JP4596008B2 - Laminated coil - Google Patents

Laminated coil Download PDF

Info

Publication number
JP4596008B2
JP4596008B2 JP2007538681A JP2007538681A JP4596008B2 JP 4596008 B2 JP4596008 B2 JP 4596008B2 JP 2007538681 A JP2007538681 A JP 2007538681A JP 2007538681 A JP2007538681 A JP 2007538681A JP 4596008 B2 JP4596008 B2 JP 4596008B2
Authority
JP
Japan
Prior art keywords
coil
thickness
layer
nonmagnetic layer
magnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007538681A
Other languages
Japanese (ja)
Other versions
JPWO2007040029A1 (en
Inventor
慶一 都築
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Manufacturing Co Ltd
Original Assignee
Murata Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co Ltd filed Critical Murata Manufacturing Co Ltd
Publication of JPWO2007040029A1 publication Critical patent/JPWO2007040029A1/en
Application granted granted Critical
Publication of JP4596008B2 publication Critical patent/JP4596008B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F17/00Fixed inductances of the signal type 
    • H01F17/0006Printed inductances
    • H01F17/0013Printed inductances with stacked layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/28Coils; Windings; Conductive connections
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/28Coils; Windings; Conductive connections
    • H01F27/29Terminals; Tapping arrangements for signal inductances
    • H01F27/292Surface mounted devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F17/00Fixed inductances of the signal type 
    • H01F17/0006Printed inductances
    • H01F17/0013Printed inductances with stacked layers
    • H01F2017/002Details of via holes for interconnecting the layers

Description

本発明は、積層コイル、特に、優れた直流重畳特性を備える開磁路型の積層コイルに関する。   The present invention relates to a laminated coil, and more particularly to an open magnetic circuit type laminated coil having excellent DC superposition characteristics.

直流電流によって磁性体内で磁気飽和が生じ、急激にインダクタンス値が低下してしまうことを防ぐことを目的として、特許文献1に記載されている開磁路型の積層コイルがある。図5に示すように、開磁路型の積層コイルは、非磁性体層53の両主面に、複数の磁性体層51が形成された積層体50と、積層体50に形成されたコイル導体55が螺旋状に接続されてなるコイルLと、積層体50の両端面に形成された外部電極57,57と、から形成されている。開磁路型の積層コイルでは、磁束が非磁性体層53から積層コイルの外部へ漏れるので、磁性体内で磁気飽和が生じにくくなる。その結果、磁気飽和によるインダクタンスの低下が小さくなり、直流重畳特性が向上する。
特公平1−35483号
There is an open magnetic circuit type laminated coil described in Patent Document 1 for the purpose of preventing a magnetic saturation from occurring in a magnetic body due to a direct current and a sudden decrease in inductance value. As shown in FIG. 5, the open magnetic circuit type laminated coil includes a laminated body 50 in which a plurality of magnetic layers 51 are formed on both main surfaces of the nonmagnetic layer 53, and a coil formed in the laminated body 50. The coil 55 is formed by connecting a conductor 55 in a spiral shape, and external electrodes 57 and 57 formed on both end faces of the multilayer body 50. In the open magnetic circuit type laminated coil, the magnetic flux leaks from the nonmagnetic layer 53 to the outside of the laminated coil, so that magnetic saturation is less likely to occur in the magnetic substance. As a result, the decrease in inductance due to magnetic saturation is reduced, and the direct current superimposition characteristics are improved.
No. 1-35483

しかしながら、開磁路型の積層コイルでは、構造欠陥が生じるという問題があった。すなわち、磁性体層51と非磁性体層53とは、材料組成の違いにより線膨張係数が異なるので、磁性体層51と非磁性体層53の接合部分には応力が蓄積されている。そして、その接合部分に厚みの厚いコイル導体55がさらに形成されると、コイル導体55による段差やコイル導体55の膨張係数により、層間剥離やクラックなどの構造欠陥が生じてしまうのである。また、かかる問題は、高いインダクタンス値を得るために非磁性体層を薄く形成するとさらに顕著となった。   However, the open magnetic circuit type laminated coil has a problem that a structural defect occurs. That is, the magnetic layer 51 and the nonmagnetic layer 53 have different linear expansion coefficients due to the difference in material composition, so that stress is accumulated at the junction between the magnetic layer 51 and the nonmagnetic layer 53. If a thick coil conductor 55 is further formed at the joint portion, structural defects such as delamination and cracks occur due to the level difference caused by the coil conductor 55 and the expansion coefficient of the coil conductor 55. Such a problem becomes more prominent when the nonmagnetic layer is formed thin in order to obtain a high inductance value.

そこで本発明の目的は、層間剥離やクラックなどの構造欠陥のない開磁路型の積層コイルを提供することにある。   Accordingly, an object of the present invention is to provide an open magnetic circuit type laminated coil free from structural defects such as delamination and cracks.

上記問題点を解決するために、本発明に係る積層コイルは、非磁性体層の両主面に、複数の磁性体層が形成された積層体と、前記積層体に形成された所定の厚みを有するコイル導体が螺旋状に接続されてなるコイルと、を備え、前記積層体に形成されたコイル導体のうち、非磁性体層の主面に位置するコイル導体の厚みが、非磁性体層の主面に位置しないコイル導体の厚みよりも薄く、かつ、前記非磁性体層の主面に位置するコイル導体の厚みが、磁性体層の厚みおよび非磁性体層の厚みの0.6倍以下であり、かつ、前記非磁性体層の主面に位置していないコイル導体の厚みの0.1倍より厚いことを特徴とする。 In order to solve the above problems, a laminated coil according to the present invention includes a laminate in which a plurality of magnetic layers are formed on both main surfaces of a nonmagnetic layer, and a predetermined thickness formed on the laminate. and a coil coil conductor is formed by spirally connected with, among the coil conductors formed on the laminate, the thickness of the coil conductor located in the main surface of the non-magnetic layer, nonmagnetic layer The thickness of the coil conductor located on the main surface of the nonmagnetic layer is 0.6 times the thickness of the magnetic layer and the thickness of the nonmagnetic layer. It is below and is characterized by being thicker than 0.1 times the thickness of the coil conductor which is not located in the main surface of the nonmagnetic material layer.

積層体に形成されたコイル導体のうち、非磁性体層の主面に形成されたコイル導体の厚みを薄くし、すべてのコイル導体の厚みを薄くしないので、直流抵抗を小さくすることができる。また、非磁性体層の主面に位置するコイル導体の厚みを磁性体層の厚みおよび非磁性体層の厚みの0.6倍以下とすることで、磁性体層および非磁性体層がコイル導体の厚みを十分に吸収してコイル導体による段差を小さくすることができるとともに、コイル導体の膨張係数が接合面に与える影響を小さくすることができる。この結果、磁性体層と非磁性体層との接合面における層間剥離やクラックなどの構造欠陥を防止することができる。また、非磁性体層の主面に位置するコイル導体の厚みを、非磁性体層の主面に位置していないコイル導体の厚みの0.1倍より厚くすることで、導体が急激に狭くなって発熱や断線が生じることを防ぐことができる。   Of the coil conductors formed in the laminate, the thickness of the coil conductor formed on the main surface of the nonmagnetic layer is reduced, and the thickness of all the coil conductors is not reduced, so that the DC resistance can be reduced. In addition, by setting the thickness of the coil conductor located on the main surface of the nonmagnetic material layer to 0.6 times or less the thickness of the magnetic material layer and the thickness of the nonmagnetic material layer, the magnetic material layer and the nonmagnetic material layer are coiled. The thickness of the conductor can be sufficiently absorbed to reduce the step due to the coil conductor, and the influence of the expansion coefficient of the coil conductor on the joint surface can be reduced. As a result, structural defects such as delamination and cracks at the joint surface between the magnetic layer and the nonmagnetic layer can be prevented. Also, by making the thickness of the coil conductor located on the main surface of the nonmagnetic layer larger than 0.1 times the thickness of the coil conductor not located on the main surface of the nonmagnetic layer, the conductor is sharply narrowed. It is possible to prevent heat generation and disconnection.

また、本発明に係る積層コイルは、前記非磁性体層の厚みが前記磁性体層の厚みより薄いことが好ましい。   In the laminated coil according to the present invention, it is preferable that the thickness of the nonmagnetic layer is thinner than the thickness of the magnetic layer.

非磁性体層の厚みを磁性体層の厚みより薄くすることにより、磁気抵抗が小さくなり、高いインダクタンス値を得ることができる。   By making the thickness of the nonmagnetic layer thinner than the thickness of the magnetic layer, the magnetic resistance is reduced and a high inductance value can be obtained.

このように本発明の積層コイルでは、非磁性体層の主面に位置するコイル導体の厚みを薄くすることで、構造欠陥のない開磁路型の積層コイルを得ることができる。   Thus, in the multilayer coil of the present invention, an open magnetic circuit type multilayer coil free from structural defects can be obtained by reducing the thickness of the coil conductor located on the main surface of the nonmagnetic layer.

本発明の第1の実施例に係る積層コイルの概略断面図である。It is a schematic sectional drawing of the laminated coil which concerns on the 1st Example of this invention. 本発明の第1の実施例に係る積層コイルの分解斜視図である。1 is an exploded perspective view of a laminated coil according to a first embodiment of the present invention. 本発明の第2の実施例に係る積層コイルの概略断面図である。It is a schematic sectional drawing of the laminated coil which concerns on the 2nd Example of this invention. 本発明の第2の実施例に係る積層コイルの分解斜視図である。It is a disassembled perspective view of the laminated coil which concerns on the 2nd Example of this invention. 従来の積層コイルの概略断面図である。It is a schematic sectional drawing of the conventional laminated coil.

以下では本発明に係る積層コイルの実施例を、図面を参照しながら説明する。   Hereinafter, embodiments of the laminated coil according to the present invention will be described with reference to the drawings.

図1は本発明の第1の実施例における積層コイルの概略断面図である。積層コイルは、複数の磁性体層11と非磁性体層13からなる積層体10と、積層体10に形成されたコイル導体15,16を螺旋状に接続してなるコイルLと、外部電極17,17と、から形成されている。そして、磁性体層11は非磁性体層13の両主面に形成されている。   FIG. 1 is a schematic cross-sectional view of a laminated coil according to a first embodiment of the present invention. The laminated coil includes a laminated body 10 including a plurality of magnetic layers 11 and a nonmagnetic layer 13, a coil L formed by spirally connecting coil conductors 15 and 16 formed on the laminated body 10, and an external electrode 17. , 17. The magnetic layer 11 is formed on both main surfaces of the nonmagnetic layer 13.

図1に示すように、非磁性体層13の両主面に位置するコイル導体16は、非磁性体層13の両主面に位置していない所定の厚みを有するコイル導体15よりも厚みが薄い。具体的には、磁性体層11の厚みおよび非磁性体層13の厚みの0.6倍以下であり、かつ、非磁性体層13の両主面に位置していないコイル導体15の厚みの0.1倍より厚い。   As shown in FIG. 1, the coil conductor 16 positioned on both main surfaces of the nonmagnetic layer 13 is thicker than the coil conductor 15 having a predetermined thickness not positioned on both main surfaces of the nonmagnetic layer 13. thin. Specifically, the thickness of the coil conductor 15 is not more than 0.6 times the thickness of the magnetic layer 11 and the thickness of the nonmagnetic layer 13 and is not located on both main surfaces of the nonmagnetic layer 13. Thicker than 0.1 times.

非磁性体層13の両主面に位置するコイル導体16の厚みが薄く、全てのコイル導体15,16の厚みが薄くないことから、直流抵抗を小さくすることができる。また、非磁性体層13の両主面に位置するコイル導体16の厚みが磁性体層11の厚みおよび非磁性体層13の厚みの0.6倍以下であるから、磁性体層11および非磁性体層13がコイル導体16の厚みを十分に吸収してコイル導体16による段差を小さくするとともに、コイル導体16の膨張係数が接合面に与える影響を小さくすることができる。この結果、磁性体層11と非磁性体層13との接合性の悪化を抑制し、接合面における層間剥離やクラックなどの構造欠陥を防止することができる。また、非磁性体層13の両主面に位置するコイル導体16が、非磁性体層13の両主面に位置していないコイル導体15の厚みの0.1倍より厚いことから、導体が急激に狭くなって発熱や断線が生じることを防ぐことができる。   Since the thickness of the coil conductor 16 located on both main surfaces of the nonmagnetic layer 13 is thin and the thickness of all the coil conductors 15 and 16 is not thin, the DC resistance can be reduced. Further, since the thickness of the coil conductor 16 located on both main surfaces of the nonmagnetic layer 13 is 0.6 times or less the thickness of the magnetic layer 11 and the thickness of the nonmagnetic layer 13, the magnetic layer 11 and the nonmagnetic layer 11 The magnetic layer 13 can sufficiently absorb the thickness of the coil conductor 16 to reduce the step due to the coil conductor 16, and the influence of the expansion coefficient of the coil conductor 16 on the joint surface can be reduced. As a result, it is possible to suppress deterioration of the bonding property between the magnetic layer 11 and the nonmagnetic layer 13 and to prevent structural defects such as delamination and cracks on the bonding surface. Moreover, since the coil conductors 16 located on both main surfaces of the nonmagnetic layer 13 are thicker than 0.1 times the thickness of the coil conductor 15 not located on both main surfaces of the nonmagnetic layer 13, the conductors are It is possible to prevent the heat from narrowing due to sudden narrowing.

次に、積層コイルの製造方法について、図2に示す積層コイルの分解斜視図を用いて説明する。   Next, the manufacturing method of a laminated coil is demonstrated using the exploded perspective view of the laminated coil shown in FIG.

積層コイルの製造においては、はじめに磁性体材料を用いたグリーンシート(磁性体グリーンシート)1および非磁性体材料を用いたグリーンシート(非磁性体グリーンシート)3を作製する。なお、積層コイル形成後には、磁性体グリーンシート1が磁性体層、非磁性体グリーンシート3が非磁性体層となる。   In the production of the laminated coil, first, a green sheet (magnetic green sheet) 1 using a magnetic material and a green sheet (non-magnetic green sheet) 3 using a non-magnetic material are manufactured. After forming the laminated coil, the magnetic green sheet 1 becomes a magnetic layer, and the nonmagnetic green sheet 3 becomes a nonmagnetic layer.

本実施例では、磁性体材料としてNi−Cu−Zn系の材料を使用する。まず、酸化第二鉄(Fe23)48mol%、酸化亜鉛(ZnO)20mol%、酸化銅(CuO)9mol%、酸化ニッケル(NiO)23mol%の比率の材料を原料とし、ボールミルを用いて湿式調合を行う。得られた混合物を乾燥して粉砕し、その粉末を750℃で1時間仮焼する。この粉末にバインダー樹脂と可塑剤、湿潤剤、分散剤を加えてボールミルで混合を行ない、その後脱泡を行ってスラリーを得る。そしてこのスラリーを剥離性のフィルム上に塗布し、乾燥させることにより、所望の膜圧の磁性体グリーンシート1を作製する。 In this embodiment, a Ni—Cu—Zn-based material is used as the magnetic material. First, a material of a ratio of ferric oxide (Fe 2 O 3 ) 48 mol%, zinc oxide (ZnO) 20 mol%, copper oxide (CuO) 9 mol%, nickel oxide (NiO) 23 mol% is used as a raw material, and a ball mill is used. Wet preparation is performed. The resulting mixture is dried and ground, and the powder is calcined at 750 ° C. for 1 hour. A binder resin, a plasticizer, a wetting agent, and a dispersing agent are added to the powder and mixed by a ball mill, and then defoamed to obtain a slurry. Then, the slurry is applied on a peelable film and dried to produce the magnetic green sheet 1 having a desired film pressure.

また、非磁性体材料としてはCu―Zn系の材料を使用する。酸化第二鉄(Fe23)48mol%、酸化亜鉛(ZnO)43mol%、酸化銅(CuO)9mol%の比率の材料を原料とし、上記磁性体グリーンシート1と同様の方法によって非磁性体グリーンシート3を作製する。 Further, a Cu—Zn-based material is used as the nonmagnetic material. A non-magnetic material is produced in the same manner as the magnetic green sheet 1 using a material having a ratio of ferric oxide (Fe 2 O 3 ) of 48 mol%, zinc oxide (ZnO) of 43 mol% and copper oxide (CuO) of 9 mol%. Green sheet 3 is produced.

次に、以上のようにして得られた各グリーンシート1,3を所定の寸法に裁断し、各グリーンシート1,3の積層後に螺旋状のコイルLが形成されるように、所定の位置にレーザなどの方法で貫通孔8を形成する。そして、磁性体グリーンシート1b〜1fおよび非磁性体グリーンシート3上にAgまたはAg合金を主成分とする導電ペーストをスクリーン印刷などの方法で塗布することによりコイル導体15,16を形成する。なお、コイル導体15,16の形成と同時に貫通孔8の内部に導電ペーストを充填することにより、容易に接続用ビアホールを形成することができる。   Next, each of the green sheets 1 and 3 obtained as described above is cut into a predetermined size, and the spiral coils L are formed after the green sheets 1 and 3 are laminated. The through hole 8 is formed by a method such as laser. And the coil conductors 15 and 16 are formed by apply | coating the electrically conductive paste which has Ag or an Ag alloy as a main component on the magnetic body green sheets 1b-1f and the nonmagnetic body green sheet 3 by methods, such as screen printing. In addition, by filling the inside of the through-hole 8 with the conductive paste simultaneously with the formation of the coil conductors 15 and 16, the connection via hole can be easily formed.

ここで、非磁性体グリーンシート3の両主面に厚みの薄いコイル導体16が位置するように、磁性体グリーンシート1dと非磁性体グリーンシート3上に厚みの薄いコイル導体16を形成する。厚みの薄いコイル導体16を非磁性体グリーンシート3の両主面に位置させることで、磁性体層と非磁性体層との接合性の悪化を抑制し、構造欠陥のない積層コイルを得ることができる。   Here, the thin coil conductor 16 is formed on the magnetic green sheet 1d and the nonmagnetic green sheet 3 so that the thin coil conductors 16 are positioned on both main surfaces of the nonmagnetic green sheet 3. By positioning the thin coil conductors 16 on both main surfaces of the non-magnetic green sheet 3, deterioration of the bondability between the magnetic layer and the non-magnetic layer is suppressed, and a laminated coil having no structural defect is obtained. Can do.

そして、図2に示すように非磁性体グリーンシート3の両主面に、コイル導体15,16を形成した磁性体グリーンシート1b〜1fを積層し、上下にコイル導体を形成していない外層用の磁性体グリーンシート1a,1gを配置することにより、積層体10を形成する。このとき、非磁性体グリーンシート3が螺旋状のコイルLのコイル軸方向の中央に位置するように積層することで、積層コイルの外部へ漏れる磁束を多くでき、直流重畳特性を向上させることができる。   Then, as shown in FIG. 2, magnetic green sheets 1b to 1f in which coil conductors 15 and 16 are formed are laminated on both main surfaces of the non-magnetic green sheet 3, and the outer layer is not formed with a coil conductor on the top and bottom. The laminated body 10 is formed by arranging the magnetic green sheets 1a and 1g. At this time, by laminating the non-magnetic green sheet 3 so as to be positioned at the center of the spiral coil L in the coil axis direction, the magnetic flux leaking to the outside of the laminated coil can be increased, and the DC superposition characteristics can be improved. it can.

その後、積層体10を45℃、1.0t/cm2の圧力で圧着し、ダイサーやギロチンカットにより裁断することで積層コイルの未焼成体を得る。そして、この未焼成体の脱バインダーおよび本焼成を行う。脱バインダーは低酸素雰囲気中において500℃で2時間加熱し、本焼成は大気雰囲気中において890℃で150分焼成する。最後に、引き出し電極が露出する端面に浸漬法などにより主成分が銀である電極ペーストを塗布し、100℃で10分間乾燥した後、780℃にて150分間焼付け処理する。これにより、本発明の積層コイルを得ることができる。 Then, the laminated body 10 is pressure-bonded at 45 ° C. and a pressure of 1.0 t / cm 2 , and cut with a dicer or a guillotine cut to obtain an unfired body of the laminated coil. Then, the green body is subjected to binder removal and main baking. The binder is heated at 500 ° C. for 2 hours in a low oxygen atmosphere, and the main baking is performed at 890 ° C. for 150 minutes in the air atmosphere. Finally, an electrode paste whose main component is silver is applied to the end face where the extraction electrode is exposed by dipping or the like, dried at 100 ° C. for 10 minutes, and then baked at 780 ° C. for 150 minutes. Thereby, the laminated coil of this invention can be obtained.

表1は、非磁性体層13の両主面に位置するコイル導体16の厚みを種々変えて積層コイルを作製し、評価した結果を示す表である。表1においては、非磁性体層13の両主面に位置していないコイル導体15を「コイル導体1」、非磁性体層13の両主面に位置しているコイル導体16を「コイル導体2」とする。なお、表1において、試料番号に*印を付したものは本願発明の範囲外の比較例である。また、試料番号1は図5に示した積層体50に形成されたコイル導体55が全て同じ厚みを有する従来の積層コイルである。   Table 1 is a table showing the results of producing and evaluating laminated coils by changing the thicknesses of the coil conductors 16 located on both main surfaces of the nonmagnetic layer 13 in various ways. In Table 1, the coil conductor 15 not positioned on both main surfaces of the nonmagnetic layer 13 is “coil conductor 1”, and the coil conductor 16 positioned on both main surfaces of the nonmagnetic layer 13 is “coil conductor”. 2 ”. In Table 1, the sample numbers marked with * are comparative examples outside the scope of the present invention. Sample No. 1 is a conventional laminated coil in which all coil conductors 55 formed in the laminated body 50 shown in FIG. 5 have the same thickness.

表1の積層コイルにおいて、磁性体層11および非磁性体層13の厚みは50μm、非磁性体層13の両主面に位置していないコイル導体15(コイル導体1)は直流抵抗を小さくするために40μmと厚く形成した。また、螺旋状コイルの巻回数は5.5ターンであり、積層コイルのサイズは3.2mm×2.5mm×2.5mmである。   In the laminated coil of Table 1, the thickness of the magnetic layer 11 and the nonmagnetic layer 13 is 50 μm, and the coil conductor 15 (coil conductor 1) not located on both main surfaces of the nonmagnetic layer 13 has a low DC resistance. Therefore, it was formed as thick as 40 μm. The number of turns of the spiral coil is 5.5 turns, and the size of the laminated coil is 3.2 mm × 2.5 mm × 2.5 mm.

Figure 0004596008
Figure 0004596008

試料番号1の従来例の積層コイルでは、非磁性体層53の両主面に位置するコイル導体55も、非磁性体層53の両主面に位置していないコイル導体55と同様に40μmと厚く形成しているため、構造欠陥が生じてしまう。なお、試料番号1の積層コイルでは、非磁性体層53の両主面に位置するコイル導体55の厚みは、磁性体層51の厚みおよび非磁性体層53の厚みの0.8倍となっている。   In the conventional laminated coil of Sample No. 1, the coil conductor 55 located on both principal surfaces of the nonmagnetic layer 53 is 40 μm, similarly to the coil conductor 55 not located on both principal surfaces of the nonmagnetic layer 53. Since it is formed thick, a structural defect occurs. In the laminated coil of sample number 1, the thickness of the coil conductor 55 located on both main surfaces of the nonmagnetic layer 53 is 0.8 times the thickness of the magnetic layer 51 and the thickness of the nonmagnetic layer 53. ing.

試料番号2〜5に示すように、非磁性体層13の両主面に位置するコイル導体16の厚みを、磁性体層11の厚みおよび非磁性体層13の厚みの0.6倍以下と薄くすると、構造欠陥を防止できることがわかる。非磁性体層13の両主面に位置するコイル導体16の厚みを磁性体層11の厚みおよび非磁性体層13の厚みの0.6倍以下と薄くすることで、磁性体層11および非磁性体層13がコイル導体16の厚みを十分に吸収してコイル導体16による段差を小さくするとともに、コイル導体16の膨張係数が接合面に与える影響を小さくすることができる。この結果、磁性体層11と非磁性体層13の接合面に発生する層間剥離およびクラックなどの構造欠陥を防止することができる。   As shown in sample numbers 2 to 5, the thickness of the coil conductors 16 located on both main surfaces of the nonmagnetic layer 13 is 0.6 times or less the thickness of the magnetic layer 11 and the thickness of the nonmagnetic layer 13. It can be seen that structural defects can be prevented by reducing the thickness. By reducing the thickness of the coil conductors 16 located on both main surfaces of the nonmagnetic layer 13 to 0.6 times or less the thickness of the magnetic layer 11 and the thickness of the nonmagnetic layer 13, the magnetic layer 11 and the nonmagnetic layer 11 The magnetic layer 13 can sufficiently absorb the thickness of the coil conductor 16 to reduce the step due to the coil conductor 16, and the influence of the expansion coefficient of the coil conductor 16 on the joint surface can be reduced. As a result, it is possible to prevent structural defects such as delamination and cracks generated at the joint surface between the magnetic layer 11 and the nonmagnetic layer 13.

非磁性体層13の両主面に位置するコイル導体16の厚みを薄くするほど構造欠陥を防止する効果は大きくなるが、試料番号5に示すように、非磁性体層13の両主面に位置するコイル導体16の厚みが非磁性体層13の両主面に位置しないコイル導体15の厚みの0.1倍以下になると、導体が急激に狭くなって断線や発熱が生じてしまう。よって、非磁性体層13の両主面に位置するコイル導体16の厚みは、非磁性体層13の両主面に位置しないコイル導体15の厚みの0.1倍より厚くなければならない。   As the thickness of the coil conductor 16 located on both main surfaces of the nonmagnetic layer 13 is reduced, the effect of preventing structural defects increases. However, as shown in Sample No. 5, both main surfaces of the nonmagnetic layer 13 are provided. When the thickness of the coil conductor 16 positioned is 0.1 times or less the thickness of the coil conductor 15 not positioned on both main surfaces of the nonmagnetic layer 13, the conductor is abruptly narrowed to cause disconnection or heat generation. Therefore, the thickness of the coil conductor 16 located on both main surfaces of the nonmagnetic layer 13 must be greater than 0.1 times the thickness of the coil conductor 15 not located on both main surfaces of the nonmagnetic layer 13.

以上のように、試料番号2〜4の本発明によれば、直流抵抗が小さく、構造欠陥のない積層コイルを得ることができる。   As described above, according to the present invention of sample numbers 2 to 4, it is possible to obtain a laminated coil having a small DC resistance and no structural defects.

図3に本発明の第2の実施例における積層コイルの概略断面図を示す。なお、図3において図1と共通あるいは対応する部分は適宜説明を省略する。   FIG. 3 shows a schematic cross-sectional view of the laminated coil in the second embodiment of the present invention. In FIG. 3, the description of the same or corresponding parts as in FIG. 1 is omitted as appropriate.

図3に示すように、積層コイルは、非磁性体層33の両主面に、複数の磁性体層31が形成された積層体30と、積層体30に形成されたコイル導体35,36を螺旋状に接続してなるコイルLと、外部電極37,37とから形成されている。そして、非磁性体層33の両主面に位置するコイル導体36は、他の非磁性体層33の両主面に位置していない所定の厚みを有するコイル導体35よりも厚みが薄くなっている。具体的には、非磁性体層33の両主面に位置するコイル導体36の厚みは、非磁性体層33の厚みの0.6倍以下であり、非磁性体層33の両主面に位置していないコイル導体35の厚みの0.1倍より厚くなっている。   As shown in FIG. 3, the laminated coil includes a laminated body 30 in which a plurality of magnetic layers 31 are formed on both main surfaces of the nonmagnetic layer 33, and coil conductors 35 and 36 formed in the laminated body 30. The coil L is formed by a spiral connection and external electrodes 37 and 37. The coil conductors 36 located on both main surfaces of the nonmagnetic layer 33 are thinner than the coil conductors 35 having a predetermined thickness that are not located on both main surfaces of the other nonmagnetic layer 33. Yes. Specifically, the thickness of the coil conductor 36 positioned on both main surfaces of the nonmagnetic layer 33 is not more than 0.6 times the thickness of the nonmagnetic layer 33, and It is thicker than 0.1 times the thickness of the coil conductor 35 that is not positioned.

非磁性体層33の両主面に位置するコイル導体36の厚みが薄く、全てのコイル導体35,36の厚みが薄くないことから、直流抵抗を小さくすることができる。また、非磁性体層33の両主面に位置するコイル導体36の厚みが非磁性体層33の厚みの0.6倍以下であるから、非磁性体層33がコイル導体36の厚みを十分に吸収してコイル導体36による段差を小さくするとともに、コイル導体36の膨張係数が接合面に与える影響を小さくすることができる。この結果、磁性体層31と非磁性体層33との接合性の悪化を抑制し、接合面における層間剥離やクラックなどの構造欠陥を防止することができる。また、非磁性体層33の両主面に位置するコイル導体36が、非磁性体層33の両主面に位置していないコイル導体35の厚みの0.1倍より厚いことから、導体が急激に狭くなって発熱や断線が生じることを防ぐことができる。   Since the coil conductors 36 located on both main surfaces of the non-magnetic layer 33 are thin and all the coil conductors 35 and 36 are not thin, the direct current resistance can be reduced. Further, since the thickness of the coil conductor 36 located on both main surfaces of the nonmagnetic layer 33 is 0.6 times or less than the thickness of the nonmagnetic layer 33, the nonmagnetic layer 33 has a sufficient thickness of the coil conductor 36. And the effect of the expansion coefficient of the coil conductor 36 on the joint surface can be reduced. As a result, it is possible to suppress deterioration of the bondability between the magnetic layer 31 and the nonmagnetic layer 33 and to prevent structural defects such as delamination and cracks on the bonding surface. Further, since the coil conductors 36 located on both main surfaces of the nonmagnetic layer 33 are thicker than 0.1 times the thickness of the coil conductor 35 not located on both main surfaces of the nonmagnetic layer 33, the conductors are It is possible to prevent the heat from narrowing due to sudden narrowing.

さらに、第2の実施例の積層コイルは、非磁性体層33が磁性体層31よりも薄く形成されている。非磁性体層33を磁性体層31よりも薄く形成することで、磁気抵抗が減少し、インダクタンスの減少を小さくすることができる。   Furthermore, in the laminated coil of the second embodiment, the nonmagnetic layer 33 is formed thinner than the magnetic layer 31. By forming the nonmagnetic layer 33 to be thinner than the magnetic layer 31, the magnetic resistance can be reduced and the decrease in inductance can be reduced.

なお、図4に示すように、本実施例の積層コイルも第1の実施例と同様に、磁性体グリーンシート21および非磁性体グリーンシート23を積層、圧着し、各チップに裁断した後、外部電極37,37を形成する方法により作製している。   As shown in FIG. 4, the laminated coil of the present example was also laminated with a magnetic green sheet 21 and a nonmagnetic green sheet 23, and was cut into chips as in the first example. The external electrodes 37 and 37 are produced by a method of forming.

表2は、非磁性体層33の厚みを種々変えて、積層コイルを作製し、評価した結果を示す表である。表2においても、非磁性体層33の両主面に位置していないコイル導体35を「コイル導体1」、非磁性体層33の両主面に位置しているコイル導体36を「コイル導体2」とする。また、試料番号に*印を付したものは本願発明の範囲外の比較例である。   Table 2 is a table showing the results of producing and evaluating laminated coils by changing the thickness of the nonmagnetic layer 33 in various ways. Also in Table 2, the coil conductor 35 that is not positioned on both main surfaces of the nonmagnetic layer 33 is referred to as “coil conductor 1”, and the coil conductor 36 that is positioned on both main surfaces of the nonmagnetic layer 33 is referred to as “coil conductor”. 2 ”. The sample number marked with * is a comparative example outside the scope of the present invention.

表2の積層コイルにおいて、非磁性体層33の両主面に位置していないコイル導体35および非磁性体層33の両主面に位置するコイル導体36の厚みはそれぞれ40μm、20μmに固定し、磁性体層31の厚みは50μmとした。   In the laminated coil of Table 2, the thicknesses of the coil conductor 35 that is not located on both main surfaces of the nonmagnetic layer 33 and the coil conductor 36 that is located on both main surfaces of the nonmagnetic layer 33 are fixed to 40 μm and 20 μm, respectively. The thickness of the magnetic layer 31 was 50 μm.

Figure 0004596008
Figure 0004596008

表2より、非磁性体層33の厚みが薄いと、インダクタンスが大きくなることがわかる。非磁性体層33の厚みが薄いことで、磁気抵抗が小さくなるためである。   From Table 2, it can be seen that the inductance increases when the nonmagnetic layer 33 is thin. This is because the non-magnetic layer 33 is thin so that the magnetic resistance is reduced.

しかし、非磁性体層33の両主面に位置するコイル導体36の厚みに対して非磁性体層33が薄くなりすぎると、非磁性体層33がコイル導体36の厚みを十分に吸収することができない。試料番号10,11に示すように、非磁性体層33の両主面に位置するコイル導体36の厚みが非磁性体層33の厚みの0.6倍より厚くなると、構造欠陥が生じてしまう。よって、非磁性体層33の厚みは、非磁性体層33の両主面に位置するコイル導体36の厚みが非磁性体層33の厚みの0.6倍以下となる程度に薄くすることが必要である。   However, if the nonmagnetic layer 33 becomes too thin with respect to the thickness of the coil conductor 36 located on both main surfaces of the nonmagnetic layer 33, the nonmagnetic layer 33 sufficiently absorbs the thickness of the coil conductor 36. I can't. As shown in sample numbers 10 and 11, when the thickness of the coil conductor 36 located on both main surfaces of the nonmagnetic layer 33 is larger than 0.6 times the thickness of the nonmagnetic layer 33, a structural defect occurs. . Therefore, the thickness of the nonmagnetic layer 33 may be reduced to such an extent that the thickness of the coil conductor 36 located on both main surfaces of the nonmagnetic layer 33 is 0.6 times or less than the thickness of the nonmagnetic layer 33. is necessary.

なお、本発明の積層コイルは前記実施例に限定されるものではなく、その要旨の範囲内で種々に変更することができる。例えば、上記の実施例においては、非磁性体層の両主面に位置するコイル導体の厚みを薄くしたが、非磁性体層の一方の主面にのみコイル導体が形成されている場合は、一方の主面に位置するコイル導体の厚みを薄くすればよい。また、積層コイルに設ける非磁性体層は1層に限られず、2層以上連続して積層してもよいし、積層体内に複数の非磁性体層を設けてもよい。   In addition, the laminated coil of this invention is not limited to the said Example, It can change variously within the range of the summary. For example, in the above embodiment, the thickness of the coil conductor located on both main surfaces of the nonmagnetic material layer is reduced, but when the coil conductor is formed only on one main surface of the nonmagnetic material layer, What is necessary is just to make the thickness of the coil conductor located in one main surface thin. Moreover, the nonmagnetic material layer provided in the laminated coil is not limited to one layer, and two or more nonmagnetic material layers may be continuously laminated, or a plurality of nonmagnetic material layers may be provided in the laminated body.

また、本発明の積層コイルにおいては、非磁性体層の主面に位置するコイル導体の厚みが、非磁性体層の主面に位置しない主部分のコイル導体の厚みより薄ければよく、非磁性体層の主面に位置しない一部のコイル導体の厚みが薄くてもよい。   Further, in the laminated coil of the present invention, the thickness of the coil conductor located on the main surface of the nonmagnetic material layer should be thinner than the thickness of the main portion of the coil conductor not located on the main surface of the nonmagnetic material layer. Some coil conductors that are not located on the main surface of the magnetic layer may be thin.

以上のように、本発明は、 積層コイルに有用であり、特に、層間剥離やクラックなどの構造欠陥のない点で優れている。   As described above, the present invention is useful for laminated coils, and is particularly excellent in that there are no structural defects such as delamination and cracks.

1,21 磁性体セラミックシート
3,23 非磁性体セラミックシート
8,28 貫通孔
10,30,50 積層体
15,16,35,36,55 コイル導体
L コイル
17,37,57 外部電極
1,21 Magnetic ceramic sheet 3,23 Non-magnetic ceramic sheet 8,28 Through hole 10,30,50 Laminated body 15,16,35,36,55 Coil conductor L Coil 17,37,57 External electrode

Claims (2)

非磁性体層の両主面に、複数の磁性体層が形成された積層体と、
前記積層体に形成された所定の厚みを有するコイル導体が螺旋状に接続されてなるコイルと、を備え、
前記積層体に形成されたコイル導体のうち、非磁性体層の主面に位置するコイル導体の厚みが、非磁性体層の主面に位置しないコイル導体の厚みよりも薄く、かつ、
前記非磁性体層の主面に位置するコイル導体の厚みが、磁性体層の厚みおよび非磁性体層の厚みの0.6倍以下であり、かつ、前記非磁性体層の主面に位置していないコイル導体の厚みの0.1倍より厚いことを特徴とする積層コイル。
A laminate in which a plurality of magnetic layers are formed on both main surfaces of the non-magnetic layer;
A coil formed by spirally connecting a coil conductor having a predetermined thickness formed in the laminate,
Of the coil conductors formed in the laminate, the thickness of the coil conductor located on the main surface of the nonmagnetic layer is thinner than the thickness of the coil conductor not located on the main surface of the nonmagnetic layer , and
The thickness of the coil conductor positioned on the main surface of the nonmagnetic layer is not more than 0.6 times the thickness of the magnetic layer and the thickness of the nonmagnetic layer, and is positioned on the main surface of the nonmagnetic layer. A laminated coil, characterized in that it is thicker than 0.1 times the thickness of the coil conductor that is not.
前記非磁性体層の厚みが前記磁性体層の厚みより薄いことを特徴とする請求項1に記載の積層コイル。  The multilayer coil according to claim 1, wherein a thickness of the nonmagnetic material layer is smaller than a thickness of the magnetic material layer.
JP2007538681A 2005-10-03 2006-09-14 Laminated coil Expired - Fee Related JP4596008B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2005289597 2005-10-03
JP2005289597 2005-10-03
PCT/JP2006/318266 WO2007040029A1 (en) 2005-10-03 2006-09-14 Multilayer coil

Publications (2)

Publication Number Publication Date
JPWO2007040029A1 JPWO2007040029A1 (en) 2009-04-16
JP4596008B2 true JP4596008B2 (en) 2010-12-08

Family

ID=37906073

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007538681A Expired - Fee Related JP4596008B2 (en) 2005-10-03 2006-09-14 Laminated coil

Country Status (4)

Country Link
JP (1) JP4596008B2 (en)
KR (1) KR100881676B1 (en)
CN (1) CN101133467B (en)
WO (1) WO2007040029A1 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI397087B (en) * 2007-11-05 2013-05-21 Airoha Tech Corp Inductance / transformer and its making method
JP5387579B2 (en) * 2008-10-30 2014-01-15 株式会社村田製作所 Electronic components
JP5736982B2 (en) * 2010-07-21 2015-06-17 株式会社村田製作所 Ceramic electronic components
JP6303123B2 (en) * 2013-06-21 2018-04-04 パナソニックIpマネジメント株式会社 Common mode noise filter
CN106024327B (en) * 2015-03-27 2019-07-19 株式会社村田制作所 Multilayer coil component
JP6528636B2 (en) * 2015-10-08 2019-06-12 Tdk株式会社 Laminated coil parts
KR102414830B1 (en) * 2016-02-18 2022-06-30 삼성전기주식회사 Coil component
KR102404312B1 (en) * 2016-02-18 2022-06-07 삼성전기주식회사 Coil component
CN208273381U (en) * 2016-03-15 2018-12-21 株式会社村田制作所 circuit substrate

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1197256A (en) * 1997-09-18 1999-04-09 Tokin Corp Laminated chip inductor
JP2001217126A (en) * 1999-11-22 2001-08-10 Fdk Corp Laminated inductor

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3621300B2 (en) * 1999-08-03 2005-02-16 太陽誘電株式会社 Multilayer inductor for power circuit

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1197256A (en) * 1997-09-18 1999-04-09 Tokin Corp Laminated chip inductor
JP2001217126A (en) * 1999-11-22 2001-08-10 Fdk Corp Laminated inductor

Also Published As

Publication number Publication date
WO2007040029A1 (en) 2007-04-12
KR20070096012A (en) 2007-10-01
CN101133467A (en) 2008-02-27
JPWO2007040029A1 (en) 2009-04-16
KR100881676B1 (en) 2009-02-06
CN101133467B (en) 2010-11-03

Similar Documents

Publication Publication Date Title
JP4201043B2 (en) Laminated coil
JP4596008B2 (en) Laminated coil
JP4100459B2 (en) Multilayer coil component and manufacturing method thereof
TWI733759B (en) Multilayer inductor
JP3621300B2 (en) Multilayer inductor for power circuit
KR101282025B1 (en) Laminated inductor, method for manufacturing the laminated inductor, and laminated choke coil
JP4840447B2 (en) Multilayer ceramic electronic components
JP5626834B2 (en) Manufacturing method of open magnetic circuit type multilayer coil parts
JP4530043B2 (en) Multilayer coil component and manufacturing method thereof
US20110291784A1 (en) Electronic component
KR20060136389A (en) Laminated coil
TWI435344B (en) Electronic component
US8779884B2 (en) Multilayered inductor and method of manufacturing the same
TWI383411B (en) Electronic parts and manufacturing methods thereof
US20140085038A1 (en) Electronic component
JP4530044B2 (en) Multilayer coil parts
KR20080101771A (en) Ferrite pastes, and production method of multilayer ceramic device
JP4780232B2 (en) Multilayer electronic components
WO2009130935A1 (en) Electronic part
JP2009176829A (en) Electronic component
WO2013099297A1 (en) Laminate inductor
JP7444146B2 (en) coil parts
JP2009170446A (en) Electronic component and method of manufacturing the same
JP2008288332A (en) Ferrite paste and method of manufacturing laminated ceramic component
JP2011091221A (en) Electronic component

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100216

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100407

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100824

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100906

R150 Certificate of patent or registration of utility model

Ref document number: 4596008

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131001

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees