液は、カチオン部及びァ-オン部力もなるイオン 液体と、支持塩とを含有し、前記イオン液体のカチオン部カ^ンと窒素を含有すること を特徴とし、また、本発明の非水電解液電池は、上記電池用非水電解液と、正極と、 負極とを備えることを特徴とする。
[0011] 本発明の電池用非水電解液は、前記イオン液体及び支持塩のみからなることが好 ましい。
[0012] 本発明の電池用非水電解液は、更に、非プロトン性有機溶媒を含有してもよい。こ こで、本発明の電池用非水電解液が非プロトン性有機溶媒を含む場合、該電池用非 水電解液は、前記イオン液体を 5体積%以上含有することが好ま ヽ。
[0013] 本発明の電池用非水電解液の好適例においては、前記イオン液体のカチオン部 力 Sリン 窒素間二重結合を有する。ここで、カチオン部にリン 窒素間二重結合を有 するイオン液体としては、下記一般式 (I) :
(NPR1 ) · · · (I)
2 n
[式中、 R1は、それぞれ独立してハロゲン元素又は一価の置換基で、少なくとも一つ の R1は、下記一般式 (II) :
N+R2 X— · · · (II)
3
(式中、 R2は、それぞれ独立して一価の置換基又は水素で、但し、少なくとも一つの R2は水素ではなぐまた、 R2は互いに結合して環を形成してもよく; X—は一価のァ- オンを表す)で表されるイオン性置換基であり; nは 3〜 15を表す]で表されるイオン 液体が特に好ましい。また、前記一般式 (I)中の nは、 3又は 4であることが好ましぐ前 記一般式 (I)中の R1は、少なくとも一つが前記一般式 (II)で表されるイオン性置換基で 、その他がフッ素であることが好ましい。
[0014] また、本発明者らは、上記第二の目的を達成するために鋭意検討した結果、カチ オン部にリン及び窒素を含むイオン液体を電解液に添加したり或いは該イオン液体 のみから電解液を構成することで、電解液の燃焼の危険性を大幅に低減でき、更に 、該電解液を電気二重層キャパシタに適用することで、電気二重層キャパシタの低温 特性及び高率放電でのキャパシタ特性が大幅に向上することを見出し、本発明を完 成させるに至った。
[0015] 即ち、本発明の電気二重層キャパシタ用電解液は、カチオン部及びァ-オン部か らなるイオン液体を含有し、該イオン液体のカチオン部がリンと窒素を含有することを 特徴とし、また、本発明の電気二重層キャパシタは、上記電気二重層キャパシタ用電 解液と、正極と、負極とを備えることを特徴とする。
[0016] 本発明の電気二重層キャパシタ用電解液は、前記イオン液体のみ力 なることが好 ましい。
[0017] 本発明の電気二重層キャパシタ用電解液の好適例においては、前記イオン液体の カチオン部がリン 窒素間二重結合を有する。ここで、カチオン部にリン 窒素間二 重結合を有するイオン液体としては、上記一般式 (I)で表されるイオン液体が特に好ま しい。また、前記一般式 (I)中の nは、 3又は 4であることが好ましぐ前記一般式 (I)中の R1は、少なくとも一つが前記一般式 (II)で表されるイオン性置換基で、その他がフッ素 であることが好ましい。
[0018] 本発明によれば、カチオン部にリン及び窒素を含むイオン液体を含有し、燃焼の危 険性が低い電池用非水電解液を提供することができる。また、カゝかる電解液を備え、 安全性が高! ヽ、非水電解液電池を提供することができる。
[0019] また、本発明によれば、カチオン部にリン及び窒素を含むイオン液体を含有し、燃 焼の危険性が低く、電気二重層キャパシタの低温特性及び高率放電でのキャパシタ 特性を改善することが可能な電気二重層キャパシタ用電解液を提供することができる 。また、かかる電解液を備え、安全性が高ぐ低温特性及び高率放電特性に優れた 電気二重層キャパシタを提供することができる。
図面の簡単な説明
[0020] [図 1]イオン液体合成例 1で得られた生成物の1 H-NMRの結果である。
[図 2]イオン液体合成例 1で得られた生成物の31 P-NMRの結果である。
[図 3]イオン液体合成例 1で得られた生成物の19 F-NMRの結果である。
[図 4]イオン液体合成例 2で得られた生成物の1 H-NMRの結果である。
[図 5]イオン液体合成例 2で得られた生成物の31 P-NMRの結果である。
[図 6]イオン液体合成例 3で得られた生成物の1 H-NMRの結果である。
[図 7]イオン液体合成例 3で得られた生成物の31 P-NMRの結果である。
[図 8]イオン液体合成例 4で得られた生成物の1 H-NMRの結果である。
[図 9]イオン液体合成例 4で得られた生成物の31 P-NMRの結果である。
[図 10]イオン液体合成例 5で得られた生成物の1 H-NMRの結果である。
[図 11]イオン液体合成例 5で得られた生成物の31 P-NMRの結果である。
発明を実施するための最良の形態
[0021] <電池用非水電解液 >
以下に、本発明の電池用非水電解液を詳細に説明する。本発明の電池用非水電 解液は、カチオン部及びァ-オン部力 なるイオン液体と、支持塩とを含有し、前記 イオン液体のカチオン部がリンと窒素を含有することを特徴とする。本発明の電池用 非水電解液に含まれるイオン液体のカチオン部は、分解して、窒素ガスやリン酸エス テル等を発生するため、発生した窒素ガスの作用によって、電解液が燃焼する危険 性が低減されると共に、発生したリン酸エステル等の作用によって、電池を構成する 高分子材料の連鎖分解が抑制されるため、電池の発火'引火の危険性を効果的に 低減することができる。また、上記イオン液体のカチオン部がハロゲンを含む場合、 万が一の燃焼時にはハロゲンが活性ラジカルの捕捉剤として機能し、電解液の燃焼 の危険性を低減する。更に、上記イオン液体のカチオン部が有機置換基を含む場合 、燃焼時にセパレーター上に炭化物 (チヤ一)を生成するため酸素の遮断効果もある
[0022] 本発明の電池用非水電解液を構成するイオン液体は、少なくとも融点が 50°C以下 であり、融点が 20°C以下であることが好ましい。また、該イオン液体は、カチオン部及 びァ-オン部力 なり、該カチオン部及びァ-オン部が静電気的弓 I力で結合して ヽ る。ここで、該イオン液体としては、カチオン部にリン 窒素間二重結合を有するィォ ン性化合物が好ましぐ上記一般式 (I)で表されるイオン性ィ匕合物が更に好ましい。
[0023] 上記一般式 (I)の化合物は、リン 窒素間二重結合を複数有する環状ホスファゼン 化合物の一種であるため、高い燃焼抑制効果を有すると共に、 R1の少なくとも一つが 上記式 (II)のイオン性置換基であるため、イオン性を有する。
[0024] 上記一般式 (I)中の R1は、それぞれ独立してハロゲン元素又は一価の置換基であり 、但し、少なくとも一つの R1は、上記一般式 (II)で表されるイオン性置換基である。ここ で、 R1におけるハロゲン元素としては、フッ素、塩素、臭素等が好適に挙げられ、これ らの中でも、フッ素が特に好ましい。また、 R1における一価の置換基としては、アルコ キシ基、アルキル基、ァリールォキシ基、ァリール基、カルボキシル基、ァシル基等が 挙げられる。上記アルコキシ基としては、メトキシ基、エトキシ基、メトキシエトキシ基、 プロポキシ基等や、二重結合を含むァリルォキシ基やビニルォキシ基等、更にはメト キシエトキシ基、メトキシェトキシエトキシ基等のアルコキシ置換アルコキシ基等が挙 げられ、上記アルキル基としては、メチル基、ェチル基、プロピル基、ブチル基、ペン チル基等が挙げられ、上記ァリールォキシ基としては、フエノキシ基、メチルフエノキ シ基、メトキシフエノキシ基等が挙げられ、上記ァリール基としては、フエニル基、トリ ル基、ナフチル基等が挙げられ、上記ァシル基としては、ホルミル基、ァセチル基、 プロピオ-ル基、プチリル基、イソプチリル基、バレリル基等が挙げられる。なお、上 記一価の置換基中の水素元素は、ハロゲン元素で置換されていることが好ましぐ該 ハロゲン元素としては、フッ素、塩素、臭素等が好適に挙げられる。
[0025] 上記一般式 (I)の nは、 3〜 15であり、原料物質の入手容易性の観点から、 3〜4が 好ましぐ 3が特に好ましい。
[0026] 上記一般式 (II)で表される置換基は、 NR2と Xとが主として静電気的引力によつ
3
て結合してなる。そのため、式 (Π)のイオン性置換基を有する式 (I)の化合物は、イオン 性を有する。
[0027] 上記一般式 (II)中の R2は、それぞれ独立して一価の置換基又は水素であり、但し、 少なくとも一つの R2は水素ではなぐまた、 R2は互いに結合して環を形成してもよい。 ここで、 R2における一価の置換基としては、アルキル基、ァリール基等が挙げられる。 上記アルキル基としては、メチル基、ェチル基、プロピル基、ブチル基、ペンチル基 等が挙げられ、上記ァリール基としては、フエニル基、トリル基、ナフチル基等が挙げ られる。また、複数の R2が互いに結合して環を形成する場合において、 3つの R2のい ずれ力 2つが結合して形成する環としては、アジリジン環、ァゼチジン環、ピロリジン 環、ピぺリジン環等のァザシクロアルカン環や、該ァザシクロアルカン環のメチレン基 がカルボニル基に置き換わった構造のァザシクロアルカノン環等が挙げられ、 3つの
R2が結合して形成する環としては、ピリジン環等が挙げられる。なお、上記一価の置 換基中の水素元素は、ハロゲン元素等で置換されて 、てもよ 、。
[0028] 上記一般式 (II)中の X—は一価のァ-オンを表す。式 (II)の X—における一価のァ-ォ ンとしては、 F―、 Cl—、 Br―、 Γ、 BF―、 PF―、 AsF―、 SbF―、 CF SO―、 (CF SO ) N―、 (
4 6 6 6 3 3 3 2 2
C F SO ) N―、 (C F SO ) N―、 (CF SO )(C F SO )N―、 (CF SO )(C F SO )N―、 (C
2 5 2 2 3 7 2 2 3 2 2 5 2 3 2 3 7 2 2
F SO )(C F SO )N—等が挙げられる。
5 2 3 7 2
[0029] 上記式 (I)のイオン性ィ匕合物にぉ 、て、 R1は、少なくとも一つが上記式 (II)のイオン性 置換基であるが、イオン性ィ匕合物の不燃性の観点から、その他がフッ素であることが 好ましい。
[0030] 上記イオン性ィ匕合物の製造方法は、特に限定されな!、。例えば、下記一般式 (III):
(NPR3 ) · · · (III)
2 n
[式中、 R3は、それぞれ独立してハロゲン元素又は一価の置換基で、少なくとも一つ の R3は塩素であり; nは 3〜 15を表す]で表される環状ホスファゼン化合物と、下記一 般式 (IV) :
NR2 · · · (IV)
3
[式中、 R2は、上記と同義である]で表される 1級、 2級又は 3級のァミンとを反応させ ることで、下記一般式 (V) :
(NPR4 ) · · · (V)
2 n
[式中、 R4は、それぞれ独立してハロゲン元素又は一価の置換基で、少なくとも一つ の R4は、下記一般式 (VI) :
N+R2 C1— · · · (VI)
3
(式中、 R2は上記と同義である)で表されるイオン性置換基であり; nは上記と同義で ある]で表されるイオン性ィ匕合物 (即ち、上記一般式 (I)で表され、上記一般式 (II)中の X一力C1—であるイオン性ィ匕合物)を生成させることができる。
[0031] 更に、上記一般式 (V)で表されるイオン性ィ匕合物の塩素イオンは、適宜他の一価の ァ-オンと置換することができ、例えば、上記一般式 (V)で表されるイオン性化合物と 下記一般式 (VII) :
A+X— · · · (VII)
[式中、 A+は一価の陽イオンを表し、 ΧΊま一価のァ-オンを表す]で表される塩 (ィォ ン交換剤)とを反応 (イオン交換反応)させることで、上記一般式 (I)で表されるイオン 性ィ匕合物を生成させることができる。
[0032] なお、上記一般式 (III)で表される環状ホスファゼン化合物と上記一般式 (IV)で表さ れるァミンとを単に混合するだけでも、上記一般式 (V)で表されるイオン性ィ匕合物を生 成させることができるが、生成した式 (V)のイオン性ィ匕合物が不安定で単離が難 U、こ とがあるため、水相及び有機相からなる二相系に、上記一般式 (III)で表される環状ホ スファゼン化合物と、上記一般式 (IV)で表されるァミンとを加え、反応させて、上記一 般式 (V)で表されるイオン性ィ匕合物を生成させることが好ましい。この方法では、式 (III )の環状ホスファゼン化合物及び式 (IV)のァミンは有機相に主として存在し、一方、生 成する式 (V)の化合物はイオン性を有するため主として水相に存在する。そのため、 水相と有機相とを分離した後、水相の水を公知の方法で乾燥させることで、式 (V)のィ オン性ィ匕合物を単離することができ、単離された式 (V)のイオン性化合物は、大気下 でも安定に存在する。
[0033] 上記一般式 (III)にお 、て、 R3は、それぞれ独立してハロゲン元素又は一価の置換 基で、少なくとも一つの R3は塩素である。ここで、式 (III)中の R3が塩素である部分に式 (IV)のァミンが付加するため、出発物質である式 (III)の環状ホスファゼンィ匕合物の骨 格のリンに結合する塩素の数を調整することで、式 (V)のイオン性化合物中の式 (VI) で表されるイオン性置換基の導入数をコントロールすることができる。
[0034] 上記一般式 (III)の R3において、ハロゲン元素としては、塩素の他に、フッ素、臭素等 が好適に挙げられ、これらの中でも、塩素及びフッ素が好ましい。一方、 R3における 一価の置換基としては、 R1における一価の置換基の項で例示したものを同様に挙げ ることができる。また、式 (III)において、 nは 3〜15であり、入手容易性の観点から、 3 〜4が好ましぐ 3が特に好ましい。
[0035] 上記一般式 (III)で表される環状ホスファゼン化合物は、例えば、式 (III)中の R3が総 て塩素である市販のホスファゼンィ匕合物を出発物質として、総ての塩素をフッ素化剤 によりフッ素化した後、 目的とする塩素置換部位にアルコキシ基やアミン基等を導入 した後、 HC1やホスゲン等の塩素化剤により再び塩素化を行う方法や、使用する式 (II I)中の R3が総て塩素である市販のホスファゼンィ匕合物に対して導入するフッ素の当 量を計算した上で、必要量のフッ素化剤を添加する方法等で合成することができる。 ここで、再塩素化における塩素化剤やフッ素化におけるフッ素化剤の使用量や反応 条件を変えることで、式 (III)の R3における塩素数をコントロールすることができる。
[0036] 上記一般式 (IV)において、 R2は、上記一般式 (II)中の R2と同義で、それぞれ独立し て一価の置換基又は水素であり、但し、少なくとも一つの R2は水素ではなぐまた、該 R2は互いに結合して環を形成してもよ 、。式 (IV)の R2における一価の置換基としては 、式 (II)の R2における一価の置換基の項で例示したものを同様に挙げることができ、ま た、式 (IV)の 3つの R2の!、ずれ力 2つが結合して形成する環及び 3つの R2が結合して 形成する環としては、式 (II)の 3つの R2のいずれか 2つが互いに結合して形成する環 及び 3つの R2が結合して形成する環の項で例示したものを同様に挙げることができる 。式 (IV)で表されるァミンとして、具体的には、トリメチルァミン、トリェチルァミン、トリプ 口ピルァミン、トリブチルァミン等の脂肪族 3級ァミン、 N-メチル -2-ピロリドン、 N-ェ チル- 2-ピロリドン等の環状 3級ァミン、ジメチルァ-リン等のジアルキル置換ァ-リン やピリジン等の芳香族 3級ァミン、ァ-リン等の芳香族 1級ァミン等が挙げられ、これら の中でも、 3級ァミンが好ましい。
[0037] 上記一般式 (V)において、 R4は、それぞれ独立してハロゲン元素又は一価の置換 基で、少なくとも一つの R4は、上記一般式 (VI)で表されるイオン性置換基である。 R4 におけるハロゲン元素としては、フッ素、塩素、臭素等が挙げられる。なお、式 (IV)の ァミンの使用量等を調整することで、 R4の一部を塩素とすることができる。一方、 R4に おける一価の置換基としては、 R1における一価の置換基の項で例示したものを同様 に挙げることができる。また、式 (V)中の nは 3〜15であり、原料の入手容易性の観点 から、 3〜4が好ましぐ 3が特に好ましい。
[0038] 上記一般式 (VI)において、 R2は、上記一般式 (II)中の R2と同義で、それぞれ独立し て一価の置換基又は水素であり、但し、少なくとも一つの R2は水素ではなぐまた、該 R2は互いに結合して環を形成してもよ 、。式 (VI)の R2における一価の置換基としては 、式 (II)の R2における一価の置換基の項で例示したものを同様に挙げることができ、ま た、式 (VI)の 3つの R2の!、ずれ力 2つが結合して形成する環及び 3つの R2が結合して 形成する環としては、式 (II)の 3つの R2のいずれか 2つが互いに結合して形成する環 及び 3つの R2が結合して形成する環の項で例示したものを同様に挙げることができる
[0039] 式 (V)のイオン性ィ匕合物の製造にあたって、式 (IV)のァミンの使用量は、 目的とする ァミンの導入量に応じて適宜選択でき、例えば、式 (III)の環状ホスファゼンィ匕合物中 の R3における塩素 lmolあたり、 l〜2.4molの範囲が好ましい。
[0040] また、式 (III)の環状ホスファゼンィ匕合物と式 (IV)のァミンとの反応における反応温度 は、特に制限されるものではないが、 20°C〜80°Cの範囲が好ましぐ室温でも十分に 反応が進行する。また、反応圧力も特に限定されず、大気圧下で実施することができ る。
[0041] 上記水相及び有機相からなる二相系において、有機相に使用する有機溶媒として は、水に対して混和性が無ぐ式 (III)の環状ホスファゼンィ匕合物と式 (IV)のアミンを溶 解できるものが好ましぐ具体的には、クロ口ホルム、トルエン等の極性の低い溶媒が 好ましい。また、上記水相及び有機相の使用量は、特に限定されるものではなぐ水 相の体積は、式 (III)の環状ホスファゼン化合物 lmLに対して 0.2〜5mLの範囲が好ま しぐ有機相の体積は、式 (III)の環状ホスファゼン化合物 lmLに対して 2〜5mLの範囲 が好ましい。
[0042] 上記一般式 (VII)にお!/、て、 A+は一価の陽イオンを表し、 X—は一価の陰イオンを表 す。式 (VII)の A+における一価の陽イオンとしては、 Ag+、 Li+等が挙げられる。また、式 (VII)の X—における一価の陰イオンとしては、 C1—以外の一価の陰イオン、具体的には 、 BF―、 PF―、 AsF―、 SbF―、 CF SO—の他、 (CF SO ) N―、 (C F SO ) N―、 (C F S
4 6 6 6 3 3 3 2 2 2 5 2 2 3 7
O ) N―、 (CF SO )(C F SO )N―、 (CF SO )(C F SO )N―、 (C F SO )(C F SO )N—
2 2 3 2 2 5 2 3 2 3 7 2 2 5 2 3 7 2 等のイミドイオンが挙げられる。ここで、 A+力Li+である場合、 X—としてはイミドイオンが 好ましい。小さなイオン半径を有する Li+とは対照的に、上記イミドイオンは大きなィォ ン半径を有するため、陽イオンと陰イオンとのイオン半径の違いによる影響 (ソフト'ハ ード塩基 ·酸の関係)で良好に反応し、置換反応が進む力 である。一方、 A+が Ag+ である場合は、ほぼ総ての陰イオンを使用することができる。式 (VII)の塩として Ag+X を使用した場合、 AgClが沈降するため、不純物の除去も簡単に行うことができる。
[0043] 式 (I)のイオン性化合物の製造にあたって、式 (VII)の塩の使用量は、式 (V)のイオン 性ィ匕合物の塩素イオンの量に応じて適宜選択でき、例えば、式 (V)のイオン性化合物 の塩素イオン lmolあたり、 l〜1.5molの範囲が好ましい。
[0044] また、式 (V)のイオン性化合物と式 (VII)の塩との反応における反応温度は、特に制 限されるものではないが、室温〜 50°Cの範囲が好ましぐ室温でも十分に反応が進 行する。また、反応圧力も特に限定されず、大気圧下で実施することができる。
[0045] 上記式 (V)のイオン性ィ匕合物と式 (VII)の塩との反応は、水相で行うことが好ましい。
なお、上記式 (V)のイオン性化合物と、式 (VII)で表され且つ A+が Ag+である銀塩との 反応では、副生成物として塩ィ匕銀が生成するが、該塩化銀は、水に対する溶解度が 非常に低いため、反応を水相で行う場合、副生成物の分離が容易となる。 目的物質 である式 (I)のイオン性ィヒ合物の水相からの単離は、水相の水を公知の方法で蒸発さ せればよい。上記水相の体積は、特に限定されるものではないが、式 (V)のイオン性 化合物 lmLに対して 2〜5mLの範囲が好まし!/、。
[0046] 本発明の電池用非水電解液に用いられる支持塩としては、リチウムイオンのイオン 源となる支持塩が好ましい。該支持塩としては、特に制限はないが、例えば、 LiCIO
4
、 LiBF、 LiPF、 LiCF SO、 LiAsF、 LiC F SO、 Li(CF SO ) N及び Li(C F SO
4 6 3 3 6 4 9 3 3 2 2 2 5
) N等のリチウム塩が好適に挙げられる。これら支持塩は、 1種単独で使用してもよく
2 2
、 2種以上を併用してもよい。本発明の電池用非水電解液中の支持塩の濃度として は、 0.2〜1.5mol/L (M)の範囲が好ましぐ 0.5〜lmol/Lの範囲が更に好ましい。支 持塩の濃度が 0.2mol/L未満では、電解液の導電性を充分に確保することができず、 電池の放電特性及び充電特性に支障をきたすことがあり、 1.5mol/Lを超えると、電解 液の粘度が上昇し、リチウムイオンの移動度を充分に確保できないため、前述と同様 に電解液の導電性を充分に確保できず、電池の放電特性及び充電特性に支障をき たすことがある。
[0047] 本発明の電池用非水電解液は、前記イオン液体及び支持塩のみカゝらなることが好 ましいが、 目的に応じて、電池用非水電解液に使用される公知の添加剤等を含有す ることができる。具体的には、本発明の電池用非水電解液は、非プロトン性有機溶媒 を含有することができる。該非プロトン性有機溶媒としては、ジメチルカーボネート(D MC)、ジェチルカーボネート(DEC)、ジフエ-ルカーボネート、ェチルメチルカーボ ネート(EMC)、エチレンカーボネート (EC)、プロピレンカーボネート (PC)、 y -ブチ 口ラタトン(GBL)、 γ -バレロラタトン、メチルフオルメート(MF)等のエステル類、 1,2- ジメトキシェタン (DME)、テトラヒドロフラン (THF)等のエーテル類が好適に挙げら れる。これらの中でも、 1次電池の非水電解液用の非プロトン性有機溶媒としては、プ ロピレンカーボネート、 1,2-ジメトキシェタン及び γ -ブチロラタトンが好ましぐ一方、 2次電池の非水電解液用の非プロトン性有機溶媒としては、エチレンカーボネート、 プロピレンカーボネート、ジェチルカーボネート、ジメチルカーボネート、ェチルメチ ルカーボネート及びメチルフオルメートが好ましい。なお、環状のエステル類は、比誘 電率が高く支持塩の溶解性に優れる点で好適であり、一方、鎖状のエステル類及び 鎖状のエーテル類は、低粘度であるため、電解液の低粘度化の点で好適である。こ れら非プロトン性有機溶媒は、 1種単独で使用してもよぐ 2種以上を併用してもよい
。ここで、電解液中の上記イオン液体の含有量は、電解液の安全性の観点から、 5体 積%以上が好ましい。
[0048] <非水電解液電池 >
次に、本発明の非水電解液電池を詳細に説明する。本発明の非水電解液電池は
、上述の電池用非水電解液と、正極と、負極とを備え、必要に応じて、セパレーター 等の非水電解液電池の技術分野で通常使用されている他の部材を備えることができ
、 1次電池であっても、 2次電池であってもよい。
[0049] 本発明の非水電解液電池の正極活物質は 1次電池と 2次電池で一部異なり、例え ば、非水電解液 1次電池の正極活物質としては、フッ化黒鉛 [(CF ) ]、 MnO
n 2 (電気 ィ匕学合成であっても化学合成であってもよい)、 V O、 MoO、 Ag CrO、 CuO、 Cu
2 5 3 2 4
S、 FeS、 SO、 SOC1、 TiS等が好適に挙げられ、これらの中でも、高容量で安全
2 2 2 2
性が高ぐ更には放電電位が高く電解液の濡れ性に優れる点で、 MnO
2、フッ化黒 鉛が好ましい。これら正極活物質は、 1種単独で使用してもよぐ 2種以上を併用して ちょい。
[0050] 一方、非水電解液 2次電池の正極活物質としては、 V O、 V O 、 MnO、 MnO
2 5 6 13 2 3 等の金属酸化物、 LiCoO、 LiNiO、 LiMn O、 LiFeO及び LiFePO等のリチウム
2 2 2 4 2 4
含有複合酸化物、 TiS、 MoS等の金属硫化物、ポリア-リン等の導電性ポリマー等
2 2
が好適に挙げられる。上記リチウム含有複合酸化物は、 Fe、 Mn、 Co及び N ゝらな る群から選択される 2種又は 3種の遷移金属を含む複合酸化物であってもよぐこの 場合、該複合酸化物は、 LiFe Co Ni O (式中、 0≤x< 1、 0≤v< 1、 0<x+y x y (1-x-y) 2
≤ 1)、あるいは LiMn Fe O 等で表される。これらの中でも、高容量で安全性が高
2
く、更には電解液の濡れ性に優れる点で、 LiCoO、 LiNiO、 LiMn Oが特に好適
2 2 2 4
である。これら正極活物質は、 1種単独で使用してもよぐ 2種以上を併用してもよい。
[0051] 本発明の非水電解液電池の負極活物質は 1次電池と 2次電池で一部異なり、例え ば、非水電解液 1次電池の負極活物質としては、リチウム金属自体の他、リチウム合 金等が挙げられる。リチウムと合金をつくる金属としては、 Sn、 Pb、 Al、 Au、 Pt、 In、 Zn、 Cd、 Ag、 Mg等が挙げられる。これらの中でも、埋蔵量の多さ、毒性の観点から Al、 Zn、 Mgが好ましい。これら負極活物質は、 1種単独で使用してもよぐ 2種以上 を併用してもよい。
[0052] 一方、非水電解液 2次電池の負極活物質としては、リチウム金属自体、リチウムと A1 、 In、 Sn、 Si、 Pb又は Zn等との合金、リチウムをドープした黒鉛等の炭素材料等が 好適に挙げられ、これらの中でも安全性がより高ぐ電解液の濡れ性に優れる点で、 黒船等の炭素材料が好ましぐ黒鉛が特に好ましい。ここで、黒鉛としては、天然黒 鉛、人造黒鉛、メソフェーズカーボンマイクロビーズ (MCMB)等、広くは易黒鉛化力 一ボンや難黒鉛ィ匕カーボンが挙げられる。これら負極活物質は、 1種単独で使用して もよぐ 2種以上を併用してもよい。
[0053] 上記正極及び負極には、必要に応じて導電剤、結着剤を混合することができ、導 電剤としてはアセチレンブラック等が挙げられ、結着剤としてはポリフッ化ビ-リデン( PVDF)、ポリテトラフルォロエチレン(PTFE)、スチレン 'ブタジエンゴム(SBR)、力 ルボキシメチルセルロース(CMC)等が挙げられる。これらの添加剤は、従来と同様 の配合割合で用いることができる。
[0054] また、上記正極及び負極の形状としては、特に制限はなぐ電極として公知の形状 の中から適宜選択することができる。例えば、シート状、円柱形状、板状形状、スパイ ラル形状等が挙げられる。
[0055] 本発明の非水電解液電池に使用できる他の部材としては、非水電解液電池におい て、正負極間に、両極の接触による電流の短絡を防止する役割で介在させるセパレ 一ターが挙げられる。セパレーターの材質としては、両極の接触を確実に防止し得、 且つ電解液を通したり含んだりできる材料、例えば、ポリテトラフルォロエチレン、ポリ プロピレン、ポリエチレン、セノレロース系、ポリブチレンテレフタレート、ポリエチレンテ レフタレート等の合成樹脂製の不織布、薄層フィルム等が好適に挙げられる。これら の中でも、厚さ 20〜50 μ m程度のポリプロピレン又はポリエチレン製の微孔性フィルム セノレロース系、ポリブチレンテレフタレート、ポリエチレンテレフタレート等のフイノレム が特に好適である。本発明では、上述のセパレーターの他にも、通常電池に使用さ れている公知の各部材が好適に使用できる。
[0056] 以上に説明した本発明の非水電解液電池の形態としては、特に制限はなぐコイン タイプ、ボタンタイプ、ペーパータイプ、角型又はスパイラル構造の円筒型電池等、種 々の公知の形態が好適に挙げられる。ボタンタイプの場合は、シート状の正極及び 負極を作製し、該正極及び負極でセパレーターを挟む等して、非水電解液電池を作 製することができる。また、スパイラル構造の場合は、例えば、シート状の正極を作製 して集電体を挟み、これに、シート状の負極を重ね合わせて巻き上げる等して、非水 電解液電池を作製することができる。
[0057] <電気二重層キャパシタ用電解液 >
次に、本発明の電気二重層キャパシタ用電解液を詳細に説明する。本発明の電気 二重層キャパシタ用電解液は、カチオン部及びァ-オン部力 なるイオン液体を含 有し、該イオン液体のカチオン部がリンと窒素を含有することを特徴とする。本発明の 電気二重層キャパシタ用電解液においては、イオン液体が、電気二重層を形成する ためのイオン源として機能するため、別途支持塩を添加する必要がない。また、本発 明の電気二重層キャパシタ用電解液は、粘度が比較的低いため、キャパシタの低温 特性を向上させることができ、更に、電解液中のイオンキャリア数が非常に多ぐィォ ンの移動度が常温でも高ぐイオン伝導性が非常に高いため、キャパシタの高率放 電特性を向上させることもできる。また更に、本発明の電気二重層キャパシタ用電解 液に含まれるイオン液体のカチオン部は、分解して、窒素ガスやリン酸エステル等を 発生するため、発生した窒素ガスの作用によって、電解液が燃焼する危険性が低減 されると共に、発生したリン酸エステル等の作用によって、キャパシタを構成する高分 子材料の連鎖分解が抑制されるため、キャパシタの発火'引火の危険性を効果的に 低減することができる。更に、上記イオン液体のカチオン部がハロゲンを含む場合、 万が一の燃焼時にはハロゲンが活性ラジカルの捕捉剤として機能し、電解液の燃焼 の危険性を低減する。また更に、上記イオン液体のカチオン部が有機置換基を含む 場合、燃焼時にセパレーター上に炭化物 (チヤ一)を生成するため酸素の遮断効果 もめる。 [0058] 本発明の電気二重層キャパシタ用電解液を構成するイオン液体は、少なくとも融点 が 50°C以下であり、融点が 20°C以下であることが好ましい。また、該イオン液体は、力 チオン部及びァ-オン部からなり、該カチオン部及びァ-オン部が静電気的引力で 結合している。ここで、該イオン液体としては、カチオン部にリン 窒素間二重結合を 有するイオン性化合物が好ましぐ電池用非水電解液の項で詳述した上記一般式 (I) で表されるイオン性ィ匕合物が更に好まし 、。
[0059] 本発明の電気二重層キャパシタ用電解液は、前記イオン液体のみ力 なることが好 ましいが、 目的に応じて、電気二重層キャパシタ用電解液に使用される公知の添カロ 剤等を含有することができる。ここで、電解液中の上記イオン液体の含有量は、電解 液の安全性の観点から、 3体積%以上が好ま 、。
[0060] <電気二重層キャパシタ >
次に、本発明の電気二重層キャパシタを詳細に説明する。本発明の電気二重層キ ャパシタは、上記電解液と、正極と、負極とを備え、必要に応じて、セパレーター等の 電気二重層キャパシタの技術分野で通常使用されている他の部材を備える。本発明 の電気二重層キャパシタは、上述したイオン液体を含有する電解液を備えるため、安 全性が高ぐ低温特性及び高率放電特性に優れる。
[0061] 本発明の電気二重層キャパシタの正極及び負極としては、特に制限はないが、通 常、多孔性炭素系の分極性電極が好ましい。該電極としては、通常、比表面積及び かさ比重が大きぐ電気化学的に不活性で、抵抗が小さい等の特性を有するものが 好ましい。上記多孔性炭素としては、活性炭等が好適に挙げられる。なお、本発明の 電気二重層キャパシタの正極及び負極としては、上記多孔性炭素の他に、黒鉛を用 いることちでさる。
[0062] 上記電極は、一般的には、活性炭等の多孔性炭素を含有し、必要に応じて導電剤 や結着剤等のその他の成分を含有する。上記電極に好適に用いることができる活性 炭の原料としては、特に制限はなぐ例えば、フエノール榭脂の他、各種の耐熱性榭 脂、ピッチ等が好適に挙げられる。耐熱性榭脂としては、例えば、ポリイミド、ポリアミド 、ポリアミドイミド、ポリエーテルイミド、ポリエーテルスルホン、ポリエーテルケトン、ビス マレイミドトリアジン、ァラミド、フッ素榭脂、ポリフエ-レン、ポリフエ-レンスルフイド等 の榭脂が好適に挙げられる。これらは 1種単独で使用してもよぐ 2種以上を併用して もよい。上記活性炭の形体としては、より比表面積を高くして、電気二重層キャパシタ の静電容量を大きくする点から、粉末状、繊維布状等の形体が好ましい。また、これ らの活性炭は、電気二重層キャパシタの静電容量をより高くする目的で、熱処理、延 伸成形、真空高温処理、圧延等の処理がなされていてもよい。
[0063] 上記電極に用いる導電剤としては、特に制限はないが、黒鉛、アセチレンブラック 等が挙げられる。また、上記電極に用いる結着剤としては、特に制限はないが、ポリ フッ化ビ-リデン(PVDF)、ポリテトラフルォロエチレン(PTFE)、スチレン'ブタジェ ンゴム(SBR)、カルボキシメチルセルロース(CMC)等が挙げられる。
[0064] 本発明の電気二重層キャパシタは、上述した正極、負極、電解液の他に、セパレー ター、集電体、容器等を備えるのが好ましぐ更に通常電気二重層キャパシタに使用 されている公知の各部材を備えることができる。ここで、セパレーターは、電気二重層 キャパシタの短絡防止等を目的として、正負電極間に介在される。該セパレーターと しては、特に制限はなぐ通常、電気二重層キャパシタのセパレーターとして用いら れる公知のセパレーターが好適に用いられる。セパレーターの材質としては、例えば 、微多孔性フィルム、不織布、紙等が好適に挙げられる。具体的には、ポリテトラフル ォロエチレン、ポリプロピレン、ポリエチレン等の合成樹脂製の不織布、薄層フィルム 等が好適に挙げられる。これらの中でも、厚さ 20〜50 /ζ πι程度のポリプロピレン又は ポリエチレン製の微孔性フィルムが特に好適である。
[0065] 前記集電体としては、特に制限はなぐ通常電気二重層キャパシタの集電体として 用いられる公知のものが好適に用いられる。該集電体としては、電気化学的耐食性、 化学的耐食性、加工性、機械的強度に優れ、低コストであるものが好ましぐ例えば、 アルミニウム、ステンレス鋼、導電性榭脂等の集電体層等が好ましい。
[0066] 前記容器としては、特に制限はなぐ通常電気二重層キャパシタの容器として用い られる公知のものが好適に挙げられる。該容器の材質としては、例えば、アルミニウム 、ステンレス鋼、導電性榭脂等が好適である。
[0067] 本発明の電気二重層キャパシタの形態としては、特に制限はなぐシリンダ型(円筒 型、角型)、フラット型 (コイン型)等の公知の形態が、好適に挙げられる。これらの電 気二重層キャパシタは、例えば、電気自動車や燃料電池自動車の主電源若しくは補 助電源や、種々の電子機器、産業用機器、航空用機器等のメモリーバックアップ用 や、玩具、コードレス用機器、ガス機器、瞬間湯沸し機器等の電磁ホールド用や、腕 時計、柱時計、ソーラ時計、 AGS腕時計等の時計用の電源等として用いることがで きる。
[0068] <実施例 >
以下に、実施例を挙げて本発明を更に詳しく説明するが、本発明は下記の実施例 に何ら限定されるものではな 、。
[0069] (イオン液体合成例 1 )
水 5gとクロ口ホルム 5gからなる二相系を調製し、該二相系にトリェチルァミン 5mLと 、上記一般式 (III)で表され、式中の nが 3であって、 6つの R3のうち 1つが塩素で且つ 5つがフッ素である環状ホスファゼンィ匕合物 5mLとを順次滴下した。該二相系をスタ 一ラーで撹拌すると、反応に伴って発熱が観測された。 3分間の撹拌の後に、水相を 採取し、水を蒸発させたところ白色結晶が生成し、更に減圧乾燥して白色結晶 5.2g( 収率 53%)を得た。次に、得られた白色結晶 2g及び AgBF 2.2gを水 20mLに溶解
4
させ、 30分間の撹拌の後に、水相を採取し、水を蒸発させたところ透明の液体が残留 し、更に減圧乾燥してイオン液体 A 1.8g (収率 79%)を得た。得られたイオン液体 A を重水に溶解させて、 NMR、 31P- NMR及び19 F- NMRで分析したところ、該ィ オン液体 Aは、上記一般式 (I)で表され、式中の nが 3であって、 6つの R1のうち 5つが フッ素で且つ 1つが N+(CH CH ) BF—であることを確認した。生成物の1 H-NMR
2 2 3 4
の結果を図 1に、 31P-NMRの結果を図 2に、 19F-NMRの結果を図 3に、反応スキー ムを下記に示す。 [0070]
Figure imgf000021_0001
AgBF4
Figure imgf000021_0002
F '反応スキーム 1
[0071] (イオン液体合成例 2)
水 5gとクロ口ホルム 5gからなる二相系を調製し、該二相系に N-メチル -2-ピロリド ン 5mLと、上記一般式 (III)で表され、式中の nが 3であって、 6つの R3のうち 1つが塩 素で且つ 5つがフッ素である環状ホスファゼンィヒ合物 5mLとを順次滴下した。該二相 系をスターラーで撹拌すると、反応に伴って発熱が観測された。 3分間の撹拌の後に 、水相を採取し、水を蒸発させたところ白色結晶が生成し、更に減圧乾燥して白色結 晶 3.6g (収率 35.7%)を得た。次に、得られた白色結晶 2g及び AgBF 2.3gを水 20
4
mLに溶解させ、 30分間の撹拌の後に、水相を採取し、水を蒸発させたところ透明の 液体が残留し、更に減圧乾燥してイオン液体 B 1.21g (収率 53.3%)を得た。得られ たイオン液体 Bを重水に溶解させて、 ^H-NMRで分析したところ、該イオン液体 Bは 、上記一般式 (I)で表され、式中の nが 3であって、 6つの R1のうち 5つがフッ素で且つ 1つが上記一般式 (II)で表されるイオン性置換基で、式 (II)中の X—が BF—で、 R2の一
4
つがメチル基で、他の二つの R2が互いに結合して窒素原子と共に 2-ァザシクロペン タノン環を形成して 、るイオン性ィ匕合物であることを確認した。生成物の1 H-NMRの 結果を図 4に、 31P-NMRの結果を図 5に、反応スキームを下記に示す。
[0072]
Figure imgf000023_0001
反応スキーム 2
[0073] (イオン液体合成例 3)
水 15mLとクロ口ホルム 15mLからなる二相系を調製し、該二相系にピリジン 5mLと、 上記一般式 (III)で表され、式中の nが 3であって、 6つの R3のうち 1つが塩素で且つ 5 つがフッ素である環状ホスファゼンィ匕合物 5mLとを順次滴下した。その後、該二相系 を冷却しながら撹拌すると、クロ口ホルム相に白色結晶が沈殿した。常温に戻して撹 拌すると該白色結晶は消えた。なお、クロ口ホルム相は、反応前は無色であつたが、 反応後は白濁した。ピペットを用いて水相を採取し、エバポレートした後、真空ポンプ を用いて水を留去したところ、白色結晶 5.2g (収率 57%)を得た。次に、得られた白 色結晶 2g及び AgBF 2.3gを水 20mLに溶解させ、 30分間の撹拌の後に、水相を採
4
取し、水を蒸発させたところ透明の液体が残留し、更に減圧乾燥してイオン液体 C 1. 4g (収率 60%)を得た。得られたイオン液体 Cを重水に溶解させて、 iH-NMRで分 祈したところ、該イオン液体 Cは、上記一般式 (I)で表され、式中の nが 3であって、 6つ の R1のうち 5つがフッ素で且つ一つが N+C H BF—であることを確認した。生成物
5 5 4
1 H-NMRの結果を図 6に、 31P-NMRの結果を図 7に、反応スキームを下記に示す
[0074]
Figure imgf000025_0001
F F
Figure imgf000025_0002
F F '反応スキーム 3
[0075] (イオン液体合成例 4)
水 15mLとクロ口ホルム 15mLからなる二相系を調製し、該二相系にァ-リン 5mLと、 上記一般式 (III)で表され、式中の nが 3であって、 6つの R3のうち 1つが塩素で且つ 5 つがフッ素である環状ホスファゼンィ匕合物 5mLとを順次滴下した。その後、該二相系 を冷却しながら撹拌すると、クロ口ホルム相に白色結晶が沈殿した。常温に戻して撹 拌すると該白色結晶は消えた。なお、クロ口ホルム相は、反応前は無色であつたが、 反応後は白濁した。ピペットを用いて水相を採取し、エバポレートした後、真空ポンプ を用いて水を留去したところ、白色結晶 4.8g (収率 54%)を得た。次に、得られた白 色結晶 2g及び AgBF 2.3gを水 20mLに溶解させ、 30分間の撹拌の後に、水相を採
4
取し、水を蒸発させたところ透明の液体が残留し、更に減圧乾燥してイオン液体 D 1. 6g (収率 72%)を得た。得られたイオン液体 Dを重水に溶解させて、 iH-NMRで分 祈したところ、該イオン液体 Dは、上記一般式 (I)で表され、式中の nが 3であって、 6つ の R1のうち 5つがフッ素で且つ一つが N+H C H BF—であることを確認した。生成
2 6 5 4
物の1 H-NMRの結果を図 8に、 31P-NMRの結果を図 9に、反応スキームを下記に示 す。
[0076]
Figure imgf000027_0001
F F I 、Ν I
F F
Figure imgf000027_0002
-反応スキーム 4
[0077] (イオン液体合成例 5)
水 15mLとクロ口ホルム 15mLからなる二相系を調製し、該二相系にジメチルァユリ ン 5mLと、上記一般式 (III)で表され、式中の nが 3であって、 6つの R3のうち 1つが塩素 で且つ 5つがフッ素である環状ホスファゼンィ匕合物 5mLとを順次滴下した。その後、 該二相系を冷却しながら撹拌すると、クロ口ホルム相に白色結晶が沈殿した。常温に 戻して撹拌すると該白色結晶は消えた。なお、クロ口ホルム相は、反応前は無色であ つたが、反応後は白濁した。ピペットを用いて水相を採取し、エバポレートした後、真 空ポンプを用いて水を留去したところ、白色結晶 5.1g (収率 52%)を得た。次に、得 られた白色結晶 2g及び AgBF 2.3gを水 20mLに溶解させ、 30分間の撹拌の後に、
4
水相を採取し、水を蒸発させたところ透明の液体が残留し、更に減圧乾燥してイオン 液体 E 1.5g (収率 65%)を得た。得られたイオン液体 Eを重水に溶解させて、 'Η-Ν MRで分析したところ、該イオン液体 Eは、上記一般式 (I)で表され、式中の nが 3であ つて、 6つの R1のうち 5つがフッ素で且つ一つが N+(CH ) C H BF—であることを確
3 2 6 5 4
認した。生成物の1 H- NMRの結果を図 10に、 31P- NMRの結果を図 11に、反応スキ ームを下記に示す。
[0078]
Figure imgf000029_0001
Figure imgf000029_0002
'反応スキーム 5
[0079] (イオン液体合成例 6)
上記イオン液体合成例 1と同様にして合成した、トリェチルァミンと、上記一般式 (III) で表され、式中の nが 3であって、 6つの R3のうち 1つが塩素で且つ 5つがフッ素であ る環状ホスファゼン化合物との反応物 2gに LiCF SOを 1.5g反応させ、更に lg反応
3 3
させた後、ろ過してイオン液体 F [上記一般式 (I)で表され、式中の nが 3であって、 6つ の R1のうち 5つがフッ素で且つ 1つが N+(CH CH ) -CF SO—であるイオン液体] 1.
2 2 3 3 3
54g (収率 61%)を得た。
[0080] (イオン液体合成例 7)
AgBFの代わりに AgPFを用いる以外は上記イオン液体合成例 1と同様にして、
4 6 ィ オン液体 Gを得た。得られたイオン液体 Gを1 H-NMRで分析し、上記一般式 (I)で表 され、式中の nが 3であって、 6つの R1のうち 5つがフッ素で且つ 1つが N+(CH CH
2 2
) PF—である化合物であることを確認した。
3 6
[0081] (イオン液体合成例 8)
AgBFの代わりに AgPFを用いる以外は上記イオン液体合成例 4と同様にして、ィ
4 6
オン液体 Hを得た。得られたイオン液体 Hを1 H-NMRで分析し、上記一般式 (I)で表 され、式中の nが 3であって、 6つの R1のうち 5つがフッ素で且つ 1つが—N+H C H P
2 6 5
F—である化合物であることを確認した。
6
[0082] (イオン液体合成例 9)
AgBFの代わりに AgPFを用いる以外は上記イオン液体合成例 5と同様にして、
4 6 ィ オン液体 Iを得た。得られたイオン液体 Iを1 H-NMRで分析し、上記一般式 (I)で表さ れ、式中の nが 3であって、 6つの R1のうち 5つがフッ素で且つ 1つが N+(CH ) C H
3 2 6 5
PF—である化合物であることを確認した。
6
[0083] (実施例 1)
上記のようにして合成したイオン液体 Aに、 LiPF (支持塩)を lmol/L (M)になるよう
6
に溶解させ、非水電解液を調製した。得られた非水電解液に対して、下記の方法で 安全性を評価した。結果を表 1に示す。
[0084] (1)電解液の安全性
UL (アンダーライティングラボラトリー)規格の UL94HB法をアレンジした方法で、 大気環境下にお 、て着火した炎の燃焼挙動から電解液の安全性を評価した。その 際、着火性、燃焼性、炭化物の生成、二次着火時の現象についても観察した。具体 的には、 UL試験基準に基づき、不燃性石英ファイバーに電解液 l.OmLを染み込ま せて、 127mm X 12.7mmの試験片を作製して行った。ここで、試験炎が試験片に着火 しな 、場合 (燃焼長: Omm)を「不燃性」、着火した炎が 25mmラインまで到達せず且つ 落下物にも着火が認められない場合を「難燃性」、着火した炎が 25〜100mmラインで 消火し且つ落下物にも着火が認められない場合を「自己消火性」、着火した炎が 100 mmラインを超えた場合を「燃焼性」と評価した。
[0085] <リチウム二次電池の作製 >
次に、正極活物質としでリチウムコバルト複合酸ィ匕物 (LiCoO )又はリチウムマンガ
2
ン複合酸化物 (LiMn O )を用い、該複合酸化物と、導電剤であるアセチレンブラッ
2 4
クと、結着剤であるフッ素榭脂とを、質量比で 90 : 5 : 5で混合し、これを N-メチルピロリ ドンに分散させてスラリーとしたものを、正極集電体としてのアルミニウム箔に塗布'乾 燥した後、 φ 16mmの円板状に打ち抜いて、正極を作製した。一方、負極としては、リ チウム箔 (厚さ 0.5mm)を φ 16mmに打ち抜いたものを負極とした。次いで、正極端子 を兼ねたステンレスケース内に、正極と負極とを、電解液を含浸したセパレーター (微 孔性フィルム:ポリプロピレン製)を介して重ねて収容し、ポリプロピレン製ガスケットを 介して負極端子を兼ねるステンレス製封口板で密封して、容量が 4mAhの CR2016 型のコイン型電池 (リチウム二次電池)を作製した。得られた電池の初期放電容量、 1 0サイクル後の放電容量を下記の方法で測定し、表 1に示す結果を得た。
[0086] (2)初期及び 10サイクル後の放電容量
20°Cの環境下で、上限電圧 4.2V、下限電圧 3.0V、放電電流 50mA、充電電流 50m Aの条件で充放電を行い、この時の放電容量を既知の電極重量で除することにより 初期放電容量 (mAh/g)を求めた。更に、同様の充放電条件で 10サイクルまで充放電 を繰り返して、 10サイクル後の放電容量を求めた。
[0087] (実施例 2〜6)
上記のようにして合成したイオン液体 B〜Fに、 LiPF (支持塩)を lmol/L (M)にな
6
るように溶解させ、非水電解液を調製した。得られた非水電解液に対して、上記の方 法で安全性を評価した。また、該非水電解液を用いて、実施例 1と同様にしてリチウ ムニ次電池を作製し、初期及び 10サイクル後の放電容量を測定した。結果を表 1に 示す。
(比較例 1)
エチレンカーボネート (EC) 50体積0 /0と、ジェチノレカーボネート (DEC) 50体積0 /0か らなる混合溶媒に、 LiPFを lmol/Lになるように溶解させて非水電解液を調製した。
6
得られた非水電解液に対して、上記の方法で安全性を評価した。また、該非水電解 液を用いて、実施例 1と同様にしてリチウム二次電池を作製し、初期及び 10サイクル 後の放電容量を測定した。結果を表 1に示す。
Figure imgf000033_0001
Figure imgf000033_0002
9008 [0090] 表 1から明らかなように、カチオン部にリン及び窒素を含むイオン液体と支持塩から なる電解液は、安全性が非常に高ぐ更に、該電解液をリチウム二次電池に用いるこ とで、電池のサイクル特性を改善できることが分る。
[0091] (実施例 7〜 16及び比較例 2)
表 2に示す配合の溶媒に、 LiPFを lmol/Lになるように溶解させて、非水電解液を
6
調製した。なお、表 2中、 EC/PC/DMCは、エチレンカーボネート(EC)とプロピレ ンカーボネート (PC)とジメチルカーボネート(DMC)とを体積比 1Z1Z3で含む混 合有機溶媒を示す。得られた非水電解液に対して、上記の方法で安全性を評価した 。また、該非水電解液を用いて、実施例 1と同様にしてリチウム二次電池を作製し、初 期及び 20サイクル後の放電容量を測定した。結果を表 2に示す。
[0092]
Figure imgf000035_0001
[0093] 表 2から、非プロトン性有機溶媒を含む場合、イオン液体の含有量が 5体積%以上 で電解液の安全性が非常に高くなることが分る。
[0094] (実施例 17)
上記のようにして合成したイオン液体 Aに、 LiBF (支持塩)を lmol/L (M)になるよう
4
に溶解させ、非水電解液を調製した。得られた非水電解液に対して、上記の方法で 安全性を評価した。結果を表 3に示す。
[0095] <リチウム 1次電池の作製 >
MnO (正極活物質)と、アセチレンブラック (導電剤)と、ポリフッ化ビ-リデン (結着
2
剤)とを 8 : 1: 1の割合 (質量比)で混合'混鍊し、該混練物をドクターブレードで塗工し た後、熱風乾燥(100〜120°C)して得たものを、 φ 16mm打ち抜き機で切り出すことに より正極を作製した。なお、正極の質量は 20mgである。また、負極には、リチウム箔( 厚さ 0.5mm)を φ 16mmに打ち抜いたものを使用し、集電体にはニッケル箔を使用した 。セルロースセパレーター [日本高度紙工業社製 TF4030]を介して上記正負極を 対座させ、上記電解液を注入して封口し、 CR2016型のリチウム 1次電池 (非水電解 液 1次電池)を作製した。得られた電池に対して、 25°Cの環境下、下限電圧 1.5Vで、 0.2C放電を行い、放電容量を測定した。また、上記と同様にして作製した電池を 120 °Cで 60時間保存し、保存後の常温放電容量を上記と同様に測定した。更に、 120°C で 60時間保存した後の常温放電容量を製造直後の常温放電容量で除して、高温保 存後の放電容量残存率を計算した。結果を表 2に示す。
[0096] (実施例 18〜21)
上記のようにして合成したイオン液体 B〜Eに、 LiBF (支持塩)を lmol/L (M)にな
4
るように溶解させ、非水電解液を調製した。得られた非水電解液に対して、上記の方 法で安全性を評価した。また、該非水電解液を用いて、実施例 17と同様にしてリチウ ム 1次電池を作製し、製造直後及び高温保存後の放電容量を測定し、更に高温保 存後の放電容量残存率を計算した。結果を表 3に示す。
[0097] (比較例 3)
プロピレンカーボネート (PC) 50体積0 /0と、 1,2-ジメトキシェタン(DME) 50体積0 /0 力もなる混合溶媒に、 LiBFを lmol/Lになるように溶解させて非水電解液を調製した
4
。得られた非水電解液に対して、上記の方法で安全性を評価した。また、該非水電 解液を用いて、実施例 17と同様にしてリチウム 1次電池を作製し、製造直後及び高 温保存後の放電容量を測定し、更に高温保存後の放電容量残存率を計算した。結 果を表 3に示す。
[0098]
Figure imgf000038_0001
[0099] 表 3から明ら力 'なように、カチオン部にリン及び窒素を含むイオン液体及び支持塩 からなる電解液は、安全性が非常に高ぐ更に、該電解液をリチウム 1次電池に用い ることで、電池の高温保存後の常温放電容量が向上し、電池の高温保存特性を改善 できることが分る。
[0100] <イオン液体の安全性 >
電解液の代わりに上記のようにして合成したイオン液体 A〜F自体を不燃性石英フ アイバーに染み込ませて、イオン液体 A〜F自体の安全性を、上述の電解液の安全 性と同様にして評価した。また、比較として、市販のイオン液体 Jの安全性を評価した 。なお、比較としたイオン液体 Jは、 Ν,Ν-ジェチル- N-メチル -N- (2-メトキシェチル) アンモ-ゥムテトラフルォロボレート [関東ィ匕学社製]である。結果を表 4に示す。
[0101] <電気二重層キャパシタの作製 >
次に、活性炭 [AC,商品名: Kuractive-1500、クラレケミカル社製]、アセチレンブラ ック (導電剤)及びポリフッ化ビニリデン (結着剤)を、それぞれ、質量比 (活性炭:導電 剤:結着剤)で 8: 1: 1となるように混合して、混合物を得た。得られた混合物の lOOmg を採取し、これを 20mm φの而圧カーボン製容器に入れて、圧力 150kgf/cm2、常温の 条件下で圧粉成形し、正極及び負極 (電極)を作製した。得られた電極 (正極及び負 極)と、アルミニウム金属板 (集電体,厚み = 0.5mm)と、ポリプロピレン Zポリエチレン 板 (セパレーター,厚み =25 m)とを用いてセルを組み立て、真空乾燥によって十 分に乾燥させた。電解液として上記イオン液体 A〜F又 ίおを用いて、組み立てたセ ルを含浸し、電気二重層キャパシタを作製した。得られた電気二重層キャパシタの低 温特性及び高率放電特性を下記の方法で測定した。結果を表 4に示す。
[0102] (3)電気二重層キャパシタの低温特性
得られた電気二重層キャパシタにつ!、て、 20°C及び- 10°Cのそれぞれの環境下で キャパシタ放電容量を測定し、その容量の比、即ち:
(-10°Cでの容量) Z(20°Cでの容量) X 100 (%)
の値で評価した。この値が大きい程、低温特性が良好といえる。
[0103] (4)電気二重層キャパシタの高率放電特性
得られた電気二重層キャパシタについて、 1C及び 5Cのそれぞれの時間率下での キャパシタ放電容量を測定し、その容量の比、即ち: (5C容量) Z (ic容量) X 100 (%)
の値で評価した。つまり、この値が大きい程、高率放電特性が良好といえる。ここで、
1Cとは、作製したキャパシタの満容量を 1Z1時間 (60分)で放電する条件を示し、 5C とは、作製したキャパシタの満容量を 1Z5時間(12分)で放電する条件を示す。
[0104]
Figure imgf000040_0001
Figure imgf000040_0002
[0105] 表 4から明らかなように、カチオン部にリン及び窒素を含むイオン液体力もなる電解 液は、安全性が非常に高ぐ更に、該電解液を電気二重層キャパシタに用いることで 、キャパシタの低温特性及び高率放電特性を改善できることが分る。

Claims

請求の範囲
[1] カチオン部及びァニオン部からなるイオン液体と、支持塩とを含有する電池用非水 電解液において、
前記イオン液体のカチオン部カ^ンと窒素を含有することを特徴とする電池用非水 電解液。
[2] 前記イオン液体及び支持塩のみ力 なることを特徴とする請求項 1に記載の電池用 非水電解液。
[3] 更に、非プロトン性有機溶媒を含有することを特徴とする請求項 1に記載の電池用 非水電解液。
[4] 前記イオン液体を 5体積%以上含有することを特徴とする請求項 3に記載の電池用 非水電解液。
[5] 前記イオン液体のカチオン部カ^ン 窒素間二重結合を有することを特徴とする請 求項 1に記載の電池用非水電解液。
[6] 前記イオン液体が、下記一般式 (I):
(NPR1 ) · · · (I)
2 n
[式中、 R1は、それぞれ独立してハロゲン元素又は一価の置換基で、少なくとも一つ の R1は、下記一般式 (II) :
N+R2 X— · · · (II)
3
(式中、 R2は、それぞれ独立して一価の置換基又は水素で、但し、少なくとも一つの R2は水素ではなぐまた、 R2は互いに結合して環を形成してもよく; X—は一価のァ- オンを表す)で表されるイオン性置換基であり; nは 3〜 15を表す]で表されることを特 徴とする請求項 5に記載の電池用非水電解液。
[7] 前記一般式 (I)中の nが 3又は 4であることを特徴とする請求項 6に記載の電池用非 水電解液。
[8] 前記一般式 (I)中の R1は、少なくとも一つが前記一般式 (II)で表されるイオン性置換 基で、その他がフッ素であることを特徴とする請求項 6に記載の電池用非水電解液。
[9] 請求項 1〜8のいずれかに記載の電池用非水電解液と、正極と、負極とを備えた非 水電解液電池。
[10] カチオン部及びァ-オン部からなるイオン液体を含有する電気二重層キャパシタ用 電解液において、
前記イオン液体のカチオン部カ^ンと窒素を含有することを特徴とする電気二重層 キャパシタ用電解液。
[11] 前記イオン液体のみ力もなることを特徴とする請求項 10に記載の電気二重層キヤ パシタ用電解液。
[12] 前記イオン液体のカチオン部カ^ン 窒素間二重結合を有することを特徴とする請 求項 10に記載の電気二重層キャパシタ用電解液。
[13] 前記イオン液体が、上記一般式 (I)で表されることを特徴とする請求項 12に記載の 電気二重層キャパシタ用電解液。
[14] 前記一般式 (I)中の nが 3又は 4であることを特徴とする請求項 13に記載の電気二重 層キャパシタ用電解液。
[15] 前記一般式 (I)中の R1は、少なくとも一つが前記一般式 (II)で表されるイオン性置換 基で、その他がフッ素であることを特徴とする請求項 13に記載の電気二重層キャパ シタ用電解液。
[16] 請求項 10〜15のいずれかに記載の電気二重層キャパシタ用電解液と、正極と、負 極とを備えた電気二重層キャパシタ。
PCT/JP2006/324104 2005-12-26 2006-12-01 電池用非水電解液及びそれを備えた非水電解液電池、並びに電気二重層キャパシタ用電解液及びそれを備えた電気二重層キャパシタ WO2007074609A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US12/159,036 US7951495B2 (en) 2005-12-26 2006-12-01 Non-aqueous electrolyte for battery and non-aqueous electrolyte battery comprising the same as well as electrolyte for electric double layer capacitor and electric double layer capacitor comprising the same
CN2006800517897A CN101336495B (zh) 2005-12-26 2006-12-01 电池用非水电解液和包含其的非水电解液电池以及双电层电容器用电解液和包含其的双电层电容器
EP06833874.8A EP1970990B1 (en) 2005-12-26 2006-12-01 Non-aqueous electrolyte solution for battery, non-aqueous electrolyte battery comprising the same, electrolyte solution for electric double layer capacitor and electric double layer capacitor comprising the same

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
JP2005372173 2005-12-26
JP2005-372173 2005-12-26
JP2005-372178 2005-12-26
JP2005372178 2005-12-26
JP2006138044A JP5134783B2 (ja) 2005-12-26 2006-05-17 電池用非水電解液及びそれを備えた非水電解液電池
JP2006-138044 2006-05-17
JP2006139198A JP2007201394A (ja) 2005-12-26 2006-05-18 電気二重層キャパシタ用電解液及びそれを備えた電気二重層キャパシタ
JP2006-139198 2006-05-18

Publications (1)

Publication Number Publication Date
WO2007074609A1 true WO2007074609A1 (ja) 2007-07-05

Family

ID=38217830

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/324104 WO2007074609A1 (ja) 2005-12-26 2006-12-01 電池用非水電解液及びそれを備えた非水電解液電池、並びに電気二重層キャパシタ用電解液及びそれを備えた電気二重層キャパシタ

Country Status (4)

Country Link
US (1) US7951495B2 (ja)
EP (1) EP1970990B1 (ja)
CN (1) CN101336495B (ja)
WO (1) WO2007074609A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160056506A1 (en) * 2011-10-05 2016-02-25 Battelle Energy Alliance, Llc. Ionic liquids, electrolyte solutions including the ionic liquids, and energy storage devices including the ionic liquids

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB201002456D0 (en) * 2010-02-12 2010-03-31 Invista Tech Sarl Low viscosity ionic liquids
US9558894B2 (en) * 2011-07-08 2017-01-31 Fastcap Systems Corporation Advanced electrolyte systems and their use in energy storage devices
US9318271B2 (en) * 2012-06-21 2016-04-19 Schlumberger Technology Corporation High temperature supercapacitor
WO2016160703A1 (en) 2015-03-27 2016-10-06 Harrup Mason K All-inorganic solvents for electrolytes
DE102015224094A1 (de) * 2015-09-04 2017-03-09 Robert Bosch Gmbh Hybridsuperkondensator
JP7012660B2 (ja) * 2016-04-01 2022-02-14 ノームズ テクノロジーズ インコーポレイテッド リン含有修飾イオン性液体
WO2017201173A1 (en) 2016-05-20 2017-11-23 Avx Corporation Nonaqueous electrolyte for an ultracapacitor
KR20180138564A (ko) 2016-05-20 2018-12-31 에이브이엑스 코포레이션 고온용 울트라커패시터
US10707531B1 (en) 2016-09-27 2020-07-07 New Dominion Enterprises Inc. All-inorganic solvents for electrolytes
US20230110251A1 (en) * 2020-03-31 2023-04-13 Mitsui Chemicals, Inc. Non-aqueous electrolyte for battery, precursor for lithium secondary battery, method for manufacturing lithium secondary battery, lithium secondary battery, phosphazene compound, and additive for battery
US11631897B2 (en) 2021-01-21 2023-04-18 High Tech Battery Inc. Ionic liquid additive for lithium-ion battery

Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995020231A1 (fr) 1994-01-20 1995-07-27 Tovarischestvo S Ogranichennoi Otvetstvennostju 'amadeus' Accumulateur electrique
JP2001052736A (ja) 1999-08-04 2001-02-23 Toyota Central Res & Dev Lab Inc リチウム二次電池
US20020055045A1 (en) 1998-02-03 2002-05-09 Christophe Michot Novel materials useful as electrolytic solutes
EP1205998A2 (de) 2000-11-10 2002-05-15 MERCK PATENT GmbH Elektrolyte
US6455200B1 (en) 1999-09-02 2002-09-24 Illinois Institute Of Technology Flame-retardant additive for li-ion batteries
JP2003077532A (ja) 2001-08-31 2003-03-14 Sanyo Electric Co Ltd 非水電解質電池
EP1329974A1 (en) 2000-09-07 2003-07-23 Bridgestone Corporation Additive for non-aqueous liquid electrolyte, non-aqueous liquid electrolyte secondary cell and non-aqueous liquid electrolyte electric double layer capacitor
EP1347530A1 (en) 2000-09-07 2003-09-24 Bridgestone Corporation Additive for non-aqueous liquid electrolyte, non-aqueous liquid electrolyte secondary cell and non-aqueous liquid electrolyte electric double layer capacitor
JP2004111294A (ja) * 2002-09-20 2004-04-08 Nisshinbo Ind Inc 非水電解質、電気二重層キャパシタおよび非水電解質二次電池
JP2004146346A (ja) * 2002-08-28 2004-05-20 Nisshinbo Ind Inc 非水電解質および非水電解質二次電池
EP1443578A1 (en) 2001-11-07 2004-08-04 Bridgestone Corporation Non-aqueous electrolyte primary cell and additive for non-aqueous electrolyte of the cell
WO2005036690A1 (ja) 2003-10-07 2005-04-21 Gs Yuasa Corporation 非水電解質二次電池
US20050136332A1 (en) 2003-12-19 2005-06-23 Kumiko Sueto Ionic liquids and process for manufacturing the same
JP2006036709A (ja) * 2004-07-28 2006-02-09 Mitsui Chemicals Inc イオン液体
WO2006117872A1 (ja) * 2005-04-28 2006-11-09 Kanto Denka Kogyo Co., Ltd. ホスホニウムカチオンを有するイオン液体およびその製造方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1329975B1 (en) * 2000-09-07 2018-04-25 Bridgestone Corporation Non-aqueous liquid electrolyte secondary cell and non-aqueous liquid electrolyte electric double layer capacitor
JP2006080488A (ja) * 2004-08-12 2006-03-23 Bridgestone Corp 電気二重層キャパシタ用非水電解液及び非水電解液電気二重層キャパシタ

Patent Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995020231A1 (fr) 1994-01-20 1995-07-27 Tovarischestvo S Ogranichennoi Otvetstvennostju 'amadeus' Accumulateur electrique
US20020055045A1 (en) 1998-02-03 2002-05-09 Christophe Michot Novel materials useful as electrolytic solutes
JP2001052736A (ja) 1999-08-04 2001-02-23 Toyota Central Res & Dev Lab Inc リチウム二次電池
US6455200B1 (en) 1999-09-02 2002-09-24 Illinois Institute Of Technology Flame-retardant additive for li-ion batteries
EP1329974A1 (en) 2000-09-07 2003-07-23 Bridgestone Corporation Additive for non-aqueous liquid electrolyte, non-aqueous liquid electrolyte secondary cell and non-aqueous liquid electrolyte electric double layer capacitor
EP1347530A1 (en) 2000-09-07 2003-09-24 Bridgestone Corporation Additive for non-aqueous liquid electrolyte, non-aqueous liquid electrolyte secondary cell and non-aqueous liquid electrolyte electric double layer capacitor
EP1205998A2 (de) 2000-11-10 2002-05-15 MERCK PATENT GmbH Elektrolyte
JP2003077532A (ja) 2001-08-31 2003-03-14 Sanyo Electric Co Ltd 非水電解質電池
EP1443578A1 (en) 2001-11-07 2004-08-04 Bridgestone Corporation Non-aqueous electrolyte primary cell and additive for non-aqueous electrolyte of the cell
JP2004146346A (ja) * 2002-08-28 2004-05-20 Nisshinbo Ind Inc 非水電解質および非水電解質二次電池
JP2004111294A (ja) * 2002-09-20 2004-04-08 Nisshinbo Ind Inc 非水電解質、電気二重層キャパシタおよび非水電解質二次電池
WO2005036690A1 (ja) 2003-10-07 2005-04-21 Gs Yuasa Corporation 非水電解質二次電池
US20050136332A1 (en) 2003-12-19 2005-06-23 Kumiko Sueto Ionic liquids and process for manufacturing the same
JP2006036709A (ja) * 2004-07-28 2006-02-09 Mitsui Chemicals Inc イオン液体
WO2006117872A1 (ja) * 2005-04-28 2006-11-09 Kanto Denka Kogyo Co., Ltd. ホスホニウムカチオンを有するイオン液体およびその製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1970990A4

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160056506A1 (en) * 2011-10-05 2016-02-25 Battelle Energy Alliance, Llc. Ionic liquids, electrolyte solutions including the ionic liquids, and energy storage devices including the ionic liquids

Also Published As

Publication number Publication date
CN101336495A (zh) 2008-12-31
US20100304223A1 (en) 2010-12-02
EP1970990B1 (en) 2013-04-17
CN101336495B (zh) 2012-11-28
EP1970990A1 (en) 2008-09-17
US7951495B2 (en) 2011-05-31
EP1970990A4 (en) 2011-09-07

Similar Documents

Publication Publication Date Title
WO2007074609A1 (ja) 電池用非水電解液及びそれを備えた非水電解液電池、並びに電気二重層キャパシタ用電解液及びそれを備えた電気二重層キャパシタ
JP5314885B2 (ja) 非水電解液及びそれを備えた非水電解液二次電源
JP4450732B2 (ja) 電池用支持塩及びその製造方法、並びに電池
JP2008053212A (ja) 電池用非水電解液及びそれを備えた非水電解液電池
JP4911888B2 (ja) 非水電解液及びそれを備えた非水電解液2次電池
WO2012120846A1 (ja) 非水電解液用添加剤、非水電解液及び非水電解液二次電池
JP2007200605A (ja) 非水電解液及びそれを備えた非水電解液電池
JP2008041296A (ja) 電池用非水電解液及びそれを備えた非水電解液電池
JPWO2002082575A1 (ja) 電池及び電気二重層キャパシタ用添加剤
JP2010050021A (ja) 電池用非水電解液及びそれを備えた非水電解液二次電池
JP2010015719A (ja) 電池用非水電解液及びそれを備えた非水電解液二次電池
JP5093992B2 (ja) リチウム二次電池用非水電解液及びそれを備えたリチウム二次電池
JP4671693B2 (ja) 二次電池の非水電解液用添加剤及び非水電解液二次電池
JP4785735B2 (ja) 電池用非水電解液及びそれを備えた非水電解液電池
JP2006294332A (ja) 非水電解液、非水電解液電池、非水電解液電気二重層キャパシタ、並びに非水電解液の安全性評価方法
JP2006294334A (ja) 非水電解液、非水電解液電池、非水電解液電気二重層キャパシタ、並びに非水電解液の安全性評価方法
JP2007335394A (ja) 電池用非水電解液及びそれを備えた非水電解液電池
JP2010015717A (ja) 電池用非水電解液及びそれを備えた非水電解液二次電池
JP5134783B2 (ja) 電池用非水電解液及びそれを備えた非水電解液電池
JP2008112681A (ja) 電池用非水電解液及びそれを備えた非水電解液電池
JP2006286570A (ja) リチウム二次電池用非水電解液及びそれを備えたリチウム二次電池
JP2010015720A (ja) 電池用非水電解液及びそれを備えた非水電解液二次電池
JP2010050026A (ja) 電池用非水電解液及びそれを備えた非水電解液二次電池
JP2010050023A (ja) 電池用非水電解液及びそれを備えた非水電解液二次電池
JP2008123708A (ja) 電池用非水電解液及びそれを備えた非水電解液電池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 12159036

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2006833874

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 200680051789.7

Country of ref document: CN