WO2007069339A1 - 鋼管の局部座屈性能評価方法、鋼管の設計方法、鋼管の製造方法及び鋼管 - Google Patents

鋼管の局部座屈性能評価方法、鋼管の設計方法、鋼管の製造方法及び鋼管 Download PDF

Info

Publication number
WO2007069339A1
WO2007069339A1 PCT/JP2005/023447 JP2005023447W WO2007069339A1 WO 2007069339 A1 WO2007069339 A1 WO 2007069339A1 JP 2005023447 W JP2005023447 W JP 2005023447W WO 2007069339 A1 WO2007069339 A1 WO 2007069339A1
Authority
WO
WIPO (PCT)
Prior art keywords
strain
steel pipe
local buckling
stress
buckling
Prior art date
Application number
PCT/JP2005/023447
Other languages
English (en)
French (fr)
Inventor
Nobuhisa Suzuki
Katsumi Masamura
Original Assignee
Jfe Steel Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jfe Steel Corporation filed Critical Jfe Steel Corporation
Priority to CN2005800488917A priority Critical patent/CN101133312B/zh
Priority to US11/884,749 priority patent/US8191221B2/en
Priority to EP05820252.4A priority patent/EP1843143B1/en
Priority to CA2599755A priority patent/CA2599755C/en
Priority to PCT/JP2005/023447 priority patent/WO2007069339A1/ja
Publication of WO2007069339A1 publication Critical patent/WO2007069339A1/ja
Priority to NO20074000A priority patent/NO341762B1/no
Priority to US13/370,372 priority patent/US8875366B2/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N3/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N3/08Investigating strength properties of solid materials by application of mechanical stress by applying steady tensile or compressive forces
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N3/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N3/20Investigating strength properties of solid materials by application of mechanical stress by applying steady bending forces
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/0014Type of force applied
    • G01N2203/0016Tensile or compressive
    • G01N2203/0019Compressive
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/0058Kind of property studied
    • G01N2203/0069Fatigue, creep, strain-stress relations or elastic constants
    • G01N2203/0075Strain-stress relations or elastic constants
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/02Details not specific for a particular testing method
    • G01N2203/0202Control of the test
    • G01N2203/0212Theories, calculations
    • G01N2203/0218Calculations based on experimental data
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/02Details not specific for a particular testing method
    • G01N2203/026Specifications of the specimen
    • G01N2203/0262Shape of the specimen
    • G01N2203/0274Tubular or ring-shaped specimens
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2113/00Details relating to the application field
    • G06F2113/14Pipes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49764Method of mechanical manufacture with testing or indicating
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49764Method of mechanical manufacture with testing or indicating
    • Y10T29/49771Quantitative measuring or gauging
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49764Method of mechanical manufacture with testing or indicating
    • Y10T29/49771Quantitative measuring or gauging
    • Y10T29/49776Pressure, force, or weight determining
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals

Definitions

  • the present invention relates to a method for evaluating the local buckling performance of a copper pipe used in a gas / oil pipeline, a steel pipe design method, a steel pipe manufacturing method, and a steel pipe.
  • steel pipes can fully utilize the ductility of materials for tensile loads, but local buckling occurs because the cross-sectional shape is a thin-walled cylinder for compressive loads. And while the uniform elongation is about 10% before and after, the buckling strain due to compressive load is about 1 to 2%, and local buckling strain can be a dominant factor in the plastic design of pipelines. High nature. In particular, steel pipes with thin pipe thickness tend to reduce local buckling strain, and it is important to increase local buckling strain.
  • a tensile test was performed using a tensile test specimen collected with the specimen longitudinal direction aligned with the axial direction of the steel pipe, and in the obtained nominal stress-nominal strain curve, the on-load strain amount was 5% from the yield point.
  • a steel pipe with a positive strain gradient is used (see Patent Document 1).
  • Patent Document 1 Japanese Patent Application Laid-Open No. 9-1 1 9 6 2 4 3 Disclosure of Invention
  • Patent Document 1 As shown in Patent Document 1 described above, conventionally, in order to increase the local buckling strain of a steel pipe, it has been appropriate to use a steel material in which the gradient of the nominal stress and the nominal strain is positive even after the yield point. Nominal stress The nominal strain gradient is positive.
  • the stress-strain curve of steel is a so-called continuous hardening type. Means later).
  • the continuous-curing type stress-strain curve is one in which a yield shelf does not occur after exceeding the elastic range in the stress-strain curve of the material, and the stress increases as the strain increases and becomes a smooth curve. Yes (see Figure 12).
  • the yield shelf type stress-strain curve is the one that yields a yield shelf after the linear range (see Figure 12). Note that the elastic region indicated by the straight line in the yield shelf type stress-strain curve is the linear region, the region where the strain increases without increasing the stress is the yield region, the smooth curved region after the end of the yield shelf is the strain hardening region, the strain The strain at which the hardening region begins is called strain hardening start strain (see Fig. 13).
  • the local buckling strain of a copper pipe with a yield-shelf-type stress-strain curve should be smaller than that of a steel pipe with a continuous-hardening-type stress-strain curve (steel-hardening model steel pipe) Is generally known. For this reason, when trying to obtain a steel pipe with high buckling performance as in the construction of a pipeline, the steel pipe of the yield shelf model is automatically excluded based on engineering judgment.
  • Continuous hardening model steel pipes can be obtained by controlling the chemical composition of the steel pipes and the rolling conditions of the steel sheets before pipe making, or by applying heat treatment and processing to the steel pipes during and after pipe making.
  • the present invention has been made to solve the above-mentioned problems, and whether or not the yield shelf model can be applied to an application that requires excellent local buckling performance, such as a pipeline, is determined. It aims to provide a local buckling performance evaluation method.
  • a method for designing a steel pipe using the technical idea used in the method for evaluating the local buckling performance of the steel pipe, a method for manufacturing a steel pipe by the design method for the steel pipe, and a method for evaluating the local buckling performance of the steel pipe It aims at providing the steel pipe obtained by. Means for solving the problem
  • Fig. 14 (a) the conventional steel pipe evaluation method is illustrated as shown in Fig. 14 (a). Using only whether it is Dell or not as a criterion, in the case of a continuous hardening model, it was evaluated that it could be applied to a pipeline, etc. He evaluated it as not possible.
  • the inventor first examined why the local buckling performance was low in the case of the yield shelf model.
  • the steel pipe of the yield shelf model buckles in the region of the yield shelf, the deformation proceeds in the yield shelf region without increasing the stress, so the steel tube buckling in the yield shelf region will buckle immediately after the yield strain. Grows. Therefore, the local buckling strain of a steel pipe that buckles in the yield shelf region is approximately yield strain.
  • the buckling strain when buckling in the yield shelf region, the buckling strain is considered to be the yield strain, and its value becomes small (approximately 0 ⁇ 1 to 0 ⁇ 2%). Then, even if the material has a yield shelf, in order to obtain a steel pipe with excellent buckling performance that can be used for pipelines, the buckling point on the stress-strain curve is the end point of the yield shelf region ( It was found that it should be after the starting point of the strain hardening region, in other words, that the local buckling strain should be larger than the strain hardening starting strain.
  • the method for evaluating the local buckling characteristics of a steel pipe includes a first step of acquiring stress strain characteristics of a material having a yield shelf on the stress strain characteristics, and the stress strain characteristics acquired in the first step.
  • the second step of determining the magnitude relationship between the strain hardening initiation strain and the local buckling strain of the steel pipe of the material, and when the local buckling strain is determined to be greater than the strain hardening initiation strain in the second step
  • the material is evaluated as being applicable to a structure that assumes plastic design, and if the local buckling strain is determined to be equal to or lower than the strain hardening initiation strain in the second step, the plastic design is assumed. It has a third step that evaluates that there is no applicability to the structure.
  • the first step is to obtain the stress-strain characteristics of the steel material having a yield shelf.
  • the stress-strain characteristic is, for example, data of a point sequence indicating the relationship between stress and strain when the steel material is subjected to a tensile test, or a stress-strain curve based on the data, and an example of the stress-strain curve acquired here. Is shown in Figure 15.
  • the second step is a step of determining the magnitude relationship between the strain hardening onset strain in the stress strain characteristics acquired in the first step and the local buckling strain of the copper tube of the material.
  • it is not necessary to determine the local buckling strain of the steel pipe and it is sufficient to know the magnitude relationship between the strain hardening onset strain and the local buckling strain. Therefore, for example, when a steel pipe is prototyped and a load that generates a strain corresponding to the strain hardening starting strain is applied, it is tested whether the prototype steel pipe buckles. It can be judged that the curing initiation strain is large.
  • the material is evaluated as being applicable to a structure that is premised on plastic design. If the strain hardening onset strain is determined to be greater than or equal to the local buckling strain in the two steps, it is evaluated as not applicable to the structure that assumes plastic design.
  • a structure premised on plastic design is a structure that requires high deformation performance (buckling strain). Specific examples thereof include a pipeline.
  • the method (1) is very convenient because the use of a steel pipe can be determined only by determining the magnitude relationship between the strain hardening initiation strain and the local buckling strain of the steel pipe of the material. .
  • the method for determining the magnitude relationship between the strain hardening onset strain and the local buckling strain of the steel pipe of the material is not particularly limited, but as shown in the explanation of (1), Using a work takes time and money. Therefore,
  • the method for evaluating local buckling characteristics of a steel pipe according to the present invention is based on the following determination of the magnitude relationship between the strain hardening onset strain and the local buckling strain of the steel pipe of the material in the second step of the method (1). If the local buckling strain can be calculated as a result of inputting the stress-strain characteristics acquired in the first step to the equation, it is determined that the local buckling strain is larger than the strain hardening start strain, and the local buckling strain is calculated. When the calculation is impossible, it is determined that the local buckling strain is equal to or less than the strain hardening starting strain. ⁇ (1. 1) where ⁇ remedy : compression local buckling strain
  • Equation ( 1.2 ) £ cr is the compression local buckling strain, V is the Poisson's ratio, t is the tube thickness, and D is the tube diameter. Also, E s “is 1 5 shows the stress-strain curve of the yield plateau model, the slope of the line connecting the original point and the buckling point (hereinafter, referred to as" secant modulus ") indicates, E Tcr is the seat The slope of the stress-strain curve at the bending point (hereinafter referred to as “tangential coefficient”) is shown. In the figure, £ H is the strain hardening opening. Represents distortion at the starting point. However, in FIG. 15, the stress-strain curve in the strain hardening region is drawn with a curve to express an arbitrary relationship.
  • Whether it can be calculated is whether or not the equation (1.1) is established by trial and error calculation by substituting a strain greater than the strain hardening starting strain obtained from the stress strain characteristics obtained in the first step. It can be judged by how.
  • the method for evaluating local buckling characteristics of other steel pipes according to the present invention is based on the relationship between the strain hardening initiation strain in the second step of the method (1) and the local buckling strain of the steel pipe of the material. Judgment is made based on the stress strain characteristics obtained in the following formula and the first step.
  • E 5cr Slope of the line connecting the origin and the buckling point in the stress-strain curve of the yield shelf model
  • E Tor Slope of the stress-strain curve at the buckling point
  • the calculated value is constant because the stress-strain curve is almost linear through the origin. In the yield shelf area, the tangent coefficient is 0, so all the calculation distortions are 0. Furthermore, when entering the strain hardening region, the calculated strain decreases monotonously.
  • the equation (1.1) means that the value of the left side when the left and right side equations hold is the local buckling strain, but the left side and right side equations hold in Fig. 1. If you think about it, it ’s 1: 1. Therefore, the strain corresponding to the intersection with the 1: 1 line in Fig. 1 is the local buckling strain.
  • the determination of whether the local buckling strain is larger than the strain hardening start strain may be made by comparing this strain with the strain hardening start strain.
  • the case where the local buckling strain is larger than the strain hardening onset strain is the case where the decreasing curve intersects with the 1: 1 line.
  • the calculated value corresponding to the strain hardening start strain must be larger than the strain hardening start strain (see circled number 2 in FIG. 1).
  • the calculated value corresponding to the strain hardening start strain may be compared with the strain hardening start strain.
  • the right side of the equation (1.1) is calculated at a point on the stress-strain curve corresponding to the strain hardening start strain, and the calculated value is compared with the strain hardening start strain.
  • the local buckling strain is determined to be larger than the strain hardening onset strain.
  • the method for evaluating the local buckling characteristics of other steel pipes according to the present invention is the determination of the magnitude relationship between the strain hardening onset strain in the second step of (3) and the local buckling strain of the steel pipe of the material. Is performed based on the following formula (2.1) instead of formula (1.1).
  • Figure 2 shows the relationship between stress and strain in the strain-hardening region of the stress-strain curve shown in Fig. 5 as a straight line with a slope of m E. ⁇ and secant modulus E s is expressed by the following equation.
  • equation (2.7) the compression local buckling strain of the steel pipe in the strain hardening region is expressed as equation (2.7).
  • equation (2.7) is transformed as shown in equation (2.8) below and the second term on the right side of equation (2.8) is approximated by linear approximation, the local buckling strain is expressed as in equation (2.9), which is (2.1).
  • the method for evaluating local buckling characteristics of other steel pipes according to the present invention is based on the relationship between the strain hardening initiation strain in the second step of (3) and the local buckling strain of the steel pipe of the material. Judgment is based on the following formula (3.1) instead of formula (1.1).
  • Fig. 15 The stress-strain relationship in the strain-hardening region of the stress-strain curve shown in Fig. 5 is approximated by a power function as shown in Fig. 3.
  • the method for evaluating local buckling characteristics of other steel pipes according to the present invention has a fourth step for obtaining local buckling strain, and is applicable in the third step in (1) to (5) above. Evaluated In this case, the local buckling strain obtained in the fourth step is compared with the required buckling strain required for the application, and the fifth step is used to determine whether the application is applicable to the application.
  • the local buckling strain in the fourth step can be determined by using the method (1.1) shown in (2) above, the method using the formula (2.1) shown in (4) above, and Any of the methods using Equation (3.1) shown in (5) above may be used.
  • the required buckling strain refers to the strain required when the steel pipe is locally buckled in the application of the steel pipe.
  • the method for evaluating local buckling characteristics of a steel pipe according to the present invention was obtained in the first step of acquiring the stress strain characteristics of a material having a yield shelf on the stress strain characteristics, Input the stress-strain characteristics and calculate the local buckling strain in the second step, and if the local buckling strain is found in the second step, the steel pipe is assumed to be plastic design. If the local buckling strain cannot be calculated in the second step, the third step is evaluated as inapplicable to the structure that assumes plastic design. It is provided.
  • E scr Inclination of the line connecting the origin and the buckling point in the stress-strain curve of the yield shelf model
  • E rcr Inclination of the stress-strain curve at the buckling point
  • the method for evaluating the local buckling characteristics of steel pipes according to the present invention was obtained in the first step of obtaining the stress strain characteristics of the material having the yield shelf on the stress strain characteristics, and the following formula in the first step.
  • a second step in which stress strain characteristics are input and processing is performed to obtain local buckling strain, and a structure that assumes plastic design if local buckling strain cannot be calculated in the second step.
  • the local buckling strain is calculated in the second step, the calculated local buckling strain is compared with the required buckling strain required for the application. It has a third step that determines whether it can be applied to the application.
  • E, cr Inclination of the line connecting the origin and the buckling point in the stress-strain curve of the yield shelf model
  • E Tcr Inclination of the stress-strain curve at the buckling point
  • the method for evaluating local buckling characteristics of a copper pipe according to the present invention includes a first step of obtaining stress strain characteristics of a steel material having a yield shelf, and the local buckling strain of a steel pipe having the stress strain characteristics is the stress.
  • the pipe diameter ratio (DZ t) cr when it matches the strain hardening start strain in the strain characteristics, the pipe diameter ratio (DZt) of the steel pipe to be judged and the second step Compare the obtained pipe diameter ratio (DZ t) cr with the magnitude relation, and if the pipe thickness ratio of the steel pipe to be judged (DZ is smaller, the material is assumed to be plastic design) If the pipe thickness ratio (DZt) of the steel pipe to be judged is larger, it will be evaluated as not applicable to the structure that assumes plastic design. It has 3 steps.
  • the method for determining the pipe diameter ratio (D / t) cr in the second step is not particularly limited, but as an example, there is a method using the above-mentioned equation (1.1).
  • Equation (1. 1) means that the value of the left side when the left and right side equations hold is the local buckling strain. Therefore, in order for the steel pipe to buckle at the strain hardening start strain of the stress strain characteristic obtained in the first step, the strain hardening start strain is assigned to the left side of d.1) and the strain hardening start strain is supported. Obtain the secant modulus (E s ) and tangential coefficient ( ⁇ ⁇ ) at the point on the stress-strain characteristic, and substitute these into the right side of Eq. (1. 1) to obtain the pipe thickness ratio ( (DZt).
  • the method for evaluating local buckling characteristics of other steel pipes according to the present invention is as follows.
  • the pipe diameter ratio (DZt) cr in the second step of (9) is calculated using the following formula (4.1) and the above (9). It is obtained based on the stress-strain characteristics acquired in the first step. However, Dlt: Maximum pipe diameter ratio
  • Equation (4.1) is used to determine the tube thickness ratio (D / t) cr when the local buckling strain matches the strain hardening onset strain in the stress-strain characteristics. replace the epsilon c r at a strain hardening starting strain £ H, it is obtained by solving for the pipe diameter pipe thickness ratio (DZt) cr.
  • the method for evaluating local buckling characteristics of other steel pipes according to the present invention is that the pipe diameter ratio (DZt) cr in the second step of (9) is expressed by the following formula (5.1) and This is obtained based on the stress-strain characteristics obtained in the first step of (9).
  • the method for evaluating local buckling characteristics of other steel pipes according to the present invention includes the fourth step of obtaining local buckling strain in the above described (9) to (11),
  • the local buckling strain obtained in the fourth step is compared with the required buckling strain required for the application, and the applicability to the application is determined. It is characterized by having a fifth step.
  • a method for designing a steel pipe according to the present invention includes a first step of obtaining a stress strain characteristic of a steel material having a yield shelf, and a local buckling strain of the steel pipe having the stress strain characteristic is a strain in the stress strain characteristic.
  • the second step to obtain the pipe diameter ratio (DZ t) cr when it matches the hardening start strain, and the pipe diameter ratio (DZt) of the steel pipe to be designed is the pipe diameter obtained in the second step.
  • the third step is to determine the pipe thickness ratio (DZt) of the steel pipe to be designed while maintaining the pipe thickness ratio (D / t) cr smaller.
  • the method of designing a steel pipe according to the present invention is as follows. In the third step in (1 3) above, in the third step, the stress-strain characteristics acquired in the first step and the pipe of the subject copper pipe. Diameter The tube thickness ratio (DZt) of the steel pipe to be designed is determined so that the local buckling strain obtained from the tube thickness ratio (D / t) is larger than the required buckling strain. is there.
  • the method for manufacturing a steel pipe according to the present invention is to manufacture a steel pipe based on the design by the steel pipe design method described in (13) or (14) above.
  • a method for evaluating local buckling characteristics of a steel pipe according to the present invention is a method for evaluating local buckling characteristics of a steel pipe given a pipe diameter 13, a pipe thickness t, and a required local buckling strain req.
  • E y / m, in the coordinate plane with the horizontal axis ⁇ ⁇ it is judged whether it is in the area shown by the following formula. If it is in the area, the steel pipe is assumed to be plastic design. It is characterized by applicability to the structure, and if it is not within the relevant area, the steel pipe is evaluated as not applicable to the structure that assumes plastic design.
  • the reason for the low buckling performance of the yield-shelf model steel pipe is that when the compression local buckling strain E cr coincides with the strain hardening start strain, the compression local buckling strain rapidly decreases. This is because, in the yield shelf region, deformation progresses without increasing the stress, so that the buckling waveform grows immediately after the yield strain in the steel pipe that buckles in the yield shelf region, and the compression local buckling strain is This is because yield strain is approximate.
  • the reason for the low deformation performance of the yield-shelf model copper pipe is that the compression local buckling strain of the steel pipe buckling in the yield-shelf region is approximately yield strain. From this, it is considered that the value of the strain hardening onset strain ⁇ in the stress-strain curve of the steel pipe of the yield shelf model, in other words, the length of the yield shelf is related to the deformation performance of the steel pipe.
  • a steel pipe with a small strain hardening initiation strain value that is, a short yield shelf length
  • strain hardening It is considered that the starting strain f H is large, that is, the deformation performance is better than that of the long yield shelf.
  • E Tcr Is the slope in the stress-strain curve, it was found that a large slope in the stress-strain curve near the end of the yield shelf leads to an increase in the compressive local buckling strain.
  • the stress-strain curve shape of interest here is the length of the yield shelf and the magnitude of the tangential gradient in the strain hardening zone.
  • the compression local buckling strain ⁇ CT of the steel pipe of the yield shelf model can be expressed by the following formula (11) (the same formula as the above formula (2.1)).
  • strain hardening coefficient As described above, the compression buckling strain ⁇ intendof the steel pipe of the yield shelf model is expressed by the strain hardening coefficient m representing the slope of the stress strain curve and the length of the yield shelf as shown in Equation (11). Since it can be expressed by the strain hardening onset strain ⁇ ⁇ which is an index of the thickness, a method for evaluating the local buckling characteristics of the steel pipe using this equation (11) will be specifically described below.
  • the steel pipe when all of the above conditions (A) to (C) are satisfied, the steel pipe can be evaluated as applicable as a steel pipe for pipelines, and any of the above conditions (A) to (C) If this condition is not satisfied, it can be evaluated that the steel pipe cannot be applied as a steel pipe for pipelines.
  • Figure 16 shows the above three conditions as regions on the coordinate plane with the vertical axis and ⁇ ⁇ on the horizontal axis.
  • Equation (13) can be expressed using Equation (11) that the compression local buckling strain ⁇ cr of the steel pipe is larger than the value of the required local buckling strain ⁇ req .
  • E y / m and £ H to be selected are values on a straight line located below and parallel to the straight line (a). In other words, if a combination of £ 7 m and ⁇ H on the straight line parallel to the straight line (a) and selected below is selected, ⁇ cr becomes larger than £ req .
  • Equation (20) which is a quadratic equation of £ resort, can be obtained by rearranging Eq. (17) with respect to strain hardening J 0 start strain £.
  • Equation (22) shows the domain of curve (b) on the vertical axis, and the minimum value for the vertical axis of curve (b) is equation (23). Equation (23) is the coordinate of the vertical axis of point B of curve (b).
  • Equation (24) represents that ⁇ H is a finite value, but Equation (25) allows £ foundedto be infinite. ⁇ ⁇ is a finite value.
  • (24) is adopted as the solution of (20), (25) is rejected, and if the minimum value of fy Zm given by (23) is substituted into (24), the curve ( The coordinate of the horizontal axis of point B in b) is obtained as shown in equation (26): fe (26)
  • the coordinate of the horizontal axis of point B expressed by equation (26) ( ⁇ H ) B is the maximum compression local part Shows buckling strain. Therefore, when the straight line (a) is translated downward as described above, the limit value that can be translated downward is when the straight line translated downward passes through point B. Therefore, in the following, this straight line is regarded as a straight line (c), and an equation representing the straight line (c) is obtained.
  • equation (28) Since the straight line (c) passes through point B, substituting the coordinates of point B into equation (27), equation (27) is expressed as equation (28).
  • the material design method for a steel pipe according to the present invention is given steel pipe material design method, on the stress-strain properties
  • the yield-strain, strain-hardening coefficient m, strain-hardening onset strain ⁇ ⁇ of the material to be designed is £ y / m on the vertical axis and £ y / m on the horizontal axis.
  • the steel pipe according to the present invention is characterized in that the material design is made by the material design method for a steel pipe of the above (17).
  • a steel pipe according to the present invention is a structure premised on plastic design by the method for evaluating local buckling characteristics of a steel pipe described in (1) to (12), (16), (17). It is a steel pipe that has been evaluated as applicable.
  • FIG. 1 is an explanatory diagram of a method for evaluating local buckling characteristics of a steel pipe according to the present invention (part 1).
  • FIG. 2 is an explanatory view of a method for evaluating local buckling characteristics of a steel pipe according to the present invention (part 2).
  • FIG. 3 is an explanatory view of a method for evaluating local buckling characteristics of a steel pipe according to the present invention (part 3).
  • FIG. 4 is an explanatory view of a method for evaluating local buckling characteristics of a steel pipe according to the present invention (part 4).
  • FIG. 5 is a flowchart of the first embodiment of the present invention.
  • FIG. 6 is a flowchart of the second embodiment of the present invention.
  • FIG. 7 is a flowchart of the third embodiment of the present invention.
  • FIG. 8 is a graph showing the relationship between local buckling strain and Dnot for the determination target according to the example of the present invention (part 1).
  • FIG. 9 is a graph showing the relationship between local buckling strain and DZt for the determination target according to the example of the present invention (Part 2).
  • FIG. 10 is a graph showing the relationship between local buckling strain and DZt for the determination target according to the embodiment of the present invention (part 3).
  • FIG. 11 is a graph showing the relationship between (DZt) cr and strain hardening starting strain for the determination target according to the example of the present invention.
  • Fig. 12 is an explanatory diagram of the stress-strain curve of steel.
  • FIG. 13 is an explanatory diagram of a stress strain curve of a yield shelf type steel material.
  • FIG. 14 is an explanatory diagram for explaining the concept of the present invention.
  • FIG. 15 is an explanatory diagram of a stress-strain curve of a steel pipe formed from a yield shelf type steel material.
  • FIG. 16 is a graph showing a region related to the local buckling characteristic evaluation method of the present invention.
  • FIG. 17 is a stress-strain curve of a material subjected to evaluation according to Embodiment 4 of the present invention (part 1).
  • FIG. 18 is a stress-strain curve of the material subjected to evaluation according to Embodiment 4 of the present invention (part 2).
  • FIG. 19 is a stress-strain curve of the material subjected to evaluation according to Embodiment 4 of the present invention (part 3).
  • FIG. 20 is a graph showing a region related to the local buckling characteristic evaluation method of Embodiment 4 of the present invention.
  • FIG. 21 is a graph showing a region related to the local buckling characteristic evaluation method of Embodiment 5 of the present invention.
  • FIG. 22 is a graph showing a region related to the local buckling characteristic evaluation method of Embodiment 5 of the present invention.
  • FIG. 5 is a flowchart showing the flow of the determination method of the present embodiment.
  • the present embodiment will be described with reference to FIG.
  • the stress-strain characteristic of the steel pipe to be determined is acquired (S 1).
  • the stress strain characteristics may be acquired by a tensile test using a test piece, or when test data exists in advance, it may be read from a database storing the test data.
  • the yield-strain model has a yield shelf or a continuous hardening model in the stress-strain curve (S 3). If it is determined in S3 that the model is a continuous curing model, the continuous curing model is considered to be applicable to the pipeline because it has excellent buckling strain performance (S7 ).
  • the strain hardening start strain ⁇ ⁇ of the steel material is acquired from the stress strain characteristics of the steel material acquired in S 1, and this strain hardening start The magnitude relation between the strain ⁇ ⁇ and the local buckling strain ⁇ cr of the steel pipe of the material is determined (S 5).
  • the strain hardening onset strain H can be read from the stress strain characteristics obtained in (S 1) and is 1.5% in this example.
  • the yield strain y can be read from the stress-strain characteristics obtained in S 1 and is 0.22% in this example.
  • the local buckling strain ⁇ cr of the steel pipe is acquired (S 9).
  • the calculated value of (S 5) is the local buckling strain ⁇ cr of the steel pipe, there is no need to newly calculate.
  • the local buckling strain ⁇ cr is larger than the required buckling strain E r eq , it passes. (S 1 3).
  • the steel pipe to be determined is excellent in local buckling performance. Therefore, for example, when a copper tube of a continuous hardening model is manufactured for a pipeline, the material change occurs due to the heat treatment in the painting stage during the manufacturing, and the copper tube is transformed into a yield shelf model. By judging the buckling performance of the steel pipe, it can be easily judged whether it can be handled in the same way as the continuous hardening model.
  • the determination of the magnitude relation between the local buckling strain ⁇ cr and the strain hardening initiation strain EH in (S 5) is made based on the formula (2.1), but the present invention is not limited to this. Rather, for example, if the test steel tube is buckled when a load that generates a strain equivalent to the strain hardening start strain is applied to the same steel pipe as the judgment target steel pipe, yo also be strain-hardening starting strain is determined to be local buckling strain £ cr more local buckling strain epsilon cr is determined to be larger than the strain hardening starting strain when not yield local buckling in Les, .
  • step S5 when the stress-strain curve in the strain hardening region in the stress-strain characteristic of the steel pipe to be determined acquired in (S1) can be approximated by a power function, the determination is made based on equation (3.1). Further, as a modified example of step S5, the local buckling strain is calculated by the formula (1.1), the formula (2.1), the formula (3.1) or the like, and the calculated local buckling strain E cr is calculated as a strain hardening start strain £ H You may make a direct comparison. In that case, step S9 is omitted. In addition, in formula (1.1), when the local buckling strain is located in the yield shelf region, the local buckling strain value itself cannot be calculated. . In other words, if stress strain characteristics are input into equation (1.1) and local buckling strain cannot be calculated, step S5 “NO” is set. If local buckling strain is calculated, step S5 “YES” is set. To do. Embodiment 2
  • FIG. 6 is a flowchart showing the flow of the determination method of the present embodiment.
  • the present embodiment will be described with reference to FIG.
  • the local buckling performance is determined based on a parameter that is easy to be divided such as the pipe diameter ratio (DZ t), so that the determination is easy.
  • the pipe thickness ratio (DZ t) cr in (S 5) and the pipe thickness ratio (DZ t) of the steel pipe to be judged are
  • the present invention is not limited to this, and the stress strain curve of the strain hardening region in the stress strain characteristic of the steel pipe to be judged obtained in (S 1) can be approximated by a power function. The decision is made based on the above equation (5.1).
  • the local buckling performance is determined for an existing steel pipe.
  • the steel material to be used is determined, it is the same as the strain hardening start strain in the stress-strain characteristic of the steel material.
  • DZ t cr it is possible to increase the pipe diameter ratio (D t) when designing steel pipes for pipelines. It can also be used as a design guide.
  • a steel pipe design method based on this idea will be described in the third embodiment below.
  • FIG. 7 is a flowchart showing a processing flow of the steel pipe designing method according to the present embodiment.
  • the present embodiment will be described with reference to FIG.
  • (DZ t) cr is acquired based on the stress strain characteristics acquired in S 2 1 (S 2 3).
  • a method for obtaining (D / t) cr for example, there is a method based on the above-described equation (1.1) shown below.
  • Equation (1.1) means that the value of the left side when the left and right side equations hold is the local buckling strain. Therefore, in order for the steel pipe to buckle at the strain-hardening start strain of the stress-strain characteristics obtained in S 21,. Obtain the secant modulus (E s ) and tangent coefficient ( ⁇ ⁇ ) at the point on the stress-strain characteristics, and substitute these into the right side of (1.1) to obtain the pipe thickness ratio ( DZ t) can be obtained.
  • the strain hardening area in the stress-strain characteristics obtained in S 2 1 can be linearly approximated
  • the stress obtained in S 2 1 is obtained by the equation (4.1) below. If the strain hardening region in the strain characteristics can be approximated to a power, it can be obtained by the above-mentioned equation (5.1).
  • DZ t of the steel pipe to be designed is temporarily set (S 2 5).
  • the condition that DZ t must satisfy is DZ t ⁇ (D / t) cr.
  • DZ t (D / t) cr is a necessary condition among the design conditions.
  • the required buckling strain ⁇ req which is the required local buckling strain obtained in S 27, is compared to determine whether £ req ⁇ E cr is satisfied (S 29 ).
  • the required buckling strain E req is the structural design of the pipeline in consideration of the laying line shape in the pipe having the diameter and pipe thickness temporarily set in S 25, the transport pressure, The maximum strain generated in the pipe when the ground displacement and / or external force is applied is obtained, and this maximum strain is set taking into consideration a certain safety factor.
  • the setting of D / t is increased by one rank for further thinning of the steel pipe (S 3 1)
  • the ratio of increasing ⁇ / t is a predetermined value based on an appropriate condition such as the magnitude of the difference between E cr and £ req acquired in S 27 , or a predetermined constant value.
  • a steel pipe that satisfies a predetermined required buckling strain can be manufactured by manufacturing a copper pipe based on the design value.
  • Table 1 shows the stress strain characteristics of nine types of materials for X80 grade linepipes. Yield strain ⁇ y of each material is 0.0029 (0.29%), strain hardening onset strain ⁇ H is 0.003 (0.3%), 0.005 (0.5%) and 0.010 (1.0%). In addition, the strain hardening coefficient / n £ coefficient was set to 0.015, 0.020, and 0.025. (D / t) max in Table 1 is a value obtained by substituting these values into equation (12). The stress-strain curves corresponding to P_1 to P-9 are shown in Fig. 17, Fig. 18, and Fig. 1.9.
  • Fig. 20 plots the coordinate points ( £ y / m, ⁇ admir) for each of the nine types of materials shown in Table 1. Also, in Fig. 20, what is in the region of the above equation The white circles are shown, and those outside the area are black circles.
  • plots in the solution domain are ⁇ -2, ⁇ -3, P-5 and P-6. Therefore, if P-2, P-3, P-5 and P-6 are evaluated as acceptable, and the steel pipe can be manufactured under the material design conditions of these four cases, then the local buckling strain of the steel pipe ⁇ cr Satisfies the required local buckling strain E req .
  • Table 2 also shows the results of determination based on the area shown in FIG.
  • the compression local buckling strain ⁇ cr of these four analytical models by FEM for the four cases P-2, P-3, P-5, and P-6 is 0.58%, 0.82%, 0.51% and 0.85%.
  • the four cases P-2, P-3, P-5, and P-6 have a larger buckling strain than the required local buckling strain (0.5%).
  • the results of the four cases P-2, P-3, P-5, and P-6 are determined to be acceptable by the region shown in FIG.
  • the yield strain of the stress strain curve is 0.17 to 0.31%, and the strain hardening onset strain is 0.17 to 2.0%.
  • the coefficient of strain hardening coefficient m £ is 0.006 to 0.025.
  • (D / t) max in the table is a value obtained by substituting these values into equation (12).
  • Figure 21 plots the coordinate points (£ y / m, £ H ) for each of the 10 types of materials shown in Table 3.
  • Figure 2 1 shows that Q-1, Q-2, and Q-3 are plotted in the solution region (pass range), and Q-4 to Q-10 are outside the solution region (fail range) Is plotted.
  • Tables 5 and 6 show the results of the comparison of the judgment results shown in Figures 21 and 22 with the FEM solution, respectively.
  • the yield strain, strain hardening coefficient m, and strain hardening starting strain ⁇ The steel pipe is manufactured with the material depending on whether or not these are in the specific area defined by the above formulas (30) and (31) on the coordinate plane where the vertical axis is ⁇ nom and the horizontal axis is f H A specific example of the local buckling characteristics evaluation method was described.
  • the concept shown here can be applied not only to a method for evaluating local buckling characteristics, but also to a material design method for a steel pipe given a pipe diameter 0, a pipe thickness t, and a required local buckling strain req .
  • the yield strain y , strain hardening coefficient m, and strain hardening initiation strain are expressed as E y / m on the vertical axis.
  • the yield strain, the strain hardening coefficient m, and the strain hardening start strain ⁇ nie may be determined so as to be within the specific region described above on the coordinate plane with the horizontal axis E h .
  • Figure 11 shows a graph in which the vertical axis is (DZt) cr and the horizontal axis is strain hardening starting strain.
  • the smaller the strain hardening starting strain in other words, the shorter the yield shelf, (D / t) cr becomes smaller. It is getting bigger.
  • the strain hardening starting strain the shorter the yield shelf
  • the more the steel pipe becomes thin the more it buckles locally in the strain hardening region, that is, the better the buckling performance.
  • the method for evaluating local buckling characteristics of a steel pipe since the superiority or inferiority of the buckling performance of the steel pipe can be easily determined, the use of the steel pipe can be easily identified.
  • the pipe diameter ratio (D / t) cr when the local buckling strain of the steel pipe having the stress-strain characteristic coincides with the strain hardening start strain in the stress-strain characteristic is maintained smaller than the pipe thickness ratio (DZt) cr, while the pipe thickness ratio ( DZt) can be determined, so it is possible to design the optimum pipe diameter ratio (DZ t) by treating it as if it were a continuous-curing type material, even if it has a yield shelf. it can.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Pathology (AREA)
  • Biochemistry (AREA)
  • Immunology (AREA)
  • General Health & Medical Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Theoretical Computer Science (AREA)
  • Geometry (AREA)
  • Evolutionary Computation (AREA)
  • General Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)
  • Heat Treatment Of Steel (AREA)
  • Architecture (AREA)
  • Software Systems (AREA)

Abstract

降伏棚モデルの鋼管を例えばパイプラインのような局部座屈性能に優れることが要求される用途に適用できるかどうかを判定する鋼管の局部座屈性能評価方法を提供する。具体的解決手段は、応力歪特性上に降伏棚を有する材料の応力歪特性を取得する第1ステップと、該第1ステップで取得された応力歪特性における歪硬化開始歪と当該鋼管の局部座屈歪との大小関係を判定する第2ステップと、第2ステップにおいて局部座屈歪が歪硬化開始歪よりも大きいと判定された場合には当該鋼管を塑性設計を前提とされる構造物に適用可能性ありと評価し、第2ステップにおいて局部座屈歪が歪硬化開始歪以下と判定された場合には塑性設計を前提とされる構造物に適用可能性なしと評価する第3ステップを備える。

Description

明細書 鋼管の局部座屈性能評価方法、 鋼管の設計方法、 鋼管の製造方法及び鋼管 技術分野
本発明は、 ガス ·石油パイプライン等に用いる銅管の局部座屈性能評価方法、 鋼管の設 計方法、 鋼管の製造方法、 鋼管に関する。 背景技術
ガスパイプライン、 石油パイプラインはエネルギー供給の根幹として建設が進められて きている。 近年では、 特に天然ガス需要の増大を背景とし、 消費地から遠く離れた地にガ ス田が開発されることが多い。 このため、 近年の新しいパイプラインは長距離化の傾向を 呈し、 大量輸送のために大径化、 高圧化の傾向が強まってきている。
このような新しいパイプラインでは、 高強度鋼管を適用して、 大口径でも薄い管厚で高 い内圧に耐えられることが要求されるようになってきている。 管厚を薄くすることによつ て、 現地における溶接費やパイプの輸送費が低減され、 パイプラインの建設および操業の トータルコス卜の低減が図られるからである。
ところで、 鋼管は引張荷重に対しては材料の延性を十分に活かせるが、 圧縮負荷に対し ては断面形状が薄肉円筒であるため、 局部座屈が発生する。 そして、 一様伸びが 1 0 %前 後であるのに対し、 圧縮負荷による座屈歪は 1〜 2 %程度であり、 パイプラインの塑性設 計では、 局部座屈歪が支配因子となる可能性が高い。 特に管厚の薄い鋼管では局部座屈歪 が小さくなる傾向があり、 局部座屈歪を大きくすることが重要となる。
そこで、 局部座屈歪を大きく して座屈性能を高めるために以下のような提案がなされて いる。
すなわち、 試験片長手方向を鋼管の軸方向に一致させて採取した引張試験片を用いて引 張試験を行い、得られた公称応力一公称歪曲線において、降伏点からオンロード歪量が 5 % までのいずれの歪量においても、 公称応力/公称歪の勾配が正となる鋼管は、 勾配が 0ま たは負となる鋼管に比較して局部座屈を起こす限界の外径/管厚比が著しく大きく、 座屈 歪を起こしにくいとの知見から、 軸方向の引張試験により得られる公称応力一公称歪曲線 において、 降伏点からオンロード歪が 5 %までのいずれの歪においても公称応力 公称歪 の勾配が正となるような鋼管とする (特許文献 1参照)。
特許文献 1 : 特開平 9一 1 9 6 2 4 3号公報 発明の開示
発明が解決しようとする課題
上記特許文献 1に示されるように、 従来、 鋼管の局部座屈歪を大きくするには、 降伏点 以降においても公称応力 公称歪の勾配が正となる鋼材を用いるのが適切とされていた。 公称応力 公称歪の勾配が正となるとは、 鋼材の応力歪曲線がいわゆる連続硬化型 (詳細 は後述) であることを意味する。
近年においては、 このような考え方がパイプライン業界では一般的であり、 逆に連続硬 化型でない降伏棚のあるものでは大きな局部座屈歪が得られないとして、 そのような材料 はパイプライン用の鋼管には不向きであると認識されていた。
ここで、 連続硬化型応力歪曲線とは、 材料の応力歪曲線において弾性域を超えた後に降 伏棚が生じることなく、 歪の増加に伴って応力が増加して滑らかな曲線となるものである (図 1 2参照)。
また、降伏棚型応力歪曲線とは、線形域の後に降伏棚を生ずるものをいう(図 1 2参照)。 なお、 降伏棚型応力歪曲線における直線で示される弾性域を線形域、 応力が増加すること なく歪が増加する領域を降伏棚域、 降伏棚終点後の滑らかな曲線領域を歪硬化域、 歪硬化 域が開始する歪を歪硬化開始歪という (図 1 3参照)。
上記のように降伏棚型の応力歪曲線を有する銅管 (降伏棚モデルの鋼管) の局部座屈歪 は、 連続硬化型の応力歪曲線を有する鋼管 (連続硬化モデルの鋼管) よりも小さいことが 一般的に知られている。 このため、 パイプラインの建設のように座屈性能が高い鋼管を得 ようとする場合、 降伏棚モデルの鋼管は、 工学的な判断に基づいて自動的に排除されてい るのが現状である。
連続硬化モデルの鋼管は、 鋼管の化学成分や造管前の鋼板の圧延条件を制御し、 あるい は造管中や造管後の鋼管に熱処理や加工処理を施すことによって得られる。
しかしながら、 鋼管の製造途中においては、 連続硬化型を維持していたとしても、 例え ば塗装工程のように熱処理を加えることによって、 材質が変化してしまい連続硬化型を維 持できなくなってしまう場合もある。
このような場合には、 降伏棚モデルとなってしまい、 従来の考えであれば、 このような 鋼管は局部座屈性能が低いとして、 例えばパイプライン用の鋼管としては不向きであると ざれることになる。
しかしながら、 このようなものを一律排除するのは現実的でない。 かといつて、 従来で は降伏棚モデルを一律に排除する考え方しかなかったために、 どのようなものであればパ ィプライン用に使用できるかを判定することができな ったのである。
本発明は係る課題を解決するためになされたものであり、 降伏棚モデルのものを例えば パイプラインのような局部座屈性能に優れることが要求される用途に適用できるかどうか ^判定する鋼管の局部座屈性能評価方法を提供することを目的としている。
また、 上記鋼管の局部座屈性能評価方法に用いた技術思想を用いた鋼管の設計方法、 ま た、 該鋼管の設計方法により鋼管を製造する方法、 さらに、 前記鋼管の局部座屈性能評価 方法によって得られる鋼管を提供することを目的としている。 課題を解決するための手段
前述のように、 降伏棚モデルの鋼管の場合、 鋼管の座屈性能は低く、 該鋼管は大きな変 形性能が要求されるパイプラインへの適用は不適当であると考えられてきた。
つまり、 従来の鋼管の評価方法を図示すると、 図 1 4 ( a ) に示すように、 連続硬化モ デルかどうかのみを判定基準として、 連続硬化モデルの場合にはパイプライン等への適用 の可能性ありと評価し、 連続硬化モデルでない、 すなわち降伏棚モデルの場合にはパイプ ライン等への適用の可能性なしと評価していたのである。
しかしながら、 このような考えに固執すると、 本来的には連続硬化モデルモデルであつ たものが外面コ一ティングのための熱処理などにより、 降伏棚モデルへと変わったような 場合には、 もはやパイプラインには使用できないことになつてしまう。
そこで、 癸明者は従来の連続硬化モデルか降伏棚モデルかという 2者択一で鋼管の局部 座屈性能を峻別することに疑問を感じ、 図 1 4 ( b ) に示すように、 降伏棚モデルであつ ても所定の判定基準を満たす場合には、 連続硬化モデルと同様の局部座屈性能を発揮し、 パイプライン等に適用する可能性があるのではないかとの着想のもとに、 降伏棚モデルの うちどのような条件を満たすものであれば連続硬化モデルと同等の局部座屈性能を発揮で きる可能性があるのかの検討を重ね、 その判定方法を見出し、 本発明を完成したものであ る。
発明者はまず、 降伏棚モデルの場合には何ゆえに局部座屈性能が低いのかを検討した。 降伏棚モデルの鋼管が降伏棚の領域で座屈する場合、 降伏棚領域では、 応力が増加しな い状態で変形が進行するため、 降伏棚領域で座屈する鋼管は降伏歪の直後に座屈波形が成 長する。 したがって、 降伏棚領域で座屈する鋼管の局部座屈歪は近似的には降伏歪となつ てしまう。
このように、 降伏棚領域で座屈する場合にはその座屈歪は降伏歪と考えられ、 その値は 小さく (約 0· 1〜0· 2%) なってしまうのである。 そうすれば、 降伏棚を有する材料であつ ても、 パイプライン等に使用できるような座屈性能に優れた鋼管となるためには、 応力歪 曲線上における座屈点が降伏棚領域の終点 (歪硬化領域の始点) 以降にあればよいのでは ないか、 換言すれば、 局部座屈歪が歪硬化開始歪よりも大きければよいのではないかとの 知見を得た。
そこで、 ある鋼管の局部座屈歪が歪硬化開始歪よりも大きいかどうかを知ることができ れば、 当該鋼管が座屈性能に優れる可能性があるかどうかを判断できると考え、 本発明を 完成したものである。
( 1 ) 本発明に係る鋼管の局部座屈特性評価方法は、 応力歪特性上に降伏棚を有する材料 の応力歪特性を取得する第 1ステップと、 該第 1ステップで取得された応力歪特性におけ る歪硬化開始歪と当該材料の鋼管の局部座屈歪との大小関係を判定する第 2ステップと、 第 2ステップにおいて局部座屈歪が歪硬化開始歪よりも大きいと判定された場合には当該 材料を塑性設計を前提とされる構造物に適用可能性ありと評価し、 第 2ステップにおいて 局部座屈歪が歪硬化開始歪以下と判定された場合には塑性設計を前提とされる構造物に適 用可能性なしと評価する第 3ステップを備えたものである。
第 1ステップは降伏棚を有する鋼材の応力歪特性を取得するステップである。 ここで応 力歪特性とは、例えば当該鋼材を引張試験した場合の応力と歪の関係を示す点列のデータ、 あるいはこれに基づく応力歪曲線等であり、 ここで取得した応力歪曲線の一例を図 1 5に 示す。 第 2ステップは、 第 1ステップで取得された応力歪特性における歪硬化開始歪と当該材 料の銅管の局部座屈歪との大小関係を判定するステップである。 ここでは、 鋼管の局部座 屈歪を一求 43 める必要はなく、 歪硬化開始歪と局部座屈歪との大小関係が分かればよい。 した がって、 例えば鋼管を試作して歪硬化開始歪に相当する歪を生じさせるような荷重を与え たときに試作の鋼管が座屈するかどうかを試験して、 座屈した場合には歪硬化開始歪が大 きいと判断できる。
第 3ステップは、 第 2ステップにおいて局部座屈歪が歪硬化開始歪よりも大きいと判定 された場合には当該材料を塑性設計を前提とされる構造物に適用可能性ありと評価し、 第 2ステップにおいて歪硬化開始歪が局部座屈歪以上と判定された場合には塑性設計を前提 とされる構造物に適用可能性なしと評価する。
塑性設計を前提とする構造物とは、 換言すれば高い変形性能 (座屈歪) が要求される構 造物であり、 その具体例としては、 例えばパイプラインなどがある。
上記のように、 (1 ) の方法によれば、歪硬化開始歪と当該材料の鋼管の局部座屈歪との 大小関係を判定するだけで、 鋼管の用途を判定できるので非常に便利である。
( 1 ) の方法では歪硬化開始歪と当該材料の鋼管の局部座屈歪との大小関係を判定する ための方法は特に限定するものではないが、(1 )の説明で示したように試作品を使うので は時間とコストがかかる。 そこで、
( 2 )本発明に係る鋼管の局部座屈特性評価方法は、 (1 ) の方法の第 2ステップにおける 歪硬化開始歪と当該材料の鋼管の局部座屈歪との大小関係の判定を、 下式に第 1ステップ で取得された応力歪特性を入力した結果、 局部座屈歪を算出可能であったときには、 局部 座屈歪が歪硬化開始歪よりも大きいと判定し、 局部座屈歪を算出不能であったときには、 局部座屈歪が歪硬化開始歪以下であると判定するようにしたものである。 ε (1. 1 ) 但し、 ε„ :圧縮局部座屈歪
E !cr:降伏棚型モデルの応力歪曲線におい '、 原点と座屈点とを結ぶ線の傾き E Tcr:座屈点における応力歪曲線の傾き
t : 管厚
D : 管径 まず、 上記 (1 . 1 ) 式について説明する。
圧縮力を受ける鋼管の局部座屈歪を表す基礎式として、 下記 (1. 2) 式がある t
Figure imgf000006_0001
(1. 2)式において、 £ crは圧縮局部座屈歪、 Vはポアソン比、 tは管厚、 Dは管径をそれ ぞれ示している。 また、 Es„は、 降伏棚モデルの応力歪曲線を示した図 1 5において、 原 点と座屈点とを結ぶ線の傾き (以下、 「割線係数」 という) を示し、 ETcrは座屈点における 応力歪曲線の傾き (以下、 「接線係数」 という) を示している。 また、 図中 £ Hは歪硬化開 始点における歪を表す。 但し、 図 15において、 歪硬化域における応力歪曲線は、 任意の 関係を表現するために曲線で描いている。
(1.2)式において、 塑性変形する場合のポアソン比 Vとして 0.5を代入して整理すると前 記 (1. 1) 式となる。
次に、 . 1) 式を用いて、'ある鋼管の局部座屈歪が歪硬化開始歪よりも大きいかどう かを判定する方法を説明する。
(1. 1) 式から分かるように、 局部座屈歪は応力歪曲線の形状及び (tZD) の関数 として表される。 また、 (1. 1) 式は、 左辺と右辺の等式が成り立つときの左辺の値が局 部座屈歪であることを意味している。 したがって、 ある歪に対する応力歪曲線上の点にお ける割線係数 (Es) と接線係数 (Ετ) を基礎式に代入したときに等式が成立すれば、 そ の歪が局部座屈歪である。そして、降伏棚の領域においては、接線係数がゼロとなるので、
(1. 1) 式の右辺は算出不可能である。 このことから、 局部座屈歪が算出可能というこ とは少なくともその局部座屈歪は歪硬化開始歪よりも大きいと言える。
なお、 算出可能かどうかは、 第 1ステップで取得した応力歪特性から得られる歪硬化開 始歪以上の歪を代入して試行錯誤の演算により (1. 1) 式の等式が成立するかどうかに よって判定できる。
もっとも、 (I. 1) 式に歪値を代入して試行錯誤の演算を繰り返すのは煩雑である。 そ こで、 試行錯誤の演算を繰り返すことなく局部座屈歪が歪硬化開始歪よりも大きいかどう かを判定する方法を以下に示す。
(3)本発明に係る他の鋼管の局部座屈特性評価方法は、 (1) の方法の第 2ステップにお ける歪硬化開始歪と当該材料の鋼管の局部座屈歪との大小関係の判定を、 下式及び第 1ス テツプで取得された応力歪特性に基づいて行うこととし、
歪硬化開始歪に対応する下式の右辺を演算し、 その演算値が歪硬化開始歪よりも大きい 場合には局部座屈歪は歪硬化開始歪よりも大きいと判定し、 演算値が歪硬化開始歪以下の 場合には局部座屈歪は歪硬化開始歪以下であると判定するようにしたものである。
Figure imgf000007_0001
但し、 ε„ :圧箱局部座屈歪
E5cr:降伏棚モデルの応力歪曲線において、 原点と座屈点とを結ぶ線の傾き ETor:座屈点における応力歪曲線の傾き
t : 管厚
D: 管径
以下、 上記 (3) の方法を説明する。
図 15に示される横軸の歪 (想定歪) に対応する応力歪曲線上の点についての割線係数 (Es) と接線係数 (Ετ) を求めこれらを (1. 1) 式に代入して右辺の値を演算し、 こ の演算値を縦軸、 前記想定歪を横軸としてグラフにしたものを図 1に示す。
図 1に示されるように、 降伏歪に至るまでは、 応力歪曲線が原点を通るほぼ線形である ため演算値は一定となる。 また、 降伏棚領域においては、 接線係数が 0であるため計算歪 がすべて 0となる。 さらに、 歪硬化領域に入ると、 計算歪は単調減少する。 ( 1 . 1 ) 式は、 左辺と右辺の等式が成り立つときの左辺の値が局部座屈歪であること を意味しているが、左辺と右辺の等式が成り立つのは、図 1で考えると 1: 1線上である。 したがって、 図 1における 1 : 1線との交点に対応する歪が局部座屈歪である。
よって、 局部座屈歪が歪硬化開始歪よりも大きいかどうかの判定は、 この歪と歪硬化開 始歪とを比較すればよい。
もっとも、 局部座屈歪が歪硬化開始歪よりも大きいかどうかを判定するためには、 必ず しも局部座屈歪を求める必要はない。
局部座屈歪が歪硬化開始歪よりも大きい場合というのは、 図 1について言えば、 減少曲 線が 1 : 1線と交わる場合である。 そして、 減少曲線が 1 : 1線と交わるためには、 歪硬 化開始歪に対応する演算値が歪硬化開始歪よりも大きいことが必要である (図 1の丸数字 2参照)。
逆に、 局部座屈歪が歪硬化開始歪以下の場合というのは、 減少曲線と 1 : 1曲線とは交 点を有しない場合であり (図 1の丸数字 1参照)、この場合には歪硬化開始歪に対応する演 算値が歪硬化開始歪以下となる。
したがって、 局部座屈歪が歪硬化開始歪よりも大きいかどうかを判定するためには歪硬 化開始歪に対応する演算値と歪硬化開始歪とを比較すればよいことになる。
そこで、 本発明においては、 歪硬化開始歪に対応する応力歪曲線上の点において (1 . 1 ) 式の右辺を演算し、 この演算値と歪硬化開始歪とを比較して、 演算値が大きければ局 部座屈歪が歪硬化開始歪よりも大きいと判定するようにしたのである。
上記の方法による場合でも (1 . 1 ) 式の右辺を演算するためには歪硬化開始歪に対応 する応力歪特性上の点における割線係数 (E s ) と接線係数 (Ε τ) を求める必要があり、 そのためには複雑な演算が必要である。 そこで、 さらに簡易な演算にてできるようにする ために、
( 4 ) 本発明に係る他の鋼管の局部座屈特性評価方法は、 上記 (3 ) の第 2ステップにお ける歪硬化開始歪と当該材料の鋼管の局部座屈歪との大小関係の判定を、 式 (1 . 1 ) に 代えて下記 (2. 1) 式に基づいて行うようにしたものである。
Figure imgf000008_0001
但し、 Dlt :最大管径管厚比
Ey :降伏歪
εΗ :歪硬化開始歪
m 歪硬化係数
以下、(2. 1)式を説明する。図 1 5に示す応力歪曲線の歪硬化域における応力と歪の関係 を、 傾きが m Eの直線で表すと図 2のようになり、 歪硬化域における応力と歪の関係、 接 線係数 E τおよび割線係数 E sは次式のように表される。
Figure imgf000009_0001
ET =— = mE (2.3)
αε
Es = a_=ay +mE^-eH) (2.4) したがって、 £rsは次式のように求められる t
ET mEs 1
(2.5)
Es ay + mE( ε - εΗ ) I + ( sy / m- εΗ ) / ε
(2.5) 式の歪を局部座屈歪で表して (1.1) 式に代入すると次式が得られる。 if n:丄 (2.6)
Figure imgf000009_0002
Ι·~ ξ = ενΙηι-εΗ
(2.6)式を局部座屈歪について解くと、歪硬化領域における鋼管の圧縮局部座屈歪は(2.7) 式のように表される。
Figure imgf000009_0003
さらに、 (2.7) 式を下記 (2.8) 式のように変形し、 (2.8) 式の右辺第二項を一次近似する と、 局部座屈歪は (2.9) 式のように表され、 これが上記 (2.1)式である。
cr
Figure imgf000009_0004
(5) また、 本発明に係る他の鋼管の局部座屈特性評価方法は、 上記 (3) の第 2ステツ プにおける歪硬化開始歪と当該材料の鋼管の局部座屈歪との大小関係の判定は、 式 (1. 1) に代えて下記(3.1)式に基づいて行うものである。 1)
Figure imgf000009_0005
ay :降伏応力
c :累乗関数の回帰係数
b :累乗関数の回帰係数 ここで、 上記(3. 1)式について説明する。
図 1 5に示す応力歪曲線の歪硬化域における応力と歪の関係を、 累乗関数で近似すると 図 3に示すようになり、歪硬化域における応力と歪の関係、接線係数 Ετおよび割線係数 E sは次式の一 43ように表される。
= as" + c (3. 2)
は累乗関数の回帰係数
ET =— = abe (3. 3)
一 43
αε + c
(3. 4)
したがって、 割線係数と接線係数の比は次式で表される,
Figure imgf000010_0001
(3. 5)式の歪を局部座屈歪で表して(1. 1)式に代入すると次式が得られる c
4 b
(3. 6)
Escr D 3 p + c/ aec b r D
上式を整理すると 終的に、 鋼管の圧縮局部座屈歪は (3. 7)式となる < D (3. 7)
Figure imgf000010_0002
ただし、 (3. 7)式の右辺には局部座屈応力が含まれているので、このままでは圧縮局部座 屈歪を求めることができない。
そこで、 (3. 7)式を解くため、 下記の(3. 8)式に示すように、 局部座屈応力と降伏応力が 近い値である性質を利用すると、鋼管の圧縮局部座屈歪は(3. 9)式のようになり、 これが前 記(3. 1)式である。
(3. 8)
び—
、 び"
Figure imgf000010_0003
( 6 ) 本発明に係る他の鋼管の局部座屈特性評価方法は、 局部座屈歪を求める第 4ステツ プを有し、 上記 (1 ) 〜 (5 ) における第 3のステップにおいて適用可能性ありと評価さ れた場合において、 第 4ステップで求めた局部座屈歪と当該用途に要求される要求座屈歪 とを比較し、 当該用途への適用可否を判定する第 5ステップを有するものである。
第 4ステップにおける局部座屈歪を求める方法としては、 上記 (2 ) に示した (1. 1) 式 を用いる方法、 また上記 (4 ) に示した式 (2. 1) を用いる方法、 また上記 (5 ) に示した 式 (3. 1) を用いる方法のいずれでもよい。
なお、 要求座屈歪とは、 当該鋼管の用途において当該鋼管が局部座屈するときに要求さ れる歪をいう。
( 7 ) 本発明に係る鋼管の局部座屈特性評価方法は、 応力歪特性上に降伏棚を有する材料 の応力歪特性を取得する第 1ステップと、 下式に該第 1ステップで取得された応力歪特性 を入力して、 局部座屈歪を求めるように演算処理する第 2ステップと、 第 2ステップにお いて局部座屈歪が求められた場合には当該鋼管を塑性設計を前提とされる構造物に適用可 能性ありと評価し、 第 2ステップにおいて局部座屈歪が算出不能である場合には塑性設計 を前提とされる構造物に適用可能性なしと評価する第 3ステップを備えたものである。
Figure imgf000011_0001
但し、 ε„ :圧縮局部座屈歪
Escr:降伏棚型モデルの応力歪曲線において、 原点と座屈点とを結ぶ線の傾き E rcr:座屈点における応力歪曲線の傾き
t : 管厚
D: 管径
( 8 ) 本発明に係る鋼管の局部座屈特性評価方法は、 応力歪特性上に降伏棚を有する材料 の応力歪特性を取得する第 1ステップと、 下式に該第 1ステップで取得された応力歪特性 を入力して、 局部座屈歪を求めるように演算処理する第 2ステップと、 第 2ステップにお いて局部座屈歪が算出不能である場合には塑性設計を前提とされる構造物に適用可能性な しと評価するとともに、 第 2ステップにおいて局部座屈歪が求められた場合には、 求めた 局部座屈歪と当該用途に要求される要求座屈歪とを比較し当該用途への適用可否を判定す る第 3ステップを備えたものである。
Figure imgf000011_0002
但し、 ε。 圧縮局部座屈歪
E,cr:降伏棚型モデルの応力歪曲線において、 原点と座屈点とを結ぶ線の傾き E Tcr:座屈点における応力歪曲線の傾き
t : 管厚
D : 管径 上記 (1 ) 〜 (8 ) の発明においては、 鋼管の局部座屈歪が歪硬化開始歪よりも大きい かどうか、 あるいは局部座屈歪の算出可能性の有無によって当該鋼管の座屈性能を判定し た。
以下においては、 鋼管の管径管厚比 (DZ に基づいて当該鋼管の座屈性能を判定す る方法を説明する。
鋼管の局部座屈 E c rと管径管厚比 (DZt) の関係が前述の (1. 1) 式に示されてい る。 そこで、 横軸に管径管厚比 (DZ を取り、 縦軸に局部座屈歪 ε c rを取って (1. 1) をグラフ表示すると図 4のようになる。
図 4から分かるように、 鋼管の DZtが小さい (厚肉鋼管) 場合には局部座屈歪 £ c rは 大きく、 鋼管の DZtの増加、 すなわち鋼管を薄肉化と共に局部座屈歪 £ c rが減少する。 そして、 局部座屈歪 ε c rが歪硬化開始歪と一致したところで局部座屈歪は急激に減少し、 以降の局部座屈歪 £ c rは降伏歪と同じ歪となる。
したがって、 局部座屈歪 f c rが歪硬化開始歪と一致するときの管径管厚比 (DZt) cr を求めておけば、 この管径管厚比 (DZt) crと判定対象の銅管の D/tを比較すること で、 当該鋼管が降伏棚の領域で座屈するのか歪硬化領域で座屈するのか、 ひいては座屈性 能に優れているかどうかを判定できる。 そこで、
(9) 本発明に係る銅管の局部座屈特性評価方法は、 降伏棚を有する鋼材の応力歪特性を 取得する第 1ステップと、 前記応力歪特性を有する鋼管の局部座屈歪が前記応力歪特性に おける歪硬化開始歪に一致するときの管径管厚比(DZ t)crを求める第 2ステップと、判 定対象の鋼管の管径管厚比 (DZt) と前記第 2ステップで求めた管径管厚比(DZ t)cr との大小関係を比較し、 判定対象の鋼管の管径管厚比 (DZ の方が小さい場合には当 該材料を塑性設計を前提とされる構造物に適用可能性ありと評価し、 判定対象の鋼管の管 径管厚比 (DZt) の方が大きい場合には塑性設計を前提とされる構造物に適用可能性な しと評価する第 3ステップを備えたものである。
第 2ステップにおける管径管厚比(D/ t)cr の求め方は特に限定されるものではない が、 その一例を挙げれば下記に示す前述の (1. 1) 式を用いる方法がある。
Figure imgf000012_0001
(1. 1) 式は、 左辺と右辺の等式が成り立つときの左辺の値が局部座屈歪であること を意味している。 したがって、 第 1ステップで求めた応力歪特性の歪硬化開始歪にて鋼管 が座屈するめには、 d. 1) 式の左辺に歪硬化開始歪を代入すると共に、歪硬化開始歪に 対応する応力歪特性上の点における割線係数 (Es) と接線係数 (Ετ) を求め、 これらを (1. 1) 式の右辺に代入して等式が成立するときの管径管厚比 (DZt) を求めればよ い。
上記の方法による場合でも (1. 1) 式の右辺を演算するためには歪硬化開始歪に対応 する応力歪特性上の点における割線係数 (Es) と接線係数 (ET) を求める必要があり、 そのためには複雑な演算が必要である。 そこで、 さらに簡易な演算にてできるようにする ために、
(10) 本発明に係る他の鋼管の局部座屈特性評価方法は、 上記 (9) の第 2ステップに おける管径管厚比 (DZt) cr を下記(4.1)式及び上記 (9) の第 1ステップで取得され た応力歪特性に基づいて求めることを特徴とするものである。 但し、 Dlt :最大管径管厚比
ey :降伏至
εΗ -.歪硬化開始歪
m :歪硬化係数
(4.1)式は、局部座屈歪が応力歪特性における歪硬化開始歪に一致するときの管径管厚比 (D/ t ) cr を求めるために、 前記(2.1)式の局部座屈歪 ε c rを歪硬化開始歪 £ Hで置き 換え、 管径管厚比 (DZt) crについて解いたものである。
( 1 1 ) また、 本発明に係る他の鋼管の局部座屈特性評価方法は、 上記 (9) の第 2ステ ップにおける管径管厚比 (DZt) cr を下記(5.1)式及び上記 (9) の第 1ステップで取 得された応力歪特性に基づいて求めることを特徴とするものである。
(5.1)
Figure imgf000013_0001
m :歪硬化係数
(5.1)式は、局部座屈歪が応力歪特性における歪硬化開始歪に一致するときの管径管厚比 (DZt) cr を求めるために、 前記(3.1)式の局部座屈歪 E e rを歪硬化開始歪 ε Hで置き 換え、 管径管厚比 (D/t) crについて解いたものである。
( 1 2) また、 本発明に係る他の鋼管の局部座屈特性評価方法は、 上記 (9) 〜 ( 1 1 ) に記載のものにおいて、 局部座屈歪を求める第 4ステップを有し、 第 3ステップにおいて 適用可能性ありと評価された場合において、 第 4ステップで求めた局部座屈歪と当該用途 に要求される要求座屈歪とを比較し、 当該用途への適用可否を判定する第 5ステップを有 することを特徴とするものである。
第 4ステップにおける局部座屈歪を求める方法としては、 上記 (2) に示した (1.1) 式 を用いる方法、 また上記 (4) に示した式 (2.1) を用いる方法、 また上記 (5) に示した 式 (3.1) を用いる方法のいずれでもよい。
( 1 3) 本発明に係る鋼管の設計方法は、 降伏棚を有する鋼材の応力歪特性を取得する第 1ステップと、 前記応力歪特性を有する鋼管の局部座屈歪が前記応力歪特性における歪硬 化開始歪に一致するときの管径管厚比(DZ t)crを求める第 2ステップと、設計対象の鋼 管の管径管厚比 (DZt) が前記第 2ステップで求めた管径管厚比(D/ t)crよりも小さ くなることを維持しつつ、 設計対象の鋼管の管径管厚比 (DZt) を決定する第 3ステツ プとを備えたものである。
( 1 4)本発明に係る鋼管の設計方法は、上記(1 3) における第 3ステップにおいては、 第 3ステップにおいては、 第 1ステップで取得した応力歪特性及び制定対象の銅管.の管径 管厚比 (D/t) から求まる局部座屈歪が、 要求座屈歪よりも大きくなるように、 当該設 計対象の鋼管の管径管厚比 (DZt) を決定するようにしたものである。
(15) 本発明に係る鋼管の製造方法は、 上記 (13) 又は (14) に記載の鋼管の設計 方法による設計に基づき鋼管を製造するものである。
( 1 6) 本発明に係る鋼管の局部座屈特性評価方法は、 管径13、 管厚 tおよび要求局部座 屈歪 £ reqが与えられた鋼管の局部座屈特性評価方法であって、 応力歪特性上に降伏棚を有 する材料の応力歪特性を取得し、 取得された応力歪特性における応力歪曲線の降伏歪 t y、 歪硬化係数 m、 歪硬化開始歪 f Hが、 縦軸を E y/m、 横軸を ε Ηとした座標面において、 下式 で示される領域内にあるかどうかを判断し、 当該領域内にある場合には当該鋼管を塑性設 計を前提とされる構造物に適用可能性ありと評価し、 当該領域内にない場合には当該鋼管 を塑性設計を前提とされる構造物に適用可能性なしと評価することを特徴とするものであ る。
Figure imgf000014_0001
但し、 sy≤sH <snq
( I、
3
Figure imgf000014_0002
但し、 s,,q
3
以下、 式(30) (31)について説明する。
鋼管の圧縮局部座屈歪 ε c rと管径管厚比 (D/ t ) の関係が前述の(1.1)式に示されて いる。 そこで、 横軸に管径管厚比 (D, t ) を取り、 縦軸に圧縮局部座屈歪 E crを取って (L 1)式をダラフ表示すると図 4のようになる。
図 4から分かるように、 鋼管の D/ tが小さい (厚肉鋼管) 場合には圧縮局部座屈歪 r は大きく、 鋼管の D/ tの増加、 すなわち鋼管の薄肉化と共に圧縮局部座屈歪 ε„が減少す る。 そして、圧縮局部座屈歪 £„が歪硬化開始歪 Ε Ηと一致したところで圧縮局部座屈歪 ε „は急激に減少し、 以降の圧縮局部座屈歪 ξ„は降伏歪 ε yとほぼ同じ歪となる。
図 4から降伏棚モデルの鋼管の座屈性能が低い理由として、 圧縮局部座屈歪 E crが歪硬 化開始歪 £„と一致したところで圧縮局部座屈歪は急激に減少してしまうことが上げられ る。 これは、 降伏棚領域では、 応力が増加しない状態で変形が進行するため、 降伏棚領域 で座屈する鋼管は降伏歪の直後に座屈波形が成長し、 圧縮局部座屈歪は近似的には降伏歪 となってしまうからである。
以上検討したように、 降伏棚モデルの銅管の変形性能が低い理由として降伏棚領域で座 屈する鋼管の圧縮局部座屈歪は近似的には降伏歪となってしまうことが挙げられる。 この ことから、降伏棚モデルの鋼管はその応力歪曲線における歪硬化開始歪 ε の値、換言すれ ば降伏棚の長さが鋼管の変形性能に関連していると考えられる。
すなわち、歪硬化開始歪 £„の値が小さい、すなわち降伏棚の長さが短い鋼管は、歪硬化 開始歪 f Hの値が大きい、すなわち降伏棚の長さが長いものよりも変形性能に優れると考え ら Lる。
したがって、降伏棚モデルの銅管の変形性能を評価するのに歪硬化開始歪 £ Hの値を指標 とすることが有効である。 '
発明者は降伏棚長さの他に変形性能を評価する指標についてさらに検討を重ねた。 そして、 発明者は(1. 1)式によれば、 E Tcr/ E scrが大きくなることで圧縮局部座屈歪 £„ が大きくなることに着目した。 図 1 5からわかるように、 ETcrは応力歪曲線における傾き であることから、 降伏棚終点近傍において応力歪曲線の傾きが大きいことが圧縮局部座屈 歪 £„を大きくすることになつているとの知見を得た。
このことから、 降伏棚モデルの鋼管の変形性能を評価するのに応力歪曲線の傾きを指標 とすることが有効であることを見出した。
以上のように応力歪曲線の形状に着目することで、 変形性能を評価することが可能とな る。 ここで着目する応力歪曲線の形状とは、 降伏棚の長さと、 歪硬化域の接線勾配の大き さである。
以上が応力歪曲線の形状によつて鋼管の変形性能を評価できることの(1. 1)式に基づく 図式的な説明である。 ,
発明者はこのことを数式を用いて定量的な評価方法を案出すべく、 上記の基礎式を変形 して降伏棚モデルの圧縮座屈歪を表す数式を案出し、 さらに検討を進めた。
以下、 この点につき詳細に説明する。
前述したように、 降伏棚モデルの鋼管の圧縮局部座屈歪 ε CTは下記の数式(11) (前述の (2. 1)式と同じ式である) で表すことができる。
16
' = : ( 1 1 )
sy lm
但し、 D lt 管径管厚比
:降伏歪
:歪硬化開始歪
:歪硬化係数 上記のように、 降伏棚モデルの鋼管の圧縮局部座屈歪 ε„を数式(11)に示すように、 応 力歪曲線の傾きを表す歪硬化係数 mと、降伏棚の長さの指標となる歪硬化開始歪 ε Ηで表現 できたので、 以下においては、 この数式(11)を用いて鋼管の局部座屈特性を評価する方法 を具体的に説明する。
なお、 降伏棚モデルの圧縮局部座屈歪を推定する(11)式の適用範囲は、 圧縮局部座屈歪 と歪硬化開始歪を等値することによって、 管径管厚比 D/tについて次式のように表すこと ができる。 すなわち、 降伏棚型モデルの応力歪曲線の特性が与えられた場合、 適用可能な 鋼管の最大管径管厚比(D/t) maxは(12)式で表される。 したがって、(D/t) maXよりも大きい D/tを有する鋼管については、局部座屈歪推定式である(11)式を適用できないことになる。
Figure imgf000016_0001
管径0、 管厚 t、 要求局部座屈歪 ε reqが与えられたときに降伏棚モデルの材料を用いて 鋼管を製造したときに当該鋼管が前記要求局部座屈歪 E reqを満たしてパイプライン用の鋼 管として適用できるためには、 以下の要件を満たす必要がある。
( A) 鋼管の圧縮局部座屈歪 f crが要求局部座屈歪 f reqよりも大きいこと
( B ) 鋼管の局部座屈が降伏棚領域で生じないこと、 換言すれば銅管の局部座屈が歪硬化 領域で生ずること
( C ) 歪硬化開始歪が降伏歪よりも大きいこと
つまり、 上記の (A) 〜 (C ) のすベての条件を満たす場合には当該鋼管はパイプライ ン用鋼管として適用可能と評価でき、 上記の (A) 〜 (C ) のいずれかの条件を満たさな い場合には、 該鋼管はパイプライン用鋼管として適用できないと評価できる。
図 1 6は上記の 3つの条件を、 縦軸が 横軸が ε Ηからなる座標面に領域とし表示した ものである。
以下においては、上記の 3つの条件についてそれが必要とされる理由を説明すると共に、 その条件を図で示した図 1 6について説明する。
( Α) 鋼管の圧縮局部座屈歪 f „が要求局部座屈歪 eqよりも大きい条件
実際のパイプライン用の鋼管の設計においては、 局部座屈歪の要求値 (要求局部座屈歪 ε req) が与えられる。
したがって、 当該銅管をパイプライン用の鋼管として用いることができるためには、 当 該鋼管の圧縮局部座屈歪 ε„が要求局部座屈歪値 E reqよりも大きいことが必要条件となる。 つまり、 当該鋼管をパイプライン用の鋼管として用いることができるかどうかを評価する には、 当該鋼管の圧縮局部座屈歪 £„が要求局部座屈歪 ε reqの値よりも大きいかどうかを 判定することが必要となる。
鋼管の圧縮局部座屈歪 ε crが要求局部座屈歪 ε reqの値よりも大きいことを数式(11)を用 いて表現すると、 下式(13)のようになる。
Figure imgf000016_0002
(13)式を ε y/mについて整理すると下記の(14)式が得られ、 (13)式の不等号を満足する £ yZmおよぴ"は図 1 6の直線(a)以下の領域となる。 また、 直線 (a)は(14)式の不等号 を等号で置き換えた(15)式で表される。直線(a)の上における f yZmと ε„の組み合わせは、 £ crf reqが等しくなることを表している。
Figure imgf000017_0001
また、 安全側に考えれば、 ε„は £ reqよりも大きいことが要求されるから、 選択される E y/mと £ Hは、直線 (a)と平行で下方に位置する直線上の値となる。換言すれば、直線 (a) と平行で下方に位置する直線上の £ 7 mと ε Hの組み合わせを選択すると、 ε cr£ reqより も大きくなる。
もっとも、 £ reqE„の最大値 (最大圧縮局部座屈歪 ε craaI) を超えることはできない。 したがって、直線 (a)と平行で下方にも限界値が存在するが、この限界値については後述す る。
( B ) 鋼管の局部座屈が降伏棚領域で生じないこと、 換言すれば鋼管の局部座屈が歪硬化 領域で生ずるための条件
銅管が歪硬化領域で局部座屈するためには、圧縮局部座屈歪 ε„が歪硬化開始歪 £ 以上 であることが必要条件となる。 この条件は、 (13)式の左辺の歪硬化開始歪 ε reqを歪硬化開 始歪 ε Hで置き換えることによって下記の(16)式のように表すことができる。
16
(16)
9(ey / m - £H )
( 16)式を ε y/mについて整理すると下記の(17)式が得られ、 (17)式の不等号を満足する ε yZmおよび ε Hの値は図 1 6の曲線 (b)以下の領域となる。また、図 1 6の曲線(b)は(17) 式の不等号を等号で置き換えた(18)式で表される。 直線(b)の上における ε yZm と £„は、 鋼管に付与できる圧縮局部座屈歪 E crと歪硬化開始歪 ε re„が等しくなることを表している:
Figure imgf000017_0002
また、 直線 ωと曲線 (b)の交点 Aの横軸の座標(£ η) Αは、 与えられた要求局部座屈歪 Ε reqであり、 縦軸の座標 (ε ,/m) Aは上記(18)式に与えられた要求局部座屈歪 eqを代入す ることで下記の(19)式で示すように表される。
(19)
Figure imgf000017_0003
( 17)式およびこれを線図で示した図 1 6の ί¾線(b)からすると、 歪硬化開始歪 ε„はどこ までも大きくなることが許容されているようにも思える。 しかしながら、歪硬化開始歪 ε Η は降伏棚の長さを規定するものであり、 当然にその最大値が存在する。 そこで、 この最大 値について検討する。
(17)式を歪硬0化 J 0 開始歪 £ について整理すると £„の二次方程式である下記の(20)式が得ら れる。 丄 Q
Figure imgf000018_0001
(20)式の二次方程式が実根を持っためには、 (21)式に示すように判別式が正である必要 がある。 このことから、 £ yZmと t/Dの関係が(22)式のように表される。 (22)式が曲線 (b) の定義域を縦軸について示しており、曲線 (b)の縦軸に関する最小値は(23)式となる。 (23) 式が曲線(b)の B点の縦軸の座標である。
0≤ (21 )
Figure imgf000018_0002
£y 8 f t
(22)
m 3 D ,
( ε 、
(23)
"* ノ
(22)式の関係が成立する場合、 (20)式を満足する解の範囲は(24)式および (25)式で表さ れる。
16
(24)
2m 2m 9 ン
Figure imgf000018_0003
(24)式は ε Hが有限の値であることを表しているが、(25)式は £„が無限大となることを許 容している。 ε Ηは有限の値であることから、 (20)式の解として(24)式が採用され、 (25) 式は却下される。 また、 (23)式で与えられる f yZmの最小値を(24)式に代入すると、 曲線 (b)における B点の横軸の座標が(26)式のように求められる。 い fe (26) 式 (26)で表される B点の横軸の座標( ε H) Bは最大圧縮局部座屈歪 を示している。し たがって、前述したように直線(a)を下方に平行移動したときに、下方に平行移動できる限 界値は下方に平行移動した直線が B点を通るときである。 そこで、 以下ではこの直線を直 線(c)として、 直線 (c)表す式を求める。
仮にこの直線(c)を下記の式(27)のように表現する。
(27)
ここで、 cは縱軸の切片の値である。
直線(c)が B 点を通ることから、 B点の座標を(27)式に代入することによって(27)式は (28)式のように表される。
Figure imgf000019_0001
( C ) 歪硬化開始歪が降伏歪よりも大きいこと
歪硬化開始歪が降伏歪よりも大きい条件は次式 (29)で与えられる。
(29) 図 1 6の直線(d)は E„= i yを表しており、歪硬化開始歪 ε„が降伏歪 ε yよりも大きいこ とが必要条件であるから、 解の領域は直線( の右側となる。
以上のように、 図 1 6に示したように解領域が求まった。 したがって、 管径 Dと管厚 t が既知の鋼管が要求局部座屈歪 eqよりも大きい圧縮局部座屈歪 £ crを与えるかどうかを 評価するには、応力歪曲線の降伏歪 £ y、歪硬化係数 m、歪硬化開始歪 ε„が、直線 (a)、 (c) , (d)、 曲線 (b)で囲まれた領域内にあるかどうかを判断すればよいことになる。
この関係を式で表すと、 下記の 2式となり、 これが本発明 (1 6 ) に示した式である。
Figure imgf000019_0002
(30)
但し、
Figure imgf000019_0003
( 1 7 ) また、 本発明に係る鋼管の材質設計方法は、 管径0、 管厚 tおよび要求局部座屈 歪 £ ^が与えられた鋼管の材質設計方法であって、 応力歪特性上に降伏棚を有する材料の 応力歪特性を決定するに際し、 設計対象の材料の応力歪曲線の降伏歪 、 歪硬化係数 m、 歪硬化開始歪 ε Ηが、 縦軸を £ y/m、 横軸を £ Hとした座標面において、 下式で示される領域 内にあるように降伏歪 ε y、 歪硬化係数 m、 歪硬化開始歪 £ Hこれらの応力歪特性を決定す ることを特徴とするものである (
Figure imgf000020_0001
D (30) 但し、 ^≤εΗ≤ε,
但し、
Figure imgf000020_0002
(18) また、 本発明に係る鋼管は、 上記 (17) の鋼管の材質設計方法によって材質設 計されたことを特徴とするものである。
(19) 本発明に係る鋼管は、 上記 (1) 〜 (12)、 (16)、 (1 7) に記載の鋼管の局 部座屈特性評価方法によって、 塑性設計を前提とされる構造物に適用可能性ありと評価さ れた鋼管である。 図面の簡単な説明
図 1は、 本発明に係る鋼管の局部座屈特性評価方法の説明図である (その 1)。
図 2は、 本発明に係る鋼管の局部座屈特性評価方法の説明図である (その 2)。
図 3は、 本発明に係る鋼管の局部座屈特性評価方法の説明図である (その 3)。
図 4は、 本発明に係る鋼管の局部座屈特性評価方法の説明図である (その 4)。
図 5は、 本発明の実施の形態 1のフローチャートである。
図 6は、 本発明の実施の形態 2のフローチャートである。
図 7は、 本発明の実施の形態 3のフローチャートである。
図 8は、 本発明の実施例にかかる判定対象について局部座屈歪と Dノ tの関係を示すグラ フである (その 1)。
図 9は、 本発明の実施例にかかる判定対象について局部座屈歪と DZ tの関係を示すグラ フである (その.2)。
図 10は、 本発明の実施例にかかる判定対象について局部座屈歪と DZ tの関係を示すグ ラフである (その 3)。
図 1 1は、 本発明の実施例にかかる判定対象について (DZt) crと歪硬化開始歪との 関係を示すグラフである。
図 12は、 鋼材の応力歪曲線の説明図である。
図 13は、 降伏棚型の鋼材の応力歪曲線の説明図である。
図 14は、 本発明の考え方を説明する説明図である。
図 15は、 降伏棚型の鋼材により形成された鋼管の応力歪曲線の説明図である。
図 16は、 本発明の局部座屈特性評価方法に係る領域を示したグラフである。
図 17は、本発明の実施形態 4に係る評価の対象とした材料の応力歪曲線である(その 1)。 図 1 8は、本発明の実施形態 4に係る評価の対象とした材料の応力歪曲線である(その 2)。 図 1 9は、本発明の実施形態 4に係る評価の対象とした材料の応力歪曲線である(その 3)。 図 20は、本発明の実施形態 4の局部座屈特性評価方法に係る領域を示したグラフである。 図 2 1は、本発明の実施形態 5の局部座屈特性評価方法に係る領域を示したグラフである。 図 22は、本発明の実施形態 5の局部座屈特性評価方法に係る領域を示したグラフである。 発明を実施するための最良の形態
実施の形態 1
本実施の形態においては、 本発明の判定方法を、 管径管厚比 (D/ t) =50の鋼管が 要求座屈歪 £ r e q = 1.5%のパイプラインに適用可能かどうかを判定する場合を例に挙げ て説明する。
図 5は本実施の形態の判定方法の流れを示すフローチャートである。 以下、 図 5に基づ いて本実施の形態を説明する。
まず、判定対象の鋼管の応力歪特性を取得する(S 1)。応力歪特性の取得方法としては、 試験片による引張り試験により取得してもよいし、 あるいは予め試験データが存在する場 合には当該試験データを格納したデータベースから読み出すようにしてもよい。
取得した応力歪特性からその応力歪曲線において降伏棚を有する降伏棚モデルか、 連続 硬化モデルかを判定する (S 3)。 S 3の判定において、 連続硬化モデルであると判定され た場合には、 連続硬化モデルの場合には座屈歪性能に優れるのでパイプラインに対して適 用の可能性ありと判断する (S 7)。
他方、 S 3の判定において、 降伏棚モデルであると判定された場合には、 S 1において 取得された鋼材の応力歪特性から当該鋼材の歪硬化開始歪 ε Ηを取得し、 この歪硬化開始 歪 ε Ηと当該材料の鋼管の局部座屈歪 ε c rとの大小関係を判定する (S 5)。
本実施の形態では (S 3) の判定において、 降伏棚モデルであると判定されたので、 $ 5) の判断を行う。 また、 本実施の形態においては、 (S 1) で取得した応力歪特性 (応力 歪曲線) における歪硬化領域の形状が線形硬化則の適用可能なものであったことから、 (S 5) の判定を、 下記に示す前述の (2.1) 式に基づいて行う。
Figure imgf000021_0001
すなわち、 (2.1) 式の右辺の演算値と歪硬化開始歪 £ Hを比較して演算値が歪硬化開始 歪 £ Hよりも大きい場合には局部座屈歪 f c rが歪硬化開始歪 ε Ηよりも大きいと判断する。 ここで (2.1) 式の右辺に代入すべき具体的な数値について検討する。 (tZD) は最初 に与えられており、 ( t/D) = 1ノ 50である。 歪硬化開始歪 £ Hは (S 1) で取得した 応力歪特性から読み取ることができ、 この例では 1.5%である。 また、 降伏歪∑ yも同様に S 1で取得した応力歪特性から読み取ることができ、 この例では 0.22%である。 歪硬化係 数 mも同様に S 1で取得した応力歪特性から決定することができ、 m = 0.04であった。 これらの値を (2.1) 式の右辺に代入して演算するとその演算値は 1.78%となる。 この 演算値 1.78%と歪硬化開始歪 Ε Η = 1· 5%を比較すると、演算値の方が大きい。したがって、 局部座屈歪 ε e rが歪硬化開始歪 ε Ηよりも大きいと判断し (S 5)、 パイプラインへの適用 の可能性ありと判断する (S 7)。
パイプラインへの適用の可能性ありと判断されると、 次に、 当該鋼管の局部座屈歪 ε c r を取得する (S 9)。本例では(S 5) の演算値が当該鋼管の局部座屈歪 ε c rであるので、 新たに演算等する必要はない。 ここで取得された局部座屈歪 ε c rと要求座屈歪 f r eq比較 して (S 1 1)、 局部座屈歪 ε c rが要求座屈歪 E r eqよりも大きい場合には、 合格と判定 する (S 1 3)。 この例では局部座屈歪 ε c r = 1.78%、 要求座屈歪 £ r e q = 1.5%であるの で、 局部座屈歪 ε c rが要求座屈歪 £ r eqよりも大きく合格と判定される。
なお、 (S 5) の判断において局部座屈歪 ε c rが歪硬化開始歪 ε H以下であると判断され た場合には、 当該鋼管はパイプラインへの適用の可能性はないと判断し (S 1 5)、判定を 不合格とする (S 1 7)。 また、 (S 1 1) において局部座屈歪 E c rが要求座屈歪 ε r e q以 下の場合にも、 不合格と判定される (S 1 7)。
以上のように、 本実施の形態によれば、 判定対象の鋼管が局部座屈性能に優れるものか どうかを簡易に判定できる。 したがって、 例えば連続硬化モデルの銅管をパイプライン用 として製造する場合において製造途中の塗装段階での加熱処理によって材質変化が生じ、 当該銅管が降伏棚モデルに変質したような場合においても、 当該鋼管の座屈性能を判定す ることにより、 連続硬化モデルと同等に扱ってよいかどうかを簡易に判定できる。
なお、 上記の例においては、 (S 5) における局部座屈歪 ε c rと歪硬化開始歪 E Hの大小 関係の判断を (2.1) 式に基づいて行ったが、本発明はこれに限られるものではなく、例え ば判定対象の鋼管と同じ鋼管に歪硬化開始歪に相当する歪を生じさせるような荷重を与え たときに試作の鋼管が座屈するかどうかを試験して、 局部座屈した場合には歪硬化開始歪 が局部座屈歪 £ c r以上であると判断し、局部座屈しない場合には局部座屈歪 ε c rが歪硬化 開始歪より大きいと判断するようにしてもよレ、。
また、 前述の 1)式に基づいて判断するようにしてもよい。
また、 (S 1)において取得した判定対象の鋼管の応力歪特性における歪硬化領域の応力 歪曲線が累乗関数で近似できるような場合には(3.1)式に基づいて判断するようにする。 さらなるステップ S 5の変形例としては、局部座屈歪を(1.1)式、 (2.1)式あるいは(3.1) 式などによって算出し、算出された局部座屈歪 E crを歪硬化開始歪 £ Hと直接比較するよう にしてもよい。 その場合には、 ステップ S 9は省略されることになる。 また、 (1.1)式では 局部座屈歪が降伏棚領域に位置するときには、局部座屈歪の値自体が算出不能となるので、 その現象を利用してステップ S 5の判定を行う方法もある。すなわち、応力歪特性を(1.1) 式に入力し、 局部座屈歪が算出不能であったときにはステップ S 5 「NO」 とし、 局部座 屈歪が算出されたときにはステップ S 5 「YE S」 とする。 実施の形態 2
本実施の形態においては、 実施の形態 1に示したものとは別の判定方法を、 実施の形態 1と同じ鋼管を判定対象として要求座屈歪 ε r e q = l.5%のパイプラインに適用可能かど うかを判定する場合を例に挙げて説明する。
図 6は本実施の形態の判定方法の流れを示すフローチャートである。 以下、 図 6に基づ いて本実施の形態を説明する。
鋼材の応力歪特性を取得し (S 1)、 当該鋼材が降伏棚モデルか、 連続硬化モデルかを判 定する (S 3)。 この処理は実施の形態 1と同様である。
(S 3 ) において降伏棚型モデルであると判定された場合には、 当該鋼管の局部座屈歪 が (S 1 ) で取得した当該鋼管の応力歪特性における歪硬化開始歪に一致するときの管径 管厚比(DZ t )crを求める (S 4)。 そして、 ここで求めた管径管厚比(D/ t )crと判定 対象の鋼管の管径管厚比(D/ t )の大小を判定する (S 5)。
本実施の形態においては、 (S 1 ) で取得した応力歪特性における歪硬化領域の形状が線 形硬化則の適用可能なものであったことから、 $ 5) の判定を、 下記に示す前述の (4.1) 式に基づいて行う。
Figure imgf000023_0001
ここで、 £ η = 1.5%、 ε y =0.22%、 m = 0.04を(4.1)式の右辺に代入して演算すると、 (DZ t )cr = 54.4となる。 他方、 D, t = 5 0であるから、 (D/ t ) < (D, t )crが成 立する。 よって、 局部座屈歪 E c rが歪硬化開始歪 E Hよりも大きいと判断し (S 6)、 パイ プラインへの適用の可能性ありと判断する (S 7)。 以降は、 実施の形態と同様に S 9、 S 1 1の処理をして、 最終的には実施の形態 1と同様に合格と判定する (S 1 3)。
なお、 (S 5) の判定において、 (DZ t ) ≥ (D/ t )cr の場合には、 局部座屈歪 E c r が歪硬化開始歪 £ H以下であると判断し (S 1 5)、 パイプラインへの適用の可能性はない と判断し (S 1 7)、 最終的に不合格と判定する (S 1 9)。
以上のように、 本実施の形態によれば、 判定対象の鋼管が局部座屈性能に優れるものか どうかを簡易に判定できる点は実施の形態 1と同様である。 さらに、 本実施の形態 2にお いては管径管厚比(DZ t )という分力 りやすいパラメータを基準にして局部座屈性能を判 定するので、 判定が容易である。
なお、 上記の例においては、 (S 5) における管径管厚比(DZ t )cr と判定対象の鋼管 の管径管厚比(DZ t )の大小の判定を (4. 1) 式に基づいて行ったが、 本発明はこれに限ら れるものではなく、 (S 1 ) において取得した判定対象の鋼管の応力歪特性における歪硬化 領域の応力歪曲線が累乗関数で近似できるような場合には前述の(5.1)式に基づいて判断 するようにする。
本実施の形態においてはすでにある鋼管に対して局部座屈性能の判定をするようにした が、 使用する鋼材が決まっていれば当該鋼材の応力歪特性における歪硬化開始歪に一致す るときの管径管厚比(DZ t )crを求めておくことで、パイプライン用の鋼管を設計する場 合において管径管厚比( D t )をどこまで大きくできるか、 換言すればどこまで薄肉化で きるかの設計指針として用いることもできる。 このような考えに基づく鋼管の設計方法に ついて以下の実施の形態 3で説明する。 実施の形態 3
図 7は本実施の形態に係る鋼管の設計方法の処理の流れを示すフローチャートである。 以下、 図 7に基づいて本実施の形態を説明する。
降伏棚を有する候補材料の応力歪特性を取得する (S 2 1 )。 S 2 1の処理は実施の形態 1における S 1と同様である。
S 2 1で取得した応力歪特性に基づいて (DZ t ) crを取得する (S 2 3 )。 (D/ t ) crの取得方法としては、 例えば下記に示す前述の(1. 1)式に基づく方法がある。
Figure imgf000024_0001
( 1 . 1 ) 式は、 左辺と右辺の等式が成り立つときの左辺の値が局部座屈歪であること を意味している。 したがって、 S 2 1で求めた応力歪特性の歪硬化開始歪にて鋼管が座屈 するめには、 . 1 ) 式の左辺に歪硬化開始歪を代入すると共に、 歪硬化開始歪に対応す る応力歪特性上の点における割線係数 (E s) と接線係数 (Ε τ) を求め、 これらを (1 . 1 ) 式の右辺に代入して等式が成立するときの管径管厚比 (DZ t ) を求めればよい。 また、 他の方法としては、 S 2 1で求めた応力歪特性における歪硬化域が線形近似でき る場合には、前述の下記(4. 1)式によって取得し、 S 2 1で求めた応力歪特性における歪硬 化域が累乗近似することができる場合には、前述の下記(5. 1)式によって取得することがで さる。
Figure imgf000024_0002
但し、 D/t : 大管径管厚比
ey :降伏歪
% :歪硬化開始歪
m 歪硬化係数 1 )
Figure imgf000024_0003
歪硬化係数
次に、 設計対象の鋼管の DZ tを仮設定する (S 2 5 )。 このとき DZ tが満たすべき条 件は DZ t < (D/ t ) crである。
なお、 パイプライン用の鋼管を設計する場合であれば、 パイプラインにて輸送する加圧 流体の輸送量及び輸送距離を前提として、 操業コスト及ぴ建設コストを最低にすべくパイ プの直径 D、 管厚 tを仮設定することを要する。 したがって、 前記 DZ tく (D/ t ) cr は設計条件のうちの必要条件である。
仮設定した D, tを前提として、 当該材料で設計した鋼管の局部座屈歪 rを取得する (S 2 7)。
ここで局部座屈歪 £ crを求める方法としては、 前述の (2) に示した (1.1) 式を用いる方 法、 また (4) に示した式 (2.1) を用いる方法、 あるいは上記 (5) に示した式 (3.1) を用いる方法のいずれでもよい。
S 2 7で取得した と要求される局部座屈歪である要求座屈歪 ε reqを比較して £ req< E crを満たすかどうかを判定する (S 2 9)。
なお、 要求座屈歪 E reqは、 S 2 5で仮設定された直径及び管厚を有するパイプに敷設線 形を考慮してパイプラインを構造設計し、 構造設計されたパイプラインに輸送圧力、 地盤 変位及び又は外力が作用したときにパイプに発生する最大歪を求め、 この最大歪に一定の 安全率を考慮して設定される。
S 2 9の判定において YE Sと判断された場合、すなわち ε reqく ε„を満たす場合には、 さらなる鋼管の薄肉化のために D/ tの設定を 1ランク大きく設定する (S 3 1)。 ここで Ό/ tを大きくする割合としては S 2 7で取得した E cr£ reqとの差の大きさ、 あるいは 予め設定した一定値等、 適宜の条件に基づく所定の値とする。
S 3 1で DZ tを再設定した場合には、 3 2 5で0 1 < (DZ t ) crを満たすことを 確認した上で S 2 7以降の処理を繰り返す。 '
S 2 9の判断において、 NOと判断された場合、 すなわち eq< rを満たさない場合 には、 当該処理が S 3 1を経由しているかどうかを判断し (S 3 3)、 YE S、すなわち S 3 1を経由している場合には、 直前の S 3 1の一^ 3前の処理において設定した D/ tを設 計値として決定する (S 3 5)。
D/ tの設計値が決定されると、 当該設計値に基づいて銅管の製造を行うことにより、 所定の要求座屈歪を満たす鋼管が製造できる。
S 3 3の判断において、 NO、 すなわち S 3 1を経由していない場合には、 S 2 5に戻 つて DZ tをさらに小さく設定できるかどうかを判断する (S 3 7)。すなわち、 S 2 5の 仮設定においては、 0ノ1を1) 1 < (Ό/ t ) crを前提条件として、 さらにパイプライ ンにて輸送する加圧流体の輸送量及び輸送距離を前提とした操業コスト及ぴ建設コストを 最低にすべきという条件の下でパイプの直径 D、 管厚 tを仮設定しているので、 例えば操 業コスト及ぴ建設コスト面を緩和して D_ tを一つ前の処理で設定した値よりも小さく設 定できるかどうかを判断する。
S 3 7の判断において YE S、 すなわち DZ tの再設定可能な場合には、 S 2 5に戻つ て同様の処理を繰り返す。 他方、 S 3 7の判断において NO、 すなわち DZ tの再設定が できない場合には、 当該材料にて当該用途への適用は不可と判断する (S 3 9)。
以上のように、本実施の形態においては、 管径管厚比(DZ t )crを考慮しつつ図 7に示 した処理を適宜行えば、すなわち(DZ t )く(DZ t )crを常に満たすようにしながら管径 管厚比(DZt)の値を修正していくようにしたので、 降伏棚のある材料であっても、 あた かも連続硬化型の材料であるかのように取扱って最適な管径管厚比(Dノ t)を設計してい くことができる。 実施の形態 4
本実施の形態においては、 表 1に示す応力歪特性を有する 9種類の材料を用いて外径 D=762.0mm、 管厚 t=15.24删 (D/t=50)の鋼管を製造したときに、 当該鋼管が局部座屈歪の 要求値 ε req = 0.5¾とされる X80グレードのラインパイプ用の鋼管として適用できるかどう かの評価を本発明に基づいて行った。.そして、 その評価が妥当かどうかを F EM解析によ つて検証した。 表 1
Figure imgf000026_0001
表 1には X80グレードのラインパイプに関する 9種類の材料の応力歪特性を示しており、 各材料の降伏歪 ε yは 0.0029 (0.29%)、 歪硬化開始歪 ε Hは 0.003 (0.3%)、 0.005 (0.5%), 0.010 (1.0%) である。 また、 歪硬化係数/ n£の係数は/ «=0.015、 0.020、 0.025 とした。 表 1の(D/t)maxは、 これらの値を(12)式に代入して求めた値である。 また、 P_1〜P- 9に対 応する応力歪曲線を図 1 7、 図 1 8、 図 1. 9に示す。
降伏棚モデルの局部座屈特性評価方法を示す下式に、 D=762.0mm、t=15.24謹、 ε y = 0.29%, E req = 0.5%を代入し、 縦軸を £ y/m、 横軸を £ H とした座標面において、 下式の示す領域を 示した図 2 0を示す。
Figure imgf000027_0001
但し、 ey≤sH < εη
Figure imgf000027_0002
図 2 0には表 1に示した 9種類の各材料について座標点 (£ y/m, ε„) をプロットして ある。 また、 図 2 0において、.上式の領域内にあるものは白丸で示し、 領域外のものは黒 丸で示してある。
図 2 0から分かるように、 解領域の中にプロットされているのは Ρ-2、 Ρ- 3、 P-5および P-6である。 このことから、 P-2、 P-3、 P-5および P-6が合格と評価され、 これら 4ケース の材質設計条件で鋼管を製造することができれば、 鋼管の圧縮局部座屈歪 ε crは要求局部 座屈歪 E reqを満足するものとされる。
次に、 上記の評価が正しいかどうかを F E M解析によって検証した。
FEMで圧縮座屈解析を行なう鋼管の外径を D=762. 0mm、 管厚を t=15. 24mm (D/t=50)と設 定して解析を実施する。 圧縮座屈解析の結果を表 2に示す。
表 2
Figure imgf000027_0003
表 2には図 2 0の領域による判定結果を併せて記載している。
表 2に示すように、 P-2、 P-3、 P-5、 P-6の 4ケースについての FEMによるこれら 4つの 解析モデルの圧縮局部座屈歪 ε crは、 それぞれ 0. 58%、 0. 82%、 0. 51%および 0. 85%である。 このように、 P- 2、 P- 3、 P-5、 P-6の 4ケースについてはそれぞれの座屈歪が要求局部座 屈歪 (0. 5%) よりも大きい値である。 そして、 表 2から明らかなように、 図 2 0の領域によって P- 2、 P-3、 P- 5、 P- 6の 4ケー スを合格と判定した結果と一致している。
したがって、 本発明によって評価することが F E M解析結果と一致しており、 本発明が 実効性があることが検証された。 実施の形態 5
本実施の形態においては、 表 3に示す応力歪特性を有する 1 0種類の材料を用いて外径 D=762. 0mm、 管厚 t=15. 6瞧 (D/t=48. 8)の鋼管を製造したときに、 当該鋼管が局部座屈歪の 要求値 £ req = 0. 5%とされる X80グレードのラインパイプ用の鋼管として適用できるかどう かの評価を本発明に基づいて行った。
また、 表 3に示す同様の材料を用いて、 外径 D=914. 4誦、 管厚 t = 15. 2mmの鋼管を製造 したときに、 当該鋼管が局部座屈歪の要求値 £ req=0. 4%とされる X80グレードのラインパ ィプ用の鋼管として適用できるかどうかについての評価を行った。
そして、 何れのケースについてもその評価が妥当かどうかを F E M解析によって検証し た。
Figure imgf000028_0001
Figure imgf000028_0002
表 3に示すように、 応力歪曲線の降伏歪 は 0. 17〜0. 31%であり、 歪硬化開始歪 £ は 0. 17〜2. 0%である。 また、 歪硬化係数 m£の係数は 0. 006〜0. 025 である。 また、 表中の (D/t) maxはこれらの値を(12)式に代入して求めた値である。
図 2 1は、降伏棚モデルの局部座屈特性評価方法を示す前述の式(30) (31)に、 D=762. 0醒、 t=15. 6匪、 ε req=0. 5%および表 3に示した E yを代入し、 縦軸を / m、 横軸を ε Hとした座 標面において、 上記 3式の示す領域を示したものである。 図 2 1には表 3に示した 1 0種 類の各材料について座標点 ( £ y/m, £ H) をプロットしてある。 図 2 1を見ると、 Q - 1、 Q - 2および Q-3が解領域 (合格の範囲) にプロットされており、 Q - 4〜Q- 10は解領域の外側 (不合格の範囲) にプロットされている。
図 2 2は、降伏棚モデルの局部座屈特性評価方法を示す前述の式(30) (31)に、 D=914. 4議、 t=15. 2匪、 ε req = 0. 4%および表 3に示した ε 7を代入し、 縦軸を ε y/m、 横軸を ε Hとした座 標面において、 上記 3式の示す領域を示したものである。 図 2 2には表 3に示した 1 0種 類の各材料について座標点 (£ y/m, £„) をプロットしてある。
図 2 2見ると、 D=762. 0瞧の銅管と同様に、 Q_l、 Q- 2および Q-3が解領域 (合格の範囲) にプロットされており、 Q_4〜Q - 10 は解領域の外側 (不合格の範囲) にプロッ トされてい る。
次に、 上記の評価が正しいかどうかを F E M解析によつて検証した。
D=762. 0mmの鋼管と D=914. 4瞧の鋼管について、 F E M解析で求めた圧縮局部座屈歪を 表 4に示す。 D=762. 0瞧の鋼管の圧縮局部座屈歪は 0. 28〜0. 63%で、 D=914. 4mmの銅管では
0. 28〜0. 50%である。
表 4
Figure imgf000029_0001
図 2 1、 図 2 2のダイアグラムによる判定結果を F E Mの解と比較して照査した結果を それぞれ、 表 5、 表 6に示す。 表 5、 表 6に示す圧縮局部座屈歪は、 表 4の値を転記した ものである。 (D=762.0mm、 t= 15.6mm、 D/t=48.8の鋼菅の例)
Figure imgf000030_0001
(D=914.4mm. t=15.2mm. D/t=60の鍋管の例)
Figure imgf000030_0002
表 5を見れば、 D=762. 0讓の鋼管の要求座屈歪を 0. 5。と設定した場合、 Q- 1〜Q_3が合格 し、 その他の材料特性は不合格となることが分かる。
また、 表 6を見れば、 D=914. 4腿の鋼管の要求座屈歪を 0. 4%と設定した場合、 Q- 1〜Q- 3 が合格し、 その他の材料特性は不合格となることが分かる。
いずれの場合についても、 図 2 1、 図 2 2のダイアグラムによる判定結果と F E Mの結 果が一致しており、 本発明が実効性があることが検証された。
なお、 上記の説明では鋼管材料における降伏歪 、 歪硬化係数 m、 歪硬化開始歪 ε„を 取得して、 これらが縦軸を εノ m、 横軸を f Hとした座標面において上記式(30) (31)で規定 される特定の領域内にあるかどうかによって当該材料で鋼管を製造したときの局部座屈特 性評価方法の具体例について述べた。
しかし、 ここで示した考え方は局部座屈特性の評価方法のみならず、 管径0、 管厚 tお よび要求局部座屈歪 £ reqが与えられた鋼管の材質設計方法にも適用できる。 つまり、 管径 D、 管厚 tおよび要求局部座屈歪 ε reqが与えられた鋼管の材質設計に際して、 降伏歪 £ y、 歪硬化係数 m、 歪硬化開始歪 が、 縦軸を E y/m、 横軸を E hとした座標面において、 前述 の特定領域内にあるように降伏歪 、 歪硬化係数 m、 歪硬化開始歪 ε„を決定するように すればよい。
具体的には、 D=762. 0隱、 t=15. 24讓、 ε req = 0. 5%という要件を満たす鋼管の材質設計を 行う場合には、 前述の式(30) (31)にこれらの値を代入し、 縦軸を £ y/m、 横軸を ε Ηとした 座標面において、 式(30) (31)の示す領域を図 2 0のように描く。 そして、 図 2 0で示され る解領域内になるように降伏歪 £ y、 歪硬化係数 m、 歪硬化開始歪 E Hを決定する。 このよ うな、 歪硬化係数 m、 歪硬化開始歪 を有する材料であれば、 D=762. 0mm、 t=15. 24mm, ε req = 0. 5%という要件を満たす。 このようにすれば、 鋼管の材料の満たすべき材質つまり、 応力歪特性を簡易に決定できるので、 効率的な設計が可能となる。
なお、 上記の説明にでは圧縮局部座屈歪について説明したが、 圧縮局部座屈歪と曲げ局 部座屈歪とは約 1対 2という定量的な関係があるので、 このような定量的な関係を用いれ ば本願の考え方は曲げ局部座屈歪にも適用できる。 実施例
上記の実施の形態 2に示した判定方法によって、 実施の形態 2と同様に D Z t = 5 0の ときに要求座屈歪 ε req= l. 5%として複数の判定対象について判定を行った結果を表 7に 示す。 判定対象の材料は、 歪硬化開始歪 f Hが ε H = 1 . 5 、 1 . 0 、 0 . 5の 3種類であ り、 各歪硬化開始歪 £ Hについて、 歪硬化係数 m = 0. 01、 0. 02、 0. 03、 0. 04、 0. 05 のもの を対象としている。
表 7
Figure imgf000032_0001
表 7の第 1グループ ( ε Η= 1. 5%) を見ると、 1- 1〜1-3はいずれも (D/ t) crが 50以下であり、 D/ t = 50としたときにはいずれも降伏棚領域で座屈することになる。 したがって、 1- 1〜1-3のものの局部座屈歪は降伏歪 (0.22) 程度と考えられ、 具体的な局 部座屈を求めるまでもなく不合格と判定できる。
一方、 1-4、 1-5のものは、 (DZ t) crが 50以上であり、 歪硬化領域で座屈すること が分かる。 そして、 1-4 (実施の形態 2で示したもの) の局部座屈歪 ε c rを求めると、 1.78 であり、 要求座屈歪 ε req=l.5%より大きいことから、 判定は合格となる。 同様に 1-5につ いても合格となる。
第 2グループ ( f H= l . ◦%) 2- 1〜2- 5、 第 3グループ ( £ H= 0. 5%) 3-1〜3 - 5 についても同様にして表 7の通り判定ができる。
次に、 歪硬化開始歪 ε Ηと (D/ t) cr との関係を求めるために、 表 7の一部を抜き出 して表 8に示す。 表 8
Figure imgf000033_0001
表 8に示した各判定対象について、 各グループごとに、 縦軸を局部座屈歪∑ cr、 横軸を D / tとして、 局部座屈歪 f cr と tの関係を取ったグラフ表示すると図 8〜図 10とな る。
また、 縦軸を (DZt) crとし、 横軸を歪硬化開始歪としたグラフを図 1 1に示す。 図 8〜図 10又は図 1 1から分かるように、 歪硬化係数 mがいずれの場合であっても、 歪硬化開始歪が小さいほど、 換言すれば降伏棚が短いほど (D/t) crが大きくなつてい る。 つまり歪硬化開始歪が小さいほど (降伏棚が短いほど) 鋼管が薄肉になっても歪硬化 領域にて局部座屈する、 すなわち座屈性能に優れる傾向にあることを示している。
また、 歪硬化領域開始歪 (降伏棚の長さ) がいずれの場合であっても、 歪硬化係数 mが 大きいほど (D/t) crが大きくなつている。 つまり歪硬化係数 mが大きいほど鋼管が薄 肉になっても歪硬化領域にて局部座屈する、 すなわち座屈性能に優れる傾向にあることを 示している。 産業上の利用可能性
本発明の鋼管の局部座屈特性評価方法によれば、 鋼管の座屈性能の優劣を簡易に判定でき るので、 当該鋼管の用途の判別が簡易にできる。
また、 本発明に係る鋼管の設計方法によれば、 応力歪特性を有する鋼管の局部座屈歪が 応力歪特性における歪硬化開始歪に一致するときの管径管厚比(D/ t)crを求め、設計対 象の鋼管の管径管厚比 (DZt) が前記管径管厚比(DZt)crよりも小さくなることを維 持しつつ、 設計対象の鋼管の管径管厚比 (DZt) を決定するようにしたので、 降伏棚の ある材料であっても、 あたかも連続硬化型の材料であるかのように取扱って最適な管径管 厚比(DZ t)を設計することができる。

Claims

請求の範囲
1 . 応力歪特性上に降伏棚を有する材料の応力歪特性を取得する第 1ステップと、 該第 1ステップで取得された応力歪特性における歪硬化開始歪と当該鋼管の局部座屈歪との大 小関係を判定する第 2ステップと、 第 2ステップにおいて局部座屈歪が歪硬化開始歪より も大きいと判定された場合には当該鋼管を塑性設計を前提とされる構造物に適用可能性あ りと評価し、 第 2ステップにおいて局部座屈歪が歪硬化開始歪以下と判定された場合には 塑性設計を前提とされる構造物に適用可能性なしと評価する第 3ステップを備えたことを 特徴とする鋼管の局部座屈特性評価方法。
2 . 第 2ステップにおける歪硬化開始歪と当該材料の鋼管の局部座屈歪との大小関係の 判定は、 下式に第 1ステップで取得された応力歪特性を入力した結果、 局部座屈歪を算出 可能であったときには、 局部座屈歪が歪硬化開始歪よりも大きいと判定し、 局部座屈歪を 算出不能であったときには、 局部座屈歪が歪硬化開始歪以下であると判定することを特徴 とする請求項 1に記載の鋼管の局部座屈特性評価方法。
4 Ε-
(1. 1 )
3 D
但し、 ε„ :圧縮局部座屈歪
E Jor:降伏棚型モデルの応力歪曲線において、 原点と座屈点とを結ぶ線の傾 i E Tcr:座屈点における応力歪曲線の傾き
t : 管厚
D : 管径
3 . 第 2ステツプにおける歪硬化開始歪と当該材料の鋼管の局部座屈歪と
の大小関係の判定を、 下式及び第 1ステップで取得された応力歪特性に基づいて行うこと とし、
歪硬化開始歪に対応する下式の右辺を演算し、 その演算値が歪硬化開始歪よりも大きい 場合には局部座屈歪が歪硬化開始歪よりも大きいと判定し、 演算値が歪硬化開始歪以下の 場合には局部座屈歪が歪硬化開始歪以下であると判定することを特徴とする請求項 1に記 載の鋼管の局部座屈特性評価方法。
( 1. 1 )
EScr D
但し、 ε„ :圧箱局部座屈歪
E ,or:降伏棚型モデルの応力歪曲線において、 原点と座屈点とを結ぶ線の傾き E Tcr:座屈点における応力歪曲線の傾き
t : 管厚
D: 管径
4 . 第 2ステップにおける歪硬化開始歪と当該材料の鋼管の局部座屈歪との大小関係の 判定は、 式 ( 1. 1 ) に代えて下式に基づいて行うことを特徴とする請求項 3記載の鋼管 の局部座屈特性評価方法。
9(εχ/ηι-εΗ)
但し、 Dlt : S大管径管厚比
εγ :降伏歪
εΗ :歪硬化開始歪
m :歪硬化係数
5. 第 2ステップにおける歪硬化開始歪と当該材料の鋼管の局部座屈歪との大小関係の 判定は、 式 ( 1. 1 ) に代えて下式に基づいて行うことを特徴とする請求項 3記載の鋼管 の局部座屈特性評価方法。
Figure imgf000035_0001
但し、 D/t :最大管径管厚比
σγ :降伏応力
c : 累乗関数の回掃係数
b : 累乗関数の回帰係数
6. 局部座屈歪を求める第 4ステップを有し、 第 3ステップにおいて適用可能性ありと 評価された場合において、 第 4ステップで求めた局部座屈歪と当該用途に要求される要求 座屈歪とを比較し、 当該用途への適用可否を判定する第 5ステップを有することを特徴と する請求項 1乃至 5のうち何れかに記載の鋼管の局部座屈特性評価方法。
7. 応力歪特性上に降伏棚を有する材料の応力歪特性を取得する第 1 ステップと、 下式 に該第 1ステップで取得された応力歪特性を入力して、 局部座屈歪を求めるように演算処 理する第 2ステップと、 第 2ステップにおいて局部座屈歪が求められた場合には当該鋼管 を塑性設計を前提とされる構造物に適用可能性ありと評価し、 第 2ステップにおいて局部 座屈歪が算出不能である場合には塑性設計を前提とされる構造物に適用可能性なしと評価 する第 3ステップを備えたことを特徴とする鋼管の局部座屈特性評価方法。
但し、 ε„:圧縮局部座屈歪
E,cr:降伏棚型モデルの応力歪曲線において、 原点と座屈点とを結ぶ線の傾き
EIcr:座屈点における応力歪曲線の傾き
t : 管厚
D : 管径
8. 応力歪特性上に降伏棚を有する材料の応力歪特性を取得する第 1ステップと、 下式 に該第 1ステップで取得された応力歪特性を入力して、 局部座屈歪を求めるように演算処 理する第 2ステップと、 第 2ステップにおいて局部座屈歪が算出不能である場合には塑性 設計を前提とされる構造物に適用可能性なしと評価するとともに、 第 2ステップにおいて 局部座屈歪が求められた場合には、 求めた局部座屈歪と当該用途に要求される要求座屈歪 とを比較し当該用途への適用可否を判定する第 3ステップを備えたことを特徴とする鋼管 の局部座屈特性評価方法。
但し、 ecr:圧箱局部座屈歪
Esor: 降伏棚型モデルの応力歪曲線において、 原点と座屈点とを結ぶ線の傾き ETcr:座屈点における応力歪曲線の傾き
t : 管厚
D : 管径
9. 降伏棚を有する銅材の応力歪特性を取得する第 1ステップと、 前記応力歪特性を有 する鋼管の局部座屈歪が前記応力歪特性における歪硬化開始歪に一致するときの管径管厚 比(DZ t )crを求める第 2ステップと、 判定対象の鋼管の管径管厚比 (DZ t ) と前記第 2ステップで求めた管径管厚比(DZ t )crとの大小を比較し、判定対象の鋼管の管径管厚 比 (DZ t ) の方が小さい場合には当該材料を塑性設計を前提とされる構造^に適用可能 性ありと評価し、 判定対象の鋼管の管径管厚比 (D/ t ) の方が大きい場合には塑性設計 を前提とされる構造物に適用可能性なしと評価する第 3ステップを備えたことを特徴とす る鋼管の局部座屈特性評価方法。
1 0. 第 2ステップにおける管径管厚比 (D/ t ) crを下式及ぴ該第 1ステップで取得 された応力歪特性に基づいて求めることを特徴とする請求項 9記載の銅管の局部座屈特性 評価方法。
4
(4.1)
Ιηι-εΗ、εΗ
但し、 D/t : S大管径管厚比
ε> :降伏歪
εΗ :歪硬化開始歪
m :歪硬化係数
1 1. 第 2ステップにおける管径管厚比 (DZ t ) crを下式及び該第 1ステップで取得 された応力歪特性に基づいて求めることを特徴とする請求項 6記載の鋼管の局部座屈特性 評価方法。 '
Figure imgf000037_0001
:最大管径管厚比
:降伏歪
:歪硬化開始歪
:歪硬化係数
1 2. 局部座屈歪を求める第 4ステップを有し、 第 3ステップにおいて適用可能性あり と評価された場合において、 第 4ステップで求めた局部座屈歪と当該用途に要求される要 求座屈歪とを比較し、 当該用途への適用可否を判定する第 5ステップを有することを特徴 とする請求項 9〜 1 1の何れか一項に記載の鋼管の局部座屈特性評価方法。
1 3. 降伏棚を有する鋼材の応力歪特性を取得する第 1ステップと、 前記応力歪特性を 有する銅管の局部座屈歪が前記応力歪特性における歪硬化開始歪に一致するときの管径管 厚比(DZ t)crを求める第 2ステップと、 設計対象の鋼管の管径管厚比 (DZ t) が前記 第 2ステップで求めた管径管厚比(DZ t)crよりも小さくなることを維持しつつ、設計対 象の鋼管の管径管厚比 (D/ t) を決定する第 3ステップとを備えたことを特徴とする銅 管の設計方法。
14. 第 3ステップにおいては、 第 1ステップで取得した応力歪特性及び判定対象の鋼 管の管径管厚比(DZ t )から求まる局部座屈歪が、要求座屈歪よりも大きくなるように、 当該設計対象の鋼管の管径管厚比 (DZ t) を決定することを特徴とする請求項 1 3に記 載の鋼管の設計方法。
1 5. 請求項 1 3又は 14に記載の鋼管の設計方法による設計に基づき鋼管を製造する ことをと特徴とする鋼管の製造方法。
1 6. 管径0、 管厚 tおよび要求局部座屈歪 ε reqが与えられた鋼管の局部座屈特性評価 方法であって、 応力歪特性上に降伏棚を有する材料の応力歪特性を取得し、 取得された応 力歪特性における応力歪曲線の降伏歪 ε y、歪硬化係数 m、歪硬化開始歪 £ が、縦軸を ε y/m、 横軸を ε„とした座標面において、下式で示される領域内にあるかどうかを判断し、当該領 域内にある場合には当該鋼管を塑性設計を前提とされる構造物に適用可能性ありと評価し、 当該領域内にない場合には当該鋼管を塑性設計を前提とされる構造物に適用可能性なしと 評価することを特徴とする鋼管の局部座屈特性評価方法。
Figure imgf000038_0001
但し、 sy≤ SH≤sn
Figure imgf000038_0002
1 7. 管径0、 管厚 tおよび要求局部座屈歪 £ reqが与えられた鋼管の材質設計方法であ つて、 応力歪特性上に降伏棚を有する材料の応力歪特性を決定するに際し、 設計対象の材 料の応力歪曲線の降伏歪 、 歪硬化係数 m、 歪硬化開始歪 ε Ηが、 縦軸を £ y/m、 横軸を £ H とした座標面において、 下式で示される領域内にあるように降伏歪 ε y、 歪硬化係数 m、 歪 硬化開始歪 £ を決定することを特徴とする鋼管の材質設計方法。
Figure imgf000038_0003
但し、 sy≤sH≤ε,
Figure imgf000038_0004
8. 請求項 1 7に記載の鋼管の材質設計方法によって材質設計された鋼管。
1 9. 請求項 1〜 1 2、 1 6、 1 7に記載の鋼管の局部座屈特性評価方法によって、 塑 性設計を前提とされる構造物に適用可能性ありと評価された鋼管。
PCT/JP2005/023447 2004-06-18 2005-12-15 鋼管の局部座屈性能評価方法、鋼管の設計方法、鋼管の製造方法及び鋼管 WO2007069339A1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
CN2005800488917A CN101133312B (zh) 2005-12-15 2005-12-15 钢管的局部压曲性能评价方法、钢管的设计方法、钢管的制造方法和钢管
US11/884,749 US8191221B2 (en) 2005-12-15 2005-12-15 Local buckling performance evaluating method for steel pipe, steel pipe designing method, steel pipe manufacturing method, and steel pipe
EP05820252.4A EP1843143B1 (en) 2005-12-15 2005-12-15 Methods for evaluating local buckling capability of steel pipe
CA2599755A CA2599755C (en) 2005-12-15 2005-12-15 Local buckling performance evaluating method for steel pipe, steel pipe designing methiod, steel pipe manufacturing method, and steel pipe
PCT/JP2005/023447 WO2007069339A1 (ja) 2005-12-15 2005-12-15 鋼管の局部座屈性能評価方法、鋼管の設計方法、鋼管の製造方法及び鋼管
NO20074000A NO341762B1 (no) 2005-12-15 2007-08-01 Fremgangsmåte for lokal bulkytelsesevaluering for stålrør, fremgangsmåte for stålrørkonstruksjon, fremgangsmåte for stålrørfremstilling, og stålrør
US13/370,372 US8875366B2 (en) 2004-06-18 2012-02-10 Local buckling performance evaluating method for steel pipe, steel pipe designing method, steel pipe manufacturing method, and steel pipe

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2005/023447 WO2007069339A1 (ja) 2005-12-15 2005-12-15 鋼管の局部座屈性能評価方法、鋼管の設計方法、鋼管の製造方法及び鋼管

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US11/884,749 A-371-Of-International US8191221B2 (en) 2005-12-15 2005-12-15 Local buckling performance evaluating method for steel pipe, steel pipe designing method, steel pipe manufacturing method, and steel pipe
US13/370,372 Division US8875366B2 (en) 2004-06-18 2012-02-10 Local buckling performance evaluating method for steel pipe, steel pipe designing method, steel pipe manufacturing method, and steel pipe

Publications (1)

Publication Number Publication Date
WO2007069339A1 true WO2007069339A1 (ja) 2007-06-21

Family

ID=38162661

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/023447 WO2007069339A1 (ja) 2004-06-18 2005-12-15 鋼管の局部座屈性能評価方法、鋼管の設計方法、鋼管の製造方法及び鋼管

Country Status (6)

Country Link
US (2) US8191221B2 (ja)
EP (1) EP1843143B1 (ja)
CN (1) CN101133312B (ja)
CA (1) CA2599755C (ja)
NO (1) NO341762B1 (ja)
WO (1) WO2007069339A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090208768A1 (en) * 2005-12-15 2009-08-20 Jfe Steel Corporation Local Buckling Performance Evaluating Method for Steel Pipe, Steel Pipe Designing Method, Steel Pipe Manufacturing Method, and Steel Pipe
CN103091167A (zh) * 2013-01-23 2013-05-08 西北工业大学 一种连续测定钛合金管材收缩应变比变化的方法
CN113836656A (zh) * 2021-09-14 2021-12-24 临海伟星新型建材有限公司 采用有限元算法的氟硅改性pert阻隔内衬管缩径量计算方法

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2676940C (en) 2007-02-27 2015-06-23 Exxonmobil Upstream Research Company Corrosion resistant alloy weldments in carbon steel structures and pipelines to accommodate high axial plastic strains
FR2947597A1 (fr) * 2009-07-06 2011-01-07 Lisi Aerospace Procede de freinage d'un ecrou en materiau a faible capacite de deformation plastique
CN103792132B (zh) * 2012-10-29 2016-12-21 中国石油化工股份有限公司 表面活性剂组合物及其应用和点载荷性能的评价方法
CN103760018A (zh) * 2013-12-19 2014-04-30 中国石油天然气集团公司 钢管临界屈曲应变的测量方法
US9618435B2 (en) * 2014-03-31 2017-04-11 Dmar Engineering, Inc. Umbilical bend-testing
CN104881565B (zh) * 2014-11-26 2017-12-29 武汉理工大学 考虑空间作用的线性变截面柱的稳定承载力计算方法
CN104373053B (zh) * 2014-11-28 2017-01-18 中国石油天然气集团公司 一种地下储气库注采管柱设计方法
CN105424474A (zh) * 2015-11-03 2016-03-23 北京交通大学 一种评估钢结构厚板内部损伤累积的方法
US10303827B2 (en) 2016-04-05 2019-05-28 Rolls-Royce Corporation Predicting cracking in cooled metal or alloy components
CN111655969B (zh) 2017-12-23 2023-08-25 诺伊蒂克技术股份有限公司 使用实时测量和建模来优化管子运行操作的系统和方法
CN111611680B (zh) * 2020-03-30 2024-02-09 浙江大学 基于失效模式设计的内压钢制椭圆形封头制造方法
CN111766136B (zh) * 2020-08-14 2023-06-06 中国石油天然气集团有限公司 制管用钢板拉伸性能参数获取的方法、钢板选取方法
CN116227266A (zh) * 2022-12-21 2023-06-06 广西北投公路建设投资集团有限公司 波折钢腹板屈曲模态的确定方法及屈曲应力的计算方法
CN117313483B (zh) * 2023-10-13 2024-06-07 华东交通大学 一种锈蚀冷弯薄壁型钢柱屈曲承载力评估方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09196243A (ja) 1996-01-19 1997-07-29 Nkk Corp 耐震性に優れた鋼管
JP2002194503A (ja) * 2000-12-28 2002-07-10 Nkk Corp 耐座屈性に優れた鋼管、その製造方法及びその評価方法
JP2005196748A (ja) * 2003-12-10 2005-07-21 Jfe Steel Kk パイプの材質設計方法、パイプの製造方法、パイプ、パイプライン
JP2006002893A (ja) * 2004-06-18 2006-01-05 Jfe Steel Kk 鋼管の局部座屈性能評価方法、鋼管の設計方法、鋼管の製造方法、鋼管

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4384483A (en) * 1981-08-11 1983-05-24 Mobil Oil Corporation Preventing buckling in drill string
JPH05223761A (ja) * 1992-02-07 1993-08-31 Nippon Seiko Kk 焼入検査方法
JP3522415B2 (ja) * 1995-10-23 2004-04-26 独立行政法人土木研究所 鋼管柱の補強構造
JPH09196244A (ja) * 1996-01-19 1997-07-29 Nkk Corp 耐震性に優れた鋼管
US6782921B1 (en) * 2000-06-09 2004-08-31 Nippon Steel Corporation High-strength steel pipe excellent in formability and burst resistance
JP2002226945A (ja) * 2001-02-02 2002-08-14 Nkk Corp 鋼管及びその製造方法
JP3869747B2 (ja) * 2002-04-09 2007-01-17 新日本製鐵株式会社 変形性能に優れた高強度鋼板、高強度鋼管および製造方法
US7892368B2 (en) * 2002-05-24 2011-02-22 Nippon Steel Corporation UOE steel pipe excellent in collapse strength and method of production thereof
AU2003251899A1 (en) * 2002-07-10 2004-01-23 University Of Florida Sol-gel derived bioactive glass polymer composite
JP3937998B2 (ja) * 2002-10-11 2007-06-27 Jfeスチール株式会社 耐座屈性能の優れた鋼管の製造方法
CN100432261C (zh) * 2003-06-12 2008-11-12 杰富意钢铁株式会社 低屈服比高强度高韧性的厚钢板和焊接钢管及它们的制造方法
EP1693608B1 (en) * 2003-12-10 2017-08-30 JFE Steel Corporation Method of determining strain hardening characteristics of line pipe
MX2007009430A (es) * 2005-02-03 2007-08-17 Cinv Ag Materiales para suministro de farmacos producidos mediante la tecnologia de sol/gel.
JP4720344B2 (ja) * 2005-07-29 2011-07-13 Jfeスチール株式会社 鋼管、該鋼管を用いたパイプライン
US7914809B2 (en) * 2005-08-26 2011-03-29 Boston Scientific Scimed, Inc. Lubricious composites for medical devices
EP1843143B1 (en) * 2005-12-15 2021-02-03 JFE Steel Corporation Methods for evaluating local buckling capability of steel pipe
JP4696893B2 (ja) * 2005-12-16 2011-06-08 Jfeスチール株式会社 鋼管の局部座屈性能評価方法、鋼管の材質設計方法、鋼管の製造方法
JP4853575B2 (ja) * 2009-02-06 2012-01-11 Jfeスチール株式会社 耐座屈性能及び溶接熱影響部靭性に優れた低温用高強度鋼管およびその製造方法
EP2441854B1 (en) * 2009-06-11 2017-09-27 Nippon Steel & Sumitomo Metal Corporation High strength steel pipe and method for producing same
CN101923021B (zh) * 2009-06-17 2012-01-11 中国石油天然气集团公司 快速确定钢管屈曲应变能力的方法
JP5655738B2 (ja) * 2010-12-06 2015-01-21 新日鐵住金株式会社 角形鋼管柱の補強構造
JP2012193447A (ja) * 2011-02-28 2012-10-11 Jfe Steel Corp 変形性能に優れた超高強度溶接鋼管用鋼板および溶接鋼管ならびにその製造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09196243A (ja) 1996-01-19 1997-07-29 Nkk Corp 耐震性に優れた鋼管
JP2002194503A (ja) * 2000-12-28 2002-07-10 Nkk Corp 耐座屈性に優れた鋼管、その製造方法及びその評価方法
JP2005196748A (ja) * 2003-12-10 2005-07-21 Jfe Steel Kk パイプの材質設計方法、パイプの製造方法、パイプ、パイプライン
JP2006002893A (ja) * 2004-06-18 2006-01-05 Jfe Steel Kk 鋼管の局部座屈性能評価方法、鋼管の設計方法、鋼管の製造方法、鋼管

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1843143A4

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8875366B2 (en) 2004-06-18 2014-11-04 Jfe Steel Corporation Local buckling performance evaluating method for steel pipe, steel pipe designing method, steel pipe manufacturing method, and steel pipe
US20090208768A1 (en) * 2005-12-15 2009-08-20 Jfe Steel Corporation Local Buckling Performance Evaluating Method for Steel Pipe, Steel Pipe Designing Method, Steel Pipe Manufacturing Method, and Steel Pipe
US8191221B2 (en) * 2005-12-15 2012-06-05 Jfe Steel Corporation Local buckling performance evaluating method for steel pipe, steel pipe designing method, steel pipe manufacturing method, and steel pipe
CN103091167A (zh) * 2013-01-23 2013-05-08 西北工业大学 一种连续测定钛合金管材收缩应变比变化的方法
CN103091167B (zh) * 2013-01-23 2014-10-29 西北工业大学 一种连续测定钛合金管材收缩应变比变化的方法
CN113836656A (zh) * 2021-09-14 2021-12-24 临海伟星新型建材有限公司 采用有限元算法的氟硅改性pert阻隔内衬管缩径量计算方法
WO2023039932A1 (zh) * 2021-09-14 2023-03-23 临海伟星新型建材有限公司 采用有限元算法的氟硅改性pert阻隔内衬管缩径量计算方法

Also Published As

Publication number Publication date
NO341762B1 (no) 2018-01-15
US8191221B2 (en) 2012-06-05
EP1843143A1 (en) 2007-10-10
US20120143527A1 (en) 2012-06-07
CN101133312A (zh) 2008-02-27
EP1843143B1 (en) 2021-02-03
CA2599755A1 (en) 2007-06-21
US8875366B2 (en) 2014-11-04
EP1843143A4 (en) 2013-01-23
CN101133312B (zh) 2013-07-17
CA2599755C (en) 2015-03-31
NO20074000L (no) 2008-07-14
US20090208768A1 (en) 2009-08-20

Similar Documents

Publication Publication Date Title
WO2007069339A1 (ja) 鋼管の局部座屈性能評価方法、鋼管の設計方法、鋼管の製造方法及び鋼管
Zhu Full-range stress intensity factor solutions for clamped SENT specimens
Mohammadi et al. Effect of the thickness distribution and setting condition on springback in multi-layer sheet bending
JP4696893B2 (ja) 鋼管の局部座屈性能評価方法、鋼管の材質設計方法、鋼管の製造方法
KR20230044510A (ko) 강관 압궤 강도 예측 모델의 생성 방법, 강관의 압궤 강도 예측 방법, 강관의 제조 특성 결정 방법, 및 강관의 제조 방법
EP1693608B1 (en) Method of determining strain hardening characteristics of line pipe
Chen Numerical Solution of Thin-walled Tube Bending Springback with Exponential Hardening Law.
Iacono et al. Prediction of minimum bending ratio of aluminum sheets from tensile material properties
Roy et al. Experiments and simulation of shape and thickness evolution in multi-pass tube spinning
Dong et al. On the residual stress profiles in new API 579/ASME FFS-1 appendix E
Yang et al. Forming limit diagrams for tubes with non-uniform thickness in hydro-bulging
Ma et al. Prediction of Springback after V-Bending of High-Strength Steel Sheets Using Artificial Neural Networks
JP7103514B2 (ja) 鋼管圧潰強度予測モデルの生成方法、鋼管の圧潰強度予測方法、鋼管の製造特性決定方法、及び鋼管の製造方法
Beulich et al. Influence of tube rollforming on material properties and subsequent bending processes
JP2006002893A (ja) 鋼管の局部座屈性能評価方法、鋼管の設計方法、鋼管の製造方法、鋼管
Mohamed ElShazly et al. A Finite Element Analysis Verification of a Machine-Trained Mathematical Model of T-Tube Hydroforming
Anekar et al. Parametric analysis of tube during bending operation
Sun et al. Analysis of Elbow Stress Intensification Factors for Piping System
Murata et al. Identification of ductile fracture parameter with stress correction method using notched round-bar tensile test
Chatzopoulou et al. Effects of UOE manufacturing process on pressurized bending response of offshore pipes
Reddy et al. Multi-objective Tubular Hydroforming Process Parametric Optimization using TOPSIS and PSI techniques
Fariba et al. A New Method for Correcting the Stress-Strain Curves after Bulging in Metals
Borrego et al. Revisiting flangeability in hole-flanging by single-stage incremental forming and conventional process
Etemadi et al. Novel U-bending designed setups for investigating the spring-back/spring-go of two-layer
Xue Modelling and control of twist springback in lightweight automotive structures with complex cross-sectional shape

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2005820252

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 11884749

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2599755

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 200580048891.7

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWP Wipo information: published in national office

Ref document number: 2005820252

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE