JP3428882B2 - Manufacturing method of multilayer inductor - Google Patents

Manufacturing method of multilayer inductor

Info

Publication number
JP3428882B2
JP3428882B2 JP31949397A JP31949397A JP3428882B2 JP 3428882 B2 JP3428882 B2 JP 3428882B2 JP 31949397 A JP31949397 A JP 31949397A JP 31949397 A JP31949397 A JP 31949397A JP 3428882 B2 JP3428882 B2 JP 3428882B2
Authority
JP
Japan
Prior art keywords
value
temperature
rate
treatment
variation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP31949397A
Other languages
Japanese (ja)
Other versions
JPH11154618A (en
Inventor
泰史 井上
光広 高山
宏之 茂木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiyo Yuden Co Ltd
Original Assignee
Taiyo Yuden Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiyo Yuden Co Ltd filed Critical Taiyo Yuden Co Ltd
Priority to JP31949397A priority Critical patent/JP3428882B2/en
Publication of JPH11154618A publication Critical patent/JPH11154618A/en
Application granted granted Critical
Publication of JP3428882B2 publication Critical patent/JP3428882B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、積層インダクタの
製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a laminated inductor.

【0002】[0002]

【従来の技術】従来、一般的な積層インダクタの製造方
法においては、絶縁体層となる磁性体シートの表面に内
部導体となる導体パターンを形成し、この導体パターン
が形成された磁性体シートを積層すると共に、所定の圧
力を加えて上下層の導体パターンをスルーホールを介し
て導電接続した後、これを所定雰囲気中で焼成し、さら
に内部導体に導通する外部電極を形成する方法が採られ
ている。
2. Description of the Related Art Conventionally, in a general method for manufacturing a laminated inductor, a conductor pattern serving as an internal conductor is formed on the surface of a magnetic sheet serving as an insulating layer, and a magnetic sheet having this conductor pattern is formed. A method is adopted in which, after laminating and applying a predetermined pressure to electrically connect the upper and lower conductor patterns to each other through the through-holes, the conductor patterns are fired in a predetermined atmosphere to further form external electrodes that conduct to the internal conductors. ing.

【0003】この積層インダクタの製造方法では、焼成
後の冷却過程において絶縁体層と内部導体の線膨張係数
の違いから残留応力が発生して内部に歪みが生じ、この
結果、使用時において応力磁歪が生じ、磁気特性(L,
Q等)を劣化させるという問題が発生している。
In this method of manufacturing a laminated inductor, residual stress is generated due to the difference in linear expansion coefficient between the insulating layer and the internal conductor during the cooling process after firing, causing internal strain, which results in stress magnetostriction during use. Occurs, and the magnetic characteristics (L,
However, there is a problem that Q) is deteriorated.

【0004】この解決策として、絶縁体層と内部導体と
の間の全部若しくは一部に空隙を設けることにより、絶
縁体層と内部導体との間の応力歪みを緩和させる方法が
知られている。
As a solution to this problem, there is known a method of relaxing the stress strain between the insulating layer and the internal conductor by providing a void in all or part of the insulating layer and the internal conductor. .

【0005】ところが、このように絶縁体層と内部導体
との間に空隙を設けると、この空隙に水分やメッキ液、
フラックス等の液体が侵入し、L値及びQ値が低下する
危険が多分にあった。
However, when a space is provided between the insulator layer and the internal conductor in this way, water, a plating solution,
There was a risk that liquids such as flux would enter and the L and Q values would decrease.

【0006】これに対して、メッキ液等の液体の侵入を
防止し、なお且つ応力歪みを緩和させる方法として、積
層インダクタの製造過程において熱衝撃処理や高温処理
を施す方法が知られている。
On the other hand, as a method for preventing the penetration of a liquid such as a plating solution and alleviating the stress strain, there is known a method of performing thermal shock treatment or high temperature treatment in the manufacturing process of the laminated inductor.

【0007】熱衝撃処理を施す製造方法として、例え
ば、特開平8−148363号公報には、温度差120
℃以上の熱衝撃処理を1回以上行う方法が開示されてい
る。
As a manufacturing method for applying thermal shock treatment, for example, Japanese Patent Laid-Open No. 8-148363 discloses a temperature difference of 120.
A method is disclosed in which the thermal shock treatment at a temperature of 0 ° C. or higher is performed once or more.

【0008】また、高温処理を施す製造方法として、例
えば、特開平4−350913号公報には、600〜9
00℃で1時間の高温処理を行う方法が開示されてい
る。
Further, as a manufacturing method in which high temperature treatment is performed, for example, in Japanese Unexamined Patent Publication No. 4-350913, 600-9
A method of performing high temperature treatment at 00 ° C. for 1 hour is disclosed.

【0009】[0009]

【発明が解決しようとする課題】しかしながら、前述し
た従来の熱衝撃処理及び高温処理では、急加熱、急冷却
を行うためにクラックが発生し、強度が低下するという
問題が生じていた。
However, in the above-described conventional thermal shock treatment and high temperature treatment, there is a problem that cracks occur due to rapid heating and rapid cooling, and the strength is lowered.

【0010】本発明の目的は上記の問題点に鑑み、クラ
ックの発生及び強度の低下を低減すると共に、絶縁体層
と内部導体との間に空隙を設けることなく応力歪みを生
じない積層インダクタの製造方法を提供することにあ
る。
In view of the above-mentioned problems, an object of the present invention is to provide a laminated inductor capable of reducing the occurrence of cracks and the reduction of strength and causing no stress strain without providing a gap between the insulating layer and the internal conductor. It is to provide a manufacturing method.

【0011】[0011]

【課題を解決するための手段】本発明は上記の目的を達
成するために請求項1では、表面に内部導体となる導体
パターンを形成した絶縁体層を積層してなる積層体を焼
成して焼結体を形成し、該焼結体を積層インダクタとな
す積層インダクタの製造方法において、前記焼結体に対
して熱処理を施す工程を設けると共に、前記熱処理にお
ける昇温時及び降温時のうちの少なくとも降温時の降温
速度を20℃/分以下に設定した積層インダクタの製造
方法を提案する。
In order to achieve the above-mentioned object, the present invention is characterized in that, in claim 1, a laminate formed by laminating insulator layers having conductor patterns serving as internal conductors on the surface is fired. In a method of manufacturing a laminated inductor in which a sintered body is formed and the laminated body is a laminated inductor, a step of subjecting the sintered body to a heat treatment is provided, and at the time of temperature increase and temperature decrease in the heat treatment. We propose a method for manufacturing a laminated inductor in which the temperature lowering rate at least during cooling is set to 20 ° C./minute or less.

【0012】該積層インダクタの製造方法によれば、絶
縁体層と内部導体との間に空隙を設けなくとも、焼結体
に対して熱処理を施すことによって、内部導体と絶縁体
層との間に大きな応力が加えられ、内部導体を構成する
金属が伸ばされて、金属原子或いは金属分子が再配列さ
れる。これにより、焼成後の冷却過程において内部導体
と絶縁体層との間に発生した応力歪みが緩和される。さ
らに、前記熱処理における昇温時及び降温時のうちの少
なくとも降温時の降温速度を20℃/分以下に設定した
ため、前記焼結体は急冷却されないので、クラックの発
生が防止される。
According to the method of manufacturing the laminated inductor, the sintered body is heat-treated to form a space between the inner conductor and the insulator layer without providing a gap between the insulator layer and the inner conductor. Is subjected to a large stress, the metal constituting the inner conductor is stretched, and the metal atoms or metal molecules are rearranged. Thereby, the stress strain generated between the internal conductor and the insulating layer in the cooling process after firing is relaxed. Furthermore, since the temperature lowering rate at least during the temperature lowering during the heat treatment and the temperature lowering during the heat treatment is set to 20 ° C./minute or less, the sintered body is not rapidly cooled, so that the occurrence of cracks is prevented.

【0013】また、請求項2では、請求項1記載の積層
インダクタの製造方法において、前記熱処理として、前
記焼結体に対して温度差120℃以上となる熱衝撃処理
を1回以上施すと共に、該熱衝撃処理における昇温速度
及び降温速度を20℃/分以下に設定した積層インダク
タの製造方法を提案する。
According to a second aspect of the present invention, in the method of manufacturing a laminated inductor according to the first aspect, as the heat treatment, the sintered body is subjected to a thermal shock treatment of a temperature difference of 120 ° C. or more once or more, and A method for manufacturing a laminated inductor is proposed in which the temperature rising rate and the temperature lowering rate in the thermal shock treatment are set to 20 ° C./minute or less.

【0014】該積層インダクタの製造方法によれば、絶
縁体層と内部導体との間に空隙を設けなくとも、焼結体
に対して温度差120℃以上となる熱衝撃処理を1回以
上施すことによって、内部導体と絶縁体層との間に大き
な応力が加えられ、内部導体を構成する金属が伸ばされ
て、金属原子或いは金属分子が再配列される。これによ
り、焼成後の冷却過程において内部導体と絶縁体層との
間に発生した応力歪みが緩和される。さらに、前記熱衝
撃処理における昇温時の昇温速度及び降温時の降温速度
を20℃/分以下に設定したため、前記焼結体は急加
熱、急冷却されないので、クラックの発生が防止され
る。
According to the method of manufacturing the laminated inductor, the thermal shock treatment is performed once or more on the sintered body so that the temperature difference is 120 ° C. or more, even if no void is provided between the insulator layer and the internal conductor. As a result, a large stress is applied between the inner conductor and the insulator layer, the metal forming the inner conductor is stretched, and the metal atoms or metal molecules are rearranged. Thereby, the stress strain generated between the internal conductor and the insulating layer in the cooling process after firing is relaxed. Further, since the rate of temperature rise during temperature rise and the rate of temperature decrease during temperature fall in the thermal shock treatment are set to 20 ° C./min or less, the sintered body is not rapidly heated or rapidly cooled, so cracks are prevented from occurring. .

【0015】また、請求項3では、請求項1記載の積層
インダクタの製造方法において、前記熱処理として、前
記焼結体に対して400℃から950℃の間の所定温度
で1時間以上の高温処理を施すと共に、該高温処理終了
時における降温速度を20℃/分以下に設定した積層イ
ンダクタの製造方法を提案する。
According to a third aspect of the present invention, in the method of manufacturing a laminated inductor according to the first aspect, the heat treatment is a high temperature treatment for one hour or more at a predetermined temperature between 400 ° C. and 950 ° C. for the sintered body. And a method for manufacturing a laminated inductor in which the temperature lowering rate at the end of the high temperature treatment is set to 20 ° C./minute or less.

【0016】該積層インダクタの製造方法によれば、絶
縁体層と内部導体との間に空隙を設けなくとも、焼結体
に対して400℃から950℃の間の所定温度で1時間
以上の高温処理を施すことによって、内部導体と絶縁体
層との間に大きな応力が加えられ、内部導体を構成する
金属が伸ばされて、金属原子或いは金属分子が再配列さ
れる。これにより、焼成後の冷却過程において内部導体
と絶縁体層との間に発生した応力歪みが緩和される。さ
らに、前記高温処理における降温時の降温速度を20℃
/分以下に設定したため、前記焼結体は急冷却されない
ので、クラックの発生が防止される。
According to the method for manufacturing the laminated inductor, the sintered body is kept at a predetermined temperature of 400 ° C. to 950 ° C. for 1 hour or more without forming a gap between the insulator layer and the internal conductor. By performing the high temperature treatment, a large stress is applied between the inner conductor and the insulator layer, the metal forming the inner conductor is elongated, and the metal atoms or metal molecules are rearranged. Thereby, the stress strain generated between the internal conductor and the insulating layer in the cooling process after firing is relaxed. Further, the temperature decreasing rate at the time of temperature decrease in the high temperature treatment is 20 ° C.
Since the sintered body is set to be less than 1 minute, the sintered body is not rapidly cooled, so that the generation of cracks is prevented.

【0017】[0017]

【発明の実施の形態】以下、図面に基づいて本発明の一
実施形態を説明する。図1は、本発明に係る積層インダ
クタの外観図、図2はその要部分解斜視図である。本実
施形態における積層インダクタは、図1に示すように、
その本体1は、例えば1.6×0.8×0.8mmの直方
体形状をなし、その長手方向の両端部には内部導体に導
電接続された外部電極2,3が形成されている。
DETAILED DESCRIPTION OF THE INVENTION An embodiment of the present invention will be described below with reference to the drawings. FIG. 1 is an external view of a laminated inductor according to the present invention, and FIG. 2 is an exploded perspective view of a main part thereof. As shown in FIG. 1, the laminated inductor according to the present embodiment has
The main body 1 has a rectangular parallelepiped shape of, for example, 1.6 × 0.8 × 0.8 mm, and has external electrodes 2 and 3 conductively connected to the internal conductors at both ends in the longitudinal direction.

【0018】本体1は、図2に示すように、内部導体と
なる導体パタ−ン21-1〜21-n(nは自然数)が形成
された複数の磁性体シ−ト22-1〜22-n及び導体パタ
−ンが形成されていない磁性体シ−ト23を積層して一
体に形成される。
As shown in FIG. 2, the main body 1 has a plurality of magnetic material sheets 22-1 to 22 in which conductor patterns 21-1 to 21-n (n is a natural number) serving as internal conductors are formed. -n and the magnetic material sheet 23 on which the conductor pattern is not formed are laminated and integrally formed.

【0019】磁性体シ−ト22-1〜22-nの導体パタ−
ン21-1〜21-nは、例えば、銀(Ag )を主成分とす
る導体によって形成され、各導体パタ−ン21-1〜21
-nはスパイラル形状となるようにスル−ホ−ル24を介
して互いに導電接続され、コイルが構成されている。さ
らに、このコイルの両端に対応する部分の導体パタ−
ン、即ち導体パタ−ン21-1の一端及び導体パタ−ン2
1-nの他端は、本体1の長手方向の端面に露出するよう
に形成されている。
Conductor patterns of the magnetic sheets 22-1 to 22-n
21-1 to 21-n are formed of, for example, a conductor containing silver (Ag) as a main component, and each of the conductor patterns 21-1 to 21-n.
-n are conductively connected to each other through the through-hole 24 so as to have a spiral shape, thereby forming a coil. Furthermore, the conductor pattern of the portion corresponding to both ends of this coil
That is, one end of the conductor pattern 21-1 and the conductor pattern 2
The other end of 1-n is formed so as to be exposed at the end face of the main body 1 in the longitudinal direction.

【0020】本体1の一端に露出した導体パタ−ン21
-1は外部電極2に、また他端に露出した導体パタ−ン2
1-nは外部電極3にそれぞれ導電接続されている。
A conductor pattern 21 exposed at one end of the main body 1.
-1 is the external electrode 2 and the conductor pattern 2 exposed at the other end
1-n are conductively connected to the external electrodes 3, respectively.

【0021】尚、本実施形態においては導体パターン2
1-1〜21-nによって形成されるコイルのターン数を1
6に設定した。
In the present embodiment, the conductor pattern 2
The number of turns of the coil formed by 1-1 to 21-n is 1
It was set to 6.

【0022】次に、本実施形態における積層インダクタ
の製造方法の第1の実施形態を説明する。Ni −Zn −
Cu フェライトのスラリーをグリーンシート法により、
厚さ30μm程度の磁性体シートに形成する。
Next, a first embodiment of the method for manufacturing a laminated inductor according to this embodiment will be described. Ni-Zn-
The Cu ferrite slurry was applied by the green sheet method.
It is formed on a magnetic sheet having a thickness of about 30 μm.

【0023】この磁性体シートにスルーホールを形成
し、スルーホールを形成した磁性体シート及びスルーホ
ールを形成していない磁性体シートの表面に、例えばA
g 等の導体ペーストをスクリーン印刷して導体パターン
を形成する。
A through hole is formed in this magnetic sheet, and the magnetic sheet having the through hole and the magnetic sheet not having the through hole have, for example, A
Conductive pattern is formed by screen-printing conductive paste such as g.

【0024】導体パターンを印刷した磁性体シートを電
気的に接続するように積層する。このとき、目的の寸法
に合わせて、上下層部に導体パターンが形成されていな
いダミーシートを配置する。
Magnetic sheets on which conductor patterns are printed are laminated so as to be electrically connected. At this time, a dummy sheet having no conductor pattern formed on the upper and lower layers is arranged according to the desired dimension.

【0025】この積層体を一定圧力で圧着した後、目的
形状にカットする。ここで、積層体に圧力をかけて圧着
しているので、上下の磁性体シートの間、及び磁性体シ
ートと導体パターンとの間は密着した状態となり、これ
らの間に空隙が生じることがない。
After pressing this laminated body under a constant pressure, it is cut into a desired shape. Here, since the laminated body is pressure-bonded to each other, the upper and lower magnetic material sheets and the magnetic material sheet and the conductor pattern are in close contact with each other, and no void is generated between them. .

【0026】次いで、カットした積層体を空気中におい
て350〜550℃で脱バインダ処理し、さらに空気中
で850〜950℃で焼成して焼結体を得る。
Next, the cut laminated body is subjected to binder removal treatment in air at 350 to 550 ° C., and further fired in air at 850 to 950 ° C. to obtain a sintered body.

【0027】得られた焼結体の対向する両端面に、例え
ばAg 等の導体ペーストをディップ等で塗布し、焼き付
けることにより外部電極を形成し、外部電極にNi 及び
Snのメッキを行い積層インダクタを構成する。
On both end faces of the obtained sintered body, which face each other, a conductor paste such as Ag is applied by dipping or the like and baked to form an external electrode, and the external electrode is plated with Ni and Sn to form a laminated inductor. Make up.

【0028】尚、磁性体シートはNi −Zn −Cu フェ
ライトに限定されるものではなく、Ni −Zn フェライ
ト、Ni −Cu フェライト、Mn −Cu フェライト等の
スピネル型フェライトであっても良い。
The magnetic sheet is not limited to Ni-Zn-Cu ferrite, but may be spinel type ferrite such as Ni-Zn ferrite, Ni-Cu ferrite, Mn-Cu ferrite.

【0029】磁性体シートの形成方法はグリーンシート
法に限定されるものではなく、印刷法などでも良い。
The method of forming the magnetic material sheet is not limited to the green sheet method, and may be a printing method or the like.

【0030】内部導体及び外部電極材料はAg に限定さ
れるものではなく、Ag −Pd 、Ni 、Cu 或いはこれ
らの合金等でも良い。
The material of the inner conductor and the outer electrode is not limited to Ag, but may be Ag-Pd, Ni, Cu or alloys thereof.

【0031】また、内部導体パターンの形成方法はスク
リーン印刷に限定されるものではなく、転写、蒸着、ス
パッタ等でも良い。
The method of forming the internal conductor pattern is not limited to screen printing, and transfer, vapor deposition, sputtering, etc. may be used.

【0032】外部電極の形成方法はディップ等の塗布に
限定されるものではなく、転写、印刷、蒸着、スパッタ
等でも良い。
The method of forming the external electrodes is not limited to the application of dip or the like, and transfer, printing, vapor deposition, sputtering or the like may be used.

【0033】外部電極形成時期は焼成後に限定されるも
のではなく、焼成前でも良い。
The timing of forming the external electrodes is not limited to after firing, but may be before firing.

【0034】メッキは湿式に限定するものではなく、蒸
着、スパッタ等の乾式でも良い。
The plating is not limited to wet type, but may be dry type such as vapor deposition and sputtering.

【0035】次いで、焼成後の積層インダクタに対し
て、温度差120℃以上、昇温及び降温速度20℃/分
以下の条件で熱衝撃処理を施す。
Next, the fired laminated inductor is subjected to a thermal shock treatment under the conditions of a temperature difference of 120 ° C. or more and a temperature rising / falling rate of 20 ° C./min or less.

【0036】この熱衝撃処理を施すことによって、導体
パタ−ン21-1〜21-nと磁性体シ−ト22-1〜22-n
との間に大きな応力をかけ、これにより導体パタ−ン2
1-1〜21-nを構成するAg 等の金属を伸ばして、Ag
等の金属原子或いは金属分子を再配列し、焼成後の冷却
過程において導体パタ−ン21-1〜21-nと磁性体シ−
ト22-1〜22-nとの間に発生した応力歪みを緩和す
る。
By carrying out this thermal shock treatment, the conductor patterns 21-1 to 21-n and the magnetic material sheets 22-1 to 22-n are obtained.
A large stress is applied between the conductor pattern 2 and
Extend the metal such as Ag that composes 1-1 to 21-n to
Rearranges metal atoms or metal molecules, etc., and in the cooling process after firing, the conductor patterns 21-1 to 21-n and the magnetic material sheet
22-1 to 22-n to alleviate the stress strain generated between them.

【0037】図3は、ヒートサイクル装置を用い、熱衝
撃処理の温度差、処理回数を変えて、積層インダクタの
L値、Q値、耐湿負荷試験特性、抗折強度の変化を調べ
た実験結果を示す図である。
FIG. 3 shows the results of an experiment in which changes in the L value, Q value, humidity resistance load test characteristics, and bending strength of the laminated inductor were investigated by changing the temperature difference and the number of times of heat shock treatment using a heat cycle device. FIG.

【0038】第1の実施形態における熱衝撃処理の実施
例として実施例1乃至実施例6を、また比較例として比
較例1乃至比較例5を行った。
Examples 1 to 6 were carried out as examples of the thermal shock treatment in the first embodiment, and comparative examples 1 to 5 were carried out as comparative examples.

【0039】この実験において、L値、Q値の測定に
は、測定器としてYHP4195Aを、測定治具として
YHP16092Aを用い、測定電流を1mAに設定し
た。また、信頼性(耐湿負荷試験:1000時間でのL値及
びQ値の変化率測定)の条件を40℃、95RH、15
mAとし、抗折強度(3点曲げ試験)の測定には測定器
として引張圧縮試験機(SV50 20V:今田製作
所)を用い、L間隔を0.6mm、先端をR0.5mm
に設定した。
In this experiment, for the measurement of L value and Q value, YHP4195A was used as a measuring instrument and YHP16092A was used as a measuring jig, and the measuring current was set to 1 mA. The reliability (moisture resistance load test: measurement of change rate of L value and Q value at 1000 hours) is 40 ° C, 95RH, 15
mA, and a tensile compression tester (SV50 20V: Imada Seisakusho) was used as a measuring instrument to measure the bending strength (three-point bending test), and the L interval was 0.6 mm and the tip was R0.5 mm.
Set to.

【0040】また、比較例3,4,5及び実施例1,
2,3,4,5は、ヒートサイクル装置での低温側冷媒
として、冷却された炭酸ガス等を用いて行い、比較例2
及び実施例6は、ヒートサイクル装置での低温側冷媒と
して、液体窒素や冷却された窒素ガス等を用いて行っ
た。
Further, Comparative Examples 3, 4, 5 and Example 1,
Comparative Examples 2 and 3, 4 and 5 were carried out by using cooled carbon dioxide gas as the low temperature side refrigerant in the heat cycle device.
And Example 6 was performed using liquid nitrogen, cooled nitrogen gas, or the like as the low temperature side refrigerant in the heat cycle device.

【0041】液体窒素を使用するときは、サンプル瓶の
内壁に樹脂やプラスチック或いは発砲スチロール等の断
熱材を巻き、このサンプル瓶の中に焼成後の積層インダ
クタを入れ、このサンプル瓶を低温側媒体或いは高温側
媒体に投入する。また、雰囲気としては、真空やHe 等
の−180℃で液化しないものを充填する。この状態
で、低温側媒体の液体窒素と高温側媒体(例えば、水
等)への浸漬を処理回数に応じて繰り返す。
When liquid nitrogen is used, a heat insulating material such as resin, plastic or expanded polystyrene is wrapped around the inner wall of the sample bottle, the laminated inductor after firing is put in this sample bottle, and this sample bottle is placed in the medium on the low temperature side. Alternatively, it is added to the medium on the high temperature side. The atmosphere is filled with a material such as vacuum or He which is not liquefied at -180 ° C. In this state, the immersion of the low temperature side medium into the liquid nitrogen and the high temperature side medium (for example, water) is repeated according to the number of treatments.

【0042】各例における熱衝撃処理の条件は次のとお
りである。即ち、実施例1における条件は、低温側温度
が−55℃、高温側温度が65℃、温度差が120℃、
昇温・降温速度が20℃/分、サイクル数(処理回数)
が1回である。
The conditions of the thermal shock treatment in each example are as follows. That is, the conditions in Example 1 were that the low temperature side temperature was −55 ° C., the high temperature side temperature was 65 ° C., and the temperature difference was 120 ° C.
Temperature rising / falling rate is 20 ° C / min, number of cycles (number of treatments)
Is once.

【0043】また、実施例2における条件を、低温側温
度が−55℃、高温側温度が65℃、温度差が120
℃、昇温・降温速度が20℃/分、サイクル数(処理回
数)が10回とし、実施例3における条件を、低温側温
度が−55℃、高温側温度が65℃、温度差が120
℃、昇温・降温速度が20℃/分、サイクル数(処理回
数)が100回とし、実施例4における条件を、低温側
温度が−55℃、高温側温度が65℃、温度差が120
℃、昇温・降温速度が10℃/分、サイクル数(処理回
数)が1回とした。
The conditions in Example 2 were as follows: the low temperature side temperature was −55 ° C., the high temperature side temperature was 65 ° C., and the temperature difference was 120.
C., the rate of temperature increase / decrease is 20.degree. C./min, the number of cycles (the number of treatments) is 10, and the conditions in Example 3 are as follows: low temperature side temperature is −55 ° C., high temperature side temperature is 65 ° C., and temperature difference is 120.
C., the temperature rising / cooling rate is 20.degree. C./min, the number of cycles (the number of treatments) is 100, and the conditions in Example 4 are as follows: the low temperature side temperature is −55 ° C., the high temperature side temperature is 65 ° C., and the temperature difference is 120.
C., the rate of temperature increase / decrease was 10.degree. C./min, and the number of cycles (the number of treatments) was once.

【0044】さらに、実施例5における条件を、低温側
温度が−55℃、高温側温度が125℃、温度差が18
0℃、昇温・降温速度が20℃/分、サイクル数(処理
回数)が1回とし、実施例6における条件を、低温側温
度が−180℃、高温側温度が20℃、温度差が200
℃、昇温・降温速度が20℃/分、サイクル数(処理回
数)が1回とした。
Further, the conditions in Example 5 were as follows: the temperature on the low temperature side was −55 ° C., the temperature on the high temperature side was 125 ° C., and the temperature difference was 18.
0 ° C., the rate of temperature rise / fall is 20 ° C./min, the number of cycles (the number of treatments) is 1, and the conditions in Example 6 are as follows: the low temperature side is −180 ° C., the high temperature side is 20 ° C., and the temperature difference is 200
C., the rate of temperature increase / decrease was 20.degree. C./min, and the number of cycles (the number of treatments) was once.

【0045】一方、比較例1は熱衝撃処理を行わない従
来同様の未処理品とし、比較例2における条件を、低温
側温度が−180℃、高温側温度が20℃、温度差が2
00℃、昇温・降温速度が40℃/分、サイクル数(処
理回数)が1回とし、比較例3における条件を、低温側
温度が−55℃、高温側温度が125℃、温度差が18
0℃、昇温・降温速度が40℃/分、サイクル数(処理
回数)が1回とし、比較例4における条件を、低温側温
度が−55℃、高温側温度が45℃、温度差が100
℃、昇温・降温速度が20℃/分、サイクル数(処理回
数)が1回とし、比較例5における条件を、低温側温度
が−55℃、高温側温度が45℃、温度差が100℃、
昇温・降温速度が20℃/分、サイクル数(処理回数)
が100回とした。
On the other hand, Comparative Example 1 was an untreated product similar to the conventional one, which was not subjected to thermal shock treatment, and the conditions in Comparative Example 2 were as follows: the low temperature side temperature was -180 ° C, the high temperature side temperature was 20 ° C, and the temperature difference was 2.
The temperature in the comparative example 3 was -55 ° C, the temperature in the high temperature side was 125 ° C, and the temperature difference was 18
0 ° C., the temperature rising / falling rate is 40 ° C./min, the number of cycles (the number of treatments) is 1, and the conditions in Comparative Example 4 are as follows: the low temperature side temperature is −55 ° C., the high temperature side temperature is 45 ° C., and the temperature difference is 100
C., the rate of temperature increase / decrease is 20.degree. C./min, the number of cycles (the number of treatments) is 1, and the conditions in Comparative Example 5 are as follows: low temperature side temperature is -55.degree. C., high temperature side temperature is 45.degree. ℃,
Temperature rising / falling rate is 20 ° C / min, number of cycles (number of treatments)
Was 100 times.

【0046】尚、比較例1乃至比較例5は、本発明の範
囲外のものであり、単なる比較例に過ぎない。
Comparative Examples 1 to 5 are out of the scope of the present invention and are merely Comparative Examples.

【0047】この実験の結果、実施例1では、L値が
4.6μH(バラツキ4%)、Q値が38(バラツキ1
0%)、耐湿負荷試験におけるL値の変化率が+7%、
Q値の変化率が+7%、抗折強度が20kgf/mm2であっ
た。ここで、L値及びQ値のバラツキは、「3σ/AV
E×100」による値である。
As a result of this experiment, in Example 1, the L value was 4.6 μH (variation 4%) and the Q value was 38 (variation 1).
0%), the change rate of L value in the moisture resistance load test is + 7%,
The rate of change in Q value was + 7%, and the bending strength was 20 kgf / mm 2 . Here, the variation of the L value and the Q value is “3σ / AV
The value is based on “E × 100”.

【0048】また、実施例2では、L値が4.5μH
(バラツキ4%)、Q値が40(バラツキ10%)、耐
湿負荷試験におけるL値の変化率が+5%、Q値の変化
率が+7%、抗折強度が21kgf/mm2であった。
In the second embodiment, the L value is 4.5 μH.
(Variation: 4%), Q value: 40 (variation: 10%), L value change rate in humidity resistance load test was + 5%, Q value change rate was + 7%, and bending strength was 21 kgf / mm 2 .

【0049】実施例3では、L値が4.6μH(バラツ
キ4%)、Q値が42(バラツキ10%)、耐湿負荷試
験におけるL値の変化率が+3%、Q値の変化率が+5
%、抗折強度が21kgf/mm2であった。
In Example 3, the L value was 4.6 μH (variation 4%), the Q value was 42 (variation 10%), the rate of change of the L value in the moisture resistance load test was + 3%, and the rate of change of the Q value was +5.
%, And the bending strength was 21 kgf / mm 2 .

【0050】実施例4では、L値が4.6μH(バラツ
キ4%)、Q値が39(バラツキ10%)、耐湿負荷試
験におけるL値の変化率が+5%、Q値の変化率が+5
%、抗折強度が19kgf/mm2であった。
In Example 4, the L value was 4.6 μH (variation 4%), the Q value was 39 (variation 10%), the rate of change of the L value in the moisture resistance load test was + 5%, and the rate of change of the Q value was +5.
%, And the bending strength was 19 kgf / mm 2 .

【0051】実施例5では、L値が4.7μH(バラツ
キ4%)、Q値が41(バラツキ10%)、耐湿負荷試
験におけるL値の変化率が+3%、Q値の変化率が+4
%、抗折強度が21kgf/mm2であった。
In Example 5, the L value was 4.7 μH (variation 4%), the Q value was 41 (variation 10%), the rate of change of the L value in the moisture resistance load test was + 3%, and the rate of change of the Q value was +4.
%, And the bending strength was 21 kgf / mm 2 .

【0052】実施例6では、L値が4.7μH(バラツ
キ4%)、Q値が42(バラツキ10%)、耐湿負荷試
験におけるL値の変化率が+3%、Q値の変化率が+3
%、抗折強度が20kgf/mm2であった。
In Example 6, the L value was 4.7 μH (variation 4%), the Q value was 42 (variation 10%), the rate of change in the L value in the moisture resistance load test was + 3%, and the rate of change in the Q value was +3.
%, And the bending strength was 20 kgf / mm 2 .

【0053】一方、比較例1では、L値が3.5μH
(バラツキ4%)、Q値が25(バラツキ10%)、耐
湿負荷試験におけるL値の変化率が+30%、Q値の変
化率が+40%、抗折強度が21kgf/mm2であった。
On the other hand, in Comparative Example 1, the L value is 3.5 μH.
(Variation: 4%), Q value: 25 (Variation: 10%), L value change rate in humidity resistance load test was + 30%, Q value change rate was + 40%, and bending strength was 21 kgf / mm 2 .

【0054】また、比較例2では、L値が4.5μH
(バラツキ10%)、Q値が37(バラツキ20%)、
耐湿負荷試験におけるL値の変化率が+15%、Q値の
変化率が+35%、抗折強度が12kgf/mm2であった。
In Comparative Example 2, the L value is 4.5 μH.
(Variation 10%), Q value is 37 (variation 20%),
In the moisture resistance test, the change rate of L value was + 15%, the change rate of Q value was + 35%, and the bending strength was 12 kgf / mm 2 .

【0055】比較例3では、L値が4.2μH(バラツ
キ8%)、Q値が35(バラツキ17%)、耐湿負荷試
験におけるL値の変化率が+20%、Q値の変化率が+
40%、抗折強度が14kgf/mm2であった。
In Comparative Example 3, the L value is 4.2 μH (variation 8%), the Q value is 35 (variation 17%), the rate of change of the L value in the moisture resistance load test is + 20%, and the rate of change of the Q value is +.
The bending strength was 40% and the bending strength was 14 kgf / mm 2 .

【0056】比較例4では、L値が3.8μH(バラツ
キ8%)、Q値が30(バラツキ16%)、耐湿負荷試
験におけるL値の変化率が+25%、Q値の変化率が+
42%、抗折強度が21kgf/mm2であった。
In Comparative Example 4, the L value was 3.8 μH (variation 8%), the Q value was 30 (variation 16%), the rate of change of the L value in the moisture resistance load test was + 25%, and the rate of change of the Q value was +.
42% and the bending strength was 21 kgf / mm 2 .

【0057】比較例5では、L値が4.0μH(バラツ
キ7%)、Q値が32(バラツキ16%)、耐湿負荷試
験におけるL値の変化率が+22%、Q値の変化率が+
42%、抗折強度が20kgf/mm2であった。
In Comparative Example 5, the L value was 4.0 μH (variation 7%), the Q value was 32 (variation 16%), the rate of change of the L value in the moisture resistance load test was + 22%, and the rate of change of the Q value was +.
42% and the bending strength was 20 kgf / mm 2 .

【0058】以上の実験結果から明らかなように、本発
明で特定された範囲内の条件で熱衝撃処理を施すことに
より、熱応力歪みを緩和し、この結果、抗折強度を維持
しつつ、L値が28%以上、Q値が50%以上向上し、
L値及びQ値のバラツキがそれぞれ4%以下、10%以
下、耐湿負荷試験におけるL値及びQ値の変化率がそれ
ぞれ±10%以下、±30%以下という良好な特性を持
つ積層インダクタンスを得ることができた。
As is clear from the above experimental results, the thermal shock treatment is relaxed by applying the thermal shock treatment under the conditions specified in the present invention, and as a result, the flexural strength is maintained, L value improved by 28% or more, Q value improved by 50% or more,
A laminated inductance having good characteristics such that variations in L value and Q value are 4% or less and 10% or less, and change rates of L value and Q value in a humidity resistance load test are ± 10% or less and ± 30% or less, respectively. I was able to.

【0059】これに対して、比較例で示したように、本
発明で特定された範囲外の条件で熱衝撃処理を施しても
所望の良好な特性を持つ積層インダクタを得ることがで
きなかった。
On the other hand, as shown in the comparative example, it was not possible to obtain a laminated inductor having desired desired characteristics even if the thermal shock treatment was performed under the condition outside the range specified in the present invention. .

【0060】即ち、熱衝撃処理の温度差については、比
較例4及び比較例5に示すように、120℃未満ではL
値、Q値、これらのバラツキ、及び信頼性(耐湿負荷試
験)で所望の特性を得ることができなかった。また、昇
温・降温速度については、比較例2及び比較例3に示す
ように、20℃/分よりも大きいと、L値、Q値、これ
らのバラツキ、及び信頼性(耐湿負荷試験)で所望の得
ることができず、さらに抗折強度も低下した。
That is, regarding the temperature difference of the thermal shock treatment, as shown in Comparative Examples 4 and 5, when the temperature was less than 120 ° C., L
It was not possible to obtain desired characteristics in terms of value, Q value, variations in these values, and reliability (moisture resistance load test). Further, as for the temperature rising / cooling rate, as shown in Comparative Examples 2 and 3, when the temperature was higher than 20 ° C./min, the L value, the Q value, the variations thereof, and the reliability (moisture resistance load test). The desired strength could not be obtained, and the bending strength was also reduced.

【0061】尚、熱衝撃処理の手法は上記手法に限定さ
れるものではなく、温度差が120℃以下で、昇温速度
及び降温速度が20℃/分以下ならば他の手法であって
も良い。
The method of thermal shock treatment is not limited to the above-mentioned method, and any other method may be used as long as the temperature difference is 120 ° C. or less and the temperature raising rate and the temperature lowering rate are 20 ° C./minute or less. good.

【0062】次に、本発明の積層インダクタの製造方法
における第2の実施形態を説明する。
Next, a second embodiment of the method for manufacturing a laminated inductor according to the present invention will be described.

【0063】第2の実施形態において、積層インダクタ
の形状及び内部導体の構成、及び磁性体シートの形成か
ら積層体、焼結体、外部電極の形成までは前述した第1
の実施形態と同様であるためその説明を省略する。
In the second embodiment, the shape of the laminated inductor, the structure of the internal conductor, and the steps from the formation of the magnetic material sheet to the formation of the laminated body, the sintered body, and the external electrode are the same as those described above.
The description is omitted because it is the same as the embodiment.

【0064】また、第1の実施形態と第2の実施形態と
の相違点は、第1の実施形態における熱衝撃処理に代え
て、第2の実施形態では焼成後に高温処理を施すように
したことにある。
Further, the difference between the first embodiment and the second embodiment is that instead of the thermal shock treatment in the first embodiment, in the second embodiment, high temperature treatment is performed after firing. Especially.

【0065】即ち、焼成後の積層インダクタに対して、
400℃から950℃の間の所定温度で1時間以上、降
温速度20℃/分以下の条件で高温処理を施す。
That is, for the laminated inductor after firing,
The high temperature treatment is performed at a predetermined temperature between 400 ° C. and 950 ° C. for 1 hour or more and at a temperature lowering rate of 20 ° C./minute or less.

【0066】この高温処理を施すことによって、導体パ
タ−ン21-1〜21-nと磁性体シ−ト22-1〜22-nと
の間に大きな応力をかけ、これにより導体パタ−ン21
-1〜21-nを構成するAg 等の金属を伸ばして、Ag 等
の金属原子或いは金属分子を再配列し、焼成後の冷却過
程における導体パタ−ン21-1〜21-nと磁性体シ−ト
22-1〜22-nとの間に発生する応力歪みを緩和する。
By applying this high temperature treatment, a large stress is applied between the conductor patterns 21-1 to 21-n and the magnetic material sheets 22-1 to 22-n, whereby the conductor patterns are formed. 21
-1 to 21-n, such as Ag, is stretched to rearrange metal atoms or metal molecules such as Ag, and conductor patterns 21-1 to 21-n and magnetic material in the cooling process after firing. The stress strain generated between the sheets 22-1 to 22-n is relaxed.

【0067】図4は、固定炉を用い、高温処理の温度、
処理終了時の降温速度を変えて、積層インダクタのL
値、Q値、耐湿負荷試験特性、抗折強度の変化を調べた
実験結果を示す図である。
FIG. 4 shows the temperature of high temperature treatment using a fixed furnace.
Change the cooling rate at the end of processing to change the L
It is a figure which shows the experimental result which investigated the change of the value, Q value, the humidity resistance load test characteristic, and bending strength.

【0068】第2の実施形態における高温処理の実施例
として実施例1乃至実施例6を、また比較例として比較
例1乃至比較例4を行った。
Examples 1 to 6 were carried out as examples of the high temperature treatment in the second embodiment, and comparative examples 1 to 4 were carried out as comparative examples.

【0069】この実験において、L値、Q値の測定に
は、測定器としてYHP4195Aを、測定治具として
YHP16092Aを用い、測定電流を1mAに設定し
た。また、信頼性(耐湿負荷試験:1000時間でのL値及
びQ値の変化率測定)の条件を40℃、95RH、15
mAとし、抗折強度(3点曲げ試験)の測定には測定器
として引張圧縮試験機(SV50 20V:今田製作
所)を用い、L間隔を0.6mm、先端をR0.5mm
に設定した。
In this experiment, for the measurement of L value and Q value, YHP4195A was used as a measuring instrument and YHP16092A was used as a measuring jig, and the measuring current was set to 1 mA. The reliability (moisture resistance load test: measurement of change rate of L value and Q value at 1000 hours) is 40 ° C, 95RH, 15
mA, and a tensile compression tester (SV50 20V: Imada Seisakusho) was used as a measuring instrument to measure the bending strength (three-point bending test), and the L interval was 0.6 mm and the tip was R0.5 mm.
Set to.

【0070】各例における高温処理の条件は次のとおり
である。即ち、実施例1における条件は、処理温度が4
00℃、降温速度が20℃/分である。
The conditions of the high temperature treatment in each example are as follows. That is, the condition in Example 1 is that the treatment temperature is 4
The temperature is 00 ° C. and the temperature lowering rate is 20 ° C./min.

【0071】また、実施例2における条件を、処理温度
が600℃、降温速度が20℃/分とし、実施例3にお
ける条件を、処理温度が800℃、降温速度が20℃/
分とし、実施例4における条件を、処理温度が950
℃、降温速度が20℃/分とし、実施例5における条件
を、処理温度が600℃、降温速度が10℃/分とし、
実施例6における条件を、処理温度が600℃、降温速
度が5℃/分とした。
The conditions in Example 2 were a treatment temperature of 600 ° C. and a temperature lowering rate of 20 ° C./minute, and the conditions of Example 3 were a treatment temperature of 800 ° C. and a temperature lowering rate of 20 ° C./min.
And the processing temperature is 950.
C., the rate of temperature decrease is 20.degree. C./min, the conditions in Example 5 are a treatment temperature of 600.degree. C. and a rate of temperature decrease of 10.degree.
The conditions in Example 6 were a treatment temperature of 600 ° C. and a temperature lowering rate of 5 ° C./min.

【0072】一方、比較例1は高温処理を行わない従来
同様の未処理品とし、比較例2における条件を、処理温
度が300℃、降温速度が20℃/分とし、比較例3に
おける条件を、処理温度が1000℃、降温速度が20
℃/分とし、比較例4における条件を、処理温度が60
0℃、降温速度が40℃/分とした。
On the other hand, Comparative Example 1 was an untreated product similar to the conventional one that was not subjected to high temperature treatment, the conditions in Comparative Example 2 were a treatment temperature of 300 ° C., a temperature decreasing rate of 20 ° C./min, and the conditions of Comparative Example 3 were the same. , The processing temperature is 1000 ° C, and the cooling rate is 20
C./min., The condition in Comparative Example 4 was that the treatment temperature was 60.
The temperature was set to 0 ° C. and the temperature lowering rate was 40 ° C./min.

【0073】尚、比較例1乃至比較例4は、本発明の範
囲外のものであり、実施例に対する単なる比較例に過ぎ
ない。
Comparative Examples 1 to 4 are outside the scope of the present invention and are merely comparative examples with respect to the Examples.

【0074】この実験の結果、実施例1では、L値が
4.5μH(バラツキ4%)、Q値が40(バラツキ1
0%)、耐湿負荷試験におけるL値の変化率が+7%、
Q値の変化率が+10%、抗折強度が19kgf/mm2であ
った。ここで、L値及びQ値のバラツキは、「3σ/A
VE×100」による値である。
As a result of this experiment, in Example 1, the L value was 4.5 μH (variation 4%) and the Q value was 40 (variation 1).
0%), the change rate of L value in the moisture resistance load test is + 7%,
The rate of change in Q value was + 10%, and the bending strength was 19 kgf / mm 2 . Here, the variation of the L value and the Q value is “3σ / A
VE × 100 ”.

【0075】また、実施例2では、L値が4.5μH
(バラツキ4%)、Q値が38(バラツキ10%)、耐
湿負荷試験におけるL値の変化率が+7%、Q値の変化
率が+12%、抗折強度が21kgf/mm2であった。
In the second embodiment, the L value is 4.5 μH.
(Variation: 4%), Q value: 38 (Variation: 10%), L value change rate in humidity resistance load test was + 7%, Q value change rate was + 12%, and bending strength was 21 kgf / mm 2 .

【0076】実施例3では、L値が4.7μH(バラツ
キ4%)、Q値が37(バラツキ10%)、耐湿負荷試
験におけるL値の変化率が+3%、Q値の変化率が+1
0%、抗折強度が21kgf/mm2であった。
In Example 3, the L value was 4.7 μH (variation 4%), the Q value was 37 (variation 10%), the rate of change of the L value in the humidity resistance load test was + 3%, and the rate of change of the Q value was +1.
The bending strength was 0% and the bending strength was 21 kgf / mm 2 .

【0077】実施例4では、L値が4.9μH(バラツ
キ4%)、Q値が35(バラツキ10%)、耐湿負荷試
験におけるL値の変化率が+3%、Q値の変化率が+5
%、抗折強度が19kgf/mm2であった。
In Example 4, the L value was 4.9 μH (variation 4%), the Q value was 35 (variation 10%), the change rate of the L value in the moisture resistance load test was + 3%, and the change rate of the Q value was +5.
%, And the bending strength was 19 kgf / mm 2 .

【0078】実施例5では、L値が4.8μH(バラツ
キ4%)、Q値が39(バラツキ10%)、耐湿負荷試
験におけるL値の変化率が+5%、Q値の変化率が+7
%、抗折強度が20kgf/mm2であった。
In Example 5, the L value was 4.8 μH (variation 4%), the Q value was 39 (variation 10%), the rate of change of the L value in the humidity resistance load test was + 5%, and the rate of change of the Q value was +7.
%, And the bending strength was 20 kgf / mm 2 .

【0079】実施例6では、L値が4.7μH(バラツ
キ4%)、Q値が38(バラツキ10%)、耐湿負荷試
験におけるL値の変化率が+5%、Q値の変化率が+3
%、抗折強度が21kgf/mm2であった。
In Example 6, the L value was 4.7 μH (variation 4%), the Q value was 38 (variation 10%), the change rate of the L value in the humidity resistance test was + 5%, and the change rate of the Q value was +3.
%, And the bending strength was 21 kgf / mm 2 .

【0080】一方、比較例1では、L値が3.5μH
(バラツキ4%)、Q値が25(バラツキ10%)、耐
湿負荷試験におけるL値の変化率が+30%、Q値の変
化率が+40%、抗折強度が21kgf/mm2であった。
On the other hand, in Comparative Example 1, the L value is 3.5 μH.
(Variation: 4%), Q value: 25 (Variation: 10%), L value change rate in humidity resistance load test was + 30%, Q value change rate was + 40%, and bending strength was 21 kgf / mm 2 .

【0081】また、比較例2では、L値が3.7μH
(バラツキ7%)、Q値が25(バラツキ12%)、耐
湿負荷試験におけるL値の変化率が+28%、Q値の変
化率が+35%、抗折強度が21kgf/mm2であった。
In Comparative Example 2, the L value is 3.7 μH.
(Variation: 7%), Q value: 25 (Variation: 12%), L value change rate in humidity resistance test was + 28%, Q value change rate was + 35%, and bending strength was 21 kgf / mm 2 .

【0082】比較例3では、L値が5.0μH(バラツ
キ4%)、Q値が27(バラツキ12%)、耐湿負荷試
験におけるL値の変化率が+15%、Q値の変化率が+
35%、抗折強度が23kgf/mm2であった。
In Comparative Example 3, the L value was 5.0 μH (variation 4%), the Q value was 27 (variation 12%), the rate of change of the L value in the humidity resistance test was + 15%, and the rate of change of the Q value was +.
The bending strength was 35% and the bending strength was 23 kgf / mm 2 .

【0083】比較例4では、L値が4.2μH(バラツ
キ10%)、Q値が29(バラツキ20%)、耐湿負荷
試験におけるL値の変化率が+7%、Q値の変化率が−
33%、抗折強度が13kgf/mm2であった。
In Comparative Example 4, the L value was 4.2 μH (variation 10%), the Q value was 29 (variation 20%), the change rate of the L value in the humidity resistance load test was + 7%, and the change rate of the Q value was −.
The bending strength was 33% and the bending strength was 13 kgf / mm 2 .

【0084】以上の実験結果から明らかなように、本発
明で特定された範囲内の条件で高温処理を施すことによ
り、熱応力歪みを緩和し、この結果、抗折強度を維持し
つつ、L値が28%以上、Q値が40%以上向上し、L
値及びQ値のバラツキがそれぞれ4%以下、10%以
下、耐湿負荷試験におけるL値及びQ値の変化率がそれ
ぞれ±10%以下、±30%以下という良好な特性を持
つ積層インダクタンスを得ることができた。
As is clear from the above experimental results, the thermal stress strain is relaxed by performing the high temperature treatment under the conditions specified in the present invention, and as a result, the L Value improved by 28% or more, Q value improved by 40% or more, L
To obtain a laminated inductance having good characteristics such that the variation in the Q value and the Q value is 4% or less and 10% or less, and the change rate of the L value and the Q value in the moisture resistance load test are ± 10% or less and ± 30% or less, respectively. I was able to.

【0085】これに対して、比較例で示したように、本
発明で特定された範囲外の条件で高温処理を施しても所
望の良好な特性を持つ積層インダクタを得ることができ
なかった。
On the other hand, as shown in the comparative example, it was not possible to obtain the laminated inductor having desired desired characteristics even if the high temperature treatment was performed under the condition outside the range specified in the present invention.

【0086】即ち、高温処理の処理温度については、比
較例2に示すように、400℃未満ではL値、Q値、こ
れらのバラツキ、及び信頼性(耐湿負荷試験)で所望の
特性を得ることができなかった。さらに、950℃を超
えるとQ値、Q値のバラツキ及び信頼性で所望の特性を
得ることができなかった。
That is, as for the treatment temperature of the high temperature treatment, as shown in Comparative Example 2, when the temperature is lower than 400 ° C., desired characteristics can be obtained in terms of L value, Q value, variations thereof, and reliability (humidity resistance load test). I couldn't. Furthermore, if the temperature exceeds 950 ° C., the desired characteristics could not be obtained due to the Q value, the variation in the Q value, and the reliability.

【0087】また、降温速度については、比較例4に示
すように、20℃/分よりも大きいと、L値、Q値、こ
れらのバラツキ、及び信頼性(耐湿負荷試験)で所望の
得ることができず、さらに抗折強度も低下した。
As for the temperature lowering rate, as shown in Comparative Example 4, when it is higher than 20 ° C./min, the desired values can be obtained in terms of L value, Q value, variations of these, and reliability (moisture resistance load test). However, the bending strength also decreased.

【0088】[0088]

【発明の効果】以上説明したように本発明の請求項1に
よれば、絶縁体層と内部導体との間に空隙を設けなくと
も、焼結体に対して熱処理を施すことによって、内部導
体と絶縁体層との間に大きな応力が加えられ、内部導体
を構成する金属が伸ばされて、金属原子或いは金属分子
が再配列され、焼成後の冷却過程において内部導体と絶
縁体層との間に発生した応力歪みが緩和されるので、使
用時において応力磁歪を生ずることがなく、磁気特性
(L値,Q値等)の良好な積層インダクタを製造するこ
とができる。さらに、前記熱処理における昇温時及び降
温時のうちの少なくとも降温時の降温速度を20℃/分
以下に設定したため、前記焼結体は急冷却されないので
クラックの発生が防止され、信頼性(耐湿性、抗折強度
等)の高い積層インダクタを得ることができる。
As described above, according to claim 1 of the present invention, the internal conductor can be heat-treated by subjecting the sintered body to heat treatment without providing a gap between the insulator layer and the internal conductor. Between the inner conductor and the insulator layer, a large stress is applied between the inner conductor and the insulator layer to elongate the metal forming the inner conductor and rearrange the metal atoms or metal molecules. Since the stress strain generated in 1) is relaxed, stress magnetostriction does not occur during use, and a laminated inductor having good magnetic characteristics (L value, Q value, etc.) can be manufactured. Further, since the temperature lowering rate during at least the temperature lowering during the temperature rising and the temperature lowering during the heat treatment is set to 20 ° C./min or less, the sintered body is not rapidly cooled, and thus cracks are prevented from occurring and reliability (moisture resistance) is improved. It is possible to obtain a laminated inductor having high properties, bending strength, etc.).

【0089】また、請求項2によれば、絶縁体層と内部
導体との間に空隙を設けなくとも、焼結体に対して温度
差120℃以上となる熱衝撃処理を1回以上施すことに
よって、内部導体と絶縁体層との間に大きな応力が加え
られ、内部導体を構成する金属が伸ばされて、金属原子
或いは金属分子が再配列され、焼成後の冷却過程におい
て内部導体と絶縁体層との間に発生した応力歪みが緩和
されるので、使用時において応力磁歪を生ずることがな
く、磁気特性(L値,Q値等)の良好な積層インダクタ
を製造することができる。さらに、前記熱衝撃処理にお
ける昇温時の昇温速度及び降温時の降温速度を20℃/
分以下に設定したため、前記焼結体は急加熱、急冷却さ
れないので、クラックの発生が防止され、信頼性(耐湿
性、抗折強度等)の高い積層インダクタを得ることがで
きる。
According to the second aspect of the present invention, the thermal shock treatment for producing a temperature difference of 120 ° C. or more is performed once or more on the sintered body without providing a gap between the insulator layer and the internal conductor. Causes a large stress to be applied between the inner conductor and the insulator layer, the metal forming the inner conductor is stretched, and the metal atoms or metal molecules are rearranged, and the inner conductor and the insulator are cooled in the cooling process after firing. Since the stress strain generated between the layer and the layer is relaxed, stress magnetostriction does not occur during use, and a laminated inductor having good magnetic characteristics (L value, Q value, etc.) can be manufactured. Further, in the thermal shock treatment, the temperature rising rate at the time of temperature rising and the temperature decreasing rate at the time of temperature lowering are 20 ° C. /
Since the sintered body is set to not more than a minute, the sintered body is not rapidly heated or rapidly cooled, so that the generation of cracks is prevented, and a laminated inductor having high reliability (moisture resistance, bending strength, etc.) can be obtained.

【0090】また、請求項3によれば、絶縁体層と内部
導体との間に空隙を設けなくとも、焼結体に対して40
0℃から950℃の間の所定温度で1時間以上の高温処
理を施すことによって、内部導体と絶縁体層との間に大
きな応力が加えられ、内部導体を構成する金属が伸ばさ
れて、金属原子或いは金属分子が再配列され、焼成後の
冷却過程において内部導体と絶縁体層との間に発生した
応力歪みが緩和されるので、使用時において応力磁歪を
生ずることがなく、磁気特性(L値,Q値等)の良好な
積層インダクタを製造することができる。さらに、前記
高温処理における降温時の降温速度を20℃/分以下に
設定したため、前記焼結体は急冷却されないので、クラ
ックの発生が防止され、信頼性(耐湿性、抗折強度等)
の高い積層インダクタを得ることができる。
According to the third aspect of the present invention, it is possible to obtain a sintered body having a size of 40 with respect to the sintered body, even if no space is provided between the insulating layer and the internal conductor.
By performing a high temperature treatment for 1 hour or more at a predetermined temperature between 0 ° C. and 950 ° C., a large stress is applied between the inner conductor and the insulator layer, and the metal forming the inner conductor is stretched to form a metal. Since the atoms or metal molecules are rearranged and the stress strain generated between the internal conductor and the insulator layer in the cooling process after firing is relaxed, stress magnetostriction does not occur during use, and the magnetic characteristics (L It is possible to manufacture a laminated inductor having a good value, a Q value, etc.). Further, since the temperature lowering rate at the time of lowering the temperature in the high temperature treatment is set to 20 ° C./min or less, the sintered body is not rapidly cooled, cracks are prevented from occurring, and reliability (moisture resistance, bending strength, etc.) is prevented.
It is possible to obtain a laminated inductor with high efficiency.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る積層インダクタの外観図FIG. 1 is an external view of a laminated inductor according to the present invention.

【図2】本発明に係る積層インダクタの要部分解斜視図FIG. 2 is an exploded perspective view of essential parts of a laminated inductor according to the present invention.

【図3】本発明の第1の実施形態における熱衝撃処理に
関する実験条件及び実験結果を示す図
FIG. 3 is a diagram showing experimental conditions and experimental results relating to thermal shock treatment in the first embodiment of the present invention.

【図4】本発明の第2の実施形態における高温処理に関
する実験条件及び実験結果を示す図
FIG. 4 is a diagram showing experimental conditions and experimental results regarding high-temperature treatment in the second embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1…本体、2,3…外部電極、21-1〜21-n…導体パ
ターン(内部導体)、22-1〜22-n…導体パターンが
形成された磁性体シート(絶縁体層)、23…導体パタ
ーンが形成されていない磁性体シート(絶縁体層)、2
4…スルーホール。
DESCRIPTION OF SYMBOLS 1 ... Main body, 2, 3 ... External electrode, 21-1 to 21-n ... Conductor pattern (inner conductor), 22-1 to 22-n ... Magnetic body sheet (insulator layer) on which a conductor pattern is formed, 23 ... Magnetic sheet (insulator layer) on which no conductor pattern is formed, 2
4 ... Through hole.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平8−148363(JP,A) 特開 平4−350913(JP,A) 特開 平4−85992(JP,A) (58)調査した分野(Int.Cl.7,DB名) H01F 41/04 ─────────────────────────────────────────────────── ─── Continuation of front page (56) References JP-A-8-148363 (JP, A) JP-A-4-350913 (JP, A) JP-A-4-85992 (JP, A) (58) Field (Int.Cl. 7 , DB name) H01F 41/04

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 表面に内部導体となる導体パターンを形
成した絶縁体層を積層してなる積層体を焼成して焼結体
を形成し、該焼結体を積層インダクタとなす積層インダ
クタの製造方法において、 前記焼結体に対して熱処理を施す工程を設けると共に、 前記熱処理における昇温時及び降温時のうちの少なくと
も降温時の降温速度を20℃/分以下に設定したことを
特徴とする積層インダクタの製造方法。
1. A laminated inductor in which a laminated body formed by laminating insulator layers having conductor patterns as internal conductors formed on the surface is fired to form a sintered body, and the sintered body serves as a laminated inductor. In the method, a step of subjecting the sintered body to a heat treatment is provided, and a temperature lowering rate at least during temperature lowering during temperature rising and lowering during the heat treatment is set to 20 ° C./minute or less. Manufacturing method of laminated inductor.
【請求項2】 前記熱処理として、前記焼結体に対して
温度差120℃以上となる熱衝撃処理を1回以上施すと
共に、該熱衝撃処理における昇温速度及び降温速度を2
0℃/分以下に設定したことを特徴とする請求項1記載
の積層インダクタの製造方法。
2. As the heat treatment, a thermal shock treatment with a temperature difference of 120 ° C. or more is performed on the sintered body once or more, and a temperature rising rate and a temperature lowering rate in the thermal shock treatment are 2 or more.
The method for manufacturing a laminated inductor according to claim 1, wherein the temperature is set to 0 ° C./minute or less.
【請求項3】 前記熱処理として、前記焼結体に対して
400℃から950℃の間の所定温度で1時間以上の高
温処理を施すと共に、該高温処理終了時における降温速
度を20℃/分以下に設定したことを特徴とする請求項
1記載の積層インダクタの製造方法。
3. As the heat treatment, the sintered body is subjected to a high temperature treatment at a predetermined temperature between 400 ° C. and 950 ° C. for 1 hour or more, and a temperature lowering rate at the end of the high temperature treatment is 20 ° C./minute. The method for manufacturing a laminated inductor according to claim 1, wherein the following settings are made.
JP31949397A 1997-11-20 1997-11-20 Manufacturing method of multilayer inductor Expired - Fee Related JP3428882B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31949397A JP3428882B2 (en) 1997-11-20 1997-11-20 Manufacturing method of multilayer inductor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31949397A JP3428882B2 (en) 1997-11-20 1997-11-20 Manufacturing method of multilayer inductor

Publications (2)

Publication Number Publication Date
JPH11154618A JPH11154618A (en) 1999-06-08
JP3428882B2 true JP3428882B2 (en) 2003-07-22

Family

ID=18110840

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31949397A Expired - Fee Related JP3428882B2 (en) 1997-11-20 1997-11-20 Manufacturing method of multilayer inductor

Country Status (1)

Country Link
JP (1) JP3428882B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3582454B2 (en) * 1999-07-05 2004-10-27 株式会社村田製作所 Multilayer coil component and method of manufacturing the same
WO2009034824A1 (en) 2007-09-14 2009-03-19 Murata Manufacturing Co., Ltd. Stacked coil component and mehtod for manufacturing the stacked coil component
JP2010040860A (en) * 2008-08-06 2010-02-18 Murata Mfg Co Ltd Laminated coil component and method of manufacturing the same
JP2012231020A (en) * 2011-04-26 2012-11-22 Murata Mfg Co Ltd Manufacturing method of laminated electronic component
JP5682548B2 (en) * 2011-12-14 2015-03-11 株式会社村田製作所 Multilayer inductor element and manufacturing method thereof

Also Published As

Publication number Publication date
JPH11154618A (en) 1999-06-08

Similar Documents

Publication Publication Date Title
US20180114627A1 (en) Laminated inductor
EP1635363A1 (en) Common mode noise filter
US6560851B1 (en) Method for producing an inductor
CN104576051B (en) Ceramic electronic component
JP3503206B2 (en) Multilayer ceramic electronic component and method of manufacturing the same
KR101031111B1 (en) Complex Ceramic Chip Component capable for surface-mounting
JPH07161530A (en) Inductor
JP2591205B2 (en) Thermistor
JP4530044B2 (en) Multilayer coil parts
JP3428882B2 (en) Manufacturing method of multilayer inductor
JP4881192B2 (en) Manufacturing method of electronic parts
JPS58145114A (en) Lc composite part
JPH05275247A (en) Thin inductor/transformer
JPH11265823A (en) Laminated inductor and manufacture of the same
JPH09129458A (en) Coil
JPS5848410A (en) Manufacture of inductor
JP3601096B2 (en) Manufacturing method of multilayer inductor
JPH11317311A (en) Composite component and manufacture of the same
JPS60176208A (en) Laminated part and manufacture thereof
JP2003109820A (en) Laminated inductor and its manufacturing method
JPS636121B2 (en)
JPS58172803A (en) Insulating material
JPS60106114A (en) Manufacture of inductor
JPH05152134A (en) Green sheet for inductance component and inductance component using thereof
JP2001060518A (en) Laminated electronic component

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20030408

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090516

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090516

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100516

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100516

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110516

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120516

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130516

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees