WO2007063746A1 - 洗浄装置及び洗浄方法 - Google Patents

洗浄装置及び洗浄方法 Download PDF

Info

Publication number
WO2007063746A1
WO2007063746A1 PCT/JP2006/323216 JP2006323216W WO2007063746A1 WO 2007063746 A1 WO2007063746 A1 WO 2007063746A1 JP 2006323216 W JP2006323216 W JP 2006323216W WO 2007063746 A1 WO2007063746 A1 WO 2007063746A1
Authority
WO
WIPO (PCT)
Prior art keywords
cleaning
tank
liquid
chemical solution
chemical
Prior art date
Application number
PCT/JP2006/323216
Other languages
English (en)
French (fr)
Inventor
Akitake Tamura
Kazuya Dobashi
Teruyuki Hayashi
Original Assignee
Tokyo Electron Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Electron Limited filed Critical Tokyo Electron Limited
Publication of WO2007063746A1 publication Critical patent/WO2007063746A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/304Mechanical treatment, e.g. grinding, polishing, cutting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02041Cleaning
    • H01L21/02043Cleaning before device manufacture, i.e. Begin-Of-Line process
    • H01L21/02052Wet cleaning only
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/42Electrodialysis; Electro-osmosis ; Electro-ultrafiltration; Membrane capacitive deionization
    • B01D61/44Ion-selective electrodialysis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B08CLEANING
    • B08BCLEANING IN GENERAL; PREVENTION OF FOULING IN GENERAL
    • B08B3/00Cleaning by methods involving the use or presence of liquid or steam
    • B08B3/04Cleaning involving contact with liquid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B08CLEANING
    • B08BCLEANING IN GENERAL; PREVENTION OF FOULING IN GENERAL
    • B08B3/00Cleaning by methods involving the use or presence of liquid or steam
    • B08B3/04Cleaning involving contact with liquid
    • B08B3/10Cleaning involving contact with liquid with additional treatment of the liquid or of the object being cleaned, e.g. by heat, by electricity or by vibration
    • B08B3/14Removing waste, e.g. labels, from cleaning liquid; Regenerating cleaning liquids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67017Apparatus for fluid treatment
    • H01L21/67028Apparatus for fluid treatment for cleaning followed by drying, rinsing, stripping, blasting or the like
    • H01L21/6704Apparatus for fluid treatment for cleaning followed by drying, rinsing, stripping, blasting or the like for wet cleaning or washing
    • H01L21/67057Apparatus for fluid treatment for cleaning followed by drying, rinsing, stripping, blasting or the like for wet cleaning or washing with the semiconductor substrates being dipped in baths or vessels

Definitions

  • the present invention relates to a cleaning apparatus and a cleaning method, and more particularly to a technique for cleaning an object to be cleaned, such as a semiconductor wafer or a part (part) for a semiconductor manufacturing apparatus, used in semiconductor processing.
  • the semiconductor processing means that a semiconductor layer, an insulating layer, a conductive layer, etc. are formed in a predetermined pattern on a target object such as a semiconductor wafer or a glass substrate for an FPD (Flat Panel Display) such as an LCD (Liquid Crystal Display).
  • FPD Full Panel Display
  • LCD Liquid Crystal Display
  • a system for cleaning an object to be processed such as a semiconductor wafer (hereinafter also simply referred to as “wafer”) is used.
  • This cleaning is performed in order to remove particles, organic contaminants, impurities such as impurity metals, or a natural oxide film formed on the surface of the wafer.
  • alkaline cleaning for example, cleaning using an alkaline solution such as ammonia peroxyhydrogen
  • acid cleaning for example, using an acidic solution such as hydrofluoric acid
  • the chemical solution for cleaning refers to a solution containing a chemical for cleaning an object to be cleaned such as a wafer.
  • FIG. 11 is an explanatory view showing an aspect of cleaning a wafer in a conventional cleaning system.
  • the cleaning system generally includes a chemical cleaning unit consisting of a chemical cleaning tank 10 for storing chemical liquid 12 and a pure water cleaning unit consisting of a pure water cleaning tank 20 for storing pure water 22.
  • the wafer W is first immersed in the chemical solution 12 of the chemical solution cleaning tank 10, and then immersed in the pure water 22 of the pure water cleaning tank 20, thereby allowing contamination of the wafer surface and the like. Removed.
  • the chemical cleaning tank 10 is used for cleaning the wafer W that has been subjected to various treatments.
  • the chemical solution 12 in the chemical solution washing tank 10 contains various impurity metal components (for example, Na, K, Ca, Ni, Cr, Fe, etc.) exist as metal ions, for example.
  • Such metal ions 14 do not adhere to the wafer W in the chemical cleaning tank 10, but adhere to the surface of the wafer W when the wafer W is pulled up by the chemical cleaning tank 10.
  • the metal component adhering to the surface of the wafer W at this time has been considered as follows. That is, since these metal components are in a dissolved or floating state such as metal ions, they can be sufficiently removed by rinsing with pure water. For example, new pure water is constantly circulated in the pure water cleaning tank 20, or the pure water power in the pure water cleaning tank 20 also removes impurities such as fine particles, colloidal substances, organic substances, metals and anions to the limit level. Return to pure water washing tank 20 again. As a result, by maintaining the pure water in the pure water cleaning tank 20 at a high purity at all times, impurity metal ions adhering to the surface of the wafer W can be removed by rinsing with pure water.
  • Japanese Patent Application Laid-Open No. 11 307497 discloses a technique for enhancing the effect of removing impurities by rinsing with pure water.
  • the pure water in the pure water washing tank 20 is not only kept at high purity, but an additive such as hydrogen gas is added to the pure water, or the pure water is vibrated to enhance the removal effect.
  • An object of the present invention is to provide a cleaning apparatus and a cleaning method capable of cleaning an object to be cleaned more reliably.
  • a first aspect of the present invention is a cleaning apparatus
  • a washing tank that stores chemicals so that the object to be washed can be soaked and washed
  • a reducing member for reducing a metal component in the chemical liquid disposed outside the cleaning tank and a circulation system including a circulation path for circulating the chemical liquid between the cleaning tank and the reducing member.
  • a second aspect of the present invention is the cleaning apparatus according to the first aspect, wherein the cleaning tank includes a downstream tank and an upstream tank that store the chemical liquid, and the downstream tank and the chemical tank so that the chemical liquid can overflow. And a partition wall partitioning the upstream tank.
  • a third aspect of the present invention is a cleaning method using a cleaning apparatus,
  • the cleaning device includes:
  • a washing tank that stores chemicals so that the object to be washed can be soaked and washed
  • a reduction member that reduces a metal component in the chemical solution disposed outside the cleaning tank; and a circulation system that includes a circulation path for circulating the chemical solution between the cleaning tank and the reduction member.
  • the cleaning method includes:
  • a fourth aspect of the present invention is the cleaning method according to the third aspect, wherein the cleaning tank includes a downstream tank and an upstream tank that store the chemical liquid, and the downstream tank and the chemical tank so that the chemical liquid can overflow.
  • the cleaning tank includes a downstream tank and an upstream tank that store the chemical liquid, and the downstream tank and the chemical tank so that the chemical liquid can overflow.
  • the chemical solution cleaning includes a step of immersing the object to be cleaned in the chemical solution in the order of the downstream tank and the upstream tank.
  • FIG. 1 is a diagram showing a cleaning process including acid cleaning of a wafer.
  • FIG. 2 is a graph showing the results of Experiment 1 for cleaning a semiconductor wafer.
  • FIG. 3 is a schematic view showing a cleaning device according to the first embodiment of the present invention.
  • FIG. 4 is a view showing an electrodialysis unit used in the cleaning apparatus of FIG. 3.
  • FIG. 5 is a schematic view showing a cleaning device according to a modification of the first embodiment.
  • FIG. 6 is a schematic view showing a cleaning device according to a second embodiment of the present invention.
  • FIG. 7 is an explanatory view showing a mode of cleaning a wafer in the cleaning apparatus of FIG.
  • FIG. 8 is a schematic view showing a cleaning device according to a modification of the second embodiment.
  • FIG. 9 is a graph showing the results of Experiment 2 for cleaning a semiconductor wafer.
  • FIG. 10 is a diagram showing a cleaning process including alkaline cleaning and acid cleaning of a wafer.
  • FIG. 11 is an explanatory view showing an aspect of cleaning a wafer in a conventional cleaning system.
  • the impurity metal component adhering to the surface of the wafer and W when the wafer W is lifted from the chemical solution cleaning tank 10 depends on pure water depending on the type of metal component. It cannot be removed sufficiently even by rinsing and remains on the surface of the wafer W.
  • the hydrogen ion concentration (pH value) on the surface of the wafer W changes and is neutralized as soon as it enters the pure water cleaning tank 20.
  • a part of the metal ions 14 on the surface of the wafer W (particularly, part of the metal ions of heavy metals such as Ni, Cr, and Fe) is deposited on the surface of the wafer W as a solid impurity metal 24. Further, some of the metal ions may be dissolved in the pure water 22 and deposited as solid impurity metal 34 on the inner wall of the pure water cleaning tank 20.
  • the semiconductor wafer (object to be cleaned) was subjected to a cleaning process as shown in Fig. 1 (including an acid cleaning process, a pure water cleaning process, and a drying process).
  • the acid cleaning process the wafer surface was cleaned using a hydrofluoric acid solution as a cleaning chemical.
  • the hydrofluoric acid solution the metal components (Ni, Cr, Fe, Na, K, Ca) that are likely to be mixed in the actual acid cleaning process are actually processed. What was mixed in the contained concentration was used.
  • the concentration of each metal component on the wafer surface before processing was set to an order of 1.0 ⁇ 10 9 at O m S / cm 2 or less.
  • the pure water cleaning step the wafer cleaned in the acid cleaning process was rinsed with pure water.
  • the drying process the wafer rinsed in the pure water cleaning process was dried in an oven. After each of these treatment steps, the concentration of metal components (Ni, Cr, Fe, Na, K, Ca) on the wafer surface was measured.
  • FIG. 2 is a graph showing the results of Experiment 1 for cleaning a semiconductor wafer.
  • the concentration of each metal component is from 1.0 X 10 14 to 1.
  • the metal component is merely dissolved as metal ions on the surface of the wafer W, and does not precipitate as a solid metal and adhere to the surface of the wafer W. For this reason, conventionally, it has been considered that such metal components can be sufficiently removed by keeping the pure water in the subsequent pure water washing step at a high purity.
  • the metal component decreased to some extent by performing the pure water cleaning step. However, it was found that depending on the type of metal component, there are some that are sufficiently removed by washing with pure water and some that remain without being removed. Specifically, as shown in FIG. 2, the metal components of Na, K, and Ca decreased to 1. OX 10 atomsZcm 2 (remaining on the wafer surface was sufficiently small! /,). On the other hand, the metal components of Ni, Cr, and Fe decreased only to the order of 1. OX 10 12 to 1. OX 10 13 atoms / cm 2 (many residues on the wafer surface).
  • FIG. 3 is a schematic view showing the cleaning apparatus according to the first embodiment of the present invention.
  • the cleaning apparatus 100 includes a cleaning tank 110 that stores a chemical solution (for example, a chemical solution for acid cleaning) 112 so that an object to be cleaned can be immersed and cleaned.
  • a chemical solution for example, a chemical solution for acid cleaning
  • an electrodialysis unit (reducing member) 200 for reducing metal components (for example, metal ions) in the chemical solution 112 is disposed.
  • the washing tank 110 and the electrodialysis unit 200 are connected by a circulation system 120 including a liquid feeding pipe (circulation path) 122, whereby the chemical solution is circulated.
  • the reduction member 200 is not limited to the electro-permeation unit, and may be of any configuration as long as it can reduce at least the impurity heavy metal component in the chemical solution.
  • the cleaning tank 110 includes a liquid outlet 114 and a liquid inlet 116 formed on the first and second side walls facing each other.
  • the liquid feeding pipe 122 includes a first end 124 and a second end 126 connected to the liquid outlet 114 and the liquid inlet 116, respectively.
  • the liquid outlet 114 and the liquid inlet 116 are, for example, As shown in FIG. 3, the cleaning tank 110 is provided so as to face the lower side of the side wall.
  • a circulation pump 128 for circulating the chemical liquid 112 in the cleaning tank 110 from the liquid outlet 114 to the liquid inlet 116 is disposed in the liquid feeding pipe 122.
  • the wafer W is immersed in the chemical solution 112 and cleaned in the cleaning tank 110.
  • the chemical liquid 112 is circulated by the circulation system 120 and the metal components (for example, metal ions) in the chemical liquid are reduced by the electrodialysis unit 200.
  • the chemical liquid 112 discharged from the liquid outlet 114 of the cleaning tank 110 is reduced in metal components by the electrodialysis unit 200 and returned to the cleaning tank 110 from the liquid inlet 116 again. Therefore, the concentration of the metal component in the chemical solution 112 in the cleaning tank 110 can always be kept below a predetermined value.
  • the amount of metal components for example, Na, K, Ca, Ni, Cr, Fe, etc.
  • adhering to the wafer surface when the wafer W is lifted from the cleaning tank 110 is reduced. It can be reduced sufficiently.
  • the force can be reduced not only for light metal components such as Na, K, and Ca, but also for heavy metal components (heavy metal ions) such as Ni, Cr, and Fe. As a result, it is possible to prevent metal components from being deposited on the surface of the wafer by subsequent rinsing with pure water.
  • the chemical solution in the cleaning tank 110 is replaced with a new chemical solution that does not contain a metal component, there is a possibility that the metal component does not adhere to the cleaned wafer surface. .
  • the concentration of metal components gradually increases by repeatedly cleaning the object to be cleaned such as a wafer. For this reason, it is necessary to frequently replace the chemical solution in the cleaning tank 110 according to the concentration of the metal component. From the viewpoint of environmental protection in recent years, it is preferable to reuse chemicals, which are limited resources, as much as possible to reduce the frequency of replacement.
  • the concentration of the metal component in the chemical solution can always be kept below a predetermined value by circulating the chemical solution. For this reason, it is not necessary to frequently replace the chemical solution in the cleaning tank 110 from the viewpoint of the metal component concentration.
  • FIG. 4 is a diagram showing an electrodialysis unit 200 used in the cleaning apparatus of FIG.
  • the electrodialysis unit 200 has a structure for screening a metal component with an ion exchange membrane.
  • the electrodialysis unit 200 includes, for example, a dialysis tank formed in a horizontally long rectangular parallelepiped shape. Includes 210.
  • the dialysis tank 210 includes an anode (+) provided near one end wall and a cathode (-) provided near the other end wall. Between the anode (+) and the cathode ( ⁇ ) of the dialysis tank 210, a plurality of cation exchange membranes 212 and a plurality of anion exchange membranes 214 are alternately arranged in pairs.
  • the dialysis tank 210 is divided into a plurality of / J chambers 220, 222, 224, and 226 by the cation exchange membrane 212 and the anion exchange membrane 214.
  • the compartment 220 is a compartment having an anode (+), and the compartment 226 is a compartment having a cathode (-).
  • Each chamber 222 is a section sandwiched between the cation exchange membrane 212 on the anode (+) side and the anion exchange membrane 214 on the cathode ( ⁇ ) side.
  • Each chamber 224 is a section sandwiched between the anion exchange membrane 214 on the anode (+) side and the cation exchange membrane 212 on the cathode (one) side.
  • a chemical liquid discharged from the liquid outlet 114 of the cleaning tank 110 for example, an acid cleaning chemical liquid (in this case, an HF solution) containing impurity metal ions is supplied to each of the liquid via the liquid supply pipe 122. Supplied to chamber 224.
  • Chemical solutions include cations (eg H + and metal ions) and anions (eg F_).
  • Fluorine ions F ⁇ are electrically attracted to the anode (+), pass through the anion exchange membrane 214, and move to the respective chambers 222 adjacent to the respective chambers 224 on the anode (+) side.
  • the hydrogen ions H + are electrically attracted to the cathode (one), pass through the cation exchange membrane 212, and move to each chamber 222 adjacent to the cathode (one) side of each chamber 224, respectively.
  • metal ions for example, metal ions of Ni, Cr, Fe, Na, K, and Ca contained in the chemical solution are less likely to permeate the anion exchange membrane 214 as compared to hydrogen ions H +. For this reason, since the metal ion is a cation and is electrically attracted to the cathode (one), it is blocked by the anion exchange membrane 214 and remains in each chamber 224.
  • a chemical solution here, HF solution
  • This chemical solution is returned from each small chamber 222 through the liquid feeding pipe 122 to the cleaning tank 110 from the liquid inlet 116.
  • the metal ions remaining in each chamber 224 are discharged to the waste liquid treatment system 202.
  • FIG. 5 is a schematic view showing a cleaning device according to a modification of the first embodiment.
  • the cleaning tank 110 includes a liquid outlet 114 formed on the first side wall. And an additional cleaning space 117 for additionally cleaning the wafer W provided above the liquid surface of the chemical liquid 112 adjacent to the second side wall facing the first side wall.
  • the liquid supply pipe (circulation path) 122 of the circulation system 120 includes a first end 124 connected to the liquid outlet 114 and a second end 126 disposed above the additional cleaning space 117. .
  • the second end 126 of the liquid feeding pipe 122 may be provided with a discharge port for discharging the chemical liquid 112 or a nozzle for discharging the chemical liquid 112 in a shower shape.
  • the wafer W is immersed in the chemical solution 112 in the cleaning tank 110 for cleaning.
  • the wafer W is additionally cleaned with the chemical solution released from the second end 126 of the liquid supply pipe 122. Thereby, the metal component on the surface of the wafer W can be further reduced.
  • the chemical solution released from the second end 126 of the liquid feeding pipe 122 has the metal component reduced by the electrodialysis unit 200 and has not been used yet for cleaning the wafer W. Reduced chemical solution. Therefore, the metal component on the surface of the wafer W can be further reduced by further cleaning the wafer W with such a chemical solution.
  • FIG. 6 is a schematic view showing a cleaning apparatus according to the second embodiment of the present invention.
  • the cleaning apparatus 101 includes a cleaning tank 110 that stores a chemical solution (for example, a chemical solution for acid cleaning) so that an object to be cleaned can be immersed and cleaned.
  • a chemical solution for example, a chemical solution for acid cleaning
  • an electrodialysis unit (reducing member) 200 for reducing metal components (for example, metal ions) in the chemical solution is disposed.
  • the washing tank 110 and the electrodialysis unit 200 are connected by a circulation system 120 including a liquid feeding pipe (circulation path) 122, and thereby a chemical solution is circulated.
  • the cleaning tank 110 includes a downstream tank 140 and an upstream tank 130 that store a chemical solution, and a partition wall 118 that partitions the downstream tank 140 and the upstream tank 130 so that the chemical solution 132 in the upstream tank 130 can overflow.
  • the downstream tank 140 and the upstream tank 130 include a liquid outlet 114 and a liquid inlet 116 respectively formed on the first side wall on the downstream tank 140 side and the second side wall on the upstream tank 130 side that face each other.
  • the liquid feeding pipe 122 includes a first end 124 and a second end 126 connected to the liquid outlet 114 and the liquid inlet 116, respectively.
  • a circulation pump 128 that circulates the chemical liquid 112 in the cleaning tank 110 to the liquid inlet 116 is also provided in the liquid feeding pipe 122.
  • the chemical liquid whose metal component has been reduced through the electrodialysis unit 200 first enters the upstream tank 130, and the chemical liquid overflowed from the upstream tank 130 enters the downstream tank 140. .
  • the chemical liquid 132 in the upstream tank 130 is in a state where there are fewer metal components than the chemical liquid 142 in the downstream tank 140.
  • FIG. 7 is an explanatory view showing a mode of cleaning the wafer in the cleaning apparatus 101 of FIG.
  • the wafer W is immersed in the chemicals 142 and 132 in the order of the downstream tank 140 and the upstream tank 130 for cleaning.
  • the chemical solution is circulated by the circulation system 120 and the metal components (for example, metal ions) in the chemical solution are reduced by the electrodialysis unit 200.
  • the metal component on the surface of the wafer W can be further reduced by cleaning the wafer W with the chemical solution 132 in the upstream tank 130 in which the metal component is further reduced.
  • FIG. 8 is a schematic view showing a cleaning device according to a modification of the second embodiment.
  • the cleaning tank 110 is disposed on the liquid outlet 114 formed on the first side wall on the downstream tank 140 side, and on the second side wall on the upstream tank 130 side facing the first side wall.
  • An additional cleaning space 117 for additionally cleaning the wafer W provided adjacent to the upper surface of the chemical liquid 132 in the upstream tank 130 is provided.
  • the liquid supply pipe (circulation path) 122 of the circulation system 120 includes a first end 124 connected to the liquid outlet 114 and a second end 126 disposed above the additional cleaning space 117.
  • the second end 126 of the liquid feeding pipe 122 may be provided with a discharge port for discharging the chemical liquid 112, or a nozzle for discharging the chemical liquid 112 in a shower shape.
  • Ueno and W are immersed in the chemicals 142 and 132 in the order of the downstream tank 140 and the upstream tank 130 for cleaning.
  • Ueno and W are additionally cleaned with the chemical solution discharged from the second end 126 of the liquid supply pipe 122.
  • the metal components on the surface of Ueno and W can be further reduced.
  • the chemical solution released from the second end 126 of the liquid feeding pipe 122 has the metal component reduced by the electrodialysis unit 200 and has not been used for cleaning the wafer W yet. Reduced chemical solution. Therefore, the metal component on the surface of the wafer W can be further reduced by further cleaning the wafer W with such a chemical solution.
  • the semiconductor wafer (object to be cleaned) was subjected to a cleaning process as shown in Fig. 1 (including an acid cleaning process, a pure water cleaning process, and a drying process).
  • the wafer surface was cleaned using a hydrofluoric acid solution as a cleaning chemical.
  • a hydrofluoric acid solution a solution in which metal components (Ni, Cr, Fe, Na, K, Ca) that are highly likely to be mixed in the actual acid cleaning process were mixed in advance was used.
  • the average value of the concentration of metal components in the chemical solution (HF solution) was set to lppm.
  • sample 2 the average concentration of metal components in the chemical solution (HF solution) was set to lOOppb.
  • the concentration of each metal component on the wafer surface before processing was set to an order of 1.0 ⁇ 10 9 atomsZcm 2 or less.
  • the wafers cleaned in the acid cleaning process were rinsed with pure water.
  • the wafers rinsed in the pure water cleaning process were dried in an oven. After each of these treatment steps, the concentration of metal components (Ni, Cr, Fe, Na, K, Ca) on the wafer surface was measured.
  • FIG. 9 is a graph showing the results of Experiment 2 for cleaning a semiconductor wafer.
  • lines yl and y2 represent the results of sample 1 and sample 2, respectively.
  • the chemical solution in the cleaning tank 110 is circulated by the circulation system 120, so that the heavy metal component in the chemical liquid in the cleaning tank 110 is particularly reduced. For this reason, it is possible to prevent the heavy metal impurities on the wafer surface from solidifying and adhering after cleaning with pure water.
  • the concentration of each metal component on the wafer surface after the completion of each cleaning step becomes approximately 1Z10. Therefore, if the metal component concentration in the cleaning chemical is on the order of 1Z100 in the case of line y2, that is, lppb, the concentration of each metal component on the wafer surface after each cleaning step is completed as shown by the dotted line y3. Can be reduced to the order of 1.0 ⁇ 10 9 atomsZcm 2 .
  • the chemical solution in the cleaning tank 110 is circulated from the circulation system 120 to keep the metal component concentration in the chemical solution below a predetermined value. This sufficiently reduces the amount of metal components adhering to the wafer surface when the wafer is lifted from the chemical cleaning tank. Can be made. As a result, it is possible to prevent the metal component from being deposited on the surface of the wafer by subsequent rinsing with pure water.
  • the cleaning tank 110 is provided with a concentration sensor (indicated by reference numeral 152 in FIG. 3 and indicated by reference numerals 154 and 156 in FIG. 6) for detecting the concentration of metal components in the chemical solution.
  • a concentration sensor indicated by reference numeral 152 in FIG. 3 and indicated by reference numerals 154 and 156 in FIG. 6
  • the circulation pump 128 is turned on / off based on the detection value by the concentration sensor, and the amount of the chemical solution circulated through the circulation system 120 is controlled. adjust.
  • the allowable upper limit of the metal component concentration in the chemical in cleaning tank 110 can be set to a predetermined value.
  • the electrodialysis unit (reducing member) 200 that reduces the metal component in the chemical solution is arranged for a cleaning device that performs acid cleaning (for example, cleaning using an acidic solution such as hydrofluoric acid).
  • the electrodialysis unit 200 can be arranged for alkaline cleaning (for example, cleaning using an alkaline solution such as ammonia hydrogen peroxide).
  • the cleaning process is a process in which an alkali cleaning process and an acid cleaning process are continuously performed, for example, as shown in FIG. ).
  • the electrodialysis unit 200 can be provided for one or both of a cleaning device that performs alkali cleaning and a cleaning device that performs acid cleaning.
  • the electrodialysis unit 200 by applying the electrodialysis unit 200 to a cleaning apparatus for acid cleaning in which the concentration of metal components in the chemical solution is the highest, the metal component reduction efficiency on the wafer surface can be improved, and the cleaning cost can be improved. Can also be reduced.
  • the electrodialysis unit 200 by applying the electrodialysis unit 200 to a cleaning apparatus that performs a cleaning process immediately before the pure water cleaning process, the concentration of metal components, particularly heavy metal components, on the wafer surface is reduced before the pure water cleaning process is performed. be able to
  • a semiconductor wafer is exemplified as an object to be cleaned.
  • other objects to be cleaned such as objects to be processed (including glass substrates in addition to semiconductor wafers), memory elements, CPUs, sensor elements, etc.
  • process product materials and parts for semiconductor manufacturing equipment for example, electrode plates disposed in etching processing equipment.
  • the present invention is applicable to a cleaning apparatus and a cleaning method for cleaning an object to be cleaned such as a semiconductor wafer.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Water Supply & Treatment (AREA)
  • Health & Medical Sciences (AREA)
  • Urology & Nephrology (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Cleaning Or Drying Semiconductors (AREA)
  • Cleaning By Liquid Or Steam (AREA)

Abstract

 洗浄装置(100)は、被洗浄物(W)を漬けて洗浄できるように薬液(112)を蓄える洗浄槽(110)を含む。洗浄槽(110)外に薬液(112)中の金属成分を低減させる低減部材(200)が配設される。洗浄槽(110)と低減部材(200)との間で薬液(112)を循環させるように、循環路(122)を含む循環系(120)が配設される。

Description

明 細 書
洗浄装置及び洗浄方法
技術分野
[0001] 本発明は、洗浄装置及び洗浄方法に関し、特に、半導体処理で使用される、半導 体ウェハ、半導体製造装置用の部品 (パーツ)等の被洗浄物を洗浄するための技術 に関する。ここで、半導体処理とは、半導体ウェハや LCD(Liquid Crystal Display)の ような FPD (Flat Panel Display)用のガラス基板等の被処理体上に半導体層、絶縁 層、導電層等を所定のパターンで形成することにより、該被処理体上に半導体デバ イスや、半導体デバイスに接続される配線、電極等を含む構造物を製造するために 実施される種々の処理を意味する。
背景技術
[0002] 半導体製造(半導体処理)にお!/、ては、被処理体例えば半導体ウェハ(以下単に「 ウェハ」ともいう)を洗浄するためのシステムが使用される。この洗浄は、ウェハの表面 に付着したパーティクル、有機汚染物、不純物金属等のコンタミネーシヨン或いは表 面に形成された自然酸化膜等を除去するために行われる。この種の洗浄システムで は、例えばウェハに対してアルカリ洗浄 (例えばアンモニア過酸ィ匕水素のようなアル カリ性溶液を使用する洗浄)や酸洗浄 (例えばフッ酸のような酸性溶液を使用する洗 浄)等の薬液洗浄が行われた後、純水によるすすぎ洗浄が行われる。ここで、洗浄用 の薬液とは、ウェハ等の被洗浄物を洗浄するための薬品を含む溶液を 、う。
[0003] 図 11は、従来の洗浄システムにおいてウェハを洗浄する態様を示す説明図である 。図 11に示すように、一般的に、洗浄システムは、薬液 12を蓄える薬液洗浄槽 10か らなる薬液洗浄ユニットと、純水 22を蓄える純水洗浄槽 20からなる純水洗浄ユニット とを含む。このような洗浄システムでは、ウェハ Wは、先ず、薬液洗浄槽 10の薬液 12 に浸漬され、次に、純水洗浄槽 20の純水 22に浸漬されることにより、ウェハ表面のコ ンタミネーシヨン等が除去される。
[0004] 薬液洗浄槽 10は種々の部材ゃ種々の処理が施されたウェハ Wの洗浄に使用され る。このため、その薬液洗浄槽 10内の薬液 12には、種々の不純物金属成分 (例えば Na、 K、 Ca、 Ni、 Cr、 Fe等)が例えば金属イオンとして存在する。このような金属ィォ ン 14は、薬液洗浄槽 10内ではウェハ Wに付着しないが、ウェハ Wを薬液洗浄槽 10 力も引き上げる際にウェハ Wの表面に付着する。
[0005] 従来のこの分野の知識によれば、この際にウェハ Wの表面に付着する金属成分に ついては、以下のように考えられていた。即ち、これらの金属成分は、例えば金属ィ オン等のように溶解または浮遊している状態にあるため、純水によるすすぎ洗浄によ つて十分に取り除くことができる。例えば、純水洗浄槽 20内に常に新しい純水を循環 させる、或いは純水洗浄槽 20内の純水力も微粒子、コロイダル物質、有機物、金属、 陰イオン等の不純物を極限レベルまで取り除 ヽて再び純水洗浄槽 20へ戻す。これ により、純水洗浄槽 20の純水を常に高純度に維持することにより、ウェハ Wの表面に 付着する不純物の金属イオンを、純水によるすすぎ洗浄で取り除くことができる。
[0006] 更に、特開平 11 307497号公報は、純水によるすすぎ洗浄で不純物を除去する 効果を高める技術を開示する。この技術では、純水洗浄槽 20の純水を高純度に保 つだけではなぐその純水に水素ガス等の添加物を添加する、或いは純水に振動を 与えることにより、除去効果を高める。
発明の開示
[0007] 本発明の目的は、より確実に被洗浄物を洗浄することができる洗浄装置及び洗浄 方法を提供することにある。
[0008] 本発明の第 1の視点は、洗浄装置であって、
被洗浄物を漬けて洗浄できるように薬液を蓄える洗浄槽と、
前記洗浄槽外に配設された前記薬液中の金属成分を低減させる低減部材と、 前記洗浄槽と前記低減部材との間で前記薬液を循環させる循環路を含む循環系と を具備する。
[0009] 本発明の第 2の視点は、第 1の視点の洗浄装置において、前記洗浄槽は、前記薬 液を蓄える下流槽及び上流槽と、前記薬液がオーバーフローできるように前記下流 槽と前記上流槽とを仕切る隔壁とを具備する。
[0010] 本発明の第 3の視点は、洗浄装置を用いる洗浄方法であって、 前記洗浄装置は、
被洗浄物を漬けて洗浄できるように薬液を蓄える洗浄槽と、
前記洗浄槽外に配設された前記薬液中の金属成分を低減させる低減部材と、 前記洗浄槽と前記低減部材との間で前記薬液を循環させる循環路を含む循環系と を具備し、
前記洗浄方法は、
前記洗浄装置において、前記被洗浄物に薬液洗浄を行う工程と、
次に、前記被洗浄物を純水ですすぎ洗浄する工程と、
次に、前記被洗浄物を乾燥する工程と、
前記洗浄槽と前記低減部材との間で前記薬液を循環させながら、前記低減部材に より前記薬液中の金属成分を低減させる工程と、
を具備する。
[0011] 本発明の第 4の視点は、第 3の視点の洗浄方法において、前記洗浄槽は、前記薬 液を蓄える下流槽及び上流槽と、前記薬液がオーバーフローできるように前記下流 槽と前記上流槽とを仕切る隔壁とを具備し、
前記薬液洗浄は、前記下流槽及び前記上流槽の順で前記被洗浄物を前記薬液 に漬けて洗浄する工程を具備する。
図面の簡単な説明
[0012] [図 1]図 1は、ウェハの酸洗浄を含む洗浄処理の工程を示す図である。
[図 2]図 2は、半導体ウェハを洗浄する実験 1の結果を示すグラフである。
[図 3]図 3は、本発明の第 1実施形態に係る洗浄装置を示す概略図である。
[図 4]図 4は、図 3の洗浄装置で使用される電気透析ユニットを示す図である。
[図 5]図 5は、第 1実施形態の変形例に係る洗浄装置を示す概略図である。
[図 6]図 6は、本発明の第 2実施形態に係る洗浄装置を示す概略図である。
[図 7]図 7は、図 6の洗浄装置においてウェハを洗浄する態様を示す説明図である。
[図 8]図 8は、第 2実施形態の変形例に係る洗浄装置を示す概略図である。
[図 9]図 9は、半導体ウェハを洗浄する実験 2の結果を示すグラフである。 [図 10]図 10は、ウェハのアルカリ洗浄と酸洗浄とを含む洗浄処理の工程を示す図で ある。
[図 11]図 11は、従来の洗浄システムにお ヽてウェハを洗浄する態様を示す説明図で ある。
発明を実施するための最良の形態
[0013] 本発明者等は、本発明の開発の過程で、半導体ウェハを洗浄するための従来のこ の種の洗浄システムにおいて発生する問題について研究した。その結果、本発明者 等は、従来のこの分野の知識に反した以下に述べるような知見を得た。
[0014] 即ち、本発明者等の実験によると、ウェハ Wを薬液洗浄槽 10から引き上げる際にゥ エノ、 Wの表面に付着する不純物金属成分は、金属成分の種類によっては、純水に よるすすぎ洗浄でも十分に除去できず、ウェハ Wの表面に残留する。例えば、図 11 に示すように、ウェハ Wを純水洗浄槽 20に漬けると、純水洗浄槽 20に入った瞬間に ウェハ Wの表面の水素イオン濃度 (pH値)が変化して中和される。このため、ウェハ Wの表面の金属イオン 14の一部(特に Ni、 Cr、 Fe等の重金属の金属イオンの一部) は、ウェハ Wの表面に固形の不純物金属 24として析出する。また、金属イオンの一 部は純水 22に溶け出して純水洗浄槽 20の内壁に固形の不純物金属 34として析出 する場合もある。
[0015] 前述のように、従来は、薬液洗浄槽 10における洗浄後にウェハ Wの表面に付着す る金属成分を除去するため、すすぎ洗浄用の純水から不純物をできる限り取り除 、 て高純度の純水にする。更に、純水に添加物を添加する、或いは純水に振動を与え たりする等により純水に何らかの作用を持たせるようにする。しかし、金属成分によつ ては、その後の純水によるすすぎ洗浄ではウェハ Wから除去しきれないものがある。 以下では、先ず、従来技術のこの問題点に関して説明する。
[0016] <実験 1 >
半導体ウェハ (被洗浄物)に対して、図 1に示すような洗浄処理 (酸洗浄工程、純水 洗浄工程、乾燥工程力もなる)を行った。酸洗浄工程では、フッ酸溶液を洗浄用の薬 液として使用してウェハ表面を洗浄した。ここで、フッ酸溶液として、実際の酸洗浄ェ 程で混入する可能性の高い金属成分 (Ni、 Cr、 Fe、 Na、 K、 Ca)を、実際の処理で 含まれている程度の濃度で混入させたものを使用した。また、処理前のウェハ表面の 各金属成分濃度を、 1. 0 X 109atOmS/cm2以下のオーダに設定した。純水洗浄ェ 程では、酸洗浄工程で洗浄したウェハに対して純水によるすすぎ洗浄を行った。乾 燥工程では、純水洗浄工程ですすぎ洗浄を行ったウェハをオーブンによって乾燥し た。これら各処理工程後に、ウェハ表面の金属成分 (Ni、 Cr、 Fe、 Na、 K、 Ca)の濃 度を測定した。
[0017] 図 2は、半導体ウェハを洗浄する実験 1の結果を示すグラフである。図 2に示すよう に、酸洗浄工程を実行することによって、各金属成分濃度が、 1. 0 X 109atoms/c m2以下のオーダから、 1. 0 X 1014〜1. O X 1015atoms/cm2のオーダに増加した。 これは、上述したように、酸洗浄工程で洗浄したウェハをフッ酸溶液から引き上げると きに、金属成分がウェハ Wの表面に付着する力 である。
[0018] ただし、この段階では金属成分が金属イオンとしてウェハ Wの表面に溶解している だけであって、固体の金属として析出してウェハ Wの表面に付着しているわけではな い。このため、従来から、このような金属成分はその後の純水洗浄工程による純水を 高純度に保つこと等によって、十分に除去できるものと考えられて ヽた。
[0019] この点に関し、図 2に示すように、純水洗浄工程を実行することによって、金属成分 はある程度は減少した。しかし、金属成分の種類によっては、純水洗浄を行うことによ つて十分に除去されるものと、除去されずに一部残ってしまうものとがあることがわか つた。具体的には、図 2に示すように、 Na、 K、 Caの金属成分については、 1. O X 10 atomsZcm2のオーダまで減少した (ウェハ表面における残留が十分に少な!/、)。 一方、 Ni、 Cr、 Feの金属成分については、 1. O X 1012〜1. O X 1013atoms/cm2 のオーダまでしか減少しなかった (ウェハ表面における残留が多 、)。
[0020] Na、 K、 Caのような軽金属は、比較的純水に溶け易いため、ウェハを純水に漬ける と直ぐに溶け出してウェハから除去される。これに対して、 Ni、 Cr、 Feのような重金属 成分は、比較的純水に溶け難いため、ウェハを純水に入れても一部はウェハ表面に 残ってしまう。この場合、ウェハを純水に入れた瞬間にウェハ表面が中和されて水素 イオン濃度 (pH値)が変化する。このため、ウェハ表面に残った重金属成分 (Ni、 Cr 、 Fe)はウェハ表面に析出(固体化)する。こうして、ウェハ表面に析出した不純物金 属は、純水洗浄工程では除去することはできない。し力も、こうしてウェハ表面に析出 した不純物金属は、次の乾燥処理を行った後にもウェハ表面に残留することになる。
[0021] このように、ウェハに不純物の重金属成分が金属イオンとして付着する場合は、純 水で洗浄することによって、ウェハ表面に一部が固体金属として析出し、不純物金属 をより除去し難くする。このような現象は、従来のように専ら純水洗浄工程に着目し、 純水を高純度に保つようにしたとしても、また純水に水素ガス等の添加物をカ卩えたり 、純水に振動を与えたりする等により純水に何らかの作用を持たせるようにしても防ぐ ことはできない。
[0022] かかる観点から、薬液洗浄槽の薬液における金属成分濃度を常に所定値以下に 保つことが有効となる。これにより、ウェハを薬液洗浄槽から引き上げる際にウェハの 表面に付着する金属成分量を十分に低下させることができる。その結果、その後の 純水によるすすぎ洗浄によってウェハの表面に金属成分が析出することを防止する ことができる。
[0023] 以下に、このような知見に基づいて構成された本発明の実施形態について図面を 参照して説明する。なお、以下の説明において、略同一の機能及び構成を有する構 成要素については、同一符号を付し、重複説明は必要な場合にのみ行う。
[0024] <第 1実施形態 >
図 3は、本発明の第 1実施形態に係る洗浄装置を示す概略図である。図 3に示すよ うに、この洗浄装置 100は、被洗浄物を漬けて洗浄できるように薬液 (例えば酸洗浄 用薬液等) 112を蓄える洗浄槽 110を含む。洗浄槽 110外に、薬液 112中の金属成 分 (例えば金属イオン)を低減させる電気透析ユニット (低減部材) 200が配設される 。洗浄槽 110と電気透析ユニット 200とは、送液配管 (循環路) 122を含む循環系 12 0によって接続され、これによつて薬液が循環される。なお、低減部材 200は、電気透 析ユニットに限られず、薬液中力 少なくとも不純物重金属成分を低減できるもので あれば、どのような構成のものであってもよい。
[0025] 洗浄槽 110は、互いに対向する第 1及び第 2側壁に夫々形成された液出口 114及 び液入口 116を具備する。送液配管 122は、液出口 114及び液入口 116に夫々接 続された第 1端 124及び第 2端 126を具備する。液出口 114と液入口 116は、例えば 図 3に示すように洗浄槽 110の側壁の下方に対向して設けられる。送液配管 122に は、洗浄槽 110内の薬液 112を液出口 114から液入口 116へと循環させる循環ボン プ 128が配設される。
[0026] この洗浄装置 100では、洗浄槽 110内でウェハ Wを薬液 112に漬けて洗浄する。
この際、循環系 120によって薬液 112を循環させて、電気透析ユニット 200によって 薬液中の金属成分 (例えば金属イオン)を低減させる。洗浄槽 110の液出口 114から 排出された薬液 112は、電気透析ユニット 200により金属成分が低減されて、再び液 入口 116から洗浄槽 110内へ戻される。このため、洗浄槽 110の薬液 112中の金属 成分の濃度を常に所定値以下に保つことができる。
[0027] このような薬液でウェハ Wを洗浄すれば、洗浄槽 110からウェハ Wを引き上げる際 にウェハの表面に付着する金属成分 (例えば Na、 K、 Ca、 Ni、 Cr、 Fe等)量を十分 に低下させることができる。し力も、 Na、 K、 Ca等の軽金属成分のみならず、 Ni、 Cr、 Fe等の重金属成分 (重金属イオン)についても低減させることができる。その結果、そ の後の純水によるすすぎ洗浄によってウェハの表面に金属成分が析出することを防 止することができる。
[0028] もし洗浄槽 110の薬液を金属成分が含まれな ヽ新 ヽ薬液と交換すれば、その洗 浄後のウェハ表面に金属成分が付着しな 、ようにすることができる可能性がある。し かし、洗浄槽 110の薬液では、ウェハ等の被洗浄物の洗浄を繰り返すことにより、金 属成分の濃度が徐々に高くなる。このため、金属成分の濃度に応じて洗浄槽 110の 薬液を頻繁に交換する必要が生じてしまう。昨今の環境保全の観点力 みても、有 限な資源である薬液はできるだけ再利用して交換頻度を少なくすることが好ましい。
[0029] これに対して、洗浄装置 100では、薬液を循環させることにより、薬液中の金属成 分濃度を常に所定値以下に保つことができる。このため、金属成分濃度の観点から 洗浄槽 110の薬液を頻繁に交換する必要がなくなる。
[0030] <電気透析ユニット >
図 4は、図 3の洗浄装置で使用される電気透析ユニット 200を示す図である。電気 透析ユニット 200は、イオン交換膜で金属成分をスクリーニングする構造を有する。 具体的には、電気透析ユニット 200は、例えば横長な直方体状に形成された透析槽 210を含む。透析槽 210は、一方の端壁近傍に設けられた陽極(+ )と、他方の端壁 近傍に設けられた陰極(-)とを含む。透析槽 210の陽極(+ )と陰極(-)との間には 、複数の陽イオン交換膜 212と複数の陰イオン交換膜 214とが夫々交互に対となつ て配設される。透析槽 210は、これらの陽イオン交換膜 212と陰イオン交換膜 214と によって複数の/ Jヽ室 220、 222、 224、 226に区画される。
[0031] 小室 220は陽極(+ )を有する区画であり、小室 226は陰極(―)を有する区画であ る。各小室 222は陽極(+ )側の陽イオン交換膜 212と陰極(-)側の陰イオン交換膜 214に挟まれる区画である。各小室 224は陽極(+ )側の陰イオン交換膜 214と陰極 (一 )側の陽イオン交換膜 212に挟まれる区画である。
[0032] このような透析槽 210では、洗浄槽 110の液出口 114から排出される薬液、例えば 不純物金属イオンを含む酸洗浄用薬液 (ここでは、 HF溶液)が送液配管 122を介し て各小室 224に供給される。薬液には陽イオン (例えば H+及び金属イオン)及び陰 イオン (例えば F_)が含まれる。フッ素イオン F—は、陽極(+ )に電気的に引き付けら れ、陰イオン交換膜 214を通過して、各小室 224の陽極(+ )側に夫々隣設する各小 室 222に移動する。水素イオン H+は、陰極(一)に電気的に引き付けられて陽イオン 交換膜 212を通過して、各小室 224の陰極(一)側に夫々隣設する各小室 222に移 動する。
[0033] 一方、薬液に含まれる金属イオン(例えば Ni、 Cr、 Fe、 Na、 K、 Caの金属イオン) は、水素イオン H+に比較して陰イオン交換膜 214を透過し難い。このため、金属ィォ ンは陽イオンであるので陰極(一)に電気的に引き付けられるものの、陰イオン交換 膜 214にブロックされて各小室 224内に残留する。
[0034] 従って、各小室 222では、金属イオンが低減された薬液 (ここでは、 HF溶液)が得 られる。この薬液は、各小室 222から送液配管 122を介して液入口 116から洗浄槽 1 10内へ戻される。なお、各小室 224に残留した金属イオンは廃液処理系 202へ排出 される。
[0035] <第 1実施形態の変形例 >
図 5は、第 1実施形態の変形例に係る洗浄装置を示す概略図である。図 5に示すよ うに、この洗浄装置 100Xでは、洗浄槽 110は、第 1側壁に形成された液出口 114と 、第 1側壁に対向する第 2側壁に隣接して薬液 112の液面の上方に設けられたゥェ ハ Wを追加洗浄するための追加洗浄スペース 117とを具備する。一方、循環系 120 の送液配管 (循環路) 122は、液出口 114に接続された第 1端 124と、追加洗浄スぺ ース 117の上方に配置された第 2端 126とを具備する。なお、送液配管 122の第 2端 126には、薬液 112を放出する放出口を設けてもよぐまた薬液 112をシャワー状に 放出するノズルを設けてもよ!ヽ。
[0036] 図 5に示す洗浄装置 100Xでは、先ずウェハ Wを洗浄槽 110の薬液 112に漬けて 洗浄する。次に、追加洗浄スペース 117において、送液配管 122の第 2端 126から 放出される薬液でウェハ Wを追加洗浄する。これにより、ウェハ Wの表面の金属成分 を更に低減させることができる。
[0037] 即ち、送液配管 122の第 2端 126から放出される薬液は、電気透析ユニット 200に より金属成分が低減されて力 未だウェハ Wの洗浄に使用されていないため、最も 金属成分が低減された薬液である。従って、このような薬液でウェハ Wを更に洗浄す ることによって、ウェハ Wの表面の金属成分を更に低減させることができる。
[0038] <第 2実施形態 >
図 6は、本発明の第 2実施形態に係る洗浄装置を示す概略図である。図 6に示すよ うに、この洗浄装置 101は、被洗浄物を漬けて洗浄できるように薬液 (例えば酸洗浄 用薬液等)を蓄える洗浄槽 110を含む。洗浄槽 110外に、薬液中の金属成分 (例え ば金属イオン)を低減させる電気透析ユニット (低減部材) 200が配設される。洗浄槽 110と電気透析ユニット 200とは、送液配管 (循環路) 122を含む循環系 120によつ て接続され、これによつて薬液が循環される。
[0039] 洗浄槽 110は、薬液を蓄える下流槽 140及び上流槽 130と、上流槽 130の薬液 13 2がオーバーフローできるように下流槽 140と上流槽 130とを仕切る隔壁 118とを具 備する。下流槽 140及び上流槽 130は、互いに対向する下流槽 140側の第 1側壁及 び上流槽 130側の第 2側壁に夫々形成された液出口 114及び液入口 116を具備す る。送液配管 122は、液出口 114及び液入口 116に夫々接続された第 1端 124及び 第 2端 126を具備する。送液配管 122には、洗浄槽 110内の薬液 112を液出口 114 力も液入口 116へと循環させる循環ポンプ 128が配設される。 [0040] このような構成の洗浄装置 101では、電気透析ユニット 200を介して金属成分が低 減された薬液は先に上流槽 130に入り、上流槽 130からオーバーフローした薬液が 下流槽 140に入る。このため、上流槽 130の薬液 132は、下流槽 140の薬液 142より も更に金属成分が少ない状態になる。
[0041] 図 7は、図 6の洗浄装置 101においてウェハを洗浄する態様を示す説明図である。
図 7に示すように、この洗浄装置 101では、下流槽 140及び上流槽 130の順でゥェ ハ Wを薬液 142、 132に漬けて洗浄する。この際、循環系 120によって薬液を循環さ せて、電気透析ユニット 200によって薬液中の金属成分 (例えば金属イオン)を低減 させる。下流槽 140の薬液 142でウェハを洗浄した後、更に金属成分が低減された 上流槽 130の薬液 132でウェハ Wを洗浄することによって、ウェハ Wの表面の金属 成分を更に低減させることができる。
[0042] <第 2実施形態の変形例 >
図 8は、第 2実施形態の変形例に係る洗浄装置を示す概略図である。図 8に示すよ うに、この洗浄装置 101Xでは、洗浄槽 110は、下流槽 140側の第 1側壁に形成され た液出口 114と、第 1側壁に対向する上流槽 130側の第 2側壁に隣接して上流槽 13 0の薬液 132の液面の上方に設けられたウェハ Wを追加洗浄するための追加洗浄ス ペース 117とを具備する。一方、循環系 120の送液配管 (循環路) 122は、液出口 11 4に接続された第 1端 124と、追加洗浄スペース 117の上方に配置された第 2端 126 とを具備する。なお、送液配管 122の第 2端 126には、薬液 112を放出する放出口を 設けてもよぐまた薬液 112をシャワー状に放出するノズルを設けてもよい。
[0043] 図 8に示す洗浄装置 101Xでは、先ず下流槽 140及び上流槽 130の順でウエノ、 W を薬液 142、 132に漬けて洗浄する。次に、追加洗浄スペース 117において、送液 配管 122の第 2端 126から放出される薬液でウエノ、 Wを追加洗浄する。これにより、 ウエノ、 Wの表面の金属成分を更に低減させることができる。
[0044] 即ち、送液配管 122の第 2端 126から放出される薬液は、電気透析ユニット 200に より金属成分が低減されて力 未だウェハ Wの洗浄に使用されていないため、最も 金属成分が低減された薬液である。従って、このような薬液でウェハ Wを更に洗浄す ることによって、ウェハ W表面の金属成分を更に低減させることができる。 [0045] <実験 2>
半導体ウェハ (被洗浄物)に対して、図 1に示すような洗浄処理 (酸洗浄工程、純水 洗浄工程、乾燥工程力もなる)を行った。酸洗浄工程では、フッ酸溶液を洗浄用の薬 液として使用してウェハ表面を洗浄した。このフッ酸溶液として、実際の酸洗浄工程 で混入する可能性の高い金属成分 (Ni、 Cr、 Fe、 Na、 K、 Ca)を予め混入させたも のを使用した。ここで、サンプル 1では、薬液 (HF溶液)における金属成分の濃度の 平均値を lppmに設定した。サンプル 2では、薬液 (HF溶液)における金属成分の濃 度の平均値を lOOppbに設定した。また、処理前のウェハ表面の各金属成分濃度を 、 1. 0 X 109atomsZcm2以下のオーダに設定した。純水洗浄工程では、酸洗浄ェ 程で洗浄したウェハに対して純水によるすすぎ洗浄を行った。乾燥工程では、純水 洗浄工程ですすぎ洗浄を行ったウェハをオーブンによって乾燥した。これら各処理 工程後に、ウェハ表面の金属成分 (Ni、 Cr、 Fe、 Na、 K、 Ca)の濃度を測定した。
[0046] 図 9は、半導体ウェハを洗浄する実験 2の結果を示すグラフである。図 9において、 線 yl、 y2は、夫々サンプル 1、サンプル 2の結果を表す。図 9に示すように、薬液に 含まれる金属成分濃度が少な!/、ほど、各洗浄工程終了後におけるウェハ表面の各 金属成分濃度も少なくなることがわかる。本発明によれば、洗浄槽 110の薬液を循環 系 120によって循環させることにより、特に洗浄槽 110の薬液中の重金属成分を低減 させる。このため、純水洗浄後にウェハ表面の不純物重金属成分が固体化して付着 することを防止することができる。
[0047] 具体的には、線 yl、 y2によれば、薬液中の金属成分濃度が略 lZlOになると、各 洗浄工程終了後のウェハ表面の各金属成分濃度は略 1Z10となる。従って、洗浄用 の薬液中の金属成分濃度を線 y2の場合の 1Z100、即ち lppbのオーダにすれば、 点線で示す線 y3に示すように、各洗浄工程終了後のウェハ表面の各金属成分濃度 を、 1. 0 X 109atomsZcm2のオーダまで低減させることができる。
[0048] <帰結及び変更例 >
以上説明したように、上記実施形態によれば、洗浄槽 110の薬液を循環系 120〖こ より循環させて、薬液中の金属成分濃度を所定値以下に保つ。これにより、ウェハを 薬液洗浄槽から引き上げる際にウェハの表面に付着する金属成分量を十分に低下 させることができる。その結果、その後の純水によるすすぎ洗浄によってウェハの表 面に金属成分が析出することを防止することができる。
[0049] なお、洗浄槽 110に薬液中の金属成分濃度を検出する濃度センサ(図 3では符号 152で示し、図 6では符号 154、 156で示す)を設けることが望ましい。この場合、制 御部 150 (図 3及び図 6参照)の制御下で、濃度センサによる検出値に基づいて、循 環ポンプ 128をオンオフ制御し、循環系 120を循環する薬液の送液量を調整する。 これにより、洗浄槽 110内の薬液中の金属成分濃度の許容可能な上限を所定値に 設定することができる。
[0050] 上記実施形態では、薬液中の金属成分を低減させる電気透析ユニット (低減部材) 200は、酸洗浄 (例えばフッ酸のような酸性溶液を使用する洗浄)を行う洗浄装置に 対して配設される。これに代え、電気透析ユニット 200は、アルカリ洗浄 (例えばアン モ-ァ過酸ィ匕水素のようなアルカリ性溶液を使用する洗浄)に対して配設することが できる。また、洗浄処理は、アルカリ洗浄工程と酸洗浄工程とを連続して実行する処 理、例えば図 10に示すような洗浄処理 (アルカリ洗浄工程、酸洗浄工程、純水洗浄 工程、乾燥工程力もなる)であってもよい。この場合、電気透析ユニット 200は、アル カリ洗浄を行う洗浄装置及び酸洗浄を行う洗浄装置の一方または双方に対して配設 することができる。
[0051] なお、電気透析ユニット 200を、薬液中の金属成分濃度が最も高くなる酸洗浄の洗 浄装置に適用することによって、ウェハ表面の金属成分の低減効率を向上すること ができ、洗浄コストも低下することができる。また、電気透析ユニット 200を、純水洗浄 工程の直前の洗浄工程を行う洗浄装置に適用することにより、純水洗浄工程を実行 する前にウェハ表面の金属成分、特に重金属成分の濃度を低減させることができる
。このため、純水洗浄工程によってウェハ表面に不純物重金属成分が固体ィ匕して付 着することを効率よく防止することができる。これにより、ウェハ上に形成される半導体 デバイス等の質を高くすることができる。
[0052] 上記実施形態では、被洗浄物として半導体ウェハが例示される。これに代え、他の 被洗浄物、例えば、エッチング、成膜等の処理を施す被処理体(半導体ウェハの他 にガラス基板等も含む)、メモリ素子、 CPU、センサ素子等の電子部品の製品または 製品素材、半導体製造装置用の部品 (例えばエッチング処理装置内に配設される電 極板等)を処理することもできる。
産業上の利用可能性
本発明は、例えば半導体ウェハ等の被洗浄物を洗浄するための洗浄装置及び洗 浄方法に適用可能である。

Claims

請求の範囲
[1] 洗浄装置であって、
被洗浄物を漬けて洗浄できるように薬液を蓄える洗浄槽と、
前記洗浄槽外に配設された前記薬液中の金属成分を低減させる低減部材と、 前記洗浄槽と前記低減部材との間で前記薬液を循環させる循環路を含む循環系と を具備する。
[2] 請求項 1に記載の洗浄装置において、前記洗浄槽は、互いに対向する第 1及び第 2側壁に夫々形成された液出口及び液入口を具備し、前記循環路は、前記液出口 及び前記液入口に夫々接続された第 1及び第 2端を具備する。
[3] 請求項 1に記載の洗浄装置において、前記洗浄槽は、第 1側壁に形成された液出 口と、前記第 1側壁に対向する第 2側壁に隣接して前記薬液の液面の上方に設けら れた前記被洗浄物を追加洗浄するための追加洗浄スペースとを具備し、前記循環 路は、前記液出口に接続された第 1端と、前記追加洗浄スペースの上方に配置され た第 2端とを具備する。
[4] 請求項 1に記載の洗浄装置にお!ヽて、前記洗浄槽は、前記薬液を蓄える下流槽及 び上流槽と、前記薬液がオーバーフローできるように前記下流槽と前記上流槽とを 仕切る隔壁とを具備する。
[5] 請求項 4に記載の洗浄装置において、前記下流槽及び前記上流槽は、壁部に形 成された液出口及び液入口を夫々具備し、前記循環路は、前記液出口及び前記液 入口に夫々接続された第 1及び第 2端を具備する。
[6] 請求項 4に記載の洗浄装置にお ヽて、前記下流槽は壁部に形成された液出口を 具備し、前記上流槽は前記薬液の液面の上方に設けられた前記被洗浄物を追加洗 浄するための追加洗浄スペースを具備し、前記循環路は、前記液出口に接続された 第 1端と、前記追加洗浄スペースの上方に配置された第 2端とを具備する。
[7] 請求項 1に記載の洗浄装置において、前記低減部材は、前記薬液中の重金属成 分を低減させるように構成される。
[8] 請求項 7に記載の洗浄装置にお 、て、前記低減部材は、イオン交換膜で金属成分 をスクリーニングする電気透析ユニットを具備する。
[9] 請求項 1に記載の洗浄装置において、前記洗浄槽に配設された前記薬液中の金 属成分濃度を検出する濃度センサと、前記濃度センサによる検出値に基づいて、前 記循環系の動作をオンオフ制御する制御部とを更に具備する。
[10] 請求項 1に記載の洗浄装置にお!、て、前記薬液は酸性溶液である。
[11] 洗浄装置を用いる洗浄方法であって、
前記洗浄装置は、
被洗浄物を漬けて洗浄できるように薬液を蓄える洗浄槽と、
前記洗浄槽外に配設された前記薬液中の金属成分を低減させる低減部材と、 前記洗浄槽と前記低減部材との間で前記薬液を循環させる循環路を含む循環系と を具備し、
前記洗浄方法は、
前記洗浄装置において、前記被洗浄物に薬液洗浄を行う工程と、
次に、前記被洗浄物を純水ですすぎ洗浄する工程と、
次に、前記被洗浄物を乾燥する工程と、
前記洗浄槽と前記低減部材との間で前記薬液を循環させながら、前記低減部材に より前記薬液中の金属成分を低減させる工程と、
を具備する。
[12] 請求項 11に記載の洗浄方法において、前記洗浄槽は、互いに対向する第 1及び 第 2側壁に夫々形成された液出口及び液入口を具備し、前記循環路は、前記液出 口及び前記液入口に夫々接続された第 1及び第 2端を具備し、
前記薬液洗浄は、前記被洗浄物を前記薬液に漬けて洗浄する工程を具備する。
[13] 請求項 11に記載の洗浄方法において、前記洗浄槽は、第 1側壁に形成された液 出口と、前記第 1側壁に対向する第 2側壁に隣接して前記薬液の液面の上方に設け られた前記被洗浄物を追加洗浄するための追加洗浄スペースとを具備し、前記循環 路は、前記液出口に接続された第 1端と、前記追加洗浄スペースの上方に配置され た第 2端とを具備し、 前記薬液洗浄は、前記被洗浄物を前記薬液に漬けて洗浄する工程と、次に、前記 追加洗浄スペースにお ヽて、前記第 2端から放出される前記薬液で前記被洗浄物を 追加洗浄する工程とを具備する。
[14] 請求項 11に記載の洗浄方法において、前記洗浄槽は、前記薬液を蓄える下流槽 及び上流槽と、前記薬液がオーバーフローできるように前記下流槽と前記上流槽と を仕切る隔壁とを具備し、
前記薬液洗浄は、前記下流槽及び前記上流槽の順で前記被洗浄物を前記薬液 に漬けて洗浄する工程を具備する。
[15] 請求項 14に記載の洗浄方法において、前記下流槽及び前記上流槽は、壁部に形 成された液出口及び液入口を夫々具備し、前記循環路は、前記液出口及び前記液 入口に夫々接続された第 1及び第 2端を具備する。
[16] 請求項 14に記載の洗浄方法において、前記下流槽は壁部に形成された液出口を 具備し、前記上流槽は前記薬液の液面の上方に設けられた前記被洗浄物を追加洗 浄するための追加洗浄スペースを具備し、前記循環路は、前記液出口に接続された 第 1端と、前記追加洗浄スペースの上方に配置された第 2端とを具備し、
前記薬液洗浄は、前記被洗浄物を前記下流槽及び前記上流槽の順で前記薬液 に漬けて洗浄する工程と、次に、前記追加洗浄スペースにおいて、前記第 2端から 放出される前記薬液で前記被洗浄物を追加洗浄する工程とを具備する。
[17] 請求項 11に記載の洗浄方法にぉ 、て、前記低減部材は、前記薬液中の重金属成 分を低減させるように構成される。
[18] 請求項 17に記載の洗浄方法にぉ 、て、前記低減部材は、イオン交換膜で金属成 分をスクリーニングする電気透析ユニットを具備する。
[19] 請求項 11に記載の洗浄方法において、前記洗浄装置は、前記洗浄槽に配設され た前記薬液中の金属成分濃度を検出する濃度センサと、前記濃度センサによる検出 値に基づいて、前記循環系の動作をオンオフ制御する制御部とを更に具備し、 前記洗浄方法は、前記濃度センサによる検出値に基づいて、前記循環系の動作を オンオフ制御して前記薬液中の金属成分濃度の許容可能な上限を所定値に設定す る工程を具備する。 [20] 請求項 11に記載の洗浄方法にぉ 、て、前記薬液は酸性溶液である。
PCT/JP2006/323216 2005-11-30 2006-11-21 洗浄装置及び洗浄方法 WO2007063746A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005346622A JP2007157750A (ja) 2005-11-30 2005-11-30 洗浄装置及び洗浄方法
JP2005-346622 2005-11-30

Publications (1)

Publication Number Publication Date
WO2007063746A1 true WO2007063746A1 (ja) 2007-06-07

Family

ID=38092081

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/323216 WO2007063746A1 (ja) 2005-11-30 2006-11-21 洗浄装置及び洗浄方法

Country Status (3)

Country Link
JP (1) JP2007157750A (ja)
KR (1) KR20080015477A (ja)
WO (1) WO2007063746A1 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
MY182575A (en) * 2012-09-29 2021-01-25 Hoya Corp Method for manufacturing glass substrate for magnetic disk, method for manufacturing magnetic disk, and cleaning liquid for cleaning glass substrate for magnetic disk
JP2016059855A (ja) 2014-09-17 2016-04-25 株式会社東芝 処理装置、及び、処理液の再利用方法
JPWO2022024820A1 (ja) * 2020-07-29 2022-02-03

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59121938A (ja) * 1982-12-28 1984-07-14 Toshiba Corp 弱流液による洗浄方法および装置
JPH06151402A (ja) * 1992-10-30 1994-05-31 Sharp Corp ウェット処理装置
JPH07136603A (ja) * 1993-11-17 1995-05-30 Hitachi Ltd 洗浄装置
JPH08192121A (ja) * 1995-01-13 1996-07-30 Hitachi Ltd 洗浄装置
JP2004174375A (ja) * 2002-11-27 2004-06-24 Mitsubishi Heavy Ind Ltd 洗浄方法およびその装置
JP2005066402A (ja) * 2003-08-27 2005-03-17 Mitsubishi Materials Corp ブレード洗浄装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59121938A (ja) * 1982-12-28 1984-07-14 Toshiba Corp 弱流液による洗浄方法および装置
JPH06151402A (ja) * 1992-10-30 1994-05-31 Sharp Corp ウェット処理装置
JPH07136603A (ja) * 1993-11-17 1995-05-30 Hitachi Ltd 洗浄装置
JPH08192121A (ja) * 1995-01-13 1996-07-30 Hitachi Ltd 洗浄装置
JP2004174375A (ja) * 2002-11-27 2004-06-24 Mitsubishi Heavy Ind Ltd 洗浄方法およびその装置
JP2005066402A (ja) * 2003-08-27 2005-03-17 Mitsubishi Materials Corp ブレード洗浄装置

Also Published As

Publication number Publication date
JP2007157750A (ja) 2007-06-21
KR20080015477A (ko) 2008-02-19

Similar Documents

Publication Publication Date Title
JP3198899B2 (ja) ウエット処理方法
US6039815A (en) Cleaning method and apparatus for the same
JP2832171B2 (ja) 半導体基板の洗浄装置および洗浄方法
US6799583B2 (en) Methods for cleaning microelectronic substrates using ultradilute cleaning liquids
JP2832173B2 (ja) 半導体基板の洗浄装置および洗浄方法
JP2001205204A (ja) 電子部品部材類洗浄用洗浄液の製造装置
KR101184880B1 (ko) 종형 열처리 장치의 석영 부재에 부착된 금속 오염 물질의 제거 방법 및 시스템
KR20110007092A (ko) 전자 재료용 세정수, 전자 재료의 세정 방법 및 가스 용해수의 공급 시스템
KR20010007593A (ko) 화학 기계적 연마 후 처리를 위해 침지를 이용하는 무브러시 다중 통과 실리콘 웨이퍼 세정 공정
JP3296405B2 (ja) 電子部品部材類の洗浄方法及び洗浄装置
EP1165261A1 (en) Semiconductor wafer treatment
JP2002261062A (ja) 半導体ウェハ上の粒子を除去する方法及び装置
WO2007063746A1 (ja) 洗浄装置及び洗浄方法
WO2005005063A1 (en) Cleaning and drying a substrate
US20140305471A1 (en) Reduced consumptions stand alone rinse tool having self-contained closed-loop fluid circuit, and method of rinsing substrates using the same
JPH10225664A (ja) ウェット処理装置
JP4475781B2 (ja) 基板処理装置
KR20110082730A (ko) 웨이퍼 세정장치 및 세정방법
JPH1071375A (ja) 洗浄方法
WO2024062739A1 (ja) 基板処理装置およびパーティクル除去方法
KR20020063201A (ko) 전자장치의 제조방법
JP6020626B2 (ja) デバイス用Ge基板の洗浄方法、洗浄水供給装置及び洗浄装置
US20030041876A1 (en) Method and device for removing particles on semiconductor wafers
WO2024057787A1 (ja) 基板処理装置、および、フィルタの気泡除去方法
JPH0831789A (ja) 基板の表面処理装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1020077030760

Country of ref document: KR

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06833062

Country of ref document: EP

Kind code of ref document: A1