JP3601096B2 - Manufacturing method of multilayer inductor - Google Patents

Manufacturing method of multilayer inductor Download PDF

Info

Publication number
JP3601096B2
JP3601096B2 JP03108595A JP3108595A JP3601096B2 JP 3601096 B2 JP3601096 B2 JP 3601096B2 JP 03108595 A JP03108595 A JP 03108595A JP 3108595 A JP3108595 A JP 3108595A JP 3601096 B2 JP3601096 B2 JP 3601096B2
Authority
JP
Japan
Prior art keywords
value
thermal shock
laminated inductor
inductor
magnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP03108595A
Other languages
Japanese (ja)
Other versions
JPH08148363A (en
Inventor
正治 池田
宏幸 竹内
基 西井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Manufacturing Co Ltd
Original Assignee
Murata Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co Ltd filed Critical Murata Manufacturing Co Ltd
Priority to JP03108595A priority Critical patent/JP3601096B2/en
Publication of JPH08148363A publication Critical patent/JPH08148363A/en
Application granted granted Critical
Publication of JP3601096B2 publication Critical patent/JP3601096B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Manufacturing Cores, Coils, And Magnets (AREA)
  • Coils Or Transformers For Communication (AREA)

Description

【0001】
【産業上の利用分野】
本発明は、積層インダクタの製造方法に関する。
【0002】
【従来の技術】
従来の積層インダクタは、表面に内部電極となる導体パターンを形成した、磁性体層となる磁性体シートを複数枚積層し、磁性体シートに設けたスルーホールを介して各導体パターン相互間を接続した積層体からなり、これを焼成することにより製造されていた。
【0003】
この積層インダクタでは、焼成過程において最高温度付近で磁性体層と内部電極が焼結一体化するが、最高温度から室温まで冷却する際に、磁性体層と内部電極との熱膨張率の違いから応力磁歪が発生し、磁気特性を低下させるという問題があり、その解決策として、図3に示すように、磁性体層21と内部電極22間の全部、或いは一部に空隙23を設けることにより、磁性体層21と内部電極22との熱膨張率の違いから発生する応力磁歪を緩和させる方法が採られていた。
【0004】
【発明が解決しようとする課題】
ところが、このような従来の積層インダクタでは、磁性体層21と内部電極22間に設けられた空隙23に、積層体24の両端面に形成された外部電極25に対しメッキを施す際に使用するメッキ液、若しくは外部電極25を回路基板などに半田付けする際に使用するワックス、或いは水分が外部電極25を通じて浸入することがあった。これら液体の浸入により、内部電極22は腐食して積層インダクタのL値及びQ値が変化し、最悪の場合には内部電極22が断線に至る恐れがあった。
【0005】
それゆえ、本発明の主たる目的は、磁性体層と内部電極間に空隙を設けずとも磁気特性の良好な積層インダクタの製造方法を提供することである。
【0006】
【課題を解決するための手段】
上記の目的を達成するために、本発明は、表面に内部電極となる導体パターンを形成した磁性体層を積層し、一定の圧力を加えたのち、焼成することにより積層体を得る工程と、前記積層体に外部電極を形成する工程と、前記積層体に対し、温度差120℃以上となる熱衝撃処理を一回以上行う工程とを含むことを特徴とする。
【0007】
【作用】
上記の構成によれば、積層体に対し熱衝撃処理を行うことにより、内部電極と磁性体層間とに大きな応力をかけ、内部電極を構成するAgを伸ばし、Ag結晶を再配列させ、焼成後の冷却過程における内部電極と磁性体層間に発生する磁性体の応力磁歪を緩和することができる。
【0008】
【実施例】
以下、本発明による積層インダクタの製造方法の実施例を図面を用いて説明する。まず、図1に示すように、Ni−Zn−Cuフェライトのスラリーからグリーンシート法により形成した積層体の磁性体層となる磁性体シートを複数枚用意し、そのうち磁性体シート1〜5の表面に例えばAg等の導電材料からなるペーストを厚膜印刷することにより、内部電極となる導体パターン1a〜5aを形成し、導体パターン1a〜4aの一方端部付近に導体パターン1a〜5aを相互に電気的に接続するスルーホール7を形成する。そして、磁性体シート1〜5を他の磁性体シート8〜10,11〜13で挟むようにして重ね合せ、一定の圧力を加えたのち、例えば空気中で加熱してバインダーを燃焼除去させ、850〜1000℃程度の温度で焼成して積層体14を得る。さらに、図2に示すように、積層体14の対向する両端面に例えばAg等の導電材料からなる導電ペーストを塗布して焼き付けることにより外部電極15,15を形成し、外部電極15,15にNi及びSnのメッキを行い、積層インダクタ16を構成する。
【0009】
なお、上述の実施例では、Ni−Zn−Cuフェライトの磁性体シートを用いたが、Niフェライト、Ni−Znフェライト、Ni−Cuフェライト、Mn−Znフェライト等のスピネル型フェライトであってもよく、磁性体層の形成方法はグリーンシート法の他の印刷方法であってもよい。
【0010】
また、導体パターン1a〜5aの材料にAgを用いたが、Ag−Pdであってもよく、導体パターン1a〜5aの形成方法は、塗布、転写、スパッタリング等であってもよい。
【0011】
また、外部電極15,15の材料にAgを用いたが、Ag−Pd,Ni,Cu或いはAgを含めたこれらの合金であってもよく、外部電極15,15の形成方法は、印刷、蒸着、スパッタリング等であってもよく、磁性体シート1〜13を重ね合せ、一定の圧力を加えた焼成する前の状態で外部電極15,15を形成し、同時に一体焼成してもよい。
【0012】
次に、この積層インダクタ16に冷熱衝撃装置を用いて、急加熱した後、急冷却する、または急冷却したのち、急加熱することにより、低温時と高温時との温度差が120℃以上となる熱衝撃処理を一回以上行う。なお、この熱衝撃処理は積層体14の両端面に外部電極15,15を形成した後、つまり外部電極15,15にメッキを行う前であってもよい。
【0013】
この熱衝撃処理を行うことにより、内部電極1a〜5aと磁性体層1〜5間とに大きな応力をかけ、内部電極1a〜5aを構成するAgを伸ばして、Ag結晶を再配列させ、焼成後の冷却過程における内部電極1a〜5aと磁性体層1〜5間に発生する磁性体の応力磁歪を緩和する。これにより、積層インダクタ16はL値、Q値、直流重畳特性(L値が−5%変化するときの直流印加電流値)、並びに温度特性を向上させることができる。
【0014】
また、この積層インダクタ16では内部電極1a〜5aと磁性体層1〜5が密着しているため空隙が生じず、従来のように、磁性体層と内部電極間に設けられた空隙に、外部電極にメッキするときに使用するメッキ液、若しくは半田付けするときにに使用するワックス、或いは水分が浸入することもなく、内部電極1a〜5aが劣化して特性が低下することもない。
【0015】
以下に、熱衝撃処理の温度差、処理回数を変えて、積層インダクタのL値、Q値、直流重畳特性、並びに温度特性の変化を調べた実験結果を示す。
【0016】
今回の実験では、寸法が縦1.25mm×横2.0mm×高さ0.9mmであり、コイルのターン数が6.5ターンの積層インダクタを使用する。なお、積層インダクタの寸法、コイルのターン数については実験者が任意に選択でき、特に指定されるものではない。
【0017】
条件1では、積層インダクタに冷熱衝撃装置を用いて温度差50℃となる熱衝撃処理を1回の処理回数で行った。条件2では、積層インダクタに冷熱衝撃装置を用いて温度差100℃となる熱衝撃処理を1回、5回、50回の処理回数で行った。条件3では、積層インダクタに冷熱衝撃装置を用いて温度差120℃となる熱衝撃処理を1回、5回、50回の処理回数で行った。条件4では、積層インダクタに冷熱衝撃装置と、冷却時には液体窒素を併用して温度差200℃となる熱衝撃処理を1回の処理回数で行った。また、これらの各条件と比較するために、比較例1として熱衝撃処理を行う前の積層インダクタを用意した。
【0018】
そして、条件1〜4及び比較例1の積層インダクタの特性の測定方法として、まず基板に取り付けた直後の積層インダクタのL値、Q値、及び直流抵抗Rdcを測定し、その後40℃、90〜95%RHの耐湿槽に1000時間投入し、層から取り出した後、再度積層インダクタのL値、Q値、及び直流抵抗Rdcを測定した。なお、このときの基板付け条件は、まず基板に接着剤で積層インダクタを付け、ハロゲン系のフラックスを塗布し、250℃の6×4はんだに浸せきし、水で洗浄を行った。
【0019】
条件1〜4及び比較例1の積層インダクタの特性を測定した結果を表1に示す。
【0020】
【表1】

Figure 0003601096
【0021】
表1に示すように、温度差50℃となる熱衝撃処理を行った条件1と温度差100℃となる熱衝撃処理を行った条件2の積層インダクタでは、比較例1の積層インダクタに比較して、L値、Q値、直流重畳特性、及び温度特性がともにそれ程効果はない。しかし、温度差120℃となる熱衝撃処理を行った条件3の積層インダクタでは、L値、Q値、及び直流重畳特性が向上し、温度特性においても、温度による変化率が小さくなっていることが確認できる。そして、温度差200℃となる熱衝撃処理を行った条件4の積層インダクタでは、L値、Q値、及び直流重畳特性がさらに向上し、温度による変化率もさらに小さくなっていることが確認できる。
【0022】
また、温度差100℃となる熱衝撃処理を行った条件2の積層インダクタでは、熱衝撃処理の処理回数を増やしてもそれ程特性の変化はないが、温度差120℃となる熱衝撃処理を行った条件3の積層インダクタでは、回数が増すごとにL値、Q値、及び直流重畳特性が向上し、温度による変化率が小さくなっていることが確認できる。
【0023】
これにより、温度差120℃以上の熱衝撃処理を加えることで積層インダクタのL値、Q値、及び直流重畳特性が向上し、温度による変化率が小さくなることがわかる。そして、これら特性の向上は、熱衝撃処理の温度差を大きい程、または熱衝撃処理の回数を増やす程、顕著であることがわかる。
【0024】
また、磁性体層と内部電極間に空隙を設けることにより、磁性体層と内部電極との熱膨張率の違いから発生する応力を緩和させた従来の積層インダクタと比較しても、耐湿試験により従来の積層インダクタがL値、Q値が低下し、直流抵抗Rdc値が大幅に大きくなるのに対して、本実施例の積層インダクタはL値、Q値、及びRdc値は耐湿試験によりほとんど変化しない。
【0025】
【発明の効果】
以上説明したように、本発明にかかる積層インダクタの製造方法によれば、熱衝撃処理を行うことにより、焼成後の冷却過程における内部電極と磁性体層間に発生する磁性体の応力磁歪を緩和し、積層インダクタのL値、Q値、直流重畳特性、並びに温度特性を向上させた積層インダクタを容易に且つ短時間で得ることができる。また、磁性体層と内部電極が密着して、空隙ができないもので、従来の磁性体層と内部電極間に空隙を設けた積層インダクタに比べ、耐湿性の高い積層インダクタを得ることができる。
【図面の簡単な説明】
【図1】本発明の実施例における積層インダクタを構成する積層体を示す分解斜視図である。
【図2】本発明の実施例における積層インダクタを示す斜視図である。
【図3】従来の積層インダクタを示す断面図である。
【符号の説明】
1〜13 磁性体シート(磁性体層)
1a〜5a 導体パターン(内部電極)
7 スルーホール
14 積層体
15 外部電極
16 積層インダクタ[0001]
[Industrial applications]
The present invention relates to a method for manufacturing a multilayer inductor.
[0002]
[Prior art]
Conventional multilayer inductors have a structure in which conductor patterns that serve as internal electrodes are formed on the surface.A plurality of magnetic sheets that serve as magnetic layers are stacked, and the conductor patterns are connected to each other via through holes provided in the magnetic sheets. It was manufactured by firing this laminate.
[0003]
In this laminated inductor, the magnetic layer and the internal electrode are sintered and integrated around the maximum temperature in the firing process, but when cooled from the maximum temperature to room temperature, due to the difference in the coefficient of thermal expansion between the magnetic layer and the internal electrode. There is a problem that stress magnetostriction occurs and the magnetic properties are degraded. As a solution to this problem, as shown in FIG. 3, a gap 23 is provided in all or a part between the magnetic layer 21 and the internal electrode 22. In addition, a method has been adopted in which a stress magnetostriction generated due to a difference in thermal expansion coefficient between the magnetic layer 21 and the internal electrode 22 is reduced.
[0004]
[Problems to be solved by the invention]
However, in such a conventional multilayer inductor, the gap 23 provided between the magnetic layer 21 and the internal electrode 22 is used for plating the external electrodes 25 formed on both end surfaces of the multilayer body 24. In some cases, a plating solution or wax or moisture used when soldering the external electrode 25 to a circuit board or the like may enter through the external electrode 25. The infiltration of these liquids corrodes the internal electrodes 22 and changes the L value and the Q value of the multilayer inductor. In the worst case, the internal electrodes 22 may be disconnected.
[0005]
SUMMARY OF THE INVENTION Therefore, a main object of the present invention is to provide a method for manufacturing a laminated inductor having good magnetic properties without providing a gap between a magnetic layer and an internal electrode.
[0006]
[Means for Solving the Problems]
In order to achieve the above object, the present invention provides a step of laminating a magnetic layer having a conductor pattern serving as an internal electrode formed on the surface thereof, applying a certain pressure, and then firing to obtain a laminate. The method includes a step of forming an external electrode on the laminate, and a step of performing one or more thermal shock treatments on the laminate at a temperature difference of 120 ° C. or more.
[0007]
[Action]
According to the above configuration, by performing a thermal shock treatment on the laminate, a large stress is applied between the internal electrode and the magnetic layer, the Ag constituting the internal electrode is elongated, the Ag crystals are rearranged, and after firing, The stress magnetostriction of the magnetic material generated between the internal electrode and the magnetic material layer during the cooling process can be reduced.
[0008]
【Example】
Hereinafter, an embodiment of a method for manufacturing a laminated inductor according to the present invention will be described with reference to the drawings. First, as shown in FIG. 1, a plurality of magnetic sheets serving as magnetic layers of a laminate formed by a green sheet method from a slurry of Ni—Zn—Cu ferrite are prepared, and the surface of the magnetic sheets 1 to 5 is prepared. The conductor patterns 1a to 5a serving as internal electrodes are formed by thick-film printing of a paste made of a conductive material such as Ag, and the conductor patterns 1a to 5a are mutually connected near one end of the conductor patterns 1a to 4a. A through hole 7 for electrical connection is formed. Then, the magnetic sheets 1 to 5 are overlapped so as to be sandwiched between the other magnetic sheets 8 to 10 and 11 to 13. After applying a certain pressure, the binder is burned and removed by heating in, for example, air, and 850 to 850. The laminate 14 is obtained by firing at a temperature of about 1000 ° C. Further, as shown in FIG. 2, external electrodes 15, 15 are formed by applying and baking a conductive paste made of a conductive material such as Ag on both end surfaces of the laminate 14 facing each other. The laminated inductor 16 is formed by plating Ni and Sn.
[0009]
In the above-described embodiment, a magnetic sheet of Ni-Zn-Cu ferrite was used, but a spinel-type ferrite such as Ni ferrite, Ni-Zn ferrite, Ni-Cu ferrite, or Mn-Zn ferrite may be used. The method for forming the magnetic layer may be a printing method other than the green sheet method.
[0010]
Although Ag is used for the material of the conductor patterns 1a to 5a, Ag-Pd may be used, and the method of forming the conductor patterns 1a to 5a may be coating, transfer, sputtering, or the like.
[0011]
Although Ag is used as the material of the external electrodes 15, 15, Ag-Pd, Ni, Cu, or an alloy thereof including Ag may be used. Alternatively, the magnetic sheets 1 to 13 may be overlapped, and the external electrodes 15 may be formed in a state before firing under a certain pressure, and firing may be performed simultaneously.
[0012]
Next, the laminated inductor 16 is rapidly heated using a thermal shock device and then rapidly cooled, or rapidly cooled, and then rapidly heated, so that the temperature difference between the low temperature and the high temperature is 120 ° C. or more. One or more thermal shock treatments are performed. The thermal shock treatment may be performed after the external electrodes 15 and 15 are formed on both end surfaces of the laminated body 14, that is, before plating the external electrodes 15 and 15.
[0013]
By performing this thermal shock treatment, a large stress is applied between the internal electrodes 1a to 5a and the magnetic layers 1 to 5, the Ag constituting the internal electrodes 1a to 5a is elongated, the Ag crystals are rearranged, and the baking is performed. The stress magnetostriction of the magnetic material generated between the internal electrodes 1a to 5a and the magnetic material layers 1 to 5 in the subsequent cooling process is reduced. Thereby, the laminated inductor 16 can improve the L value, the Q value, the DC superimposition characteristics (DC applied current value when the L value changes by -5%), and the temperature characteristics.
[0014]
Further, in the laminated inductor 16, no gap is formed because the internal electrodes 1a to 5a and the magnetic layers 1 to 5 are in close contact with each other. There is no intrusion of the plating solution used for plating the electrodes, the wax used for soldering, or the moisture, and the characteristics of the internal electrodes 1a to 5a are not deteriorated and deteriorated.
[0015]
The following is an experimental result of examining changes in the L value, Q value, DC superimposition characteristics, and temperature characteristics of the laminated inductor by changing the temperature difference and the number of times of the thermal shock treatment.
[0016]
In this experiment, a laminated inductor having dimensions of 1.25 mm (length) × 2.0 mm (width) × 0.9 mm (height) and 6.5 turns of the coil is used. The dimensions of the laminated inductor and the number of turns of the coil can be arbitrarily selected by an experimenter and are not particularly specified.
[0017]
Under condition 1, a thermal shock treatment was performed on the laminated inductor with a thermal shock device at a temperature difference of 50 ° C. in one treatment. Under condition 2, thermal shock treatment was performed on the laminated inductor using a thermal shock device at a temperature difference of 100 ° C. once, five times, and 50 times. Under condition 3, thermal shock treatment was performed on the laminated inductor using a thermal shock device at a temperature difference of 120 ° C. once, five times, and 50 times. Under condition 4, the laminated inductor was subjected to a thermal shock treatment using a thermal shock device and liquid nitrogen at the time of cooling to achieve a temperature difference of 200 ° C. in one treatment. In order to compare these conditions, a laminated inductor before thermal shock treatment was prepared as Comparative Example 1.
[0018]
Then, as a method of measuring the characteristics of the multilayer inductor of the conditions 1 to 4 and the comparative example 1, first, the L value, the Q value, and the DC resistance Rdc of the multilayer inductor immediately after being attached to the substrate are measured, and then, at 40 ° C., 90 to 90 ° C. After being put into a humidity-resistant tank of 95% RH for 1000 hours and taken out of the layer, the L value, the Q value, and the DC resistance Rdc of the laminated inductor were measured again. The conditions for attaching the substrate at this time were as follows: first, a laminated inductor was attached to the substrate with an adhesive, a halogen-based flux was applied, the substrate was immersed in 6 × 4 solder at 250 ° C., and washed with water.
[0019]
Table 1 shows the results of measuring the characteristics of the multilayer inductors of Conditions 1 to 4 and Comparative Example 1.
[0020]
[Table 1]
Figure 0003601096
[0021]
As shown in Table 1, the multilayer inductor of Condition 1 in which the thermal shock treatment at which the temperature difference was 50 ° C. was performed and the multilayer inductor of Condition 2 where the thermal shock treatment at which the temperature difference was 100 ° C. were performed were compared with the multilayer inductor of Comparative Example 1. Therefore, the L value, the Q value, the DC superimposition characteristics, and the temperature characteristics are not so effective. However, in the laminated inductor under condition 3 in which the thermal shock treatment was performed at a temperature difference of 120 ° C., the L value, the Q value, and the DC superimposition characteristics were improved, and the rate of change in the temperature characteristics due to the temperature was reduced. Can be confirmed. Then, in the laminated inductor under the condition 4 in which the thermal shock treatment at which the temperature difference becomes 200 ° C. is performed, it can be confirmed that the L value, the Q value, and the DC superimposition characteristics are further improved, and the rate of change due to the temperature is further reduced. .
[0022]
In addition, in the laminated inductor under the condition 2 in which the thermal shock treatment at which the temperature difference is 100 ° C. is performed, the characteristics do not change so much even if the number of times of the thermal shock treatment is increased, but the thermal shock treatment at which the temperature difference is 120 ° C. is performed. In the laminated inductor under Condition 3, it can be confirmed that the L value, the Q value, and the DC superimposition characteristics improve as the number of times increases, and the rate of change due to temperature decreases.
[0023]
Thus, it can be seen that by applying a thermal shock treatment at a temperature difference of 120 ° C. or more, the L value, the Q value, and the DC superimposition characteristics of the multilayer inductor are improved, and the rate of change with temperature is reduced. It can be seen that the improvement of these characteristics becomes more remarkable as the temperature difference of the thermal shock treatment is increased or the number of times of the thermal shock treatment is increased.
[0024]
In addition, by providing a gap between the magnetic layer and the internal electrode, the moisture resistance test shows that the gap is lower than that of a conventional multilayer inductor in which the stress generated due to the difference in the coefficient of thermal expansion between the magnetic layer and the internal electrode is reduced. The L value and Q value of the conventional laminated inductor are reduced, and the DC resistance Rdc value is greatly increased, whereas the L value, Q value, and Rdc value of the laminated inductor of this embodiment are almost changed by the moisture resistance test. do not do.
[0025]
【The invention's effect】
As described above, according to the manufacturing method of the laminated inductor according to the present invention, by performing the thermal shock treatment, the stress magnetostriction of the magnetic material generated between the internal electrode and the magnetic material layer in the cooling process after firing is reduced. Thus, a laminated inductor having improved L value, Q value, DC superimposition characteristics, and temperature characteristics of the laminated inductor can be easily and quickly obtained. In addition, since the magnetic layer and the internal electrode are in close contact with each other and no air gap can be formed, a laminated inductor having higher moisture resistance can be obtained as compared with a conventional laminated inductor having an air gap between the magnetic layer and the internal electrode.
[Brief description of the drawings]
FIG. 1 is an exploded perspective view showing a laminated body constituting a laminated inductor according to an embodiment of the present invention.
FIG. 2 is a perspective view showing a laminated inductor according to the embodiment of the present invention.
FIG. 3 is a cross-sectional view showing a conventional laminated inductor.
[Explanation of symbols]
1-13 Magnetic sheet (magnetic layer)
1a to 5a Conductor pattern (internal electrode)
7 through-hole 14 laminated body 15 external electrode 16 laminated inductor

Claims (1)

表面に内部電極となる導体パターンを形成した磁性体層を積層し、一定の圧力を加えたのち、焼成することにより積層体を得る工程と、
前記積層体に外部電極を形成する工程と、
前記積層体に対し、温度差120℃以上となる熱衝撃処理を一回以上行う工程と、
を含むことを特徴とする積層インダクタの製造方法。
A step of laminating a magnetic layer on which a conductor pattern serving as an internal electrode is formed on the surface, applying a certain pressure, and firing to obtain a laminated body,
Forming an external electrode on the laminate,
A step of performing one or more thermal shock treatments on the laminate so that the temperature difference becomes 120 ° C. or more;
A method for manufacturing a multilayer inductor, comprising:
JP03108595A 1994-09-22 1995-02-20 Manufacturing method of multilayer inductor Expired - Lifetime JP3601096B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP03108595A JP3601096B2 (en) 1994-09-22 1995-02-20 Manufacturing method of multilayer inductor

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP22821894 1994-09-22
JP6-228218 1994-09-22
JP03108595A JP3601096B2 (en) 1994-09-22 1995-02-20 Manufacturing method of multilayer inductor

Publications (2)

Publication Number Publication Date
JPH08148363A JPH08148363A (en) 1996-06-07
JP3601096B2 true JP3601096B2 (en) 2004-12-15

Family

ID=26369539

Family Applications (1)

Application Number Title Priority Date Filing Date
JP03108595A Expired - Lifetime JP3601096B2 (en) 1994-09-22 1995-02-20 Manufacturing method of multilayer inductor

Country Status (1)

Country Link
JP (1) JP3601096B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100317116B1 (en) * 1998-12-17 2002-04-24 김춘호 Stacked Chip Inductors
JP3634305B2 (en) * 2001-12-14 2005-03-30 三菱電機株式会社 Multilayer inductance element
JP2010040860A (en) * 2008-08-06 2010-02-18 Murata Mfg Co Ltd Laminated coil component and method of manufacturing the same
JP2022059390A (en) * 2020-10-01 2022-04-13 株式会社村田製作所 Coil component and manufacturing method thereof

Also Published As

Publication number Publication date
JPH08148363A (en) 1996-06-07

Similar Documents

Publication Publication Date Title
JP3582454B2 (en) Multilayer coil component and method of manufacturing the same
KR101994722B1 (en) Multilayered electronic component
JP3509058B2 (en) Multilayer ferrite chip inductor array
WO2003025976A2 (en) Embedded inductor for semiconductor device circuit
JP3503206B2 (en) Multilayer ceramic electronic component and method of manufacturing the same
JPH0864421A (en) Multilayer ceramic electronic part and its manufacture
JPH0135483B2 (en)
WO2007074580A1 (en) Laminated coil part
JP3601096B2 (en) Manufacturing method of multilayer inductor
JPH05275247A (en) Thin inductor/transformer
JP2004200373A (en) Electronic component and method of manufacturing the same
JPH1197256A (en) Laminated chip inductor
JPS6349890B2 (en)
JP3456106B2 (en) Chip type impedance element
JPH0689811A (en) Thin type inductor/transformer and its manufacture
JP3428882B2 (en) Manufacturing method of multilayer inductor
JP2005167029A (en) Laminated inductor
JPH11317311A (en) Composite component and manufacture of the same
JP2004006760A (en) Electronic component
US9630882B2 (en) Ferrite and coil electronic component including the same
JPH05152134A (en) Green sheet for inductance component and inductance component using thereof
JP3476887B2 (en) Method of forming coil component and electrode
JPH1027712A (en) Large-current multilayer chip inductor
JP4109348B2 (en) Electronic parts and manufacturing method thereof
JPH07176430A (en) Laminated inductor and its manufacture

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040412

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040511

TRDD Decision of grant or rejection written
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20040706

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040831

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040913

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071001

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081001

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091001

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101001

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101001

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111001

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121001

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131001

Year of fee payment: 9

EXPY Cancellation because of completion of term