【0001】
【発明の属する技術分野】
本発明は、筒内直接噴射式火花点火内燃機関のシリンダヘッドおよびその製造方法に関する。
【0002】
【従来の技術】
燃料噴射弁からシリンダの内部に燃料を直接に噴射する筒内直接噴射式内燃機関は、高出力・低燃費で排ガス特性の改善を実現できる等のメリットを有する。
【0003】
一方で、筒内直接噴射式内燃機関では、燃料噴射弁がシリンダの燃焼室から近い位置を占めるために燃料噴射弁の温度が上昇しやすく、燃料噴射弁の温度上昇を抑制するための手段を設けることが必要になる。
【0004】
従来の筒内直接噴射式火花点火内燃機関のシリンダヘッドとしては、シリンダヘッドに装着した燃料噴射弁の先端部の外周とシリンダヘッドとの間に熱伝導率の大きなキャップを介在させたものがある。当該キャップの存在によって、シリンダの燃焼室からキャップに伝わった熱の大部分はシリンダヘッドへ効率よく伝わる一方、キャップから燃料噴射弁へ伝わる熱の量が少なく抑えられ、結果として燃料噴射弁の温度上昇が抑制される(例えば、特許文献1参照。)。
【0005】
【特許文献1】
特開平10−252610号公報((0027)(0029)、図1)
【0006】
【発明が解決しようとする課題】
ところが、キャップとして熱伝導率の大きな材料を使用すると、燃焼中に、燃料噴射弁の噴孔の近傍に熱が伝わり易くなるために噴孔の温度が上昇し、噴孔での煤の生成が促進される可能性がある。また、キャップに異なる素材を使用することはキャップを挿入するために燃料噴射弁を取り付けるための孔の内径寸法を大きくすることが必要になり、孔を大きくするとシリンダヘッドの強度低下を招くばかりでなく、強度低下を補うためにシリンダヘッドの肉厚を大きくする必要性が生じてシリンダヘッドの重量および製造コストが増大する。
【0007】
そこで本発明は、燃料噴射弁近傍の冷却水通路の内壁の表面積を大きくとり、燃料噴射弁の近傍からの放熱作用を促進することにより、燃料噴射弁への熱の伝達と蓄熱とを抑制し、噴孔への煤の堆積を抑制することによって課題を解決した筒内直接噴射式火花点火内燃機関のシリンダヘッドおよびその製造方法を提供することを目的とする。
【0008】
【課題を解決するための手段】
本発明に係る筒内直接噴射式火花点火内燃機関のシリンダヘッドは、シリンダの燃焼室で発生した熱が燃料噴射弁へ伝わるのを抑制するために、シリンダの燃焼室で発生した熱が冷却水通路を通る冷却水へ伝わり易いようにする目的で、燃料噴射弁の近傍の冷却水通路の内壁の表面積を大きくしたものである。
【0009】
斯かる筒内直接噴射式火花点火内燃機関のシリンダヘッドでは、燃料噴射弁の近傍の冷却水通路の内壁の表面積が大きいので、シリンダの燃焼室で発生した熱の多くが速やかに冷却水に伝わり、燃料噴射弁に熱が伝わりにくくなるとともに、燃料噴射弁からの放熱が促進されて、その温度上昇が抑制される。
【0010】
本発明に係る筒内直接噴射式火花点火内燃機関のシリンダヘッドの製造方法は、シリンダヘッドの内部に冷却水通路を形成するための砂中子に、冷却フィンとしてのリブに対応する凹部を形成してからシリンダヘッドを鋳造するようにしたものである。
【0011】
斯かる筒内直接噴射式火花点火内燃機関のシリンダヘッドの製造方法では、鋳造により、シリンダヘッドの冷却水通路の内壁にリブが形成される
特に請求項7に係る筒内直接噴射式火花点火内燃機関のシリンダヘッドの製造方法は、砂中子に、ボス部に対応する形状を形成したのちに、リブに対応する凹部を加工工具を用いて加工してからシリンダヘッドを鋳造するようにしたものである。
【0012】
斯かる筒内直接噴射式火花点火内燃機関のシリンダヘッドの製造方法では、加工工具を用いるので、砂中子の凹部の加工が容易に行なえる。
【0013】
【発明の効果】
本発明に係る筒内直接噴射式火花点火内燃機関のシリンダヘッドによれば、燃料噴射弁の近傍の冷却水通路の内壁の表面積を大きくしたので、燃料噴射弁の近傍のシリンダヘッドの放熱作用が高まって燃料噴射弁の温度上昇が抑制され、燃料噴射弁における噴孔内の煤の堆積を抑制することができる。
【0014】
本発明に係る筒内直接噴射式火花点火内燃機関のシリンダヘッドの製造方法によれば、シリンダヘッドを製造する際に、冷却水通路用の砂中子に、リブと対応する凹部を形成したのちにシリンダヘッドを鋳造するので、冷却水通路内壁の表面積を大きくするためのリブの形成が容易である。
【0015】
特に請求項7に係る筒内直接噴射式火花点火内燃機関のシリンダヘッドの製造方法によれば、シリンダヘッドを製造する際に、冷却水通路用の砂中子にボス部に対応する形状を形成して焼成した後に、加工工具により凹部を加工するので、砂中子の加工を容易にし、加工費を増加することなく容易にリブを形成することができる。
【0016】
【発明の実施の形態】
以下、本発明による筒内直接噴射式火花点火内燃機関のシリンダヘッドおよびその製造方法の実施の形態を、実施の形態1〜3として説明する。
【0017】
(a)実施の形態1
まず、実施の形態1を図1に基づいて説明する。図1の図(a)は、本発明に係る筒内直接噴射式火花点火内燃機関のシリンダヘッド1の要部を、該シリンダヘッド1の下面と平行な面に沿った断面において示した平面断面図であり、図(b)は、そのA−A線に沿った断面図である。
【0018】
図1に示すように、シリンダヘッド1は、燃焼室上壁部2に覆われたシリンダの略中心に燃料噴射弁3を備え、当該燃料噴射弁3と隣接した位置に図示しない点火プラグを備えて構成されている。燃焼室上壁部2の下方には燃焼室4が形成され、当該燃焼室4に燃料噴射弁3の先端が臨んでおり、燃料噴射弁3から筒内の燃焼室4に燃料が直接に噴射される。燃焼室上壁部2に接続した形でもって、燃焼室4に開口する吸気ポート5と排気ポート6とが夫々一対づつ形成されており、これらを囲むように、シリンダヘッド1内部に、冷却水が通流する冷却水通路7が形成されている。この冷却水通路7の形成によって、シリンダ中心部には、冷却水通路7によって全周が囲まれた円筒状のボス部2aが構成されており、このボス部2a内に上記燃料噴射弁3が取り付けられている。このように冷却水通路7を有するシリンダヘッド1は、砂中子を用いた鋳造法によって、例えばアルミニウム合金により一体に鋳造されている。このシリンダヘッド1は、ヘッドボルト8を介して図示しないシリンダブロックに結合されている。
【0019】
ここで本発明では、燃焼室4で発生した熱が直接に、あるいはシリンダヘッド1を介して燃料噴射弁3へ伝わるのを抑制し、かつ当該熱を冷却水通路7を流れる冷却水に速やかに伝達させるために、燃料噴射弁3の近傍の冷却水通路7の内壁の表面積を大きくする目的で、燃料噴射弁3を囲むボス部2aに、放熱フィンの役割を果たす平板状のリブ2bが複数形成されている。リブ2bは円筒状のボス部2aの外周面に放射状に、ボス部2aと一体に形成されている。
【0020】
このような構成であることから、図1に矢印で示すように気筒列方向に沿って冷却水が流れると、シリンダヘッド1における燃料噴射弁3の近傍の熱はリブ2bを介して速やかに冷却水に伝わり、ボス部2a周辺の温度上昇が抑制される。また、燃料噴射弁3の熱も、ボス部2aおよびリブ2bを介して冷却水へ放出されることになる。このため、燃料噴射弁3の温度上昇が抑制され、燃料噴射弁3の先端に位置する噴孔内の煤の堆積も抑制される。
【0021】
上記のように冷却水通路7の内壁にリブ2bを形成することにより、内燃機関の大幅な重量増加を招くことなく、効率よく燃料噴射弁3の冷却を行なうことが可能となる。
【0022】
シリンダヘッド1を製造する際には、冷却水通路7となる部分に砂中子を設けて鋳造することにより冷却水通路7を形成するので、砂中子におけるボス部2aに対応した部分の内周面に、上記のリブ2bに対応する凹部を形成しておくことにより、鋳造によりリブ2bを同時に形成することができる。このように、砂中子に、リブ2bに対応する凹部を形成するだけでリブ2bを一体に形成することができるので、リブ2bの形成が容易である。
【0023】
砂中子におけるボス部2aが形成される部分の内周面に、リブ2bに対応する凹部を形成する際には、ボス部2aを含む形状に砂中子を焼成した後に、図4(a)に示す加工工具9を用いて砂中子を削ることによって凹部の加工を行なう。この加工工具9は、図1に示すボス部2aの形状に対応する軸部9aと、リブ2bの形状に対応する刃部9bとで構成される。砂中子を焼成した後に加工工具9を用いて凹部を加工してリブ形状を確保することにより、砂中子の加工を容易にし、加工費を増加することなく容易にリブ2bを形成することができる。
(b)実施の形態2
次に、実施の形態2を図2に示す。この実施の形態は、実施の形態1の一部を変更したものなので、実施の形態1と同一部分の説明を省略し、異なる部分のみを説明する。
【0024】
図2に示すように、本実施の形態では、平板状のリブ2cが複数形成されている。リブ2cは、冷却水の流れる方向と略平行、即ち多気筒内燃機関では気筒列方向と平行に、ボス部2aを挟む両側に3枚ずつの合計6枚が形成されている。これは、実施の形態1に対して、吸気ポート5側と排気ポート6側のリブを無くすると共にリブの方向を冷却水の流れる方向に沿わせ、冷却水の流れを円滑にしたものである。
【0025】
このような構成であることから、図2(a)に矢印で示すように気筒列方向に沿って図の下方から上方へ冷却水が流れる際に、冷却水通路7内の冷却水流れの乱れが抑制され、リブ2cによる流路抵抗が少なくなる。そのため、リブ2cの部分での流速が比較的大きくなり、リブ2cから冷却水への単位時間あたりの熱の移動量も多く、燃料噴射弁3の冷却効率がより高い。従って、リブ2cを設けたことによる放熱作用により、燃料噴射弁3における噴孔内の煤の堆積が、一段と抑制されることになる。
【0026】
実施の形態2においても、実施の形態1と同様に、砂中子におけるボス部が形成される部分の内周面に、リブ2cに対応する凹部を形成しておくことにより、鋳造によりリブ2cを形成することができる。このように、砂中子に、リブ2cと対応する凹部を形成するだけでリブ2cを形成することができるので、リブ2cの形成が容易である。また、当該凹部を形成する際には、砂中子を焼成した後に、図4(b)に示す加工工具10を用いて砂中子を削ることによって凹部の加工を行なう。この加工工具10は、図2に示すボス部2aの形状に対応する軸部10aと、リブ2cの形状に対応する刃部10bとで構成される。加工工具10を用いるため、砂中子の加工が容易となり、加工費を増加することなく、容易にリブ2cを形成することができる。
【0027】
その他の構成・作用は実施の形態1と同じなので説明を省略する。
【0028】
(c)実施の形態3
次に、実施の形態3を図3に示す。この実施の形態も、実施の形態1の一部を変更したものなので、実施の形態1と同一部分の説明を省略し、異なる部分のみを説明する。
【0029】
図3に示すように、本実施の形態では、連続した一枚のリブ2dがボス部2aの外周面に螺旋状に巻いたような状態に形成されている。つまり、リブ2dは、ボス部2aの軸心に対して略直角に突出し、かつ90°に近い比較的大きなねじれ角でもって螺旋状に巻かれている。そのため、リブ2dは冷却水の流れる方向と実質的に平行である。また、リブ2dはボス部2aと一体に形成されている。
【0030】
このような構成であることから、図3(a)に矢印で示すように、気筒列方向に沿って図の下方から上方へ冷却水が流れる際に、リブ2dによる流路抵抗が少なく、実施の形態2の場合と同様に燃料噴射弁3の冷却効率が高い。また、燃料噴射弁3を囲む円に沿ってリブ2dを巻いて形成していることから、非常に効率よくかつ偏りの無い冷却が可能である。そして、噴孔近傍に偏りなくリブが形成できることから、放熱作用により燃料噴射弁3における噴孔内の煤の堆積を抑制することができる。
【0031】
実施の形態3においても、実施の形態1,2と同様に、砂中子におけるボス部が形成される部分の内周面に、リブ2dに対応する凹部を形成しておくことにより、鋳造時に同時にリブ2dを形成することができる。このように、砂中子に、リブ2dと対応する凹部を形成するだけでリブ2dを形成することができるので、リブ2dの形成が容易である。また、当該凹部を形成する際には、砂中子を焼成した後に、図4(c)に示す加工工具11を用いて砂中子を削ることによって凹部の加工を行なう。この加工工具11は、図3に示すボス部2aの形状に対応する軸部11aと、リブ2dの形状に対応する螺旋状の刃部11bとで構成される。このような加工工具11を用いるため、砂中子の加工が容易となり、加工費を増加することなく、容易にリブ2dを形成することができる。
【0032】
その他の構成・作用は実施の形態1と同じなので説明を省略する。
【0033】
なお、実施の形態1〜3で示したリブだけでなく、例えばリング状の円盤をボス部の長さ方向に沿って略等間隔に複数設ける構成なども可能である。また、ボス部の外周面にリブを設けた場合のみを示したが、ボス部以外の部分にリブを設けるようにしてもよい。
【図面の簡単な説明】
【図1】本発明による筒内直接噴射式火花点火内燃機関のシリンダヘッドの実施の形態1に係り、(a)は平面断面図、(b)はそのA−A線断面図。
【図2】本発明による筒内直接噴射式火花点火内燃機関のシリンダヘッドの実施の形態2に係り、(a)は平面断面図、(b)はそのB−B線断面図。
【図3】本発明による筒内直接噴射式火花点火内燃機関のシリンダヘッドの実施の形態3に係り、(a)は平面断面図、(b)はそのC−C線断面図。
【図4】本発明による筒内直接噴射式火花点火内燃機関のシリンダヘッドの製造方法に用いる加工工具に係り、(a)は実施の形態1と対応する加工工具の斜視図、(b)は実施の形態2と対応する加工工具の斜視図、(c)は実施の形態3と対応する加工工具の斜視図。
【符号の説明】
1…シリンダヘッド
2…燃焼室上壁部
2a…ボス部
2b〜2d…リブ
3…燃料噴射弁
4…燃焼室
7…冷却水通路
9〜11…加工工具[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a cylinder head of a direct injection type spark ignition internal combustion engine and a method of manufacturing the same.
[0002]
[Prior art]
An in-cylinder direct injection internal combustion engine that directly injects fuel from a fuel injection valve into a cylinder has advantages such as improvement in exhaust gas characteristics with high output and low fuel consumption.
[0003]
On the other hand, in a direct injection type internal combustion engine, the temperature of the fuel injection valve tends to rise because the fuel injection valve occupies a position close to the combustion chamber of the cylinder, and a means for suppressing the temperature rise of the fuel injection valve is provided. It is necessary to provide.
[0004]
As a cylinder head of a conventional direct injection type spark ignition internal combustion engine, there is a cylinder head in which a cap having a large thermal conductivity is interposed between an outer periphery of a tip portion of a fuel injection valve mounted on the cylinder head and the cylinder head. . Due to the presence of the cap, most of the heat transferred from the combustion chamber of the cylinder to the cap is efficiently transferred to the cylinder head, while the amount of heat transferred from the cap to the fuel injection valve is reduced. The rise is suppressed (for example, refer to Patent Document 1).
[0005]
[Patent Document 1]
JP-A-10-252610 ((0027) (0029), FIG. 1)
[0006]
[Problems to be solved by the invention]
However, if a material with high thermal conductivity is used as the cap, the temperature of the injection hole rises because heat is easily transmitted to the vicinity of the injection hole of the fuel injection valve during combustion, and soot generation at the injection hole is reduced. May be promoted. Also, using a different material for the cap requires increasing the inner diameter of the hole for mounting the fuel injection valve to insert the cap, and increasing the size of the hole only causes a decrease in the strength of the cylinder head. In addition, it is necessary to increase the thickness of the cylinder head to compensate for the decrease in strength, and the weight and manufacturing cost of the cylinder head increase.
[0007]
Therefore, the present invention suppresses the transfer of heat and heat storage to the fuel injection valve by increasing the surface area of the inner wall of the cooling water passage near the fuel injection valve and promoting the heat radiation action from the vicinity of the fuel injection valve. It is an object of the present invention to provide a cylinder head of a direct injection type spark ignition internal combustion engine which solves the problem by suppressing the accumulation of soot in an injection hole, and a method of manufacturing the same.
[0008]
[Means for Solving the Problems]
The cylinder head of the direct injection type spark ignition internal combustion engine according to the present invention is configured such that the heat generated in the combustion chamber of the cylinder is cooled by the cooling water in order to suppress the heat generated in the combustion chamber of the cylinder from being transmitted to the fuel injection valve. The surface area of the inner wall of the cooling water passage near the fuel injection valve is increased for the purpose of facilitating transmission to the cooling water passing through the passage.
[0009]
In the cylinder head of such a direct injection type spark ignition internal combustion engine, since the surface area of the inner wall of the cooling water passage near the fuel injection valve is large, much of the heat generated in the combustion chamber of the cylinder is quickly transmitted to the cooling water. In addition, heat is less likely to be transmitted to the fuel injection valve, and heat radiation from the fuel injection valve is promoted, and the temperature rise is suppressed.
[0010]
The method for manufacturing a cylinder head of a direct injection type spark ignition internal combustion engine according to the present invention comprises forming a concave portion corresponding to a rib as a cooling fin in a sand core for forming a cooling water passage inside the cylinder head. After that, the cylinder head is cast.
[0011]
In such a method of manufacturing a cylinder head of a direct injection type spark ignition internal combustion engine, a rib is formed on an inner wall of a cooling water passage of the cylinder head by casting. The method of manufacturing a cylinder head of an engine is such that after forming a shape corresponding to a boss portion on a sand core, a concave portion corresponding to a rib is processed using a processing tool, and then the cylinder head is cast. It is.
[0012]
In such a method of manufacturing a cylinder head of a direct injection type spark ignition internal combustion engine, a machining tool is used, so that a concave portion of a sand core can be easily machined.
[0013]
【The invention's effect】
According to the cylinder head of the direct injection type spark ignition internal combustion engine according to the present invention, since the surface area of the inner wall of the cooling water passage near the fuel injection valve is increased, the heat radiation effect of the cylinder head near the fuel injection valve is reduced. As a result, the temperature rise of the fuel injection valve is suppressed, and the accumulation of soot in the injection hole of the fuel injection valve can be suppressed.
[0014]
According to the method for manufacturing a cylinder head of a direct injection type spark ignition internal combustion engine according to the present invention, when manufacturing a cylinder head, after forming a recess corresponding to a rib in a sand core for a cooling water passage. Since the cylinder head is cast, the ribs for increasing the surface area of the inner wall of the cooling water passage are easily formed.
[0015]
In particular, according to the method for manufacturing a cylinder head of a direct injection type spark ignition internal combustion engine according to claim 7, when manufacturing the cylinder head, a shape corresponding to the boss portion is formed on the sand core for the cooling water passage. After firing and firing, the concave portion is processed by the processing tool, so that the processing of the sand core is facilitated, and the rib can be easily formed without increasing the processing cost.
[0016]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of a cylinder head of a direct injection type spark ignition internal combustion engine and a method of manufacturing the same according to the present invention will be described as first to third embodiments.
[0017]
(A) Embodiment 1
First, a first embodiment will be described with reference to FIG. FIG. 1A is a cross-sectional plan view showing a main part of a cylinder head 1 of a direct injection type spark ignition internal combustion engine according to the present invention in a cross section along a plane parallel to a lower surface of the cylinder head 1. FIG. 4B is a cross-sectional view along the line AA.
[0018]
As shown in FIG. 1, the cylinder head 1 includes a fuel injection valve 3 substantially at the center of a cylinder covered by a combustion chamber upper wall 2, and a spark plug (not shown) at a position adjacent to the fuel injection valve 3. It is configured. A combustion chamber 4 is formed below the upper wall portion 2 of the combustion chamber, and the tip of the fuel injection valve 3 faces the combustion chamber 4. Fuel is directly injected from the fuel injection valve 3 into the combustion chamber 4 in the cylinder. Is done. A pair of an intake port 5 and an exhaust port 6 each opening to the combustion chamber 4 are formed in a form connected to the upper wall portion 2 of the combustion chamber, and cooling water is provided inside the cylinder head 1 so as to surround these. A cooling water passage 7 through which the cooling water flows. Due to the formation of the cooling water passage 7, a cylindrical boss portion 2a whose entire periphery is surrounded by the cooling water passage 7 is formed at the center of the cylinder, and the fuel injection valve 3 is provided in the boss portion 2a. Installed. As described above, the cylinder head 1 having the cooling water passage 7 is integrally cast by, for example, an aluminum alloy by a casting method using a sand core. The cylinder head 1 is connected to a cylinder block (not shown) via a head bolt 8.
[0019]
Here, in the present invention, the heat generated in the combustion chamber 4 is suppressed from being transmitted directly or through the cylinder head 1 to the fuel injection valve 3, and the heat is quickly transmitted to the cooling water flowing through the cooling water passage 7. In order to increase the surface area of the inner wall of the cooling water passage 7 near the fuel injection valve 3 for transmission, the boss 2a surrounding the fuel injection valve 3 has a plurality of flat ribs 2b serving as radiation fins. Is formed. The rib 2b is formed radially on the outer peripheral surface of the cylindrical boss 2a and integrally with the boss 2a.
[0020]
With such a configuration, when cooling water flows along the cylinder row direction as indicated by the arrow in FIG. 1, heat near the fuel injection valve 3 in the cylinder head 1 is rapidly cooled via the rib 2b. As a result, the temperature rise around the boss 2a is suppressed. Further, the heat of the fuel injection valve 3 is also released to the cooling water via the boss 2a and the rib 2b. Therefore, the temperature rise of the fuel injection valve 3 is suppressed, and the accumulation of soot in the injection hole located at the tip of the fuel injection valve 3 is also suppressed.
[0021]
By forming the ribs 2b on the inner wall of the cooling water passage 7 as described above, it is possible to efficiently cool the fuel injection valve 3 without causing a significant increase in the weight of the internal combustion engine.
[0022]
When manufacturing the cylinder head 1, the cooling water passage 7 is formed by providing and casting a sand core in a portion to be the cooling water passage 7, so that the sand core corresponds to the boss portion 2 a. By forming a concave portion corresponding to the rib 2b on the peripheral surface, the rib 2b can be simultaneously formed by casting. As described above, since the ribs 2b can be integrally formed only by forming the concave portions corresponding to the ribs 2b in the sand core, the formation of the ribs 2b is easy.
[0023]
When a concave portion corresponding to the rib 2b is formed on the inner peripheral surface of the portion of the sand core where the boss portion 2a is formed, the sand core is fired into a shape including the boss portion 2a, and then, as shown in FIG. The concave portion is machined by shaving the sand core using the machining tool 9 shown in FIG. The machining tool 9 includes a shaft 9a corresponding to the shape of the boss 2a shown in FIG. 1 and a blade 9b corresponding to the shape of the rib 2b. After firing the sand core, the concave portion is processed by using the processing tool 9 to secure the rib shape, thereby facilitating the processing of the sand core and easily forming the rib 2b without increasing the processing cost. Can be.
(B) Embodiment 2
Next, a second embodiment is shown in FIG. In this embodiment, a part of the first embodiment is modified. Therefore, description of the same parts as in the first embodiment will be omitted, and only different parts will be described.
[0024]
As shown in FIG. 2, in the present embodiment, a plurality of flat ribs 2c are formed. A total of six ribs 2c are formed on each side of the boss portion 2a so as to be substantially parallel to the direction in which the cooling water flows, that is, in parallel with the cylinder row direction in a multi-cylinder internal combustion engine. This is different from the first embodiment in that the ribs on the intake port 5 side and the exhaust port 6 side are eliminated, and the ribs are directed along the direction in which the cooling water flows, so that the flow of the cooling water is smooth. .
[0025]
Due to such a configuration, when the cooling water flows from the bottom to the top of the drawing along the cylinder row direction as shown by the arrow in FIG. 2A, the cooling water flow in the cooling water passage 7 is disturbed. Is suppressed, and the flow path resistance due to the rib 2c is reduced. Therefore, the flow velocity in the portion of the rib 2c is relatively large, the amount of heat transfer from the rib 2c to the cooling water per unit time is large, and the cooling efficiency of the fuel injection valve 3 is higher. Therefore, the heat dissipating effect provided by the ribs 2c further suppresses the accumulation of soot in the injection holes of the fuel injection valve 3.
[0026]
In the second embodiment, similarly to the first embodiment, a concave portion corresponding to the rib 2c is formed on the inner peripheral surface of the portion of the sand core where the boss is formed, so that the rib 2c is formed by casting. Can be formed. As described above, since the rib 2c can be formed only by forming the concave portion corresponding to the rib 2c in the sand core, the formation of the rib 2c is easy. When forming the concave portion, after the sand core is fired, the concave portion is processed by shaving the sand core using the processing tool 10 shown in FIG. 4B. The machining tool 10 includes a shaft 10a corresponding to the shape of the boss 2a shown in FIG. 2 and a blade 10b corresponding to the shape of the rib 2c. Since the processing tool 10 is used, the processing of the sand core is facilitated, and the rib 2c can be easily formed without increasing the processing cost.
[0027]
The other configurations and operations are the same as those in the first embodiment, and a description thereof will be omitted.
[0028]
(C) Embodiment 3
Next, a third embodiment is shown in FIG. Since this embodiment is also a part of the first embodiment, the description of the same parts as those of the first embodiment will be omitted, and only different parts will be described.
[0029]
As shown in FIG. 3, in the present embodiment, one continuous rib 2d is formed in a state of being spirally wound around the outer peripheral surface of the boss 2a. That is, the rib 2d projects substantially perpendicularly to the axis of the boss 2a, and is spirally wound with a relatively large twist angle close to 90 °. Therefore, the rib 2d is substantially parallel to the direction in which the cooling water flows. The rib 2d is formed integrally with the boss 2a.
[0030]
With such a configuration, as shown by the arrow in FIG. 3A, when the cooling water flows from the bottom to the top of the figure along the cylinder row direction, the flow path resistance due to the rib 2d is small, and As in the case of the second embodiment, the cooling efficiency of the fuel injection valve 3 is high. Further, since the ribs 2d are formed by winding along the circle surrounding the fuel injection valve 3, extremely efficient and unbiased cooling is possible. Since the ribs can be formed evenly in the vicinity of the injection hole, the accumulation of soot in the injection hole in the fuel injection valve 3 can be suppressed by the heat radiation effect.
[0031]
Also in the third embodiment, similarly to the first and second embodiments, a concave portion corresponding to the rib 2d is formed on the inner peripheral surface of the portion of the sand core where the boss portion is formed, so that it can be cast at the time of casting. At the same time, the rib 2d can be formed. As described above, since the rib 2d can be formed only by forming the concave portion corresponding to the rib 2d in the sand core, the formation of the rib 2d is easy. When forming the concave portion, after the sand core is fired, the concave portion is processed by shaving the sand core using the processing tool 11 shown in FIG. The machining tool 11 includes a shaft portion 11a corresponding to the shape of the boss portion 2a shown in FIG. 3 and a spiral blade portion 11b corresponding to the shape of the rib 2d. The use of such a processing tool 11 facilitates the processing of the sand core, and the rib 2d can be easily formed without increasing the processing cost.
[0032]
The other configurations and operations are the same as those in the first embodiment, and a description thereof will be omitted.
[0033]
In addition to the ribs described in the first to third embodiments, for example, a configuration in which a plurality of ring-shaped disks are provided at substantially equal intervals along the length direction of the boss portion is also possible. Although only the case where the rib is provided on the outer peripheral surface of the boss is shown, the rib may be provided on a portion other than the boss.
[Brief description of the drawings]
FIG. 1 is a plan sectional view of a cylinder head of a direct injection type spark ignition internal combustion engine according to a first embodiment of the present invention, and FIG.
FIGS. 2A and 2B are sectional views of a cylinder head of a direct injection type spark ignition internal combustion engine according to a second embodiment of the present invention, in which FIG.
3A and 3B relate to a cylinder head of a direct injection type spark ignition internal combustion engine according to a third embodiment of the present invention, in which FIG.
4A and 4B relate to a working tool used in a method for manufacturing a cylinder head of a direct injection type spark ignition internal combustion engine according to the present invention, wherein FIG. 4A is a perspective view of a working tool corresponding to the first embodiment, and FIG. FIG. 9 is a perspective view of a working tool corresponding to the second embodiment, and FIG. 10C is a perspective view of a working tool corresponding to the third embodiment.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Cylinder head 2 ... Combustion chamber upper wall 2a ... Boss 2b-2d ... Rib 3 ... Fuel injection valve 4 ... Combustion chamber 7 ... Cooling water passage 9-11 ... Working tool