WO2007074580A1 - Laminated coil part - Google Patents

Laminated coil part Download PDF

Info

Publication number
WO2007074580A1
WO2007074580A1 PCT/JP2006/321884 JP2006321884W WO2007074580A1 WO 2007074580 A1 WO2007074580 A1 WO 2007074580A1 JP 2006321884 W JP2006321884 W JP 2006321884W WO 2007074580 A1 WO2007074580 A1 WO 2007074580A1
Authority
WO
WIPO (PCT)
Prior art keywords
ferrite
coil
laminated
laminate
coil component
Prior art date
Application number
PCT/JP2006/321884
Other languages
French (fr)
Japanese (ja)
Inventor
Tomohide Iwasaki
Original Assignee
Murata Manufacturing Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co., Ltd. filed Critical Murata Manufacturing Co., Ltd.
Priority to CN200680002400XA priority Critical patent/CN101103420B/en
Priority to JP2007530525A priority patent/JP4530044B2/en
Publication of WO2007074580A1 publication Critical patent/WO2007074580A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F17/00Fixed inductances of the signal type 
    • H01F17/0006Printed inductances
    • H01F17/0013Printed inductances with stacked layers
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/26Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on ferrites
    • C04B35/265Compositions containing one or more ferrites of the group comprising manganese or zinc and one or more ferrites of the group comprising nickel, copper or cobalt
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/34Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials non-metallic substances, e.g. ferrites
    • H01F1/342Oxides
    • H01F1/344Ferrites, e.g. having a cubic spinel structure (X2+O)(Y23+O3), e.g. magnetite Fe3O4
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/04Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing coils
    • H01F41/041Printed circuit coils
    • H01F41/046Printed circuit coils structurally combined with ferromagnetic material
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/327Iron group oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3279Nickel oxides, nickalates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3281Copper oxides, cuprates or oxide-forming salts thereof, e.g. CuO or Cu2O
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3284Zinc oxides, zincates, cadmium oxides, cadmiates, mercury oxides, mercurates or oxide forming salts thereof

Definitions

  • the present invention relates to a multilayer coil component, and more particularly to a multilayer coil component such as a chip inductor in which a coil is incorporated in a multilayer body made of ferrite.
  • laminated coil components such as chip inductors are formed by laminating a sheet of ferrite and a coil conductor, and connecting the ends of the coil conductor via via-hole conductors to form a spiral coil. Is provided.
  • this type of multilayer coil component is used as a noise countermeasure, a large impedance I z I is desired as a high performance.
  • the characteristics changed due to the ferrite shrinkage during firing, and it was difficult to obtain a desirable impedance I z I.
  • Patent Document 1 discloses a multilayer inductor in which a bonded body layer is surface bonded to the upper and lower surfaces of a ferrite magnetic layer, and the linear expansion coefficient of the bonded body layer is smaller than that of the ferrite magnetic layer.
  • the bonded body layer can suppress the expansion and contraction of the ferrite magnetic layer, and the temperature dependence of the inductance value can be suppressed.
  • the stress caused by the shrinkage difference between the coil conductor and the ferrite during firing of the multilayer body cannot be relaxed, and the reduction of the impedance I z I cannot be prevented.
  • Patent Document 1 Japanese Patent Laid-Open No. 4-302104
  • an object of the present invention is to provide a laminated coil component that can relieve internal stress caused by a shrinkage difference between a coil conductor and ferrite during firing of the laminated body and prevent a reduction in impedance. .
  • a laminated coil component includes a laminated body main portion made of a first ferrite having a coil disposed therein, and both of the laminated body main portion in the coil axial direction.
  • the second ferrite disposed outside the multilayer body during firing of the multilayer body is more than the first ferrite disposed inside including the coil. It contracts greatly, has a small shrinkage rate, is inhibited by the coil conductor, promotes the contraction of the first ferrite, and relaxes the tensile stress generated in the first ferrite. As a result, the tensile stress generated in the first ferrite around the coil conductor is relaxed and the impedance is prevented from lowering.
  • the laminated coil component according to the present invention if Ni—Cu—Zn ferrite or Ni—Zn ferrite is used as the first ferrite and the second ferrite, good characteristics can be obtained. .
  • the Zn content of the second ferrite is set higher than the Zn content of the first ferrite, the shrinkage rate during firing of the second ferrite increases, and the stress generated in the first ferrite Increases the relaxation effect.
  • the second ferrite only needs to contain 25 to 70 mol% of Zn.
  • the coil is preferably formed in a spiral shape by connecting a coil conductor made of Ag metal via a via-hole conductor.
  • Ag makes it possible to obtain laminated coil parts with low electrical resistance and good characteristics (Q value).
  • the shrinkage rate during firing of the second ferrite disposed outside the laminate is greater than the shrinkage rate during firing of the first ferrite disposed inside including the coil. Therefore, when the laminate is fired, the second ferrite promotes the shrinkage of the first ferrite, and the tensile stress generated in the first ferrite is relieved and the impedance is prevented from being lowered.
  • FIG. 1 is a schematic perspective view showing a first embodiment of the laminated coil component according to the present invention.
  • FIG. 2 is a sectional view of the first embodiment.
  • FIG. 3 is an exploded perspective view of the first embodiment.
  • FIG. 4 is a schematic diagram showing an outline of a stress distribution. (A) shows a conventional example, and (B) shows a first example.
  • FIG. 5 Schematic diagram of the results of simulating the stress distribution, (A) shows the conventional example and (B) shows the first example.
  • FIG. 6 is a graph showing impedance characteristics.
  • FIG. 7 is a schematic perspective view showing a second embodiment of the laminated coil component according to the present invention.
  • FIG. 8 is an exploded perspective view of a second embodiment.
  • FIGS. 1 to 6 Refer to the first embodiment, FIGS. 1 to 6)
  • a laminated coil component 1A As shown in FIG. 1, a laminated coil component 1A according to the first embodiment of the present invention includes a laminated main body 21 made of a first ferrite having a coil 10 disposed therein, and both ends in a coil axial direction A. And a laminated body end portion 22 made of a second ferrite formed on the upper portion (upper and lower portions), and external electrodes 23 are provided on the left and right end portions of the laminated body 20.
  • Figure 2 shows the cross section.
  • FIG. 3 is a schematic exploded view, and the number of sheets is not accurately shown.
  • the first ferrite forming the main portion 21 and the second ferrite forming the end portion 22 have different ferrite compositions, and the second ferrite has the first ferrite having a shrinkage ratio during firing. Those having a composition larger than the shrinkage ratio during firing are used. The ferrite composition and shrinkage will be described later.
  • a manufacturing method of the laminated coil component will be described.
  • a desired pattern is formed by a printing method such as screen printing with a conductive paste on a ferrite green sheet in which through holes are formed, and the sheet is formed into a spiral coil.
  • a laminated coil component is obtained by laminating, crimping, cutting, and firing so that a magnetic layer is formed.
  • a ferrite coil and a conductor material are alternately printed by a printing method such as screen printing to form a spiral coil, and a laminated coil component is obtained by crimping, cutting and firing.
  • the laminated coil component 1A was manufactured through the following steps. First, prepare ferrite sheets 25-27. Ni-Cu-Zn-based ferrites, Ni-Zn-based ferrites, Cu-Zn-based ferrites, etc. can be used in addition to the first and second ferrites that are preferred for materials with high magnetic permeability.
  • the second ferrite uses a material with a higher thermal shrinkage than the first ferrite.
  • the heat shrinkage rate is adjusted by changing the content of elements such as Ni, Zn, and Cu contained in the flight. For example, it can be adjusted by changing the Zn content.
  • Holes for via hole conductors are formed in the prepared ferrite sheets 25 and 26, and the internal conductors (the coil conductor 11 and the lead electrode 12) are printed.
  • the internal conductor should have a low resistance value to achieve a high Q (quality factor) as an inductance element.
  • precious metals mainly composed of Ag, Au, Pt and the like and the power of these alloys, base metals such as Cu and Ni, and alloys thereof can be used. Ag was used in the production of the first example.
  • the sheets 25 to 27 shown in FIG. 3 are laminated and pressure-bonded to produce a laminate 20 including the coil 10 therein.
  • the above steps are performed in a state where a plurality of units of coils 10 are arranged in a matrix as a mother substrate, and this mother laminate is cut into one unit laminate (chip) 20.
  • the obtained laminate 20 is degreased and fired.
  • external electrodes 23 are formed on the left and right ends of the laminate 20.
  • the external electrode 23 is formed from the left and right end surfaces of the laminate 20 to the upper and lower surfaces and the side surfaces, and is connected to the extraction electrode 12 at the end surfaces.
  • the external electrode 23 contains Ag or the like as a main component, and an adhesive layer is formed on the surface.
  • the manufactured laminated coil component 1A has a long side of 1. Omm, a short side of 0.5mm, and a height of 0.5mm.
  • the second ferrite of the outer layer 22 is FeO force S50 mol%, ZnO 15 mol%, NiO
  • the first ferrite of the inner layer 21 is Fe 2 O
  • Fig. 4 (A) schematically shows the stress distribution generated during firing in a conventional multilayer coil component
  • Fig. 4 (B) schematically shows the stress distribution generated during firing in the multilayer coil component 1A of the first embodiment.
  • Fig. 4 (A) in conventional laminated coil components, coil Due to the difference in shrinkage between the body and the flight, a large tensile stress is generated on the flight as shown by the arrow. The strongest magnetic field is generated in the ferrite inside the coil conductor. In this strong magnetic field ferrite, tensile stress is generated in a direction parallel to the magnetic field. When the stress of ferrite acted, the electrical properties of the material deteriorated, resulting in a decrease in impedance I z I.
  • the thermal contraction rate of the second ferrite at the end 22 is the heat of the first ferrite at the main portion 21. Since the contraction rate is larger, the end 22 contracts greatly in the direction orthogonal to the coil axis direction A of the coil 10. Since the main portion 21 has a small thermal contraction rate and the coil conductor 11 exists, the main portion 21 cannot sufficiently contract and a tensile stress is generated in the first ferrite. This tensile stress is offset by the large compression of the end 22. As a result, the tensile stress around the coil conductor 11 that is a strong magnetic field portion is relieved, and the impedance I Z I is prevented from decreasing.
  • FIG. 5 (A) is a schematic diagram of the simulated stress distribution in the conventional multilayer coil component shown in Fig. 4 (A), and Fig. 5 (B) is a schematic diagram of Fig. 4 (B).
  • FIG. 3 is a schematic diagram of a simulated stress distribution in the laminated coil component 1 A of one embodiment. 4 and 5, the outward arrow indicates tensile stress, and the inward arrow indicates compressive stress.
  • the linear expansion coefficient of the ferrite was 2. Since shrinkage during firing at 880 ° C is 23% 614 X 10- 4 (0. 23/880) .
  • the linear expansion coefficient of the coil conductor was set to 5.68 2 X 10 5 because the shrinkage ratio upon firing at 880 ° C was 5%.
  • Fig. 6 is a graph showing the impedance IZI characteristics.
  • Curve Y shows the characteristics of the conventional multilayer coil components shown in Figs. 4 (A) and 5 (A), and curve X shows Fig. 4 (B).
  • FIG. 5B shows the characteristics of the laminated coil component 1A of the first embodiment shown in FIG. 5 (B).
  • the impedance I z I is improved overall (particularly, in the band of 10 ⁇ : LlOOMHz) in the laminated coil component 1A of the first embodiment.
  • the integral difference of the conventional example is +10, whereas the samples 1 to 7 of the first embodiment have a small integral difference! /.
  • the revealed laminated coil component 1A is sample 2
  • the integral difference is +1
  • the stress generated in the inner layer 21 is 1.465 NZmm 2 .
  • Stress generated in the inner layer 21 is 0. 3 5.
  • ONZmm 2 is a suitable range.
  • the shrinkage rate of ferrite can be adjusted by the Zn content, and the composition of ferrite having various shrinkage rates is shown in Table 2 below.
  • the coil 50 is arranged in the main part 61 of the laminated body made of the first ferrite so that the coil axial direction A is arranged in parallel to the mounting surface 5.
  • a laminate end portion 62 made of a second ferrite is provided at both end portions in the axial direction A (left and right end portions of the laminate 60).
  • each of the ferrite sheets 65 to 68 is formed of the second ferrite having a large shrinkage at both ends and the other portion is formed of the first ferrite. .
  • the coil conductor 51, the extraction electrode 52 and the via hole conductor 53 are formed on the ferrite sheet 65, the via hole conductor 53 is formed on the ferrite sheet 66, and the coil conductor 51 and the via hole conductor 53 are formed on the ferrite sheet 67.
  • These ferrite sheets 65 to 67 are laminated, and a plain ferrite sheet 68 is laminated on the upper and lower portions thereof to form a spiral coil 50.
  • the external electrodes are provided at both left and right ends of the multilayer body 60.
  • the laminated coil component according to the present invention can be variously modified within the scope of the gist of the present invention, not limited to the above embodiment.
  • the end portion of the laminated body made of the second ferrite having a large shrinkage rate may be provided on one side which is not necessarily provided on both sides of the laminated body.
  • the shape of the coil conductor formed on the ferrite sheet is arbitrary.
  • the present invention can be applied not only to multilayer inductors but also to LC composite parts.
  • the first and second ferrites are composed of the same composition system ferrite, but may be composed of different composition system ferrites. However, if the first and second ferrites are composed of the same composition type of flites, the adhesion between them becomes better.
  • the present invention is useful for laminated coil components, and particularly when the laminated body is fired. It is excellent in that the internal stress caused by the shrinkage difference between the coil conductor and ferrite can be relieved and the impedance can be prevented from decreasing.

Abstract

A laminated coil part that realizes relaxing of any internal stress attributed to shrinkage of ferrite occurring at the time of firing of laminate, preventing any drop of impedance. There is provided a laminated coil part comprising laminate main part (21) of a first ferrite having coil (10) disposed in its interior and comprising laminate end parts (22) of a second ferrite formed at both end portions along the direction of coil axis (A). The first ferrite constituting the main part (21) and the second ferrite constituting the end parts (22) are different from each other in composition, and the shrinkage ratio at firing of the second ferrite is greater than that at firing of the first ferrite.

Description

明 細 書  Specification
積層コイル部品  Multilayer coil parts
技術分野  Technical field
[0001] 本発明は、積層コイル部品、特に、フェライトからなる積層体にコイルを内蔵したチ ップインダクタなどの積層コイル部品に関する。  [0001] The present invention relates to a multilayer coil component, and more particularly to a multilayer coil component such as a chip inductor in which a coil is incorporated in a multilayer body made of ferrite.
背景技術  Background art
[0002] 一般に、チップインダクタなどの積層コイル部品は、フェライトからなるシートとコイル 導体とを積層し、コイル導体の端部をビアホール導体を介して接続し、螺旋状のコィ ルを形成したものが提供されている。そして、この種の積層コイル部品は、ノイズ対策 として用いられる場合、インピーダンス I z Iが大きいことが高性能であるとして望ま れている。しかし、従来の積層コイル部品にあっては、焼成時におけるフェライトの収 縮により特性が変化し、好ましいインピーダンス I z Iを得ることができな力つた。  In general, laminated coil components such as chip inductors are formed by laminating a sheet of ferrite and a coil conductor, and connecting the ends of the coil conductor via via-hole conductors to form a spiral coil. Is provided. In addition, when this type of multilayer coil component is used as a noise countermeasure, a large impedance I z I is desired as a high performance. However, in the conventional multilayer coil parts, the characteristics changed due to the ferrite shrinkage during firing, and it was difficult to obtain a desirable impedance I z I.
[0003] 特許文献 1には、フェライト磁性体層の上下面に接合体層が面接合され、接合体層 の線膨張率がフェライト磁性体層よりも小さい積層インダクタが開示されている。この 積層インダクタでは、接合体層がフェライト磁性体層の膨張収縮を抑制し、インダクタ ンス値の温度依存性を抑制することができる。しかしながら、この積層インダクタにお いては、積層体の焼成時のコイル導体とフェライトとの収縮差により生じる応力までも 緩和することはできず、インピーダンス I z Iの低下を防止することはできない。 特許文献 1:特開平 4— 302104号公報  [0003] Patent Document 1 discloses a multilayer inductor in which a bonded body layer is surface bonded to the upper and lower surfaces of a ferrite magnetic layer, and the linear expansion coefficient of the bonded body layer is smaller than that of the ferrite magnetic layer. In this multilayer inductor, the bonded body layer can suppress the expansion and contraction of the ferrite magnetic layer, and the temperature dependence of the inductance value can be suppressed. However, in this multilayer inductor, the stress caused by the shrinkage difference between the coil conductor and the ferrite during firing of the multilayer body cannot be relaxed, and the reduction of the impedance I z I cannot be prevented. Patent Document 1: Japanese Patent Laid-Open No. 4-302104
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0004] そこで、本発明の目的は、積層体の焼成時のコイル導体とフェライトとの収縮差によ り生じる内部応力を緩和でき、インピーダンスの低下を防止できる積層コイル部品を 提供することにある。 [0004] Accordingly, an object of the present invention is to provide a laminated coil component that can relieve internal stress caused by a shrinkage difference between a coil conductor and ferrite during firing of the laminated body and prevent a reduction in impedance. .
課題を解決するための手段  Means for solving the problem
[0005] 前記目的を達成するため、本発明に係る積層コイル部品は、内部にコイルが配設さ れた第 1のフェライトからなる積層体主要部と、前記積層体主要部のコイル軸方向両 端部の少なくとも一方に形成された第 2のフェライトからなる積層体端部と、を備え、 第 1のフェライトと第 2のフェライトは、フェライトの組成が異なり、かつ、第 2のフェライト の焼成時の収縮率が第 1のフェライトの焼成時の収縮率よりも大きいこと、を特徴とす る。 In order to achieve the above object, a laminated coil component according to the present invention includes a laminated body main portion made of a first ferrite having a coil disposed therein, and both of the laminated body main portion in the coil axial direction. A laminate end made of a second ferrite formed on at least one of the ends, and the first ferrite and the second ferrite have different ferrite compositions, and when the second ferrite is fired The shrinkage ratio of the first ferrite is larger than the shrinkage ratio during firing of the first ferrite.
[0006] 本発明に係る積層コイル部品にあっては、積層体の焼成時に、積層体の外側に配 置された第 2のフェライトがコイルを含んで内側に配置された第 1のフェライトよりも大 きく収縮し、収縮率の小さ 、コイル導体によって阻害されて 、る第 1のフェライトの収 縮を促進させ、第 1のフェライトに生じている引張り応力を緩和する。これによりコイル 導体周辺の第 1のフェライトに生じていた引張り応力が緩和されてインピーダンスの 低下が防止される。  [0006] In the multilayer coil component according to the present invention, the second ferrite disposed outside the multilayer body during firing of the multilayer body is more than the first ferrite disposed inside including the coil. It contracts greatly, has a small shrinkage rate, is inhibited by the coil conductor, promotes the contraction of the first ferrite, and relaxes the tensile stress generated in the first ferrite. As a result, the tensile stress generated in the first ferrite around the coil conductor is relaxed and the impedance is prevented from lowering.
[0007] 本発明に係る積層コイル部品において、第 1のフェライト及び第 2のフェライトとして 、 Ni— Cu— Zn系フェライト又は Ni— Zn系フェライトを使用すれば、良好な特性を得 ることができる。特に、第 2のフェライトの Znの含有量を第 1のフェライトの Znの含有量 よりも多くすれば、第 2のフェライトの焼成時の収縮率が大きくなり、第 1のフェライトに 生じている応力の緩和作用が増大する。第 2のフェライトには Znが 25〜70mol%含 有されていればよい。  [0007] In the laminated coil component according to the present invention, if Ni—Cu—Zn ferrite or Ni—Zn ferrite is used as the first ferrite and the second ferrite, good characteristics can be obtained. . In particular, if the Zn content of the second ferrite is set higher than the Zn content of the first ferrite, the shrinkage rate during firing of the second ferrite increases, and the stress generated in the first ferrite Increases the relaxation effect. The second ferrite only needs to contain 25 to 70 mol% of Zn.
[0008] また、コイルは Agカゝらなるコイル導体をビアホール導体を介して接続して螺旋状に 構成されていることが好ましい。 Agは電気抵抗が小さぐ特性 (Q値)のよい積層コィ ル部品を得ることができる。  [0008] Further, the coil is preferably formed in a spiral shape by connecting a coil conductor made of Ag metal via a via-hole conductor. Ag makes it possible to obtain laminated coil parts with low electrical resistance and good characteristics (Q value).
発明の効果  The invention's effect
[0009] 本発明によれば、積層体の外側に配置された第 2のフェライトの焼成時の収縮率が 、コイルを含んで内側に配置された第 1のフェライトの焼成時の収縮率よりも大きいた め、積層体の焼成時に、第 2のフェライトが第 1のフェライトの収縮を促進させ、第 1の フェライトに生じて 、る引張り応力が緩和され、インピーダンスの低下が防止される。 図面の簡単な説明  [0009] According to the present invention, the shrinkage rate during firing of the second ferrite disposed outside the laminate is greater than the shrinkage rate during firing of the first ferrite disposed inside including the coil. Therefore, when the laminate is fired, the second ferrite promotes the shrinkage of the first ferrite, and the tensile stress generated in the first ferrite is relieved and the impedance is prevented from being lowered. Brief Description of Drawings
[0010] [図 1]本発明に係る積層コイル部品の第 1実施例を示す概略斜視図である。 FIG. 1 is a schematic perspective view showing a first embodiment of the laminated coil component according to the present invention.
[図 2]第 1実施例の断面図である。  FIG. 2 is a sectional view of the first embodiment.
[図 3]第 1実施例の分解斜視図である。 [図 4]応力分布の概略を示す模式図で、(A)は従来例、(B)は第 1実施例を示す。 FIG. 3 is an exploded perspective view of the first embodiment. FIG. 4 is a schematic diagram showing an outline of a stress distribution. (A) shows a conventional example, and (B) shows a first example.
[図 5]応力分布をシミュレートした結果の模式図であり、(A)は従来例、(B)は第 1実 施例を示す。  [Fig. 5] Schematic diagram of the results of simulating the stress distribution, (A) shows the conventional example and (B) shows the first example.
[図 6]インピーダンス特性を示すグラフである。  FIG. 6 is a graph showing impedance characteristics.
[図 7]本発明に係る積層コイル部品の第 2実施例を示す概略斜視図である。  FIG. 7 is a schematic perspective view showing a second embodiment of the laminated coil component according to the present invention.
[図 8]第 2実施例の分解斜視図である。  FIG. 8 is an exploded perspective view of a second embodiment.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0011] 以下、本発明に係る積層コイル部品の実施例について添付図面を参照して説明す る。 Hereinafter, embodiments of the laminated coil component according to the present invention will be described with reference to the accompanying drawings.
[0012] (第 1実施例、図 1〜図 6参照)  [0012] (Refer to the first embodiment, FIGS. 1 to 6)
本発明の第 1実施例である積層コイル部品 1Aは、図 1に示すように、内部にコイル 10が配設された第 1のフェライトからなる積層体主要部 21と、コイル軸方向 Aの両端 部(上下部)に形成された第 2のフェライトからなる積層体端部 22とを備え、積層体 20 の左右端部に外部電極 23を設けたものである。図 2はその断面を示す。  As shown in FIG. 1, a laminated coil component 1A according to the first embodiment of the present invention includes a laminated main body 21 made of a first ferrite having a coil 10 disposed therein, and both ends in a coil axial direction A. And a laminated body end portion 22 made of a second ferrite formed on the upper portion (upper and lower portions), and external electrodes 23 are provided on the left and right end portions of the laminated body 20. Figure 2 shows the cross section.
[0013] 詳しくは、図 3に示すように、コイル導体 11及び引出し電極 12を形成したフェライト シート 25、所定パターンのコイル導体 11を形成したフェライトシート 26、無地のフェラ イトシート 27を積層したものである。シート 25, 26は第 1のフェライトからなり、前記主 要部 21を形成する。シート 27は第 2のフェライトからなり、前記端部 22を形成する。 各コイル導体 11は一端部に形成したビアホール導体 13を介して螺旋状のコイル 10 を形成する。なお、図 3は模式的な分解図であってシートの枚数は正確に図示してい ない。  Specifically, as shown in FIG. 3, a ferrite sheet 25 in which the coil conductor 11 and the extraction electrode 12 are formed, a ferrite sheet 26 in which the coil conductor 11 having a predetermined pattern is formed, and a plain ferrite sheet 27 are laminated. is there. The sheets 25 and 26 are made of the first ferrite and form the main part 21. The sheet 27 is made of a second ferrite and forms the end 22. Each coil conductor 11 forms a spiral coil 10 via a via-hole conductor 13 formed at one end. FIG. 3 is a schematic exploded view, and the number of sheets is not accurately shown.
[0014] 主要部 21を形成する第 1のフェライトと端部 22を形成する第 2のフェライトは、フェラ イトの組成が異なり、かつ、第 2のフェライトは焼成時の収縮率が第 1のフェライトの焼 成時の収縮率よりも大き 、組成のものが用いられて 、る。フェライトの組成や収縮率 については後述する。  [0014] The first ferrite forming the main portion 21 and the second ferrite forming the end portion 22 have different ferrite compositions, and the second ferrite has the first ferrite having a shrinkage ratio during firing. Those having a composition larger than the shrinkage ratio during firing are used. The ferrite composition and shrinkage will be described later.
[0015] ここで、積層コイル部品の製造方法について説明する。製造方法は 2種類に大別さ れる。第 1の方法は、貫通孔を形成したフェライトグリーンシート上に導電ペーストによ りスクリーン印刷などの印刷法で所望のパターンを形成し、該シートを螺旋状のコィ ルが形成されるように積層、圧着、裁断、焼成することで積層コイル部品を得る。第 2 の方法は、フェライト材料と導体材料とをスクリーン印刷などの印刷法で交互に印刷 して螺旋状のコイルを形成し、圧着、裁断、焼成することで積層コイル部品を得る。 [0015] Here, a manufacturing method of the laminated coil component will be described. There are two types of manufacturing methods. In the first method, a desired pattern is formed by a printing method such as screen printing with a conductive paste on a ferrite green sheet in which through holes are formed, and the sheet is formed into a spiral coil. A laminated coil component is obtained by laminating, crimping, cutting, and firing so that a magnetic layer is formed. In the second method, a ferrite coil and a conductor material are alternately printed by a printing method such as screen printing to form a spiral coil, and a laminated coil component is obtained by crimping, cutting and firing.
[0016] 具体的には、以下の工程によって積層コイル部品 1Aを製造した。まず、フェライト シート 25〜27を用意する。透磁率が高い材料が好ましぐ第 1及び第 2のフェライトと もに、 Ni— Cu— Zn系フェライト、 Ni— Zn系フェライト、 Cu— Zn系フェライトなどを使 用することができる。第 2のフェライトは第 1のフェライトよりも熱収縮率の大きい材料を 使用する。熱収縮率の調整は、フ ライトに含まれる Ni, Zn, Cuなどの元素の含有 率を異ならせることで行う。例えば、 Znの含有率を変更することで調整可能である。  Specifically, the laminated coil component 1A was manufactured through the following steps. First, prepare ferrite sheets 25-27. Ni-Cu-Zn-based ferrites, Ni-Zn-based ferrites, Cu-Zn-based ferrites, etc. can be used in addition to the first and second ferrites that are preferred for materials with high magnetic permeability. The second ferrite uses a material with a higher thermal shrinkage than the first ferrite. The heat shrinkage rate is adjusted by changing the content of elements such as Ni, Zn, and Cu contained in the flight. For example, it can be adjusted by changing the Zn content.
[0017] 用意されたフェライトシート 25, 26にビアホール導体用の穴を形成し、内部導体 (コ ィル導体 11、引出し電極 12)を印刷する。内部導体は、インダクタンス素子として高 い Q (品質係数)を実現するため、抵抗値が低いことが望ましい。例えば、 Ag, Au, P tなどを主成分とする貴金属やこれらの合金のほ力、 Cu, Niなどの卑金属やこれらの 合金を使用することができる。本第 1実施例の製造には Agを用いた。  [0017] Holes for via hole conductors are formed in the prepared ferrite sheets 25 and 26, and the internal conductors (the coil conductor 11 and the lead electrode 12) are printed. The internal conductor should have a low resistance value to achieve a high Q (quality factor) as an inductance element. For example, precious metals mainly composed of Ag, Au, Pt and the like and the power of these alloys, base metals such as Cu and Ni, and alloys thereof can be used. Ag was used in the production of the first example.
[0018] 次に、図 3に示した各シート 25〜27を積層、圧着し、コイル 10を内蔵した積層体 2 0を作製する。以上の工程はマザ一基板として複数単位のコイル 10がマトリクス状に 配置された状態で行われ、このマザ一積層体を 1単位の積層体 (チップ) 20に裁断 する。そして、得られた積層体 20を脱脂、焼成する。その後、積層体 20の左右端部 に外部電極 23を形成する。外部電極 23は積層体 20の左右端面から上下面及び側 面にわたって形成されており、端面において引出し電極 12と接続している。外部電 極 23は、 Agなどを主成分とし、表面にはめつき層が形成される。  Next, the sheets 25 to 27 shown in FIG. 3 are laminated and pressure-bonded to produce a laminate 20 including the coil 10 therein. The above steps are performed in a state where a plurality of units of coils 10 are arranged in a matrix as a mother substrate, and this mother laminate is cut into one unit laminate (chip) 20. Then, the obtained laminate 20 is degreased and fired. Thereafter, external electrodes 23 are formed on the left and right ends of the laminate 20. The external electrode 23 is formed from the left and right end surfaces of the laminate 20 to the upper and lower surfaces and the side surfaces, and is connected to the extraction electrode 12 at the end surfaces. The external electrode 23 contains Ag or the like as a main component, and an adhesive layer is formed on the surface.
[0019] 製造された積層コイル部品 1Aは、長辺 1. Omm,短辺 0. 5mm,高さ 0. 5mmであ る。また、外層部 22の第 2のフェライトは、 Fe O力 S50mol%、 ZnOが 15mol%、 NiO  [0019] The manufactured laminated coil component 1A has a long side of 1. Omm, a short side of 0.5mm, and a height of 0.5mm. In addition, the second ferrite of the outer layer 22 is FeO force S50 mol%, ZnO 15 mol%, NiO
2 3  twenty three
が 20mol%、 CuOが 15mol%の組成である。内層部 21の第 1のフェライトは、 Fe O  Is 20mol% and CuO is 15mol%. The first ferrite of the inner layer 21 is Fe 2 O
2 3 が 35mol%、 ZnO力 0mol%、 NiOが 10mol%、 CuOが 15mol%の組成である。  2 3 is 35 mol%, ZnO power is 0 mol%, NiO is 10 mol%, and CuO is 15 mol%.
[0020] 図 4 (A)に従来の積層コイル部品における焼成時に生じる応力分布を模式的に示 し、図 4 (B)に第 1実施例の積層コイル部品 1Aにおける焼成時に生じる応力分布を 模式的に示す。図 4 (A)に示すように、従来の積層コイル部品においては、コイル導 体とフ ライトの収縮率の差に起因してフ ライトに矢印で示すような大きな引張り応 力が生じる。最も強い磁界はコイル導体の内側のフェライトに発生している。この強磁 界のフェライトには磁界に対して平行な方向に引張り応力が発生している。フェライト の応力が作用すると材料の電気特性 が低下し、結果的にインピーダンス I z Iを 低下させていた。 [0020] Fig. 4 (A) schematically shows the stress distribution generated during firing in a conventional multilayer coil component, and Fig. 4 (B) schematically shows the stress distribution generated during firing in the multilayer coil component 1A of the first embodiment. Indicate. As shown in Fig. 4 (A), in conventional laminated coil components, coil Due to the difference in shrinkage between the body and the flight, a large tensile stress is generated on the flight as shown by the arrow. The strongest magnetic field is generated in the ferrite inside the coil conductor. In this strong magnetic field ferrite, tensile stress is generated in a direction parallel to the magnetic field. When the stress of ferrite acted, the electrical properties of the material deteriorated, resulting in a decrease in impedance I z I.
[0021] 一方、第 1実施例の積層コイル部品 1Aにおいては、図 4 (B)に示すように、端部 22 の第 2のフェライトの熱収縮率が主要部 21の第 1のフェライトの熱収縮率よりも大きい ため、端部 22がコイル 10のコイル軸方向 Aと直交する方向に大きく収縮する。主要 部 21では熱収縮率の小さ 、コイル導体 11が存在して 、るため、主要部 21は充分に 収縮することができずに第 1のフェライトに引張り応力が生じる。この引張り応力は端 部 22の大きな圧縮により相殺されることになる。これにより、強磁界部分であるコイル 導体 11の周囲の引張り応力が緩和され、インピーダンス I Z Iの低下が防止される。  On the other hand, in the multilayer coil component 1A of the first embodiment, as shown in FIG. 4B, the thermal contraction rate of the second ferrite at the end 22 is the heat of the first ferrite at the main portion 21. Since the contraction rate is larger, the end 22 contracts greatly in the direction orthogonal to the coil axis direction A of the coil 10. Since the main portion 21 has a small thermal contraction rate and the coil conductor 11 exists, the main portion 21 cannot sufficiently contract and a tensile stress is generated in the first ferrite. This tensile stress is offset by the large compression of the end 22. As a result, the tensile stress around the coil conductor 11 that is a strong magnetic field portion is relieved, and the impedance I Z I is prevented from decreasing.
[0022] 図 5 (A)は図 4 (A)に示した従来の積層コイル部品における応力分布をシミュレート したものの模式図であり、図 5 (B)は図 4 (B)に示した第 1実施例の積層コイル部品 1 Aにおける応力分布をシミュレートしたものの模式図である。図 4及び図 5において、 外向きの矢印は引っ張り応力を示し、内向きの矢印は圧縮応力を示す。  [0022] Fig. 5 (A) is a schematic diagram of the simulated stress distribution in the conventional multilayer coil component shown in Fig. 4 (A), and Fig. 5 (B) is a schematic diagram of Fig. 4 (B). FIG. 3 is a schematic diagram of a simulated stress distribution in the laminated coil component 1 A of one embodiment. 4 and 5, the outward arrow indicates tensile stress, and the inward arrow indicates compressive stress.
[0023] 前記応力分布のシミュレーションにおいて、フェライトの線膨張係数は、 880°Cでの 焼成時の収縮率が 23%であることから 2. 614 X 10—4(0. 23/880)とした。また、コ ィル導体の線膨張係数は、 880°Cでの焼成時の収縮率が 5%であることから、 5. 68 2 X 105とした。 [0023] In the simulation of the stress distribution, the linear expansion coefficient of the ferrite was 2. Since shrinkage during firing at 880 ° C is 23% 614 X 10- 4 (0. 23/880) . The linear expansion coefficient of the coil conductor was set to 5.68 2 X 10 5 because the shrinkage ratio upon firing at 880 ° C was 5%.
[0024] 図 6はインピーダンス I Z I特性を示すグラフであり、曲線 Yは図 4 (A)、図 5 (A)に 示した従来の積層コイル部品の特性を示し、曲線 Xは図 4 (B)、図 5 (B)に示した第 1 実施例の積層コイル部品 1Aの特性を示す。このグラフ力も明らかなように、第 1実施 例の積層コイル部品 1Aにあっては、全体的に(特に、 10〜: L lOOMHzの帯域で)ィ ンピーダンス I z I が向上している。  [0024] Fig. 6 is a graph showing the impedance IZI characteristics. Curve Y shows the characteristics of the conventional multilayer coil components shown in Figs. 4 (A) and 5 (A), and curve X shows Fig. 4 (B). FIG. 5B shows the characteristics of the laminated coil component 1A of the first embodiment shown in FIG. 5 (B). As is apparent from this graph power, the impedance I z I is improved overall (particularly, in the band of 10˜: LlOOMHz) in the laminated coil component 1A of the first embodiment.
[0025] ここで、以下の表 1に、端部 22の厚み及び収縮率を種々に変化させた試料 1〜7及 び従来例に関するコイル導体 11の周囲における引張り応力値( + )及び収縮応力値 (一)の積分差を整数値で示す。コイル導体まわりとは、コイル 10の中心部を中心とし て幅、咼さともにコイル 10の 2倍の領域を意味する。 [0025] Here, in Table 1 below, the tensile stress value (+) and the contraction stress around the coil conductor 11 related to Samples 1 to 7 and the conventional example in which the thickness and contraction rate of the end portion 22 are variously changed are shown. Indicates the integral difference of the value (one) as an integer value. The area around the coil conductor is centered on the center of coil 10. This means that the width and height are twice as large as the coil 10.
[表 1][table 1]
Figure imgf000007_0001
Figure imgf000007_0001
表 1から明らかなように、従来例の積分差が + 10であるのに対して、第 1実施例で ある試料 1〜7は 、ずれも積分差が小さ!/、。第 1実施例で具体的な数値を挙げて説 明した積層コイル部品 1Aは試料 2であり、積分差は + 1、内層部 21に生じる応力は 1. 465NZmm2である。内層部 21に生じる応力は 0. 3 5. ONZmm2が適切な範 囲である。 As is apparent from Table 1, the integral difference of the conventional example is +10, whereas the samples 1 to 7 of the first embodiment have a small integral difference! /. In the first example, we will explain with specific numerical values. The revealed laminated coil component 1A is sample 2, the integral difference is +1, and the stress generated in the inner layer 21 is 1.465 NZmm 2 . Stress generated in the inner layer 21 is 0. 3 5. ONZmm 2 is a suitable range.
[0028] ところで、フェライトは Znの含有量によって収縮率の調整が可能であり、種々の収 縮率を有するフェライトの組成について以下の表 2に示す。  [0028] By the way, the shrinkage rate of ferrite can be adjusted by the Zn content, and the composition of ferrite having various shrinkage rates is shown in Table 2 below.
[0029] [表 2] [0029] [Table 2]
CMcm
Figure imgf000008_0001
[0030] (第 2実施例、図 7及び図 8参照)
Figure imgf000008_0001
[0030] (Refer to the second embodiment, FIGS. 7 and 8)
図 7に示す積層コイル部品 1 Bは、コイル 50をそのコイル軸方向 Aが実装面 5に対し て平行に配置されるように第 1のフェライトからなる積層体主要部 61に配設し、コイル 軸方向 Aの両端部 (積層体 60の左右端部)に第 2のフェライトからなる積層体端部 62 を設けたものである。  In the laminated coil component 1B shown in FIG. 7, the coil 50 is arranged in the main part 61 of the laminated body made of the first ferrite so that the coil axial direction A is arranged in parallel to the mounting surface 5. A laminate end portion 62 made of a second ferrite is provided at both end portions in the axial direction A (left and right end portions of the laminate 60).
[0031] 詳しくは、図 8に示すように、各フェライトシート 65〜68は両端部が収縮率の大きい 第 2のフェライトにて形成され、その他の部分が第 1のフェライトにて形成されている。 フェライトシート 65にコイル導体 51、引出し電極 52及びビアホール導体 53を形成し 、フェライトシート 66にビアホール導体 53を形成し、フェライトシート 67にコイル導体 5 1及びビアホール導体 53を形成する。これらのフェライトシート 65〜67を積層すると ともに、その上下部に無地のフェライトシート 68を積層し、螺旋状のコイル 50を形成 する。外部電極は、図示しないが、積層体 60の左右両端部に設けられる。  Specifically, as shown in FIG. 8, each of the ferrite sheets 65 to 68 is formed of the second ferrite having a large shrinkage at both ends and the other portion is formed of the first ferrite. . The coil conductor 51, the extraction electrode 52 and the via hole conductor 53 are formed on the ferrite sheet 65, the via hole conductor 53 is formed on the ferrite sheet 66, and the coil conductor 51 and the via hole conductor 53 are formed on the ferrite sheet 67. These ferrite sheets 65 to 67 are laminated, and a plain ferrite sheet 68 is laminated on the upper and lower portions thereof to form a spiral coil 50. Although not shown, the external electrodes are provided at both left and right ends of the multilayer body 60.
[0032] この積層コイル部品 1Bにおいても、コイル軸方向 Aの両端部に収縮率の大きい第 2のフェライトからなる端部 62が形成されているため、前記第 1実施例と同様に、コィ ル導体 51の周囲の引張り応力を緩和してインピーダンス I Z Iの低下を防止するこ とがでさる。  [0032] Also in this laminated coil component 1B, since the end portions 62 made of the second ferrite having a large shrinkage rate are formed at both ends in the coil axial direction A, the coil is the same as in the first embodiment. The tensile stress around the conductor 51 can be relaxed to prevent the impedance IZI from decreasing.
[0033] (他の実施例)  [0033] (Other embodiments)
なお、本発明に係る積層コイル部品は、前記実施例に限定されるものではなぐそ の要旨の範囲内で種々に変更することができる。  The laminated coil component according to the present invention can be variously modified within the scope of the gist of the present invention, not limited to the above embodiment.
[0034] 特に、収縮率の大きい第 2のフェライトからなる積層体端部は、積層体の両側に設 けられる必要はなぐ一方の側に設けてもよい。また、フェライトシート上に形成される コイル導体などの形状は任意である。さらに、本発明は積層インダクタのみならず LC 複合部品などに適用することもできる。  [0034] In particular, the end portion of the laminated body made of the second ferrite having a large shrinkage rate may be provided on one side which is not necessarily provided on both sides of the laminated body. The shape of the coil conductor formed on the ferrite sheet is arbitrary. Furthermore, the present invention can be applied not only to multilayer inductors but also to LC composite parts.
[0035] また、前記実施例では、第 1及び第 2のフェライトを同じ組成系のフェライトで構成し ているが、異なる組成系のフェライトで構成してもよい。但し、第 1及び第 2のフェライト を同じ組成系のフ ライトで構成したほうが、両者の密着性が良好となる。  [0035] In the embodiment, the first and second ferrites are composed of the same composition system ferrite, but may be composed of different composition system ferrites. However, if the first and second ferrites are composed of the same composition type of flites, the adhesion between them becomes better.
産業上の利用可能性  Industrial applicability
[0036] 以上のように、本発明は、積層コイル部品に有用であり、特に、積層体の焼成時の コイル導体とフェライトとの収縮差により生じる内部応力を緩和でき、インピーダンスの 低下を防止できる点で優れて ヽる。 [0036] As described above, the present invention is useful for laminated coil components, and particularly when the laminated body is fired. It is excellent in that the internal stress caused by the shrinkage difference between the coil conductor and ferrite can be relieved and the impedance can be prevented from decreasing.

Claims

請求の範囲 The scope of the claims
[1] 内部にコイルが配設された第 1のフ ライトからなる積層体主要部と、  [1] The main part of the laminate composed of the first flight in which the coil is disposed,
前記積層体主要部のコイル軸方向両端部の少なくとも一方に形成された第 2のフエ ライトからなる積層体端部と、を備え、  A laminate end made of a second ferrite formed on at least one of both ends in the coil axial direction of the laminate main part, and
前記第 1のフェライトと前記第 2のフェライトは、フェライトの組成が異なり、かつ、第 2 のフェライトの焼成時の収縮率が第 1のフェライトの焼成時の収縮率よりも大きいこと、 を特徴とする積層コイル部品。  The first ferrite and the second ferrite have different ferrite compositions, and the shrinkage rate during firing of the second ferrite is larger than the shrinkage rate during firing of the first ferrite, Laminated coil parts.
[2] 前記第 1のフェライト及び前記第 2のフェライトは、 Ni— Cu— Zn系フェライト又は Ni [2] The first ferrite and the second ferrite are Ni—Cu—Zn based ferrite or Ni
Zn系フェライトであることを特徴とする請求の範囲第 1項に記載の積層コイル部品  The multilayer coil component according to claim 1, wherein the multilayer coil component is a Zn-based ferrite.
[3] 前記第 2のフェライトの Znの含有量は、前記第 1のフェライトの Znの含有量よりも多 いことを特徴とする請求の範囲第 1項又は第 2項に記載の積層コイル部品。 [3] The multilayer coil component according to [1] or [2], wherein the Zn content of the second ferrite is greater than the Zn content of the first ferrite .
[4] 前記第 2のフェライトには Znが 25〜70mol%含有されていることを特徴とする請求 の範囲第 1項ないし第 3項のいずれかに記載の積層コイル部品。  [4] The laminated coil component according to any one of [1] to [3], wherein the second ferrite contains 25 to 70 mol% of Zn.
[5] 前記コイルは Agカゝらなるコイル導体をビアホール導体を介して接続して螺旋状に 構成されて 、ることを特徴とする請求の範囲第 1項な 、し第 4項の 、ずれかに記載の 積層コイル部品。  [5] The coil according to claim 1 or 4, wherein the coil is formed in a spiral shape by connecting a coil conductor made of Ag via via-hole conductors. A laminated coil component according to any one of the above.
PCT/JP2006/321884 2005-12-29 2006-11-01 Laminated coil part WO2007074580A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN200680002400XA CN101103420B (en) 2005-12-29 2006-11-01 Laminated coil part
JP2007530525A JP4530044B2 (en) 2005-12-29 2006-11-01 Multilayer coil parts

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005-380607 2005-12-29
JP2005380607 2005-12-29

Publications (1)

Publication Number Publication Date
WO2007074580A1 true WO2007074580A1 (en) 2007-07-05

Family

ID=38217806

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/321884 WO2007074580A1 (en) 2005-12-29 2006-11-01 Laminated coil part

Country Status (5)

Country Link
JP (1) JP4530044B2 (en)
KR (1) KR100820025B1 (en)
CN (1) CN101103420B (en)
TW (1) TW200733153A (en)
WO (1) WO2007074580A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011009644A (en) * 2009-06-29 2011-01-13 Tdk Corp Ferrite core and electronic component
WO2013038752A1 (en) * 2011-09-14 2013-03-21 株式会社村田製作所 Inductor element and method of manufacturing same
EP2722857A4 (en) * 2011-06-15 2015-07-08 Murata Manufacturing Co Multilayer coil part
US9281113B2 (en) 2011-06-15 2016-03-08 Murata Manufacturing Co., Ltd. Laminated coil component, and method of manufacturing the laminated coil component
GB2516128B (en) * 2012-04-27 2017-04-19 Murata Manufacturing Co Coil antenna and communication terminal device

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101408617B1 (en) 2012-11-20 2014-06-17 삼성전기주식회사 Multilayered coil elements
KR101408525B1 (en) 2012-11-20 2014-06-17 삼성전기주식회사 Multilayered coil elements
TW201434068A (en) * 2013-02-23 2014-09-01 Conquer Electronics Co Ltd Manufacturing method of hollow fuse with vertical winding

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0696940A (en) * 1991-05-02 1994-04-08 American Teleph & Telegr Co <Att> Manufacture of solid-state composite magnetic element
JPH0766030A (en) * 1993-08-24 1995-03-10 Tokin Corp Laminated type magnetic element and manufacture thereof
JP2005294725A (en) * 2004-04-05 2005-10-20 Murata Mfg Co Ltd Stacked ceramic electronic component and method for manufacturing the same
JP2005306696A (en) * 2004-04-26 2005-11-04 Matsushita Electric Ind Co Ltd Magnetic ferrite, and common mode noise filter and chip transformer using the same

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4293936B2 (en) * 2004-04-21 2009-07-08 Tdk株式会社 Mn-Zn ferrite member

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0696940A (en) * 1991-05-02 1994-04-08 American Teleph & Telegr Co <Att> Manufacture of solid-state composite magnetic element
JPH0766030A (en) * 1993-08-24 1995-03-10 Tokin Corp Laminated type magnetic element and manufacture thereof
JP2005294725A (en) * 2004-04-05 2005-10-20 Murata Mfg Co Ltd Stacked ceramic electronic component and method for manufacturing the same
JP2005306696A (en) * 2004-04-26 2005-11-04 Matsushita Electric Ind Co Ltd Magnetic ferrite, and common mode noise filter and chip transformer using the same

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011009644A (en) * 2009-06-29 2011-01-13 Tdk Corp Ferrite core and electronic component
EP2722857A4 (en) * 2011-06-15 2015-07-08 Murata Manufacturing Co Multilayer coil part
US9281113B2 (en) 2011-06-15 2016-03-08 Murata Manufacturing Co., Ltd. Laminated coil component, and method of manufacturing the laminated coil component
US9490060B2 (en) 2011-06-15 2016-11-08 Murata Manufacturing Co., Ltd. Laminated coil component
US9741484B2 (en) 2011-06-15 2017-08-22 Murata Manufacturing Co., Ltd. Laminated coil component
WO2013038752A1 (en) * 2011-09-14 2013-03-21 株式会社村田製作所 Inductor element and method of manufacturing same
JPWO2013038752A1 (en) * 2011-09-14 2015-03-23 株式会社村田製作所 Inductor element and manufacturing method thereof
GB2516128B (en) * 2012-04-27 2017-04-19 Murata Manufacturing Co Coil antenna and communication terminal device
US10020582B2 (en) 2012-04-27 2018-07-10 Murata Manufacturing Co., Ltd. Coil antenna and communication terminal device

Also Published As

Publication number Publication date
TWI317528B (en) 2009-11-21
JPWO2007074580A1 (en) 2009-06-04
KR100820025B1 (en) 2008-04-08
CN101103420B (en) 2011-09-28
JP4530044B2 (en) 2010-08-25
TW200733153A (en) 2007-09-01
KR20070088748A (en) 2007-08-29
CN101103420A (en) 2008-01-09

Similar Documents

Publication Publication Date Title
KR101954579B1 (en) Laminated inductor
JP6508126B2 (en) Coil parts
JP4100459B2 (en) Multilayer coil component and manufacturing method thereof
JP4150394B2 (en) Manufacturing method of multilayer filter
WO2007074580A1 (en) Laminated coil part
US6459351B1 (en) Multilayer component having inductive impedance
KR101994722B1 (en) Multilayered electronic component
JP5626834B2 (en) Manufacturing method of open magnetic circuit type multilayer coil parts
KR101503967B1 (en) Laminated Inductor and Manufacturing Method Thereof
US20110291784A1 (en) Electronic component
KR20110018954A (en) Laminated inductor, method for manufacturing the laminated inductor, and laminated choke coil
US20130093558A1 (en) Electronic component
JP4596008B2 (en) Laminated coil
JP6065439B2 (en) Multilayer coil component and manufacturing method thereof
JP2001217126A (en) Laminated inductor
JP2002151354A (en) Laminated electronic component
KR20130134868A (en) Multilayer type inductor
JP2020194808A (en) Laminated coil component
WO2013099297A1 (en) Laminate inductor
JP2005167029A (en) Laminated inductor
JP3758464B2 (en) Laminated electronic components
JP5245645B2 (en) Manufacturing method of laminated coil component
JP3601096B2 (en) Manufacturing method of multilayer inductor
JP2004006760A (en) Electronic component
KR20150105786A (en) Multilayered electronic component and manufacturing method thereof

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2007530525

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 1020077014738

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 200680002400.X

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06822813

Country of ref document: EP

Kind code of ref document: A1