WO2007056988A2 - Solarkollektor - Google Patents

Solarkollektor Download PDF

Info

Publication number
WO2007056988A2
WO2007056988A2 PCT/DE2006/001996 DE2006001996W WO2007056988A2 WO 2007056988 A2 WO2007056988 A2 WO 2007056988A2 DE 2006001996 W DE2006001996 W DE 2006001996W WO 2007056988 A2 WO2007056988 A2 WO 2007056988A2
Authority
WO
WIPO (PCT)
Prior art keywords
cooling
water
evaporation
solar
primary circuit
Prior art date
Application number
PCT/DE2006/001996
Other languages
English (en)
French (fr)
Other versions
WO2007056988A3 (de
Inventor
Jürgen UEHLIN
Original Assignee
Durlum-Leuchten Gmbh Lichttechnische Spezialfabrik
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Durlum-Leuchten Gmbh Lichttechnische Spezialfabrik filed Critical Durlum-Leuchten Gmbh Lichttechnische Spezialfabrik
Priority to DE112006003697T priority Critical patent/DE112006003697A5/de
Publication of WO2007056988A2 publication Critical patent/WO2007056988A2/de
Publication of WO2007056988A3 publication Critical patent/WO2007056988A3/de

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/054Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means
    • H01L31/0547Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means comprising light concentrating means of the reflecting type, e.g. parabolic mirrors, concentrators using total internal reflection
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/052Cooling means directly associated or integrated with the PV cell, e.g. integrated Peltier elements for active cooling or heat sinks directly associated with the PV cells
    • H01L31/0521Cooling means directly associated or integrated with the PV cell, e.g. integrated Peltier elements for active cooling or heat sinks directly associated with the PV cells using a gaseous or a liquid coolant, e.g. air flow ventilation, water circulation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S40/00Safety or protection arrangements of solar heat collectors; Preventing malfunction of solar heat collectors
    • F24S40/50Preventing overheating or overpressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D5/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, using the cooling effect of natural or forced evaporation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/52PV systems with concentrators

Definitions

  • the present invention relates to a solar collector consisting essentially of solar cells mounted on coolable carriers.
  • Such photovoltaic modules serve the direct conversion of solar radiation.
  • the spectrum of electromagnetic radiation radiated by the sun can only be used to a small extent because the sensitivity of the solar cells is only given in the range of about 350 to 900 nm.
  • the energy of the UV radiation lying below 350nm and the infrared radiation lying above 900nm only causes the warming of the cells. At temperatures around -20 0 C their efficiency is highest and from 80 ° C so low that the power production is no longer worthwhile. At even higher temperatures, the cells can be destroyed and these sizes are highly dependent on the type of solar cell.
  • the heat is either attempted to be dissipated via large heat sinks or to connect the solar cells or their carrier to a heat sink through which a coolant flows. It is also known to allow the solar cells to flow around a cooling medium in order to improve the heat transfer, where a variety of problems with regard to corrosion and short circuit resistance occur and for the operation of the coolant circulation pump, a not inconsiderable part of the electrical energy produced by the cells must be used.
  • the object of the invention is to show a cooling method which is simple and inexpensive to produce and improves the efficiency of photovoltaic modules equipped therewith.
  • the medium to be evaporated is water, preferably in the form of rainwater and / or tap water. This can evaporative substances, such as surfactants are added.
  • the water supply preferably takes place via the capillary action of the porous materials immersed in the liquid which is stored in a gutter, tub or similar collecting vessel, which is preferably arranged below or / and above the evaporation devices. Additionally or alternatively, the evaporation devices can be sprayed with water, which is supplied to them by a pump or from the pipeline network with pressure.
  • the evaporation surface of highly porous material having a large surface area can be formed.
  • Particularly suitable are felts, nonwovens, fiber mats, foams of organic and / or inorganic substances, preferably metal foams, baked pottery, sintered elements, ceramic plates and the like.
  • a heat exchanger is used on the ridge side, this can be used as a heat source for a heat pump, with the resulting condensate being able to be returned to the evaporation circuit of the photovoltaic module. Since photovoltaic solar cells can only convert radiation in the range between 350nm and 900nm into electricity, it is useful to use optically effective filters between the reflector and solar cells which filter out the non-photovoltaic effective radiation fraction and thus reduce the heat load to about 50%.
  • Another method to keep unwanted heat radiation from the solar cells is the spectral filtering of the incident radiation by means of a transparent coolant that wets or lavishes the cells at least in the irradiated area, not converts photovoltaically usable radiation into heat and transported in a heat exchanger which is at least partially cooled by evaporative cooling. If the cooling medium is neither water nor water-like, for example monopropylene glycol or tripropylene glycol, this must be conducted in a closed container or circuit. If water is used as a filter and heat exchanger liquid, it can be fed to open evaporative heat load.
  • FIG. 2 shows a cross section through a solar collector with concentrators and a transparent protective screen
  • FIG. 3 shows a cross section through a solar collector with concentrators and a spectral filter
  • thermotropic protective disk and water tank shows a cross section through a solar collector with thermotropic protective disk and water tank.
  • FIG. 1 solar collector with centrally located solar cells 2 and side concentrators 1 the flat surfaces but also arched to the solar cells, advantageously curved concave parabolic, is preferably cooled with evaporating water.
  • the back of the solar cell 2 and the solar cell carrier is equipped with a porous evaporation carrier 3. If the connection of the concentrators with the solar cell carrier hinged, the inclination angle can be changed. This can be done continuously or discontinuously.
  • FIG. 2 shows how a channel 5 formed by the concentrators 1 and a transparent protective pane 4 is formed, which can be used as a container for a cooling medium or a circulating heat exchanger.
  • the solar cells can be arranged on all sides um réellebar but also only partially wettable.
  • the cover 6 shown in Fig. 3 may be equipped with spectral filter characteristics. Preferably, these are such that they have additional protective functions by thermotropic behavior by reducing the light transmission at high temperature load which lead to a deterioration of the efficiency or even the destruction of the solar cells or their embedding.
  • Fig. 3 shows how a channel 5 formed by the concentrators 1 and a transparent protective pane 4 is formed, which can be used as a container for a cooling medium or a circulating heat exchanger.
  • the solar cells can be arranged on all sides um réellebar but also only partially wettable.
  • the cover 6 shown in Fig. 3 may be equipped with spectral filter characteristics. Preferably, these are such that they have additional protective
  • a water tank which is connected to a supply line, but also filled by rainwater, are arranged so that the evaporation aids in the form of felt, fleece, foams , Textiles, fiberboard, etc., by capillary action automatically with water.

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Photovoltaic Devices (AREA)

Abstract

Photovoltaikmodul, das so gestaltet ist, daß es Sonnenlicht konzentriert und die Solarzellen kühlt.

Description

(Solarkollektor)
Die vorliegende Erfindung betrifft einen Solarkollektor der im Wesentlichen aus Solarzellen besteht , die auf kühlbaren Trägern angebracht sind . Solche Photovoltaikmodule dienen der direkten Umwandlung von solarer Strahlung . Das von der Sonne abgestrahlte Spektrum elektromagnetischer Strahlung kann nur zu einem geringen Teil genutzt werden weil die Empfindlichkeit der Solarzellen nur im Bereich von etwa 350 - 900nm gegeben ist . Die Energie der unter 350nm liegenden UV- Strahlung und der über 900nm liegenden Infrarotstrahlung bewirkt lediglich die Erwärmung der Zellen . Bei Temperaturen um -200C ist deren Wirkungsgrad am höchsten und ab 80°C so nieder daß sich die Stromproduktion nicht mehr lohnt . Bei noch höheren Temperaturen können die Zellen zerstört werden wobei diese Größen stark vom jeweiligen Solarzellentyp abhängig sind.
Dieses Problem verschärft sich drastisch wenn die Solarzellen mit konzentriertem Licht betrieben werden . Bei einem Konzentrationsfaktor von 10 reichen an einem klaren Sommertag schon wenige Minuten um zerstörend wirkende Temperatur zu erreichen. Die Zellen müssen gekühlt werden.
Nach dem Stand der Technik wird versucht die Wärme entweder über großflächige Kühlkörper abzuleiten oder die Solarzellen bzw. ihren Träger mit einem Kühlkörper zu verbinden der von einem Kühlmittel durchströmt wird . Es ist auch bekannt die Solarzellen von einem Kühlmedium umströmen zulassen um die Wärmeübertragung zu verbessern wobei vielfältige Probleme bezüglich Korrosions- und Kurzschlußfestigkeit auftreten und für den Betrieb der Kühlmittelumwälzpumpe ein nicht unerheblicher Teil der von den Zellen produzierten elektrischen Energie verwendet werden muss.
Aufgabe der Erfindung ist es ein Kühlverfahren aufzuzeigen das einfach und preiswert herstellbar ist und den Wirkungsgrad damit ausgerüsteter Photovoltaikmodule verbessert .
Die Aufgabe wird erfindungsgemäß durch den Anspruch 1 gelöst . Weitere ausgestaltende Merkmale sind in den Ansprüchen 2 und 3 und den Unteransprüchen beschrieben . Durch die vorliegende Erfindung ist die effektive Kühlung von Solarzellen durch offene Verdunstung einfach durchführbar . Der Wärmeentzug durch die offene Verdunstung ist um ein mehrfaches größer als durch Konvektion oder Strahlung . Wird die Reflektorfläche vergrößert um den Konzentrationsfaktor zu erhöhen wird auch gleichzeitig die nutzbare Kühlfläche vergrößert .
Da die sensitive Oberfläche der Solarzellen bzw. die reflektierende Seite der Konzen- tratoren zur Sonne ausgerichtet sind , kann ihre Rückseite , die im Schatten liegt , als Verdunstungsfläche oder Träger einer Verdunstungseinrichtung genutzt werden . Das zu verdunstende Medium ist Wasser , vorzugsweise in Form von Regenwasser oder/und Leitungswasser . Diesem können verdunstungsgegünstigende Substanzen , beispielsweise Tenside beigemischt werden . Die Wasserzufuhr erfolgt bevorzugt über die Kapillarwirkung der porösen Materialien die dazu in die Flüssigkeit eintauchen die in einer Rinne , Wanne oder ähnlichem Sammelgefäß gespeichert ist , das bevorzugt unterhalb oder/und oberhalb der Verdunstungseinrichtungen angeordnet ist . Zusätzlich oder alternativ können die Verdunstungseinrichtungen mit Wasser besprüht werden , das ihnen von einer Pumpe oder aus dem Leitungsnetz mit Druck zugeführt wird . Um die Verdunstungsleistung zu erhöhen kann die Verdunstungsfläche von hochporösem Material das eine große Oberfläche aufweist gebildet werden . Besonders geeignet sind Filze , Vliese , Fasermatten , Schäume aus organischen oder/und anorganischen Stoffen , vorzugsweise Metallschäume , gebrannte Tonwaren , Sinterelemente , Keramikplatten und dergleichen .
Werden Verdunster mit wenigen cm Abstand zueinander parallel oder leicht konisch gestaffelt montiert , entsteht ein Kamineffekt der die Kühlwirkung verstärkt . Bei liegender Anordnung der Photovoltaikmodule auf geneigter Fläche ist es vorteilhaft wenn eine Hinterlüftung vorhanden ist .
Wird firstseitig ein Wärmetauscher eingesetzt kann dieser als Wärmequelle für eine Wärmepumpe verwendet werden wobei das entstehende Kondensat wieder in den Verdunstungskreislauf des Photovoltaikmodules zurückgeführt werden kann . Da photovoltaisch genutzte Solarzellen nur Strahlung im Bereich zwischen 350nm und 900nm in Elektrizität wandeln können ist es zweckmäßig zwischen Reflektor und Solarzellen optisch wirksame Filter einzusetzen die den photovoltaisch nicht wirksamen Strahlungsanteil ausfiltern und damit die Wärmebelastung auf etwa 50% reduzieren . Eine andere Methode unerwünschte Wärmestrahlung von den Solarzellen fernzuhalten ist die spektrale Filterung der auftreffenden Strahlung mittels eines transparenten Kühlmittels das die Zellen zumindest im bestrahlten Bereich benetzt oder umspült ,die nicht photovoltaisch nutzbare Strahlung in Wärme wandelt und in einen Wärmetauscher transportiert der zumindest teilweise durch Verdunstungskälte gekühlt wird . Ist das Kühlmedium weder Wasser noch wasserähnlich , beispielsweise Monopropylenglykol oder Tripropylenglykol muß dieses in einem geschlossenen Behälter oder Kreislauf geführt werden . Wird Wasser als Filter- und Wärmetauscherflüssigkeit verwendet , kann es wärmebelastet offener Verdunstung zugeführt werden .
Nachfolgend wird die Erfindung an schematisierten Ausführungsbeispielen näher erläutert . Es zeigen :
Fig. 1 einen Querschnitt durch einen Solarkollektor mit Konzentratoren ,
Fig. 2 einen Querschnitt durch einen Solarkollektor mit Konzentratoren und einer transparenten Schutzscheibe ,
Fig. 3 einen Querschnitt durch einen Solarkollektor mit Konzentratoren und einem Spektralfilter ,
Fig. 4 einen Querschnitt durch einen Solarkollektor mit thermotroper Schutzscheibe und Wasserbehälter .
Der in Fig. 1 schematisiert dargestellte Solarkollektor mit mittig angeordneten Solarzellen 2 und seitlichen Konzentratoren 1 die ebene Flächen besitzen aber auch zu den Solarzellen hin gewölbt , vorteilhafterweise konkav parabolisch gebogen sein können , wird bevorzugt mit verdunstendem Wasser gekühlt . Dazu ist die Rückseite der Solarzellen 2 bzw. des Solarzellenträgers mit einem porösen Verdunstungsträger 3 ausgestattet . Erfolgt die Verbindung der Konzentratoren mit dem Solarzellenträger gelenkig , kann der Neigungswinkel verändert werden . Das kann kontinuierlich oder diskontinuierlich erfolgen .
Fig. 2 zeigt wie ein durch die Konzentratoren 1 und eine transparente Schutzscheibe 4 gebildeter Kanal 5 entsteht , der als Behälter für ein Kühlmedium oder einen zirkulierenden Wärmetauscher genutzt werden kann . Die Solarzellen können allseitig umspülbar aber auch nur partiell benetzbar angeordnet sein . Um die thermische Belastung zu reduzieren kann die in Fig. 3 gezeigte Abdeckung 6 mit Spektralfiltereigenschaften ausgerüstet sein . Vorzugsweise sind diese so beschaffen , daß sie zusätzliche Schutzfunktionen durch thermotropes Verhalten aufweisen indem sie bei hoher Temperaturbelastung die zu einer Verschlechterung des Wirkungsgrades oder gar zur Zerstörung der Solarzellen oder deren Einbettung führen die Lichtdurchlässigkeit reduzieren . Um den Verdunstungsträger ökonomisch günstig mit Wasser zu versorgen kann , wie in Fig. 4 gezeigt , ein Wasserbehälter der an eine Versorgungsleitung angeschlossen ist , sich aber auch durch Regenwasser auffüllt , so angeordnet werden , daß sich die Verdunstungshilfsmittel in Form von Filz , Vlies , Schäumen , Textilien , Faserplatten , etc. , durch Kapillarwirkung selbsttätig mit Wasser befrachten .

Claims

Patentansprüche
1. Verfahren zum Kühlen von Solarkollektoren die konzentriertem Sonnenlicht ausgesetzt sind , dadurch gekennzeichnet , daß die Kühlwirkung durch offene Verdunstung von Wasser bewirkt wird .
2. Verfahren zum Kühlen von Solarkollektoren die konzentriertem Sonnenlicht ausgesetzt sind , dadurch gekennzeichnet , daß die Kühlwirkung durch offene Verdunstung von Wasser in porösem Material bewirkt wird .
3. Verfahren zum Kühlen von Solarkollektoren die konzentriertem Sonnenlicht ausgesetzt sind , dadurch gekennzeichnet , daß die Kühlwirkung durch offene Verdunstung von Wasser in porösem Material auf der Schattenseite bestrahlter Flächen bewirkt wird .
4. Verfahren nach einem der vorhergehenden Ansprüche , dadurch gekennzeichnet , daß das Kühlwasser die Solarzelle zuerst auf der bestrahlten Seite benetzt und dann der Verdunstungsfläche zugeleitet wird .
5. Verfahren nach einem der vorhergehenden Ansprüche , dadurch gekennzeichnet , daß das Kühlwasser zuerst die Solarzelle umspült und dann der Verdunstungsfläche zugeleitet wird .
6. Verfahren nach einem der vorhergehenden Ansprüche , dadurch gekennzeichnet , daß durch Spektralfilter photovoltaisch wenig oder unwirksame Strahlung von der Solarzelle ferngehalten werden um die Wärmebelastung zu reduzieren .
7. Verfahren nach einem der vorhergehenden Ansprüche , dadurch gekennzeichnet , daß durch die Anordnung einer thermotropen Schutzabdeckung im Strahlengang eine Überhitzung der Solarzellen verhindert wird .
8. Verfahren nach einem der vorhergehenden Ansprüche , dadurch gekennzeichnet , daß das Kühlwasser durch Druck zugeführt wird .
9. Verfahren nach einem der vorhergehenden Ansprüche , dadurch gekennzeichnet , daß das Kühlwasser durch Kapillarwirkung transportiert wird .
10. Verfahren nach einem der vorhergehenden Ansprüche , dadurch gekennzeichnet , daß der Kühlwasserbehälter ein sich selbst füllender Regenwasserbehälter ist .
11. Verfahren zum Kühlen von Solarkollektoren die konzentriertem Sonnenlicht ausgesetzt sind , dadurch gekennzeichnet , daß die Kühlung mindestens zweistufig aufgebaut ist und aus einem vorzugsweise geschlossenen Primärkreislauf mit nachgeordneter offener Verdunstung besteht .
12. Verfahren nach Anspruch 10 , dadurch gekennzeichnet , daß das Kühlmedium im Primärkreislauf kein Wasser oder wasserähnliche Substanz ist .
13. Verfahren nach Anspruch 10 , dadurch gekennzeichnet , daß das Kühlmedium im Primärkreislauf mit Spektralfilterfunktionen ausgestattet ist .
14. Verfahren nach Anspruch 10 , dadurch gekennzeichnet , daß das Kühlmedium im Primärkreislauf Monopropylenglykol oder Tripropylenglykol ist .
PCT/DE2006/001996 2005-11-15 2006-11-14 Solarkollektor WO2007056988A2 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
DE112006003697T DE112006003697A5 (de) 2005-11-15 2006-11-14 Solarkollektor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102005054367.7 2005-11-15
DE102005054367A DE102005054367A1 (de) 2005-11-15 2005-11-15 Solarkollektor

Publications (2)

Publication Number Publication Date
WO2007056988A2 true WO2007056988A2 (de) 2007-05-24
WO2007056988A3 WO2007056988A3 (de) 2007-07-05

Family

ID=37964770

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE2006/001996 WO2007056988A2 (de) 2005-11-15 2006-11-14 Solarkollektor

Country Status (2)

Country Link
DE (2) DE102005054367A1 (de)
WO (1) WO2007056988A2 (de)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012176500A1 (ja) * 2011-06-24 2012-12-27 パナソニック株式会社 太陽光発電パネルの冷却構造
CN105605801A (zh) * 2016-03-08 2016-05-25 天津大学 一种应用于太阳能线聚焦集热器的腔式吸热器
CN106292737A (zh) * 2016-08-27 2017-01-04 无锡中洁能源技术有限公司 一种带转动保护盖的自动转动太阳能电池板

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2977981A1 (fr) * 2011-07-15 2013-01-18 Toitech Dispositif de refroidissement d'un panneau photovoltaique
DE102013214470B4 (de) * 2013-07-24 2017-01-26 Bayerisches Zentrum für Angewandte Energieforschung e.V. Photovoltaikmodul mit photovoltaischen Elementen an der Vorderseite und einer offenporigen Schicht an der Rückseite sowie Anordnung zur Stromerzeugung
WO2015070295A1 (en) * 2013-11-12 2015-05-21 Mitev Gancho Apparatus and method for increasing the efficiency of photovoltaic systems through evaporation cooling
DE202015008919U1 (de) 2015-10-27 2016-02-22 ITP GmbH - Gesellschaft für Intelligente Produkte Kühlmodul für eine Photovoltaikeinheit

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54153587A (en) * 1978-05-25 1979-12-03 Seiko Instr & Electronics Ltd Solar cell unit
DE3130226A1 (de) * 1981-07-31 1983-02-17 M.A.N. Maschinenfabrik Augsburg-Nürnberg AG, 8000 München Solarenergieanlage mit photozellen
JPS62101086A (ja) * 1985-10-28 1987-05-11 Sharp Corp 太陽電池冷却システム
US4700013A (en) * 1985-08-19 1987-10-13 Soule David E Hybrid solar energy generating system
DE19837189C1 (de) * 1998-08-17 1999-09-09 Hne Elektronik Gmbh & Co Satel Umwandlungseinrichtung zur Nutzung von Sonnenenergie
US5973825A (en) * 1992-11-25 1999-10-26 Lasich; John Beavis Production of hydrogen from solar radiation at high efficiency
DE19819552A1 (de) * 1998-04-30 1999-11-04 Basf Ag Material mit temperaturgesteuerter Strahlungstransmission
JP2000022193A (ja) * 1998-07-06 2000-01-21 Sharp Corp 太陽電池モジュール
DE19923196A1 (de) * 1998-08-05 2000-04-20 Windbaum Forschungs Und Entwic Rekuperatives selektives Flüssigkeitsfilter für Photovoltaikmodule
WO2000034124A1 (en) * 1998-11-20 2000-06-15 Swales Aerospace, Inc. Method and apparatus for improved solar concentrator arrays
DE10121850A1 (de) * 2001-05-04 2002-01-31 Achim Zimmermann Kühlung von Fotovoltaikmodulen zur Erhöhung der Leistungsausbeute
JP2003336930A (ja) * 2002-05-23 2003-11-28 Matsushita Electric Ind Co Ltd 太陽光発電ヒートポンプ装置
DE10304536B3 (de) * 2003-02-04 2004-05-13 Horst Hinterneder Hohlkammerprofil zur Nutzung der Sonnenenergie
US6750392B1 (en) * 2003-06-06 2004-06-15 Kuo-Yow Yen Photovoltaic cooling system

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54153587A (en) * 1978-05-25 1979-12-03 Seiko Instr & Electronics Ltd Solar cell unit
DE3130226A1 (de) * 1981-07-31 1983-02-17 M.A.N. Maschinenfabrik Augsburg-Nürnberg AG, 8000 München Solarenergieanlage mit photozellen
US4700013A (en) * 1985-08-19 1987-10-13 Soule David E Hybrid solar energy generating system
JPS62101086A (ja) * 1985-10-28 1987-05-11 Sharp Corp 太陽電池冷却システム
US5973825A (en) * 1992-11-25 1999-10-26 Lasich; John Beavis Production of hydrogen from solar radiation at high efficiency
DE19819552A1 (de) * 1998-04-30 1999-11-04 Basf Ag Material mit temperaturgesteuerter Strahlungstransmission
JP2000022193A (ja) * 1998-07-06 2000-01-21 Sharp Corp 太陽電池モジュール
DE19923196A1 (de) * 1998-08-05 2000-04-20 Windbaum Forschungs Und Entwic Rekuperatives selektives Flüssigkeitsfilter für Photovoltaikmodule
DE19837189C1 (de) * 1998-08-17 1999-09-09 Hne Elektronik Gmbh & Co Satel Umwandlungseinrichtung zur Nutzung von Sonnenenergie
WO2000034124A1 (en) * 1998-11-20 2000-06-15 Swales Aerospace, Inc. Method and apparatus for improved solar concentrator arrays
DE10121850A1 (de) * 2001-05-04 2002-01-31 Achim Zimmermann Kühlung von Fotovoltaikmodulen zur Erhöhung der Leistungsausbeute
JP2003336930A (ja) * 2002-05-23 2003-11-28 Matsushita Electric Ind Co Ltd 太陽光発電ヒートポンプ装置
DE10304536B3 (de) * 2003-02-04 2004-05-13 Horst Hinterneder Hohlkammerprofil zur Nutzung der Sonnenenergie
US6750392B1 (en) * 2003-06-06 2004-06-15 Kuo-Yow Yen Photovoltaic cooling system

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012176500A1 (ja) * 2011-06-24 2012-12-27 パナソニック株式会社 太陽光発電パネルの冷却構造
JP2013008858A (ja) * 2011-06-24 2013-01-10 Panasonic Corp 太陽光発電パネルの冷却構造
CN105605801A (zh) * 2016-03-08 2016-05-25 天津大学 一种应用于太阳能线聚焦集热器的腔式吸热器
CN106292737A (zh) * 2016-08-27 2017-01-04 无锡中洁能源技术有限公司 一种带转动保护盖的自动转动太阳能电池板

Also Published As

Publication number Publication date
DE102005054367A1 (de) 2007-05-16
WO2007056988A3 (de) 2007-07-05
DE112006003697A5 (de) 2008-11-20

Similar Documents

Publication Publication Date Title
EP1949454A1 (de) Solarkollektoren mit kältemaschine
WO2007056985A2 (de) Solarkollektor mit wärmekraftmaschine
WO2007056988A2 (de) Solarkollektor
DE102006040556A1 (de) Solaranlage
EP2694885B1 (de) Vorrichtung und verfahren zum umwandeln von solarer strahlungsenergie in elektrischen strom und/oder wärme
DE19821659A1 (de) Aufwindkraftwerk
DE10296508T5 (de) Photovoltaisches Anordnungsmodul-Design für solar-elektrische Energieerzeugungssysteme
EP1835547A1 (de) Fotovoltaisches modul
WO2000008690A2 (de) Photovoltaikeinrichtung
DE102007052338A1 (de) Photovoltaikanlage
Bachchan et al. Productivity enhancement of solar still with phase change materials and water-absorbing material
DE202007000529U1 (de) Konzentrator-Photovoltaik-Vorrichtung mit zusätzlicher thermischer Nutzung sowie damit versehene Anlage
DE102008049538A1 (de) Lichtbündelungphotovoltaikanlage mit Flüssigkeitskühlung und Nutzung der thermischen Solarenergie (LPS-Anlage)
DE202011051461U1 (de) Mobile Solar-Wasserentsalzungsanlage
DE112005000132T5 (de) Solarzellen-Hybridmodul
Singh Tech-en-econ-energy-exergy-matrix (T4EM) observations of evacuated solar tube collector augmented solar desaltification unit: a modified design loom
DE19604356C2 (de) Verfahren und Vorrichtung zur Gewinnung von thermischer Energie aus solarer Energie
DE102012217500B4 (de) Photovoltaik-Thermie-System und Verfahren zum Betreiben eines solchen
DE102013214470B4 (de) Photovoltaikmodul mit photovoltaischen Elementen an der Vorderseite und einer offenporigen Schicht an der Rückseite sowie Anordnung zur Stromerzeugung
DE102004001248B3 (de) Stationärer photovoltaischer Sonnenlicht-Konzentrator
Katekar et al. Productivity enhancement of solar still using exergy analysis
DE2523479A1 (de) Solar-kollektor
Yanbolagh et al. Exergoeconomic, environmental, economic, and energy-matrices (4E) analysis of three solar distillation systems equipped with condenser and different heaters
DE102010004195A1 (de) Solargenerator
DE19923196A1 (de) Rekuperatives selektives Flüssigkeitsfilter für Photovoltaikmodule

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 112006003697

Country of ref document: DE

REF Corresponds to

Ref document number: 112006003697

Country of ref document: DE

Date of ref document: 20081120

Kind code of ref document: P

122 Ep: pct application non-entry in european phase

Ref document number: 06805523

Country of ref document: EP

Kind code of ref document: A2