WO2007058103A1 - Fuel injection valve - Google Patents

Fuel injection valve Download PDF

Info

Publication number
WO2007058103A1
WO2007058103A1 PCT/JP2006/322289 JP2006322289W WO2007058103A1 WO 2007058103 A1 WO2007058103 A1 WO 2007058103A1 JP 2006322289 W JP2006322289 W JP 2006322289W WO 2007058103 A1 WO2007058103 A1 WO 2007058103A1
Authority
WO
WIPO (PCT)
Prior art keywords
fuel injection
injection valve
tip
seal
valve
Prior art date
Application number
PCT/JP2006/322289
Other languages
French (fr)
Japanese (ja)
Inventor
Motonari Yarino
Susumu Kojima
Yukio Koseki
Tomojiro Sugimoto
Eriko Matsumura
Natsuki Sugiyama
Nobuyuki Shimizu
Original Assignee
Toyota Jidosha Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Jidosha Kabushiki Kaisha filed Critical Toyota Jidosha Kabushiki Kaisha
Publication of WO2007058103A1 publication Critical patent/WO2007058103A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M51/00Fuel-injection apparatus characterised by being operated electrically
    • F02M51/06Injectors peculiar thereto with means directly operating the valve needle
    • F02M51/061Injectors peculiar thereto with means directly operating the valve needle using electromagnetic operating means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/3094Controlling fuel injection the fuel injection being effected by at least two different injectors, e.g. one in the intake manifold and one in the cylinder
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M53/00Fuel-injection apparatus characterised by having heating, cooling or thermally-insulating means
    • F02M53/04Injectors with heating, cooling, or thermally-insulating means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M53/00Fuel-injection apparatus characterised by having heating, cooling or thermally-insulating means
    • F02M53/04Injectors with heating, cooling, or thermally-insulating means
    • F02M53/043Injectors with heating, cooling, or thermally-insulating means with cooling means other than air cooling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M53/00Fuel-injection apparatus characterised by having heating, cooling or thermally-insulating means
    • F02M53/04Injectors with heating, cooling, or thermally-insulating means
    • F02M53/046Injectors with heating, cooling, or thermally-insulating means with thermally-insulating means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M57/00Fuel-injectors combined or associated with other devices
    • F02M57/06Fuel-injectors combined or associated with other devices the devices being sparking plugs
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M61/00Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00
    • F02M61/14Arrangements of injectors with respect to engines; Mounting of injectors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M61/00Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00
    • F02M61/16Details not provided for in, or of interest apart from, the apparatus of groups F02M61/02 - F02M61/14
    • F02M61/166Selection of particular materials
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M61/00Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00
    • F02M61/16Details not provided for in, or of interest apart from, the apparatus of groups F02M61/02 - F02M61/14
    • F02M61/167Means for compensating clearance or thermal expansion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M61/00Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00
    • F02M61/16Details not provided for in, or of interest apart from, the apparatus of groups F02M61/02 - F02M61/14
    • F02M61/18Injection nozzles, e.g. having valve seats; Details of valve member seated ends, not otherwise provided for
    • F02M61/1806Injection nozzles, e.g. having valve seats; Details of valve member seated ends, not otherwise provided for characterised by the arrangement of discharge orifices, e.g. orientation or size
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M2200/00Details of fuel-injection apparatus, not otherwise provided for
    • F02M2200/06Fuel-injection apparatus having means for preventing coking, e.g. of fuel injector discharge orifices or valve needles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M2200/00Details of fuel-injection apparatus, not otherwise provided for
    • F02M2200/85Mounting of fuel injection apparatus
    • F02M2200/858Mounting of fuel injection apparatus sealing arrangements between injector and engine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M2200/00Details of fuel-injection apparatus, not otherwise provided for
    • F02M2200/90Selection of particular materials
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M2200/00Details of fuel-injection apparatus, not otherwise provided for
    • F02M2200/90Selection of particular materials
    • F02M2200/9015Elastomeric or plastic materials
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M2200/00Details of fuel-injection apparatus, not otherwise provided for
    • F02M2200/90Selection of particular materials
    • F02M2200/9053Metals
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M61/00Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00
    • F02M61/04Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00 having valves, e.g. having a plurality of valves in series
    • F02M61/10Other injectors with elongated valve bodies, i.e. of needle-valve type

Definitions

  • the present invention relates to a fuel injection valve that injects fuel, and relates to a fuel injection valve that can obtain various spray characteristics at the time of fuel injection easily and inexpensively.
  • a fuel injection valve has a high temperature because its nozzle tip is exposed to high-temperature combustion gas, and it also becomes high due to the heat received by the fuel injection valve mounting hole force of the cylinder head. If fuel remains there, a deposit is generated and the fuel injection amount is reduced. For this reason, conventionally, in this fuel injection valve, various methods for suppressing the temperature rise of the nozzle tip have been adopted.
  • Patent Document 1 a fuel in which a heat insulating cap with an integrated seal portion is fitted to a nozzle tip end, and the contact area with the combustion gas at the nozzle tip is reduced.
  • An injection valve is disclosed.
  • Patent Document 2 discloses a technique for wrapping the nozzle tip with a heat insulating material and a technique for covering the nozzle tip with a cover and forming a heat insulating layer in a space between the cover.
  • Patent Document 3 below discloses a fuel injection valve provided with a heat transfer protector for bringing a combustion chamber side surface and a low temperature side into thermal contact with a nozzle tip (valve body).
  • Patent Document 4 listed below discloses a fuel injection valve in which a nozzle tip is covered with an elastically deformable seal ring.
  • Patent Document 5 below discloses a technique for disposing an elastic seal member between a valve seat and a valve body at the nozzle tip.
  • Patent Documents 6 and 7 listed below disclose a technique for disposing a heat dissipation gasket between the nozzle tip and the cylinder head.
  • Patent Document 8 below discloses a technique for disposing a metal ring for heat dissipation at the tip of the nozzle.
  • Patent Document 9 below discloses a technique for providing a heater at the nozzle tip.
  • Patent Document 1 Japanese Unexamined Patent Publication No. 2000-345940
  • Patent Document 2 JP-A-9-310660
  • Patent Document 3 Japanese Patent Laid-Open No. 9-222057
  • Patent Document 4 Japanese Patent Laid-Open No. 2000-170628
  • Patent Document 5 Japanese Unexamined Patent Publication No. 2000-110666
  • Patent Document 6 Japanese Patent Laid-Open No. 2003-227441
  • Patent Document 7 JP 2001-90635 A
  • Patent Document 8 Japanese Patent Laid-Open No. 9-126089
  • Patent Document 9 Japanese Patent Laid-Open No. 10-169526
  • an object of the present invention is to provide a fuel injection valve capable of improving the disadvantages of the conventional example, and ensuring a predetermined fuel injection amount.
  • a valve main body for injecting fuel and this A valve tip disposed from the combustion chamber at the tip of the fuel injection valve over a fuel injection valve having a holder that holds the valve body inside and is fixed by being inserted into the fuel injection valve mounting hole. And a seal holding member which is inserted into the fuel injection valve mounting hole and compresses and holds the valve tip seal member with the fuel injection valve tip.
  • the fuel injection valve tip since the adhesion of the valve tip seal member to the fuel injection valve tip is improved and the sealing performance is ensured, the fuel injection valve tip It is possible to reduce the contact area of the combustion gas to the fuel and suppress the temperature rise at the tip of the fuel injection valve.
  • the valve tip seal member is formed of a low thermal conductivity material.
  • the amount of heat transfer from the valve tip seal member to the fuel injection valve tip is reduced, and the temperature of the fuel injection valve tip rises. Can be effectively suppressed.
  • the shaft seal member is disposed on the outer peripheral portion of the tip of the fuel injection valve. Is newly established.
  • the highly elastic seal member absorbs manufacturing variations and assembly errors of the fuel injection valve tip, and its thermal expansion and contraction, the valve tip seal The member is reliably compressed and held, and the desired sealing performance can be ensured.
  • the fuel of claim 1, 2, 3 or 4 The seal holding member can be thinned only by producing the same effect as the fuel injection valve, so the valve tip seal member is placed close to the combustion chamber to improve the temperature rise suppression effect.
  • the fuel injection valve it is possible to arrange the fuel injection valve at a position optimal for fuel injection without retracting the main body of the fuel injection valve.
  • the seal holding member is made of a high elastic modulus material. Mold it.
  • the seal holding member that has the same effect as the fuel injection valve described in claim 1, 2, 3, or 4 has manufacturing variations and The amount of change in the tip of the fuel injection valve due to thermal expansion can be absorbed and the compressive load applied to the tip of the fuel injection valve can be relaxed, so changes in the lift amount of the valve body (needle) can be suppressed. .
  • annular valve tip seal is provided in addition to the fuel injection valve according to any one of claims 1 to 6.
  • An annular seal outer peripheral surface holding member having higher strength than the seal holding member is provided between the outer peripheral surface of the member and the seal holding member.
  • valve tip seal member can be easily removed together with the fuel injection valve tip.
  • At least the seal holding member is combusted in the fuel injection valve according to any one of claims 1 to 9.
  • the part exposed to gas or Z and the inside of the part is equipped with a heat insulation layer.
  • valve tip seal member and A heating means is provided between the front end of the fuel injection valve and the vicinity of the injection hole.
  • the generated deposit can be burned out by heat.
  • a spark is caused near the nozzle hole over the fuel injection valve according to any one of claims 1 to 11.
  • a spark formation means that can be formed.
  • the generated deposit can be burned off by sparks.
  • the valve tip seal member is provided.
  • Detect damage There is provided a possible seal damage detecting means, and an operation control means for making a transition to an operating state capable of suppressing the temperature rise of the fuel injection valve tip when detecting damage to the valve tip seal member.
  • the fuel injection valve according to the present invention can suppress the temperature rise at the front end of the fuel injection valve, so that the generation of deposit at the front end of the fuel injection valve is suppressed, and the fuel A decrease in the injection amount can be prevented. Further, in the fuel injection valve according to the sixth aspect, since the change in the lift amount of the valve body (needle) can be suppressed, fuel injection with a predetermined injection amount becomes possible. Further, in the fuel injection valve according to claims 12 and 13, the generated deposit can be burned out, so that the fuel injection amount can be prevented from decreasing.
  • the temperature rise of the fuel injection valve tip can be suppressed even if the valve tip seal member is damaged, the deposit at the fuel injection valve tip is reduced. Generation is suppressed, and a decrease in fuel injection amount can be prevented.
  • the fuel injection valve of the present invention it is possible to ensure a predetermined fuel injection amount.
  • FIG. 1 is a partial cross-sectional view showing a tip portion of a fuel injection valve according to a first embodiment of the present invention.
  • FIG. 2 is a partial cross-sectional view showing a tip portion in a modification of the fuel injection valve of Embodiment 1 according to the present invention.
  • FIG. 3 is a partial cross-sectional view showing a tip portion of a fuel injection valve of Example 2 according to the present invention.
  • FIG. 4 is a partial cross-sectional view showing a tip portion of a fuel injection valve of Example 3 according to the present invention.
  • FIG. 5 is a partial cross-sectional view showing a tip portion of a fuel injection valve according to Embodiment 4 of the present invention.
  • FIG. 6 is a partial cross-sectional view showing a tip portion of a fuel injection valve according to Embodiment 5 of the present invention.
  • Fig. 7 is a partial cross-sectional view showing a tip portion in a modified example of the fuel injection valve of Embodiment 5 according to the present invention.
  • FIG. 8 is a partial cross-sectional view showing a tip portion of a fuel injection valve of Example 6 according to the present invention.
  • FIG. 9 is a partial cross-sectional view showing a tip portion of a fuel injection valve of Example 7 according to the present invention.
  • FIG. 10 is a partial cross-sectional view showing a tip portion of a fuel injection valve according to an eighth embodiment of the present invention.
  • FIG. 11 is a partial cross-sectional view showing a tip portion of a modified example of the fuel injection valve according to the eighth embodiment of the present invention.
  • FIG. 12 is a partial cross-sectional view showing the tip portion of the fuel injection valve of the ninth embodiment according to the present invention.
  • FIG. 13 is a partial cross-sectional view showing a tip portion of a fuel injection valve according to a tenth embodiment of the present invention, showing a state before the holder and the seal holding member are assembled.
  • FIG. 14 is a partial cross-sectional view showing a tip portion of a fuel injection valve according to a tenth embodiment of the present invention, showing a state after the holder and the seal holding member are assembled.
  • FIG. 15 is a partial cross-sectional view showing a tip portion of a fuel injection valve according to a tenth embodiment of the present invention, showing a state when the holder and the seal holding member are removed.
  • FIG. 16 is a partial cross-sectional view showing a tip portion of a modification of the fuel injection valve of Example 10 according to the present invention, and shows a state after the holder and the seal holding member are assembled.
  • FIG. 17 is a partial cross-sectional view showing a tip portion of another modification of the fuel injection valve according to the tenth embodiment of the present invention, showing a state before the holder and the seal holding member are assembled. is there.
  • FIG. 18 is a partial cross-sectional view showing a tip portion of a fuel injection valve of Example 11 according to the present invention.
  • FIG. 19 is a partial cross-sectional view showing a tip portion in a modified example of the fuel injection valve of Embodiment 11 according to the present invention.
  • FIG. 20 is a partial cross-sectional view showing a tip portion of a fuel injection valve according to a twelfth embodiment of the present invention.
  • FIG. 21 is a partial cross-sectional view showing a tip portion of a fuel injection valve of Example 13 according to the present invention.
  • FIG. 22 is a flowchart for explaining a deposit burn-out operation in the fuel injection valve of the thirteenth embodiment.
  • FIG. 23 is a diagram showing the relationship between fuel injection timing and heater energization timing when spray fine particle control is performed in the fuel injection valve of the thirteenth embodiment.
  • FIG. 24 is a flowchart for explaining a spray fine particle control operation in the fuel injection valve of the thirteenth embodiment.
  • FIG. 25 is a flowchart for explaining the operation in the case of a heater failure in the fuel injection valve of the thirteenth embodiment.
  • FIG. 26 is a partial cross-sectional view showing a tip portion in a modified example of the fuel injection valve according to the thirteenth embodiment of the present invention.
  • FIG. 27 is a partial cross-sectional view showing a tip portion of a fuel injection valve according to Embodiment 14 of the present invention.
  • FIG. 28 is a flowchart for explaining the temperature rise suppression control operation at the tip of the fuel injection valve in the fuel injection valve according to the fourteenth embodiment.
  • FIG. 29 is a partial cross-sectional view showing a tip portion in a modified example of the fuel injection valve according to the present invention.
  • Screw mechanism (seal member compression and holding mechanism)
  • the present invention is not limited to the embodiments.
  • Embodiment 1 of a fuel injection valve according to the present invention will be described with reference to Figs.
  • the reference numeral 1A in FIG. 1 shows the fuel injection valve of the first embodiment.
  • the fuel injection valve 1A according to the first embodiment is roughly divided into a valve main body 10A for injecting fuel, a holder 20A for holding the valve main body 10A, a tip on the fuel injection side (hereinafter referred to as a fuel injection valve tip Gas seal member (hereinafter referred to as “valve tip seal member”) 30A and a seal holding member 40A for holding the valve tip seal member 30A. It is configured.
  • the fuel injection valve 1A is disposed in the fuel injection valve mounting hole 101 of the cylinder head 100 so as to inject fuel into an unillustrated intake port and / or combustion chamber.
  • the fuel injection valve 1A is illustrated as an example in which fuel is directly injected into the combustion chamber.
  • FIG. 1 shows the fuel injection side of the fuel injection valve 1A.
  • the main part of the holder 20A is formed in a cylindrical shape, and the valve body 10A is inserted and held in the columnar hollow part 21. One end of the holder 20A is inserted into the fuel injection valve mounting hole 101.
  • the fuel injection valve mounting hole 101 has a stepped columnar shape with a diameter decreasing toward the combustion chamber side, and the first to third circular holes in three stages of large, medium and small. Sections 101a to 101c are provided.
  • the holder 20A of the first embodiment is formed with an outer diameter equivalent to the diameter of each of the first circular hole portion 101a and the upper portion of the second circular hole portion 101b, while the second circular hole portion 101b
  • the lower portion and the third circular hole portion 101c are formed to have outer diameters smaller than the respective hole diameters. That is, the holder 20A includes a first cylindrical portion 20a having an outer diameter equivalent to that of the first circular hole portion 101a, and an outer diameter smaller than the first cylindrical portion 20a and equivalent to the second circular hole portion 101b.
  • a lower cylindrical portion and a third cylindrical portion 20c in the third circular hole portion 101c are provided.
  • the holder 20A is provided with a connector portion (not shown) for electrically connecting an external power supply device and a magnetic circuit in the valve body 10A. As a result, power is supplied to the magnetic circuit, and a later-described needle 12 of the valve body 10A can be reciprocated in the axial direction.
  • annular gas seal member 51 is provided in order to prevent leakage from the mounting hole 101 to the outside of the cylinder head 100.
  • the holder 20A of the first embodiment is fixed to the fuel injection valve mounting hole 101 via the gas seal member 51 and a seal holding member 40A described in detail later.
  • the valve body 10A includes a valve body 11 in which an injection hole 11a is formed, and a dollar 12 that reciprocates in a hollow portion 1 lb of the valve body 11 in the axial direction. Further, the valve body 10A is provided with a magnetic circuit and an elastic member (spring) (not shown) for reciprocating the dollar 12 in the axial direction. Further, fuel pressurized by a fuel pump (not shown) is supplied to the valve body 10A via a delivery pipe. For this reason, this valve body 10A is provided with a connection (not shown) for connecting the delivery pipe! /
  • the valve body 11 is provided with a conical portion at one end of a cylindrical shape, and an injection hole 11a is formed in the conical portion.
  • the valve body 11 is inserted into the hollow portion 21 of the holder 20A described above with the conical portion as a tip, and is fixed by being arranged on the most combustion chamber side of the valve body 10A.
  • the valve body 11 and the holder 20A It is fixed by welding.
  • the dollar 12 constituting the valve main body 10A has a trunk portion formed into a cylindrical shape or a columnar shape, and a tip thereof formed into a conical shape.
  • the dollar 12 is supported by the inner wall surface of the hollow portion ib of the valve body 11 and a magnetic circuit so as to be slidable in the axial direction.
  • the dollar 12 stops the fuel injection by being seated on the inner wall surface of the conical part of the valve body 11, while the fuel is injected by being separated from the inner wall force.
  • valve tip seal member 30A and the seal holding member 40A of the first embodiment will be described in detail.
  • the valve tip seal member 30A is disposed from the combustion chamber at the tip of the fuel injection valve as described above.
  • the valve tip seal member 30A is formed in a ring shape and disposed at the tip of the holder 20A.
  • the contact area of the combustion gas with the holder 20A can be reduced, and the temperature rise at the tip of the fuel injection valve can be suppressed.
  • the valve tip seal member 30A of the first embodiment has an inner diameter equal to or smaller than the inner diameter of the hollow portion 21 at the tip of the holder 20A (in other words, the outer diameter of the valve body 11). The contact area of the combustion gas is made as small as possible.
  • the seal holding member 40A includes a cylindrical hollow portion 41 so that the tip of the holder 20A can be inserted therein.
  • the seal holding member 40A has an outer diameter equivalent to that of the first cylindrical portion 40a and the third circular hole portion 101c having the same outer diameter force as that of the second circular hole portion 101b of the fuel injection valve mounting hole 101.
  • the second cylindrical portion 40b also has a force, and is inserted into the second and third circular hole portions 101b and 101c.
  • the seal holding member 40A is press-fitted into and fitted into the second and third circular holes 101b and 101c.
  • annular portion 40c extending toward the inner diameter side is formed at the end of the seal holding member 40A on the combustion chamber side.
  • the annular portion 40c is for sandwiching and holding the valve tip seal member 30A between the tip of the holder 20A.
  • the valve tip seal member 30A is compressed and held in the axial direction.
  • the seal holding member 40A protrudes into the combustion chamber, the temperature of the portion extremely increases, and exceeds the heat resistance temperature of the valve tip seal member 30A. There is a fear.
  • the seal holding member 40A is formed in a shape such that the tip (that is, the annular portion 40c) does not protrude into the combustion chamber. As a result, the thermal load on the valve tip seal member 30A can be reduced and durability can be improved.
  • the fuel injection valve tip (here, the holder 20A) Since the adhesion of the valve tip seal member 30A to the valve improves and the sealing performance is ensured, the contact of the combustion gas to the tip of the fuel injection valve can be suppressed. As a result, heat transfer to the valve body 11 due to the temperature rise of the holder 20A can be suppressed, and temperature rise at the tip of the fuel injection valve can be suppressed. For this reason, according to the fuel injection valve 1A, it is possible to suppress the generation of deposits at the tip of the fuel injection valve, and to avoid a decrease in the fuel injection amount.
  • valve tip seal member 30A is preferably formed using a ceramic, an organic material, a metal, or the like, which is a low thermal conductivity material.
  • a ceramic, an organic material, a metal, or the like which is a low thermal conductivity material.
  • valve tip seal member 30A may have a surface accuracy other than the upper and lower planes that contributes to the sealing performance lower than that of the upper and lower planes. This reduces the man-hours for processing the inner and outer peripheral surfaces that do not contribute to the sealing performance, thereby reducing the cost of the valve tip seal member 30A.
  • valve tip seal member 30A is arranged as far as possible from the combustion chamber in the fuel injection valve tip in order to suppress the temperature rise of the fuel injection valve tip. .
  • the seal holding member 40A described above is subjected to a large force in the axial direction due to the in-cylinder pressure or the like, it is necessary to ensure a thickness sufficient to withstand that force. If the valve body 10A is not retracted in the combustion chamber, the seal holding member 40A will protrude into the combustion chamber. Therefore, the seal holding member 40A is preferably molded using a high-strength material such as stainless steel.
  • the annular portion 40c of the seal holding member 40A can be thinned, and the valve tip seal member 30A can be disposed closer to the combustion chamber by the thinning, thereby improving the temperature rise suppression effect. Can be made. Further, with the thinning, the valve body 10A can be arranged at the optimum position for fuel injection without retreating.
  • the seal holding member 40A preferably has the following shape between the outer peripheral surface on the combustion chamber side and the annular portion 40c. For example, in the meantime, it is formed into a tapered shape, chamfered shape or curved surface shape that becomes smaller as it approaches the combustion chamber. As a result, the seal holding member 40A is press-fitted without being caught in the fuel injection valve mounting hole 101, so that the fuel injection valve mounting hole 101 is not damaged during the press-fitting, and the assembly workability is improved. improves.
  • the seal holding member 40A described above is exemplified by a shape that fits into the second and third circular holes 101b and 101c in the fuel injection valve mounting hole 101.
  • a shape that fits the entire outer peripheral surface is not preferable because, for example, press fitting or the like is difficult to perform.
  • the seal holding member 40A has an outer diameter of the first cylindrical portion 40a smaller than that of the second circular hole portion 1 Olb so that a gap is formed between the inner peripheral surface of the second circular hole portion 10 lb. It is preferable to mold.
  • the seal holding member 40A is fitted only by the second cylindrical portion 40b on the combustion chamber side, so that the assemblage to the fuel injection valve mounting hole 101 is improved.
  • the above-described seal holding member 40A is in direct contact with the combustion gas at the tip portion thereof. For this reason, it is preferable to interpose a member having a high thermal conductivity material such as copper between the seal holding member 40A and the fuel injection valve mounting hole 101.
  • the seal holding member 40A is made of a high thermal conductivity material between the lower surface of the first cylindrical portion 40a and the bottom surface 101b of the second circular hole portion 101b in the fuel injection valve mounting hole 101.
  • ring A gasket 61 is inserted. Thereby, the heat of the seal holding member 40A is transmitted to the cylinder head 100 via the gasket 61. As a result, the heat dissipation of the seal holding member 40A is improved and the thermal load on the valve tip seal member 30A is reduced, so that the durability of the valve tip seal member 30A can be improved.
  • the seal holding member 40A may be detached from the fuel injection valve mounting hole 101 due to in-cylinder pressure, vibration, thermal stress, or the like of the combustion chamber. Therefore, the fuel injection valve 1B provided with a seal holding member removal preventing mechanism for preventing the seal holding member 40A from coming off may be configured.
  • a seal holding member removal prevention mechanism as shown in FIG. 2, a substantially cylindrical shape formed so as to fill a space between the upper end surface of the seal holding member 40A and the lower surface of the second cylindrical portion 20b in the holder 20A. An anti-separation member 62 for the seal holding member is provided.
  • the seal holding member 40A does not come off from the fuel injection valve mounting hole 101, and the original valve tip seal member 30A can be continuously held.
  • the seal holding member removal preventing member 62 may be integrally formed with either the seal holding member 40A or the holder 20A.
  • the fuel injection valve front end portion is limited to a certain extent.
  • the temperature rises and thermal expansion can occur.
  • the fuel injection valve tip portion has a seal holding member 40A and the like, and there are manufacturing variations and assembly errors. For this reason, the fuel injection valve tip (valve body 11 and holder 20A) is subjected to an excessive compressive load due to the amount of change caused by these, and it may be difficult to absorb this only with the valve tip seal member 30A. Therefore, there is a possibility that the lift amount of the needle 12 changes and the fuel cannot be injected at a predetermined injection amount.
  • the seal holding member 40A it is preferable to form the seal holding member 40A with a high elastic modulus material in consideration of the case where it is covered. As a result, the seal holding member 40A can absorb the amount of change due to manufacturing variation, thermal expansion, etc., and the compressive load applied to the tip of the fuel injection valve can be reduced. This makes it possible to suppress fuel injection with a predetermined injection amount.
  • Symbol 1C in FIG. 3 shows the fuel injection valve of the second embodiment. This fuel injection valve 1C is obtained by replacing the valve tip seal member 30A with the valve tip seal member 30C shown in FIG. 3 in the fuel injection valve 1A shown in FIG.
  • valve tip seal member 30C of the second embodiment is obtained by extending the inner peripheral surface of the valve tip seal member 3 OA of the first embodiment to the outer peripheral surface of the valve body 11, and the valve body It covers the area above 11 nozzle holes 1 la.
  • the contact area with the combustion gas at the tip of the fuel injection valve can be minimized.
  • the contact of the combustion gas with the tip of the fuel injection valve here, the noble body 11 and the holder 20A
  • the temperature rise can be suppressed as much as possible. It is possible to more effectively avoid a decrease in the fuel injection amount by suppressing the generation of deposits at the valve tip end.
  • valve tip seal member 30C extending to the outer peripheral surface of the valve body 11
  • the annular portion 40c of the seal holding member 40A is also sealed with the valve tip seal. It is preferable to extend toward the inner diameter side in accordance with the member 30C. Thus, the valve tip end seal member 30C can be correctly held.
  • Embodiment 3 of the fuel injection valve according to the present invention will be described with reference to FIG.
  • Example 3 is a configuration in which the valve tip end seal member 30A of Example 1 described above or the valve tip end seal member 30C of Example 2 is molded using a low elastic modulus material such as ceramics. This is what is shown.
  • valve tip seal members 30A and 30C When such a low elastic modulus material is used for the valve tip seal members 30A and 30C, the seal performance is reduced! /, And the temperature rise at the tip of the fuel injection valve is effective. It cannot be suppressed. In addition, this causes combustion gas to flow into the seal part force of the valve tip seal members 30A and 30C, causing excessive thermal stress to be applied to the tip of the fuel injection valve, possibly causing damage to the valve body 10A, etc. However, the reliability is lowered without wiping.
  • the valve tip seal members 30A and 30C have a high elastic modulus. It is configured to cover with a member.
  • the valve tip seal member 30A of Example 1 is formed of a low elastic modulus material, the valve tip seal member 30A, the tip of the holder 20A, and the seal holding member 40A as shown in FIG.
  • Annular high elastic modulus members 63, 63 are interposed between the annular part 40c and each.
  • the fuel injection valve 1D of the third embodiment can improve the sealing performance between them, the fuel injection valve 1D of the fuel injection valve 1A of the first embodiment can be improved in the same manner as the fuel injection valve 1A of the first embodiment.
  • the temperature rise is suppressed, and the generation of deposits at the tip of the fuel injection valve can be suppressed to prevent the fuel injection amount from decreasing.
  • the thermal stress applied to the tip of the fuel injection valve can be suppressed as the sealing performance is ensured, the reliability of the fuel injection valve 1D is improved.
  • valve tip seal member 30C of Example 2 is formed of a low elastic modulus material, in addition to the high elastic modulus member between the above, the valve tip portion An annular high elastic modulus member is also provided between the seal member 30C and the outer peripheral surface of the valve body 11.
  • the fourth embodiment shows a configuration in the case where the sealing performance of the valve tip seal members 30A and 30C is insufficient in the first to third embodiments described above.
  • the configuration when the sealing performance is insufficient occurs, and the force embodiments 2 and 3 illustrated as above are similarly configured as follows. It should be noted that such a configuration is not necessarily applied only when the sealing performance is insufficient, but may be applied to improve the satisfactory sealing performance!
  • the fuel injection valve 1E of the fourth embodiment has an outer peripheral portion of the front end portion of the fuel injection valve (a position separated from the combustion chamber force by the valve tip end seal member 30A, and the outer periphery of the holder 20E). At least one annular shaft seal member 52 is provided between the surface and the inner peripheral surface of the seal holding member 40A. For this reason, an annular groove 20c for holding the shaft seal member 52 is formed on the outer peripheral surface of the holder 20E of the fourth embodiment. Note that the holder 20E illustrated here has an annular shape.
  • the shape is basically the same as the holder 20A of Examples 1 to 3 described above.
  • valve tip seal member 30A and the shaft seal member 52 in combination, the force between the valve tip seal member 30A and the tip of the holder 20E and the annular portion 40c of the seal holding member 40A is also increased. Even if combustion gas flows between the valve body 11 and the holder 20E, the shaft seal member 52 is surrounded by the valve tip seal member 30A and the shaft seal member 52, and the valve body 11 and the holder 20E. Can be kept in space A. For this reason, the combustion gas can be prevented from spreading over the entire tip of the fuel injection valve, and the temperature rise at the tip of the fuel injection valve can be suppressed, so that the generation of deposit is suppressed and the decrease in the fuel injection amount is avoided. be able to.
  • the shaft seal member 52 is preferably formed using a low thermal conductivity material, like the valve tip seal member 30A. As with the valve tip seal member 30A, this reduces the amount of heat transferred from the shaft seal member 52 and seal holding member 40A to the valve main body 10A and holder 20E, which effectively increases the temperature of the fuel injection valve tip. Therefore, it is possible to effectively suppress the generation of deposits at the tip of the fuel injection valve and effectively avoid a decrease in the fuel injection amount.
  • the shaft seal member 52 be disposed as close to the valve tip seal member 30A as possible. As a result, the above-described space A is reduced, so that the contact area between the combustion gas 11 and the holder 20E of the combustion gas in the space A is reduced, and the temperature rise at the tip of the fuel injection valve can be further suppressed.
  • the valve tip seal member 30A and the shaft seal member 52 are arranged at a distance, so that the valve tip portion as described above is used.
  • the space A is configured to be as small as possible to suppress the temperature rise as in the fourth embodiment.
  • a spacer 64 having a cylindrical shape force substantially equivalent to the space A is inserted into the space A as shown in FIG.
  • the spacer 64 may be formed of the same material as the valve tip seal member 30A and the shaft seal member 52, or may be formed of other materials. .
  • the shaft seal member 52 is extended toward the valve tip seal member 30A or the valve tip seal member described above in order to achieve the same effect as this.
  • 30A may be extended toward the shaft seal member 52 so that the space A described above is made as small as possible.
  • the fuel injection valve 1G in this case is provided with a shaft seal member 53 having a shape as shown in FIG. 7 in which the shaft seal member 52 and the spacer 64 are integrated together.
  • the same effects as those obtained when the spacer 64 is provided can be obtained.
  • the same effect can be obtained by providing a valve tip seal member having the shape as shown above, in which the valve tip seal member 30A and the spacer 64 are integrated together.
  • the configuration in the case where the sealing performance of the fuel injection valve 1E of the fourth embodiment based on the first embodiment is insufficient is illustrated.
  • the second embodiment is based on the second and third embodiments.
  • the fuel injection valve 1E of the fourth embodiment can be configured similarly.
  • Embodiment 6 of the fuel injection valve according to the present invention will be described with reference to FIG.
  • valve tip provided in the fuel injection valve tip The seal members 30A and 30C are compressed and held by the fuel injection valve tip and the annular portion 4 Oc of the seal holding member 40A.
  • the valve tip seal member 30A and 30C may not be compressed correctly, and sealing performance may not be ensured.
  • the seal holding member 40A of the first embodiment is replaced with a seal holding member 40H shown in FIG.
  • the seal holding member 40H is basically a force having the same shape as the seal holding member 40A of the first embodiment.
  • the outer diameter of the second cylindrical portion 40b is set to the third circular hole portion of the fuel injection valve mounting hole 101. It is smaller than 101c.
  • the seal holding member 40H is formed so that a predetermined interval is provided between the lower surface of the first cylindrical portion 40a and the bottom surface 101b of the second circular hole portion 101b of the fuel injection valve mounting hole 101.
  • an annular gas seal member is provided between the lower surface of the first cylindrical portion 40a and the bottom surface 101b of the second circular hole portion 101b of the fuel injection valve mounting hole 101. Deploy 54.
  • the gas seal member 54 is formed using a material having a higher elastic modulus than the valve tip seal member 30A, and the outer diameter side thereof is in contact with the bottom surface 101b of the second circular hole 101b.
  • the inner diameter side is shaped to abut against the lower surface of the first cylindrical portion 40a.
  • the gas seal member 54 is referred to as a “high elastic seal member 54”.
  • the high elastic seal member 54 becomes the valve main body in the axial direction of the seal holding member 40H. Absorbs manufacturing variations such as 10A, assembly errors, and the amount of thermal expansion and contraction. Therefore, the valve tip seal member 30A And the annular portion 40c of the seal holding member 40H are reliably compressed and held, and a desired sealing performance can be ensured. Therefore, according to the fuel injection valve 1H of the sixth embodiment, it is possible to suppress the contact of the combustion gas to the tip of the fuel injection valve and to suppress the temperature rise, so that the fuel injection valve It is possible to avoid a decrease in fuel injection amount by suppressing the formation of deposits at the tip.
  • the fuel injection valve 1H based on the configuration of the first embodiment is shown as an example. However, even in the case of the second to fifth embodiments, the same configuration is possible. it can.
  • Embodiment 7 of the fuel injection valve according to the present invention will be described with reference to FIG.
  • the fuel injection valve II of Embodiment 7 is compressed correctly so that the valve tip seal members 30A, 30C in Embodiments 1 to 5 described above can ensure the sealing performance, as in Embodiment 6 described above.
  • a mechanism for holding is provided.
  • the fuel injection valve II based on the first embodiment is illustrated.
  • the seal holding member 40 A of the first embodiment is replaced with a seal holding member 401 shown in FIG. Similar to the seal holding member 40H of the sixth embodiment described above, the seal holding member 401 has an outer portion where the fuel injection valve mounting hole 101 is inserted into the third circular hole portion 101c smaller than the third circular hole portion 101c. It is formed in a diameter, and a similar annular portion 40c is provided at the tip portion. Further, in the seal holding member 401 of the seventh embodiment, an end portion on the opposite side to the annular portion 40c is extended toward the holder 20A.
  • the screw shown in FIG. 9 constituted by the thread formed on the seal holding member 401 and the thread formed on the holder 20A is used.
  • Mechanism 65 is provided.
  • a screw mechanism 65 is configured by a screw thread provided on the inner peripheral surface at the end of the seal holding member 401 and a screw thread provided on the outer peripheral surface of the second cylindrical portion 20b of the holder 20A. Yes. Further, the screw mechanism 65 is provided at a position separated from the annular portion 40c by about 20 mm.
  • the compression / holding force of the valve tip sealant member 30A can be secured with a simple configuration, and the management thereof is also possible. Easy. Furthermore, the seal member compression / holding mechanism can be configured without increasing the number of parts as in the sixth embodiment, and the valve tip seal member 30A is not misaligned when assembled in advance. It can also contribute to cost reduction.
  • an annular gas seal member 55 is provided between the seal holding member 401 and the third circular hole 101c.
  • the gas seal member 55 is preferably molded using a low thermal conductivity material in the same manner as the valve tip seal member 30A. Thereby, the contact area of the combustion gas to the seal holding member 401 is reduced, and heat transfer to the valve main body 10A and the holder 20A via the seal holding member 401 can be suppressed. As a result, the temperature rise at the tip of the fuel injection valve can be effectively suppressed, and the generation of deposits at the tip of the fuel injection valve can be effectively suppressed to effectively avoid a decrease in the fuel injection amount. .
  • the fuel injection valve II based on the configuration of the first embodiment has been illustrated. However, even in the case of the second to fifth embodiments, the same configuration can be used. .
  • the present Example 8 takes into consideration the effects of manufacturing variations and assembly tolerances on the tip portion, and thermal expansion and thermal contraction.
  • the valve tip seal part of Example 1 described above should ensure heat insulation of the combustion gas force.
  • the structure when the material 30A is molded from a high elastic modulus material such as a flexible resin material (PTFE) is shown.
  • valve tip seal member 30A is radially generated outward (inner peripheral surface side force outer peripheral surface side) by the pressure of the combustion gas applied to the inner peripheral surface. There is a risk of deformation or breakage due to tensile stress.
  • high-temperature combustion gas flows into the space A shown in FIG. 5, so that the temperature of the tip of the fuel injection valve rises and promotes the generation of deposits.
  • a seal holding member capable of pressing the outer peripheral surface of the valve tip portion seal member 30A is provided.
  • Reference numeral 40J in FIG. 10 indicates a seal holding member provided in the fuel injection valve 1J of the eighth embodiment.
  • the seal holding member 40J is constructed based on the seal holding member 40A of the first embodiment.
  • This seal holding member 40J is formed by forming an annular wall surface for pressing the outer peripheral surface of the valve tip end seal member 30A on the annular portion 40c of the seal holding member 40A described above.
  • an annular groove 40c into which most of the valve tip seal member 30A can be fitted is provided in the annular part 40c, and the valve tip is formed on the large-diameter wall surface of the annular groove 40c.
  • valve tip seal member 30A is formed by the annular groove 40c.
  • the force applied to the valve tip seal member 30A at that time is also caused by the compressive stress on the inner peripheral surface and the outer peripheral surface, and deformation and breakage of the valve tip seal member 30A are avoided.
  • the sealing performance is improved along with the improvement of the durability of the valve tip seal member 30A, and the temperature rise of the fuel injection valve tip is suppressed. It is possible to suppress the generation of deposits in the section and to avoid a decrease in the fuel injection amount.
  • the fuel injection valve 1J of the eighth embodiment also includes the fuel injection valve 1D of the third embodiment described above. It is possible to sandwich the valve tip seal member 30A with a similar high elastic modulus member, thereby further improving the sealing performance.
  • each fuel injection valve replaces the seal holding member 40A with the seal holding member 40J having an annular wall surface (for example, the annular groove 40c).
  • the spacer 64 and the shaft seal member 53 exhibit the functions of the wall surfaces, respectively, and the same effects as in the eighth embodiment can be obtained. .
  • FIG. 11 shows a fuel injection valve 1K having such a configuration.
  • This fuel injection valve 1K replaces the above-described fuel injection valve 1J with a valve tip seal member 30A shown in FIG. 11 and replaces the valve tip seal member 30A with a seal outer periphery holding member that presses the outer periphery thereof. 66 is deployed.
  • valve tip seal member 30K has an outer diameter smaller than that of the valve tip seal member 30A described above, and is similarly disposed in the annular groove 40c of the seal holding member 40J.
  • the annular seal outer peripheral surface holding member 66 is formed of a high-strength member such as stainless steel so that the gap is filled, and this is inserted into the gap.
  • the fuel injection valve 1K can achieve the same effects as the fuel injection valve 1J shown in FIG. 10 described above.
  • the material forming the seal outer peripheral surface holding member 66 not only has high strength but also has a larger thermal expansion coefficient than that of the seal holding member 40J.
  • the seal outer peripheral surface holding member 66 presses the outer peripheral surface of the valve tip end seal member 30K when the valve tip end seal member 30K receives the pressure of the combustion gas on the inner peripheral surface force.
  • the valve expands in the inner diameter direction and presses the outer peripheral surface of the valve tip seal member 30K inward. That is, in the fuel injection valve 1K, the seal outer peripheral surface holding member 66 applies a pressing force toward the inner peripheral surface to the outer peripheral surface of the valve tip seal member 30K.
  • valve tip seal member 30K is subjected to radial compressive stress due to the opposite forces applied to the inner and outer peripheral surfaces of the valve tip seal member 30K. It is possible to avoid the situation where the bow I tension stress is applied even momentarily. Therefore, in this fuel injection valve 1K, the sealing performance can be ensured by effectively preventing deformation and breakage of the valve tip seal member 30K, and therefore the fuel injection valve tip can be secured compared to the seal holding member 40J. As a result, the generation of deposits in the fuel tank is effectively suppressed, and a decrease in fuel injection amount can be effectively avoided.
  • valve tip seal member 30K with a high elastic modulus member similar to the fuel injection valve 1D of Example 3 described above, thereby further improving the sealing performance. Can be made.
  • each fuel injection valve replaces the seal holding member 40A with the seal holding member 40J described above, and replaces the valve front end seal member 30A with the front end seal member 30K and the seal outer peripheral surface holding member 66 of FIG. It can be configured by replacing. Further, in the fuel injection valves IF and 1G of Example 5 described above, the same is achieved by disposing a seal outer peripheral surface holding member between the spacer 64 or the shaft seal member 53 and the valve tip seal member 30A. There is an effect.
  • the ninth embodiment shows the configuration in the case where the valve tip seal member made of a high elastic modulus material is used as in the eighth embodiment.
  • the fuel injection valve 1L shown in FIG. 12 based on the fuel injection valve 1A of the first embodiment described above is illustrated.
  • valve tip seal member 30A is molded of a high elastic modulus material in the fuel injection valve 1A of the first embodiment, the combustion applied to the inner peripheral surface as described in the eighth embodiment described above. There is concern about deformation and breakage due to gas pressure. Further, in that case, a gap is formed between the deformed valve tip seal member 30A and the tip face of the holder 20A or the annular portion 40c, and the valve tip seal is caused by the gas flow of the high-temperature combustion gas flowing from the gap. There is a risk of melting the member 30A.
  • the fuel injection valve 1L of the ninth embodiment is configured by replacing the valve tip end seal member 30A with the valve tip end seal member 30L shown in FIG. 12 in the fuel injection valve 1A of the first embodiment.
  • the valve tip seal member 30L of the ninth embodiment includes an annular face seal 30a that is compressed and held in the axial direction of the fuel injection valve 1L, and an annular seal that is compressed and held in the radial direction of the fuel injection valve 1L.
  • a shaft seal portion 30b which are integrally molded so as not to cause a gap between the tip portion of the holder 20A and the tip portion of the seal holding member 40L facing the holder 20A.
  • the face seal portion 30a corresponds to the valve tip portion seal member 30A of the first embodiment, and is compressed and held in the axial direction between the tip surface of the holder 20A and the annular portion 40c.
  • the shaft seal portion 30b is formed by extending the outer-diameter side force of the face seal portion 30a. It is compressed and held in the radial direction with the peripheral surface.
  • the temperature rise is suppressed by improving the durability of the valve tip seal member 30L and improving the sealing performance of the fuel injection valve tip, and the generation of deposits at the fuel injection valve tip is prevented. It can suppress and the fall of the fuel injection quantity can be avoided.
  • the shaft seal portion 30b of the valve tip portion seal member 30L is compressed and held so as to increase in thickness as it goes to the combustion chamber. Therefore, this example 9, the shaft seal portion 30b is molded into such a shape, and the outer peripheral surface of the tip portion of the holder 20A that compresses and holds the shaft seal portion 30b and the inner peripheral surface of the tip portion of the seal holding member 40L The same taper shape is also used between the gaps.
  • the inclination angle of the inner peripheral surface of the tip end portion of the seal holding member 40L is adjusted with respect to the first embodiment to form a taper shape. This alleviates the manufacturing variations and assembly tolerances of the shaft seal 30b, holder 20A, seal holding member 40L, etc., as well as the effects of thermal expansion and heat shrinkage on these, so the seal at the tip of the fuel injection valve Performance can be increased.
  • valve tip seal member 30L may be sandwiched between the high elastic modulus members similar to those of the fuel injection valve 1D of the third embodiment. Seal performance can be improved.
  • the fuel injection valve 1L constructed based on the fuel injection valve 1A of the first embodiment is illustrated here, but the fuel injection valve 1B in the first embodiment and the above-described implementation are also included.
  • the fuel injection valve according to the ninth embodiment may be constructed based on the fuel injection valve IDs IE, 1H, and II of Examples 3, 4, 6, and 7. Each fuel injection valve at that time may be configured by replacing the valve tip seal member 30L and the seal holding member 40L of the ninth embodiment.
  • the seal outer peripheral surface holding member 66 of the eighth embodiment described above is interposed between the outer peripheral surface of the valve tip seal member 30L and the seal holding member 40L. You may interpose.
  • Embodiment 10 of the fuel injection valve according to the present invention will be described with reference to FIGS. 13 to 17.
  • valve tip seal member 30A is simply held in a compressed state between the holder 20A and the seal holding member 40A. Therefore, when the holder 20A is removed from the seal holding member 40A during repair or the like, the valve end seal member 30A remains in the seal holding member 40A, making it difficult to remove. Therefore, in that case, the valve tip seal member 30A may be reused. However, in general, the reuse of the seal member causes a decrease in the seal performance, so it is not preferable to replace the seal member with a new one. In the fuel injection valve 1A of the first embodiment, the valve tip seal member 30A is exposed to high-temperature combustion gas on the inner peripheral surface thereof. Therefore, with long-term use, there is a possibility that the valve tip seal member 30A must be replaced due to deterioration.
  • the valve tip seal member can be easily removed to facilitate the replacement thereof, thereby ensuring good sealing performance of the repaired fuel injection valve tip.
  • the fuel injection valve 1M of the tenth embodiment is similar to the fuel injection valve 1L of the ninth embodiment in that the holder 20A and the valve tip seal member 30L are replaced with the holder 20M and the valve tip seal member 30M shown in FIG. It is constructed by replacing.
  • the holder 20M of the tenth embodiment is provided with a seal adhering means at the tip of the third cylindrical portion 20c of the holder 20A of the ninth embodiment.
  • the seal adhering means exemplified here is an annular groove 20c formed in a conical outer peripheral surface at the tip portion, and this annular groove 20c.
  • valve tip seal member 30M is attached to the holder 20M by filling a part of the valve tip seal member 30M into the inside. Therefore, as the valve tip seal member 30M of the tenth embodiment, it is necessary to use a material that can be deformed by these pressures when the holder 20M and the seal holding member 40L are assembled and filled into the annular groove 20c. There is. here,
  • valve tip seal member 30M a resin material such as PTFE that has high heat resistance and can be deformed is used as the valve tip seal member 30M.
  • annular groove 20c is inclined to some extent with respect to the attaching / detaching direction X of the holder 20M.
  • the valve tip seal member 30M cannot be adhered when removing the holder 20M.
  • the annular groove 20c is excessively inclined with respect to the attaching / detaching direction X. If it is too much, a part of the valve tip seal member 30M cannot be filled when the holder 20M is assembled. Therefore, in consideration of the points to be applied, the annular groove 20c of Example 10
  • valve tip seal member 30 ⁇ of Example 10 is deformed as shown in Fig. 14 by inserting the holder 20 ⁇ in the direction of the arrow 13 in Fig. 13, and a part thereof is annular. Filled in groove 2 Oc.
  • the valve tip seal member 30M has a holder as shown in FIG.
  • the filling portion filled in the annular groove 2 Oc of the holder 20M becomes a resistance, and is attached to the holder 20M as a unit.
  • the handle holding member 40L is removed.
  • the valve tip seal member 30M is easy to remove and replace, so that a good seal performance of the repaired fuel injection valve tip can be obtained. Can be secured. Therefore, the fuel injection valve 1M suppresses a rise in the temperature at the tip of the fuel injection valve even after repair, and suppresses the generation of deposit at the tip of the fuel injection valve to avoid a decrease in the fuel injection amount. it can.
  • annular groove 20c is exemplified as the seal adhering means, but on the same outer peripheral surface.
  • the seal adhering means may be an annular protrusion 20c formed on the outer peripheral surface of the tip end portion of the holder 20N, like a fuel injection valve 1N shown in FIG. In this case as well, the holder 20
  • the annular protrusion 20c is protruded at an angle ⁇ with respect to the attachment / detachment direction X of N.
  • one or more protrusions formed on the outer peripheral surface may be used as a seal adhering means.
  • the seal adhering means is prepared as a seal adhering means 6 7 for adhering the valve tip seal member 30M to the outer peripheral surface of the tip of the holder 20A as in the fuel injection valve 10 shown in FIG. May be.
  • the seal sticking means 67 an adhesive applied to the contact surface with the valve tip seal member 30M on the outer peripheral surface of the tip can be considered.
  • the valve tip seal member 30M is deformed into a plurality of fine recesses in the surface treatment portion, which may be a surface treatment portion having a rough surface of the contact surface. To be filled. In the tenth embodiment, even when such a sticking means 67 is used, the valve tip seal member 30M can be easily removed, and the same effect as described above can be obtained.
  • the seal sticking means 67 when the seal sticking means 67 is applied as a seal attaching means, it is preferable to provide the sticking prevention means 68 on the contact surface of the seal holding member 40L with the valve tip seal member 30M.
  • This sticking prevention means 68 prevents sticking of the valve tip seal member 30M to the seal holding member 40L so that the valve tip seal member 30M sticks to the holder 20A more reliably. It is for doing.
  • the seal sticking prevention means 68 may be a low friction material such as PTFE coated, laminated or coated on the contact surface of the seal holding member 40L.
  • a surface-treated portion in which the surface ancestry of the contact surface is smooth may be used.
  • the valve tip seal member 30M can be removed while being securely attached to the holder 20A.
  • the sticking prevention means 68 may be applied to the fuel injection valves 1M and 1N shown in FIG. 14 and FIG.
  • the fuel injection valve 1M constructed based on the fuel injection valve 1L of the ninth embodiment is illustrated here.
  • the fuel injection valves 1M of the first, second, fourth, sixth, and seventh embodiments described above are illustrated.
  • the fuel injection valve according to the tenth embodiment may be constructed based on the fuel injection valves 1A, 1B, 1C, IE, 1H, II.
  • Each fuel injection valve at that time should be configured by providing the seal adhering means of the tenth embodiment at the tip of each holder 20A, 20E.
  • Embodiment 11 of the fuel injection valve according to the present invention will be described with reference to FIGS.
  • the fuel injection valve 1A according to the first embodiment described above is illustrated as a representative example.
  • Examples 1 to: The LO fuel injection valves 1B to 10 may be configured in the same manner as described below.
  • Example 11 the fuel injection valve 1A of Example 1 described above is configured such that a heat insulating layer is provided on the seal holding member 40A closest to the high-temperature combustion gas, and the heat insulating layer is used. The heat of the combustion gas is blocked and heat is not transferred to the tip of the fuel injection valve.
  • FIG. 18 shows a fuel injection valve 1P of the eleventh embodiment.
  • This fuel injection valve 1P is configured by providing a heat insulating layer 69a at least in a portion of the seal holding member 40A exposed to the combustion gas in the fuel injection valve 1A of the first embodiment described above.
  • the heat insulating layer 69a is formed by laminating or coating a ceramic material or a heat insulating material such as titanium on the surface of the seal holding member 40A exposed to the combustion gas.
  • this fuel injection valve 1P the heat of the combustion gas is blocked by the heat insulating layer 69a and the temperature rise of the seal holding member 40A is suppressed, so that the temperature directly from the seal holding member 40A or the tip of the valve Heat transfer to the holder 20A via the seal member 30A can be suppressed. Therefore, in this fuel injection valve 1P, the temperature rise at the tip of the fuel injection valve is more reliably suppressed, so that the generation of deposits at the tip of the fuel injection valve can be effectively suppressed, and the fuel injection amount Can be avoided.
  • FIG. 19 shows another fuel injection valve 1Q of the eleventh embodiment.
  • This fuel injection valve 1Q is configured by replacing the seal holding member 40A with the seal holding member 40Q of FIG. 19 in the fuel injection valve 1A of the first embodiment described above.
  • the seal holding member 40Q exemplified here has a heat insulating layer 69b made of a heat insulating material similar to the above embedded in at least a portion of the seal holding member 40A of Example 1 exposed to the combustion gas.
  • Example 12 of the fuel injection valve according to the present invention will be described with reference to FIG.
  • the fuel injection valve 1A of each of the embodiments 1 to 11 described above is further increased in temperature by forcibly cooling the fuel injection valve tip in the LQ. Inhibitory effect It is aimed at the fruit.
  • Example 12 the vicinity of the tip of the fuel injection valve in the fuel injection valve mounting hole 101 and the cooling water passage 102 of the cylinder head are communicated, and fuel injection is performed using the cooling water.
  • the valve tip is forcibly cooled.
  • FIG. 20 shows a fuel injection valve 1R of the twelfth embodiment.
  • This fuel injection valve 1R is configured by replacing the seal holding member 40A with the seal holding member 40R of FIG. 20 in the fuel injection valve 1A of the first embodiment described above.
  • the seal holding member 40R exemplified here is formed by forming a plurality of annular radiating fins 4 Ob on the outer peripheral surface of the second cylindrical portion 40b of the seal holding member 40A of the first embodiment. Therefore, in Example 12, the heat dissipating fin 40b
  • the heat dissipating fins 40b of the fuel injection valve mounting hole 101 are arranged so that the coolant flows while in contact.
  • the cooling water in the cooling water passage 102 leaks from between the fuel injection valve 1R and the fuel injection valve mounting hole 101.
  • the combustion gas enters the cooling water passage 102 from there. Therefore, in the twelfth embodiment, the gas seal members 56A and 56B are arranged between the upper end side and the lower end side of the seal holding member 40R and the fuel injection valve mounting hole 101 so as to sandwich the cooling water passage 102 therebetween. Set up.
  • the temperature of the seal holding member 40R is lowered by the cooling water, so that the seal holding member 40R is used as the holder 20A, the valve tip end seal member 30A, and the like.
  • the temperature rise at the tip of the fuel injection valve can be suppressed.
  • the radiation fins 40b are formed on the flow path of the cooling water, the contact area with the cooling water increases and the cooling effect is enhanced.
  • the fuel injection valves 1A to LR of each of the above-described first to twelfth embodiments are configured to remove deposits generated in the LR.
  • the first embodiment described above is used.
  • a typical fuel injection valve 1A will be described.
  • the fuel injection valves 1B to LR of the other embodiments 1 to 12 may be configured in the same manner as described below.
  • the fuel injection valve 1S of the thirteenth embodiment includes heating means 71 that operates according to the instructions of the electronic control unit (ECU) 70 in the fuel injection valve 1A of the first embodiment described above as shown in FIG. Is disposed on the valve body 11.
  • ECU electronice control unit
  • the heating means 71 a heater element wound around the outer peripheral surface of the tip portion of the noble body 11 is prepared, and this is connected to the outer peripheral surface of the valve body 11 and the inner peripheral surface of the valve tip seal member 30A. Hold it.
  • the valve tip seal member 30A is preferably formed of a heat insulating material so that the heat of the heating means 71 is transmitted to the valve body 11 without being dispersed. As a result, all the heat of the heating means 71 is transferred to the valve body 11 at the tip of the fuel injection valve 1S, so that the valve body 11 is heated without waste and the deposit is burned out. .
  • the electronic control device 70 is configured to operate the heating means 71 when the operation timing is also detected by a fuel injection control command or the like.
  • the stop timing of the fuel injection valve is It is determined depending on operating conditions such as engine speed. Therefore, in a powerful internal combustion engine, if the stop period of the fuel injection valve is is short, the generated deposit can be blown off by fuel injection. On the other hand, in this internal combustion engine, the stop period is long. If this happens, the fuel injected from the port injection fuel injector will burn, and the temperature of the tip of the fuel injection valve 1S will rise, making it easier for deposits to be generated. Deposits are accumulated.
  • the electronic control unit 70 stops the fuel injection valve 1S for direct injection in the cylinder and operates only the fuel injection valve for port injection (hereinafter referred to as "in-cylinder”). It is determined whether or not “direct injection 0% region” is selected.
  • the electronic control unit 70 determines whether the in-cylinder direct injection 0% region continues for a predetermined time (for example, 5 minutes) or not. (Step ST2).
  • the electronic control unit 70 starts energizing the heating means (heater) 71 and operates the heating means 71. (Step ST3).
  • the electronic control unit 70 starts energizing the heating means (heater) 71 and operates the heating means 71. (Step ST3).
  • step ST1 determines whether the in-cylinder direct injection is in the 0% region, or in step ST2, it is determined that the in-cylinder direct injection 0% region has not been continued for a predetermined time or more. If so, the electronic control unit 70 instructs the heating means 71 to stop energization (step ST4) so that the heating means 71 is not operated.
  • the heating means 71 of the thirteenth embodiment uses the valve tip seal member 30A and the seal holding member 40A to make the tip of the nozzle body 11 (ie, the fuel injection valve tip of the fuel injection valve 1 S). ). Therefore, since this heating means 71 can heat the sprayed fuel through the valve body 11, the atomizing of the sprayed fuel is promoted when the engine is cold. Can be used to
  • the operation region and the operation timing for operating the heating unit 71 are limited.
  • the heating means 71 is operated in the operating region during engine start-up or idle operation when the engine is cold (for example, when the water temperature or oil temperature is lower than 70 ° C.).
  • the heating means 71 is operated before the fuel injection start timing of the fuel injection valve 1S, and the heating means 71 is also stopped together with the fuel injection stop of the fuel injection valve 1S. .
  • the operation timing of the heating means 71 is individually controlled for each cylinder.
  • the electronic control unit 70 first determines whether or not the engine is in one of the operation regions during engine start or idle operation as shown in the flowchart of Fig. 24 (step S T11), if it corresponds to the operation region, it is next determined whether or not the water temperature or oil temperature is lower than a predetermined temperature (for example, 70 ° C.) (step ST12).
  • a predetermined temperature for example, 70 ° C.
  • This step ST12 may determine whether both the water temperature and the oil temperature are lower than the predetermined temperature, or whether either the water temperature or the oil temperature is lower than the predetermined temperature. It may be a judgment of whether or not.
  • the electronic control unit 70 determines that the engine is operating when the engine is cold or the operating region during idle operation.
  • the heating means 71 is energized at the operation timing of 23 to operate the heating means 71 (step ST13). This promotes atomization of the sprayed fuel from the fuel injection valve 1S, so that stable and good combustion is performed in the internal combustion engine, reducing harmful components in the exhaust gas and suppressing torque fluctuations. Can be achieved. Therefore, the fuel injection valve 1S of the thirteenth embodiment improves the emission performance of the internal combustion engine when the engine is cold and further suppresses the noise and vibration of the internal combustion engine by the heating means 71 provided to burn off the deposit. It is also possible to do.
  • step ST11 determines whether the engine is neither starting nor idling, or if it is determined in step ST12 that the water temperature or the oil temperature is equal to or higher than a predetermined temperature. Then, the electronic control unit 70 instructs the heating means 71 to stop energization (step ST14) so that the heating means 71 is not operated.
  • the heating means 71 of any one of the fuel injection valves 1S of each cylinder fails, there is a relationship between the cylinder having the failed heating means 71 and the other cylinders.
  • the heating means 71 fails in any of the cylinders, the heating means 71 of all the cylinders is not operated to suppress the combustion variation among the cylinders.
  • the electronic control unit 70 determines whether or not the power is in one of the operation regions at the time of engine start or idle operation as shown in the flowchart of Fig. 25 (step ST21). If it falls within the region, it is next determined whether or not there is a force having an AZF (air-fuel ratio) deviation among all the cylinders (step ST22).
  • AZF learning is not performed during engine start-up or idle operation, and even if the actual AZF deviates from the required AZF value (hereinafter referred to as “requested AZF”), the state remains unchanged. Be drunk.
  • the actual AZF can be estimated from 02 sensor or the like on the exhaust path, and it can be determined whether or not the differential force between this and the required AZF is also shifted. Normally, the actual AZF and the required AZF do not completely match, so if there is a difference of more than a predetermined value, it is determined that there is a deviation of AZF. In addition, for the cylinder to be determined, it is also possible to determine the opening time of the exhaust valve, the engine speed, the engine load, the distance to the exhaust port inlet force 02 sensor, etc.
  • the electronic control unit 70 terminates the present process if there is no cylinder with AZF deviation, and if there is a cylinder with AZF deviation, heating of all cylinders is performed.
  • An instruction to stop energization to means 71 is issued (step ST23), and a warning is given to the driver so as not to operate each heating means 71 (step ST24).
  • the warning may be, for example, a visual warning (such as a warning light or a message indicating that there is a failure! /) Or an auditory warning with a beep sound.
  • step ST21 when it is determined in step ST21 that the engine is neither at the time of engine start nor at the time of idling, this electronic control unit 70 determines whether or not it is in the in-cylinder direct injection 0% region.
  • Step ST25 the fuel injection valve for port injection described above is also provided, and an example is given in the case of an internal combustion engine. Then, the electronic control unit 70 ends this process if it is not in the in-cylinder direct injection 0% region, whereas if it is in the in-cylinder direct injection 0% region, the electronic control unit 70 proceeds to the above step ST22 and proceeds to the middle of all cylinders. Thus, it is determined whether or not there is a cylinder with AZF deviation! /, And the same processing as described above is performed according to the determination result of step ST22.
  • step ST22 it is determined whether or not there is a cylinder that is deviated by AZF from the AZF correction value (or AZF deviation amount) of each cylinder.
  • the deposit is burned out by using the heating means 71 such as a heater, but the deposit may be burned out by forming a spark in the vicinity of the nozzle hole.
  • the heating means 71 such as a heater
  • FIG. 26 illustrates a fuel injection valve 1T provided with a spark forming means 72 capable of forming a spark in the vicinity of the nozzle hole 11a.
  • the fuel injection valve 1T shown in Fig. 26 is the same as the fuel injection valve 1A of the first embodiment described above, the valve body 10T having the valve body 11T having a smooth tip, and the holder 20T molded in accordance with this.
  • the annular valve tip seal member 30T disposed at the tip of the holder 20T is replaced with a seal holding member 40T that clamps the valve tip seal member 30T between the tip of the holder 20T in the axial direction. It is what.
  • an electrode provided in the vicinity of the injection hole 11a is exemplified as the spark formation means 72.
  • an electrode as the spark forming means 72 is disposed so as to face the inner peripheral surface of the annular portion 40c of the seal holding member 40T, and the spark forming means 72 is connected to the electronic control device 70 described above to the frame of FIG. Operate in the same way as the chart.
  • the spark formed between the electrodes burns out the deposit, so that the same effect as the fuel injection valve 1S described above can be obtained.
  • This embodiment 14 is the fuel injection valve 1A of each of the embodiments 1 to 13 described above:
  • the valve tip end non-removable material (30A, 30C, 30K, 30L, 30M, 30T) force S vise S—Shows countermeasures in the event of melting or breakage, which can no longer function as a seal.
  • the fuel injection valve 1A according to the first embodiment described above is illustrated as a representative example, but the fuel injection valves 1B to IT according to the other embodiments 1 to 13 are similar to the following. What is necessary is just to comprise.
  • the fuel injection valve 1U of the fourteenth embodiment includes a seal damage detection means that can detect damage to the valve tip seal member 30A in the fuel injection valve 1A of the first embodiment described above. And an operation control means for making a transition to an operating state in which the temperature rise of the fuel injection valve tip can be suppressed when damage to the valve tip seal member 30A is recognized.
  • a temperature sensor 73 shown in FIG. 27 such as a thermocouple provided in the vicinity of the valve tip seal member 30A in the seal holding member 40A can be used. It is preferable that the temperature sensor 73 is disposed at a position where the combustion gas does not directly hit so as not to be directly affected by the temperature of the combustion gas.
  • the temperature sensor 73 is disposed at a position where the combustion gas does not directly hit so as not to be directly affected by the temperature of the combustion gas.
  • the temperature sensor 73 is provided in the vicinity of the space A in the seal holding member 40A, and the presence or absence of damage to the valve tip seal member 30A is determined according to the temperature change.
  • this seal damage detection means it is also possible to use a vibration sensor 74 shown in FIG. 27 such as a knock sensor provided for each cylinder. That is, the holder 20A holding the valve tip seal member 30A is supported by the valve tip seal member 30A and the gas seal member 51. For this reason, if the valve tip seal member 30A is damaged, the vibration source in the support structure of the holder 20A is displaced, and the waveform of the detection signal of the vibration sensor 74 changes from that in the normal state. By detecting the valve tip It is possible to determine whether or not the seal member 30A is damaged.
  • the operation control means is a function provided in the electronic control unit 70.
  • the temperature rise at the tip of the fuel injection valve is controlled by retarding the ignition timing, controlling the throttle valve in the closing (throttle) direction, and the fuel injection valve for port injection exemplified in the thirteenth embodiment. This can be suppressed by shifting to an operation such as an increase in the injection ratio of the fuel injection valve 1U of the 14th embodiment for direct in-cylinder injection in an internal combustion engine or cylinder deactivation.
  • the temperature rise at the tip of the fuel injection valve can be suppressed by lowering the temperature of the cooling water with an electric fan or the like.
  • the electronic control unit 70 according to the fourteenth embodiment is based on the detection signals of the temperature sensor 73 and the vibration sensor 74 described above as to whether the valve tip seal member 30A is normal as shown in the flowchart of FIG. Judge (Step ST31).
  • the electronic control unit 70 performs the above-described temperature rise suppression operation of the fuel injection valve tip for the corresponding cylinder (step ST32). Then, for example, the driver is warned in the same manner as described in the thirteenth embodiment (step ST33). As a result, in the fuel injection valve 1U of the embodiment 14, the temperature rise at the tip of the fuel injection valve is suppressed, so that the generation of deposits at the tip of the fuel injection valve is suppressed and the fuel injection amount is reduced. It can be avoided.
  • step ST31 determines whether it is normal or not.
  • step ST 34 determines whether it is normal or not.
  • the fuel injection valves (1A to 1G, 1J to 1U) of the above-described embodiments 1 to 5, 8 to 14 are, for example, the seal holding member (40A, 40J, 40L) in the fuel injection valve mounting hole 101. , 40Q, 40R, 40T), and insert the valve tip seal member (30A, 30C, 30K, 30L, 30M, 30T) into the seal holding member or the seal outer peripheral surface holding member 66 of Example 8 Thereafter, the valve main body 10A and the holder (20A, 20E, 20M, 20N, 20T) are press-fitted into the seal holding member and assembled. In each of the fuel injection valves, the seal holding member after press-fitting is the bottom surface 101b of the second circular hole 101b in the fuel injection valve mounting hole 101.
  • each fuel injection valve has a seal holding
  • the interval between the seal holding member and the holder that is, the interval between the portions that hold the valve tip seal member
  • the interval is narrower than the design value and an excessive compressive stress is applied to the valve tip seal member, causing the valve tip seal member to be deformed or damaged, resulting in poor seal performance.
  • the compression holding force is reduced because the interval is wider than the design value, so that a gap is easily formed between the valve tip seal member and the sealing performance is deteriorated. There is a risk of causing it.
  • the valve tip seal member is held with an appropriate compression holding force, so that good sealing performance can be ensured. Therefore, in each of the fuel injection valves, the temperature rise at the tip of the fuel injection valve can be reliably suppressed, so that the generation of deposits at the tip of the fuel injection valve is effectively suppressed and the fuel injection valve is prevented. A decrease in the injection amount can be avoided.
  • valve tip seal member (30A, 30C, 30K, 30L, 30M, 30T) is held in the axial direction. Therefore, when the tip of the fuel injection valve must be exposed in the combustion chamber due to restrictions on the spray shape and spray direction, the seal holding member 40T can be used for the fuel injection valve 1T of the embodiment 13 shown in FIG.
  • the tip of the cylinder may jump out into the combustion chamber, which may interfere with the clearance from the top surface of the piston and the freedom of spray shape and spray direction.
  • the tip of the valve body 11 may protrude greatly into the combustion chamber, and the tip is exposed to higher-temperature combustion gas. As the temperature rises, deposits are easily generated.
  • This fuel injection valve IV is a valve having a smooth tip in the fuel injection valve 1A of the first embodiment.
  • a valve body 10V having a body 1 IV, a holder 20 V whose tip is substantially flush with the tip surface of the valve body 11 V, and an annular valve tip seal member disposed on the outer peripheral surface from the tip of the holder 20V 30V and the valve tip seal member 30V are replaced with a seal holding member 40V that holds the valve 20D in the radial direction between the outer peripheral surface of the holder 20V.
  • the seal holding member 40V is formed so that the front end surfaces thereof are substantially flush with the respective front end surfaces of the valve body 1 IV and the holder 20V. Hold the valve tip seal member 30V.
  • the fuel injection valve IV is secured to the piston top surface while ensuring the sealing performance of the tip seal member 30V. It is possible to secure the gap between them as much as possible, and to avoid the interference between the sprayed fuel and the seal holding member 40V. Therefore, this fuel injection valve IV can suppress the temperature rise at the tip of the fuel injection valve without hindering the spray function, so that the tip of the fuel injection valve can be protruded into the combustion chamber. .
  • the fuel injection valve IV has a lower temperature at the tip of the fuel injection valve even when it is difficult to hold the tip seal member in the axial direction because the diameter of the tip of the fuel injection valve becomes narrow. It is possible to arrange the valve tip seal member 30V at a position where the rise suppression effect is excellent.
  • the fuel injection valve according to the present invention is useful as a technique for injecting fuel with a stable injection amount by suppressing the temperature rise at the tip of the fuel injection valve.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Fuel-Injection Apparatus (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Abstract

It is possible to inject a fuel at a predetermined fuel injection rate. A fuel injection valve (1A) includes a valve body (10A) for injecting a fuel and a holder (20A) for holding the valve body (10A) inside and inserted to be fixed in a fuel injection valve mounting hole (101). The fuel injection valve (1A) further includes a valve tip end seal member (30A) arranged near a fuel combustion chamber at the fuel injection valve tip end and a seal holding member (40A) inserted into the fuel injection valve mounting hold (101) and compressing/holding the valve tip end seal member (30A) between the seal holding member (40A) and the fuel injection valve tip end. The seal holding member (40A) compresses/holds the valve tip end seal member (30A) in the axial direction at its annular portion (40c).

Description

燃料噴射弁  Fuel injection valve
技術分野  Technical field
[0001] 本発明は、燃料を噴射させる燃料噴射弁に係り、その燃料噴射時の様々な噴霧特 性を容易且つ安価に得ることが可能な燃料噴射弁に関する。  TECHNICAL FIELD [0001] The present invention relates to a fuel injection valve that injects fuel, and relates to a fuel injection valve that can obtain various spray characteristics at the time of fuel injection easily and inexpensively.
背景技術  Background art
[0002] 一般に、燃料噴射弁は、そのノズル先端部が高温の燃焼ガスに曝されて ヽるので 高温になり、また、シリンダヘッドの燃料噴射弁取付孔力 の受熱によっても高温に なるので、そこに燃料が残存しているとデポジットが生成されて、燃料の噴射量が低 下してしまう。これが為、従来、この燃料噴射弁においては、そのノズル先端部の高 温化を抑制する様々な手法が採られて ヽる。  [0002] Generally, a fuel injection valve has a high temperature because its nozzle tip is exposed to high-temperature combustion gas, and it also becomes high due to the heat received by the fuel injection valve mounting hole force of the cylinder head. If fuel remains there, a deposit is generated and the fuel injection amount is reduced. For this reason, conventionally, in this fuel injection valve, various methods for suppressing the temperature rise of the nozzle tip have been adopted.
[0003] 例えば、下記の特許文献 1には、シール部が一体ィ匕された防熱キャップをノズル先 端部に嵌合させ、このノズル先端部における燃焼ガスとの接触面積を減少させた燃 料噴射弁が開示されている。また、下記の特許文献 2には、ノズル先端部を断熱材で 包み込む技術、ノズル先端部をカバーで覆い、このカバーとの間の空間に断熱層を 形成する技術が開示されている。また、下記の特許文献 3には、ノズル先端部 (バル ブボディ)に、その燃焼室側の面と低温側とを熱接触させる熱伝達プロテクタを設け た燃料噴射弁が開示されて 、る。  [0003] For example, in Patent Document 1 below, a fuel in which a heat insulating cap with an integrated seal portion is fitted to a nozzle tip end, and the contact area with the combustion gas at the nozzle tip is reduced. An injection valve is disclosed. Patent Document 2 below discloses a technique for wrapping the nozzle tip with a heat insulating material and a technique for covering the nozzle tip with a cover and forming a heat insulating layer in a space between the cover. Patent Document 3 below discloses a fuel injection valve provided with a heat transfer protector for bringing a combustion chamber side surface and a low temperature side into thermal contact with a nozzle tip (valve body).
[0004] 尚、下記の特許文献 4には、弾性変形可能なシールリングでノズル先端部が覆わ れた燃料噴射弁が開示されている。また、下記の特許文献 5には、ノズル先端部に おける弁座と弁体との間に弾性シール部材を配置する技術について開示されている 。また、下記の特許文献 6, 7には、ノズル先端部とシリンダヘッドの間に放熱用のガ スケットを配置する技術について開示されている。更に、下記の特許文献 8には、ノズ ル先端部に放熱用の金属製リングを配置する技術について開示されている。また、 下記の特許文献 9には、ノズル先端部にヒータを設ける技術について開示されている  [0004] Patent Document 4 listed below discloses a fuel injection valve in which a nozzle tip is covered with an elastically deformable seal ring. Patent Document 5 below discloses a technique for disposing an elastic seal member between a valve seat and a valve body at the nozzle tip. Patent Documents 6 and 7 listed below disclose a technique for disposing a heat dissipation gasket between the nozzle tip and the cylinder head. Further, Patent Document 8 below discloses a technique for disposing a metal ring for heat dissipation at the tip of the nozzle. Patent Document 9 below discloses a technique for providing a heater at the nozzle tip.
[0005] 特許文献 1:特開 2000— 345940号公報 特許文献 2:特開平 9 - 310660号公報 [0005] Patent Document 1: Japanese Unexamined Patent Publication No. 2000-345940 Patent Document 2: JP-A-9-310660
特許文献 3:特開平 9 - 222057号公報  Patent Document 3: Japanese Patent Laid-Open No. 9-222057
特許文献 4:特開 2000 - 170628号公報  Patent Document 4: Japanese Patent Laid-Open No. 2000-170628
特許文献 5:特開 2000 - 110666号公報  Patent Document 5: Japanese Unexamined Patent Publication No. 2000-110666
特許文献 6:特開 2003 - 227441号公報  Patent Document 6: Japanese Patent Laid-Open No. 2003-227441
特許文献 7:特開 2001 - 90635号公報  Patent Document 7: JP 2001-90635 A
特許文献 8:特開平 9 - 126089号公報  Patent Document 8: Japanese Patent Laid-Open No. 9-126089
特許文献 9:特開平 10— 169526号公報  Patent Document 9: Japanese Patent Laid-Open No. 10-169526
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0006] し力しながら、上記特許文献 1に開示された燃料噴射弁にお!、ては、シール部が一 体化されているので、例えば、そのシール部やノズル先端部の製造バラツキ、組み付 け誤差等の関係によりノズル先端部への密着性 (即ち、シール性能)が低ぐそのシ ール部から流入した燃焼ガスによりノズル先端部の温度上昇を招いてしまう虞がある 。これが為、この燃料噴射弁においては、ノズル先端部にデポジットが生成されてし まい、燃料噴射量を低下させてしまう。更に、ノズル先端部は上記の製造バラツキ等 に加えて熱膨張や熱収縮が起こり得るので、これらの変化量をそのような一体化され たシール部では吸収しきれない。そして、このことは弁体 (ニードル)のリフト量に影響 を与えてしまうので、所定の噴射量で燃料を噴射させることができなくなる虞がある。  [0006] However, since the seal portion is integrated in the fuel injection valve disclosed in Patent Document 1 described above, for example, manufacturing variations in the seal portion and the nozzle tip portion, There is a risk that the temperature of the nozzle tip will rise due to the combustion gas flowing in from the seal part, which has poor adhesion to the nozzle tip (ie, sealing performance) due to the assembly error. For this reason, in this fuel injection valve, deposits may be generated at the nozzle tip, and the fuel injection amount will be reduced. Furthermore, since the nozzle tip portion may undergo thermal expansion and contraction in addition to the above manufacturing variations and the like, these changes cannot be absorbed by such an integrated seal portion. Since this affects the lift amount of the valve body (needle), there is a possibility that fuel cannot be injected with a predetermined injection amount.
[0007] また、上記特許文献 2, 3に開示された燃料噴射弁においても同様に、断熱材や力 バー、熱伝達プロテクタ等の製造バラツキ等によりノズル先端部への燃焼ガスの接触 面積が増加して、ノズル先端部を温度上昇させてしまう虞があり、更に、断熱材や力 バー等では上記の変化量を吸収することができな 、ので、所定の噴射量での燃料噴 射を行うことができなくなる虞がある。  [0007] Further, in the fuel injection valves disclosed in Patent Documents 2 and 3, the contact area of the combustion gas to the nozzle tip is also increased due to manufacturing variations of heat insulating materials, power bars, heat transfer protectors, etc. In addition, there is a risk that the temperature of the nozzle tip will rise, and further, the above-mentioned variation cannot be absorbed by a heat insulating material or a force bar, etc., so that fuel injection is performed at a predetermined injection amount. There is a risk that it will not be possible.
[0008] そこで、本発明は、力かる従来例の有する不都合を改善し、所定の燃料噴射量を 確保することが可能な燃料噴射弁を提供することを、その目的とする。 [0008] Accordingly, an object of the present invention is to provide a fuel injection valve capable of improving the disadvantages of the conventional example, and ensuring a predetermined fuel injection amount.
課題を解決するための手段  Means for solving the problem
[0009] 上記目的を達成する為、請求項 1記載の発明では、燃料を噴射する弁本体と、この 弁本体を内部で保持し、燃料噴射弁取付孔に挿入して固定されるホルダと、を備え た燃料噴射弁にぉ ヽて、燃料噴射弁先端部の燃焼室よりに配設された弁先端部シ 一ル部材と、燃料噴射弁取付孔に挿入され、その弁先端部シール部材を燃料噴射 弁先端部との間で圧縮保持するシール保持部材とを設けている。 [0009] In order to achieve the above object, in the invention according to claim 1, a valve main body for injecting fuel, and this A valve tip disposed from the combustion chamber at the tip of the fuel injection valve over a fuel injection valve having a holder that holds the valve body inside and is fixed by being inserted into the fuel injection valve mounting hole. And a seal holding member which is inserted into the fuel injection valve mounting hole and compresses and holds the valve tip seal member with the fuel injection valve tip.
[0010] この請求項 1記載の燃料噴射弁によれば、燃料噴射弁先端部への弁先端部シー ル部材の密着性が向上してシール性能が確保されるので、その燃料噴射弁先端部 への燃焼ガスの接触面積を減少させて当該燃料噴射弁先端部の温度上昇を抑制す ることがでさる。  [0010] According to the fuel injection valve according to claim 1, since the adhesion of the valve tip seal member to the fuel injection valve tip is improved and the sealing performance is ensured, the fuel injection valve tip It is possible to reduce the contact area of the combustion gas to the fuel and suppress the temperature rise at the tip of the fuel injection valve.
[0011] また、上記目的を達成する為、請求項 2記載の発明では、上記請求項 1記載の燃 料噴射弁にぉ ヽて、弁先端部シール部材を低熱伝導率材料で成形して ヽる。  [0011] In order to achieve the above object, in the invention according to claim 2, in the fuel injection valve according to claim 1, the valve tip seal member is formed of a low thermal conductivity material. The
[0012] この請求項 2記載の燃料噴射弁によれば、弁先端部シール部材ゃシール保持部 材からの燃料噴射弁先端部への伝熱量が少なくなり、この燃料噴射弁先端部の温度 上昇を効果的に抑制することができる。 [0012] According to the fuel injection valve of claim 2, the amount of heat transfer from the valve tip seal member to the fuel injection valve tip is reduced, and the temperature of the fuel injection valve tip rises. Can be effectively suppressed.
[0013] また、上記目的を達成する為、請求項 3記載の発明では、上記請求項 1又は 2に記 載の燃料噴射弁にぉ 、て、燃料噴射弁先端部の外周部分に軸シール部材を新たに 設けている。 [0013] In order to achieve the above object, in the invention according to claim 3, in the fuel injection valve according to claim 1 or 2, the shaft seal member is disposed on the outer peripheral portion of the tip of the fuel injection valve. Is newly established.
[0014] この請求項 3記載の燃料噴射弁によれば、その燃料噴射弁先端部のシール性能 が向上する。  [0014] According to the fuel injection valve of claim 3, the sealing performance of the tip portion of the fuel injection valve is improved.
[0015] また、上記目的を達成する為、請求項 4記載の発明では、上記請求項 1, 2又は 3に 記載の燃料噴射弁において、シール保持部材と燃料噴射弁取付孔との間に、弁先 端部シール部材よりも弾性率の高 、高弾性シール部材を設けて 、る。  [0015] In order to achieve the above object, in the invention according to claim 4, in the fuel injection valve according to claim 1, 2 or 3, between the seal holding member and the fuel injection valve mounting hole, A highly elastic seal member having a higher elastic modulus than the valve tip end seal member is provided.
[0016] この請求項 4記載の燃料噴射弁によれば、高弾性シール部材が燃料噴射弁先端 部の製造バラツキや組み付け誤差、その熱膨張量や熱収縮量を吸収するので、弁 先端部シール部材が確実に圧縮保持されるようになり、所望のシール性能を確保す ることがでさる。  [0016] According to the fuel injection valve of claim 4, since the highly elastic seal member absorbs manufacturing variations and assembly errors of the fuel injection valve tip, and its thermal expansion and contraction, the valve tip seal The member is reliably compressed and held, and the desired sealing performance can be ensured.
[0017] また、上記目的を達成する為、請求項 5記載の発明では、上記請求項 1, 2, 3又は [0017] In order to achieve the above object, in the invention described in claim 5, the above claim 1, 2, 3 or
4に記載の燃料噴射弁にぉ ヽて、シール保持部材を高強度材料で成形して!/ヽる。 Form the seal holding member with a high-strength material over the fuel injection valve described in 4! / Speak.
[0018] この請求項 5記載の燃料噴射弁によれば、上記請求項 1, 2, 3又は 4に記載の燃 料噴射弁と同様の効果を奏するだけでなぐそのシール保持部材の薄肉化を図るこ とができるので、弁先端部シール部材を燃焼室に近づけて配置して温度上昇の抑制 効果を向上させることができると共に、燃料噴射弁の本体を後退させることなく燃料 噴射に最適な位置へと配置することができる。 [0018] According to the fuel injection valve of claim 5, the fuel of claim 1, 2, 3 or 4 The seal holding member can be thinned only by producing the same effect as the fuel injection valve, so the valve tip seal member is placed close to the combustion chamber to improve the temperature rise suppression effect. In addition, it is possible to arrange the fuel injection valve at a position optimal for fuel injection without retracting the main body of the fuel injection valve.
[0019] また、上記目的を達成する為、請求項 6記載の発明では、上記請求項 1, 2, 3又は 4に記載の燃料噴射弁にぉ 、て、シール保持部材を高弾性率材料で成形して 、る。  [0019] In order to achieve the above object, in the invention according to claim 6, in addition to the fuel injection valve according to claim 1, 2, 3 or 4, the seal holding member is made of a high elastic modulus material. Mold it.
[0020] この請求項 6記載の燃料噴射弁によれば、上記請求項 1, 2, 3又は 4に記載の燃 料噴射弁と同様の効果を奏するだけでなぐそのシール保持部材が製造バラツキや 熱膨張等による燃料噴射弁先端部の変化量を吸収して当該燃料噴射弁先端部に掛 力る圧縮荷重を緩和させることができるので、弁体 (ニードル)のリフト量変化を抑える ことができる。  [0020] According to the fuel injection valve described in claim 6, the seal holding member that has the same effect as the fuel injection valve described in claim 1, 2, 3, or 4 has manufacturing variations and The amount of change in the tip of the fuel injection valve due to thermal expansion can be absorbed and the compressive load applied to the tip of the fuel injection valve can be relaxed, so changes in the lift amount of the valve body (needle) can be suppressed. .
[0021] また、上記目的を達成する為、請求項 7記載の発明では、上記請求項 1から 6の内 の何れか 1つに記載の燃料噴射弁にぉ 、て、環状の弁先端部シール部材の外周面 とシール保持部材との間に当該シール保持部材よりも強度の高い環状のシール外 周面保持部材を設けている。  [0021] In order to achieve the above object, in the invention according to claim 7, an annular valve tip seal is provided in addition to the fuel injection valve according to any one of claims 1 to 6. An annular seal outer peripheral surface holding member having higher strength than the seal holding member is provided between the outer peripheral surface of the member and the seal holding member.
[0022] この請求項 7記載の燃料噴射弁によれば、弁先端部シール部材の内周面と外周面 には夫々燃焼ガスの圧力とシール外周面保持部材の熱膨張による押圧力が掛かる ので、その弁先端部シール部材には径方向の圧縮応力が掛カるようになる。従って 、この燃料噴射弁においては、引張応力による弁先端部シール部材の破損が回避さ れるので、燃料噴射弁先端部のシール性能を確保することができる。  [0022] According to the fuel injection valve of claim 7, since the pressure of the combustion gas and the pressing force due to the thermal expansion of the seal outer peripheral surface holding member are respectively applied to the inner peripheral surface and the outer peripheral surface of the valve tip end seal member. The valve tip seal member is subjected to radial compressive stress. Therefore, in this fuel injection valve, damage to the valve tip seal member due to tensile stress is avoided, so that the sealing performance of the fuel injection valve tip can be ensured.
[0023] また、上記目的を達成する為、請求項 8記載の発明では、上記請求項 1から 7の内 の何れか 1つに記載の燃料噴射弁において、燃料噴射弁先端部とシール保持部材 との間で軸線方向にて圧縮保持される面シール部と、その間で径方向にて圧縮保持 される軸シール部と、を一体ィ匕した弁先端部シール部材を構成して 、る。  [0023] Further, in order to achieve the above object, in the invention according to claim 8, in the fuel injection valve according to any one of claims 1 to 7, the tip of the fuel injection valve and the seal holding member And a shaft seal portion compressed and held in the radial direction therebetween, and a valve tip portion seal member configured integrally.
[0024] この請求項 8記載の燃料噴射弁によれば、面シール部に引張応力が掛力 なくな るので、弁先端部シール部材の破損が回避され、燃料噴射弁先端部のシール性能 を高めることができる。また、この弁先端部シール部材は、軸シールとしての機能も備 えているので、シール性能をより向上させる。 [0025] また、上記目的を達成する為、請求項 9記載の発明では、上記請求項 1から 8の内 の何れか 1つに記載の燃料噴射弁において、燃料噴射弁先端部に弁先端部シール 部材を付着させるシール付着手段を設けて 、る。 [0024] According to the fuel injection valve according to claim 8, since the tensile stress is not applied to the face seal portion, the valve tip seal member is prevented from being damaged, and the sealing performance of the fuel injection valve tip is improved. Can be increased. In addition, since the valve tip seal member also has a function as a shaft seal, the seal performance is further improved. [0025] In order to achieve the above object, in the invention according to claim 9, in the fuel injection valve according to any one of claims 1 to 8, in the fuel injection valve front end, the valve front end A seal adhering means for adhering the seal member is provided.
[0026] この請求項 9記載の燃料噴射弁によれば、燃料噴射弁先端部と共に弁先端部シー ル部材を容易に取り外すことができるようになる。  [0026] According to the fuel injection valve of claim 9, the valve tip seal member can be easily removed together with the fuel injection valve tip.
[0027] また、上記目的を達成する為、請求項 10記載の発明では、上記請求項 1から 9の 内の何れか 1つに記載の燃料噴射弁にぉ 、て、シール保持部材が少なくとも燃焼ガ スに曝される部位又は Z及び当該部位の内部に断熱層を備えている。  [0027] In order to achieve the above object, in the invention according to claim 10, at least the seal holding member is combusted in the fuel injection valve according to any one of claims 1 to 9. The part exposed to gas or Z and the inside of the part is equipped with a heat insulation layer.
[0028] この請求項 10記載の燃料噴射弁によれば、燃料噴射弁先端部の温度上昇を抑制 することができる。  [0028] According to the fuel injection valve of the tenth aspect, it is possible to suppress the temperature rise at the tip of the fuel injection valve.
[0029] また、上記目的を達成する為、請求項 11記載の発明では、上記請求項 1から 10の 内の何れか 1つに記載の燃料噴射弁にぉ 、て、シール保持部材にシリンダヘッドの 冷却水通路内の冷却水と接する放熱フィンを設けている。  [0029] Further, in order to achieve the above object, in the invention according to claim 11, the fuel injection valve according to any one of claims 1 to 10, and the cylinder holding head in the seal holding member. A heat dissipating fin is provided in contact with the cooling water in the cooling water passage.
[0030] この請求項 11記載の燃料噴射弁によれば、シール保持部材の冷却に伴って燃料 噴射弁先端部の熱を奪うので、その燃料噴射弁先端部の温度上昇を抑制することが できる。 [0030] According to the fuel injection valve of claim 11, since the heat of the tip of the fuel injection valve is taken away with the cooling of the seal holding member, the temperature rise of the tip of the fuel injection valve can be suppressed. .
[0031] また、上記目的を達成する為、請求項 12記載の発明では、上記請求項 1から 11の 内の何れか 1つに記載の燃料噴射弁にぉ 、て、弁先端部シール部材と前記燃料噴 射弁先端部の噴孔近傍との間に加熱手段を設けて!/ヽる。  [0031] In order to achieve the above object, in the invention according to claim 12, in addition to the fuel injection valve according to any one of claims 1 to 11, the valve tip seal member and A heating means is provided between the front end of the fuel injection valve and the vicinity of the injection hole.
[0032] この請求項 12記載の燃料噴射弁によれば、生成されてしまったデポジットを熱で焼 さ切ることがでさる。  [0032] According to the fuel injection valve of claim 12, the generated deposit can be burned out by heat.
[0033] また、上記目的を達成する為、請求項 13記載の発明では、上記請求項 1から 11の 内の何れか 1つに記載の燃料噴射弁にぉ ヽて、噴孔近傍で火花を形成可能な火花 形成手段を設けている。  [0033] Further, in order to achieve the above object, in the invention according to claim 13, a spark is caused near the nozzle hole over the fuel injection valve according to any one of claims 1 to 11. There is a spark formation means that can be formed.
[0034] この請求項 13記載の燃料噴射弁によれば、生成されてしまったデポジットを火花で 焼さ切ることがでさる。  [0034] According to the fuel injection valve of claim 13, the generated deposit can be burned off by sparks.
[0035] また、上記目的を達成する為、請求項 14記載の発明では、上記請求項 1から 13の 内の何れか 1つに記載の燃料噴射弁にぉ 、て、弁先端部シール部材の損傷を検知 可能なシール損傷検知手段と、弁先端部シール部材の損傷を検知した際に燃料噴 射弁先端部の温度上昇を抑制可能な運転状態へと移行させる運転制御手段と、を 設けている。 [0035] In order to achieve the above object, in the invention according to claim 14, in the fuel injection valve according to any one of claims 1 to 13, the valve tip seal member is provided. Detect damage There is provided a possible seal damage detecting means, and an operation control means for making a transition to an operating state capable of suppressing the temperature rise of the fuel injection valve tip when detecting damage to the valve tip seal member.
[0036] この請求項 14記載の燃料噴射弁によれば、万が一弁先端部シール部材が損傷し たとしても、燃料噴射弁先端部の温度上昇を抑えることができる。  [0036] According to the fuel injection valve of claim 14, even if the valve tip seal member is damaged, an increase in the temperature of the fuel injection valve tip can be suppressed.
発明の効果  The invention's effect
[0037] 本発明に係る燃料噴射弁は、上述したが如く燃料噴射弁先端部の温度上昇を抑 制することができるので、この燃料噴射弁先端部でのデポジットの生成が抑えられて 、燃料噴射量の低下を防ぐことができる。また、上記請求項 6記載の燃料噴射弁にお いては、弁体 (ニードル)のリフト量変化を抑えることができるので、所定の噴射量での 燃料噴射が可能になる。また、上記請求項 12, 13に記載の燃料噴射弁においては 、生成されてしまったデポジットを焼き切ることができるので、燃料噴射量の低下を防 ぐことができる。また、上記請求項 14記載の燃料噴射弁においては、弁先端部シー ル部材が損傷しても燃料噴射弁先端部の温度上昇を抑えることができるので、この 燃料噴射弁先端部でのデポジットの生成が抑制されて、燃料噴射量の低下を防ぐこ とができる。このように、本発明に係る燃料噴射弁によれば、所定の燃料噴射量の確 保が可能になる。  [0037] As described above, the fuel injection valve according to the present invention can suppress the temperature rise at the front end of the fuel injection valve, so that the generation of deposit at the front end of the fuel injection valve is suppressed, and the fuel A decrease in the injection amount can be prevented. Further, in the fuel injection valve according to the sixth aspect, since the change in the lift amount of the valve body (needle) can be suppressed, fuel injection with a predetermined injection amount becomes possible. Further, in the fuel injection valve according to claims 12 and 13, the generated deposit can be burned out, so that the fuel injection amount can be prevented from decreasing. Further, in the fuel injection valve according to claim 14, since the temperature rise of the fuel injection valve tip can be suppressed even if the valve tip seal member is damaged, the deposit at the fuel injection valve tip is reduced. Generation is suppressed, and a decrease in fuel injection amount can be prevented. Thus, according to the fuel injection valve of the present invention, it is possible to ensure a predetermined fuel injection amount.
図面の簡単な説明  Brief Description of Drawings
[0038] [図 1]図 1は、本発明に係る実施例 1の燃料噴射弁の先端部分を示す部分断面図で ある。  FIG. 1 is a partial cross-sectional view showing a tip portion of a fuel injection valve according to a first embodiment of the present invention.
[図 2]図 2は、本発明に係る実施例 1の燃料噴射弁の変形例における先端部分を示 す部分断面図である。  FIG. 2 is a partial cross-sectional view showing a tip portion in a modification of the fuel injection valve of Embodiment 1 according to the present invention.
[図 3]図 3は、本発明に係る実施例 2の燃料噴射弁の先端部分を示す部分断面図で ある。  FIG. 3 is a partial cross-sectional view showing a tip portion of a fuel injection valve of Example 2 according to the present invention.
[図 4]図 4は、本発明に係る実施例 3の燃料噴射弁の先端部分を示す部分断面図で ある。  FIG. 4 is a partial cross-sectional view showing a tip portion of a fuel injection valve of Example 3 according to the present invention.
[図 5]図 5は、本発明に係る実施例 4の燃料噴射弁の先端部分を示す部分断面図で ある。 [図 6]図 6は、本発明に係る実施例 5の燃料噴射弁の先端部分を示す部分断面図で ある。 FIG. 5 is a partial cross-sectional view showing a tip portion of a fuel injection valve according to Embodiment 4 of the present invention. FIG. 6 is a partial cross-sectional view showing a tip portion of a fuel injection valve according to Embodiment 5 of the present invention.
[図 7]図 7は、本発明に係る実施例 5の燃料噴射弁の変形例における先端部分を示 す部分断面図である。  [Fig. 7] Fig. 7 is a partial cross-sectional view showing a tip portion in a modified example of the fuel injection valve of Embodiment 5 according to the present invention.
[図 8]図 8は、本発明に係る実施例 6の燃料噴射弁の先端部分を示す部分断面図で ある。  FIG. 8 is a partial cross-sectional view showing a tip portion of a fuel injection valve of Example 6 according to the present invention.
[図 9]図 9は、本発明に係る実施例 7の燃料噴射弁の先端部分を示す部分断面図で ある。  FIG. 9 is a partial cross-sectional view showing a tip portion of a fuel injection valve of Example 7 according to the present invention.
[図 10]図 10は、本発明に係る実施例 8の燃料噴射弁の先端部分を示す部分断面図 である。  FIG. 10 is a partial cross-sectional view showing a tip portion of a fuel injection valve according to an eighth embodiment of the present invention.
圆 11]図 11は、本発明に係る実施例 8の燃料噴射弁の変形例における先端部分を 示す部分断面図である。 圆 11] FIG. 11 is a partial cross-sectional view showing a tip portion of a modified example of the fuel injection valve according to the eighth embodiment of the present invention.
圆 12]図 12は、本発明に係る実施例 9の燃料噴射弁の先端部分を示す部分断面図 である。 圆 12] FIG. 12 is a partial cross-sectional view showing the tip portion of the fuel injection valve of the ninth embodiment according to the present invention.
[図 13]図 13は、本発明に係る実施例 10の燃料噴射弁の先端部分を示す部分断面 図であって、ホルダとシール保持部材の組み付け前の状態を示す図である。  FIG. 13 is a partial cross-sectional view showing a tip portion of a fuel injection valve according to a tenth embodiment of the present invention, showing a state before the holder and the seal holding member are assembled.
[図 14]図 14は、本発明に係る実施例 10の燃料噴射弁の先端部分を示す部分断面 図であって、ホルダとシール保持部材の組み付け後の状態を示す図である。  FIG. 14 is a partial cross-sectional view showing a tip portion of a fuel injection valve according to a tenth embodiment of the present invention, showing a state after the holder and the seal holding member are assembled.
[図 15]図 15は、本発明に係る実施例 10の燃料噴射弁の先端部分を示す部分断面 図であって、ホルダとシール保持部材とを取り外す際の状態を示す図である。  FIG. 15 is a partial cross-sectional view showing a tip portion of a fuel injection valve according to a tenth embodiment of the present invention, showing a state when the holder and the seal holding member are removed.
[図 16]図 16は、本発明に係る実施例 10の燃料噴射弁の変形例における先端部分を 示す部分断面図であって、ホルダとシール保持部材の組み付け後の状態を示す図 である。  FIG. 16 is a partial cross-sectional view showing a tip portion of a modification of the fuel injection valve of Example 10 according to the present invention, and shows a state after the holder and the seal holding member are assembled.
[図 17]図 17は、本発明に係る実施例 10の燃料噴射弁の他の変形例における先端 部分を示す部分断面図であって、ホルダとシール保持部材の組み付け前の状態を 示す図である。  FIG. 17 is a partial cross-sectional view showing a tip portion of another modification of the fuel injection valve according to the tenth embodiment of the present invention, showing a state before the holder and the seal holding member are assembled. is there.
[図 18]図 18は、本発明に係る実施例 11の燃料噴射弁の先端部分を示す部分断面 図である。 [図 19]図 19は、本発明に係る実施例 11の燃料噴射弁の変形例における先端部分を 示す部分断面図である。 FIG. 18 is a partial cross-sectional view showing a tip portion of a fuel injection valve of Example 11 according to the present invention. FIG. 19 is a partial cross-sectional view showing a tip portion in a modified example of the fuel injection valve of Embodiment 11 according to the present invention.
[図 20]図 20は、本発明に係る実施例 12の燃料噴射弁の先端部分を示す部分断面 図である。  FIG. 20 is a partial cross-sectional view showing a tip portion of a fuel injection valve according to a twelfth embodiment of the present invention.
[図 21]図 21は、本発明に係る実施例 13の燃料噴射弁の先端部分を示す部分断面 図である。  FIG. 21 is a partial cross-sectional view showing a tip portion of a fuel injection valve of Example 13 according to the present invention.
[図 22]図 22は、実施例 13の燃料噴射弁におけるデポジット焼き切り動作を説明する フローチャートである。  FIG. 22 is a flowchart for explaining a deposit burn-out operation in the fuel injection valve of the thirteenth embodiment.
[図 23]図 23は、実施例 13の燃料噴射弁において噴霧微粒ィ匕制御を図る際の燃料 噴射時期とヒータ通電時期の関係を示す図である。  FIG. 23 is a diagram showing the relationship between fuel injection timing and heater energization timing when spray fine particle control is performed in the fuel injection valve of the thirteenth embodiment.
[図 24]図 24は、実施例 13の燃料噴射弁における噴霧微粒ィ匕制御動作を説明するフ ローチャートである。  FIG. 24 is a flowchart for explaining a spray fine particle control operation in the fuel injection valve of the thirteenth embodiment.
[図 25]図 25は、実施例 13の燃料噴射弁におけるヒータ故障時の動作を説明するフ ローチャートである。 FIG. 25 is a flowchart for explaining the operation in the case of a heater failure in the fuel injection valve of the thirteenth embodiment.
[図 26]図 26は、本発明に係る実施例 13の燃料噴射弁の変形例における先端部分を 示す部分断面図である。 FIG. 26 is a partial cross-sectional view showing a tip portion in a modified example of the fuel injection valve according to the thirteenth embodiment of the present invention.
[図 27]図 27は、本発明に係る実施例 14の燃料噴射弁の先端部分を示す部分断面 図である。  FIG. 27 is a partial cross-sectional view showing a tip portion of a fuel injection valve according to Embodiment 14 of the present invention.
[図 28]図 28は、実施例 14の燃料噴射弁における燃料噴射弁先端部の温度上昇抑 制制御動作を説明するフローチャートである。  FIG. 28 is a flowchart for explaining the temperature rise suppression control operation at the tip of the fuel injection valve in the fuel injection valve according to the fourteenth embodiment.
[図 29]図 29は、本発明に係る燃料噴射弁の変形例における先端部分を示す部分断 面図である。  FIG. 29 is a partial cross-sectional view showing a tip portion in a modified example of the fuel injection valve according to the present invention.
符号の説明 Explanation of symbols
1A, IB, 1C, ID, IE, IF, 1G, 1H, II, 1J, IK, 1L, 1M, IN, lO, IP, 1Q , 1R, IS, IT, 1U, IV 燃焼噴射弁  1A, IB, 1C, ID, IE, IF, 1G, 1H, II, 1J, IK, 1L, 1M, IN, lO, IP, 1Q, 1R, IS, IT, 1U, IV Combustion injector
10A, 10T, 10V 弁本体  10A, 10T, 10V valve body
11, 11T, 11V バルブボディ  11, 11T, 11V Valve body
11a 噴孔 ニードル11a nozzle needle
A, 20E, 20M, 20N, 20T, 20V ホルダA, 20E, 20M, 20N, 20T, 20V holder
c 環状溝 c Annular groove
2 2
c 突起 c Protrusion
3 Three
A, 30C, 30K, 30L, 30M, 30T, 30V 弁先端咅シーノレ咅附a 面シーノレ部A, 30C, 30K, 30L, 30M, 30T, 30V
b 軸シーノレ咅b-axis tray
A, 40H, 401, 40J, 40L, 40Q, 40R, 40T, 40V シール保持部材b 放熱フィン A, 40H, 401, 40J, 40L, 40Q, 40R, 40T, 40V Seal holding member b Radiating fin
1 1
c 環状溝 c Annular groove
1 1
, 54, 55, 56A, 56B ガスシール部材, 54, 55, 56A, 56B Gas seal member
, 53 軸シーノレ咅附 , 53 axis seat attachment
シール保持部材の抜け防止部材  Seal retaining member prevention member
高弾性率部材  High modulus member
スぺーサ (シール部材圧縮保持機構)  Spacer (seal member compression and holding mechanism)
ネジ機構 (シール部材圧縮保持機構)  Screw mechanism (seal member compression and holding mechanism)
シール外周面保持部材  Seal outer surface holding member
シール貼付手段  Seal sticking means
シール貼り付き防止手段 Means to prevent sticking of stickers
a 断熱層a Thermal insulation layer
b 断熱層 b Thermal insulation layer
電子制御装置  Electronic control unit
加熱手段  Heating means
火花形成手段  Spark formation means
温度センサ  Temperature sensor
振動センサ Vibration sensor
1 燃料噴射弁取付孔1 Fuel injection valve mounting hole
2 冷却水通路 発明を実施するための最良の形態 2 Cooling water passage BEST MODE FOR CARRYING OUT THE INVENTION
[0040] 以下に、本発明に係る燃料噴射弁の実施例を図面に基づいて詳細に説明する。  Hereinafter, embodiments of the fuel injection valve according to the present invention will be described in detail with reference to the drawings.
尚、この実施例によりこの発明が限定されるものではない。  The present invention is not limited to the embodiments.
実施例 1  Example 1
[0041] 本発明に係る燃料噴射弁の実施例 1を図 1及び図 2に基づいて説明する。  [0041] Embodiment 1 of a fuel injection valve according to the present invention will be described with reference to Figs.
[0042] その図 1の符号 1Aは、本実施例 1の燃料噴射弁を示す。この本実施例 1の燃料噴 射弁 1Aは、大別すると、燃料を噴射させる弁本体 10A,この弁本体 10Aを保持する ホルダ 20A,燃料噴射側の先端部 (以下、「燃料噴射弁先端部」という。)の燃焼室よ りに配設されたガスシール部材 (以下、「弁先端部シール部材」と 、う。) 30A及び当 該弁先端部シール部材 30Aを保持するシール保持部材 40Aによって構成されてい る。そして、この燃料噴射弁 1Aは、図示しない吸気ポート又は/及び燃焼室に燃料 を噴射させるようシリンダヘッド 100の燃料噴射弁取付孔 101に配設される。ここでは 、燃焼室に燃料を直接噴射させるものとして燃料噴射弁 1Aを例示する。尚、その図 1は、燃料噴射弁 1Aにおける燃料噴射側を図示して 、る。 The reference numeral 1A in FIG. 1 shows the fuel injection valve of the first embodiment. The fuel injection valve 1A according to the first embodiment is roughly divided into a valve main body 10A for injecting fuel, a holder 20A for holding the valve main body 10A, a tip on the fuel injection side (hereinafter referred to as a fuel injection valve tip Gas seal member (hereinafter referred to as “valve tip seal member”) 30A and a seal holding member 40A for holding the valve tip seal member 30A. It is configured. The fuel injection valve 1A is disposed in the fuel injection valve mounting hole 101 of the cylinder head 100 so as to inject fuel into an unillustrated intake port and / or combustion chamber. Here, the fuel injection valve 1A is illustrated as an example in which fuel is directly injected into the combustion chamber. FIG. 1 shows the fuel injection side of the fuel injection valve 1A.
[0043] 先ず始めに上記ホルダ 20Aにつ!/、て説明する。このホルダ 20Aは、その主要部分 が円筒形状に形成され、その円柱状の中空部 21に弁本体 10Aを挿入して保持する ものである。このホルダ 20Aは、その一端側が上記の燃料噴射弁取付孔 101に挿入 される。 [0043] First, the holder 20A will be described. The main part of the holder 20A is formed in a cylindrical shape, and the valve body 10A is inserted and held in the columnar hollow part 21. One end of the holder 20A is inserted into the fuel injection valve mounting hole 101.
[0044] ここで、その燃料噴射弁取付孔 101は、燃焼室側に向けて孔径カ 、さくなる段付き の円柱状のものであり、大中小の 3段階の第 1から第 3の円形孔部 101a〜101cを備 えている。本実施例 1のホルダ 20Aは、その第 1円形孔部 101aと第 2円形孔部 101b の上部とにおいては夫々の孔径と同等の外径に成形される一方、その第 2円形孔部 101bの下部と第 3円形孔部 101cとにおいては夫々の孔径よりも小さな外径に成形 される。即ち、このホルダ 20Aには、第 1円形孔部 101aと同等の外径力もなる第 1円 筒部 20aと、この第 1円筒部 20aよりも小さく且つ第 2円形孔部 101bと同等の外径か らなる当該第 2円形孔部 101bの上部における第 2円筒部 20bと、この第 2円筒部 20 bよりも小さく且つ第 3円形孔部 101cの孔径よりも小さい当該第 2円形孔部 101bの 下部及び第 3円形孔部 101cにおける第 3円筒部 20cとが設けられている。 [0045] また、このホルダ 20Aには、外部の電源供給装置と弁本体 10Aにおける磁気回路 とを電気的に接続するコネクタ部(図示略)が設けられている。これにより、その磁気 回路に電源が供給され、弁本体 10Aの後述するニードル 12を軸線方向へと往復移 動させることができる。 [0044] Here, the fuel injection valve mounting hole 101 has a stepped columnar shape with a diameter decreasing toward the combustion chamber side, and the first to third circular holes in three stages of large, medium and small. Sections 101a to 101c are provided. The holder 20A of the first embodiment is formed with an outer diameter equivalent to the diameter of each of the first circular hole portion 101a and the upper portion of the second circular hole portion 101b, while the second circular hole portion 101b The lower portion and the third circular hole portion 101c are formed to have outer diameters smaller than the respective hole diameters. That is, the holder 20A includes a first cylindrical portion 20a having an outer diameter equivalent to that of the first circular hole portion 101a, and an outer diameter smaller than the first cylindrical portion 20a and equivalent to the second circular hole portion 101b. A second cylindrical portion 20b at the top of the second circular hole portion 101b, and the second circular hole portion 101b smaller than the second cylindrical portion 20b and smaller than the diameter of the third circular hole portion 101c. A lower cylindrical portion and a third cylindrical portion 20c in the third circular hole portion 101c are provided. Further, the holder 20A is provided with a connector portion (not shown) for electrically connecting an external power supply device and a magnetic circuit in the valve body 10A. As a result, power is supplied to the magnetic circuit, and a later-described needle 12 of the valve body 10A can be reciprocated in the axial direction.
[0046] 更に、このホルダ 20Aにおける第 1円筒部 20aの下面と燃料噴射弁取付孔 101に おける第 1円形孔部 101aの底面 101aとの間には、燃焼室内のガスが燃料噴射弁  [0046] Further, between the lower surface of the first cylindrical portion 20a in the holder 20A and the bottom surface 101a of the first circular hole portion 101a in the fuel injection valve mounting hole 101, the gas in the combustion chamber is transferred to the fuel injection valve.
1  1
取付孔 101からシリンダヘッド 100の外部へと漏れるのを防ぐ為に環状のガスシール 部材 51が配設されている。本実施例 1のホルダ 20Aは、そのガスシール部材 51や 後で詳述するシール保持部材 40Aを介して燃料噴射弁取付孔 101に固定される。  In order to prevent leakage from the mounting hole 101 to the outside of the cylinder head 100, an annular gas seal member 51 is provided. The holder 20A of the first embodiment is fixed to the fuel injection valve mounting hole 101 via the gas seal member 51 and a seal holding member 40A described in detail later.
[0047] ところで、そのガスシール部材 51には、シリンダヘッド 100よりも熱の伝導性が低!ヽ 材料 (低熱伝導率材料)を用いることが好ましい。これにより、そのシリンダヘッド 100 におけるガスシール部材 51との当接部分がホルダ 20Aにおけるガスシール部材 51 との当接部分よりも高温となった際に、そのシリンダヘッド 100における当接部分の熱 がガスシール部材 51を介してホルダ 20A (燃焼噴射弁 1A)に伝達されることを抑制 することができる。一方、そのホルダ 20Aの当接部分がシリンダヘッド 100の当接部 分よりも高温となった際には、そのホルダ 20Aにおける当接部分の熱をガスシール部 材 51を介してシリンダヘッド 100に逃がすことができる。  By the way, it is preferable to use a material (low thermal conductivity material) having lower thermal conductivity than the cylinder head 100 for the gas seal member 51. Thus, when the contact portion of the cylinder head 100 with the gas seal member 51 becomes higher than the contact portion of the holder 20A with the gas seal member 51, the heat of the contact portion of the cylinder head 100 is increased. Transmission to the holder 20A (combustion injection valve 1A) via the gas seal member 51 can be suppressed. On the other hand, when the contact portion of the holder 20A becomes higher than the contact portion of the cylinder head 100, the heat of the contact portion of the holder 20A is transferred to the cylinder head 100 via the gas seal member 51. I can escape.
[0048] 次に、弁本体 10Aについて詳述する。この弁本体 10Aは、噴孔 11aが形成された バルブボディ 11と、このバルブボディ 11の中空部 1 lbを軸線方向に往復移動する- 一ドル 12とを備えている。また、この弁本体 10Aには、その-一ドル 12を軸線方向に 往復移動させる図示しな 、磁気回路及び弾性部材 (スプリング)が設けられて 、る。 また、この弁本体 10Aには、図示しない燃料ポンプにより加圧された燃料がデリバリ パイプを介して供給される。これが為、この弁本体 10Aには、そのデリバリパイプを接 続する為の接続部(図示略)が設けられて!/、る。  [0048] Next, the valve body 10A will be described in detail. The valve body 10A includes a valve body 11 in which an injection hole 11a is formed, and a dollar 12 that reciprocates in a hollow portion 1 lb of the valve body 11 in the axial direction. Further, the valve body 10A is provided with a magnetic circuit and an elastic member (spring) (not shown) for reciprocating the dollar 12 in the axial direction. Further, fuel pressurized by a fuel pump (not shown) is supplied to the valve body 10A via a delivery pipe. For this reason, this valve body 10A is provided with a connection (not shown) for connecting the delivery pipe! /
[0049] 先ず、そのバルブボディ 11は、円筒形状の一端に円錐部を設け、その円錐部に噴 孔 11aが形成されたものである。このバルブボディ 11は、その円錐部を先端にして上 述したホルダ 20Aの中空部 21へと挿入され、弁本体 10Aの最も燃焼室側に配置し て固定されている。例えば、このバルブボディ 11とホルダ 20Aは、圧入による嵌合や 溶接等によって固定されて 、る。 [0049] First, the valve body 11 is provided with a conical portion at one end of a cylindrical shape, and an injection hole 11a is formed in the conical portion. The valve body 11 is inserted into the hollow portion 21 of the holder 20A described above with the conical portion as a tip, and is fixed by being arranged on the most combustion chamber side of the valve body 10A. For example, the valve body 11 and the holder 20A It is fixed by welding.
[0050] また、この弁本体 10Aを構成する-一ドル 12は、基幹部分が円筒形状又は円柱形 状に成形され、その先端が円錐状に成形されている。この-一ドル 12は、バルブボ ディ 11の中空部 l ibの内壁面と磁気回路とによって、その軸線方向へと摺動自在に 支持されている。この-一ドル 12は、その先端がバルブボディ 11の円錐部の内壁面 に着座することで燃料の噴射を停止させる一方、その内壁面力ゝら離座することで燃料 を噴射させる。  [0050] Further, the dollar 12 constituting the valve main body 10A has a trunk portion formed into a cylindrical shape or a columnar shape, and a tip thereof formed into a conical shape. The dollar 12 is supported by the inner wall surface of the hollow portion ib of the valve body 11 and a magnetic circuit so as to be slidable in the axial direction. The dollar 12 stops the fuel injection by being seated on the inner wall surface of the conical part of the valve body 11, while the fuel is injected by being separated from the inner wall force.
[0051] 次に、本実施例 1の弁先端部シール部材 30Aとシール保持部材 40Aについて詳 述する。  [0051] Next, the valve tip seal member 30A and the seal holding member 40A of the first embodiment will be described in detail.
[0052] その弁先端部シール部材 30Aは、上述したが如く燃料噴射弁先端部の燃焼室より に配設される。例えば、本実施例 1にあっては、その弁先端部シール部材 30Aを環 状に成形してホルダ 20Aの先端に配設する。これにより、そのホルダ 20Aへの燃焼 ガスの接触面積を減らすことができ、燃料噴射弁先端部の温度上昇が抑えられる。 例えば、この本実施例 1の弁先端部シール部材 30Aは、その内径がホルダ 20Aの 先端における中空部 21の内径 (換言すれば、バルブボディ 11の外径)と同一径又は それよりも小さくなるように成形して、その燃焼ガスの接触面積を可能な限り小さくす る。  [0052] The valve tip seal member 30A is disposed from the combustion chamber at the tip of the fuel injection valve as described above. For example, in the first embodiment, the valve tip seal member 30A is formed in a ring shape and disposed at the tip of the holder 20A. As a result, the contact area of the combustion gas with the holder 20A can be reduced, and the temperature rise at the tip of the fuel injection valve can be suppressed. For example, the valve tip seal member 30A of the first embodiment has an inner diameter equal to or smaller than the inner diameter of the hollow portion 21 at the tip of the holder 20A (in other words, the outer diameter of the valve body 11). The contact area of the combustion gas is made as small as possible.
[0053] 一方、シール保持部材 40Aは、その内部にホルダ 20Aの先端部分を挿入し得るよ う円柱状の中空部 41を備えている。具体的に、このシール保持部材 40Aは、燃料噴 射弁取付孔 101の第 2円形孔部 101bと同等の外径力もなる第 1円筒部 40aと、第 3 円形孔部 101cと同等の外径力もなる第 2円筒部 40bとを備えており、その第 2及び 第 3の円形孔部 101b, 101cへと挿入される。例えば、ここでは、このシール保持部 材 40Aを第 2及び第 3の円形孔部 101b, 101cに圧入して嵌合させる。  [0053] On the other hand, the seal holding member 40A includes a cylindrical hollow portion 41 so that the tip of the holder 20A can be inserted therein. Specifically, the seal holding member 40A has an outer diameter equivalent to that of the first cylindrical portion 40a and the third circular hole portion 101c having the same outer diameter force as that of the second circular hole portion 101b of the fuel injection valve mounting hole 101. The second cylindrical portion 40b also has a force, and is inserted into the second and third circular hole portions 101b and 101c. For example, here, the seal holding member 40A is press-fitted into and fitted into the second and third circular holes 101b and 101c.
[0054] また、このシール保持部材 40Aの燃焼室側の端部には、内径側へと延設された環 状部 40cが形成されている。この環状部 40cは、弁先端部シール部材 30Aをホルダ 20Aの先端部との間に挟み込んで保持する為のものである。例えば、シール保持部 材 40Aの中空部 41に弁本体 10Aとホルダ 20Aと弁先端部シール部材 30Aとを挿入 することによって、その弁先端部シール部材 30Aが軸線方向にて圧縮保持される。 [0055] ここで、仮に、このシール保持部材 40Aが燃焼室内に突出していると、かかる部位 が極端に温度上昇し、これと接して 、る弁先端部シール部材 30Aの耐熱温度を超え てしまう虞がある。このシール保持部材 40Aは、その先端 (即ち、環状部 40c)が燃焼 室内に突出しないような形状に成形する。これにより、その弁先端部シール部材 30A の熱負荷が軽減して耐久性の向上を図ることができる。 [0054] Further, an annular portion 40c extending toward the inner diameter side is formed at the end of the seal holding member 40A on the combustion chamber side. The annular portion 40c is for sandwiching and holding the valve tip seal member 30A between the tip of the holder 20A. For example, by inserting the valve main body 10A, the holder 20A, and the valve tip seal member 30A into the hollow portion 41 of the seal holding member 40A, the valve tip seal member 30A is compressed and held in the axial direction. [0055] Here, if the seal holding member 40A protrudes into the combustion chamber, the temperature of the portion extremely increases, and exceeds the heat resistance temperature of the valve tip seal member 30A. There is a fear. The seal holding member 40A is formed in a shape such that the tip (that is, the annular portion 40c) does not protrude into the combustion chamber. As a result, the thermal load on the valve tip seal member 30A can be reduced and durability can be improved.
[0056] このように、本実施例 1の燃料噴射弁 1Aは、シール保持部材 40Aにより弁先端部 シール部材 30Aを圧縮保持しているので、燃料噴射弁先端部(ここでは、ホルダ 20 A)への弁先端部シール部材 30Aの密着性が向上してシール性能が確保されるの で、その燃料噴射弁先端部への燃焼ガスの接触を抑制することができる。これにより 、そのホルダ 20Aの温度上昇に伴うバルブボディ 11への伝熱を抑えることができ、燃 料噴射弁先端部の温度上昇を抑制することができる。これが為、この燃料噴射弁 1A によれば、その燃料噴射弁先端部におけるデポジットの生成を抑えることでき、燃料 噴射量の低下を回避することができる。  Thus, in the fuel injection valve 1A of the first embodiment, since the valve tip seal member 30A is compressed and held by the seal holding member 40A, the fuel injection valve tip (here, the holder 20A) Since the adhesion of the valve tip seal member 30A to the valve improves and the sealing performance is ensured, the contact of the combustion gas to the tip of the fuel injection valve can be suppressed. As a result, heat transfer to the valve body 11 due to the temperature rise of the holder 20A can be suppressed, and temperature rise at the tip of the fuel injection valve can be suppressed. For this reason, according to the fuel injection valve 1A, it is possible to suppress the generation of deposits at the tip of the fuel injection valve, and to avoid a decrease in the fuel injection amount.
[0057] ここで、上述した弁先端部シール部材 30Aは、低熱伝導率材料のセラミックスや有 機材料、金属等を用いて成形することが好ましい。これにより、この弁先端部シール 部材 30Aやシール保持部材 40Aからの燃料噴射弁先端部(弁本体 10Aやホルダ 2 OA)への伝熱量が少なくなり、この燃料噴射弁先端部の温度上昇を効果的に抑制 することができる。これが為、弁先端部シール部材 30Aに低熱伝導率材料を用いる ことによって、その燃料噴射弁先端部におけるデポジットの生成を効果的に抑えるこ とでき、燃料噴射量の低下を有効に回避することができる。  [0057] Here, the above-described valve tip seal member 30A is preferably formed using a ceramic, an organic material, a metal, or the like, which is a low thermal conductivity material. As a result, the amount of heat transferred from the valve tip seal member 30A and the seal holding member 40A to the fuel injector tip (valve body 10A and holder 2OA) is reduced, and this increases the temperature of the fuel injector tip. Can be suppressed. Therefore, by using a low thermal conductivity material for the valve tip seal member 30A, it is possible to effectively suppress the formation of deposits at the tip of the fuel injection valve, and to effectively avoid a decrease in the fuel injection amount. it can.
[0058] 更に、この弁先端部シール部材 30Aは、シール性能に寄与する上下の平面以外 の面精度を当該上下の平面よりも低くしても良い。これにより、シール性能に寄与しな い内周面及び外周面の加工工数が低減されるので、弁先端部シール部材 30Aの原 価低減を図ることができる。  [0058] Furthermore, the valve tip seal member 30A may have a surface accuracy other than the upper and lower planes that contributes to the sealing performance lower than that of the upper and lower planes. This reduces the man-hours for processing the inner and outer peripheral surfaces that do not contribute to the sealing performance, thereby reducing the cost of the valve tip seal member 30A.
[0059] また、その弁先端部シール部材 30Aは、燃料噴射弁先端部の中でも可能な限り燃 焼室よりの部位に配置することが当該燃料噴射弁先端部の温度上昇を抑制する上 で好ましい。しかしながら、上述したシール保持部材 40Aには筒内圧等により軸線方 向に大きな力が掛カるので、その力に耐え得るだけの肉厚を確保しなければならず 、弁本体 10Aを燃焼室力 後退させなければシール保持部材 40Aが燃焼室内に突 出してしまう。そこで、そのシール保持部材 40Aは、ステンレス等の高強度な材料を 用いて成形することが好ましい。これにより、このシール保持部材 40Aにおける環状 部 40cの薄肉化が図れ、その薄肉化の分だけ弁先端部シール部材 30Aを燃焼室に 近づけて配置することができるので、温度上昇の抑制効果を向上させることができる 。また、その薄肉化に伴って弁本体 10Aを後退させることなく燃料噴射に最適な位置 へと配置することができる。 [0059] In addition, it is preferable that the valve tip seal member 30A is arranged as far as possible from the combustion chamber in the fuel injection valve tip in order to suppress the temperature rise of the fuel injection valve tip. . However, since the seal holding member 40A described above is subjected to a large force in the axial direction due to the in-cylinder pressure or the like, it is necessary to ensure a thickness sufficient to withstand that force. If the valve body 10A is not retracted in the combustion chamber, the seal holding member 40A will protrude into the combustion chamber. Therefore, the seal holding member 40A is preferably molded using a high-strength material such as stainless steel. As a result, the annular portion 40c of the seal holding member 40A can be thinned, and the valve tip seal member 30A can be disposed closer to the combustion chamber by the thinning, thereby improving the temperature rise suppression effect. Can be made. Further, with the thinning, the valve body 10A can be arranged at the optimum position for fuel injection without retreating.
[0060] このようにシール保持部材 40Aに高強度な材料を用いた場合には、その圧入時に 燃料噴射弁取付孔 101を傷付けてしまい、カゝかる傷から燃焼ガスが漏れ出てしまう虞 がある。そこで、このシール保持部材 40Aは、その燃焼室側における外周面と環状 部 40cとの間を以下のような形状にすることが好ましい。例えば、その間は、燃焼室に 近づくにつれて小さくなるテーパー形状,面取り形状や曲面形状に成形する。これに より、シール保持部材 40Aが燃料噴射弁取付孔 101に引っ掛カゝること無く圧入され るので、その圧入時に燃料噴射弁取付孔 101を傷付けることが無くなり、また、組み 付け加工性が向上する。  [0060] When a high-strength material is used for the seal holding member 40A in this way, the fuel injection valve mounting hole 101 may be damaged at the time of press-fitting, and combustion gas may leak from the scratch. is there. Therefore, the seal holding member 40A preferably has the following shape between the outer peripheral surface on the combustion chamber side and the annular portion 40c. For example, in the meantime, it is formed into a tapered shape, chamfered shape or curved surface shape that becomes smaller as it approaches the combustion chamber. As a result, the seal holding member 40A is press-fitted without being caught in the fuel injection valve mounting hole 101, so that the fuel injection valve mounting hole 101 is not damaged during the press-fitting, and the assembly workability is improved. improves.
[0061] ところで、上述したシール保持部材 40Aは、燃料噴射弁取付孔 101における第 2 及び第 3の円形孔部 101b, 101cに嵌合される形状のものを例示した。しかしながら 、そのように外周面の全体で嵌合させる形状にしてしまうと、例えば、圧入等の組み 付けを行い難く好ましくない。そこで、このシール保持部材 40Aは、第 2円形孔部 10 lbの内周面との間に間隙が形成されるよう、第 1円筒部 40aの外径を第 2円形孔部 1 Olbよりも小さく成形することが好ましい。これにより、このシール保持部材 40Aは、燃 焼室側の第 2円筒部 40bのみで嵌合されるようになるので、燃料噴射弁取付孔 101 への組み付けカ卩ェ性が向上する。  By the way, the seal holding member 40A described above is exemplified by a shape that fits into the second and third circular holes 101b and 101c in the fuel injection valve mounting hole 101. However, such a shape that fits the entire outer peripheral surface is not preferable because, for example, press fitting or the like is difficult to perform. Accordingly, the seal holding member 40A has an outer diameter of the first cylindrical portion 40a smaller than that of the second circular hole portion 1 Olb so that a gap is formed between the inner peripheral surface of the second circular hole portion 10 lb. It is preferable to mold. As a result, the seal holding member 40A is fitted only by the second cylindrical portion 40b on the combustion chamber side, so that the assemblage to the fuel injection valve mounting hole 101 is improved.
[0062] また、上述したシール保持部材 40Aは、その先端部分において燃焼ガスに直接触 れている。これが為、このシール保持部材 40Aと燃料噴射弁取付孔 101との間に銅 等の高熱伝導率材料力 なる部材を介装することが好ましい。例えば、本実施例 1に あっては、シール保持部材 40Aにおける第 1円筒部 40aの下面と燃料噴射弁取付孔 101における第 2円形孔部 101bの底面 101bとの間に高熱伝導率材料からなる環 状のガスケット 61を介装する。これにより、シール保持部材 40Aの熱がガスケット 61 を介してシリンダヘッド 100に伝わる。これが為、そのシール保持部材 40Aの放熱性 が向上し、その弁先端部シール部材 30Aへの熱負荷が軽減するので、この弁先端 部シール部材 30Aの耐久性を向上させることができる。 [0062] Further, the above-described seal holding member 40A is in direct contact with the combustion gas at the tip portion thereof. For this reason, it is preferable to interpose a member having a high thermal conductivity material such as copper between the seal holding member 40A and the fuel injection valve mounting hole 101. For example, in the first embodiment, the seal holding member 40A is made of a high thermal conductivity material between the lower surface of the first cylindrical portion 40a and the bottom surface 101b of the second circular hole portion 101b in the fuel injection valve mounting hole 101. ring A gasket 61 is inserted. Thereby, the heat of the seal holding member 40A is transmitted to the cylinder head 100 via the gasket 61. As a result, the heat dissipation of the seal holding member 40A is improved and the thermal load on the valve tip seal member 30A is reduced, so that the durability of the valve tip seal member 30A can be improved.
[0063] ここで、このシール保持部材 40Aは、燃焼室の筒内圧や振動、熱応力等により燃 料噴射弁取付孔 101から外れてしまう虞がある。これが為、そのシール保持部材 40 Aの抜けを防止するシール保持部材抜け防止機構が設けられた燃料噴射弁 1Bを構 成してもよい。例えば、このシール保持部材抜け防止機構としては、図 2に示す如ぐ シール保持部材 40Aの上端面とホルダ 20Aにおける第 2円筒部 20bの下面との間 の空間を埋める如く成形された略円筒形状のシール保持部材の抜け防止部材 62を 設ける。これにより、シール保持部材 40Aが燃料噴射弁取付孔 101から外れなくなり 、本来的な目的たる弁先端部シール部材 30Aの保持を継続して行うことができる。尚 、そのシール保持部材の抜け防止部材 62は、シール保持部材 40A又はホルダ 20A の内の何れか一方に一体成型してもよい。  Here, the seal holding member 40A may be detached from the fuel injection valve mounting hole 101 due to in-cylinder pressure, vibration, thermal stress, or the like of the combustion chamber. Therefore, the fuel injection valve 1B provided with a seal holding member removal preventing mechanism for preventing the seal holding member 40A from coming off may be configured. For example, as the seal holding member removal prevention mechanism, as shown in FIG. 2, a substantially cylindrical shape formed so as to fill a space between the upper end surface of the seal holding member 40A and the lower surface of the second cylindrical portion 20b in the holder 20A. An anti-separation member 62 for the seal holding member is provided. As a result, the seal holding member 40A does not come off from the fuel injection valve mounting hole 101, and the original valve tip seal member 30A can be continuously held. It should be noted that the seal holding member removal preventing member 62 may be integrally formed with either the seal holding member 40A or the holder 20A.
[0064] また、如何に弁先端部シール部材 30Aとシール保持部材 40Aで燃料噴射弁先端 部への燃焼ガスの接触面積を減少させたとしても、この燃料噴射弁先端部は、ある 程度までは温度が上昇して熱膨張が起こり得る。更に、この燃料噴射弁先端部ゃシ ール保持部材 40A等には、製造バラツキや組み付け誤差等もある。これが為、これら に起因する変化量によって燃料噴射弁先端部 (バルブボディ 11やホルダ 20A)には 過大な圧縮荷重が掛かり、これを弁先端部シール部材 30Aのみで吸収させるのは 難しい場合もあるので、ニードル 12のリフト量が変化して所定の噴射量で燃料を噴射 させることができなくなる可能性もある。  [0064] Even if the contact area of the combustion gas to the front end of the fuel injection valve is reduced by the valve front end seal member 30A and the seal holding member 40A, the fuel injection valve front end portion is limited to a certain extent. The temperature rises and thermal expansion can occur. Further, the fuel injection valve tip portion has a seal holding member 40A and the like, and there are manufacturing variations and assembly errors. For this reason, the fuel injection valve tip (valve body 11 and holder 20A) is subjected to an excessive compressive load due to the amount of change caused by these, and it may be difficult to absorb this only with the valve tip seal member 30A. Therefore, there is a possibility that the lift amount of the needle 12 changes and the fuel cannot be injected at a predetermined injection amount.
[0065] そこで、カゝかる場合を考慮して、シール保持部材 40Aを高弾性率材料で成形する ことが好ましい。これにより、そのシール保持部材 40Aが製造バラツキや熱膨張等に よる変化量を吸収して燃料噴射弁先端部に掛カる圧縮荷重を緩和させることができ るので、ニードル 12のリフト量変化を抑えることができ、所定の噴射量での燃料噴射 が可能になる。  [0065] In view of this, it is preferable to form the seal holding member 40A with a high elastic modulus material in consideration of the case where it is covered. As a result, the seal holding member 40A can absorb the amount of change due to manufacturing variation, thermal expansion, etc., and the compressive load applied to the tip of the fuel injection valve can be reduced. This makes it possible to suppress fuel injection with a predetermined injection amount.
実施例 2 [0066] 次に、本発明に係る燃料噴射弁の実施例 2を図 3に基づいて説明する。 Example 2 Next, Embodiment 2 of the fuel injection valve according to the present invention will be described with reference to FIG.
[0067] 図 3の符号 1Cは、本実施例 2の燃料噴射弁を示す。この燃料噴射弁 1Cは、前述し た実施例 1の図 1に示す燃料噴射弁 1 Aにおいて弁先端部シール部材 30Aを図 3に 示す弁先端部シール部材 30Cへと置き換えたものである。  [0067] Symbol 1C in FIG. 3 shows the fuel injection valve of the second embodiment. This fuel injection valve 1C is obtained by replacing the valve tip seal member 30A with the valve tip seal member 30C shown in FIG. 3 in the fuel injection valve 1A shown in FIG.
[0068] この本実施例 2の弁先端部シール部材 30Cは、実施例 1の弁先端部シール部材 3 OAの内周面をバルブボディ 11の外周面まで延設したものであり、そのバルブボディ 11の噴孔 1 laよりも上方を覆うものである。  [0068] The valve tip seal member 30C of the second embodiment is obtained by extending the inner peripheral surface of the valve tip seal member 3 OA of the first embodiment to the outer peripheral surface of the valve body 11, and the valve body It covers the area above 11 nozzle holes 1 la.
[0069] これにより、本実施例 2の燃料噴射弁 1Cにおいては、燃料噴射弁先端部における 燃焼ガスとの接触面積を最小限にすることができる。これが為、燃料噴射弁先端部( ここでは、ノ レブボディ 11及びホルダ 20A)への燃焼ガスの接触を最大限抑制する ことができ、その温度上昇を可能な限り抑えることができるので、その燃料噴射弁先 端部におけるデポジットの生成を抑えて燃料噴射量の低下をより効果的に回避する ことができる。  [0069] Thereby, in the fuel injection valve 1C of the second embodiment, the contact area with the combustion gas at the tip of the fuel injection valve can be minimized. For this reason, the contact of the combustion gas with the tip of the fuel injection valve (here, the noble body 11 and the holder 20A) can be suppressed to the maximum, and the temperature rise can be suppressed as much as possible. It is possible to more effectively avoid a decrease in the fuel injection amount by suppressing the generation of deposits at the valve tip end.
[0070] ここで、本実施例 2の如くバルブボディ 11の外周面まで延設した弁先端部シール 部材 30Cを用いる場合には、シール保持部材 40Aの環状部 40cもその弁先端部シ 一ル部材 30Cに合わせて内径側へと延設することが好ましい。これにより、その弁先 端部シール部材 30Cを正しく保持することができる。  Here, when the valve tip seal member 30C extending to the outer peripheral surface of the valve body 11 is used as in the second embodiment, the annular portion 40c of the seal holding member 40A is also sealed with the valve tip seal. It is preferable to extend toward the inner diameter side in accordance with the member 30C. Thus, the valve tip end seal member 30C can be correctly held.
実施例 3  Example 3
[0071] 次に、本発明に係る燃料噴射弁の実施例 3を図 4に基づいて説明する。  Next, Embodiment 3 of the fuel injection valve according to the present invention will be described with reference to FIG.
[0072] 本実施例 3は、前述した実施例 1の弁先端部シール部材 30A又は実施例 2の弁先 端部シール部材 30Cをセラミックス等の低弾性率材料を用 、て成形した場合の構成 につ 、て示したものである。  [0072] Example 3 is a configuration in which the valve tip end seal member 30A of Example 1 described above or the valve tip end seal member 30C of Example 2 is molded using a low elastic modulus material such as ceramics. This is what is shown.
[0073] このような低弾性率材料を弁先端部シール部材 30A, 30Cに用いた場合には、シ ール性能が低下してしま!/、、燃料噴射弁先端部の温度上昇を有効に抑制することが できなくなる。また、これにより燃焼ガスが弁先端部シール部材 30A, 30Cのシール 部分力 流入し、その燃料噴射弁先端部に過大な熱応力が掛カつてしまうので、弁 本体 10A等の破損等の可能性が拭えずに信頼性が低下してしまう。  [0073] When such a low elastic modulus material is used for the valve tip seal members 30A and 30C, the seal performance is reduced! /, And the temperature rise at the tip of the fuel injection valve is effective. It cannot be suppressed. In addition, this causes combustion gas to flow into the seal part force of the valve tip seal members 30A and 30C, causing excessive thermal stress to be applied to the tip of the fuel injection valve, possibly causing damage to the valve body 10A, etc. However, the reliability is lowered without wiping.
[0074] そこで、本実施例 3にあっては、その弁先端部シール部材 30A, 30Cを高弾性率 部材で覆うように構成する。例えば、実施例 1の弁先端部シール部材 30Aを低弾性 率材料で成形した場合には、図 4に示す如ぐその弁先端部シール部材 30Aとホル ダ 20Aの先端部及びシール保持部材 40Aの環状部 40cとの夫々の間に環状の高 弾性率部材 63, 63を介装する。 Therefore, in the third embodiment, the valve tip seal members 30A and 30C have a high elastic modulus. It is configured to cover with a member. For example, when the valve tip seal member 30A of Example 1 is formed of a low elastic modulus material, the valve tip seal member 30A, the tip of the holder 20A, and the seal holding member 40A as shown in FIG. Annular high elastic modulus members 63, 63 are interposed between the annular part 40c and each.
[0075] これにより、本実施例 3の燃料噴射弁 1Dは、その夫々の間のシール性能を向上さ せることができるので、実施例 1の燃料噴射弁 1Aと同様に燃料噴射弁先端部の温度 上昇が抑制され、その燃料噴射弁先端部におけるデポジットの生成を抑えて燃料噴 射量の低下を回避することができる。また、そのシール性能の確保に伴い燃料噴射 弁先端部に掛カる熱応力を抑えることができるので、燃料噴射弁 1Dの信頼性が向 上する。 [0075] Thereby, since the fuel injection valve 1D of the third embodiment can improve the sealing performance between them, the fuel injection valve 1D of the fuel injection valve 1A of the first embodiment can be improved in the same manner as the fuel injection valve 1A of the first embodiment. The temperature rise is suppressed, and the generation of deposits at the tip of the fuel injection valve can be suppressed to prevent the fuel injection amount from decreasing. Further, since the thermal stress applied to the tip of the fuel injection valve can be suppressed as the sealing performance is ensured, the reliability of the fuel injection valve 1D is improved.
[0076] ここで、図示しないが、実施例 2の弁先端部シール部材 30Cを低弾性率材料で成 形した場合には、上述した夫々の間の高弾性率部材に加えて、弁先端部シール部 材 30Cとバルブボディ 11の外周面との間にも環状の高弾性率部材を設ける。  [0076] Here, although not shown, when the valve tip seal member 30C of Example 2 is formed of a low elastic modulus material, in addition to the high elastic modulus member between the above, the valve tip portion An annular high elastic modulus member is also provided between the seal member 30C and the outer peripheral surface of the valve body 11.
実施例 4  Example 4
[0077] 次に、本発明に係る燃料噴射弁の実施例 4を図 5に基づいて説明する。  Next, a fourth embodiment of the fuel injection valve according to the present invention will be described with reference to FIG.
[0078] 本実施例 4は、前述した実施例 1〜3において弁先端部シール部材 30A, 30Cの シール性能が不足している場合の構成について示したものである。ここでは、実施例 1の燃料噴射弁 1Aにお 、てシール性能不足が生じた場合の構成にっ 、て例示する 力 実施例 2, 3についても以下の如く同様に構成される。尚、かかる構成は、必ずし もシール性能不足の場合のみに適用されるものではなぐ満足しているシール性能 を向上させる為に適用してもよ!、。 [0078] The fourth embodiment shows a configuration in the case where the sealing performance of the valve tip seal members 30A and 30C is insufficient in the first to third embodiments described above. Here, in the fuel injection valve 1A of the first embodiment, the configuration when the sealing performance is insufficient occurs, and the force embodiments 2 and 3 illustrated as above are similarly configured as follows. It should be noted that such a configuration is not necessarily applied only when the sealing performance is insufficient, but may be applied to improve the satisfactory sealing performance!
[0079] 具体的に、本実施例 4の燃料噴射弁 1Eは、燃料噴射弁先端部の外周部分 (弁先 端部シール部材 30Aよりも燃焼室力 離した位置であって、ホルダ 20Eの外周面と シール保持部材 40Aの内周面との間)に環状の軸シール部材 52を少なくとも 1っ設 ける。これが為、本実施例 4のホルダ 20Eの外周面には、その軸シール部材 52を保 持する環状の溝 20cが形成されている。尚、ここで例示するホルダ 20Eは、その環状 [0079] Specifically, the fuel injection valve 1E of the fourth embodiment has an outer peripheral portion of the front end portion of the fuel injection valve (a position separated from the combustion chamber force by the valve tip end seal member 30A, and the outer periphery of the holder 20E). At least one annular shaft seal member 52 is provided between the surface and the inner peripheral surface of the seal holding member 40A. For this reason, an annular groove 20c for holding the shaft seal member 52 is formed on the outer peripheral surface of the holder 20E of the fourth embodiment. Note that the holder 20E illustrated here has an annular shape.
1  1
の溝 20cを有する以外、基本的に前述した実施例 1〜3のホルダ 20Aと同等の形状  Except for having the groove 20c, the shape is basically the same as the holder 20A of Examples 1 to 3 described above.
1  1
のものである。 [0080] このように、弁先端部シール部材 30Aと軸シール部材 52とを併用することによって 、弁先端部シール部材 30Aとホルダ 20Eの先端部やシール保持部材 40Aの環状部 40cとの間力もバルブボディ 11とホルダ 20Eとの間に燃焼ガスが流入したとしても、こ の燃焼ガスを軸シール部材 52が弁先端部シール部材 30A及び軸シール部材 52, 並びにバルブボディ 11及びホルダ 20Eにより囲まれた空間 Aに留めることができる。 これが為、その燃焼ガスが燃料噴射弁先端部の全体に行き渡るのを防ぎ、この燃料 噴射弁先端部の温度上昇を抑えることができるので、デポジットの生成を抑えて燃料 噴射量の低下を回避することができる。 belongs to. [0080] As described above, by using the valve tip seal member 30A and the shaft seal member 52 in combination, the force between the valve tip seal member 30A and the tip of the holder 20E and the annular portion 40c of the seal holding member 40A is also increased. Even if combustion gas flows between the valve body 11 and the holder 20E, the shaft seal member 52 is surrounded by the valve tip seal member 30A and the shaft seal member 52, and the valve body 11 and the holder 20E. Can be kept in space A. For this reason, the combustion gas can be prevented from spreading over the entire tip of the fuel injection valve, and the temperature rise at the tip of the fuel injection valve can be suppressed, so that the generation of deposit is suppressed and the decrease in the fuel injection amount is avoided. be able to.
[0081] ここで、この軸シール部材 52は、弁先端部シール部材 30Aと同様に低熱伝導率材 料を用いて成形することが好ましい。これにより、その弁先端部シール部材 30Aと同 様に、軸シール部材 52やシール保持部材 40Aからの弁本体 10Aやホルダ 20Eへ の伝熱量が少なくなり、燃料噴射弁先端部の温度上昇を効果的に抑制することがで きるので、その燃料噴射弁先端部におけるデポジットの生成を効果的に抑えて燃料 噴射量の低下を有効に回避することができる。  Here, the shaft seal member 52 is preferably formed using a low thermal conductivity material, like the valve tip seal member 30A. As with the valve tip seal member 30A, this reduces the amount of heat transferred from the shaft seal member 52 and seal holding member 40A to the valve main body 10A and holder 20E, which effectively increases the temperature of the fuel injection valve tip. Therefore, it is possible to effectively suppress the generation of deposits at the tip of the fuel injection valve and effectively avoid a decrease in the fuel injection amount.
[0082] また、この軸シール部材 52は、できる限り弁先端部シール部材 30Aに近づけて配 置することが好ましい。これにより、上述した空間 Aが小さくなるので、この空間 Aにお ける燃焼ガスのノ レブボディ 11とホルダ 20Eへの接触面積が小さくなり、燃料噴射 弁先端部の温度上昇をより抑えることができる。  [0082] Further, it is preferable that the shaft seal member 52 be disposed as close to the valve tip seal member 30A as possible. As a result, the above-described space A is reduced, so that the contact area between the combustion gas 11 and the holder 20E of the combustion gas in the space A is reduced, and the temperature rise at the tip of the fuel injection valve can be further suppressed.
実施例 5  Example 5
[0083] 次に、本発明に係る燃料噴射弁の実施例 5を図 6及び図 7に基づいて説明する。  Next, a fifth embodiment of the fuel injection valve according to the present invention will be described with reference to FIGS.
[0084] ここで、前述した実施例 4にお 、ては、弁先端部シール部材 30Aと軸シール部材 5 2とを距離を空けて配置しているので、上述したが如ぐその弁先端部シール部材 30 A及び軸シール部材 52,並びにバルブボディ 11及びホルダ 20Eにより囲まれた図 5 に示す空間 Aが存在する。そして、この実施例 4においては、その弁先端部シール部 材 30Aのシール性能が不足していた場合に、その空間 A内に燃焼ガスが流入する。 これが為、その空間 Aにお!/、て燃焼ガスがバルブボディ 11とホルダ 20Eに接触し、 更に、その燃焼ガスの脈動効果によって、僅かながらでも燃料噴射弁先端部の温度 を上昇させてしまう。 [0085] そこで、本実施例 5にあっては、その空間 Aを可能な限り小さくするよう構成し、実施 例 4の如き温度上昇を抑制する。 Here, in Embodiment 4 described above, the valve tip seal member 30A and the shaft seal member 52 are arranged at a distance, so that the valve tip portion as described above is used. There exists a space A shown in FIG. 5 surrounded by the seal member 30A and the shaft seal member 52, and the valve body 11 and the holder 20E. In Example 4, when the sealing performance of the valve tip seal member 30A is insufficient, the combustion gas flows into the space A. For this reason, the combustion gas comes into contact with the valve body 11 and the holder 20E in the space A, and further, the temperature of the tip of the fuel injection valve slightly increases due to the pulsation effect of the combustion gas. . Therefore, in the fifth embodiment, the space A is configured to be as small as possible to suppress the temperature rise as in the fourth embodiment.
[0086] 具体的に、本実施例 5においては、図 6に示す如ぐその空間 Aに当該空間 Aと略 同等の円筒形状力もなるスぺーサ 64を挿入する。このスぺーサ 64は、弁先端部シー ル部材 30Aや軸シール部材 52と同等の材料により成形されたものであってもよぐ他 の材料を用いて成形されたものであってもょ 、。  Specifically, in the fifth embodiment, a spacer 64 having a cylindrical shape force substantially equivalent to the space A is inserted into the space A as shown in FIG. The spacer 64 may be formed of the same material as the valve tip seal member 30A and the shaft seal member 52, or may be formed of other materials. .
[0087] これにより、弁先端部シール部材 30Aのシール性能が不足していたとしても、その 空間 Aへの燃焼ガスの流入量が大幅に減少するので、その空間 Aにおける燃焼ガス との接触面積を可能な限り小さくすることができ、燃料噴射弁先端部の温度上昇を抑 えることができる。また、これと同時に、燃焼ガスの脈動効果による燃料噴射弁先端部 の温度上昇も抑えることができる。これが為、この本実施例 5の燃料噴射弁 1Fにおい ては、燃料噴射弁先端部におけるデポジットの生成を効果的に抑えることが可能に なり、燃料噴射量の低下を回避することができる。  [0087] Thereby, even if the sealing performance of the valve tip seal member 30A is insufficient, the inflow amount of the combustion gas into the space A is greatly reduced, so the contact area with the combustion gas in the space A Can be made as small as possible, and temperature rise at the tip of the fuel injection valve can be suppressed. At the same time, the temperature rise at the tip of the fuel injection valve due to the pulsation effect of the combustion gas can be suppressed. For this reason, in the fuel injection valve 1F of the fifth embodiment, it is possible to effectively suppress the generation of deposits at the front end portion of the fuel injection valve, and it is possible to avoid a decrease in the fuel injection amount.
[0088] また、本実施例 5においては、これと同様の効果を奏する為に、上記の軸シール部 材 52を弁先端部シール部材 30Aに向けて延設し又は上記の弁先端部シール部材 30Aを軸シール部材 52に向けて延設し、上述した空間 Aを可能な限り小さくするよう に構成してもよい。  In the fifth embodiment, the shaft seal member 52 is extended toward the valve tip seal member 30A or the valve tip seal member described above in order to achieve the same effect as this. 30A may be extended toward the shaft seal member 52 so that the space A described above is made as small as possible.
[0089] 例えば、この場合の燃料噴射弁 1Gにおいては、図 7に示す如ぐ上記の軸シール 部材 52とスぺーサ 64とを一体ィ匕したが如き形状の軸シール部材 53を設ける。これに より、上記のスぺーサ 64を設けた場合と同様の効果を奏することができる。また、図 示しな 、が、上記弁先端部シール部材 30Aとスぺーサ 64とを一体ィ匕したが如き形状 の弁先端部シール部材を設けることによつても同様の効果を奏する。  For example, the fuel injection valve 1G in this case is provided with a shaft seal member 53 having a shape as shown in FIG. 7 in which the shaft seal member 52 and the spacer 64 are integrated together. As a result, the same effects as those obtained when the spacer 64 is provided can be obtained. Although not shown, the same effect can be obtained by providing a valve tip seal member having the shape as shown above, in which the valve tip seal member 30A and the spacer 64 are integrated together.
[0090] 尚、本実施例 5においては実施例 1を基にした実施例 4の燃料噴射弁 1Eのシール 性能不足が生じた場合の構成について例示したが、実施例 2, 3を基にした実施例 4 の燃料噴射弁 1Eについても同様に構成することができる。  [0090] In the fifth embodiment, the configuration in the case where the sealing performance of the fuel injection valve 1E of the fourth embodiment based on the first embodiment is insufficient is illustrated. However, the second embodiment is based on the second and third embodiments. The fuel injection valve 1E of the fourth embodiment can be configured similarly.
実施例 6  Example 6
[0091] 次に、本発明に係る燃料噴射弁の実施例 6を図 8に基づいて説明する。  Next, Embodiment 6 of the fuel injection valve according to the present invention will be described with reference to FIG.
[0092] ここで、前述した各実施例 1〜5においては、燃料噴射弁先端部に設けた弁先端部 シール部材 30A, 30Cを当該燃料噴射弁先端部とシール保持部材 40Aの環状部 4 Ocとで圧縮保持させている。しかしながら、弁本体 10Aやホルダ 20A、弁先端部シ 一ル部材 30A, 30Cやシール保持部材 40A等の製造バラツキや組み付け公差、更 には、これらの熱膨張や熱収縮によって、弁先端部シール部材 30A, 30Cが正しく 圧縮されず、シール性能を確保できない虞がある。 [0092] Here, in each of the above-described embodiments 1 to 5, the valve tip provided in the fuel injection valve tip The seal members 30A and 30C are compressed and held by the fuel injection valve tip and the annular portion 4 Oc of the seal holding member 40A. However, due to manufacturing variations and assembly tolerances of the valve body 10A, the holder 20A, the valve tip seal members 30A, 30C, the seal holding member 40A, etc., and due to their thermal expansion and contraction, the valve tip seal member 30A and 30C may not be compressed correctly, and sealing performance may not be ensured.
[0093] そこで、その弁先端部シール部材 30A, 30Cがシール性能を確保し得るよう正しく 圧縮保持させる機構を設ける。ここでは、実施例 1を基にした燃料噴射弁 1Aについ て例示する。 [0093] Therefore, a mechanism for properly compressing and holding the valve tip seal members 30A and 30C so as to ensure the sealing performance is provided. Here, the fuel injection valve 1A based on the first embodiment is illustrated.
[0094] 具体的に本実施例 6の燃料噴射弁 1Hにおいては、実施例 1のシール保持部材 40 Aを図 8に示すシール保持部材 40Hに置き換えて!/、る。このシール保持部材 40Hは 、基本的に実施例 1のシール保持部材 40Aと同等の形状のものである力 先ず、第 2 円筒部 40bの外径を燃料噴射弁取付孔 101の第 3円形孔部 101cよりも小さくしてい る。また、このシール保持部材 40Hは、第 1円筒部 40aの下面と燃料噴射弁取付孔 1 01の第 2円形孔部 101bの底面 101bとの間に所定の間隔が設けられるよう成形し  Specifically, in the fuel injection valve 1H of the sixth embodiment, the seal holding member 40A of the first embodiment is replaced with a seal holding member 40H shown in FIG. The seal holding member 40H is basically a force having the same shape as the seal holding member 40A of the first embodiment. First, the outer diameter of the second cylindrical portion 40b is set to the third circular hole portion of the fuel injection valve mounting hole 101. It is smaller than 101c. Further, the seal holding member 40H is formed so that a predetermined interval is provided between the lower surface of the first cylindrical portion 40a and the bottom surface 101b of the second circular hole portion 101b of the fuel injection valve mounting hole 101.
1  1
ている。  ing.
[0095] ところで、そのような形状にシール保持部材 40Hを成形することによって、その第 2 円筒部 40bの外周面と第 3円形孔部 101cの内周面との間の隙間から燃焼ガスが流 入し、シリンダヘッド 100の外に流れ出てしまう虞がある。これが為、本実施例 6の燃 料噴射弁 1Hにおいては、その第 1円筒部 40aの下面と燃料噴射弁取付孔 101の第 2円形孔部 101bの底面 101bとの間に環状のガスシール部材 54を配備する。  By the way, by forming the seal holding member 40H in such a shape, the combustion gas flows from the gap between the outer peripheral surface of the second cylindrical portion 40b and the inner peripheral surface of the third circular hole portion 101c. May flow out of the cylinder head 100. Therefore, in the fuel injection valve 1H of the sixth embodiment, an annular gas seal member is provided between the lower surface of the first cylindrical portion 40a and the bottom surface 101b of the second circular hole portion 101b of the fuel injection valve mounting hole 101. Deploy 54.
1  1
[0096] ここで、このガスシール部材 54は、弁先端部シール部材 30Aよりも高弾性率の材 料を用いて成形され、その外径側を第 2円形孔部 101bの底面 101bに当接させる  [0096] Here, the gas seal member 54 is formed using a material having a higher elastic modulus than the valve tip seal member 30A, and the outer diameter side thereof is in contact with the bottom surface 101b of the second circular hole 101b. Make
1  1
一方、その内径側を第 1円筒部 40aの下面に当接させる形状に成形している。以下、 このガスシール部材 54を「高弾性シール部材 54」 t 、う。  On the other hand, the inner diameter side is shaped to abut against the lower surface of the first cylindrical portion 40a. Hereinafter, the gas seal member 54 is referred to as a “high elastic seal member 54”.
[0097] このように、シール保持部材 40Hと燃料噴射弁取付孔 101の間に高弾性シール部 材 54を設けることによって、この高弾性シール部材 54がシール保持部材 40Hの軸 線方向における弁本体 10A等の製造バラツキや組み付け誤差、これらの熱膨張量 や熱収縮量を吸収する。これが為、弁先端部シール部材 30Aは、燃料噴射弁先端 部とシール保持部材 40Hの環状部 40cとの間において確実に圧縮保持されるように なり、所望のシール性能を確保することができる。従って、この本実施例 6の燃料噴 射弁 1Hによれば、燃料噴射弁先端部への燃焼ガスの接触を抑制することができ、温 度上昇の抑制が可能になるので、その燃料噴射弁先端部におけるデポジットの生成 を抑えて燃料噴射量の低下を回避することができる。 [0097] Thus, by providing the high elastic seal member 54 between the seal holding member 40H and the fuel injection valve mounting hole 101, the high elastic seal member 54 becomes the valve main body in the axial direction of the seal holding member 40H. Absorbs manufacturing variations such as 10A, assembly errors, and the amount of thermal expansion and contraction. Therefore, the valve tip seal member 30A And the annular portion 40c of the seal holding member 40H are reliably compressed and held, and a desired sealing performance can be ensured. Therefore, according to the fuel injection valve 1H of the sixth embodiment, it is possible to suppress the contact of the combustion gas to the tip of the fuel injection valve and to suppress the temperature rise, so that the fuel injection valve It is possible to avoid a decrease in fuel injection amount by suppressing the formation of deposits at the tip.
[0098] 尚、本実施例 6においては実施例 1の構成を基にした燃料噴射弁 1Hについて例 示したが、実施例 2〜5を基にした場合であっても同様に構成することができる。 実施例 7 [0098] In the sixth embodiment, the fuel injection valve 1H based on the configuration of the first embodiment is shown as an example. However, even in the case of the second to fifth embodiments, the same configuration is possible. it can. Example 7
[0099] 次に、本発明に係る燃料噴射弁の実施例 7を図 9に基づいて説明する。  Next, Embodiment 7 of the fuel injection valve according to the present invention will be described with reference to FIG.
[0100] 本実施例 7の燃料噴射弁 IIは、前述した実施例 6と同様に、前述した各実施例 1〜 5における弁先端部シール部材 30A, 30Cがシール性能を確保し得るよう正しく圧縮 保持させる機構 (シール部材圧縮保持機構)を設ける。ここでは、実施例 1を基にした 燃料噴射弁 IIについて例示する。 [0100] The fuel injection valve II of Embodiment 7 is compressed correctly so that the valve tip seal members 30A, 30C in Embodiments 1 to 5 described above can ensure the sealing performance, as in Embodiment 6 described above. A mechanism for holding (sealing member compression holding mechanism) is provided. Here, the fuel injection valve II based on the first embodiment is illustrated.
[0101] 具体的に本実施例 7の燃料噴射弁 IIにおいては、実施例 1のシール保持部材 40 Aを図 9に示すシール保持部材 401に置き換えている。このシール保持部材 401は、 前述した実施例 6のシール保持部材 40Hと同様に、燃料噴射弁取付孔 101の第 3 円形孔部 101cへの挿入箇所が当該第 3円形孔部 101cよりも小さな外径に成形され ており、先端部分には同様の環状部 40cが設けられている。また、本実施例 7のシー ル保持部材 401にお ヽては、その環状部 40cとは反対側の端部がホルダ 20Aに向け て延設されている。 Specifically, in the fuel injection valve II of the seventh embodiment, the seal holding member 40 A of the first embodiment is replaced with a seal holding member 401 shown in FIG. Similar to the seal holding member 40H of the sixth embodiment described above, the seal holding member 401 has an outer portion where the fuel injection valve mounting hole 101 is inserted into the third circular hole portion 101c smaller than the third circular hole portion 101c. It is formed in a diameter, and a similar annular portion 40c is provided at the tip portion. Further, in the seal holding member 401 of the seventh embodiment, an end portion on the opposite side to the annular portion 40c is extended toward the holder 20A.
[0102] ここで、本実施例 7のシール部材圧縮保持機構としては、そのシール保持部材 401 に形成されたネジ山とホルダ 20Aに形成されたネジ山とで構成された図 9に示すネ ジ機構 65を用意している。例えば、ここでは、そのシール保持部材 401の端部におけ る内周面に設けたネジ山とホルダ 20Aの第 2円筒部 20bの外周面に設けたネジ山と でネジ機構 65を構成している。また、このネジ機構 65は、環状部 40cから 20mmほ ど離間させた位置に設けている。  Here, as the seal member compression / holding mechanism of the seventh embodiment, the screw shown in FIG. 9 constituted by the thread formed on the seal holding member 401 and the thread formed on the holder 20A is used. Mechanism 65 is provided. For example, here, a screw mechanism 65 is configured by a screw thread provided on the inner peripheral surface at the end of the seal holding member 401 and a screw thread provided on the outer peripheral surface of the second cylindrical portion 20b of the holder 20A. Yes. Further, the screw mechanism 65 is provided at a position separated from the annular portion 40c by about 20 mm.
[0103] これが為、そのシール保持部材 401を弁本体 10A及びホルダ 20Aへと組み付ける 際には、そのネジ機構 65によってホルダ 20Aにねじ込まれ、これに伴って、弁先端 部シール部材 30Aが燃料噴射弁先端部とシール保持部材 401の環状部 40cとの間 において確実に圧縮保持される。従って、この本実施例 7の燃料噴射弁 IIによれば 、弁先端部シール部材 30Aのシール性能を確保して燃料噴射弁先端部への燃焼ガ スの接触を抑制し、その温度上昇を抑制することができるので、その燃料噴射弁先端 部におけるデポジットの生成を抑えて燃料噴射量の低下を回避することができる。 [0103] For this reason, when the seal holding member 401 is assembled to the valve body 10A and the holder 20A, the screw mechanism 65 is screwed into the holder 20A. The partial seal member 30A is reliably compressed and held between the tip of the fuel injection valve and the annular portion 40c of the seal holding member 401. Therefore, according to the fuel injection valve II of the seventh embodiment, the sealing performance of the valve tip seal member 30A is ensured, the contact of the combustion gas to the fuel injection valve tip is suppressed, and the temperature rise is suppressed. Therefore, it is possible to suppress the generation of deposit at the tip of the fuel injection valve and to avoid a decrease in the fuel injection amount.
[0104] また、シール部材圧縮保持機構をこのようなネジ機構 65にすることで、弁先端部シ 一ル部材 30Aの圧縮保持力を簡便な構成によって確保することができ、更に、その 管理も容易である。更にまた、実施例 6のように部品点数の増加を伴わずにシール部 材圧縮保持機構を構成することができ、予め組み付けておくことで弁先端部シール 部材 30Aの位置ズレ等も生じなくなるので、原価の低減にも寄与することができる。  [0104] In addition, by using the screw mechanism 65 as the seal member compression / holding mechanism, the compression / holding force of the valve tip sealant member 30A can be secured with a simple configuration, and the management thereof is also possible. Easy. Furthermore, the seal member compression / holding mechanism can be configured without increasing the number of parts as in the sixth embodiment, and the valve tip seal member 30A is not misaligned when assembled in advance. It can also contribute to cost reduction.
[0105] ところで、本実施例 7のシール保持部材 401においては、第 3円形孔部 101cの内 周面との間の隙間から燃焼ガスが流入し、シリンダヘッド 100の外に流れ出てしまう 虞がある。これが為、このシール保持部材 401と第 3円形孔部 101cとの間には環状 のガスシール部材 55が配備されて!、る。  By the way, in the seal holding member 401 of the seventh embodiment, there is a possibility that the combustion gas flows from the gap between the third circular hole portion 101c and the inner peripheral surface and flows out of the cylinder head 100. is there. Therefore, an annular gas seal member 55 is provided between the seal holding member 401 and the third circular hole 101c.
[0106] このガスシール部材 55は、弁先端部シール部材 30Aと同様に低熱伝導率材料を 用いて成形することが好ましい。これにより、シール保持部材 401への燃焼ガスの接 触面積が小さくなり、このシール保持部材 401を介した弁本体 10Aやホルダ 20Aへ の伝熱を抑えることができる。これが為、燃料噴射弁先端部の温度上昇を効果的に 抑制することができ、その燃料噴射弁先端部におけるデポジットの生成を効果的に 抑えて燃料噴射量の低下を有効に回避することができる。  [0106] The gas seal member 55 is preferably molded using a low thermal conductivity material in the same manner as the valve tip seal member 30A. Thereby, the contact area of the combustion gas to the seal holding member 401 is reduced, and heat transfer to the valve main body 10A and the holder 20A via the seal holding member 401 can be suppressed. As a result, the temperature rise at the tip of the fuel injection valve can be effectively suppressed, and the generation of deposits at the tip of the fuel injection valve can be effectively suppressed to effectively avoid a decrease in the fuel injection amount. .
[0107] 尚、本実施例 7においては実施例 1の構成を基にした燃料噴射弁 IIについて例示 したが、実施例 2〜5を基にした場合であっても同様に構成することができる。  [0107] In the seventh embodiment, the fuel injection valve II based on the configuration of the first embodiment has been illustrated. However, even in the case of the second to fifth embodiments, the same configuration can be used. .
実施例 8  Example 8
[0108] 次に、本発明に係る燃料噴射弁の実施例 8を図 10及び図 11に基づいて説明する  Next, an eighth embodiment of the fuel injection valve according to the present invention will be described with reference to FIGS. 10 and 11.
[0109] 本実施例 8は、先端部分への製造バラツキや組み付け公差、更には熱膨張ゃ熱収 縮の影響を考慮したものであり、その先端部分における軸線方向での圧縮保持性と 高温の燃焼ガス力 の断熱性を確保すベぐ前述した実施例 1の弁先端部シール部 材 30Aを柔軟性のある榭脂材料 (PTFE)等の高弾性率材料で成形した場合の構成 につ 、て示したものである。 [0109] The present Example 8 takes into consideration the effects of manufacturing variations and assembly tolerances on the tip portion, and thermal expansion and thermal contraction. The valve tip seal part of Example 1 described above should ensure heat insulation of the combustion gas force. The structure when the material 30A is molded from a high elastic modulus material such as a flexible resin material (PTFE) is shown.
[0110] ここで、そのような材料は、一般に、圧縮応力に対しては強いが、引張応力に対し ては弱い。従って、その弁先端部シール部材 30Aについては、その内周面に掛かる 燃焼ガスの圧力によって外方(内周面側力 外周面側)へと放射状に力が発生して いるので、その際の引張応力によって変形や破損の虞がある。そして、この弁先端部 シール部材 30Aが破損した場合には、例えば図 5に示す空間 Aに高温の燃焼ガス が流入するので、燃料噴射弁先端部が温度上昇してデポジットの生成を促してしまう [0110] Here, such a material is generally strong against compressive stress but weak against tensile stress. Therefore, the valve tip seal member 30A is radially generated outward (inner peripheral surface side force outer peripheral surface side) by the pressure of the combustion gas applied to the inner peripheral surface. There is a risk of deformation or breakage due to tensile stress. When the valve tip seal member 30A is damaged, for example, high-temperature combustion gas flows into the space A shown in FIG. 5, so that the temperature of the tip of the fuel injection valve rises and promotes the generation of deposits.
[0111] そこで、本実施例 8にあっては、その弁先端部シール部材 30Aの外周面を押さえる ことが可能なシール保持部材を配備する。図 10の符号 40Jは本実施例 8の燃料噴射 弁 1Jに配備されたシール保持部材を示す。ここでは、前述した実施例 1の燃料噴射 弁 1Aを基にした燃料噴射弁 1Jを例示するので、その実施例 1のシール保持部材 40 Aを基にしてシール保持部材 40Jの構築を行う。 [0111] Therefore, in the eighth embodiment, a seal holding member capable of pressing the outer peripheral surface of the valve tip portion seal member 30A is provided. Reference numeral 40J in FIG. 10 indicates a seal holding member provided in the fuel injection valve 1J of the eighth embodiment. Here, since the fuel injection valve 1J based on the fuel injection valve 1A of the first embodiment is illustrated, the seal holding member 40J is constructed based on the seal holding member 40A of the first embodiment.
[0112] このシール保持部材 40Jは、前述したシール保持部材 40Aの環状部 40cに弁先端 部シール部材 30Aの外周面を押さえる環状の壁面を形成したものである。例えば、 本実施例 8においては、その弁先端部シール部材 30Aの大部分を嵌め込むことが 可能な環状溝 40cを環状部 40cに設け、その環状溝 40cの大径側の壁面で弁先端  [0112] This seal holding member 40J is formed by forming an annular wall surface for pressing the outer peripheral surface of the valve tip end seal member 30A on the annular portion 40c of the seal holding member 40A described above. For example, in the eighth embodiment, an annular groove 40c into which most of the valve tip seal member 30A can be fitted is provided in the annular part 40c, and the valve tip is formed on the large-diameter wall surface of the annular groove 40c.
1 1  1 1
部シール部材 30Aの外方への移動や膨張を規制する。  The outward movement and expansion of the partial seal member 30A are restricted.
[0113] これにより、この燃料噴射弁 1Jにおいては、弁先端部シール部材 30Aの内周面に 燃焼ガスの圧力が掛カつても、その環状溝 40cによって弁先端部シール部材 30A Thereby, in this fuel injection valve 1J, even if the pressure of the combustion gas is applied to the inner peripheral surface of the valve tip seal member 30A, the valve tip seal member 30A is formed by the annular groove 40c.
1  1
が外方へと移動や膨張できなくなる。従って、その際の弁先端部シール部材 30Aに 掛カる力は内周面力も外周面に向力 圧縮応力によるものとなり、この弁先端部シー ル部材 30Aの変形や破損が回避される。これが為、この燃料噴射弁 1Jにおいては、 弁先端部シール部材 30Aの耐久性の向上に伴ってシール性能が向上し、燃料噴射 弁先端部の温度上昇が抑制されるので、その燃料噴射弁先端部におけるデポジット の生成を抑えて燃料噴射量の低下を回避することができる。  Cannot move or expand outward. Accordingly, the force applied to the valve tip seal member 30A at that time is also caused by the compressive stress on the inner peripheral surface and the outer peripheral surface, and deformation and breakage of the valve tip seal member 30A are avoided. For this reason, in this fuel injection valve 1J, the sealing performance is improved along with the improvement of the durability of the valve tip seal member 30A, and the temperature rise of the fuel injection valve tip is suppressed. It is possible to suppress the generation of deposits in the section and to avoid a decrease in the fuel injection amount.
[0114] 尚、本実施例 8の燃料噴射弁 1Jにおいても、前述した実施例 3の燃料噴射弁 1Dと 同様の高弾性率部材で弁先端部シール部材 30Aを挟んでもよぐこれにより、更に シール性能を向上させることができる。 [0114] The fuel injection valve 1J of the eighth embodiment also includes the fuel injection valve 1D of the third embodiment described above. It is possible to sandwich the valve tip seal member 30A with a similar high elastic modulus member, thereby further improving the sealing performance.
[0115] このように、ここでは実施例 1の燃料噴射弁 1 Aに基づいて構築した燃料噴射弁 1J を例示したが、これ以外にも、その実施例 1における燃料噴射弁 1Bや前述した実施 例 4, 6, 7の燃料噴射弁 IE, 1H, IIを基にして本実施例 8に係る燃料噴射弁を構 築してもよい。その際の夫々の燃料噴射弁は、シール保持部材 40Aを環状の壁面( 例えば、上記の環状溝 40c )が形成された上記のシール保持部材 40Jに置き換えて [0115] As described above, the fuel injection valve 1J constructed based on the fuel injection valve 1A of the first embodiment is illustrated here. However, in addition to this, the fuel injection valve 1B in the first embodiment and the implementation described above are also included. The fuel injection valve according to the eighth embodiment may be constructed based on the fuel injection valves IE, 1H, II of Examples 4, 6, and 7. In this case, each fuel injection valve replaces the seal holding member 40A with the seal holding member 40J having an annular wall surface (for example, the annular groove 40c).
1  1
構成すればよい。尚、実施例 5の燃料噴射弁 IF, 1Gにおいては、その壁面の機能 を各々スぺーサ 64,軸シール部材 53が発揮しており、本実施例 8と同様の効果を奏 することができる。  What is necessary is just to comprise. In addition, in the fuel injection valves IF and 1G of the fifth embodiment, the spacer 64 and the shaft seal member 53 exhibit the functions of the wall surfaces, respectively, and the same effects as in the eighth embodiment can be obtained. .
[0116] ところで、その弁先端部シール部材 30Aの外周面は、必ずしもシール保持部材 40 Aで直接押さえる必要はなぐこれらの間に介在させた別部材に押さえさせてもよい。 以下、その別部材については、「シール外周面保持部材」という。例えば、そのような 構成の燃料噴射弁 1Kを図 11に示す。この燃料噴射弁 1Kは、上述した燃料噴射弁 1Jにお 1、て、弁先端部シール部材 30Aを図 11に示す弁先端部シール部材 30Kに 置き換えると共に、その外周面を押さえるシール外周面保持部材 66を配備したもの である。  Incidentally, the outer peripheral surface of the valve tip seal member 30A does not necessarily need to be directly pressed by the seal holding member 40A, and may be pressed by another member interposed therebetween. Hereinafter, the separate member is referred to as a “seal outer peripheral surface holding member”. For example, FIG. 11 shows a fuel injection valve 1K having such a configuration. This fuel injection valve 1K replaces the above-described fuel injection valve 1J with a valve tip seal member 30A shown in FIG. 11 and replaces the valve tip seal member 30A with a seal outer periphery holding member that presses the outer periphery thereof. 66 is deployed.
[0117] その弁先端部シール部材 30Kは、上述した弁先端部シール部材 30Aよりも外径を 小さくしたものであり、これと同様に、シール保持部材 40Jの環状溝 40cに配設される  [0117] The valve tip seal member 30K has an outer diameter smaller than that of the valve tip seal member 30A described above, and is similarly disposed in the annular groove 40c of the seal holding member 40J.
1  1
。従って、その弁先端部シール部材 30Kの外周面と環状溝 40cの大径側の壁面と  . Therefore, the outer peripheral surface of the valve tip seal member 30K and the large-diameter wall surface of the annular groove 40c
1  1
の間には環状の隙間ができるので、その隙間が埋められるように環状のシール外周 面保持部材 66をステンレス等の高強度部材で成形し、これをその隙間に嵌め込む。 これにより、この燃料噴射弁 1Kは、上述した図 10に示す燃料噴射弁 1Jと同様の効 果を奏することができる。  Since an annular gap is formed between them, the annular seal outer peripheral surface holding member 66 is formed of a high-strength member such as stainless steel so that the gap is filled, and this is inserted into the gap. As a result, the fuel injection valve 1K can achieve the same effects as the fuel injection valve 1J shown in FIG. 10 described above.
[0118] ここで、そのシール外周面保持部材 66を成す材料は、高強度であるだけでなぐ熱 膨張係数がシール保持部材 40Jのものよりも大き ヽものであることが好ま ヽ。これに より、このシール外周面保持部材 66は、弁先端部シール部材 30Kが燃焼ガスの圧 力を内周面力 受けたときに、その弁先端部シール部材 30Kの外周面を押さえるだ けでなぐ温度上昇に伴い内径方向へと膨張して弁先端部シール部材 30Kの外周 面を内方へと押し付ける。即ち、この燃料噴射弁 1Kにおいては、シール外周面保持 部材 66が弁先端部シール部材 30Kの外周面に対して内周面に向けての押圧力を 加える。これが為、その弁先端部シール部材 30Kには内周面と外周面の双方力 夫 々に反対方向の力が加わって径方向の圧縮応力が掛カるので、その弁先端部シー ル部材 30Kに瞬間的にでも弓 I張応力が掛力つてしまう状態を回避することができる。 従って、この燃料噴射弁 1Kにおいては、弁先端部シール部材 30Kの変形や破損を 効果的に防 、でシール性能を確保することができるので、シール保持部材 40Jに比 ベて燃料噴射弁先端部におけるデポジットの生成が効果的に抑えられて燃料噴射 量の低下を有効に回避することができる。 [0118] Here, it is preferable that the material forming the seal outer peripheral surface holding member 66 not only has high strength but also has a larger thermal expansion coefficient than that of the seal holding member 40J. Thus, the seal outer peripheral surface holding member 66 presses the outer peripheral surface of the valve tip end seal member 30K when the valve tip end seal member 30K receives the pressure of the combustion gas on the inner peripheral surface force. As the temperature rises, the valve expands in the inner diameter direction and presses the outer peripheral surface of the valve tip seal member 30K inward. That is, in the fuel injection valve 1K, the seal outer peripheral surface holding member 66 applies a pressing force toward the inner peripheral surface to the outer peripheral surface of the valve tip seal member 30K. For this reason, the valve tip seal member 30K is subjected to radial compressive stress due to the opposite forces applied to the inner and outer peripheral surfaces of the valve tip seal member 30K. It is possible to avoid the situation where the bow I tension stress is applied even momentarily. Therefore, in this fuel injection valve 1K, the sealing performance can be ensured by effectively preventing deformation and breakage of the valve tip seal member 30K, and therefore the fuel injection valve tip can be secured compared to the seal holding member 40J. As a result, the generation of deposits in the fuel tank is effectively suppressed, and a decrease in fuel injection amount can be effectively avoided.
[0119] 尚、この燃料噴射弁 1Kにおいても、前述した実施例 3の燃料噴射弁 1Dと同様の 高弾性率部材で弁先端部シール部材 30Kを挟んでもよぐこれにより、更にシール 性能を向上させることができる。  [0119] Also in this fuel injection valve 1K, it is possible to sandwich the valve tip seal member 30K with a high elastic modulus member similar to the fuel injection valve 1D of Example 3 described above, thereby further improving the sealing performance. Can be made.
[0120] ここでも実施例 1の燃料噴射弁 1Aに基づ ヽて構築した燃料噴射弁 1Kを例示した 力 これ以外にも、その実施例 1における燃料噴射弁 1Bや前述した実施例 4, 6, 7 の燃料噴射弁 IE, 1H, IIを基にしてもよい。その際の夫々の燃料噴射弁は、シー ル保持部材 40Aを上述したシール保持部材 40Jに置き換えると共に、弁先端部シー ル部材 30Aを図 11の先端部シール部材 30K及びシール外周面保持部材 66に置き 換えて構成すればよい。また、前述した実施例 5の燃料噴射弁 IF, 1Gにおいては、 各々スぺーサ 64又は軸シール部材 53と弁先端部シール部材 30Aとの間にシール 外周面保持部材を配備することによって同様の効果を奏することができる。  [0120] Here again, the force exemplified by the fuel injection valve 1K constructed based on the fuel injection valve 1A of Example 1 In addition to this, the fuel injection valve 1B in Example 1 and the above-described Examples 4 and 6 , 7 fuel injectors IE, 1H, II. In this case, each fuel injection valve replaces the seal holding member 40A with the seal holding member 40J described above, and replaces the valve front end seal member 30A with the front end seal member 30K and the seal outer peripheral surface holding member 66 of FIG. It can be configured by replacing. Further, in the fuel injection valves IF and 1G of Example 5 described above, the same is achieved by disposing a seal outer peripheral surface holding member between the spacer 64 or the shaft seal member 53 and the valve tip seal member 30A. There is an effect.
実施例 9  Example 9
[0121] 次に、本発明に係る燃料噴射弁の実施例 9を図 12に基づいて説明する。  Next, a ninth embodiment of the fuel injection valve according to the present invention will be described with reference to FIG.
[0122] 本実施例 9は、前述した実施例 8と同様に高弾性率材料からなる弁先端部シール 部材を用いた場合の構成について示したものである。ここでは、前述した実施例 1の 燃料噴射弁 1Aを基にした図 12に示す燃料噴射弁 1Lを例示する。 [0122] The ninth embodiment shows the configuration in the case where the valve tip seal member made of a high elastic modulus material is used as in the eighth embodiment. Here, the fuel injection valve 1L shown in FIG. 12 based on the fuel injection valve 1A of the first embodiment described above is illustrated.
[0123] 例えば、実施例 1の燃料噴射弁 1Aにおいて弁先端部シール部材 30Aを高弾性率 材料で成形した場合には、前述した実施例 8で説明したような内周面に掛カる燃焼 ガスの圧力に起因した変形や破損が懸念される。更に、その場合には、変形した弁 先端部シール部材 30Aとホルダ 20Aの先端面や環状部 40cとの間に隙間が生じ、 その隙間から流入した高温の燃焼ガスのガス流動によって弁先端部シール部材 30 Aを溶損させてしまう虞がある。 [0123] For example, when the valve tip seal member 30A is molded of a high elastic modulus material in the fuel injection valve 1A of the first embodiment, the combustion applied to the inner peripheral surface as described in the eighth embodiment described above. There is concern about deformation and breakage due to gas pressure. Further, in that case, a gap is formed between the deformed valve tip seal member 30A and the tip face of the holder 20A or the annular portion 40c, and the valve tip seal is caused by the gas flow of the high-temperature combustion gas flowing from the gap. There is a risk of melting the member 30A.
[0124] そこで、本実施例 9の燃料噴射弁 1Lは、実施例 1の燃料噴射弁 1Aにおいて、弁先 端部シール部材 30Aを図 12に示す弁先端部シール部材 30Lに置き換えて構成す る。この本実施例 9の弁先端部シール部材 30Lは、燃料噴射弁 1Lの軸線方向にて 圧縮保持される環状の面シール部 30aと、燃料噴射弁 1Lの径方向にて圧縮保持さ れる環状の軸シール部 30bとを有するものであり、これらがホルダ 20Aの先端部分や これに対向するシール保持部材 40Lの先端部分の間に隙間を生じさせな 、ように一 体成型したものである。 Accordingly, the fuel injection valve 1L of the ninth embodiment is configured by replacing the valve tip end seal member 30A with the valve tip end seal member 30L shown in FIG. 12 in the fuel injection valve 1A of the first embodiment. . The valve tip seal member 30L of the ninth embodiment includes an annular face seal 30a that is compressed and held in the axial direction of the fuel injection valve 1L, and an annular seal that is compressed and held in the radial direction of the fuel injection valve 1L. And a shaft seal portion 30b, which are integrally molded so as not to cause a gap between the tip portion of the holder 20A and the tip portion of the seal holding member 40L facing the holder 20A.
[0125] その面シール部 30aは、実施例 1の弁先端部シール部材 30Aに相当するものであ つて、ホルダ 20Aの先端面と環状部 40cとの間で軸線方向にて圧縮保持される。一 方、軸シール部 30bは、その面シール部 30aの外径側力も延設されたものであり、ホ ルダ 20Aの先端部分の外周面とこれに対向するシール保持部材 40Lの先端部分の 内周面との間で径方向にて圧縮保持される。  [0125] The face seal portion 30a corresponds to the valve tip portion seal member 30A of the first embodiment, and is compressed and held in the axial direction between the tip surface of the holder 20A and the annular portion 40c. On the other hand, the shaft seal portion 30b is formed by extending the outer-diameter side force of the face seal portion 30a. It is compressed and held in the radial direction with the peripheral surface.
[0126] これにより、この燃料噴射弁 1Lにおいては、弁先端部シール部材 30Lの面シール 部 30aの内周面に燃焼ガスの圧力が掛かっても、シール保持部材 40Lの先端部分 の内周面が前述した実施例 8における環状の壁面に相当する機能を為すので、その 面シール部 30aに引張応力が掛カもなくなる。これが為、その弁先端部シール部材 3 0Lは、燃焼ガスの圧力による変形や破損を回避することができるので、シール性能 を高めることができる。また、この弁先端部シール部材 30Lは、軸シールとしての機能 も備えているので、シール性能をより向上させる。従って、この燃料噴射弁 1Lにおい ては、弁先端部シール部材 30Lの耐久性向上や燃料噴射弁先端部のシール性能 の向上によって温度上昇が抑制され、その燃料噴射弁先端部におけるデポジットの 生成を抑えて燃料噴射量の低下を回避することができる。  Thereby, in this fuel injection valve 1L, even if the pressure of the combustion gas is applied to the inner peripheral surface of the face seal portion 30a of the valve tip portion seal member 30L, the inner peripheral surface of the tip portion of the seal holding member 40L However, since the function corresponding to the annular wall surface in the embodiment 8 described above is performed, tensile stress is not applied to the face seal portion 30a. Therefore, the valve tip seal member 30L can avoid deformation and breakage due to the pressure of the combustion gas, so that the sealing performance can be enhanced. Further, since the valve tip seal member 30L also has a function as a shaft seal, the seal performance is further improved. Therefore, in this fuel injection valve 1L, the temperature rise is suppressed by improving the durability of the valve tip seal member 30L and improving the sealing performance of the fuel injection valve tip, and the generation of deposits at the fuel injection valve tip is prevented. It can suppress and the fall of the fuel injection quantity can be avoided.
[0127] ここで、その弁先端部シール部材 30Lの軸シール部 30bについては、燃焼室に向 力うにつれて肉厚が厚くなるように圧縮保持されることが好ましい。そこで、本実施例 9においては、その軸シール部 30bをそのような形状に成形すると共に、その軸シー ル部 30bを圧縮保持するホルダ 20Aの先端部分の外周面とシール保持部材 40Lの 先端部分の内周面との間についても同様のテーパー形状にする。ここでは、そのシ ール保持部材 40Lの先端部分の内周面の傾斜角度を実施例 1に対して調節し、テ 一パー形状を形成している。これにより、その軸シール部 30b、ホルダ 20Aやシール 保持部材 40L等の製造バラツキや組み付け公差、更にはこれらへの熱膨張ゃ熱収 縮の影響を緩和されるので、燃料噴射弁先端部のシール性能を高めることができる。 [0127] Here, it is preferable that the shaft seal portion 30b of the valve tip portion seal member 30L is compressed and held so as to increase in thickness as it goes to the combustion chamber. Therefore, this example 9, the shaft seal portion 30b is molded into such a shape, and the outer peripheral surface of the tip portion of the holder 20A that compresses and holds the shaft seal portion 30b and the inner peripheral surface of the tip portion of the seal holding member 40L The same taper shape is also used between the gaps. Here, the inclination angle of the inner peripheral surface of the tip end portion of the seal holding member 40L is adjusted with respect to the first embodiment to form a taper shape. This alleviates the manufacturing variations and assembly tolerances of the shaft seal 30b, holder 20A, seal holding member 40L, etc., as well as the effects of thermal expansion and heat shrinkage on these, so the seal at the tip of the fuel injection valve Performance can be increased.
[0128] 尚、本実施例 9の燃料噴射弁 1Lにおいても、前述した実施例 3の燃料噴射弁 1Dと 同様の高弾性率部材で弁先端部シール部材 30Lを挟んでもよぐこれにより、更にシ ール性能を向上させることができる。  [0128] In the fuel injection valve 1L of the ninth embodiment, the valve tip seal member 30L may be sandwiched between the high elastic modulus members similar to those of the fuel injection valve 1D of the third embodiment. Seal performance can be improved.
[0129] このように、ここでは実施例 1の燃料噴射弁 1 Aに基づいて構築した燃料噴射弁 1L を例示したが、これ以外にも、その実施例 1における燃料噴射弁 1Bや前述した実施 例 3, 4, 6, 7の燃料噴射弁 ID, IE, 1H, IIを基にして本実施例 9に係る燃料噴射 弁を構築してもよい。その際の夫々の燃料噴射弁は、本実施例 9の弁先端部シール 部材 30Lやシール保持部材 40Lに置き換えて構成すればよい。また、本実施例 9の 燃料噴射弁 1Lにお 、ても、その弁先端部シール部材 30Lの外周面とシール保持部 材 40Lとの間に前述した実施例 8のシール外周面保持部材 66を介装してもよい。 実施例 10  [0129] As described above, the fuel injection valve 1L constructed based on the fuel injection valve 1A of the first embodiment is illustrated here, but the fuel injection valve 1B in the first embodiment and the above-described implementation are also included. The fuel injection valve according to the ninth embodiment may be constructed based on the fuel injection valve IDs IE, 1H, and II of Examples 3, 4, 6, and 7. Each fuel injection valve at that time may be configured by replacing the valve tip seal member 30L and the seal holding member 40L of the ninth embodiment. In addition, in the fuel injection valve 1L of the ninth embodiment, the seal outer peripheral surface holding member 66 of the eighth embodiment described above is interposed between the outer peripheral surface of the valve tip seal member 30L and the seal holding member 40L. You may interpose. Example 10
[0130] 次に、本発明に係る燃料噴射弁の実施例 10を図 13から図 17に基づいて説明する  Next, Embodiment 10 of the fuel injection valve according to the present invention will be described with reference to FIGS. 13 to 17.
[0131] 例えば、前述した実施例 1の燃料噴射弁 1 Aにお 、ては、弁先端部シール部材 30 Aをホルダ 20Aとシール保持部材 40Aとの間に圧縮状態で挟持して ヽるだけなので 、補修等の際にホルダ 20Aをシール保持部材 40Aから取り外したときに、その弁先 端部シール部材 30Aがシール保持部材 40Aの中に残ってしま 、取り外し難 、。従つ て、その場合には、その弁先端部シール部材 30Aが再使用される可能性がある。し 力しながら、一般に、シール部材の再使用はシール性能の低下を招くので好ましくな ぐ通常は、新品への交換が行われている。また、この実施例 1の燃料噴射弁 1Aに おいては、弁先端部シール部材 30Aがその内周面にて高温の燃焼ガスに曝されて V、るので、長期の使用に伴!、劣化して弁先端部シール部材 30Aを交換しなければ ならなくなる可能性がある。 [0131] For example, in the fuel injection valve 1A of the first embodiment described above, the valve tip seal member 30A is simply held in a compressed state between the holder 20A and the seal holding member 40A. Therefore, when the holder 20A is removed from the seal holding member 40A during repair or the like, the valve end seal member 30A remains in the seal holding member 40A, making it difficult to remove. Therefore, in that case, the valve tip seal member 30A may be reused. However, in general, the reuse of the seal member causes a decrease in the seal performance, so it is not preferable to replace the seal member with a new one. In the fuel injection valve 1A of the first embodiment, the valve tip seal member 30A is exposed to high-temperature combustion gas on the inner peripheral surface thereof. Therefore, with long-term use, there is a possibility that the valve tip seal member 30A must be replaced due to deterioration.
[0132] そこで、本実施例 10においては、弁先端部シール部材を取り外し易くすることによ つてその交換を容易にし、これにより補修後の燃料噴射弁先端部の良好なシール性 能が確保できるように構成する。例えば、本実施例 10においては、ホルダに弁先端 部シール部材を付着させる手段 (以下、「シール付着手段」という。)を設けることによ つて、そのホルダをシール保持部材カも取り外した際に、そのホルダと一緒に弁先端 部シール部材も取り外されるようにする。  [0132] Therefore, in the tenth embodiment, the valve tip seal member can be easily removed to facilitate the replacement thereof, thereby ensuring good sealing performance of the repaired fuel injection valve tip. Configure as follows. For example, in Example 10, by providing means for attaching the valve tip seal member to the holder (hereinafter referred to as “seal attaching means”), when the holder is also removed, The valve tip seal member is also removed together with the holder.
[0133] 以下に、この本実施例 10の燃料噴射弁 1Mについて図 13から図 15を用いて詳述 する。ここでは、便宜上、前述した実施例 9の燃料噴射弁 1Lを基にした燃料噴射弁 1 Mを例示する。尚、その各図においてはシール保持部材 40Lとその近傍のみを図示 しているが、図示されていない部分については、実施例 9の燃料噴射弁 1Lと同様に 構成されているものとする。  [0133] Hereinafter, the fuel injection valve 1M of the tenth embodiment will be described in detail with reference to FIGS. Here, for the sake of convenience, a fuel injection valve 1M based on the fuel injection valve 1L of the ninth embodiment described above is illustrated. In each of the drawings, only the seal holding member 40L and the vicinity thereof are shown, but the parts not shown are configured in the same manner as the fuel injection valve 1L of the ninth embodiment.
[0134] 本実施例 10の燃料噴射弁 1Mは、実施例 9の燃料噴射弁 1Lにおいて、ホルダ 20 Aと弁先端部シール部材 30Lを各々図 13に示すホルダ 20Mと弁先端部シール部材 30Mに置き換えて構成したものである。  [0134] The fuel injection valve 1M of the tenth embodiment is similar to the fuel injection valve 1L of the ninth embodiment in that the holder 20A and the valve tip seal member 30L are replaced with the holder 20M and the valve tip seal member 30M shown in FIG. It is constructed by replacing.
[0135] 本実施例 10のホルダ 20Mは、実施例 9のホルダ 20Aの第 3円筒部 20cの先端部 分にシール付着手段を設けたものである。ここで例示するシール付着手段は、その 先端部分における円錐状の外周面に形成した環状溝 20cであり、この環状溝 20c  [0135] The holder 20M of the tenth embodiment is provided with a seal adhering means at the tip of the third cylindrical portion 20c of the holder 20A of the ninth embodiment. The seal adhering means exemplified here is an annular groove 20c formed in a conical outer peripheral surface at the tip portion, and this annular groove 20c.
2 2 内に弁先端部シール部材 30Mの一部を充填させることによって弁先端部シール部 材 30Mをホルダ 20Mに付着させる。従って、本実施例 10の弁先端部シール部材 3 0Mとしては、ホルダ 20Mとシール保持部材 40Lの組み付け時にこれらの圧力で変 形し、環状溝 20cへと充填させることが可能な材料を用いる必要がある。ここでは、  2 2 The valve tip seal member 30M is attached to the holder 20M by filling a part of the valve tip seal member 30M into the inside. Therefore, as the valve tip seal member 30M of the tenth embodiment, it is necessary to use a material that can be deformed by these pressures when the holder 20M and the seal holding member 40L are assembled and filled into the annular groove 20c. There is. here,
2  2
例えば、その弁先端部シール部材 30Mとして耐熱性が高く変形可能な PTFE等の 樹脂材料を利用する。  For example, a resin material such as PTFE that has high heat resistance and can be deformed is used as the valve tip seal member 30M.
[0136] ここで、その環状溝 20cは、ホルダ 20Mの着脱方向 Xに対してある程度傾けてお  Here, the annular groove 20c is inclined to some extent with respect to the attaching / detaching direction X of the holder 20M.
2  2
かなければ、ホルダ 20Mを取り外す際に弁先端部シール部材 30Mを付着させてお くことができない。その一方で、この環状溝 20cは、その着脱方向 Xに対して傾け過 ぎると、ホルダ 20Mの組み付け時に弁先端部シール部材 30Mの一部を充填させる ことができなくなる。そこで、力かる点を考慮し、本実施例 10の環状溝 20cは、ホルダ Otherwise, the valve tip seal member 30M cannot be adhered when removing the holder 20M. On the other hand, the annular groove 20c is excessively inclined with respect to the attaching / detaching direction X. If it is too much, a part of the valve tip seal member 30M cannot be filled when the holder 20M is assembled. Therefore, in consideration of the points to be applied, the annular groove 20c of Example 10
2  2
20Mの組み付け時に弁先端部シール部材 30Mの一部が充填され、そのホルダ 20 Mを取り外す際に弁先端部シール部材 30Mを付着させておくことが可能な所定の 角度 αを実験やシミュレーションを行って設定し、ホルダ 20Μの着脱方向 Xに対して その角度 ocとなるように形成する。  Experiments and simulations were carried out at a predetermined angle α at which a part of the valve tip seal member 30M was filled when 20M was assembled, and the valve tip seal member 30M could be attached when the holder 20M was removed. The angle is oc with respect to the attaching / detaching direction X of the holder 20 mm.
[0137] これにより、本実施例 10の弁先端部シール部材 30Μは、ホルダ 20Μが図 13の矢 印 Υ方向へと挿入されることによって、図 14に示す如く変形してその一部が環状溝 2 Ocに充填される。そして、この弁先端部シール部材 30Mは、図 15に示す如ぐホル[0137] As a result, the valve tip seal member 30Μ of Example 10 is deformed as shown in Fig. 14 by inserting the holder 20Μ in the direction of the arrow 13 in Fig. 13, and a part thereof is annular. Filled in groove 2 Oc. The valve tip seal member 30M has a holder as shown in FIG.
2 2
ダ 20Mがシール保持部材 40Lから取り外されるときに、そのホルダ 20Mの環状溝 2 Ocに充填された充填部分が抵抗となり、ホルダ 20Mに付着したまま一体になつてシ When the holder 20M is removed from the seal holding member 40L, the filling portion filled in the annular groove 2 Oc of the holder 20M becomes a resistance, and is attached to the holder 20M as a unit.
2 2
ール保持部材 40Lから取り外される。  The handle holding member 40L is removed.
[0138] 従って、この本実施例 10の燃料噴射弁 1Mにおいては、弁先端部シール部材 30 Mが取り外し易くその交換が容易なので、補修後の燃料噴射弁先端部の良好なシ ール性能を確保することができる。従って、この燃料噴射弁 1Mは、補修後において も燃料噴射弁先端部の温度上昇を抑制し、その燃料噴射弁先端部におけるデポジ ットの生成を抑えて燃料噴射量の低下を回避することができる。  Therefore, in the fuel injection valve 1M of the tenth embodiment, the valve tip seal member 30M is easy to remove and replace, so that a good seal performance of the repaired fuel injection valve tip can be obtained. Can be secured. Therefore, the fuel injection valve 1M suppresses a rise in the temperature at the tip of the fuel injection valve even after repair, and suppresses the generation of deposit at the tip of the fuel injection valve to avoid a decrease in the fuel injection amount. it can.
[0139] ところで、ここでは、シール付着手段として環状溝 20cを例示したが、同じ外周面上  [0139] Incidentally, here, the annular groove 20c is exemplified as the seal adhering means, but on the same outer peripheral surface.
2  2
に形成した 1つ以上の孔であってもよい。また、このシール付着手段としては、図 16 に示す燃料噴射弁 1Nのように、ホルダ 20Nの先端部分の外周面上に形成した環状 の突起 20cであってもよい。この場合にも、上述した環状溝 20cと同様〖こ、ホルダ 20  One or more holes may be formed. Further, the seal adhering means may be an annular protrusion 20c formed on the outer peripheral surface of the tip end portion of the holder 20N, like a fuel injection valve 1N shown in FIG. In this case as well, the holder 20
3 2 3 2
Nの着脱方向 Xに対して所定の角度 αだけ傾けて環状の突起 20cを突出させる。更 The annular protrusion 20c is protruded at an angle α with respect to the attachment / detachment direction X of N. Further
3  Three
に、その外周面上に形成した 1つ以上の突起をシール付着手段として利用してもよ い。  In addition, one or more protrusions formed on the outer peripheral surface may be used as a seal adhering means.
[0140] ここで、そのシール付着手段は、図 17に示す燃料噴射弁 lOのように、ホルダ 20A の先端部分の外周面へと弁先端部シール部材 30Mを貼り付けるシール貼付手段 6 7として用意してもよい。例えば、そのシール貼付手段 67としては、その先端部分の 外周面における弁先端部シール部材 30Mとの当接面に塗布した接着剤が考えられ る。また、そのシール貼付手段 67としては、その当接面の面祖度を荒くした表面処理 部分を利用してもよぐその表面処理部分の細かい複数の凹部に弁先端部シール部 材 30Mが変形して充填される。本実施例 10においては、このようなシール貼付手段 67を用いても弁先端部シール部材 30Mの取り外しが容易になり、上記と同様の効果 を奏することができる。 Here, the seal adhering means is prepared as a seal adhering means 6 7 for adhering the valve tip seal member 30M to the outer peripheral surface of the tip of the holder 20A as in the fuel injection valve 10 shown in FIG. May be. For example, as the seal sticking means 67, an adhesive applied to the contact surface with the valve tip seal member 30M on the outer peripheral surface of the tip can be considered. The In addition, as the sticking means 67, the valve tip seal member 30M is deformed into a plurality of fine recesses in the surface treatment portion, which may be a surface treatment portion having a rough surface of the contact surface. To be filled. In the tenth embodiment, even when such a sticking means 67 is used, the valve tip seal member 30M can be easily removed, and the same effect as described above can be obtained.
[0141] 更に、そのシール貼付手段 67をシール付着手段として適用する場合には、シール 保持部材 40Lにおける弁先端部シール部材 30Mとの当接面にシール貼り付き防止 手段 68を設けることが好ましい。このシール貼り付き防止手段 68とは、弁先端部シー ル部材 30Mのシール保持部材 40Lへの貼り付きを防止して、より確実に弁先端部シ 一ル部材 30Mがホルダ 20Aに貼り付くようにする為のものである。例えば、このシー ル貼り付き防止手段 68としては、そのシール保持部材 40Lにおける当接面に塗布, 積層又はコーティングされた PTFE等の低摩擦材料が考えられる。また、このシーノレ 貼り付き防止手段 68としては、その当接面の面祖度を平滑にした表面処理部分を利 用してもよい。これにより、本実施例 10においては、弁先端部シール部材 30Mをホ ルダ 20Aへと確実に貼り付けたまま取り外すことができるようになる。尚、このシール 貼り付き防止手段 68については、上述した図 14や図 16に示す燃料噴射弁 1M, 1 Nに適用してもよい。  [0141] Furthermore, when the seal sticking means 67 is applied as a seal attaching means, it is preferable to provide the sticking prevention means 68 on the contact surface of the seal holding member 40L with the valve tip seal member 30M. This sticking prevention means 68 prevents sticking of the valve tip seal member 30M to the seal holding member 40L so that the valve tip seal member 30M sticks to the holder 20A more reliably. It is for doing. For example, the seal sticking prevention means 68 may be a low friction material such as PTFE coated, laminated or coated on the contact surface of the seal holding member 40L. Further, as the sheet sticking prevention means 68, a surface-treated portion in which the surface ancestry of the contact surface is smooth may be used. Thus, in the tenth embodiment, the valve tip seal member 30M can be removed while being securely attached to the holder 20A. The sticking prevention means 68 may be applied to the fuel injection valves 1M and 1N shown in FIG. 14 and FIG.
[0142] このように、ここでは実施例 9の燃料噴射弁 1Lに基づいて構築した燃料噴射弁 1M を例示したが、これ以外にも、前述した実施例 1, 2, 4, 6, 7の燃料噴射弁 1A, 1B, 1C, IE, 1H, IIを基にして本実施例 10に係る燃料噴射弁を構築してもよい。その 際の夫々の燃料噴射弁は、各々のホルダ 20A, 20Eの先端部分に本実施例 10のシ ール付着手段を設けて構成すればょ ヽ。  [0142] As described above, the fuel injection valve 1M constructed based on the fuel injection valve 1L of the ninth embodiment is illustrated here. However, in addition to the above, the fuel injection valves 1M of the first, second, fourth, sixth, and seventh embodiments described above are illustrated. The fuel injection valve according to the tenth embodiment may be constructed based on the fuel injection valves 1A, 1B, 1C, IE, 1H, II. Each fuel injection valve at that time should be configured by providing the seal adhering means of the tenth embodiment at the tip of each holder 20A, 20E.
実施例 11  Example 11
[0143] 次に、本発明に係る燃料噴射弁の実施例 11を図 18及び図 19に基づいて説明す る。  Next, Embodiment 11 of the fuel injection valve according to the present invention will be described with reference to FIGS.
[0144] 本実施例 11は、前述した各実施例 1〜10の燃料噴射弁 1A〜10において燃料噴 射弁先端部の更なる温度上昇抑制効果を狙ったものである。ここでは、前述した実 施例 1の燃料噴射弁 1Aを基に構成したものについて代表して例示するが、他の各 実施例 1〜: LOの燃料噴射弁 1B〜10に関しても以下と同様にして構成すればよい。 [0144] In the eleventh embodiment, in the fuel injection valves 1A to 10 of the first to tenth embodiments described above, a further temperature rise suppression effect at the tip of the fuel injection valve is aimed. In this example, the fuel injection valve 1A according to the first embodiment described above is illustrated as a representative example. Examples 1 to: The LO fuel injection valves 1B to 10 may be configured in the same manner as described below.
[0145] 具体的に、本実施例 11は、前述した実施例 1の燃料噴射弁 1Aにおいて、高温の 燃焼ガスに最も近 、シール保持部材 40Aに断熱層を設けて構成し、その断熱層で 燃焼ガスの熱を遮って燃料噴射弁先端部へと伝熱されな!/ヽようにしたものである。  [0145] Specifically, in Example 11, the fuel injection valve 1A of Example 1 described above is configured such that a heat insulating layer is provided on the seal holding member 40A closest to the high-temperature combustion gas, and the heat insulating layer is used. The heat of the combustion gas is blocked and heat is not transferred to the tip of the fuel injection valve.
[0146] 図 18に本実施例 11の燃料噴射弁 1Pを示す。この燃料噴射弁 1Pは、前述した実 施例 1の燃料噴射弁 1 Aにお ヽて、シール保持部材 40Aの少なくとも燃焼ガスに曝さ れる部位に断熱層 69aを設けて構成したものである。例えば、その断熱層 69aは、燃 焼ガスに曝されるシール保持部材 40Aの表面にセラミックス材料やチタン等の断熱 材料を積層又はコーティングすることによって形成する。  FIG. 18 shows a fuel injection valve 1P of the eleventh embodiment. This fuel injection valve 1P is configured by providing a heat insulating layer 69a at least in a portion of the seal holding member 40A exposed to the combustion gas in the fuel injection valve 1A of the first embodiment described above. For example, the heat insulating layer 69a is formed by laminating or coating a ceramic material or a heat insulating material such as titanium on the surface of the seal holding member 40A exposed to the combustion gas.
[0147] これにより、この燃料噴射弁 1Pにおいては、燃焼ガスの熱が断熱層 69aで遮られて シール保持部材 40Aの温度上昇が抑制されるので、そのシール保持部材 40Aから 直接又は弁先端部シール部材 30Aを介したホルダ 20Aへの熱伝達を抑えることが できる。従って、この燃料噴射弁 1Pにおいては、燃料噴射弁先端部の温度上昇がよ り確実に抑制されるので、その燃料噴射弁先端部におけるデポジットの生成を効果 的に抑えることができ、燃料噴射量の低下を回避することができる。  Thus, in this fuel injection valve 1P, the heat of the combustion gas is blocked by the heat insulating layer 69a and the temperature rise of the seal holding member 40A is suppressed, so that the temperature directly from the seal holding member 40A or the tip of the valve Heat transfer to the holder 20A via the seal member 30A can be suppressed. Therefore, in this fuel injection valve 1P, the temperature rise at the tip of the fuel injection valve is more reliably suppressed, so that the generation of deposits at the tip of the fuel injection valve can be effectively suppressed, and the fuel injection amount Can be avoided.
[0148] また、図 19には、本実施例 11の他の燃料噴射弁 1Qを示す。この燃料噴射弁 1Q は、前述した実施例 1の燃料噴射弁 1Aにおいてシール保持部材 40Aを図 19のシ ール保持部材 40Qへと差し替えて構成したものである。ここで例示するシール保持 部材 40Qは、実施例 1のシール保持部材 40Aにおける少なくとも燃焼ガスに曝され る部位の内部に上記と同様の断熱材料カゝらなる断熱層 69bを埋設したものである。 従って、この燃料噴射弁 1Qにおいては、上記の燃料噴射弁 1Pと同様にシール保持 部材 40Qの温度上昇を抑えることができるので、燃料噴射弁先端部の温度上昇がよ り確実に抑制され、その燃料噴射弁先端部におけるデポジットの生成を効果的に抑 えて燃料噴射量の低下を回避することができる。  FIG. 19 shows another fuel injection valve 1Q of the eleventh embodiment. This fuel injection valve 1Q is configured by replacing the seal holding member 40A with the seal holding member 40Q of FIG. 19 in the fuel injection valve 1A of the first embodiment described above. The seal holding member 40Q exemplified here has a heat insulating layer 69b made of a heat insulating material similar to the above embedded in at least a portion of the seal holding member 40A of Example 1 exposed to the combustion gas. Therefore, in this fuel injection valve 1Q, since the temperature rise of the seal holding member 40Q can be suppressed similarly to the fuel injection valve 1P described above, the temperature rise at the tip of the fuel injection valve is more reliably suppressed, and It is possible to effectively suppress the generation of deposits at the tip of the fuel injection valve and avoid a decrease in the fuel injection amount.
実施例 12  Example 12
[0149] 次に、本発明に係る燃料噴射弁の実施例 12を図 20に基づいて説明する。  Next, Example 12 of the fuel injection valve according to the present invention will be described with reference to FIG.
[0150] 本実施例 12は、前述した各実施例 1〜 11の燃料噴射弁 1 A〜: LQにおいて燃料噴 射弁先端部を強制冷却することで当該燃料噴射弁先端部の更なる温度上昇抑制効 果を狙ったものである。ここでは、前述した実施例 1の燃料噴射弁 1Aを基に構成した ものについて代表して例示する力 他の各実施例 1〜: L 1の燃料噴射弁 1B〜1Qに 関しても以下と同様にして構成すればよい。 [0150] In this embodiment 12, the fuel injection valve 1A of each of the embodiments 1 to 11 described above is further increased in temperature by forcibly cooling the fuel injection valve tip in the LQ. Inhibitory effect It is aimed at the fruit. Here, the force illustrated as a representative example of the fuel injection valve 1A of the first embodiment described above. Other embodiments 1 to: The same applies to the fuel injection valves 1B to 1Q of the L1. What is necessary is just to comprise.
[0151] 具体的に、本実施例 12は、燃料噴射弁取付孔 101における燃料噴射弁先端部の 付近とシリンダヘッドの冷却水通路 102とを連通させておき、冷却水を用いて燃料噴 射弁先端部を強制的に冷却させるよう構成したものである。  [0151] Specifically, in Example 12, the vicinity of the tip of the fuel injection valve in the fuel injection valve mounting hole 101 and the cooling water passage 102 of the cylinder head are communicated, and fuel injection is performed using the cooling water. The valve tip is forcibly cooled.
[0152] 図 20に本実施例 12の燃料噴射弁 1Rを示す。この燃料噴射弁 1Rは、前述した実 施例 1の燃料噴射弁 1 Aにおいてシール保持部材 40Aを図 20のシール保持部材 40 Rへと差し替えて構成したものである。ここで例示するシール保持部材 40Rは、実施 例 1のシール保持部材 40Aの第 2円筒部 40bの外周面に複数の環状の放熱フィン 4 Obを形成したものである。従って、本実施例 12においては、その放熱フィン 40bに [0152] FIG. 20 shows a fuel injection valve 1R of the twelfth embodiment. This fuel injection valve 1R is configured by replacing the seal holding member 40A with the seal holding member 40R of FIG. 20 in the fuel injection valve 1A of the first embodiment described above. The seal holding member 40R exemplified here is formed by forming a plurality of annular radiating fins 4 Ob on the outer peripheral surface of the second cylindrical portion 40b of the seal holding member 40A of the first embodiment. Therefore, in Example 12, the heat dissipating fin 40b
1 1 冷却水が接しながら流動していくように、燃料噴射弁取付孔 101の放熱フィン 40bが 1 1 The heat dissipating fins 40b of the fuel injection valve mounting hole 101 are arranged so that the coolant flows while in contact.
1 位置して!/、る部位に冷却水通路 102を導 、て連通させる。  1 Connect the cooling water passage 102 to the location!
[0153] ここで、燃料噴射弁 1Rと燃料噴射弁取付孔 101の間から冷却水通路 102の冷却 水が漏れてしまうのは好ましくない。また、これとは逆に、その間から燃焼ガスが冷却 水通路 102に入り込むのも好ましくない。そこで、本実施例 12においては、その冷却 水通路 102を挟み込むように、シール保持部材 40Rの上端側及び下端側と燃料噴 射弁取付孔 101との間に各々ガスシール部材 56A, 56Bを配設する。  Here, it is not preferable that the cooling water in the cooling water passage 102 leaks from between the fuel injection valve 1R and the fuel injection valve mounting hole 101. On the other hand, it is also not preferable that the combustion gas enters the cooling water passage 102 from there. Therefore, in the twelfth embodiment, the gas seal members 56A and 56B are arranged between the upper end side and the lower end side of the seal holding member 40R and the fuel injection valve mounting hole 101 so as to sandwich the cooling water passage 102 therebetween. Set up.
[0154] このように、本実施例 12の燃料噴射弁 1Rにおいては、冷却水によってシール保持 部材 40Rの温度が下げられるので、このシール保持部材 40Rがホルダ 20Aや弁先 端部シール部材 30A等力 の熱を受熱して、燃料噴射弁先端部の温度上昇が抑え られる。特に、この燃料噴射弁 1Rにおいては、冷却水の流動経路上に放熱フィン 40 bが形成されているので、その冷却水との接触面積が増えて冷却効果を高めること [0154] Thus, in the fuel injection valve 1R of the twelfth embodiment, the temperature of the seal holding member 40R is lowered by the cooling water, so that the seal holding member 40R is used as the holder 20A, the valve tip end seal member 30A, and the like. By receiving the heat of force, the temperature rise at the tip of the fuel injection valve can be suppressed. In particular, in this fuel injection valve 1R, since the radiation fins 40b are formed on the flow path of the cooling water, the contact area with the cooling water increases and the cooling effect is enhanced.
1 1
ができる。従って、本実施例 12の燃料噴射弁 1Rによれば、燃料噴射弁先端部の温 度上昇が確実に抑制されるので、その燃料噴射弁先端部におけるデポジットの生成 を抑え、燃料噴射量の低下を回避することができる。更に、この燃料噴射弁 1Rによ れば、弁先端部シール部材 30Aも冷却されるので、この弁先端部シール部材 30A の信頼性を高めて良好なシール性能を維持することができる。 実施例 13 Can do. Therefore, according to the fuel injection valve 1R of the twelfth embodiment, since the temperature rise at the tip of the fuel injection valve is reliably suppressed, the generation of deposit at the tip of the fuel injection valve is suppressed, and the fuel injection amount is reduced. Can be avoided. Furthermore, according to the fuel injection valve 1R, the valve tip seal member 30A is also cooled, so that the reliability of the valve tip seal member 30A can be improved and good sealing performance can be maintained. Example 13
[0155] 次に、本発明に係る燃料噴射弁の実施例 13を図 21から図 26に基づいて説明する  Next, a fuel injection valve according to a thirteenth embodiment of the present invention will be described with reference to FIGS. 21 to 26.
[0156] 本実施例 13は、前述した各実施例 1〜12の燃料噴射弁 1A〜: LRにおいて、生成 されてしまったデポジットを除去すべく構成したものであり、ここでは前述した実施例 1 の燃料噴射弁 1Aを基に構成したものについて代表して例示する。尚、これ以外の他 の各実施例 1〜12の燃料噴射弁 1B〜: LRに関しても以下と同様にして構成すればよ い。 [0156] In the thirteenth embodiment, the fuel injection valves 1A to LR of each of the above-described first to twelfth embodiments are configured to remove deposits generated in the LR. Here, the first embodiment described above is used. A typical fuel injection valve 1A will be described. In addition, the fuel injection valves 1B to LR of the other embodiments 1 to 12 may be configured in the same manner as described below.
[0157] 具体的に、本実施例 13においては、生成されたデポジットを加熱により焼き切って 除去させる。これが為、本実施例 13の燃料噴射弁 1Sには、図 21に示す如ぐ前述し た実施例 1の燃料噴射弁 1Aにおいて、電子制御装置 (ECU) 70の指示に従って作 動する加熱手段 71をバルブボディ 11に配設する。  [0157] Specifically, in Example 13, the generated deposit is burned off by heating and removed. For this reason, the fuel injection valve 1S of the thirteenth embodiment includes heating means 71 that operates according to the instructions of the electronic control unit (ECU) 70 in the fuel injection valve 1A of the first embodiment described above as shown in FIG. Is disposed on the valve body 11.
[0158] ここでは、その加熱手段 71としてノ レブボディ 11の先端部分の外周面に巻き付け たヒータ素子を用意し、これをバルブボディ 11の外周面と弁先端部シール部材 30A の内周面とで挟持する。そして、その加熱手段 71の熱が分散することなくバルブボデ ィ 11に伝わるように、弁先端部シール部材 30Aは、断熱性を有する材料で成形する ことが好ましい。これにより、この燃料噴射弁 1Sの燃料噴射弁先端部においては、加 熱手段 71の熱が全てバルブボディ 11に伝熱されるので、そのバルブボディ 11が無 駄なく加熱されてデポジットが焼き切られる。  Here, as the heating means 71, a heater element wound around the outer peripheral surface of the tip portion of the noble body 11 is prepared, and this is connected to the outer peripheral surface of the valve body 11 and the inner peripheral surface of the valve tip seal member 30A. Hold it. The valve tip seal member 30A is preferably formed of a heat insulating material so that the heat of the heating means 71 is transmitted to the valve body 11 without being dispersed. As a result, all the heat of the heating means 71 is transferred to the valve body 11 at the tip of the fuel injection valve 1S, so that the valve body 11 is heated without waste and the deposit is burned out. .
[0159] ここで、その加熱手段 71の作動時期としては、フューエルカット時等のように燃料噴 射が停止させられている状態のときを設定することが好ましい。従って、電子制御装 置 70は、その作動時期を燃料噴射制御指令等カも検知した際に加熱手段 71を作 動させるよう構成する。  [0159] Here, it is preferable to set the operation timing of the heating means 71 to the time when the fuel injection is stopped as in a fuel cut or the like. Therefore, the electronic control device 70 is configured to operate the heating means 71 when the operation timing is also detected by a fuel injection control command or the like.
[0160] 例えば、この燃料噴射弁 1Sを筒内直接噴射用として搭載する内燃機関が別のポ ート噴射用の燃料噴射弁も搭載している場合、その燃料噴射弁 isの停止時期は、 機関回転数等の運転条件に依存して決められる。これが為、力かる内燃機関におい ては、燃料噴射弁 isの停止期間が短ければ、生成されたデポジットを燃料噴射によ つて吹き飛ばすことができる。一方、この内燃機関においては、その停止期間が長く なれば、ポート噴射用燃料噴射弁力ゝらの噴射燃料が燃焼されることによって燃料噴 射弁 1Sの燃料噴射弁先端部が温度上昇し、デポジットが生成され易くなるだけでな ぐその生成されたデポジットが堆積されていってしまう。 [0160] For example, when the internal combustion engine in which the fuel injection valve 1S is mounted for direct in-cylinder also has a fuel injection valve for another port injection, the stop timing of the fuel injection valve is It is determined depending on operating conditions such as engine speed. Therefore, in a powerful internal combustion engine, if the stop period of the fuel injection valve is is short, the generated deposit can be blown off by fuel injection. On the other hand, in this internal combustion engine, the stop period is long. If this happens, the fuel injected from the port injection fuel injector will burn, and the temperature of the tip of the fuel injection valve 1S will rise, making it easier for deposits to be generated. Deposits are accumulated.
[0161] そこで、この内燃機関においては、図 22のフローチャートに示す制御動作を電子 制御装置 70に実行させる。  Accordingly, in this internal combustion engine, the control operation shown in the flowchart of FIG.
[0162] 先ず、電子制御装置 70は、この内燃機関において、筒内直接噴射用の燃料噴射 弁 1Sを停止させ且つポート噴射用の燃料噴射弁のみを作動させる燃料噴射領域( 以下、「筒内直接噴射 0%領域」という。)が選択されているか否かについて判断する[0162] First, in this internal combustion engine, the electronic control unit 70 stops the fuel injection valve 1S for direct injection in the cylinder and operates only the fuel injection valve for port injection (hereinafter referred to as "in-cylinder"). It is determined whether or not “direct injection 0% region” is selected.
(ステップ ST1)。 (Step ST1).
[0163] ここで、筒内直接噴射 0%領域であれば、電子制御装置 70は、その筒内直接噴射 0%領域が所定時間(例えば、 5分)以上継続されて 、るか否かにっ 、て判断する (ス テツプ ST2)。  [0163] Here, if the in-cylinder direct injection 0% region, the electronic control unit 70 determines whether the in-cylinder direct injection 0% region continues for a predetermined time (for example, 5 minutes) or not. (Step ST2).
[0164] そして、その筒内直接噴射 0%領域が所定時間以上継続されていれば、この電子 制御装置 70は、加熱手段 (ヒータ) 71への通電を開始し、この加熱手段 71を作動さ せる (ステップ ST3)。これにより、燃料噴射弁 1Sの燃料噴射弁先端部が温度上昇し 、この燃料噴射弁先端部にデポジットが生成されてしまったとしても、これが焼き切ら れる。従って、この燃料噴射弁 1Sにおいては、燃料噴射量の低下が回避される。ま た、この燃料噴射弁 1Sは、デポジットを焼き切る為に強制的に燃料噴射を停止させ ず、燃料噴射を行う必要のな 、ときに加熱手段 71を作動させてデポジットの焼き切り を行うので、内燃機関の機関効率を低下させずに済む。  [0164] If the in-cylinder direct injection 0% region continues for a predetermined time or longer, the electronic control unit 70 starts energizing the heating means (heater) 71 and operates the heating means 71. (Step ST3). As a result, even if the temperature of the tip of the fuel injection valve of the fuel injection valve 1S rises and deposit is generated at the tip of the fuel injection valve, it is burned out. Therefore, in this fuel injection valve 1S, a decrease in the fuel injection amount is avoided. In addition, this fuel injection valve 1S does not forcibly stop fuel injection to burn out the deposit, and it is not necessary to perform fuel injection, and sometimes the heating means 71 is operated to burn out the deposit. It is not necessary to reduce the engine efficiency of the engine.
[0165] 一方、上記ステップ ST1にて筒内直接噴射 0%領域ではな 、と判断された場合、 又は、上記ステップ ST2にて筒内直接噴射 0%領域が所定時間以上継続されてい ないと判断された場合、電子制御装置 70は、加熱手段 71への通電停止指示を行い (ステップ ST4)、この加熱手段 71を作動させないようにする。  [0165] On the other hand, if it is determined in step ST1 that the in-cylinder direct injection is not in the 0% region, or in step ST2, it is determined that the in-cylinder direct injection 0% region has not been continued for a predetermined time or more. If so, the electronic control unit 70 instructs the heating means 71 to stop energization (step ST4) so that the heating means 71 is not operated.
[0166] ところで、本実施例 13の加熱手段 71は、弁先端部シール部材 30Aとシール保持 部材 40Aを利用してノ レブボディ 11の先端部分 (即ち、燃料噴射弁 1 Sの燃料噴射 弁先端部)に設置されている。従って、この加熱手段 71は、バルブボディ 11を介した 噴霧燃料の加熱が可能になるので、機関冷間時にぉ ヽて噴霧燃料の微粒化を促進 させる為に利用することができる。 By the way, the heating means 71 of the thirteenth embodiment uses the valve tip seal member 30A and the seal holding member 40A to make the tip of the nozzle body 11 (ie, the fuel injection valve tip of the fuel injection valve 1 S). ). Therefore, since this heating means 71 can heat the sprayed fuel through the valve body 11, the atomizing of the sprayed fuel is promoted when the engine is cold. Can be used to
[0167] ここで、本実施例 13においては、加熱手段 71の作動に伴う熱効率の低下を抑える 為に、加熱手段 71を作動させる運転領域と作動時期を限定しておく。例えば、ここで は、機関冷間時 (例えば、水温や油温が 70°Cよりも低いとき)における機関始動時や アイドル運転時の運転領域にて加熱手段 71を作動させる。また、ここでは、図 23〖こ 示すように、燃料噴射弁 1Sの燃料噴射開始時期よりも前から加熱手段 71を作動さ せ、その燃料噴射弁 1Sの燃料噴射停止と共に加熱手段 71も停止させる。この加熱 手段 71の作動時期は、気筒毎に個別に制御する。  Here, in the thirteenth embodiment, in order to suppress a decrease in thermal efficiency due to the operation of the heating unit 71, the operation region and the operation timing for operating the heating unit 71 are limited. For example, here, the heating means 71 is operated in the operating region during engine start-up or idle operation when the engine is cold (for example, when the water temperature or oil temperature is lower than 70 ° C.). In addition, here, as shown in FIG. 23, the heating means 71 is operated before the fuel injection start timing of the fuel injection valve 1S, and the heating means 71 is also stopped together with the fuel injection stop of the fuel injection valve 1S. . The operation timing of the heating means 71 is individually controlled for each cylinder.
[0168] 具体的に、電子制御装置 70は、先ず、図 24のフローチャートに示す如ぐ機関始 動時又はアイドル運転時の内の何れかの運転領域であるか否かを判断し (ステップ S T11)、その運転領域に該当していれば、次に、水温や油温が所定温度 (例えば、 7 0°C)よりも低温であるか否かについて判断する(ステップ ST12)。尚、このステップ S T12は、水温と油温の双方が所定温度よりも低いか否かを判断するものであってもよ ぐまた、水温又は油温の何れか一方が所定温度よりも低いか否かを判断するもので あってもよい。  [0168] Specifically, the electronic control unit 70 first determines whether or not the engine is in one of the operation regions during engine start or idle operation as shown in the flowchart of Fig. 24 (step S T11), if it corresponds to the operation region, it is next determined whether or not the water temperature or oil temperature is lower than a predetermined temperature (for example, 70 ° C.) (step ST12). This step ST12 may determine whether both the water temperature and the oil temperature are lower than the predetermined temperature, or whether either the water temperature or the oil temperature is lower than the predetermined temperature. It may be a judgment of whether or not.
[0169] そして、そのステップ ST12にて水温や油温が所定温度よりも低い場合、電子制御 装置 70は、機関冷間時における機関始動時やアイドル運転時の運転領域と判断し 、上述した図 23の作動時期に加熱手段 71への通電を行って、この加熱手段 71を作 動させる (ステップ ST13)。これにより、燃料噴射弁 1Sからの噴霧燃料の微粒ィ匕が促 進されるので、内燃機関においては、安定した良好な燃焼が行われ、排気ガス中の 有害成分の減少化やトルク変動の抑制を図ることができる。従って、本実施例 13の 燃料噴射弁 1Sは、デポジットを焼き切る為に設けた加熱手段 71によって、機関冷間 時における内燃機関のェミッション性能を向上させ、更には内燃機関の騒音や振動 を抑制することも可能になる。  [0169] If the water temperature or the oil temperature is lower than the predetermined temperature in step ST12, the electronic control unit 70 determines that the engine is operating when the engine is cold or the operating region during idle operation. The heating means 71 is energized at the operation timing of 23 to operate the heating means 71 (step ST13). This promotes atomization of the sprayed fuel from the fuel injection valve 1S, so that stable and good combustion is performed in the internal combustion engine, reducing harmful components in the exhaust gas and suppressing torque fluctuations. Can be achieved. Therefore, the fuel injection valve 1S of the thirteenth embodiment improves the emission performance of the internal combustion engine when the engine is cold and further suppresses the noise and vibration of the internal combustion engine by the heating means 71 provided to burn off the deposit. It is also possible to do.
[0170] 一方、上記ステップ ST11にて機関始動時でもアイドル運転時でもな ヽと判断され た場合、又は、上記ステップ ST12にて水温や油温が所定温度以上になっていると 判断された場合、電子制御装置 70は、加熱手段 71への通電停止指示を行い (ステ ップ ST14)、この加熱手段 71を作動させないようにする。 [0171] 尚、例えば、この内燃機関においては、各気筒の内の何れかの燃料噴射弁 1Sの 加熱手段 71が故障した場合、その故障した加熱手段 71を抱える気筒とこれ以外の 気筒との間で噴霧燃料の微粒ィ匕状態に違いが出てしまい、その気筒間での燃焼バ ラツキに起因して騒音や振動が発生してしまう。そこで、ここでは、何れかの気筒で加 熱手段 71が故障した場合、全気筒の加熱手段 71を作動させないようにして、気筒間 の燃焼バラツキを抑制する。 [0170] On the other hand, if it is determined in step ST11 that the engine is neither starting nor idling, or if it is determined in step ST12 that the water temperature or the oil temperature is equal to or higher than a predetermined temperature. Then, the electronic control unit 70 instructs the heating means 71 to stop energization (step ST14) so that the heating means 71 is not operated. [0171] For example, in this internal combustion engine, when the heating means 71 of any one of the fuel injection valves 1S of each cylinder fails, there is a relationship between the cylinder having the failed heating means 71 and the other cylinders. As a result, there is a difference in the atomized state of the sprayed fuel between the cylinders, and noise and vibration are generated due to combustion variations between the cylinders. Therefore, here, when the heating means 71 fails in any of the cylinders, the heating means 71 of all the cylinders is not operated to suppress the combustion variation among the cylinders.
[0172] 例えば、電子制御装置 70は、図 25のフローチャートに示す如ぐ機関始動時又は アイドル運転時の内の何れかの運転領域である力否かを判断し (ステップ ST21)、そ の運転領域に該当していれば、次に、全気筒の中で AZF (空燃比)のずれている気 筒が存在している力否かを判断する (ステップ ST22)。ここで、機関始動時やアイド ル運転時には、 AZFの学習は行われず、 AZFの要求値(以下、「要求 AZF」という 。)に対して実際の AZFがずれたとしても、そのままの状態が保たれる。従って、この ステップ ST22においては、例えば、排気経路上の 02センサ等から実際の AZFを 推定し、これと要求 AZFとの差分力もずれの有無を判断することができる。尚、通常 は実際の AZFと要求 AZFとが完全に一致することは無 、ので、所定値以上の差が 生じた場合に、 AZFのずれ有りと判断させる。また、その判断対象の気筒について は、排気バルブの開弁時期、機関回転数、機関負荷、排気ポート入口力 02センサ までの距離等力も判別することができる。  [0172] For example, the electronic control unit 70 determines whether or not the power is in one of the operation regions at the time of engine start or idle operation as shown in the flowchart of Fig. 25 (step ST21). If it falls within the region, it is next determined whether or not there is a force having an AZF (air-fuel ratio) deviation among all the cylinders (step ST22). Here, AZF learning is not performed during engine start-up or idle operation, and even if the actual AZF deviates from the required AZF value (hereinafter referred to as “requested AZF”), the state remains unchanged. Be drunk. Therefore, in this step ST22, for example, the actual AZF can be estimated from 02 sensor or the like on the exhaust path, and it can be determined whether or not the differential force between this and the required AZF is also shifted. Normally, the actual AZF and the required AZF do not completely match, so if there is a difference of more than a predetermined value, it is determined that there is a deviation of AZF. In addition, for the cylinder to be determined, it is also possible to determine the opening time of the exhaust valve, the engine speed, the engine load, the distance to the exhaust port inlet force 02 sensor, etc.
[0173] そして、この電子制御装置 70は、 AZFのずれて 、る気筒が存在して 、なければ本 処理を終了する一方、 AZFのずれている気筒が存在していれば、全気筒の加熱手 段 71への通電停止指示を行い (ステップ ST23)、各加熱手段 71を作動させないよう にして運転者に警告を行う(ステップ ST24)。その警告としては、例えば、インスツル メンタルパネルへの視覚的な警告 (警告灯や故障して!/、る旨のメッセージ等)やビー プ音等による聴覚への警告が考えられる。  [0173] Then, the electronic control unit 70 terminates the present process if there is no cylinder with AZF deviation, and if there is a cylinder with AZF deviation, heating of all cylinders is performed. An instruction to stop energization to means 71 is issued (step ST23), and a warning is given to the driver so as not to operate each heating means 71 (step ST24). The warning may be, for example, a visual warning (such as a warning light or a message indicating that there is a failure! /) Or an auditory warning with a beep sound.
[0174] 一方、上記ステップ ST21にて機関始動時でもアイドル運転時でもないと判断され た場合、この電子制御装置 70は、次に筒内直接噴射 0%領域であるか否かについ て判断する (ステップ ST25)。尚、ここでは、上述したポート噴射用の燃料噴射弁も 具備して 、る内燃機関の場合にっ 、て例示する。 [0175] そして、この電子制御装置 70は、筒内直接噴射 0%領域でなければ本処理を終了 する一方、筒内直接噴射 0%領域であれば、上記ステップ ST22に進んで全気筒の 中で AZFのずれて!/、る気筒が存在して!/、るか否かを判断し、このステップ ST22の 判断結果に応じて、上記と同様の処理が行われる。 [0174] On the other hand, when it is determined in step ST21 that the engine is neither at the time of engine start nor at the time of idling, this electronic control unit 70 determines whether or not it is in the in-cylinder direct injection 0% region. (Step ST25). Here, the fuel injection valve for port injection described above is also provided, and an example is given in the case of an internal combustion engine. Then, the electronic control unit 70 ends this process if it is not in the in-cylinder direct injection 0% region, whereas if it is in the in-cylinder direct injection 0% region, the electronic control unit 70 proceeds to the above step ST22 and proceeds to the middle of all cylinders. Thus, it is determined whether or not there is a cylinder with AZF deviation! /, And the same processing as described above is performed according to the determination result of step ST22.
[0176] ここで、暖機運転終了後には AZFの学習機能が働き、要求 AZFに対して実際の AZFがずれたときには、そのずれに相当する AZF補正値が算出され、実際の AZ Fが要求 AZFとなるように制御される。従って、この場合のステップ ST22においては 、各気筒の AZF補正値 (又は AZFのずれ量)から AZFのずれて 、る気筒が存在 しているカゝ否かを判断する。  [0176] Here, after the warm-up operation ends, the learning function of AZF works, and when the actual AZF deviates from the required AZF, the AZF correction value corresponding to the deviation is calculated, and the actual AZ F is required. Controlled to be AZF. Accordingly, in step ST22 in this case, it is determined whether or not there is a cylinder that is deviated by AZF from the AZF correction value (or AZF deviation amount) of each cylinder.
[0177] このように、 1気筒だけでも加熱手段 71の故障が検出された場合には、全気筒の加 熱手段 71を作動させないようにしている。これが為、この場合には、夫々の気筒間の 燃焼バラツキが抑制されるので、内燃機関の騒音や振動を抑制することができる。  In this way, when a failure of the heating means 71 is detected even with only one cylinder, the heating means 71 of all cylinders is not operated. For this reason, in this case, since the variation in combustion between the respective cylinders is suppressed, the noise and vibration of the internal combustion engine can be suppressed.
[0178] ところで、上述した例示においてはヒータ等の加熱手段 71を用いてデポジットの焼 き切りを図ったが、これ以外に、噴孔近傍で火花を形成させることによってデポジット の焼き切りを行ってもよい。例えば、図 26には、噴孔 11a近傍で火花形成可能な火 花形成手段 72を備えた燃料噴射弁 1Tにつ 、て例示して 、る。  By the way, in the above-described example, the deposit is burned out by using the heating means 71 such as a heater, but the deposit may be burned out by forming a spark in the vicinity of the nozzle hole. Good. For example, FIG. 26 illustrates a fuel injection valve 1T provided with a spark forming means 72 capable of forming a spark in the vicinity of the nozzle hole 11a.
[0179] この図 26に示す燃料噴射弁 1Tは、前述した実施例 1の燃料噴射弁 1Aにおいて、 先端が平滑なバルブボディ 11Tを有する弁本体 10Tと、これに合わせて成形したホ ルダ 20Tと、このホルダ 20Tの先端に配置された環状の弁先端部シール部材 30Tと 、この弁先端部シール部材 30Tをホルダ 20Tの先端との間で軸線方向に挟持する シール保持部材 40Tとに置き換えて構成したものである。この燃料噴射弁 1Tにお ヽ ては、噴孔 11a近傍に設けた電極を火花形成手段 72として例示する。例えば、ここ では、シール保持部材 40Tの環状部 40cの内周面に各々対向させて火花形成手段 72たる電極を配設し、この火花形成手段 72を上述した電子制御装置 70に図 22のフ ローチャートと同様にして作動させる。これにより、この燃料噴射弁 1Tにおいては、電 極間で形成された火花がデポジットを焼き切るので、上述した燃料噴射弁 1Sと同様 の効果を奏することができる。  [0179] The fuel injection valve 1T shown in Fig. 26 is the same as the fuel injection valve 1A of the first embodiment described above, the valve body 10T having the valve body 11T having a smooth tip, and the holder 20T molded in accordance with this. The annular valve tip seal member 30T disposed at the tip of the holder 20T is replaced with a seal holding member 40T that clamps the valve tip seal member 30T between the tip of the holder 20T in the axial direction. It is what. In this fuel injection valve 1T, an electrode provided in the vicinity of the injection hole 11a is exemplified as the spark formation means 72. For example, here, an electrode as the spark forming means 72 is disposed so as to face the inner peripheral surface of the annular portion 40c of the seal holding member 40T, and the spark forming means 72 is connected to the electronic control device 70 described above to the frame of FIG. Operate in the same way as the chart. As a result, in the fuel injection valve 1T, the spark formed between the electrodes burns out the deposit, so that the same effect as the fuel injection valve 1S described above can be obtained.
実施例 14 [0180] 次に、本発明に係る燃料噴射弁の実施例 14を図 27及び図 28に基づいて説明す る。 Example 14 Next, Embodiment 14 of the fuel injection valve according to the present invention will be described with reference to FIGS. 27 and 28.
[0181] 本実施例 14は、前述した各実施例 1〜13の燃料噴射弁 1A〜: LTにおいて、弁先 端咅ン一ノレ咅材(30A, 30C, 30K, 30L, 30M, 30T)力 S万力 S—溶損や破損し、こ れがシール機能を発揮できなくなってしまった場合の対応策について示したものであ る。ここでは、前述した実施例 1の燃料噴射弁 1Aを基に構成したものについて代表 して例示するが、他の各実施例 1〜 13の燃料噴射弁 1 B〜 ITに関しても以下と同様 にして構成すればよい。  [0181] This embodiment 14 is the fuel injection valve 1A of each of the embodiments 1 to 13 described above: In the LT, the valve tip end non-removable material (30A, 30C, 30K, 30L, 30M, 30T) force S vise S—Shows countermeasures in the event of melting or breakage, which can no longer function as a seal. In this example, the fuel injection valve 1A according to the first embodiment described above is illustrated as a representative example, but the fuel injection valves 1B to IT according to the other embodiments 1 to 13 are similar to the following. What is necessary is just to comprise.
[0182] 具体的に、本実施例 14の燃料噴射弁 1Uは、前述した実施例 1の燃料噴射弁 1 A にお 、て、弁先端部シール部材 30Aの損傷を検知可能なシール損傷検知手段と、 これにより弁先端部シール部材 30Aの損傷が認められた場合に燃料噴射弁先端部 の温度上昇を抑制可能な運転状態へと移行させる運転制御手段とを設けたものであ る。  [0182] Specifically, the fuel injection valve 1U of the fourteenth embodiment includes a seal damage detection means that can detect damage to the valve tip seal member 30A in the fuel injection valve 1A of the first embodiment described above. And an operation control means for making a transition to an operating state in which the temperature rise of the fuel injection valve tip can be suppressed when damage to the valve tip seal member 30A is recognized.
[0183] ここで、そのシール損傷検知手段としては、例えば、シール保持部材 40Aにおける 弁先端部シール部材 30Aの近傍に配備した熱電対等の図 27に示す温度センサ 73 を利用することができる。この温度センサ 73は、燃焼ガスの温度の影響を直接受けな いように、その燃焼ガスが直接的に当たらない位置に配備することが好ましい。一方 、例えば、弁先端部シール部材 30Aが損傷した場合には、図 27に示す空間 Aに燃 焼ガスが流入してしま、、その空間 Aを成すシール保持部材 40Aの先端部分の温度 が正常時よりも上昇していく。これが為、具体的には、シール保持部材 40Aにおける 空間 Aの近傍に温度センサ 73を配設し、その温度変化に応じて弁先端部シール部 材 30Aの損傷有無を判断させる。  Here, as the seal damage detection means, for example, a temperature sensor 73 shown in FIG. 27 such as a thermocouple provided in the vicinity of the valve tip seal member 30A in the seal holding member 40A can be used. It is preferable that the temperature sensor 73 is disposed at a position where the combustion gas does not directly hit so as not to be directly affected by the temperature of the combustion gas. On the other hand, for example, when the valve tip seal member 30A is damaged, the combustion gas flows into the space A shown in FIG. 27, and the temperature at the tip of the seal holding member 40A forming the space A is normal. It rises more than time. For this reason, specifically, a temperature sensor 73 is provided in the vicinity of the space A in the seal holding member 40A, and the presence or absence of damage to the valve tip seal member 30A is determined according to the temperature change.
[0184] また、このシール損傷検知手段としては、気筒毎に配備したノックセンサ等の図 27 に示す振動センサ 74を利用することも可能である。即ち、弁先端部シール部材 30A を挟持して!/、るホルダ 20Aは、その弁先端部シール部材 30Aの部分とガスシール部 材 51の部分とで支えられている。これが為、仮にその弁先端部シール部材 30Aが破 損した場合には、そのホルダ 20Aの支持構造における振動源が変位し、振動センサ 74の検出信号の波形が正常時に対して変化するので、これを検知することで弁先端 部シール部材 30Aの損傷有無の判断が可能になる。 [0184] Further, as this seal damage detection means, it is also possible to use a vibration sensor 74 shown in FIG. 27 such as a knock sensor provided for each cylinder. That is, the holder 20A holding the valve tip seal member 30A is supported by the valve tip seal member 30A and the gas seal member 51. For this reason, if the valve tip seal member 30A is damaged, the vibration source in the support structure of the holder 20A is displaced, and the waveform of the detection signal of the vibration sensor 74 changes from that in the normal state. By detecting the valve tip It is possible to determine whether or not the seal member 30A is damaged.
[0185] 一方、運転制御手段とは、電子制御装置 70に設けられた一機能のことである。例 えば、燃料噴射弁先端部の温度上昇は、点火時期の遅角制御、スロットルバルブの 閉弁 (絞り)方向への制御、実施例 13で例示したポート噴射用の燃料噴射弁も有し ている内燃機関においての筒内直接噴射用の本実施例 14の燃料噴射弁 1Uの噴 射比率上昇、気筒休止等の運転へと移行させるによって抑えることができる。また、 冷却水の温度を電動ファン等によって低下させることによつても燃料噴射弁先端部の 温度上昇の抑制が可能である。  On the other hand, the operation control means is a function provided in the electronic control unit 70. For example, the temperature rise at the tip of the fuel injection valve is controlled by retarding the ignition timing, controlling the throttle valve in the closing (throttle) direction, and the fuel injection valve for port injection exemplified in the thirteenth embodiment. This can be suppressed by shifting to an operation such as an increase in the injection ratio of the fuel injection valve 1U of the 14th embodiment for direct in-cylinder injection in an internal combustion engine or cylinder deactivation. In addition, the temperature rise at the tip of the fuel injection valve can be suppressed by lowering the temperature of the cooling water with an electric fan or the like.
[0186] 例えば、本実施例 14の電子制御装置 70は、図 28のフローチャートに示す如ぐ弁 先端部シール部材 30Aが正常か否かについて上述した温度センサ 73や振動セン サ 74の検出信号から判断する (ステップ ST31)。  For example, the electronic control unit 70 according to the fourteenth embodiment is based on the detection signals of the temperature sensor 73 and the vibration sensor 74 described above as to whether the valve tip seal member 30A is normal as shown in the flowchart of FIG. Judge (Step ST31).
[0187] ここで、異常との判断が為された場合、この電子制御装置 70は、該当する気筒に 対して上述した燃料噴射弁先端部の温度上昇抑制運転を実行させる (ステップ ST3 2)。そして、例えば、前述した実施例 13で説明したものと同様にして運転者に警告 を行う(ステップ ST33)。これにより、本実施例 14の燃料噴射弁 1Uにおいては、燃 料噴射弁先端部の温度上昇が抑制されるので、その燃料噴射弁先端部におけるデ ポジットの生成を抑え、燃料噴射量の低下を回避することができる。  [0187] Here, when it is determined that there is an abnormality, the electronic control unit 70 performs the above-described temperature rise suppression operation of the fuel injection valve tip for the corresponding cylinder (step ST32). Then, for example, the driver is warned in the same manner as described in the thirteenth embodiment (step ST33). As a result, in the fuel injection valve 1U of the embodiment 14, the temperature rise at the tip of the fuel injection valve is suppressed, so that the generation of deposits at the tip of the fuel injection valve is suppressed and the fuel injection amount is reduced. It can be avoided.
[0188] 一方、上記ステップ ST31にて正常との判断が為された場合には、そのような燃料 噴射弁先端部の温度上昇抑制運転をさせずに、通常運転を実行させる (ステップ ST 34)。  [0188] On the other hand, if it is determined in step ST31 that it is normal, normal operation is performed without performing such temperature rise suppression operation at the tip of the fuel injection valve (step ST 34). .
[0189] ところで、上述した各実施例 1〜5, 8〜14の燃料噴射弁(1A〜1G, 1J〜1U)は、 例えば、燃料噴射弁取付孔 101にシール保持部材 (40A, 40J, 40L, 40Q, 40R, 40T)を圧入した後でそのシール保持部材の中に弁先端部シール部材(30A, 30C , 30K, 30L, 30M, 30T)や実施例 8のシール外周面保持部材 66力挿入され、そ の後にシール保持部材の中へと弁本体 10Aやホルダ(20A, 20E, 20M, 20N, 2 0T)が圧入されて組み付けられる。この夫々の燃料噴射弁においては、圧入後のシ ール保持部材が燃料噴射弁取付孔 101における第 2円形孔部 101bの底面 101b  By the way, the fuel injection valves (1A to 1G, 1J to 1U) of the above-described embodiments 1 to 5, 8 to 14 are, for example, the seal holding member (40A, 40J, 40L) in the fuel injection valve mounting hole 101. , 40Q, 40R, 40T), and insert the valve tip seal member (30A, 30C, 30K, 30L, 30M, 30T) into the seal holding member or the seal outer peripheral surface holding member 66 of Example 8 Thereafter, the valve main body 10A and the holder (20A, 20E, 20M, 20N, 20T) are press-fitted into the seal holding member and assembled. In each of the fuel injection valves, the seal holding member after press-fitting is the bottom surface 101b of the second circular hole 101b in the fuel injection valve mounting hole 101.
1 に係止される一方、圧入後のホルダが燃料噴射弁取付孔 101における第 1円形孔部 101aの底面 101aに係止される。これが為、各燃料噴射弁においては、シール保持 1 and the holder after press-fitting is the first circular hole in the fuel injection valve mounting hole 101. Locked to the bottom surface 101a of 101a. Because of this, each fuel injection valve has a seal holding
1  1
部材及びホルダ等の製造バラツキやこれらの組み付け公差によってそのシール保持 部材とホルダとの間隔 (即ち、弁先端部シール部材を保持する部分の間隔)を安定さ せ難い。従って、ものによっては設計値よりも間隔が狭くなつて過剰な圧縮応力を弁 先端部シール部材に掛けるので、その弁先端部シール部材の変形や破損を引き起 こしてシール性能を悪ィ匕させる虞があり、また、ものによっては設計値よりも間隔が広 くなつて圧縮保持力を低下させるので、その弁先端部シール部材との間に隙間が出 来やすくなつてシール性能を悪ィ匕させる虞がある。  It is difficult to stabilize the interval between the seal holding member and the holder (that is, the interval between the portions that hold the valve tip seal member) due to manufacturing variations of the members and holders and their assembly tolerances. Therefore, depending on the product, the interval is narrower than the design value and an excessive compressive stress is applied to the valve tip seal member, causing the valve tip seal member to be deformed or damaged, resulting in poor seal performance. In some cases, the compression holding force is reduced because the interval is wider than the design value, so that a gap is easily formed between the valve tip seal member and the sealing performance is deteriorated. There is a risk of causing it.
[0190] そこで、その各燃料噴射弁にぉ ヽては、燃料噴射弁取付孔 101にシール保持部材 を圧入した後で弁先端部シール部材の当接面 (保持面)や実施例 8の環状溝 40cを  [0190] Therefore, for each fuel injection valve, after the seal holding member is press-fitted into the fuel injection valve mounting hole 101, the contact surface (holding surface) of the valve tip seal member or the annular shape of Example 8 Groove 40c
1 加工させることが好ましい。これにより、各燃料噴射弁においては、弁先端部シール 部材が適正な圧縮保持力で保持されるようになるので、良好なシール性能を確保す ることができる。従って、その各燃料噴射弁においては、その燃料噴射弁先端部の温 度上昇を確実に抑制することができるので、その燃料噴射弁先端部におけるデポジ ットの生成が効果的に抑えられて燃料噴射量の低下を回避することができる。  1 It is preferable to process. As a result, in each fuel injection valve, the valve tip seal member is held with an appropriate compression holding force, so that good sealing performance can be ensured. Therefore, in each of the fuel injection valves, the temperature rise at the tip of the fuel injection valve can be reliably suppressed, so that the generation of deposits at the tip of the fuel injection valve is effectively suppressed and the fuel injection valve is prevented. A decrease in the injection amount can be avoided.
[0191] 尚、上述した各実施例 1〜14においては、弁先端部シール部材(30A, 30C, 30 K, 30L, 30M, 30T)を軸線方向にて保持している。これが為、噴霧形状や噴霧方 向の制約から燃料噴射弁先端部を燃焼室内に露出させなければならない場合には 、図 26に示す実施例 13の燃料噴射弁 1Tであれば、シール保持部材 40Tの先端が 大きく燃焼室内に飛び出してしまい、ピストン頂面との間の隙間の確保や噴霧形状や 噴霧方向の自由度の観点から邪魔になる虞がある。また、それ以外の燃料噴射弁 1 A〜1S, 1Uにおいては、バルブボディ 11の先端が燃焼室内に大きく飛び出してし まい、その先端がより高温の燃焼ガスに曝されるので、燃料噴射弁先端部が温度上 昇してデポジットが生成され易くなる。  [0191] In each of the above Examples 1 to 14, the valve tip seal member (30A, 30C, 30K, 30L, 30M, 30T) is held in the axial direction. Therefore, when the tip of the fuel injection valve must be exposed in the combustion chamber due to restrictions on the spray shape and spray direction, the seal holding member 40T can be used for the fuel injection valve 1T of the embodiment 13 shown in FIG. The tip of the cylinder may jump out into the combustion chamber, which may interfere with the clearance from the top surface of the piston and the freedom of spray shape and spray direction. In the other fuel injection valves 1A to 1S, 1U, the tip of the valve body 11 may protrude greatly into the combustion chamber, and the tip is exposed to higher-temperature combustion gas. As the temperature rises, deposits are easily generated.
[0192] そこで、燃料噴射弁先端部を燃焼室内に露出させる場合には、図 29に示す燃料 噴射弁 IVの様に構成することが好ましい。ここでは、前述した実施例 1の燃料噴射 弁 1Aを基に構成した燃料噴射弁 IVを例示する。  [0192] Therefore, when the tip portion of the fuel injection valve is exposed in the combustion chamber, it is preferable to configure the fuel injection valve IV as shown in FIG. Here, a fuel injection valve IV configured based on the fuel injection valve 1A of the first embodiment described above is illustrated.
[0193] この燃料噴射弁 IVは、実施例 1の燃料噴射弁 1Aにおいて、先端が平滑なバルブ ボディ 1 IVを有する弁本体 10Vと、先端をバルブボディ 11 Vの先端面と略面一にし たホルダ 20 Vと、このホルダ 20Vの先端よりの外周面に配備された環状の弁先端部 シール部材 30Vと、この弁先端部シール部材 30Vをホルダ 20Vの外周面との間にて 径方向で保持するシール保持部材 40Vとに置き換えて構成したものである。 [0193] This fuel injection valve IV is a valve having a smooth tip in the fuel injection valve 1A of the first embodiment. A valve body 10V having a body 1 IV, a holder 20 V whose tip is substantially flush with the tip surface of the valve body 11 V, and an annular valve tip seal member disposed on the outer peripheral surface from the tip of the holder 20V 30V and the valve tip seal member 30V are replaced with a seal holding member 40V that holds the valve 20D in the radial direction between the outer peripheral surface of the holder 20V.
[0194] ここで、そのシール保持部材 40Vは、その先端面がバルブボディ 1 IV及びホルダ 2 0Vの各々の先端面と略面一になるように成形されたものであり、その内周面におい て弁先端部シール部材 30Vを保持する。これにより、この燃料噴射弁 IVは、その燃 料噴射弁先端部やシール保持部材 40Vの燃焼室内に露出させたとしても、先端部 シール部材 30Vのシール性能を確保しつつ、ピストン頂面との間の隙間を可能な限 り確保し、更に、噴霧燃料とシール保持部材 40Vとの干渉を回避することができる。 従って、この燃料噴射弁 IVは、噴霧機能を阻害することなく燃料噴射弁先端部の温 度上昇を抑制することができるので、その燃料噴射弁先端部の燃焼室内への突き出 しを可能にする。また、この燃料噴射弁 IVは、燃料噴射弁先端部の径が細くなるな どして軸線方向での先端部シール部材の保持が困難な場合にぉ 、ても、燃料噴射 弁先端部の温度上昇抑制効果に優れる位置に弁先端部シール部材 30Vを配置す ることがでさる。 [0194] Here, the seal holding member 40V is formed so that the front end surfaces thereof are substantially flush with the respective front end surfaces of the valve body 1 IV and the holder 20V. Hold the valve tip seal member 30V. Thus, even if the fuel injection valve IV is exposed in the combustion chamber of the fuel injection valve tip or the seal holding member 40V, the fuel injection valve IV is secured to the piston top surface while ensuring the sealing performance of the tip seal member 30V. It is possible to secure the gap between them as much as possible, and to avoid the interference between the sprayed fuel and the seal holding member 40V. Therefore, this fuel injection valve IV can suppress the temperature rise at the tip of the fuel injection valve without hindering the spray function, so that the tip of the fuel injection valve can be protruded into the combustion chamber. . In addition, the fuel injection valve IV has a lower temperature at the tip of the fuel injection valve even when it is difficult to hold the tip seal member in the axial direction because the diameter of the tip of the fuel injection valve becomes narrow. It is possible to arrange the valve tip seal member 30V at a position where the rise suppression effect is excellent.
産業上の利用可能性  Industrial applicability
[0195] 以上のように、本発明に係る燃料噴射弁は、燃料噴射弁先端部の温度上昇を抑制 して安定した噴射量で燃料を噴射させる技術として有用である。 [0195] As described above, the fuel injection valve according to the present invention is useful as a technique for injecting fuel with a stable injection amount by suppressing the temperature rise at the tip of the fuel injection valve.

Claims

請求の範囲 The scope of the claims
[1] 燃料を噴射する弁本体と、該弁本体を内部で保持し、燃料噴射弁取付孔に挿入し て固定されるホルダと、を備えた燃料噴射弁にぉ 、て、  [1] A fuel injection valve comprising: a valve body for injecting fuel; and a holder that holds the valve body inside and is fixed by being inserted into the fuel injection valve mounting hole;
燃料噴射弁先端部の燃焼室よりに配設された弁先端部シール部材と、前記燃料噴 射弁取付孔に挿入され、前記弁先端部シール部材を前記燃料噴射弁先端部との間 で圧縮保持するシール保持部材と、を設けたことを特徴とする燃料噴射弁。  A valve tip seal member disposed from the combustion chamber at the tip of the fuel injection valve and the fuel injection valve mounting hole, and the valve tip seal member is compressed between the fuel injection valve tip. And a seal holding member for holding the fuel injection valve.
[2] 前記弁先端部シール部材は、低熱伝導率材料力 なることを特徴とした請求項 1記 載の燃料噴射弁。  [2] The fuel injection valve according to claim 1, wherein the valve tip seal member has a low thermal conductivity material force.
[3] 前記燃料噴射弁先端部の外周部分に軸シール部材を新たに設けたことを特徴と する請求項 1又は 2に記載の燃料噴射弁。  [3] The fuel injection valve according to [1] or [2], wherein a shaft seal member is newly provided on an outer peripheral portion of the tip portion of the fuel injection valve.
[4] 前記シール保持部材と前記燃料噴射弁取付孔との間に、前記弁先端部シール部 材よりも弾性率の高い高弾性シール部材を設けたことを特徴とする請求項 1, 2又は 3 に記載の燃料噴射弁。 [4] The high-elasticity seal member having a higher elastic modulus than the valve tip seal member is provided between the seal holding member and the fuel injection valve mounting hole. 3. The fuel injection valve according to 3.
[5] 前記シール保持部材は、高強度材料力 なることを特徴とした請求項 1, 2, 3又は [5] The seal holding member has a high strength material strength.
4に記載の燃料噴射弁。 4. The fuel injection valve according to 4.
[6] 前記シール保持部材は、高弾性率材料カゝらなることを特徴とした請求項 1, 2, 3又 は 4に記載の燃料噴射弁。 6. The fuel injection valve according to claim 1, 2, 3 or 4, wherein the seal holding member is made of a high elastic modulus material.
[7] 環状の前記弁先端部シール部材の外周面と前記シール保持部材との間に当該シ ール保持部材よりも強度の高い環状のシール外周面保持部材を設けたことを特徴と する請求項 1から 6の内の何れか 1つに記載の燃料噴射弁。 [7] The annular seal outer peripheral surface holding member having higher strength than the seal holding member is provided between the outer peripheral surface of the annular valve tip seal member and the seal holding member. Item 7. The fuel injection valve according to any one of Items 1 to 6.
[8] 前記弁先端部シール部材は、前記燃料噴射弁先端部と前記シール保持部材との 間で軸線方向にて圧縮保持される面シール部と、その間で径方向にて圧縮保持さ れる軸シール部と、を一体ィ匕したことを特徴とする請求項 1から 7の内の何れか 1つに 記載の燃料噴射弁。 [8] The valve tip seal member includes a face seal portion compressed and held in the axial direction between the fuel injection valve tip and the seal holding member, and a shaft compressed and held in the radial direction therebetween. The fuel injection valve according to any one of claims 1 to 7, wherein the seal portion is integrated with the seal portion.
[9] 前記燃料噴射弁先端部に前記弁先端部シール部材を付着させるシール付着手段 を設けたことを特徴とする請求項 1から 8の内の何れか 1つに記載の燃料噴射弁。  [9] The fuel injection valve according to any one of [1] to [8], wherein a seal adhering means for adhering the valve front end seal member to the front end of the fuel injection valve is provided.
[10] 前記シール保持部材は、少なくとも燃焼ガスに曝される部位又は Z及び当該部位 の内部に断熱層を備えることを特徴とした請求項 1から 9の内の何れか 1つに記載の 燃料噴射弁。 [10] The seal holding member according to any one of claims 1 to 9, wherein the seal holding member includes at least a part exposed to the combustion gas or Z and a heat insulating layer in the part. Fuel injection valve.
[11] 前記シール保持部材にシリンダヘッドの冷却水通路内の冷却水と接する放熱フィ ンを設けたことを特徴とする請求項 1から 10の内の何れ力 1つに記載の燃料噴射弁。  11. The fuel injection valve according to any one of claims 1 to 10, wherein the seal holding member is provided with a heat radiation fin in contact with the cooling water in the cooling water passage of the cylinder head.
[12] 前記弁先端部シール部材と前記燃料噴射弁先端部の噴孔近傍との間に加熱手段 を設けたことを特徴とする請求項 1から 11の内の何れ力 1つに記載の燃料噴射弁。  12. The fuel according to any one of claims 1 to 11, wherein a heating means is provided between the valve tip seal member and the vicinity of the nozzle hole of the fuel injection valve tip. Injection valve.
[13] 噴孔近傍で火花を形成可能な火花形成手段を設けたことを特徴とする請求項 1か ら 11の内の何れか 1つに記載の燃料噴射弁。  [13] The fuel injection valve according to any one of [1] to [11], wherein a spark forming means capable of forming a spark in the vicinity of the nozzle hole is provided.
[14] 前記弁先端部シール部材の損傷を検知可能なシール損傷検知手段と、前記弁先 端部シール部材の損傷を検知した際に前記燃料噴射弁先端部の温度上昇を抑制 可能な運転状態へと移行させる運転制御手段と、を設けたことを特徴とする請求項 1 力も 13の内の何れか 1つに記載の燃料噴射弁。  [14] A seal damage detecting means capable of detecting damage to the valve tip seal member, and an operating state capable of suppressing an increase in temperature of the fuel injection valve tip when detecting damage to the valve tip seal member 14. The fuel injection valve according to claim 1, further comprising an operation control unit that shifts to the operation mode.
PCT/JP2006/322289 2005-11-16 2006-11-08 Fuel injection valve WO2007058103A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2005331997 2005-11-16
JP2005-331997 2005-11-16
JP2006249879A JP2007162678A (en) 2005-11-16 2006-09-14 Fuel injection valve
JP2006-249879 2006-09-14

Publications (1)

Publication Number Publication Date
WO2007058103A1 true WO2007058103A1 (en) 2007-05-24

Family

ID=38048490

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/322289 WO2007058103A1 (en) 2005-11-16 2006-11-08 Fuel injection valve

Country Status (2)

Country Link
JP (1) JP2007162678A (en)
WO (1) WO2007058103A1 (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103069150A (en) * 2010-06-18 2013-04-24 卡特彼勒发动机有限及两合公司 Injection nozzle system and method for operating an injection nozzle system
EP2628943A1 (en) * 2012-02-15 2013-08-21 Robert Bosch Gmbh Fuel injection valve
EP2636880A1 (en) * 2012-03-06 2013-09-11 Delphi Automotive Systems Luxembourg SA Injector tip seal
EP2711535A1 (en) * 2012-09-20 2014-03-26 Caterpillar Motoren GmbH & Co. KG Sealed two piece injector
EP2775133A1 (en) * 2013-03-06 2014-09-10 Delphi Automotive Systems Luxembourg SA Protection mean for the nozzle of an injector
CN104136762A (en) * 2012-02-24 2014-11-05 Nok株式会社 Sealing structure
US20190063390A1 (en) * 2015-12-14 2019-02-28 Robert Bosch Gmbh Fuel injector
WO2019072683A1 (en) * 2017-10-12 2019-04-18 Continental Automotive Gmbh Fuel injection valve
FR3101920A1 (en) * 2019-10-14 2021-04-16 Renault S.A.S. Gasoline direct injector nose protector with heat shield
US11549429B2 (en) 2018-01-12 2023-01-10 Transportation Ip Holdings, Llc Engine mixing structures
US20230012000A1 (en) * 2021-07-07 2023-01-12 Transportation Ip Holdings, Llc Insert device for fuel injection
US11725619B2 (en) 2021-02-23 2023-08-15 Transportation Ip Holdings, Llc Alignment system and associated method
US11781469B2 (en) 2021-08-12 2023-10-10 Transportation Ip Holdings, Llc Insert device for fuel injection

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5929832B2 (en) * 2013-05-23 2016-06-08 トヨタ自動車株式会社 Fuel injection apparatus and fuel injection method for internal combustion engine
DE102014224343A1 (en) * 2014-11-28 2016-06-02 Robert Bosch Gmbh Gas injector with improved thermal properties
JP6710749B2 (en) * 2016-03-30 2020-06-17 本田技研工業株式会社 Internal combustion engine
DE102017108270B4 (en) * 2017-04-19 2023-11-09 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Sealing cassette for an injector of an internal combustion engine and injector arrangement for an internal combustion engine
KR101911670B1 (en) * 2018-06-25 2018-10-24 이수철 Method of making fuel injection nozzle with integral nozzle body
JP7366879B2 (en) * 2020-12-28 2023-10-23 株式会社クボタ diesel engine

Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58137865U (en) * 1982-03-12 1983-09-16 日産自動車株式会社 fuel injection nozzle
JPS5945276U (en) * 1982-09-20 1984-03-26 いすゞ自動車株式会社 Internal combustion engine fuel injection nozzle
JPS62169257U (en) * 1986-04-18 1987-10-27
JPH0640365U (en) * 1992-11-06 1994-05-27 いすゞ自動車株式会社 Fuel injection nozzle seal structure
JPH09222057A (en) * 1996-02-15 1997-08-26 Zexel Corp Carbon deposit preventing device for electromagnetic type fuel injection valve
JPH09310660A (en) * 1996-05-21 1997-12-02 Mitsubishi Electric Corp Electromagnetic fuel injection valve
JPH10153136A (en) * 1996-11-25 1998-06-09 Toyota Motor Corp Fuel supply control device
JPH10169526A (en) * 1996-12-05 1998-06-23 Nissan Motor Co Ltd Direct cylinder injection type spark ignition engine
JP2002089412A (en) * 2000-09-08 2002-03-27 Toyota Motor Corp Fitting structure of injector
JP2002317733A (en) * 2001-04-23 2002-10-31 Denso Corp Fuel injection valve
JP2003518584A (en) * 1999-12-24 2003-06-10 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング Compensation element
JP2003201936A (en) * 2001-12-28 2003-07-18 Honda Motor Co Ltd Installing structure for fuel injection valve
JP2004239126A (en) * 2003-02-05 2004-08-26 Nissan Motor Co Ltd Cylinder head of direct injection type spark ignition internal combustion engine and method for manufacturing the same
JP2004257291A (en) * 2003-02-25 2004-09-16 Komatsu Ltd Fuel injection nozzle gasket dropping-off prevention structure
JP2004360633A (en) * 2003-06-06 2004-12-24 Nissan Kohki Co Ltd Protective device for fuel-injection valve of lpg injection engine
JP2005520980A (en) * 2002-03-27 2005-07-14 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング Fuel injection valve

Patent Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58137865U (en) * 1982-03-12 1983-09-16 日産自動車株式会社 fuel injection nozzle
JPS5945276U (en) * 1982-09-20 1984-03-26 いすゞ自動車株式会社 Internal combustion engine fuel injection nozzle
JPS62169257U (en) * 1986-04-18 1987-10-27
JPH0640365U (en) * 1992-11-06 1994-05-27 いすゞ自動車株式会社 Fuel injection nozzle seal structure
JPH09222057A (en) * 1996-02-15 1997-08-26 Zexel Corp Carbon deposit preventing device for electromagnetic type fuel injection valve
JPH09310660A (en) * 1996-05-21 1997-12-02 Mitsubishi Electric Corp Electromagnetic fuel injection valve
JPH10153136A (en) * 1996-11-25 1998-06-09 Toyota Motor Corp Fuel supply control device
JPH10169526A (en) * 1996-12-05 1998-06-23 Nissan Motor Co Ltd Direct cylinder injection type spark ignition engine
JP2003518584A (en) * 1999-12-24 2003-06-10 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング Compensation element
JP2002089412A (en) * 2000-09-08 2002-03-27 Toyota Motor Corp Fitting structure of injector
JP2002317733A (en) * 2001-04-23 2002-10-31 Denso Corp Fuel injection valve
JP2003201936A (en) * 2001-12-28 2003-07-18 Honda Motor Co Ltd Installing structure for fuel injection valve
JP2005520980A (en) * 2002-03-27 2005-07-14 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング Fuel injection valve
JP2004239126A (en) * 2003-02-05 2004-08-26 Nissan Motor Co Ltd Cylinder head of direct injection type spark ignition internal combustion engine and method for manufacturing the same
JP2004257291A (en) * 2003-02-25 2004-09-16 Komatsu Ltd Fuel injection nozzle gasket dropping-off prevention structure
JP2004360633A (en) * 2003-06-06 2004-12-24 Nissan Kohki Co Ltd Protective device for fuel-injection valve of lpg injection engine

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103069150A (en) * 2010-06-18 2013-04-24 卡特彼勒发动机有限及两合公司 Injection nozzle system and method for operating an injection nozzle system
EP2628943A1 (en) * 2012-02-15 2013-08-21 Robert Bosch Gmbh Fuel injection valve
CN104136762A (en) * 2012-02-24 2014-11-05 Nok株式会社 Sealing structure
EP2818688A1 (en) * 2012-02-24 2014-12-31 Nok Corporation Sealing structure
EP2818688A4 (en) * 2012-02-24 2015-10-21 Nok Corp Sealing structure
EP2636880A1 (en) * 2012-03-06 2013-09-11 Delphi Automotive Systems Luxembourg SA Injector tip seal
EP2711535A1 (en) * 2012-09-20 2014-03-26 Caterpillar Motoren GmbH & Co. KG Sealed two piece injector
EP2775133A1 (en) * 2013-03-06 2014-09-10 Delphi Automotive Systems Luxembourg SA Protection mean for the nozzle of an injector
US20190063390A1 (en) * 2015-12-14 2019-02-28 Robert Bosch Gmbh Fuel injector
WO2019072683A1 (en) * 2017-10-12 2019-04-18 Continental Automotive Gmbh Fuel injection valve
US11549429B2 (en) 2018-01-12 2023-01-10 Transportation Ip Holdings, Llc Engine mixing structures
FR3101920A1 (en) * 2019-10-14 2021-04-16 Renault S.A.S. Gasoline direct injector nose protector with heat shield
WO2021074053A1 (en) * 2019-10-14 2021-04-22 Renault S.A.S Direct fuel injector nozzle protector with heat shield
US11725619B2 (en) 2021-02-23 2023-08-15 Transportation Ip Holdings, Llc Alignment system and associated method
US20230012000A1 (en) * 2021-07-07 2023-01-12 Transportation Ip Holdings, Llc Insert device for fuel injection
US11608803B2 (en) * 2021-07-07 2023-03-21 Transportation Ip Holdings, Llc Insert device for fuel injection
US11781469B2 (en) 2021-08-12 2023-10-10 Transportation Ip Holdings, Llc Insert device for fuel injection

Also Published As

Publication number Publication date
JP2007162678A (en) 2007-06-28

Similar Documents

Publication Publication Date Title
WO2007058103A1 (en) Fuel injection valve
US7728489B2 (en) Piezoelectric actuator with a sheath, for disposition in a piezoelectric injector
US9347411B2 (en) Decoupling element for a fuel injection device
US8607755B2 (en) Ignition device for a laser ignition of an internal combustion engine
US8528524B2 (en) Fuel injection valve for arrangement in a combustion chamber of an internal combustion engine
EP2860389B1 (en) Fuel injector assembly
JP2007537391A (en) Nozzle group and injection valve
US9488143B2 (en) Fuel injector
EP2141348B1 (en) Fluid injector assembly
JP4069913B2 (en) Joining member joining method and attachment stay joining method used in an accumulator fuel injection system
US20150345445A1 (en) fuel injection system including a fuel-guiding component, a fuel injector, and a connecting element
JP4163962B2 (en) Piezoelectric actuator module
US20090114192A1 (en) Injector for accumulator injector system
US10907595B2 (en) Protector and method for manufacturing protector
RU2715467C2 (en) Fuel atomizer
EP3396151B1 (en) Fuel injection valve
JP2016520765A (en) Fuel injector
WO2009101879A1 (en) Fuel injection valve device
JP2006200454A (en) Common rail
KR100878591B1 (en) An injector for a vehicle and the installation structure thereof
JP4788694B2 (en) Flow damper
US20040124276A1 (en) Fuel injection valve
JP2001329931A (en) Injector supporting structure for internal combustion engine
JP2003286913A (en) Liquefied fuel gas injection system
JP7435211B2 (en) engine structure

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06823193

Country of ref document: EP

Kind code of ref document: A1