WO2007063857A1 - リチウムイオン二次電池 - Google Patents

リチウムイオン二次電池 Download PDF

Info

Publication number
WO2007063857A1
WO2007063857A1 PCT/JP2006/323737 JP2006323737W WO2007063857A1 WO 2007063857 A1 WO2007063857 A1 WO 2007063857A1 JP 2006323737 W JP2006323737 W JP 2006323737W WO 2007063857 A1 WO2007063857 A1 WO 2007063857A1
Authority
WO
WIPO (PCT)
Prior art keywords
lithium ion
secondary battery
case
ion secondary
cell
Prior art date
Application number
PCT/JP2006/323737
Other languages
English (en)
French (fr)
Inventor
Yuki Tominaga
Takuya Miyashita
Original Assignee
Mitsubishi Jidosha Kogyo Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Jidosha Kogyo Kabushiki Kaisha filed Critical Mitsubishi Jidosha Kogyo Kabushiki Kaisha
Priority to CN2006800453452A priority Critical patent/CN101322278B/zh
Priority to US12/095,708 priority patent/US7998614B2/en
Publication of WO2007063857A1 publication Critical patent/WO2007063857A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0585Construction or manufacture of accumulators having only flat construction elements, i.e. flat positive electrodes, flat negative electrodes and flat separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/102Primary casings; Jackets or wrappings characterised by their shape or physical structure
    • H01M50/105Pouches or flexible bags
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/471Spacing elements inside cells other than separators, membranes or diaphragms; Manufacturing processes thereof
    • H01M50/474Spacing elements inside cells other than separators, membranes or diaphragms; Manufacturing processes thereof characterised by their position inside the cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/471Spacing elements inside cells other than separators, membranes or diaphragms; Manufacturing processes thereof
    • H01M50/48Spacing elements inside cells other than separators, membranes or diaphragms; Manufacturing processes thereof characterised by the material
    • H01M50/486Organic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • H01M50/491Porosity
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a lithium ion secondary battery, and more particularly to a cell case of a lithium ion secondary battery.
  • lithium ion secondary batteries are modularized.
  • One module is a cell case in which an electrode bundle in which plate-like positive electrodes, cathodes, and separators are alternately layered is placed in a cell case and sealed together with an electrolyte.
  • an electrode bundle in which plate-like positive electrodes, cathodes, and separators are alternately layered is placed in a cell case and sealed together with an electrolyte.
  • one cell unit is formed, and a plurality of the cell units are arranged and packed in a module case.
  • the cell case and the module case are generally configured by a hard case made of resin or metal, for example, which does not deform together.
  • the capacity of the module case configured by the hard case is determined in advance, and therefore the total volume of the plurality of cell units stored in the module case is also determined in advance.
  • the wall thickness of the cell case is relatively thick, so that the cell case can be accommodated by the wall thickness.
  • the number of electrode plates is limited, and the capacity in the cell case is also limited.
  • the cell case is configured as a wrapping type bouch case as described above, the wall thickness of the cell case can be reduced, and the electrode bundle can be easily stored in the cell case without requiring an extra space.
  • Lithium ion secondary batteries can be configured without changing the outer dimensions of the case.
  • at least the module case is constructed of a node case, so that it is possible to sufficiently absorb external impacts.
  • the electrode bundle is simply covered with a laminate film as described above, however, the adhesion between the laminated film and the electrode bundle increases, and lithium ions that use a liquid electrolyte are used.
  • the secondary battery has a problem that the electrolyte cannot be sufficiently injected between the laminate film and the electrode bundle.
  • the present invention has been made to solve such problems, and an object of the present invention is to provide a lithium ion secondary battery capable of small size and large capacity without inferior manufacturing workability. Provide There is to be.
  • the lithium ion secondary battery of the present invention is a cell in which a plate-like positive electrode, negative electrode, and separator are stacked in a cell case and sealed with an electrolytic solution.
  • a lithium ion secondary battery in which a unit is formed and a plurality of the cell units are arranged and packed in a module case to form a module, the cell case being formed of a laminate film, A porous spacer having an insulating force is interposed between the entire peripheral surface or a part of the surface and the laminate film.
  • the electrolyte solution is well stored in each hole of the porous spacer having the insulating force, and even when the adhesion between the laminate film and the spacer is high, The electrolyte can be sufficiently injected between the laminate film and the electrode bundle.
  • the wall thickness of the cell case is reduced and the electrode bundle can be easily stored in the cell case without requiring an extra space, and the shape of the cell case is not unstable.
  • the porous spacer has a hard material force of a predetermined hardness or more. This prevents the spacer from being deformed so that the volume of each hole does not change carelessly. Therefore, the electrolyte can be always well stored in each hole, and the power generation efficiency can be reliably improved.
  • FIG. 1 is a perspective view of a cell unit of a lithium ion secondary battery according to the present invention.
  • FIG. 2 is an exploded perspective view of a cell unit of a lithium ion secondary battery according to the present invention.
  • FIG. 3 is a part of a cross-sectional view taken along line AA in FIG.
  • FIG. 1 shows a perspective view of a cell unit 1 of a lithium ion secondary battery according to the present invention.
  • FIG. 2 shows an exploded perspective view of the cell unit 1
  • FIG. 3 partially shows a cross-sectional view taken along the line AA in FIG.
  • the cell unit 1 is a constituent unit of a modularized lithium ion secondary battery.
  • a lithium ion secondary battery is constructed by storing a plurality of modules in a module case (not shown) that is a hard case made of resin or metal.
  • the cell unit 1 is basically a cell case comprising a laminate film 22 and an electrode bundle 10 in which a plurality of positive electrode plates 12, negative electrode plates 14, and separator plates 16 are laminated in layers.
  • the electrode bundle 10 and the laminated film 22 are brought into close contact with each other after being stored in 20 and decompressed, and then sealed.
  • the positive electrode plate 12 has a structure in which positive electrode materials are gathered on both surfaces of a positive electrode current collector made of aluminum or the like. Examples of the material of the positive electrode plate 12 include lithium manganate (Li
  • lithium nickel oxide LiNiO 2
  • LiNiO 2 lithium nickel oxide
  • the negative electrode plate 14 has a structure in which negative electrode materials are gathered on both sides of a negative electrode current collector that also has a copper isotropic force.
  • the material of the negative electrode plate 14 is, for example, graphite, preferably an amorphous carbon-based material. Materials are adopted.
  • the separator plate 16 insulates the positive electrode plate 12 and the negative electrode plate 14, and as the material of the separator plate 16, for example, polyethylene, polypropylene, or the like is employed.
  • the laminate film 22 is composed of a polymer metal composite film in which, for example, a heat-fusible resin film, an aluminum foil, and a high-rigid resin film are laminated. Heat-bondable resin films can be easily bonded to each other, or heat-bondable resin films can be easily bonded to other homogeneous resins. Accordingly, the cell case 20 that is a wrapping type bouch case can be easily configured using the laminate film 22, and the electrode bundle 10 and the electrolyte can be easily sealed in the cell case 20.
  • the porous material also has an insulating force between the entire circumference (partial surface) of the side surface excluding the upper and lower surfaces of the electrode bundle 10 and the laminate film 22.
  • Spacer 30 is installed.
  • the cell unit 1 has a porous side surface.
  • the electrode bundle 10 covered with the spacer 30 and the electrolyte solution are stored in a cell case 20 made of a laminate film 22, and the pressure is reduced and the electrode bundle 10 or the spacer 30 and the laminate film 22 are brought into close contact with each other and sealed. It is composed.
  • a positive electrode terminal 13 and a negative electrode terminal 15 are protruded from the upper part of the electrode bundle 10 to provide a resin lid 25, and the laminate film 22 is made of a porous film.
  • the laminate film 22 After winding around the spacer 30 so as to be in close contact with the spacer 30 and bonding the ends to each other (shown with diagonal lines), the upper part is bonded to the side surface of the resin lid 25 over the entire circumference (hatched line) The lower part is bonded to each other (indicated by diagonal lines) and sealed. That is, the laminate film 22 constitutes a cell case 20 which is a wrapping type bouch case so as to be in close contact with the porous spacer 30 at the side surface portion of the electrode bundle 10.
  • the porous spacer 30 is made of, for example, a hard material (hard resin or the like) having a hardness equal to or higher than a predetermined hardness, and the thickness thereof is, for example, the thickness of the electrode bundle 10 (for example, 10 mm). 1 Z10 or less (for example, 1 mm or less).
  • the porous spacer 30 is provided with a large number of micropores 32 penetrating therethrough, and each micropore 32 is configured to be able to sufficiently hold the electrolyte therein. ing.
  • a porous spacer 30 is interposed between the entire circumference of the side surface of the electrode bundle 10 and the laminate film 22, so that the cell case 20 is formed. A part of the electrolyte solution enters and is held in the micropores 32 of the porous spacer 30 by capillary action or the like.
  • the wall thickness (film thickness) of the cell case 20 is reduced, and no extra space is required. While the electrode bundle 10 can be easily stored in the cell case 20, It is possible to improve the power generation efficiency by preventing the internal resistance of the lithium ion secondary battery from increasing.
  • the lithium ion secondary battery of the present invention it is preferable to reduce the size and increase the capacity of the lithium ion secondary battery while preventing the deterioration of the manufacturing workability and improving the power generation efficiency. Can be realized.
  • porous spacer 30 is made of a hard material, the deformation of the spacer 30 is difficult.
  • the electrolytic solution can be always well stored in each fine hole 32, and the power generation efficiency can be reliably improved.
  • the quantity of the fine holes 32 (opening ratio) can be easily injected between the electrode bundle 10 and the laminate film 22 by changing the opening diameter of each fine hole 32 and the thickness of the spacer 30. The amount can be adjusted.
  • the laminate film 22 is not only around the side surface of the electrode bundle 10 but also the upper and lower surfaces.
  • the porous spacer 30 including the upper and lower surfaces of the electrode bundle 10 including the upper and lower surfaces (the positive terminal 13 and the negative terminal 15 are connected). Provided).
  • the porous spacer 30 may be provided only on a pair of opposing side surfaces of the electrode bundle 10 without providing the entire circumference of the side surface of the electrode bundle 10. However, a sufficient effect can be obtained.
  • the porous spacer 30 is configured so as to form a large number of micropores 32 having a circular cross-sectional shape.
  • the cross-sectional shape of the micropore 32 can be of any shape. It may be composed of structural members.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Secondary Cells (AREA)
  • Connection Of Batteries Or Terminals (AREA)
  • Sealing Battery Cases Or Jackets (AREA)
  • Cell Separators (AREA)

Abstract

 板状の正極(12)、負極(14)及びセパレータ(16)を層状に重ね合わせた電極束(10)をセルケース(20)に入れ電解液とともに密封してセルユニット(1)を形成し、当該セルユニットを複数個ずつモジュールケースに並べて梱包して一つのモジュールを構成してなるリチウムイオン二次電池において、セルケースをラミネートフィルム(22)で構成し、電極束の全周面または一部の表面とラミネートフィルムとの間に絶縁体からなる多孔質のスペーサ(30)を介装した。

Description

明 細 書
リチウムイオン二次電池
技術分野
[0001] 本発明は、リチウムイオン二次電池に係り、詳しくはリチウムイオン二次電池のセル ケースに関する。
背景技術
[0002] 通常、リチウムイオン二次電池はモジュール化されており、一つのモジュールは、板 状の正極、陰極及びセパレータが交互に層状に重ね合わされた電極束をセルケ一 スに入れ電解液とともに密封して一つのセルユニットを形成し、当該セルユニットを複 数個ずつモジュールケースに並べて梱包することで構成されている。
[0003] そして、従来、セルケースとモジュールケースについては、共に変形しないような例 えば榭脂製または金属製のハードケースで構成するのが一般的である。
[0004] これより、ハードケースで構成されたモジュールケース内容量は予め決まっており、 故にモジュールケース内に収納される複数個のセルユニットの総体積も予め決まつ ている。
[0005] ところが、従来のようにセルケースをモジュールケースと同様にハードケースで構成 すると、セルケースの壁厚が比較的厚いため、当該壁厚の分だけセルケース内に収 容することができる電極板の数が制限されることになり、セルケース内の容量も制限さ れる。
[0006] また、電極束をセルケースに収納する際の作業性を向上させるためにはセルケース 側に余剰スペースを設ける必要がある力 セルケースを変形しな 、ハードケースで構 成した場合には、余剰スペースを効率よく設けることが困難であり、収容することがで きる内容量ち制限される。
[0007] このように、セルケースをノヽードケースによって構成した場合には、内容量が制限さ れるためリチウムイオン二次電池モジュールの小型大容量ィ匕が難し 、と 、う問題があ る。
[0008] この場合、一つのセルケースの容量を大きくすれば全体としてセルケースの壁厚の 総体積量を低減可能であるが、一つのセルケース体積が増える結果、モジュールケ ース内に挿入可能なセルケース数が減少し、電極板、電解液等を変更しない限り電 圧が下がってしまうという新たな問題が生じる。
[0009] そこで、セルケースをラッピング型バウチケースとし、電極束をラミネートフィルムで 包み込んだうえで減圧し密着させるように構成したリチウムイオン二次電池が考えら れて ヽる (日本国特開 2004— 103415号公報参照)。
[0010] このようにセルケースをラッピング型バウチケースで構成するようにすれば、セルケ 一スの壁厚を薄くでき、余剰スペースを必要とせずに電極束をセルケースに容易に 収納可能で、セルケースの外寸法の変更無しでリチウムイオン二次電池を構成可能 である。また、少なくともモジュールケースをノヽードケースで構成することで外部から の衝撃については十分に吸収可能である。
[0011] し力しながら、上記のように電極束を単純にラミネートフィルムで覆うようにすると、ラ ミネ一トフイルムと電極束との密着度合いが高くなり、液体状の電解液を使用するリチ ゥムイオン二次電池ではラミネートフィルムと電極束との間に電解液を十分に注液で きないという問題がある。
[0012] このようにセルケース内に電解液を十分に注液できないことになると、内部抵抗が 増大する等の不都合が生じ、発電効率の低下を招き好ましいことではない。なお、上 記公報に開示の技術の場合には、ラミネートフィルムと電極束との間にさらに弾性体 を介装するようにして 、るが、この場合であっても状況は同じである。
[0013] そこで、ラミネートフィルムと電極束との密着度合いを低くすることが考えられるが、 このように密着度合 、を逆に低くすると、セルケースとしての形状が不安定になりモジ ユールケースへの梱包性、即ちリチウムイオン二次電池の製造作業性に悪影響を与 えるという問題がある。また、単に密着度合いを低くするだけでは、ラミネートフィルム と電極束との間の隙間にばらつきが生じ、電解液を一様に注液することができず、発 電効率の向上を十分に図れな 、と 、う問題もある。
発明の開示
[0014] 本発明はこのような問題点を解決するためになされたもので、その目的とするところ は、製造作業性の悪ィ匕なく小型大容量ィ匕の可能なリチウムイオン二次電池を提供す ることにある。
[0015] この目的を達成するために、本発明のリチウムイオン二次電池は、板状の正極、負 極及びセパレータを層状に重ね合わせた電極束をセルケースに入れ電解液とともに 密封してセルユニットを形成し、当該セルユニットを複数個ずつモジュールケースに 並べて梱包して一つのモジュールを構成してなるリチウムイオン二次電池であって、 前記セルケースをラミネートフィルムで構成し、前記電極束の全周面または一部の表 面と前記ラミネートフィルムとの間に絶縁体力 なる多孔質のスぺーサを介装したこと を特徴とする。
[0016] 従って、絶縁体力 なる多孔質のスぺーサの各孔内に電解液が良好に貯留される ことになり、ラミネートフィルムと当該スぺーサとの密着度が高い場合であっても、ラミ ネートフィルムと電極束との間に電解液を十分に注液することができる。
[0017] これにより、セルケースの壁厚を薄くし且つ余剰スペースを必要とせずに電極束を セルケースに容易に収納可能であるとともに、セルケースとしての形状が不安定にな らな 、ようにしてモジュールケースへの梱包性、即ち製造作業性の悪ィ匕を防止しつ つ発電効率の向上を図るようにでき、リチウムイオン二次電池の小型大容量化を実 現することができる。
[0018] この際、前記多孔質のスぺーサは所定硬度以上の硬質材料力もなるのが好ましい これにより、当該スぺーサの変形を防止して各孔の容積が不用意に変化しないよう にでき、故に電解液を各孔内に常に良好に貯留でき、確実に発電効率の向上を図る ことができる。
図面の簡単な説明
[0019] [図 1]本発明に係るリチウムイオン二次電池のセルユニットの斜視図である。
[図 2]本発明に係るリチウムイオン二次電池のセルユニットの分解斜視図である。
[図 3]図 1の A— A線に沿う断面図の一部である。
発明を実施するための最良の形態
[0020] 以下、本発明の実施形態を添付図面に基づき説明する。
図 1には、本発明に係るリチウムイオン二次電池のセルユニット 1の斜視図が示され ており、図 2には、当該セルユニット 1の分解斜視図が示され、図 3には、図 1の A— A 線に沿う断面図が部分的に示されている。
[0021] セルユニット 1は、モジュール化されたリチウムイオン二次電池の一構成単位であり
、榭脂または金属製のハードケース力 なるモジュールケース(図示せず)に複数収 納されることによりリチウムイオン二次電池を構成する。
[0022] セルユニット 1は、基本的には、それぞれ複数の正極板 12、負極板 14及びセパレ ータ板 16が層状に重ね合わされた電極束 10と電解液とをラミネートフィルム 22から なるセルケース 20に収納し減圧して電極束 10とラミネートフィルム 22とを密着させた 後に密封して構成されて 、る。
[0023] 正極板 12は、アルミニウム等カゝらなる正極集電体の両面に正極材料が結集した構 造を有しており、当該正極板 12の材料としては、例えばリチウムマンガン酸ィ匕物 (Li
Mn O )、リチウムニッケル酸化物(LiNiO )等が採用される。
2 4 2
[0024] 負極板 14は、銅等力もなる負極集電体の両面に負極材料が結集した構造を有し ており、当該負極板 14の材料としては、例えば黒鉛、好ましくは非晶質カーボン系材 料等が採用される。
[0025] セパレータ板 16は、正極板 12と負極板 14とを絶縁するものであり、当該セパレータ 板 16の材料としては、例えばポリエチレン、ポリプロピレン等が採用される。
[0026] なお、これら正極板 12、負極板 14及びセパレータ板 16の構成は公知であり、これ らの詳細についてはここでは説明を省略する。
[0027] ラミネートフィルム 22は、例えば熱融着性榭脂フィルム、アルミ箔、高剛性榭脂フィ ルムを積層した高分子金属複合フィルムで構成されており、超音波融着等を用いて 表面の熱融着性榭脂フィルム同士を容易に接着可能、或いは熱融着性榭脂フィル ムを他の同質の榭脂に容易に接着可能である。これより、ラミネートフィルム 22を用い てラッピング型バウチケースであるセルケース 20を簡単に構成可能であり、電極束 1 0と電解液とを当該セルケース 20内に容易に密封可能である。
[0028] そして、本発明に係るリチウムイオン二次電池では、さらに、電極束 10の上下面を 除く側面の全周(一部の表面)とラミネートフィルム 22との間に絶縁体力もなる多孔質 のスぺーサ 30が介装されている。つまり、セルユニット 1は、側面が多孔質のスぺー サ 30に覆われた電極束 10と電解液とをラミネートフィルム 22からなるセルケース 20 に収納し減圧して電極束 10或いはスぺーサ 30とラミネートフィルム 22とを密着させ た後に密封するように構成されて 、る。
[0029] 詳しくは、図 1に示すように、電極束 10の上部には正極端子 13及び負極端子 15を 突出させて榭脂蓋 25が設けられており、ラミネートフィルム 22は、多孔質のスぺーサ 30の周りに当該スぺーサ 30と密着するように巻かれて端部同士が接着 (斜線で示す )された後、上部が当該榭脂蓋 25の側面と全周に亘り接着 (斜線で示す)され、下部 が互いに接着 (斜線で示す)されて封鎖されている。即ち、ラミネートフィルム 22は、 電極束 10の側面部分において多孔質のスぺーサ 30と密着するようにしてラッピング 型バウチケースであるセルケース 20を構成して!/、る。
[0030] 多孔質のスぺーサ 30は、例えば所定硬度以上の硬度を有した硬質材料 (硬質榭 脂等)で構成されており、その厚みは例えば電極束 10の厚み(例えば、 10mm)の 1 Z10以下 (例えば、 1mm以下)である。
[0031] そして、多孔質のスぺーサ 30には、貫通して多数の微細孔 32がー様に設けられて おり、各微細孔 32は、内部に電解液を十分に保持可能に構成されている。
[0032] 以下、このように構成された本発明に係るリチウムイオン二次電池のセルユニット 1 の作用について説明する。
[0033] 上述したように、電極束 10の側面の全周とラミネートフィルム 22との間には多孔質 のスぺーサ 30が介装されてセルケース 20が構成されており、これにより、充填された 電解液の一部が毛細管現象等によって当該多孔質のスぺーサ 30の微細孔 32に浸 入し保持される。
[0034] このように微細孔 32の内部に電解液が保持されることになると、図 3に示すように、 ラミネートフィルム 22とスぺーサ 30との密着度が高!、状態、即ちラミネートフィルム 22 力 Sスぺーサ 30に隙間無く張り付いた状態であっても、電極束 10とラミネートフィルム 2 2との間に電解液が一様にしてほぼ確実に注液した状態となる。
[0035] これにより、ラミネートフィルム 22を用いてラッピング型バウチケースであるセルケー ス 20を構成した場合にお!、て、セルケース 20の壁厚(フィルム厚)を薄くし且つ余剰 スペースを必要とせずに電極束 10をセルケース 20に容易に収納可能でありながら、 リチウムイオン二次電池の内部抵抗の上昇を防止して発電効率の向上を図ることが できる。
[0036] また、ラミネートフィルム 22とスぺーサ 30との密着度が高いことで、セルケース 20の 形状が不安定にならな 、ようにでき、セルケース 20のモジュールケースへの梱包性、 即ち製造作業性の悪ィ匕を防止することができる。
[0037] このように、本発明に係るリチウムイオン二次電池によれば、製造作業性の悪化を 防止して発電効率の向上を図りながら、リチウムイオン二次電池の小型大容量化を 好適に実現することができる。
[0038] また、多孔質のスぺーサ 30は硬質材料で構成されて ヽるので、スぺーサ 30の変形
(主として弾性変形)を防止して各微細孔 32の容積が不用意に変化しないようにでき
、故に電解液を各微細孔 32内に常に良好に貯留でき、確実に発電効率の向上を図 ることがでさる。
[0039] なお、微細孔 32の数量(開口率)ゃ各微細孔 32の開口径ゃスぺーサ 30の厚さを 変えることで容易に電極束 10とラミネートフィルム 22間における電解液の注液量を調 節可能である。
[0040] 以上で本発明に係るリチウムイオン二次電池の実施形態の説明を終える力 実施 形態は上記に限られるものではな 、。
[0041] 例えば、上記実施形態では、多孔質のスぺーサ 30を電極束 10の側面の全周にの み設けるようにしている力 ラミネートフィルム 22を電極束 10の側面周りのみならず上 下面周りについても密着させてセルケース 20を構成するような場合には、多孔質の スぺーサ 30を当該上下面をも含めて電極束 10の全周面 (正極端子 13及び負極端 子 15を除く)に設けるのが好ましい。
[0042] また、多孔質のスぺーサ 30を電極束 10の側面の全周に設けることなく当該電極束 10の側面のうち対向する一対の側面にのみ設けるようにしてもよぐこのようにしても 十分な効果を得ることができる。
[0043] また、上記実施形態では、断面形状が円形の微細孔 32を多数形成するようにして 多孔質のスぺーサ 30を構成しているが、孔内に電解液を保持可能であれば微細孔 32の断面形状は如何なるものであってもよぐ多孔質のスぺーサ 30を例えばメッシュ 構造の部材で構成するようにしてもょ '

Claims

請求の範囲
[1] 板状の正極、負極及びセパレータを層状に重ね合わせた電極束をセルケースに入 れ電解液とともに密封してセルユニットを形成し、当該セルユニットを複数個ずっモジ ユールケースに並べて梱包して一つのモジュールを構成してなるリチウムイオン二次 電池であって、
前記セルケースをラミネートフィルムで構成し、
前記電極束の全周面または一部の表面と前記ラミネートフィルムとの間に絶縁体か らなる多孔質のスぺーサを介装したことを特徴とするリチウムイオン二次電池。
[2] 請求項 1記載のリチウムイオン二次電池において、
前記多孔質のスぺーサは所定硬度以上の硬質材料力 なることを特徴とするリチウ ムイオン二次電池。
PCT/JP2006/323737 2005-12-02 2006-11-28 リチウムイオン二次電池 WO2007063857A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN2006800453452A CN101322278B (zh) 2005-12-02 2006-11-28 锂离子二次电池
US12/095,708 US7998614B2 (en) 2005-12-02 2006-11-28 Lithium ion rechargeable cell

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005349142A JP4803360B2 (ja) 2005-12-02 2005-12-02 リチウムイオン二次電池
JP2005-349142 2005-12-02

Publications (1)

Publication Number Publication Date
WO2007063857A1 true WO2007063857A1 (ja) 2007-06-07

Family

ID=38092190

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/323737 WO2007063857A1 (ja) 2005-12-02 2006-11-28 リチウムイオン二次電池

Country Status (4)

Country Link
US (1) US7998614B2 (ja)
JP (1) JP4803360B2 (ja)
CN (1) CN101322278B (ja)
WO (1) WO2007063857A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140377645A1 (en) * 2012-01-20 2014-12-25 Sk Innovation Co., Ltd. Electrode Assembly for Secondary Battery

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010113271A1 (ja) * 2009-03-31 2010-10-07 三菱重工業株式会社 二次電池および電池システム
CN201466126U (zh) * 2009-04-30 2010-05-12 比亚迪股份有限公司 一种单体电池及包括该单体电池的动力电池组
JP6003647B2 (ja) * 2010-09-17 2016-10-05 日本電気株式会社 二次電池
JP5397436B2 (ja) * 2010-11-18 2014-01-22 日産自動車株式会社 二次電池
JP2012181971A (ja) * 2011-02-28 2012-09-20 Sanyo Electric Co Ltd 電池セルの製造方法及び電池セル、電源装置並びにこれを備える車両
CN102280606A (zh) * 2011-06-29 2011-12-14 力神迈尔斯动力电池系统有限公司 一种能量功率型锂离子电池内部绝缘保护垫
KR101327777B1 (ko) * 2011-08-24 2013-11-12 에스케이이노베이션 주식회사 배터리 모듈
JP5382079B2 (ja) * 2011-08-26 2014-01-08 日産自動車株式会社 二次電池
GB2495640B (en) * 2011-10-14 2014-05-07 Bosch Gmbh Robert Tool battery with sealing film
US20130149586A1 (en) 2011-12-09 2013-06-13 Samsung Sdi Co., Ltd. Battery cell
JP5779562B2 (ja) * 2012-09-19 2015-09-16 日立オートモティブシステムズ株式会社 角形電池
JP6344027B2 (ja) * 2014-04-14 2018-06-20 株式会社豊田自動織機 蓄電装置及び蓄電装置の製造方法
CN105845880B (zh) * 2015-01-15 2018-08-10 深圳市格瑞普电池有限公司 设置有定位防护装置的铝塑膜叠片锂离子电池
JP6558810B2 (ja) * 2017-10-16 2019-08-14 セイコーインスツル株式会社 電気化学セル及び電気化学セルの製造方法
US20200176725A1 (en) * 2018-12-04 2020-06-04 GM Global Technology Operations LLC Pouch-type battery cells and methods for manufacturing the same
US20220407166A1 (en) * 2019-11-20 2022-12-22 Sanyo Electric Co., Ltd. Electricity storage device and insulating holder
JPWO2021235163A1 (ja) * 2020-05-19 2021-11-25
KR20220109177A (ko) * 2021-01-28 2022-08-04 주식회사 엘지에너지솔루션 외형고정틀이 구비된 전극조립체 및 이를 포함하는 리튬 이차전지
WO2023027464A1 (ko) * 2021-08-24 2023-03-02 주식회사 엘지에너지솔루션 이차전지, 그의 제조방법 및 전지팩

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000268877A (ja) * 1999-03-17 2000-09-29 Nec Corp 二次電池
JP2004103415A (ja) * 2002-09-10 2004-04-02 Nissan Motor Co Ltd ラミネート二次電池、複数のラミネート二次電池からなる組電池モジュール、複数の組電池モジュールからなる組電池ならびにこれらいずれかの電池を搭載した電気自動車

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0864199A (ja) * 1994-08-17 1996-03-08 A T Battery:Kk 電 池
JP4273369B2 (ja) * 1999-06-14 2009-06-03 株式会社ジーエス・ユアサコーポレーション 枠付き電池
JP3648152B2 (ja) * 2000-12-01 2005-05-18 Necトーキン株式会社 蓄電素子及びその製造方法
JP3852376B2 (ja) * 2002-06-28 2006-11-29 日産自動車株式会社 電池外装ケース
JP4424053B2 (ja) * 2004-04-28 2010-03-03 トヨタ自動車株式会社 ラミネート型二次電池、およびその組電池

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000268877A (ja) * 1999-03-17 2000-09-29 Nec Corp 二次電池
JP2004103415A (ja) * 2002-09-10 2004-04-02 Nissan Motor Co Ltd ラミネート二次電池、複数のラミネート二次電池からなる組電池モジュール、複数の組電池モジュールからなる組電池ならびにこれらいずれかの電池を搭載した電気自動車

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140377645A1 (en) * 2012-01-20 2014-12-25 Sk Innovation Co., Ltd. Electrode Assembly for Secondary Battery
US9761857B2 (en) * 2012-01-20 2017-09-12 Sk Innovation Co., Ltd. Electrode assembly for secondary battery

Also Published As

Publication number Publication date
US7998614B2 (en) 2011-08-16
JP2007157427A (ja) 2007-06-21
US20100227216A1 (en) 2010-09-09
CN101322278B (zh) 2011-04-27
CN101322278A (zh) 2008-12-10
JP4803360B2 (ja) 2011-10-26

Similar Documents

Publication Publication Date Title
WO2007063857A1 (ja) リチウムイオン二次電池
KR101216422B1 (ko) 실링부의 절연성이 향상된 이차전지
JP6102058B2 (ja) 蓄電素子
JP5899744B2 (ja) 定置用電力システム及び定置用電力装置の製造方法
JP5618706B2 (ja) 積層型電池
WO2010047079A1 (ja) 積層型リチウムイオン二次電池
KR101072681B1 (ko) 적층형 이차 전지
JP6743664B2 (ja) 蓄電装置及び蓄電装置の製造方法
KR101108447B1 (ko) 밀봉성이 우수한 파우치형 이차전지의 제조방법
WO2006114993A1 (ja) 電極積層体および電気デバイス
KR20080038465A (ko) 구조적 안정성과 절연저항성이 우수한 전지셀
US7417845B2 (en) Electric double-layer capacitor, electric energy storage device including the same, and production method for electric double-layer capacitor
KR100910624B1 (ko) 중첩식 이차전지
JP2010165686A (ja) 蓄電モジュールと該モジュール用枠体
JP6959514B2 (ja) 蓄電モジュール、蓄電モジュールの製造方法、及び、蓄電装置の製造方法
KR20170058047A (ko) 일회용 가스 포집부를 포함하고 있는 파우치형 전지케이스 및 이를 포함하는 이차전지의 제조방법
KR101192092B1 (ko) 적층형 전극 조립체 및 이를 포함하는 리튬 이온 이차전지
AU2003228041A8 (en) Packaging device for an electrochemical device and method for making the same
JP7489406B2 (ja) セル電池
JP4784067B2 (ja) 蓄電モジュール
JP5216292B2 (ja) 蓄電素子
KR20150051142A (ko) 가스 제거 공정이 필요없는 리튬 이차 전지
KR20180137346A (ko) 퇴화셀 회생 방법
KR20190008654A (ko) 배터리 팩
KR20180137347A (ko) 퇴화셀 회생 방법

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200680045345.2

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 12095708

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06833541

Country of ref document: EP

Kind code of ref document: A1