WO2007055340A1 - Ptx3高感度測定法 - Google Patents

Ptx3高感度測定法 Download PDF

Info

Publication number
WO2007055340A1
WO2007055340A1 PCT/JP2006/322505 JP2006322505W WO2007055340A1 WO 2007055340 A1 WO2007055340 A1 WO 2007055340A1 JP 2006322505 W JP2006322505 W JP 2006322505W WO 2007055340 A1 WO2007055340 A1 WO 2007055340A1
Authority
WO
WIPO (PCT)
Prior art keywords
ptx3
antibody
monoclonal antibody
protein
ferm
Prior art date
Application number
PCT/JP2006/322505
Other languages
English (en)
French (fr)
Inventor
Tatsuhiko Kodama
Takao Hamakubo
Koji Maemura
Akira Sugiyama
Hiroko Iwanari
Isao Kohno
Yukio Ito
Original Assignee
The University Of Tokyo
Perseus Proteomics Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by The University Of Tokyo, Perseus Proteomics Inc. filed Critical The University Of Tokyo
Priority to EP06832519A priority Critical patent/EP1947460B1/en
Priority to US12/092,272 priority patent/US7955807B2/en
Priority to JP2007544209A priority patent/JP5137015B2/ja
Publication of WO2007055340A1 publication Critical patent/WO2007055340A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/577Immunoassay; Biospecific binding assay; Materials therefor involving monoclonal antibodies binding reaction mechanisms characterised by the use of monoclonal antibodies; monoclonal antibodies per se are classified with their corresponding antigens
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/68Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving proteins, peptides or amino acids
    • G01N33/6893Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving proteins, peptides or amino acids related to diseases not provided for elsewhere
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2800/00Detection or diagnosis of diseases
    • G01N2800/32Cardiovascular disorders
    • G01N2800/324Coronary artery diseases, e.g. angina pectoris, myocardial infarction
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S435/00Chemistry: molecular biology and microbiology
    • Y10S435/81Packaged device or kit

Definitions

  • the present invention relates to a method for detecting blood PTX3 with high sensitivity and determining a vascular disorder.
  • PTX3 also known as Pentraxin, Pentaxin, TSG-14, and MPTX3, was found to be expressed on human umbilical cord endothelial cells stimulated by interleukin 1 (IL-1). Pentraxin It is a secreted protein belonging to the family (Non-patent Document 1)
  • the pentraxin family includes C-reactive protein (CRP) and Serum amyloid component (SAP), which are known as inflammatory proteins.
  • CRP C-reactive protein
  • SAP Serum amyloid component
  • Pentraxin is also called Long Pentraxin
  • CRP C-reactive protein
  • SAP Serum amyloid component
  • Pentraxin is a name derived from having a CRP sequence portion in the structure, and is presumed to function as an inflammatory protein.
  • PTX3 is not induced by IL-6.
  • the cell types that express PTX3 protein are also different from CRP and SAP, suggesting that PTX3 also has different functions from CRP and SAP (Non-patent Documents 2 and 3).
  • inflammation covers a wide range and includes dermatitis, inflammation of various organs, and the like. Among them, vascular inflammation leads to serious diseases such as heart disease and brain disease.
  • risk factors for acute myocardial infarction include high blood total cholesterol levels, hypertension, diabetes, obesity, and smoking, and their control prevents acute myocardial infarction.
  • Demographic Statistics conducted by the Ministry of Health, Labor and Welfare every year, 15.5% of Japanese people died of heart disease. It is known to be the second leading cause of death among Japanese.
  • heart failure and acute myocardial infarction accounted for 5.0% and 4.3% of the causes of death.
  • These heart diseases are known to be caused mainly by coronary artery lesions.
  • coronary lesion complications include angina and sudden cardiac death due to arrhythmia.
  • coronary artery disease is the leading cause of death in Americans, as more than 12 million Americans have been reported with some history of coronary artery disease from the American Heart Association. It accounts for about one-fifth of deaths.
  • brain diseases include dementia caused by vascular disorders and prevention by aspirin is being carried out.
  • Non-Patent Documents 4 to 6 As a conventional method for measuring PTX3, a method by ELISA described in Non-Patent Documents 4 to 6 is known. In this assay, the PTX3 concentration reaches a maximum of 0.5 to 22 ngZmL 7.5 hours after myocardial infarction, then decreases sharply to 0.5 force 2.5 ngZmL in normal individuals who do not appear to have heart disease. Is described. According to the conventional PTX3 measurement results, it is known that the blood PTX3 protein concentration increases during myocardial infarction, but how the PTX3 protein concentration changes before the myocardial infarction changes. I didn't know at all!
  • Non-patent literature l Breviorio et al .: J. Biol. Chem., 267 (31), 22190-7 (1992)
  • Non-Patent Document 2 J. Biol. Chem., 267 (31), 22190-7 (1992)
  • Non-Patent Document 3 Domyaku Koka (Arteriosclerosis), 24 (7-8), 375-80 (199
  • Non-Patent Document 4 Arthritis and Rheumatism, 44/12 (2841-50), 2001
  • Non-Patent Document 5 Circulation, 102, 636-41 (2000)
  • Non-Patent Document 6 Arterioscler Thromb Vase Biol. 2002; 22: el0—el4
  • Patent Document 1 WO2005Z080981 Pamphlet
  • the degree of mild vascular disorder before the onset of myocardial infarction or vascular disorder dementia or in the early stage of the disease state can be determined, that is, before the onset or onset of initial symptoms such as heart disease, brain disease, etc. If the early symptom of mild vascular disorder can be diagnosed, early treatment and prevention are possible, which can contribute to a reduction in the mortality rate of cardiovascular or metabolic diseases and to the patient's QOL.
  • an object of the present invention is to provide a method for determining a vascular disorder as a risk factor such as myocardial infarction or vascular disorder dementia early, that is, a mild vascular disorder.
  • PTX3 is a protein having a total polypeptide length of 381 amino acids (hereinafter also referred to as PTX3 protein or full-length PTX3) (SEQ ID NOs: 1 and 2). 17 is a signal peptide that is cleaved in the process of being secreted outside the cell to become mature PTX3 protein.
  • the N-terminal part of PTX3 protein is amino acid number 18-178 of SEQ ID NO: 2 (hereinafter referred to as the N-terminal part of PTX3).
  • the C-terminal region corresponds to amino acid numbers 179 to 381 (hereinafter referred to as C-terminal region of PTX3) of SEQ ID NO: 2.
  • the C-terminal region is called a pentraxin domain. These are highly homologous to CRP and SAP belonging to the pentraxin family.
  • antibodies that recognize PTX3 conventionally reported antibodies include the following antibodies.
  • MNB4 is reported to be N-terminal and 16B5 is capable of recognizing C-terminal by Co mozzi et al. (J. Biol. Chem., 281 (32), 22605-22613, 2006) It has been.
  • both ⁇ 4 and 16B5 are short peptides with 12 to 13 amino acid residues. Recognize that! Antibodies that recognize such short peptides! / Speaks do not depend on their conformation! An antibody that recognizes epitopes.
  • a monoclonal antibody that recognizes the three-dimensional structure epitope of ⁇ 3 is developed, and measurement sensitivity and accuracy are improved. succeeded in.
  • this monoclonal antibody we studied patients with mild vascular disorders, including those with stable angina and chest pain, as an analysis target, and found that between the pathologic condition with mild vascular disorders and ⁇ 3 concentration in healthy individuals. A significant difference was found.
  • the present invention provides a method for determining the degree of mild vascular injury, characterized by measuring the concentration of ⁇ 3 in a test sample using an anti- ⁇ 3 monoclonal antibody.
  • the present invention also provides a method for determining the degree of mild vascular injury, wherein the anti-antibody 3 monoclonal antibody is a monoclonal antibody or a fragment thereof that recognizes the tertiary structure epitope of type 3.
  • the present invention also provides a diagnostic agent for the degree of mild vascular injury, comprising an anti-antibody 3 monoclonal antibody or a fragment thereof.
  • the present invention also provides an anti-3 monoclonal antibody or a fragment thereof, characterized by recognizing a 3D structure epitope.
  • the present invention also provides a hyperidoma that produces an anti- ⁇ 3 monoclonal antibody or a fragment thereof that recognizes the three-dimensional structure epitope of ⁇ 3.
  • the invention's effect is not limited to:
  • FIG. 1 shows the results of gel filtration of the recombinant PTX3 protein prepared in Example 3 and PTX3 protein in clinical samples (Example 4).
  • FIG. 2 Reduction of anti-PTX3 monoclonal antibody. Reactivity with full-length PTX3 in Western blot under non-Z reducing conditions.
  • FIG. 3 shows the results of Western blot assay using the expression product of PTX3 polypeptide in Example 11 and PTX3-sensitized mouse serum as the primary antibody.
  • a and A ′ Samples obtained by treating full length PT X3 under reducing and non-reducing conditions, respectively.
  • B and B ' Samples of PTX3 N-terminal polypeptide (N— PTX3 (2)) treated under reducing and non-reducing conditions, respectively.
  • C and C ′ Samples of PTX3 C-terminal polypeptide (C— PTX3) treated under reducing and non-reducing conditions, respectively.
  • D and D ' Samples treated with reducing and non-reducing conditions of the CHO cell culture supernatant lysate after gene transfer!
  • FIG. 4 shows the results of Western blotting using the culture supernatant of Hypridoma strain Hyb-3423 producing anti-HBs antibody in Example 11.
  • a and A ' Samples obtained by treating full length PTX3 under reducing and non-reducing conditions, respectively.
  • B and B ′ Samples obtained by treating PTX3 N-terminal polypeptide (N PTX3 (2)) under reducing and non-reducing conditions, respectively.
  • C and C ′ Samples obtained by treating C-terminal polypeptide of PT X3 (C PTX3) under reducing and non-reducing conditions, respectively.
  • D and D ' Samples treated with reducing and non-reducing conditions of the CHO cell culture supernatant lysate after gene transfer! / (Not a negative control).
  • FIG. 5 shows the results of Western blotting using anti-PTX3 monoclonal antibody PPMX0104 in Example 11.
  • a and A ' Samples obtained by treating full length PTX3 under reducing and non-reducing conditions, respectively.
  • B and B ' Samples obtained by treating the N-terminal polypeptide of PTX3 (N-PTX3 (2)) under reducing and non-reducing conditions, respectively.
  • C and C ′ Samples of PTX3 C-terminal polypeptide (C PTX3) treated under reducing and non-reducing conditions, respectively.
  • D and D ' Relic Introduced gene! / A sample of CHO cell culture supernatant lysate treated under reducing and non-reducing conditions (negative control).
  • FIG. 6 shows the results of separation of full-length PTX3 digests by reverse-phase HPLC in Example 12.
  • FIG. 7 shows the reactivity of lysyl endobeptidase digested with PP MX0104 after reduction treatment of full-length PTX3 in Example 12 as a result of ELISA.
  • FIG. 8 shows the reactivity of lysyl endobeptidase digested with PP MX0105 after reduction treatment of full-length PTX3 in Example 12 as a result of ELISA.
  • FIG. 9 shows the results of Example 13, in which full-length PTX3 was digested with lysyl endopeptidase under non-reducing conditions, electrophoresed on SDS-PAGE, and stained with Coomassie brilliant blue.
  • 1 Molecular weight marker
  • 2 Molecular weight marker
  • 3 Undigested full-length PTX3, 4: Digestion after 0 hours, 5, Digestion 0.5 hours
  • 6 Digestion after 1 hour
  • 7 Digestion after 2 hours
  • 8 4 hours after digestion
  • 9 8 hours after digestion.
  • FIG. 10 shows the relationship between the lysyl endopeptidase digestion time and the reactivity with PPMX0104 under non-reducing conditions for full length ⁇ ⁇ ⁇ ⁇ 3 in Example 13.
  • FIG. 11 shows the relationship between the lysyl endopeptidase digestion time and the reactivity with PPMX0105 under non-reducing conditions for full length ⁇ ⁇ ⁇ ⁇ 3 in Example 13.
  • FIG. 12 shows a comparison of standard curves of a conventional ELISA kit and an ELISA kit of the present invention.
  • FIG. 13 shows a comparison of blood PTX3 concentrations between healthy individuals and heart disease patients.
  • Measurement includes quantitative or non-quantitative measurement.
  • non-quantitative measurement includes simply measuring whether or not PTX3 protein is present, whether or not PTX3 protein is present in a certain amount or more.
  • Measurement comparing the amount of PTX3 protein with other samples (for example, control samples, etc.), and quantitative measurements include measuring the concentration of PTX3 protein, the amount of PTX3 protein Measurement etc. can be mentioned.
  • the nucleotide sequence of the PTX3 gene mRNA is shown in SEQ ID NO: 1, and the amino acid sequence of PTX3 is shown in SEQ ID NO: 2.
  • the test sample is not particularly limited as long as it may contain a protein of PTX3, but a sample obtained from a physical strength of a living organism such as a mammal is preferred, and more preferably collected from a human.
  • Sample Specific examples of the test sample include blood, interstitial fluid, plasma, extravascular fluid, cerebrospinal fluid, synovial fluid, pleural fluid, serum, lymph fluid, saliva, urine, etc. Preference is given to blood, serum and plasma.
  • a sample obtained from a test sample such as a culture solution of cells collected from the body of an organism is also included in the test sample of the present invention.
  • Vascular injury is a process of vascular endothelial cell migration, vascular medial smooth muscle cell migration, macrophage accumulation 'foaming, thrombus attachment, plaque formation, vascular fibrosis, plaque rupture. It presents a serious disease.
  • the “vascular disorder” in the present invention includes vascular disorders caused by hypertension, diabetes, obesity and smoking in addition to hyperlipidemia, heart disease and brain disease.
  • “mild vascular disorder” refers to vascular disorder before or at the onset of early symptoms of heart disease and brain disease caused by vascular disorder.
  • Diseases with mild vascular disorders include chest pain and stable angina. These are all diseases based on coronary artery lesions, and the smaller the number of lesion branches, the milder the heart disease.
  • the “degree of vascular injury” in the present invention refers to the level of failure associated with the progression process of the vascular injury.
  • vascular disorders that follow the above progression are indicated as follows in terms of histopathology as a measure of the degree to which the final plaque ruptures.
  • the PTX3 protein is preferably measured by an immunoassay using an anti-PTX3 antibody.
  • the measurement method using the anti-PTX3 antibody is described in detail below.
  • the anti-PTX3 antibody used in the present invention only needs to specifically bind to the PTX3 protein. However, it preferably recognizes the three-dimensional structure epitope of the PTX3 protein, and more preferably does not recognize the fragmented N-terminal polypeptide and C-terminal polypeptide of the PTX3, and recognizes the three-dimensional structure epitope of the PTX3 protein. Recognize. More preferred is an antibody that exhibits high binding affinity for the three-dimensional structure of PTX3 and does not cross-react with CRP or SAP. Most preferred are PPMX0104 (FERM BP-10719) and PPMX0105 (FERM BP-10720).
  • the term “three-dimensional structure epitope” refers to the secondary structure, tertiary structure, and quaternary structure of full-length PTX3, excluding the epitopes that recognize the primary structure among the epitopes that recognize the full-length PTX3 protein. Recognize ⁇ pitope.
  • the three-dimensional structure of proteins has a hierarchical structure of primary structure, secondary structure, tertiary structure, and quaternary structure (Nanzandou Medical University Dictionary 17th edition (1990)).
  • the preferred antibody of the present invention recognizes non-reduced PTX3, does not react with PTX3 fragment, and recognizes the three-dimensional structure epitope of PTX3 protein. By reacting, it is possible to identify PTX3 that retains a higher-order structure in vivo.
  • the origin, type (monoclonal, polyclonal) and shape of the antibody are not limited. Specifically, known antibodies such as mouse antibodies, rat antibodies, human antibodies, chimeric antibodies and humanized antibodies can be used.
  • the antibody may be a polyclonal antibody, but is preferably a monoclonal antibody.
  • the anti-PTX3 antibody immobilized on the support and the anti-PTX3 antibody labeled with a labeling substance may recognize the same epitope of the PTX3 molecule, but preferably recognize different epitopes.
  • the anti-PTX3 antibody used in the present invention can be obtained as a polyclonal or monoclonal antibody using a known means.
  • a monoclonal antibody derived from a mammal is particularly preferable.
  • Monoclonal antibodies derived from mammals include those produced by hyperpridoma and those produced by a host transformed with an expression vector containing an antibody gene by genetic engineering techniques.
  • Monoclonal antibody-producing hyperidoma basically uses known techniques, and It can produce in this way. That is, PTX3 is used as a sensitizing antigen, and this is immunized according to a normal immunization method. The resulting immune cells are fused with known parental cells by a normal cell fusion method, and then monoclonal by a normal screening method. It can be produced by screening for new antibody-producing cells.
  • a monoclonal antibody can be prepared as follows.
  • PTX3 which is used as a sensitizing antigen for obtaining antibodies, is obtained by purifying the culture supernatant of available cells. Alternatively, it can be obtained according to the method disclosed in JP-T-2002-503642.
  • this purified PTX3 protein or a fragment thereof is used as a sensitizing antigen.
  • the mammal to be immunized with the sensitizing antigen is not particularly limited, but it is generally preferable to select in consideration of compatibility with the parent cell used for cell fusion.
  • Rodent animals such as mice, rats, hamsters, rabbits, monkeys, etc. are used.
  • Immunization of an animal with a sensitizing antigen is performed according to a known method.
  • the sensitizing antigen is injected intraperitoneally or subcutaneously into a mammal.
  • the sensitizing antigen is diluted to an appropriate amount with PBS (Phosphate-Buffered Saline) or physiological saline, etc., and mixed with an appropriate amount of an ordinary adjuvant, such as Freund's complete adjuvant, if necessary, and emulsified.
  • an appropriate carrier can be used during immunization with the sensitizing antigen.
  • the immune power of the mammal is also collected and subjected to cell fusion.
  • Preferred immune cells include In particular, spleen cells.
  • a mammalian myeloma cell is used as the other parent cell to be fused with the immune cell.
  • This myeloma cell is known in various known cell lines such as P3 (P3x63Ag8.653) (J. Immnol. (1979) 123, 1548-1550), P3x63Ag8U.1 (Current Topics in Microbiology and Immunology (1978) 81, 1-7), NS-l (Kohler.G.a nd Milstein, C. Eur. J. Immunol. (1976) 6, 511—519), MPC—ll (Marg ulies.
  • the cell fusion between the immune cells and myeloma cells is basically performed by a known method such as the method of Kohler and Milstein, C., Methods Enzymol. (1981) 73 , 3-46) etc.
  • the cell fusion is performed in a normal nutrient culture medium in the presence of, for example, a cell fusion promoter.
  • a cell fusion promoter for example, polyethylene glycol (PE G), Sendai virus (HVJ) or the like is used as a fusion promoter, and an auxiliary agent such as dimethyl sulfoxide may be added and used to increase the fusion efficiency as desired.
  • PE G polyethylene glycol
  • HVJ Sendai virus
  • auxiliary agent such as dimethyl sulfoxide
  • the use ratio of immune cells and myeloma cells can be arbitrarily set.
  • the number of immune cells is preferably 1 to 10 times that of myeloma cells.
  • the culture medium used for the cell fusion for example, RPMI1640 culture medium suitable for growth of the myeloma cell line, MEM culture medium, and other normal culture liquids used for this type of cell culture can be used.
  • serum supplements such as fetal calf serum (FCS) can be used in combination.
  • polyethylene glycol for example, average molecular weight 1 000 to 6000
  • PEG polyethylene glycol
  • the solution is usually added at a concentration of 30-60% (w / v) and mixed to form the desired fused cell (hypridoma).
  • the cell fusion agent and the like which are preferable for the growth of high-pridoma, are removed by repeating the procedure of adding an appropriate culture solution successively, centrifuging and removing the supernatant.
  • the hybridoma obtained in this manner is a normal selective culture solution, for example, a HAT culture solution.
  • Screening and single cloning of the target antibody may be performed by a screening method based on a known antigen-antibody reaction.
  • the antigen is bound to a carrier such as a bead made of polystyrene or a commercially available 96-well microtiter plate, reacted with the culture supernatant of hyperlipidoma, the carrier is washed, and then the enzyme-labeled secondary antibody is reacted. By doing so, it can be determined whether or not the target antibody reacting with the sensitizing antigen is contained in the culture supernatant.
  • the hybridoma producing the target antibody can be cloned by limiting dilution or the like. In this case, the antigen used for immunization may be used.
  • human lymphocytes are sensitized to PTX3 in vitro, and sensitized lymphocytes are human-derived myocytes that have permanent mitotic potential. And a desired human antibody having binding activity to PTX3 can be obtained (see Japanese Patent Publication No. 1-59878).
  • PTX3, which is an antigen is administered to a transgenic animal having all repertoires of human antibody genes to obtain anti-PTX3 antibody-producing cells, and the immortalized cell force also acquires human antibodies against PTX3. (See International Patent Application Publication Nos. W094Z25585, W093Z12227, W092Z 03918, and WO 94Z02602).
  • the thus-produced monoclonal antibody and the hybridoma can be subcultured in a normal culture solution, and can be stored in liquid nitrogen for a long period of time. .
  • the hybridoma can be obtained by culturing the hyperidoma according to a conventional method and obtaining it as a culture supernatant, or administering the hybridoma to a mammal compatible therewith.
  • the method of proliferating it and obtaining it as ascites is adopted.
  • the former method is suitable for obtaining high-purity antibodies, while the latter method is suitable for mass production of antibodies.
  • a method may be used in which genes encoding these antibody fragments are constructed, introduced into an expression vector, and then expressed in an appropriate host cell.
  • these antibodies are the full-length or one-part of the protein encoded by the PTX3 gene.
  • a low molecular weight antibody such as an antibody fragment (fragment) may be a modified product of an antibody.
  • antibody fragments include, for example, Fab, Fab ′, F (ab ′) 2, Fv, Diabody and the like.
  • Such antibody fragments can be obtained by digesting the Fc portion of IgG with pepsin or papain, or by constructing genes encoding these antibody fragments, introducing them into expression vectors, and expressing them in appropriate host cells. (Eg, Co, MS et al., J. Immunol.
  • the antibody produced as described above can be isolated from cells and host animals and purified to homogeneity. Separation and purification of the antibody used in the present invention can be carried out using an affinity column.
  • an affinity column For example, as a column using a protein A column, Hyper D, POR OS, Sepharose FF (manufactured by GE Healthcare) and the like can be mentioned.
  • the separation and purification methods used in ordinary proteins are used.
  • the ability to separate and purify antibodies by selecting and combining chromatographic columns, filters, ultrafiltration, salting out, dialysis, etc., other than the above-mentioned affinity column can be achieved with the force S (Antibodies A Laboratory Manual. Ed Harlow, David Lane, Cold Spring Harbor Laboratory, 1988).
  • an anti-PTX3 antibody bound to various molecules such as a labeling substance can also be used.
  • the “antibody” in the present invention includes these modified antibodies.
  • Such a modified antibody can be obtained by chemically modifying the obtained antibody. Antibody modification methods have already been established in this field.
  • the method for detecting the PTX3 protein contained in the test sample is not particularly limited, but it is preferably detected by an immunological method using an anti-PTX3 antibody.
  • Immunological methods include, for example, radioimmunoassay, enzymnoassey, fluorescent immunoassay, luminescence Immunity, immunoprecipitation method, immunoturbidimetric method, Western plot, immunostaining, immunodiffusion method, etc. Enzymimno assay is preferred, especially preferred
  • V ⁇ is an enzyme-linked immunosorbent assay LISA (for example, sandwich ELISA).
  • LISA enzyme-linked immunosorbent assay
  • ELISA sandwich ELISA
  • the above-described immunological methods such as ELISA can be performed by methods known to those skilled in the art.
  • an anti-PTX3 antibody is immobilized on a support, a test sample is added thereto, and incubation is performed to bind the anti-PTX3 antibody and the PTX3 protein.
  • a method of detecting the PTX3 protein in the test sample by detecting the PTX3 protein bound to the support via the anti-PTX3 antibody can be mentioned.
  • Examples of the support used in the present invention include: insoluble polysaccharides such as agarose and cellulose, silicone resin, polystyrene resin, polyacrylamide resin, nylon resin, and polycarbonate resin. And an insoluble support such as glass.
  • These supports can be used in the form of beads or plates. In the case of beads, a column packed with these can be used. In the case of plates, multi-well plates (96-well multi-well plates, etc.) and biosensor chips can be used. The binding between the anti-PTX3 antibody and the support can be performed by a commonly used method such as chemical bonding or physical adsorption. All of these supports can be sold commercially.
  • the binding between the anti-PTX3 antibody and the PTX3 protein is usually performed in a buffer.
  • a buffer solution for example, phosphate buffer solution, Tris buffer solution, citrate buffer solution, borate buffer solution, carbonate buffer solution and the like are used.
  • incubation conditions incubation conditions that are already used, for example, incubation at 4 ° C to room temperature for 1 hour to 24 hours are performed.
  • the washing after the incubation may be anything that does not interfere with the binding between the PTX3 protein and the anti-PTX3 antibody.
  • a buffer containing a surfactant such as Tween 20 is used.
  • a control sample may be installed in addition to the test sample for which PTX3 protein is to be detected.
  • a control sample PTX There are negative control samples that do not contain 3 proteins and positive control samples that contain PTX3 protein. In this case, it is possible to detect the PTX3 protein in the test sample by comparing the result obtained with the negative control sample containing no PTX3 protein and the result obtained with the positive control sample containing the PTX3 protein. is there.
  • a series of control samples with varying concentrations are prepared, the detection results for each control sample are obtained as numerical values, a standard curve is created, and the test curve is based on the standard curve from the test sample values. It is also possible to quantitatively detect the PTX3 protein contained in the sample.
  • test sample is brought into contact with the anti-PTX3 antibody immobilized on the support, and after washing, detection is performed using a labeled antibody that specifically recognizes the PTX3 protein.
  • Labeling of the anti-PTX3 antibody can be performed by a generally known method.
  • a labeling substance known to those skilled in the art such as a fluorescent dye, an enzyme, a coenzyme, a chemiluminescent substance, and a radioactive substance, can be used.
  • a radioisotope 32 P, "C, 125 I, 3 H, 131 I, etc.
  • fluorescein 32 P, "C, 125 I, 3 H, 131 I, etc.
  • rhodamine rhodamine
  • dansyl mouth lid umbelliferone
  • luciferase peroxidase
  • alkaline phosphatase ⁇ -galatatosidase
  • 13 darcosidase luciferase
  • horseradish peroxidase glucoamylase Lysozyme
  • saccharide oxidase microperoxidase, biotin, etc.
  • piotin As a labeling substance, avidin to which an enzyme such as alkaline phosphatase is bound is added after the addition of the piotin-labeled antibody. It is preferable to add it.
  • the binding of the substance and the anti ⁇ 3 antibodies can be used Dal glutaraldehyde method, maleimide method, pyridyl Soo Ruff id method, periodic acid method, a known method such as.
  • Examples of the enzyme labeling method for antibodies include, but are not limited to, the hinge method and the non-hinge method.
  • the hinge method utilizes Fab 'and enzyme molecules using thiol groups generated by reducing the disulfide bond in the part called the hinge part between the F (ab') 2 part that has the antigen-binding ability of antibody IgG. It is a method to combine.
  • the non-hinge method Whether to use a reactive group is not specified, but in many cases, it is a method of binding an antibody molecule and an enzyme molecule using an amino group of an antibody.
  • a solution containing the anti-PTX3 antibody is placed on a support such as a plate, and the anti-PTX3 antibody is fixed to the support. After washing the plate, block with BSA, gelatin, albumin, etc. to prevent non-specific binding of proteins. Wash again and place the test sample on the plate. After incubation, wash and add labeled anti-PTX3 antibody. After appropriate incubation, the plate is washed and the labeled anti-PTX3 antibody remaining on the plate is detected. Detection can be performed by methods known to those skilled in the art. For example, in the case of labeling with a radioactive substance, it can be detected by liquid scintillation or RIA.
  • a substrate is added, and an enzymatic change of the substrate, for example, color development can be detected with an absorptiometer.
  • the substrate include 2,2 azinobis (3 ethylbenzothiazoline 6-sulfonic acid) diammonium salt (ABTS), 1,2 phen-diamine (ortho-dienediamine), 3, 3 ', 5, 5, monotetramethylbenzidine (TMB) and the like.
  • ABTS 2,2 azinobis (3 ethylbenzothiazoline 6-sulfonic acid) diammonium salt
  • TMB monotetramethylbenzidine
  • a fluorescent substance it can be detected by a fluorometer.
  • a particularly preferred embodiment of the method for measuring PTX3 protein of the present invention is, for example, by removing the Fc portion unrelated to the antigen-binding ability of antibody IgG and applying the enzyme labeling method of the measuring antibody described in Example 17 Examples thereof include a method using an antibody labeled by the described method.
  • a solution containing an anti-PTX3 antibody is placed on a support such as a plate, and the anti-PTX3 antibody is immobilized. After washing the plate, block with, for example, BSA to prevent nonspecific binding of proteins. Wash again and add the test sample to the plate. After incubation, wash and add peroxidase directly labeled anti-PTX3 antibody. After moderate incubation, the plate is washed, a substrate corresponding to the enzyme is added, and PTX3 protein is detected using an enzymatic change of the substrate as an indicator.
  • one or more primary antibodies that specifically recognize PTX3 protein and one or more secondary antibodies that specifically recognize the primary antibody are used.
  • a method can be mentioned.
  • the test sample is contacted with one or more types of anti-PTX3 antibodies immobilized on a support, After the incubation, washing is performed, and the PTX3 protein bound after the washing is detected by a primary anti-PTX3 antibody and one or more secondary antibodies that specifically recognize the primary antibody.
  • the secondary antibody is preferably labeled with a labeling substance.
  • a detection method using an agglutination reaction can be mentioned.
  • PTX3 can be detected using a carrier sensitized with an anti-PTX3 antibody.
  • the carrier for sensitizing the antibody any carrier may be used as long as it is insoluble, does not cause nonspecific reaction, and is stable.
  • latex particles, bentonite, collodion, kaolin, fixed sheep erythrocytes and the like can be used, but it is preferable to use latex particles.
  • the latex particles for example, polystyrene latex particles, styrene butadiene copolymer latex particles, force capable of using polyvinyl toluene latex particles, etc.
  • Polystyrene latex particles are preferably used.
  • the sensitized particles are mixed with the sample and stirred for a certain time. The higher the concentration of anti-PTX3 antibody in the sample, the greater the degree of aggregation of the particles. Therefore, PTX3 can be detected by viewing the aggregation with the naked eye. It is also possible to detect turbidity due to aggregation by measuring with a spectrophotometer or the like.
  • Biosensors using the surface plasmon resonance phenomenon can observe protein-protein interactions in real time as a surface plasmon resonance signal using a small amount of protein and without labeling.
  • a biosensor such as BIAcore (Pharmacia).
  • BIAcore Pharmacia
  • a test sample is brought into contact with a sensor chip on which an anti-PTX3 antibody is immobilized, and a PTX3 protein that binds to the anti-PTX3 antibody can be detected as a change in resonance signal.
  • the measurement method of the present invention can be automated using various automatic inspection apparatuses, and can inspect a large number of samples at once.
  • the present invention also aims to provide a diagnostic agent for the degree of vascular disorder, and the diagnostic agent includes at least an anti-PTX3 antibody.
  • the diagnostic agent includes a kit.
  • the diagnostic agent is ELISA
  • the antibody may contain a carrier for immobilizing the antibody, and the antibody may be bound to the carrier in advance.
  • a carrier on which an antibody is adsorbed may be included.
  • the diagnostic agent may appropriately contain a blocking solution, a reaction solution, a reaction stop solution, a reagent for treating the sample, etc.
  • Single-stranded cDNA of human umbilical vein endothelial cells is synthesized from mRNA using reverse transcriptase.
  • cDN A is synthesized using AMV Reverse Transcriptase First-strand cDNA Synthes is Kit (manufactured by Seikagaku Corporation).
  • To synthesize and amplify cDNA use 5,5-RACE method (Frohman, MA et al., Proc. Natl. Acad. Sci. USA) using 5, Ampli FINDER RACE Kit (Clontech) and PCR. (1988) 85, 8998—9002, Belyavsky, A.
  • lxlO 5 cell CHO cells were seeded on 6 day dishes on the day before the transfer, and cultured on the next day, followed by 8 g of expression vector phCMV— Mix 3 and 16 ⁇ L of FuGENE 6 reagent with 100 ⁇ L of serum-free DMEM medium and incubate at room temperature for 20 minutes. After the basis, it was added to the cells. The day after transfection, cloning was performed using the limiting dilution method and G418, a selective reagent. The culture supernatant of each clone was collected and screened for PTX3 protein-expressing cells. As a result, it was possible to select a clone (hereinafter referred to as CHO-PTX3) that constitutively expresses 23 protein of about 2-3 / ⁇ 8 ⁇ .
  • CHO-PTX3 a clone
  • PTX3 was applied to the column and eluted with PBS at a flow rate of 0.4 mLZmin. Each eluted fraction was analyzed by SDS-PAGE to obtain purified recombinant multimeric PTX3 protein.
  • Example 4 Recombinant PTX3 protein and clinical sample PTX3 molecular weight identity>
  • Superose 6column uses molecular weight of recombinant PTX3 protein obtained in Example 3 and clinical sample PTX3 protein Obtained by gel filtration The fractions were analyzed.
  • a sample containing recombinant PTX3 protein added to human plasma whose PTX3 concentration is below the measurement limit to 30 ngZmL is applied to the column, and buffered at a flow rate of 0.3 mLZmin.
  • a monoclonal antibody was prepared by the following procedure. That is, BalbZC mice (CRL) or PTX3 knockout mice were immunized with PTX3.
  • the immunity protein is adjusted to 100 ⁇ g / animal, and FCA (Freund's complete adjuvant (H37 Ra), Difco (3113-60), Betaton Dickinson (cat # 231131) is used to make an emano region. 2 weeks later, the preparation prepared to become 50 gZ was emulsified with FIA (Freund's incomplete adjuvant, Difco (0639-60), Betaton Dickinson (cat # 2 63910).
  • the anti-PTX3 antibody was isotyped using ImmunoPure Monoclonal Antibody Isotyping Kit II (PIERCE CAT # 37502), and the method was performed according to the attached manual. As a result, many IgGl, IgG2a and IgM class antibodies were obtained. Both PP MX104 and PPMX105 were IgGl.
  • N-PTX3 A polypeptide (N-PTX3) at the N-terminal part of PTX3 was expressed in E. coli as a GST (glutathione S-transferase) fusion protein and purified.
  • the expression vector of N-PTX3 was constructed using a general method. That is, the N-PTX3 expression vector was amplified by PCR using the full-length PTX3 as a template and nucleotide sequences 1 to 522 with appropriate primers of SEQ ID NOS: 5 and 6. Next, a vector was constructed using the pENTRTM / D-TO PO Cloning Kit Gateway (R) system, pDESTTM24 vector 0, and the deviation is Invitrogen) according to the usage volume of the attached manual. The constructed vector was transformed into E.
  • R D-TO PO Cloning Kit Gateway
  • E. coli cells that have been induced for expression are recovered, and soluble in a buffer containing NP40 or other detergent and lysozyme. After centrifugation, the supernatant is recovered and purified using a GST column. It was. That is, the fusion protein was bound to GST Sepharose beads and beads were washed with PBS. Thereafter, the fusion protein was eluted with a reduced dartathione solution. The purified protein is subjected to SDS-PAGE electrophoresis, and assayed for purity, molecular weight, etc., followed by antigen fixation. Used as antigen for phase ELISA.
  • the binding sites of the anti-PTX3 monoclonal antibodies (PPMXO 101, PPMX0102, PPMX0104, PPMX 0105) to the PTX3 protein were identified as follows.
  • PTX3 protein obtained in Example 3 and the polypeptide of the N-terminal part of PTX3 described in Example 7 were used as materials.
  • N—PTX3 polypeptide of the N-terminal part of PTX3 described in Example 7
  • a general antigen solid-phase ELISA method was used as a method for identifying the binding site. That is, these proteins were prepared to 5 / z gZmL, added to an ELISA plate with 100 LZwell, and immobilized at 4 ° C overnight.
  • Example 3 The full length recombinant PTX3 purified in Example 3 was treated with reducing and non-reducing sample buffer, 60 ng was applied per lane, and SDS-PAGE was performed. Next, transfer to Hybond- ECL (GE Healthcare) membrane at 38V for 16 hours, transfer the protein to the membrane, and then blockin for 1 hour at room temperature using Block Ace (Snow). I was Next, 0.3 g of anti-PTX3 antibody was added to 40% Block Ace (Snowmark) ZTBS solution, reacted at room temperature for 1 hour, TBST (50 mM Tris-HCl (pH 7.5), 150 mM NaCl, 0. The plate was washed 5 times x 3 times with 05% Tween20).
  • Hybond- ECL GE Healthcare
  • Block Ace Block Ace
  • Example 1 human PTX3 cloned in Example 1 was used as a saddle, and cDNA encoding amino acids 179-381 of PTX3 was amplified by PCR and inserted into the BamHI site of pSG5 vector (stratagene). Built. When cDNA was obtained, primers were synthesized so that the PTX3 signal peptide was attached to the 3 'side, and PCR amplification was performed.
  • PTX3 partial length protein forced expression in CHO cells was carried out by the following procedure. In a 10 cm dish, 0.8 ⁇ 10 6 CHO cells were seeded, and the next day, 8 ⁇ g of plasmid DNA was transfected using FuGENE 6 Transfection Reagent (Roche).
  • the cells were removed by cell scraper and collected, and 200 ⁇ l of RIPA buffer (1 OmM Tris—Cl, 150 mM NaCl, 5 mM EDTA, 1% Triton X—100, 1% deoxycholate, 0.1% SDS, pH 7.4) was added and the cells were lysed by placing on ice for 15 minutes. Next, centrifuge at 15,000 xg for 15 minutes at 4 ° C, and use the supernatant as the expression protein solution. It was.
  • RIPA buffer 1 OmM Tris—Cl, 150 mM NaCl, 5 mM EDTA, 1% Triton X—100, 1% deoxycholate, 0.1% SDS, pH 7.4
  • N-terminal polypeptide N— PTX3 (2)
  • N-terminal polypeptide N— PTX3 (2)
  • a PTX3 partial length polypeptide at positions 1-151 was obtained.
  • the N-terminal has a signal polypeptide at positions 1-17, no signal polypeptide is attached.
  • Hyb 3423 culture supernatant that produces monoclonal antibody against hepatitis B virus S antigen (HBs antigen) that does not recognize PTX3 as the primary antibody, and secondary antibody as anti-mouse IgG antibody (GE Health Western blotting (Care) ( Figure 4).
  • CHO cell lysate expressing N-terminal (N- PTX3 (2)) and C-terminal polypeptide (C-PTX3) prepared in Example 9, lysate of CHO cells not transfected with gene, purified Treat full-length recombinant PTX3 with sample buffer under reducing (2-ME added) and non-reducing (2-ME non-added) conditions. Apply 20 g of cell lysate and 3 ng of full-length PTX3 per lane. The antibody was prepared as PPMX0104 by the method described in Example 9. An eastern blot was performed.
  • PPMX0104 is full-length PTX3 under reducing conditions, and the polypeptide at the heel part.
  • Example 12 Full-length ⁇ 3 protein protease degradation product and monoclonal antibody reactivity under reducing conditions>
  • ⁇ 3 was fragmented by enzymatic digestion, and the fragment was fractionated by reverse phase HPLC. Thereafter, reactivity to the collected peptides was examined by ELISA.
  • ⁇ 3 protein was dissolved in 0.5 ⁇ Tris-HCl, 6M guanidine—HC1, 10mM EDTA, pH 8.5, and 315 times the molar amount of PTX3 was reduced to 0, and allowed to stand at 37 ° C for 2 hours. Then, reduction treatment was performed. Subsequently, 4-bi-loopiridine, which is 3.1 times the amount of DTT, was added at a molar ratio, and the mixture was allowed to stand at room temperature for 2 hours in the dark to perform pyridylethylylation of SH groups.
  • PPMX0104 and PPMX0105 are antibodies that recognize the three-dimensional structure of PTX3.
  • PPMX0104 and PPMX0105 have almost lost their reactivity with PTX3 that had been reduced prior to enzymatic cleavage, ie reduced pyridylethylylate. The antibody is recognized.
  • the full-length PTX3 protein obtained in Example 3 was digested with lysyl endopeptidase (lysyl endopeptidase, Wako Pure Chemical Industries, Ltd.) in 200 mM Tris-HCl buffer for 0, 0.5, 1, 2, 4, 8 hours. Set and digest at 30 ° C. After digestion time, digestion was stopped with DFP (diisopropyl fluorophosphate), and the digested sample was fractionated by SDS-PAGE electrophoresis. The gel was stained with Kumashi Brilliant Blue (CBB) and PTX3 was cleaved. ! I confirmed that it was (Fig. 9).
  • CBB Kumashi Brilliant Blue
  • FIG. 10 and FIG. 11 show the relationship between the lysyl endopeptidase digestion time of PTX3 and the results of ELISA.
  • the hybridomas of P PMX0104 and PPMX0105 that produce monoclonal antibodies that recognize the three-dimensional structure of PTX3 are FERM BP-10719 and FERM BP-10720, respectively. Deposited at Center Ichi (Address: 1-1-1 Tsukuba Rokuto, Ibaraki, Japan 305-8566) (Deposit date: September 22, 2005).
  • Coupling constants were measured using a BIAcore3000 system (BIAcore, Uppsala, Sweden).
  • an anti-mouse IgG antibody was immobilized on the sensor chip CM5 using the NHSZEDC coupling method.
  • an anti-PTX3 antibody PPMX0104, PPMX0105
  • HBS-EP bufferdOmM HEPES pH7.4, 150mM NaCl, 3mM EDTA, 0.005% surfactant P20) in lOugZml, and several hundred RU About the antibody was immobilized.
  • a suspension of recombinant PTX3 in HBS-EP buffer was injected, and after binding / dissociation was measured, a dissociation constant was determined using an analysis program (BIA evaluation).
  • TBS containing 40% Block Ace (Dainippon Pharmaceutical) (10 mM Tris-HCl, 150 mM) 150 L of NaCl, pH 7.5) was added for blocking. After several hours at room temperature or overnight at 4 ° C, store the culture supernatant or diluted purified monoclonal antibody containing monoclonal antibody in 100 ⁇ L Zwell for 2 hours at room temperature. Pate.
  • the F (ab ′) 2 formation of the antibody was performed as follows.
  • the antibody purified by the method for producing a monoclonal antibody described in Example 4 was dialyzed against a dilute buffer (5 mM Tris-HCl, 150 mM NaCl, pH 7.5). Dilute 2 times with pH 3.7 for subclass IgGl antibody and pH 4.0 for Pepsin digestion buffer (0.2 M Sodiu m citrate buffer) for IgG2a antibody, at 37 ° C for 5 minutes Warmed up.
  • an enzyme such as alkaline phosphatase or peroxidase is bound to an amino group or SH group by the periodic acid method or the maleimide method.
  • the antibody prepared in Example 12 was subjected to peroxidase labeling on the SH group by the maleimide method using Peroxidase Labeling Kit SH (Dojindo Co., Ltd.) according to the usage volume of the manual attached to the kit.
  • a PTX3 sandwich ELISA system was constructed as follows. That is, F (ab ') 2 PPM X0104 was immobilized on 5 ⁇ g / m 100 ⁇ L / well, 4 ° C, for 96-well plate.
  • HRPO horse radish peroxidase
  • Fab′-modified PPMX0105 antibody diluted to 20 / z gZmL with PBS (—) containing animal serum was incubated at room temperature for 2 hours. After discarding the reaction solution, it was washed 5 times with 300 LZwell washing buffer, and then colored according to the attached protocol using Scytek TMB (Cat # TM4999), and the absorbance was measured with a microplate reader. .
  • the PTX3 protein concentration in the sample was converted using a spreadsheet software GlaphPad PRISM (GlaphPad software Inc. ver. 3.0).
  • the standard curve of ELISA was a PTX3 protein standard product (ALEXIS) that was tested for concentration. Dilution of standard product of 3, 1.1, 0.37, 0.12, 0.041, 0.004, 0.005 ngZmL It was prepared using the liquid.
  • a standard curve was obtained in the same manner as described above using a kit that measured the blood concentration of patients in WO2005Z080981 pamphlet. In comparison between the multiple measurement systems prepared this time and the measurement using the antibody used in the pamphlet of WO2005Z080981, the sensitivity of the new measurement system is clearly superior in the kit using PPMX0104 as the antibody coated on the plate and PPMX0105 as the labeled antibody. (Fig. 12).
  • the recognition site of the antibody used in the conventional measurement system was an antibody that recognizes the N-terminal site of the PTX3 molecule
  • PPMX0104 and PPMX0105 using the new measurement kit recognize the 3D structure epitope of PTX3. It was an antibody.
  • the samples used for the soot recovery test were prepared as follows. That is, adjustment was performed by adding the antigen to the specimen dilution buffer for the reference sample, and adding the antigen to the 8 human plasma samples for the control samples to final concentrations of 2, 5, and 10 ng / mL.
  • the reproducibility test was performed according to the method described below using plasma samples prepared from 6 healthy subjects and plasma samples prepared from three types of unstable angina patients. The measuring method is as follows.
  • the blood PTX3 concentration of heart disease patients was measured using the new measurement kit prepared in Example 18.
  • the specimens used in this study were plasma specimens collected from peripheral blood of humans who were diagnosed as having no coronary lesions 44 specimens (OVD), patient specimens with confirmed lesions in one coronary artery 15 specimens collected from patients (1VD), 22 patient samples collected with lesions in 2 coronary arteries (2VD), and 11 patient samples with lesions confirmed in 3 coronary arteries (3VD)
  • ODD coronary lesions 44 specimens
  • the measurement of PTX3 was performed according to the measurement method of Example 17.
  • the degree of heart disease for example, the degree of coronary artery lesions
  • the degree of coronary artery lesions became severe as the blood PTX3 concentration increased using the anti-PTX3 monoclonal antibody of the present invention.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Immunology (AREA)
  • Engineering & Computer Science (AREA)
  • Molecular Biology (AREA)
  • Urology & Nephrology (AREA)
  • Biomedical Technology (AREA)
  • Hematology (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Medicinal Chemistry (AREA)
  • Biotechnology (AREA)
  • General Physics & Mathematics (AREA)
  • Microbiology (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Cell Biology (AREA)
  • Organic Chemistry (AREA)
  • Food Science & Technology (AREA)
  • Pathology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Genetics & Genomics (AREA)
  • Biophysics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Peptides Or Proteins (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

 心筋梗塞、血管障害性痴呆症等の危険因子としての血管障害を早期に、すなわち軽度の血管障害を判定する方法の提供。  抗PTX3モノクローナル抗体を用いて被検試料中のPTX3濃度を測定することを特徴とする、軽度の血管障害の程度の判定方法。

Description

明 細 書
PTX3高感度測定法
技術分野
[0001] 本発明は、血中 PTX3を高感度に検出し、血管障害を判定する方法に関する。
背景技術
[0002] PTX3は、 Pentraxin, Pentaxin、 TSG— 14、 MPTX3とも呼ばれ、インターロイ キン 1 (IL—1)刺激を受けたヒト臍帯内皮細胞に発現しているものとして発見された ペントラキシン (Pentraxin)ファミリーに属する分泌タンパク質である(非特許文献 1)
[0003] ペントラキシンファミリーには炎症性タンパクとして知られている C— reactive prot ein (CRP)や Serum amyloid P component (SAP)などが存在する。ペントラキ シンは、別名 Long Pentraxinとも呼ばれ、 CRPは Short Pentraxinともよばれる 。ペントラキシンは構造中に CRP配列部分を有することからの呼称であり、炎症性タ ンパクとして機能していることが推定される。しかし、 PTX3は CRPや SAPと異なり IL 6による誘導を受けない。また PTX3タンパク質を発現する細胞種も CRPや SAPと は異なることから、 PTX3は CRPや SAPとは異なる機能も有することが示唆されて ヽ る(非特許文献 2および 3)。
[0004] 一方で、炎症反応の一種と考えられる急性心筋梗塞の患者で PTX3の血中濃度が 高く上がること、小血管炎のインディケータとなりうる、進行性動脈硬化巣プラークに おける免疫染色による検出等が発見され、炎症への関与が推定された (非特許文献 4〜6)。
[0005] 炎症と言う呼称は広範囲に渡り、皮膚炎、各種臓器の炎症等がある。それらの中で 血管の炎症は心疾患、脳疾患等の重篤な疾患に繋がる。
心疾患においては、急性心筋梗塞の危険因子として血中高総コレステロール値、 高血圧、糖尿病、肥満、喫煙が挙げられ、それらのコントロールにより急性心筋梗塞 の予防がなされている。ところが、厚生労働省が毎年行っている「人口動態統計」の 平成 16年のデータによると、日本人の 15. 5%が心疾患で死亡しており、心疾患は 日本人の死因の第二位であることが知られている。さらに、死因となった心疾患を詳 細に調べると、心不全と急性心筋梗塞が多ぐそれぞれの疾患は死因の 5.0%と、 4 .3%を占めている。これらの心疾患は、主に冠動脈病変が原因で生じることが知ら れている。冠動脈病変の合併症には、心不全や急性心筋梗塞以外に、狭心症ゃ不 整脈による心臓突然死等が挙げられる。また、米国においても、米国心臓病協会か ら約 1200万人以上の米国人が何らかの冠動脈疾患の病歴があると報告されている ように、冠動脈病変が米国人の死亡原因の首位であり、年間死亡例の約 5分の 1も占 めている。
また、脳疾患においては、血管障害による痴呆症等があげられ、アスピリンによる予 防が行われている。
しかし、心および脳おける重篤な病態 (心筋梗塞、脳梗塞などを含む)の診断方法 は存在するものの、軽度の血管の炎症または血管の障害を診断する方法は知られて いない。
従来の PTX3の測定法として、非特許文献 4〜6に記載の ELISA法による方法が 知られている。この測定法においては、 PTX3濃度は、心筋梗塞発作の 7.5時間後 に最大値 0.5から 22ngZmLとなり、その後急激に減少し、心疾患を有していないと 思われる正常者の 0.5力 2.5ngZmLになるとの記載がある。従来の PTX3測定 結果によれば、心筋梗塞発作時に血中 PTX3タンパク質濃度が高くなることは知られ ているが、心筋梗塞になる以前の段階で PTX3タンパク質濃度がどのように変化して V、るのかは全くわかって!/、なかった。
非特許文献 l:Breviorio et al. : J. Biol. Chem. , 267(31), 22190-7(1992 )
非特許文献 2 :J. Biol. Chem. , 267(31), 22190— 7(1992)
非特許文献 3:Domyaku Koka (Arteriosclerosis) , 24(7— 8), 375— 80(199
6)
非特許文献 4: Arthritis and Rheumatism, 44/12(2841-50), 2001 非特許文献 5: Circulation, 102, 636-41(2000)
非特許文献 6:Arterioscler Thromb Vase Biol.2002;22:el0— el4 特許文献 1: WO2005Z080981号パンフレツ卜
発明の開示
発明が解決しょうとする課題
[0007] 本願発明者らは、 WO2005Z080981号パンフレットにおいて、新たな PTX3測定 系を開発し、血中 PTX3濃度を測定することにより不安定狭心症患者を診断すること に成功し、血管障害の程度と PTX3濃度との間に相関を見出した。
[0008] さらに、心筋梗塞や血管障害性痴呆症等になる以前や病態の初期における軽度 の血管障害の程度が判定できれば、すなわち、心疾患、脳疾患等の初期症状の発 現前あるいは発現時の初期症状の軽度の血管障害が診断できれば、早期の治療お よび予防が可能となることから、循環器系疾患あるいは代謝系疾患の死亡率の低下 および患者の QOLに貢献できる。
従って、本発明の目的は、心筋梗塞や血管障害性痴呆症等の危険因子としての血 管障害を早期に、すなわち軽度の血管障害を判定する方法を提供することにある。 課題を解決するための手段
[0009] PTX3は、全長 381アミノ酸の 1本鎖ポリペプチド力もなるタンパク質である(以下、 このタンパク質を PTX3タンパク質または全長 PTX3ともいう。(配列番号 1および 2)。 配列番号 2のアミノ酸番号 1〜 17はシグナルペプチドであり、細胞外に分泌され成熟 PTX3タンパク質になる過程で切断される。 PTX3タンパク質の N端部位とは配列番 号 2のアミノ酸番号 18〜178 (以下、 PTX3の N端部位という。)であり、 C端部位とは 配列番号 2のアミノ酸番号 179〜381 (以下、 PTX3の C端部位という。)に相当する。 C端部位はペントラキシンドメインと呼ばれて 、る部位で、ペントラキシンファミリーに 属する CRPや SAPと相同'性の高 、部位である。
[0010] PTX3を認識する抗体として、従来報告されているものには次のような抗体が挙げ られる。
16B5 (Bottazzi et al. , J of Biol Chem. 272 (52) , 32817— 23, 199 7) ; lC8 (Bottazzi et al. , J of Biol Chem. 1997, 272 (52) , 32817— 3 2823); MNB4 (Peri et al. , Circulation 2000, 102, 636— 641) ;MNB6 ( Peri et al. , Circulation 2000, 102, 636-641); MNB10 (WO2005/10 6494、受託番号 ABC PD04001); Pen- 3 (WO2005/106494,受託番号 AB C PD01004) ;PPMX0101 (WO2005Z080981、受託番号 FERM P— 196 97) ;PPMX0102 (WO2005Z080981、受託番号 FERM BP- 10326); PP MX0112 (WO2005/080981); PPMX0148 (WO2005Z〇8098:0。
[0011] 従来知られている抗体のうち、 MNB4は N端、 16B5が C端を認識すること力 Co mozziら (J. Biol. Chem. , 281 (32) , 22605— 22613, 2006)によって報告され ている。また、この報告の中で、 12〜 13アミノ酸残基から成る合成ペプチドに抗体を 反応させる方法により行われたェピトープマッピングの結果、 ΜΝΒ4および 16B5は 共に 12〜 13アミノ酸残基の短 ヽペプチドを認識して!/ヽることが報告されて ヽる。かよ うな短 ヽペプチドを認識して!/ヽる抗体は、立体構造に依存しな!、ェピトープを認識す る抗体と考えられる。
[0012] そして、本発明では、軽度の血管障害を判定する方法を提供することを目的に、 Ρ ΤΧ3の立体構造ェピトープを認識するモノクローナル抗体を開発し、測定感度およ び精度を改善することに成功した。また、当該モノクローナル抗体を用いて、安定狭 心症、胸痛の患者を含む軽度の血管障害を持つ患者を解析対象として研究し、軽度 の血管障害を持つ病態と健常人の ΡΤΧ3濃度との間に有意差が認められることを見 出した。
[0013] 本発明は、抗 ΡΤΧ3モノクローナル抗体を用いて被検試料中の ΡΤΧ3濃度を測定 することを特徴とする、軽度の血管障害の程度の判定方法を提供するものである。 また、本発明は、上記抗 ΡΤΧ3モノクローナル抗体が ΡΤΧ3の立体構造ェピトープ を認識するモノクローナル抗体またはそのフラグメントである軽度の血管障害の程度 の判定方法を提供するものである。
[0014] また、本発明は、抗 ΡΤΧ3モノクローナル抗体またはそのフラグメントを含有する軽 度の血管障害の程度の診断薬を提供するものである。
[0015] また、本発明は、 ΡΤΧ3の立体構造ェピトープを認識することを特徴とする抗 ΡΤΧ3 モノクローナル抗体またはそのフラグメントを提供するものである。
[0016] また、本発明は、 ΡΤΧ3の立体構造ェピトープを認識する抗 ΡΤΧ3モノクローナル 抗体またはそのフラグメントを産生するハイプリドーマを提供するものである。 発明の効果
[0017] 本発明によれば、急性心筋梗塞や血管障害性痴呆等が発症する以前や発症後の 初期における軽度の血管障害を診断できることから、重篤な心疾患、脳疾患等に基 づく重篤な血管障害への移行を早期に治療 ·予防することができる。
図面の簡単な説明
[0018] [図 1]実施例 3で調製したリコンビナント PTX3タンパク質と、臨床検体中の PTX3タン パク質のゲルろ過の結果を示す (実施例 4)。
[図 2]抗 PTX3モノクローナル抗体の還元 Z非還元条件下でのウェスタンブロットにお ける全長 PTX3との反応性を示す。
[図 3]実施例 11で PTX3ポリペプチドの発現物を試料とし、 PTX3感作マウス血清を 一次抗体としてウェスタンブロットにより検定した結果を示す。 Aおよび A':全長 PT X3をそれぞれ還元条件、非還元条件で処理した試料。 Bおよび B ': PTX3の N端 ポリペプチド (N— PTX3 (2) )をそれぞれ還元条件、非還元条件で処理した試料。 Cおよび C ' : PTX3の C端ポリペプチド (C— PTX3)をそれぞれ還元条件、非還元条 件で処理した試料。 Dおよび D ':遺伝子導入して!/ヽな!ヽ CHO細胞培養上清溶解 液をそれぞれ還元条件、非還元条件で処理した試料 (陰性コントロール)。
[図 4]実施例 11で抗 HBs抗体を産生するハイプリドーマ株 Hyb— 3423培養上清を 用いたウェスタンブロットを行った結果を示す。 Aおよび A ':全長 PTX3をそれぞれ 還元条件、非還元条件で処理した試料。 Bおよび B ': PTX3の N端ポリペプチド (N PTX3 (2) )をそれぞれ還元条件、非還元条件で処理した試料。 Cおよび C ': PT X3の C端ポリペプチド (C PTX3)をそれぞれ還元条件、非還元条件で処理した試 料。 Dおよび D ':遺伝子導入して!/、な 、CHO細胞培養上清溶解液をそれぞれ還 元条件、非還元条件で処理した試料 (陰性コントロール)。
[図 5]実施例 11で抗 PTX3モノクローナル抗体 PPMX0104を用いたウェスタンブロ ットを行った結果を示す。 Aおよび A ':全長 PTX3をそれぞれ還元条件、非還元条 件で処理した試料。 Bおよび B ': PTX3の N端ポリペプチド (N - PTX3 (2) )をそれ ぞれ還元条件、非還元条件で処理した試料。 Cおよび C ': PTX3の C端ポリべプチ ド (C PTX3)をそれぞれ還元条件、非還元条件で処理した試料。 Dおよび D ':遺 伝子導入して!/ヽな ヽ CHO細胞培養上清溶解液をそれぞれ還元条件、非還元条件 で処理した試料(陰性コントロール)。
[図 6]実施例 12において全長 PTX3の消化物を逆相 HPLCにより分離した結果を示 す。
[図 7]実施例 12の全長 PTX3の還元処理後のリジルエンドべプチダーゼ消化物と PP MX0104との反応性を ELISA法の結果として示す。
[図 8]実施例 12の全長 PTX3の還元処理後のリジルエンドべプチダーゼ消化物と PP MX0105との反応性を ELISA法の結果として示す。
[図 9]実施例 13で全長 PTX3を非還元条件下でリジルエンドべプチダーゼ消化し SD S— PAGEで電気泳動後にクマシ一ブリリアントブルー染色した結果を示す。 1:分 子量マーカー、 2 :分子量マーカー、 3 :未消化全長 PTX3、 4 :消化 0時間後、 5、消 化 0. 5時間後、 6 :消化 1時間後、 7 :消化 2時間後、 8 :消化 4時間後、 9 :消化 8時間 後。
[図 10]実施例 13における全長 ΡΤΧ3の非還元条件下でのリジルエンドべプチダーゼ 消化時間と PPMX0104との反応性との関係を示す。
[図 11]実施例 13における全長 ΡΤΧ3の非還元条件下でのリジルエンドべプチダーゼ 消化時間と PPMX0105との反応性との関係を示す。
[図 12]従来 ELISAキットと本発明 ELISAキットの標準曲線の比較を示す。
[図 13]健常人と心疾患患者の血中 PTX3濃度の比較を示す。
圆 14]冠動脈病変枝数と血中 PTX3濃度の関係を示す。
発明を実施するための最良の形態
測定とは、定量的または非定量的な測定を含み、例えば、非定量的な測定としては 、単に PTX3タンパク質が存在するか否かの測定、 PTX3タンパク質が一定の量以 上存在するか否かの測定、 PTX3タンパク質の量を他の試料(例えば、コントロール 試料など)と比較する測定などを挙げることができ、定量的な測定としては、 PTX3タ ンパク質の濃度の測定、 PTX3タンパク質の量の測定などを挙げることが出来る。な お PTX3遺伝子の mRNAの塩基配列を配列番号 1に、 PTX3のアミノ酸配列を配列 番号 2に示す。 [0020] 被検試料とは、 PTX3のタンパク質が含まれる可能性のある試料であれば特に制 限されないが、哺乳類などの生物の体力 採取された試料が好ましぐさらに好ましく はヒトから採取された試料である。被検試料の具体的な例としては、例えば、血液、間 質液、血漿、血管外液、脳脊髄液、滑液、胸膜液、血清、リンパ液、唾液、尿などを 挙げることができるが、好ましいのは血液、血清、血漿である。又、生物の体から採取 された細胞の培養液などの、被検試料から得られる試料も本発明の被検試料に含ま れる。
[0021] 血管の障害は血管内皮細胞の障害、血管中膜平滑筋細胞の遊走、マクロファージ の集積'泡沫化、血栓の付着、プラークの形成、血管の線維化、プラークの破裂とい つた経過を迪り、重篤な疾患を呈す。
すなわち、本発明における「血管障害」には、高脂血症および心疾患、脳疾患の他 に高血圧症、糖尿病、肥満および喫煙が原因として生ずる血管障害が含まれる。特 に、「軽度の血管障害」とは、血管障害を原因とする心疾患、脳疾患の初期症状の発 現前や発現時の血管障害をいう。軽度の血管障害を持つ疾患には、胸痛、安定狭 心症などが挙げられる。これらは、いずれも冠動脈病変に基づいた疾患であり、病変 枝数が少ない程心疾患が軽度であることを意味する。
また、本発明における「血管障害の程度」とは、上記血管障害の進行過程に伴う障 害の程度を言う。すなわち、上記進行過程をたどる血管障害は最終的なプラークの 破裂に至る程度の尺度として病理組織的に次のように示される。 (a) lipid coreの大 きさ、(b) fibrous capの厚さ、(c) shear stress, (d)炎症細胞の浸潤の程度の具 合であり、(a)大きければ大きいほど、(b)は薄ければ薄いほど、(c)は強ければ強い ほど、(d)は強ければ強いほどプラーク破裂のしゃすさは増す。したがって本発明に おける「血管障害の程度」は上記の (a)〜 (d)の程度を言う。
[0022] 本発明方法においては、 PTX3タンパク質の測定は、抗 PTX3抗体を用いる免疫 学的測定法が好ましい。以下、抗 PTX3抗体を用いた測定法について詳細に説明 する。
[0023] < 1.抗 PTX3抗体の作製 >
本発明で用いられる抗 PTX3抗体は、 PTX3タンパク質に特異的に結合すればよ いが、好ましくは PTX3タンパク質の立体構造ェピトープを認識するものであり、より 好ましくは PTX3の断片化された N端部分ポリペプチドおよび C端部分ポリペプチド を認識せず、 PTX3タンパク質の立体構造ェピトープを認識するものである。さらに 好ましくは PTX3の立体構造に高い結合親和性を示し、且つ、 CRPや SAPに交差 反応しない抗体である。最も好ましくは、 PPMX0104 (FERM BP— 10719)およ び PPMX0105 (FERM BP— 10720)である。
本明細書にぉ 、て「立体構造ェピトープ」とは、全長 PTX3タンパク質の部分を認 識するェピトープのうち、一次構造を認識するェピトープを除ぐ全長 PTX3の二次 構造、三次構造、四次構造を認識するヱピトープをいう。ここで、タンパク質の立体構 造には、一次構造、二次構造、三次構造、四次構造という階層性があることが知られ ている(南山堂 医学大辞典 改定 17版(1990) )。
後記実施例の通り、本発明の好ましい抗体は、非還元状態の PTX3を認識し、 PT X3断片とは反応せず、 PTX3タンパク質の立体構造ェピトープを認識するものであり 、従ってインタタトな PTX3と強く反応することにより、生体内で高次構造を保持する P TX3を識別することができる。
[0024] 抗体の由来、種類 (モノクローナル、ポリクローナル)および形状を問わない。具体 的には、マウス抗体、ラット抗体、ヒト抗体、キメラ抗体、ヒト型化抗体などの公知の抗 体を用いることができる。抗体はポリクローナル抗体でもよいが、モノクローナル抗体 であることが好ましい。
また、支持体に固定される抗 PTX3抗体と標識物質で標識される抗 PTX3抗体は P TX3分子の同じェピトープを認識してもよ 、が、異なるェピトープを認識することが好 ましい。
[0025] 本発明で使用される抗 PTX3抗体は、公知の手段を用いてポリクローナルまたはモ ノクローナル抗体として得ることができる。本発明で使用される抗 PTX3抗体として、 特に哺乳動物由来のモノクローナル抗体が好まし 、。哺乳動物由来のモノクローナ ル抗体は、ハイプリドーマにより産生されるもの、および遺伝子工学的手法により抗 体遺伝子を含む発現ベクターで形質転換した宿主に産生されるものを含む。
[0026] モノクローナル抗体産生ハイプリドーマは、基本的には公知技術を使用し、以下の ようにして作製できる。すなわち、 PTX3を感作抗原として使用して、これを通常の免 疫方法にしたがって免疫し、得られる免疫細胞を通常の細胞融合法によって公知の 親細胞と融合させ、通常のスクリーニング法により、モノクローナルな抗体産生細胞を スクリーニングすることによって作製できる。
[0027] 具体的には、モノクローナル抗体を作製するには次のようにすればよい。
まず、抗体取得の感作抗原として使用される PTX3を、入手可能な細胞の培養上 清力も精製して得る。あるいは、特表 2002— 503642に開示された方法に従い得る ことも出来る。
次に、この精製 PTX3タンパク質またはその断片を感作抗原として用いる。
[0028] 感作抗原で免疫される哺乳動物としては、特に限定されるものではないが、細胞融 合に使用する親細胞との適合性を考慮して選択するのが好ましぐ一般的にはげつ 歯類の動物、例えば、マウス、ラット、ハムスターなど、もしくはゥサギ、サル等が使用 される。
[0029] 感作抗原を動物に免疫するには、公知の方法に従って行われる。例えば、一般的 方法として、感作抗原を哺乳動物の腹腔内または皮下に注射することにより行われる 。具体的には、感作抗原を PBS (Phosphate - Buffered Saline)や生理食塩水 等で適当量に希釈、懸濁したものに所望により通常のアジュバント、例えばフロイント 完全アジュバントを適量混合し、乳化後、哺乳動物に 4〜21日毎に数回投与する。 また、感作抗原免疫時に適当な担体を使用することもできる。特に分子量の小さい部 分ペプチドを感作抗原として用いる場合には、アルブミン、キーホールリンペットへモ シァニン等の担体タンパク質と結合させて免疫することが望ましい。
[0030] このように哺乳動物を免疫し、血清中に所望の抗体レベルが上昇するのを確認した 後に、哺乳動物力も免疫細胞を採取し、細胞融合に付されるが、好ましい免疫細胞 としては、特に脾細胞が挙げられる。
[0031] 前記免疫細胞と融合される他方の親細胞として、哺乳動物のミエローマ細胞を用い る。このミエローマ細胞は、公知の種々の細胞株、例えば、 P3 (P3x63Ag8. 653) ( J. Immnol. (1979) 123, 1548— 1550)、 P3x63Ag8U. 1 (Current Topics i n Microbiology and Immunology (1978) 81, 1 - 7) , NS - l (Kohler. G. a nd Milstein, C. Eur. J. Immunol. (1976) 6, 511— 519)、 MPC— l l (Marg ulies. D. H. et al. , Cell (1976) 8, 405-415) , SP2/0 (Shulman, M. et al. , Nature (1978) 276, 269— 270)、 FO (de St. Groth, S. F. et al. , J. I mmunol. Methods (1980) 35, 1— 21)、 SI 94 (Trowbridge, I. S. J. Exp. Me d. (1978) 148, 313— 323)、 R210 (Galfre, G. et al. , Nature (1979) 277, 131 - 133)等が好適に使用される。
[0032] 前記免疫細胞とミエローマ細胞との細胞融合は、基本的には公知の方法、たとえば 、ケーラーとミルスティンらの方法(Kohler. G. and Milstein, C. 、 Methods En zymol. (1981) 73, 3— 46)等に準じて行うこと力 Sできる。
[0033] より具体的には、前記細胞融合は、例えば細胞融合促進剤の存在下に通常の栄 養培養液中で実施される。融合促進剤としては、例えばポリエチレングリコール (PE G)、センダイウィルス (HVJ)等が使用され、さらに所望により融合効率を高めるため にジメチルスルホキシド等の補助剤を添加使用することもできる。
[0034] 免疫細胞とミエローマ細胞との使用割合は任意に設定することができる。例えば、ミ エローマ細胞に対して免疫細胞を 1〜10倍とするのが好ましい。前記細胞融合に用 いる培養液としては、例えば、前記ミエローマ細胞株の増殖に好適な RPMI1640培 養液、 MEM培養液、その他、この種の細胞培養に用いられる通常の培養液が使用 可能であり、さらに、牛胎児血清 (FCS)等の血清補液を併用することもできる。
[0035] 細胞融合は、前記免疫細胞とミエローマ細胞との所定量を前記培養液中でよく混 合し、予め 37°C程度に加温したポリエチレングリコール (PEG) (例えば平均分子量 1 000〜6000程度)溶液を通常 30〜60% (w/v)の濃度で添加し、混合することによ つて目的とする融合細胞 (ハイプリドーマ)を形成する。続、て、適当な培養液を逐次 添加し、遠心して上清を除去する操作を繰り返すことによりハイプリドーマの生育に好 ましくな 、細胞融合剤等を除去する。
[0036] このようにして得られたノヽイブリドーマは、通常の選択培養液、例えば HAT培養液
(ヒポキサンチン、アミノプテリンおよびチミジンを含む培養液)で培養することにより選 択される。上記 HAT培養液での培養は、目的とするハイプリドーマ以外の細胞 (非 融合細胞)が死滅するのに十分な時間(通常、数日〜数週間)継続する。ついで、通 常の限界希釈法を実施し、目的とする抗体を産生するハイブリドーマのスクリーニン グおよび単一クロー-ングを行う。
[0037] 目的とする抗体のスクリーニングおよび単一クローユングは、公知の抗原抗体反応 に基づくスクリーニング方法で行えばよい。例えば、ポリスチレン等でできたビーズや 市販の 96ゥエルのマイクロタイタープレート等の担体に抗原を結合させ、ハイプリドー マの培養上清と反応させ、担体を洗浄した後に酵素標識第 2次抗体等を反応させる ことにより、培養上清中に感作抗原と反応する目的とする抗体が含まれるかどうか決 定できる。目的とする抗体を産生するハイブリドーマを限界希釈法等によりクローニン グすることができる。この際、抗原としては免疫に用いたものを用いればよい。
また、ヒト以外の動物に抗原を免疫して上記ハイプリドーマを得る他に、ヒトリンパ球 を in vitroで PTX3に感作し、感作リンパ球をヒト由来の永久分裂能を有するミエ口 一マ細胞と融合させ、 PTX3への結合活性を有する所望のヒト抗体を得ることもでき る(特公平 1— 59878号公報参照)。さらに、ヒト抗体遺伝子の全てのレパートリーを 有するトランスジヱニック動物に抗原となる PTX3を投与して抗 PTX3抗体産生細胞 を取得し、これを不死化させた細胞力も PTX3に対するヒト抗体を取得してもよい(国 際特許出願公開番号 W094Z25585号公報、 W093Z12227号公報、 W092Z 03918号公報、 WO 94Z02602号公報参照)。
[0038] このようにして作製されるモノクローナル抗体を産生するノ、イブリドーマは、通常の 培養液中で継代培養することが可能であり、また、液体窒素中で長期保存することが 可能である。
[0039] 当該ノ、イブリドーマ力 モノクローナル抗体を取得するには、当該ハイプリドーマを 通常の方法に従い培養し、その培養上清として得る方法、あるいはノ、イブリドーマを これと適合性がある哺乳動物に投与して増殖させ、その腹水として得る方法などが採 用される。前者の方法は、高純度の抗体を得るのに適しており、一方、後者の方法は 、抗体の大量生産に適している。
[0040] これら抗体断片をコードする遺伝子を構築し、これを発現ベクターに導入した後、 適当な宿主細胞で発現させる方法が用 、られる。
[0041] また、これらの抗体は、 PTX3遺伝子によってコードされる蛋白質の全長または一 部を認識する特性を失わない限り、抗体断片 (フラグメント)等の低分子化抗体ゃ抗 体の修飾物などであってもよい。抗体断片の具体例としては、例えば、 Fab, Fab'、 F (ab' ) 2、 Fv、 Diabodyなどを挙げることができる。このような抗体断片を得るには、 ペプシンやパパインにより IgGの Fc部分を消化する方法や、これら抗体断片をコード する遺伝子を構築し、これを発現ベクターに導入した後、適当な宿主細胞で発現さ せればよい(例えば、 Co, M. S. et al. , J. Immunol. (1994) 152, 2968— 297 6 ; Better, M. and Horwitz, A. H. , Methods Enzymol. (1989) 178, 476 -496 ;Pluckthun, A. and Skerra, A. , Methods Enzymol. (1989) 178, 497- 515 ;Lamoyi, E. , Methods Enzymol. (1986) 121, 652— 663 ;Rous seaux, J. et al. , Methods Enzymol. (1986) 121, 663-669 ; Bird, R. E. and Walker, B. W. , Trends Biotechnol. (1991) 9, 132— 137参照)。
[0042] 前記のように産生された抗体は、細胞、宿主動物から分離し均一にまで精製するこ とができる。本発明で使用される抗体の分離、精製はァフィユティーカラムを用いて 行うことができる。例えば、プロテイン Aカラムを用いたカラムとして、 Hyper D、 POR OS、 Sepharose F. F. (GEヘルスケア社製)等が挙げられる。その他、通常のタン パク質で使用されている分離、精製方法を使用すればよぐ何ら限定されるものでは ない。例えば、上記ァフィユティーカラム以外のクロマトグラフィーカラム、フィルター、 限外濾過、塩析、透析等を適宜選択、組み合わせることにより、抗体を分離、精製す ること力 Sでさる (Antibodies A Laboratory Manual. Ed Harlow, David La ne, Cold Spring Harbor Laboratory, 1988)。
[0043] 抗体の修飾物として、標識物質等の各種分子と結合した抗 PTX3抗体を使用する こともできる。本発明における「抗体」にはこれらの抗体修飾物も包含される。このよう な抗体修飾物は、得られた抗体に化学的な修飾を施すことによって得ることができる 。なお、抗体の修飾方法はこの分野においてすでに確立されている。
[0044] < 2. PTX3の測定 >
被検試料に含まれる PTX3タンパク質の検出方法は特に限定されな 、が、抗 PTX 3抗体を用いた免疫学的方法により検出することが好ましい。免疫学的方法としては 、例えば、ラジオィムノアツセィ、ェンザィムィムノアツセィ、蛍光ィムノアツセィ、発光 ィムノアツセィ、免疫沈降法、免疫比濁法、ウェスタンプロット、免疫染色、免疫拡散 法などを挙げることができる力 好ましくはェンザィムィムノアッセィであり、特に好まし
Vヽのは酵素結合免役吸着定量法 (enzvme- linked immunosorbent assays LISA) (例えば、 sandwich ELISA)である。 ELISAなどの上述した免疫学的方法 は当業者に公知の方法により行うことが可能である。
[0045] 抗 PTX3抗体を用いた一般的な検出方法としては、例えば、抗 PTX3抗体を支持 体に固定し、ここに被検試料を加え、インキュベートを行い抗 PTX3抗体と PTX3タン パク質を結合させた後に洗浄して、抗 PTX3抗体を介して支持体に結合した PTX3 タンパク質を検出することにより、被検試料中の PTX3タンパク質の検出を行う方法を 挙げることができる。
[0046] 本発明にお!/、て用いられる支持体としては、例えば、ァガロース、セルロースなどの 不溶性の多糖類、シリコン榭脂、ポリスチレン榭脂、ポリアクリルアミド榭脂、ナイロン 榭脂、ポリカーボネイト樹脂などの合成樹脂や、ガラスなどの不溶性の支持体を挙げ ることができる。これらの支持体は、ビーズやプレートなどの形状で用いることが可能 である。ビーズの場合、これらが充填されたカラムなどを用いることができる。プレート の場合、マルチウエルプレート(96穴マルチウエルプレート等)やバイオセンサーチッ プなどを用いることができる。抗 PTX3抗体と支持体との結合は、化学結合や物理的 な吸着などの通常用いられる方法により結合することができる。これらの支持体はす ベて巿販のものを用いることができる。
[0047] 抗 PTX3抗体と PTX3タンパク質との結合は、通常、緩衝液中で行われる。緩衝液 としては、例えば、リン酸緩衝液、 Tris緩衝液、クェン酸緩衝液、ホウ酸塩緩衝液、炭 酸塩緩衝液、などが使用される。また、インキュベーションの条件としては、すでによく 用いられている条件、例えば、 4°C〜室温にて 1時間〜 24時間のインキュベーション が行われる。インキュベート後の洗浄は、 PTX3タンパク質と抗 PTX3抗体の結合を 妨げないものであれば何でもよぐ例えば、 Tween20等の界面活性剤を含む緩衝液 などが使用される。
[0048] 本発明の PTX3タンパク質測定方法においては、 PTX3タンパク質を検出したい被 検試料の他に、コントロール試料を設置してもよい。コントロール試料としては、 PTX 3タンパク質を含まない陰性コントロール試料や PTX3タンパク質を含む陽性コント口 ール試料などがある。この場合、 PTX3タンパク質を含まない陰性コントロール試料 で得られた結果、 PTX3タンパク質を含む陽性コントロール試料で得られた結果と比 較することにより、被検試料中の PTX3タンパク質を検出することが可能である。また 、濃度を段階的に変化させた一連のコントロール試料を調製し、各コントロール試料 に対する検出結果を数値として得て、標準曲線を作成し、被検試料の数値から標準 曲線に基づいて、被検試料に含まれる PTX3タンパク質を定量的に検出することも可 能である。
[0049] 抗 PTX3抗体を介して支持体に結合した PTX3タンパク質の測定の好ま 、態様と して、標識物質で標識された抗 PTX3抗体を用いる方法を挙げることができる。
[0050] 例えば、支持体に固定された抗 PTX3抗体に被検試料を接触させ、洗浄後に、 PT X3タンパク質を特異的に認識する標識抗体を用いて検出する。
[0051] 抗 PTX3抗体の標識は通常知られている方法により行うことが可能である。標識物 質としては、蛍光色素、酵素、補酵素、化学発光物質、放射性物質などの当業者に 公知の標識物質を用いることが可能であり、具体的な例としては、ラジオアイソトープ (32P、 "C、 125I、 3H、 131Iなど)、フルォレセイン、ローダミン、ダンシルク口リド、ゥンべ リフエロン、ルシフェラーゼ、ペルォキシダーゼ、アルカリホスファターゼ、 βーガラタト シダーゼ、 13 ダルコシダーゼ、ホースラディッシュパーォキシダーゼ、グルコアミラ ーゼ、リゾチーム、サッカリドォキシダーゼ、マイクロペルォキシダーゼ、ビォチンなど を挙げることができる。標識物質としてピオチンを用いる場合には、ピオチン標識抗 体を添加後に、アルカリホスファターゼなどの酵素を結合させたアビジンをさらに添カロ することが好ましい。標識物質と抗 ΡΤΧ3抗体との結合には、ダルタルアルデヒド法、 マレイミド法、ピリジルジスルフイド法、過ヨウ素酸法、などの公知の方法を用いること ができる。
[0052] 抗体の酵素標識法としては、ヒンジ法とノンヒンジ法の 2つが挙げられるがこれらに 限定されない。ヒンジ法は、抗体 IgGの抗原結合能を有する F (ab' ) 2部分との間のヒ ンジ部と呼ばれる部分にあるジルスフイド結合を還元して生成するチオール基を利用 して Fab'と酵素分子を結合する方法である。一方、ノンヒンジ法は、抗体のいずれの 反応基を利用するかは特定しないが、多くの場合、抗体のアミノ基を利用して抗体分 子と酵素分子を結合する方法である。
[0053] 具体的には、抗 PTX3抗体を含む溶液をプレートなどの支持体にカ卩え、抗 PTX3 抗体を支持体に固定する。プレートを洗浄後、タンパク質の非特異的な結合を防ぐた め、例えば BSA、ゼラチン、アルブミンなどでブロッキングする。再び洗浄し、被検試 料をプレートにカ卩える。インキュベートの後、洗浄し、標識抗 PTX3抗体を加える。適 度なインキュベーションの後、プレートを洗浄し、プレートに残った標識抗 PTX3抗体 を検出する。検出は当業者に公知の方法により行うことができ、例えば、放射性物質 による標識の場合には液体シンチレーシヨンや RIA法により検出することができる。 酵素による標識の場合には基質を加え、基質の酵素的変化、例えば発色を吸光度 計により検出することができる。基質の具体的な例としては、 2, 2 アジノビス(3 ェ チルベンゾチアゾリン 6—スルホン酸)ジアンモ -ゥム塩(ABTS)、 1, 2 フエ-レ ンジァミン(オルソ一フエ-レンジァミン)、 3, 3' , 5, 5,一テトラメチルベンジジン (T MB)などを挙げることができる。蛍光物質の場合には蛍光光度計により検出すること ができる。
[0054] 本発明の PTX3タンパク質測定方法の特に好ま 、態様として、例えば、抗体 IgG の抗原結合能とは関係のない Fc部分を除去し、実施例 17に記載の測定抗体の酵 素標識法に記載の方法で標識をした抗体を用いる方法を挙げることができる。
[0055] 具体的には、抗 PTX3抗体を含む溶液をプレートなどの支持体にカ卩え、抗 PTX3 抗体を固定する。プレートを洗浄後、タンパク質の非特異的な結合を防ぐため、例え ば BSAなどでブロッキングする。再び洗浄し、被検試料をプレートに加える。インキュ ペートの後、洗浄し、ペルォキシダーゼ直接標識抗 PTX3抗体を加える。適度なイン キュベーシヨンの後、プレートを洗浄し、酵素に対応した基質を加え、基質の酵素的 変化などを指標に PTX3タンパク質を検出する。
[0056] 本発明の PTX3タンパク質測定方法の他の態様として、 PTX3タンパク質を特異的 に認識する一次抗体を一種類以上、および該一次抗体を特異的に認識する二次抗 体を一種類以上用いる方法を挙げることができる。
[0057] 例えば、支持体に固定された一種類以上の抗 PTX3抗体に被検試料を接触させ、 インキュベーションした後、洗浄し、洗浄後に結合している PTX3タンパク質を、一次 抗 PTX3抗体および該一次抗体を特異的に認識する一種類以上の二次抗体により 検出する。この場合、二次抗体は好ましくは標識物質により標識されている。
[0058] 本発明の PTX3タンパク質の測定方法の他の態様としては、凝集反応を利用した 検出方法を挙げることができる。該方法においては、抗 PTX3抗体を感作した担体を 用いて PTX3を検出することができる。抗体を感作する担体としては、不溶性で、非 特異的な反応を起こさず、かつ安定である限り、いかなる担体を使用してもよい。例 えば、ラテックス粒子、ベントナイト、コロジオン、カオリン、固定羊赤血球等を使用す ることができるが、ラテックス粒子を使用するのが好ましい。ラテックス粒子としては、 例えば、ポリスチレンラテックス粒子、スチレン ブタジエン共重合体ラテックス粒子、 ポリビニルトルエンラテックス粒子等を使用することができる力 ポリスチレンラテックス 粒子を使用するのが好ましい。感作した粒子を試料と混合し、一定時間攪拌する。試 料中に抗 PTX3抗体が高濃度で含まれるほど粒子の凝集度が大きくなるので、凝集 を肉眼でみることにより PTX3を検出することができる。また、凝集による濁度を分光 光度計等により測定することによつても検出することが可能である。
[0059] 本発明の PTX3タンパク質の測定方法の他の態様としては、例えば、表面プラズモ ン共鳴現象を利用したノィォセンサーを用いた方法を挙げることができる。表面ブラ ズモン共鳴現象を利用したバイオセンサーはタンパク質—タンパク質間の相互作用 を微量のタンパク質を用いてかつ標識することなぐ表面プラズモン共鳴シグナルとし てリアルタイムに観察することが可能である。例えば、 BIAcore (Pharmacia社製)等 のバイオセンサーを用いることにより PTX3タンパク質と抗 PTX3抗体の結合を検出 することが可能である。具体的には、抗 PTX3抗体を固定ィ匕したセンサーチップに、 被検試料を接触させ、抗 PTX3抗体に結合する PTX3タンパク質を共鳴シグナルの 変化として検出することができる。
[0060] 本発明の測定方法は、種々の自動検査装置を用いて自動化することもでき、一度 に大量の試料にっ 、て検査を行うことも可能である。
[0061] 本発明は、血管障害の程度の診断薬の提供をも目的とするが、該診断薬は少なく とも抗 PTX3抗体を含む。ここで診断薬には、キットも含まれる。該診断薬が ELISA 法に基づく場合は、抗体を固相化する担体を含んでいてもよぐ抗体があらかじめ担 体に結合して 、てもよ 、。該診断薬力 Sラテックス等の担体を用いた凝集法に基づく場 合は抗体が吸着した担体を含んでいてもよい。また、該診断薬は、適宜、ブロッキン グ溶液、反応溶液、反応停止液、試料を処理するための試薬等を含んでいてもよい 実施例
[0062] 以下、実施例により、本発明を具体的に説明する。但し、本発明はこれらの実施例 に限定されるものでない。
[0063] <実施例 1 PTX3のクローニング>
PTX3の全長 ORF領域を含む配列のクローユングを実施した。ヒト臍帯静脈内皮 細胞(HUVEC)の 1本鎖 cDNAを mRNAから逆転写酵素を用いて合成する。 cDN Aの合成は、 AM V Reverse Transcriptase First― strand cDNA Synthes is Kit (生化学工業社製)等を用いて行う。また、 cDNAの合成および増幅を行うに は、 5,— Ampli FINDER RACE Kit (Clontech製)および PCRを用いた 5,— RACE法(Frohman, M. A. et al. , Proc. Natl. Acad. Sci. USA(1988) 85 , 8998— 9002、 Belyavsky, A. et al. , Nucleic Acids Res. (1989) 17, 29 19— 2932)等を使用することができる。それを铸型として GenBank番号 (NM_00 2852)よりデザインしたプライマー PTX3—F (KpnI) (配列番号 3)と PTX3— R (Ba mHl) (配列番号 4)を用いて、 PCR法にて、全長 ORF遺伝子の単離を行った。 PCR 法により得られたフラグメントを Zero Blunt TOPO PCR Cloning Kitを用いべ クタ一挿入し、塩基配列解析を定法にて実施した後、 Kpnlサイトおよび BamHIサイ トにて切断したフラグメントを phCMVベクター(Stratagene社)へ挿入し、トランスフ ァーベクター phCMV— PTX3を作製した。
[0064] <実施例 2 全長 PTX3発現細胞の構築 >
FuGENE 6 (Roche Molecular Biochemicals社)のプロトコールに準じて、ト ランスフエクシヨン前日に 6ゥエルディッシュに lxlO5 cellの CHO細胞を播種しー晚 培養を行い、翌日に 8 gの発現ベクター phCMV— ΡΤΧ3と 16 μ Lの FuGENE 6 reagentを無血清 DMEM培地 100 μ Lに混合し、 20分間の室温におけるインキュ ベーシヨン後、細胞に添加した。トランスフエクシヨン翌日に限外希釈法および選択試 薬である G418を用いてクローユングを実施した。各クローンの培養上清を回収し、 P TX3タンパク質発現細胞のスクリーニングを行った。その結果、約 2〜3 /ζ 8ΖπΛの ΡΤΧ3タンパク質を恒常的に発現するクローン (以後、 CHO— PTX3という。)を選択 することが出来た。
[0065] く実施例 3 リコンビナント ΡΤΧ3タンパク質の取得 >
蛋白質の精製は Bottazziらの方法(Bottazzi B, Vouret-Craviari, et al. , J
Biol Chem. 1997 ; 272 (52) : 32817- 23.; Hこ準じて実施した。具体的【こ ίま C HO— PTX3を 150cm2のフラスコにて培養の後、ローラーボトノレ(BD Bioscience 社)を用 、 1ボトル当たり 300mLの無血清培地(S— SFM II, GIBCO/lnvitrog en社)を用い、 1分間当たり 1回転になるようにローリングのスピードの調節を行い 4日 間培養し、培養上清を回収した。 1Lの培養上清を、限外濾過膜濃縮装置、 pellicon
XLデバイス バイオマックス 100 (MILLIPORE社)を用いて 50mLまで濃縮を行 つた。濃縮液を 50mM Imidazole, pH6. 6の緩衝液 5Lに対し透析した。透析操作 は同緩衝液に対し、 2度実施した。次いで、 HiPrep 16/10 Q XL (Pharmacia
Biotech, Uppsala, Sweden)を用いたイオン交換クロマトグラフィーにアプライし た。ノ ックグランドレベルが低くなるまで洗浄した後、 NaClの濃度を 0から 0. 58Mに 35分間かけて増加させ、その後 1Mの NaClにて PTX3の溶出を行った。尚、溶出の モニターは 280nmの吸光度にて行った。 PTX3蛋白質を含むフラクションを集め、 S ephacryl S— 300によるゲル濾過クロマトグラフィーを PBSにて展開した。さらに PT X3のうち多量体 PTX3のみを得るために Superose 6column (GEヘルスケア社) を使用して精製した。すなわち、分子量スタンダードを用いキャリブレーションを行つ た後に PTX3をカラムへアプライし、流速 0. 4mLZminにて PBSにより溶出を行った 。各溶出フラクションを SDS— PAGEにより解析を行い、精製リコンビナント多量体 P TX3タンパク質を得た。
[0066] <実施例 4 リコンビナント PTX3タンパク質と臨床検体中 PTX3分子量の同一性 > 実施例 3で得たリコンビナント PTX3タンパク質と臨床検体中の PTX3タンパク質の 分子量を、 Superose 6column (GEヘルスケア社)を使用してゲルろ過を行って得 た分画を用いて解析した。すなわち、分子量スタンダードを用いキャリブレーションを 行った後に、 PTX3濃度が測定限界以下のヒト血漿にリコンビナント PTX3タンパク質 を 30ngZmLになるように添カ卩した試料をカラムにアプライし、流速 0. 3mLZminに て緩衝液(20mM HEPES、 15mM NaCl、 0. 05%アジィ匕ナトリウム、 pH7. 2)に より溶出を行った。 ELISA法により PTX3濃度が lOngZmL検出された臨床検体 (血 漿)を試料として、同じ条件でゲルろ過を行った。各溶出フラクションの PTX3濃度を ELISA法により検出した。
結果、リコンビナント PTX3タンパク質および臨床検体中の PTX3ともに分子量スタ ンダードを用いたキャリブレーションから約 900kDaの溶出フラクションにピークが認 められた。(図 1)
<実施例 5 抗 PTX3モノクローナル抗体の作製 >
モノクローナル抗体は下記の操作により作製した。すなわち、 BalbZCマウス (CRL )あるいは PTX3ノックアウトマウスに PTX3を免疫した。初回免疫には免疫タンパク 質を 100 μ g/匹となるように調製し、 FCA (フロイント完全アジュバント(H37 Ra)、 Difco (3113— 60)、ベタトンディッキンソン(cat # 231131)を用 ヽてエマノレジョン 化したものを皮下に投与した。 2週間後に 50 gZ匹となるように調製したものを FIA (フロイント不完全アジュバント、 Difco (0639— 60)、ベタトンディッキンソン(cat # 2 63910)でェマルジヨン化したものを皮下に投与した。以降 1週間間隔で追加免疫を 合計 2回行った。最終免疫については 50 gZ匹となるように PBSに希釈し尾静脈 内に投与した。 PTX3タンパク質をコートしたィムノプレートを用いた ELISAにより PT X3に対する血清中の抗体価が飽和しているのを確認後、マウスミエローマ細胞 P3U 1とマウス脾臓細胞を混合し、 PEG1500 (ロシュ'ダイァグノスティック、 cat # 783 6 41)により細胞融合を行った。 96穴培養プレートに播種し、翌日より HAT培地で選 択後培養上清を ELISAで以下の通りスクリーニングした。実施例 3に記載の全長 PT X3を固相化し、ハイプリドーマの培養上清を添加してインキュベーションした後、標 識抗マウス抗体により検出を行う抗原固相 ELISA法により行った。
陽性クローンについては限界希釈法によりモノクローン化した後、拡大培養にて培 養し上清を回収した。 ELISAによるスクリーニングは、 PTX3タンパク質との結合活 性を指標に行 、、強 、結合能を有する抗 PTX3抗体を多数得た。
[0068] モノクローナル抗体の精製は HiTrap ProteinG HP (GEヘルスケア社)を用い て行った。ハイプリドーマ培養上清を直接カラムにチャージし、結合緩衝液(20mM リン酸ナトリウム (pH7. 0) )にて洗浄後、溶出緩衝液 (0. 1M グリシン— HCl (pH2 . 7) )で溶出した。溶出液は中和緩衝液(1M Tris-HCl(pH9. 0) )を加えたチュ ーブに採取し、直ちに中和した。抗体溶出画分をプールした後、 0. 05%Tween20 ZPBSで一昼夜透析を行い緩衝液置換した。精製された抗体は 0. 02%となるよう に NaNを添加した後、 4°Cで保管した。
3
[0069] く実施例 6 抗 PTX3モノクローナル抗体のサブクラス >
抗 PTX3抗体のァイソタイピングは、 ImmunoPure Monoclonal Antibody Is otyping Kit II (PIERCE CAT# 37502)を用い、方法は添付のマ-ユアルに 従っておこなった。その結果、 IgGl、 IgG2a、 IgMクラスの抗体が多数得られた。 PP MX104および PPMX105共に IgGlであった。
[0070] <実施例 7 PTX3の N端部分のポリペプチド(N— PTX3)の調製 >
PTX3の N端部分のポリペプチド(N— PTX3)を GST (グルタチオン S—トランス フェラーゼ)融合タンパクとして大腸菌により発現させ、精製した。また、 N— PTX3の 発現ベクターの構築は一般的な方法を用いて行った。すなわち N— PTX3の発現べ クタ一は、全長 PTX3をテンプレートとし塩基配列 1〜522を適当な配列番号 5およ び 6のプライマーを用いて PCR法により増幅を行った。次に、 pENTRTM/D— TO POクロー-ングキット Gateway (R)システム、 pDESTTM24ベクター 0、ずれもイン ビトロジェン社)を用い付属マニュアルの用法容量に従 、ベクターの構築を行った。 構築したベクターを大腸菌 BL21 StarTM (DE3)にトランスフォーメーションし、ァ ラビノースによる発現誘導にて目的の遺伝子発現を行った。次に発現誘導をかけた 大腸菌細胞を回収し、 NP40などの界面活性剤、リゾチームの入ったバッファ一にて 可溶ィ匕を行い、遠心の後、上清を回収し GSTカラムによる精製を行った。すなわち G STセファロースビースに融合タンパク質を結合させ PBSによるビーズ洗浄を行った。 その後、還元型ダルタチオン溶液にて融合タンパク質の溶出を行った。精製されたタ ンパク質の SDS— PAGE電気泳動を行い、純度、分子量などの検定の後、抗原固 相 ELISA用抗原として用いた。
[0071] く実施例 8 PTX3の N端部分のポリペプチド (N— PTX3)を用いたェピトープ解析
>
抗 PTX3モノクローナル抗体(PPMXO 101、 PPMX0102、 PPMX0104、 PPMX 0105)の PTX3タンパク質への結合部位の特定を以下のように行なった。
材料として実施例 3で得た全長 PTX3タンパク質および実施例 7に記載の PTX3の N端部分のポリペプチド (N— PTX3)を用いた。結合部位の特定方法として、一般的 な抗原固相 ELISA法を用いた。すなわち、これらのタンパク質を 5 /z gZmLとなるよ うに調製し、 ELISAプレートに 100 LZwell添カ卩し、 4°C、一晩の反応にて固相化 を行った。翌日、 300 /z LZwellの洗浄バッファー(0. 05% (v/v)Tween20, PBS )で 3回洗浄後、 40%ブロックエース(大日本製薬)を含有する TBS (10mM Tris— HCl, 150mM NaCl, pH7. 5)を 150 L加え、ブロッキングを行った。室温で数 時間後、あるいは 4°Cで一晩保管後、モノクローナル抗体を含有するノ、イブリドーマ の培養上清ある 、は希釈した精製モノクローナル抗体を 100 μ LZwellでカロえ 2時 間室温でインキュベートした。次いで、 10%ブロックエース(大日本製薬)を含有する TBS (10mM Tris -HCl, 150mM NaCl, pH7. 5)で 5000倍に希釈したペル ォキシダーゼ標識抗マウス IgGャギ IgG (Cappel社)を 100 μ LZwellでカ卩ぇ 2時間 室温でインキュベートした。 300 LZwellの洗浄バッファーで 5回洗浄した後、添付 のプロトコールに従 、Scytek社の TMB (Cat # TM4999)を用いて発色させ、マイ クロプレートリーダーで吸光度を測定した。
全長の PTX3タンパク質にて高 、吸光度が得られたモノクローナル抗体につ!、て 認識部位を特定した。
[0072] く実施例 9 全長 PTX3タンパク質を用いたウェスタンブロット法によるェピトープ解 析>
実施例 3で精製した全長リコンビナント PTX3を、還元および非還元条件のサンプ ルバッファーで処理し、 1レーン当たり 60ngをアプライし、 SDS— PAGEを行った。 次いで、 Hybond— ECL (GEヘルスケア社)膜に 38Vで 16時間転写し、タンパク質 を膜にトランスファーした後、ブロックエース(雪印)を用いて室温で 1時間ブロッキン グした。次に抗 PTX3抗体 0. 3 gを、 40%ブロックエース(雪印) ZTBS液に含ま せ、室温で 1時間反応させた後、 TBST(50mM Tris— HCl (pH7. 5) , 150mM NaCl, 0. 05% Tween20)で 5分 x3回洗浄を行った。その後、 HRP標識抗マウス I gG抗体(GEヘルスケア社)を 10%ブロックエース(雪印) ZTBSを用いて 5, 000倍 に希釈した液を加え、室温で 1時間反応させた後 TBSTで 3回洗浄を行った。最後に ECL検出試薬 (GEヘルスケア社)を作用させ、得られたィ匕学発光シグナルを X線フ イルムに 5分感光させた。
還元条件下では、 PPMX0101、 PPMX0102が全長 PTX3と反応し、 PPMX010 4、 PPMX0105には反応性が認められな力つた。非還元条件下では、いずれの抗 体も全長 PTX3と反応した(図 2)。
く実施例 10 PTX3の C端部分のポリペプチド(C— PTX3)の調製〉
PTX3の C端部分のポリペプチド(C— PTX3) (配列番号 2の 179— 381位)の CH O細胞株における強制発現を以下の方法で行った。また、実施例 7で調製した N端 部分のポリペプチド (N— PTX3)とは異なる、配列番号 2の 1— 151位のアミノ酸をコ ードする N端部分のポリペプチド (N— PTX3 (2) )の調製も行った。
まず、実施例 1でクローユングしたヒト PTX3を铸型にして、 PTX3の 179— 381番 目のアミノ酸をコードする cDNAを PCRにより増幅し、 pSG5ベクター (stratagene) の BamHIサイトに挿入して、発現ベクターを構築した。 cDNAを取得する際、 3 '側 に PTX3のシグナルペプチドが付カ卩されるようにプライマーを合成し PCR増幅を行つ た。
CHO細胞における PTX3部分長タンパク質強制発現物の調製は、以下の手順で 行った。 10cm dishに 0. 8 X 106個の CHO細胞を撒き込み、翌日、 FuGENE 6 T ransfection Reagent (Roche)を用いて、 8 μ gのプラスミド DNAをトランスフエクシ ヨンした。
48時間後、細胞をセルスクレーパーで剥がして回収し、 200 μ 1の RIPA buffer (1 OmM Tris— Cl、 150mM NaCl、 5mM EDTA、 1% Triton X— 100、 1% deoxycholate, 0. 1% SDS、 pH7. 4)を加え、氷上で 15分間置き細胞を溶解し た。次いで、 15, 000xg、 15分、 4°Cで遠心を行い、その上清を発現タンパク質溶液 とした。
実施例 7で調製した N端部分のポリペプチド (N— PTX3)とは異なる、配列番号 2 の 1— 151位のアミノ酸をコードする N端部分のポリペプチド(N— PTX3 (2) )は、 C — PTX3と同様の方法により、 1—151位の PTX3部分長ポリペプチドを得た。ただし 、 N端は 1— 17位にシグナルポリペプチドを持っため、シグナルポリペプチドの付カロ は行っていない。
次に、発現物の確認を行った。発現タンパク質試料を還元条件(2— ME添加)また は非還元条件(2— ME非添加)のサンプルバッファーで処理し、 1レーンにつき発現 タンパク質溶液 20 gをアプライし、 SDS-ポリアクリルアミドゲル電気泳動し、 Hybo nd - P(GEヘルスケア)に転写した後、膜を 100%ブロックエース (雪印乳業)に浸して、 室温、 1時間振盪し、ブロッキングを行った。次いで全長 PTX3で感作したマウスより 採取した血清を 40%ブロックエース ZTBS (10mM Tris— Cl、 150mM NaCl、 p H7. 5)に懸濁したものに膜を浸し、室温、 1時間振盪して 1次反応を行った。 TBST (TBS + 0. 1% Tween20)で 5分 x2回洗浄を行った後、 HRP標識抗マウス IgG ( GEヘルスケア、 cat.NA931)を、 10%ブロックエース/ TBSを用いて 5000倍に希 釈した液に膜を浸し、室温、 1時間振盪して 2次反応を行った。 TBST(TBS + 0. 1 % Tween20)で 5分 x3回洗浄を行った後、 ECL (GEヘルスケア)を用いて発色を 行った(図 3)。また、ネガティブコントロールとして、一次抗体として PTX3を認識しな い、 B型肝炎ウィルス S抗原 (HBs抗原)に対するモノクローナル抗体を産生する Hyb 3423の培養上清、二次抗体を抗マウス IgG抗体 (GEヘルスケア社)としてゥエスタ ンブロットを行った(図 4)。
く実施例 11 PTX3の C端部分のポリペプチド(C— PTX3)を用いたェピトープ解 析>
実施例 9で調製した、 N端 (N— PTX3 (2) )及び C端ポリペプチド (C— PTX3)を発 現する CHO細胞溶解液、遺伝子を導入していない CHO細胞の溶解液、精製した 全長リコンビナント PTX3を、還元(2— ME添加)及び非還元(2— ME非添加)条件 のサンプルバッファーで処理し、 1レーン当たり、細胞溶解液は 20 g、全長 PTX3 は 3ngをアプライし、一次抗体を PPMX0104として実施例 9に記載した方法によりゥ エスタンブロットを行った。
[0075] その結果、 PPMX0104は、還元条件下では全長 PTX3、 Ν端部分のポリペプチド
(Ν-ΡΤΧ3 (2) )、 C端部分のポリペプチド (C— ΡΤΧ3)の 、ずれも認識しな力つた。 また、非還元条件下では全長 ΡΤΧ3とのみ反応した(図 5)。
[0076] <実施例 12 全長 ΡΤΧ3タンパク質のプロテアーゼ分解物とモノクローナル抗体の 還元条件下での反応性 >
ΡΤΧ3タンパク質へのより詳細な結合部位の同定を行う為、 ΡΤΧ3を酵素消化によ り断片化し、断片を逆相 HPLCにより分画'分取した。その後、分取したペプチドに対 する反応性を ELISA法で検討した。
まず、 ΡΤΧ3タンパク質を 0. 5Μ Tris-HCl, 6M guanidine— HC1, 10mM EDTA, pH8. 5に溶解し、モル比で PTX3の 315倍量の0 をカ卩ぇ、 37°Cで 2時 間静置し、還元処理を行った。次いで、モル比で DTTの 3. 1倍量の 4ービ-ルーピ リジンを加え、暗所で室温 2時間静置し、 SH基のピリジルェチルイ匕を行った。次に、 これを純水、次いで 50mM Tris-HCl, 3M urea, pH9. 0に対して透析し、モル 比で PTX3の 50分の 1になるように、 Lysyl Endopeptidase (和光純薬)を加え、 3 7°C、 18時間の反応を行い、 PTX3タンパク質の酵素切断を行った。酵素消化物を、 Symmetry300 C 18カラム(Waters)にアプライし、 150分にわたるァセトニトリル の 0— 60%グラジェントで溶出(流速 0. 8mLZ分)を行い、溶出された断片を分取し た(図 6)。これらの断片を PBSで 50倍に希釈し、 ELISAプレートに 100 μ L/well 添加し、 4°C一晩の反応にて固相化を行った。 ELISA法は次の通り行った。固相化 を行った後、 300 /z LZwellの洗浄バッファー(0. 05% (v/v)Tween20, PBS)で 3回洗浄後、 40%ブロックエース(大日本製薬)を含有する TBS (10mM Tris— H CI, 150mM NaCl, pH7. 5)を 150 Lカロえ、ブロッキングを行った。室温で数時 間後、あるいは 4°Cでー晚保管後、 PPMX0104または PPMX0105抗体をブロッキ ング液と同一の溶液に最終濃度 10 μ gZmLとして溶解したものを 100 μ LZwell加 え、室温で 2時間インキュベートした。次いで、 10%ブロックエース(大日本製薬)を 含有する TBS (10mM Tris-HCl, 150mM NaCl, pH7. 5)で 5, 000倍に希 釈したペルォキシダーゼ標識抗マウス IgGャギ IgG (Cappel社)を 100 μ LZwellで 加え 2時間室温でインキュベートした。 300 μ LZwellの洗浄バッファーで 5回洗浄し た後、添付のプロトコールに従 、Scytek社の TMB (Cat # TM4999)を用いて発色 させ、マイクロプレートリーダーで吸光度を測定した。
その結果、酵素切断後のペプチドに対しては全く反応しなかった(図 7および図 8) 。この事から、 PPMX0104および PPMX0105は、 PTX3の立体構造を認識する抗 体であると推定出来た。また、 PPMX0104および PPMX0105は、酵素切断以前、 即ち還元ピリジルェチルイ匕した PTX3に対して、既に反応性をほぼ失って!/ヽたことか らも、 S— S結合によって構成される PTX3の立体構造を認識する抗体であることが分 かる。
[0077] <実施例 13 全長 PTX3タンパク質のリジルエンドべプチダーゼ分解物とモノクロ一 ナル抗体の非還元条件下での反応性 >
実施例 3で得た全長 PTX3タンパク質をリジルエンドべプチダーゼ(lysyl endopep tidase、和光純薬)を用いて 200mMトリス塩酸緩衝液中で 0、 0. 5、 1、 2、 4、 8時間 の消化時間を設定し、 30°Cで消化した。消化時間経過後に DFP (フルォロリン酸ジ イソプロピル)添カ卩により消化をストップし、消化試料を SDS— PAGE電気泳動により 分画し、クマシ一ブリリアントブルー (CBB)でゲルを染色し PTX3が切断されて!、るこ とを確認した(図 9)。
リジルエンドべプチダーゼ消化した試料を用いて通常の固相 ILISA法によって抗 P TX3モノクローナル抗体 PPMX0104、 PPMX0105との反応性を確認した。具体的 には、リジルエンドべプチダーゼ消化した試料を ELISAプレートに固相化し、一次抗 体として PPMX0104または PPMX0105を反応させ、ホースラディッシュペルォキシ ダーゼ標識抗マウス Igャギ抗体 (GEヘルスケア社)を二次抗体として ELISA法を行 つた。 PTX3のリジルエンドべプチダーゼ消化時間と ELISA法の結果との関係を図 1 0、図 11に示す。
[0078] これらの結果から、 PTX3の立体構造を認識するモノクローナル抗体を産生する P PMX0104および PPMX0105のハイブリドーマは、それぞれ FERM BP— 10719 および FERM BP— 10720として (独)産業技術総合研究所 特許生物寄託センタ 一 (住所:〒 305— 8566 日本国茨城県つくば巿東 1— 1— 1 中央第 6)に寄託した (寄託日:平成 17 (2005)年 9月 22日)。
[0079] <実施例 14 PTX3モノクローナル抗体の解離定数の測定 >
結合定数の測定は、 BIAcore3000システム (BIAcore, Uppsala, Sweden)を用 いて行った。まず、センサーチップ CM5に、抗マウス IgG抗体を NHSZEDCカップ リング法を用いて固定化した。次に、抗 PTX3抗体(PPMX0104、 PPMX0105)を HBS -EP bufferdOmM HEPES, pH7. 4, 150mM NaCl, 3mM EDTA , 0. 005% surfactant P20)に lOugZmlで懸濁させたものをインジェクションし、 数百 RU程度の抗体を固定化した。次いで、リコンビナント PTX3を HBS— EP buff erに懸濁させたものをインジェクションし、結合 ·解離を測定した後、解析プログラム( BIA evaluation)を用いて解離定数を求めた。
[0080] その結果、今回作製した PPMX0104および PPMX0105のいずれも低い解離定 数を示した力 中でも PPMX0104は最も低い解離定数を示し、高い親和性を示すこ とが示された。(表 1)。
[0081] [表 1] 抗 ΡΠ3抗体の解離定数
Figure imgf000027_0001
[0082] <実施例 15 抗 PTX3モノクローナル抗体の SAPおよび CRPとの交差反応性 >
PPMX0104および PPMX0105の SAPおよび CRPとの交差反応性の確認は、一 般的な抗原固相化 ELISA法によった。すなわち、全長 PTX3タンパク質、ヒト CRP ( 日本バイオテスト研究所)、ヒト SAP (和光純薬)を 5 μ g/mLとなるように調製し、 EL ISAプレートに 100 LZwell添カ卩し、 4°C一晩の反応にて固相化を行った。翌日、 300 1^7 611の洗浄バッファー(0. 05% (v/v)Tween20, PBS)で 3回洗浄後、 40%ブロックエース(大日本製薬)を含有する TBS (10mM Tris—HCl, 150mM NaCl, pH7. 5)を 150 L加え、ブロッキングを行った。室温で数時間後、あるい は 4°Cで一晩保管後、モノクローナル抗体を含有するハイプリドーマの培養上清ある いは希釈した精製モノクローナル抗体を 100 μ LZwellでカ卩ぇ 2時間室温でインキュ ペートした。次 、で、 10%ブロックエース(大日本製薬)を含有する TBS (10mM Tr is-HCl, 150mM NaCl, pH7. 5)で 5, 000倍に希釈したペルォキシダーゼ標識 抗マウス IgGャギ IgG (Cappel社)を 100 μ LZwellでカ卩ぇ 2時間室温でインキュべ ートした。 300 LZwellの洗浄バッファーで 5回洗浄した後、添付のプロトコールに 従!/ヽ Scytek社の TMB (Cat #TM4999)を用いて発色させ、マイクロプレートリーダ 一で吸光度を測定した。
モノクローナル抗体 PPMX0104および PPMX0105は、全長 PTX3に強く反応し た力 SAPおよび CRPには全く反応しなかった(表 2)。
[0083] [表 2]
PPMX0104および TPMX0105の ΡΠ3、 CRPおよび SAPに対する反 応性
Figure imgf000028_0001
[0084] <実施例 16 抗体の F (ab,)2化 >
抗体の F (ab ' ) 2化は下記のように実施した。実施例 4記載のモノクローナル抗体の 作製方法により精製された抗体を希薄なバッファー(5mM Tris-HCl, 150mM NaCl, pH7. 5)に対し透析を行なった。サブクラス IgGlの抗体に対しては pH3. 7 並びに IgG2aの抗体に対しては pH4. 0の Pepsin消化用バッファー(0. 2M Sodiu m citrate buffer)を用い 2倍希釈し、 37°Cにて 5分間加温した。次に、 pH4. 0の Pepsin消化用バッファ一にて lOmgZmLもしくは lmgZmLのペプシン溶液を調製 し、加温された試料に対しペプシン溶液を IgGlについては質量比 130 : 1 (抗体: Pe psin)、 IgG2aについては質量比 8 : 1 (抗体: Pepsin)となるように加えた。ペプシン 溶液を添加後、 37°Cにて 2時間半インキュベーションした。そして、 10分の 1容量の 2 M Trisを添加し消化反応を停止した。
[0085] <実施例 17 抗体の標識 > 抗体の直接標識には一般的にアルカリホスファターゼ、ペルォキシダーゼなどの酵 素を過ヨウ素酸法やマレイミド法などによりアミノ基、 SH基に結合させる方法がとられ る。実施例 12で調製した抗体に対して、 Peroxidase Labelling Kit SH ( (株) 同仁ィ匕学)を用い、キット付属のマニュアルの用法容量に従いマレイミド法により SH 基にペルォキシダーゼ標識を施した。
[0086] <実施例 18 ELISA系の構築と測定 >
血中の PTX3タンパク質を検出するため、 PTX3のサンドイッチ ELISA系を以下の ように構築した。すなわち、 96ゥエルプレートにコートする抗体には F (ab' ) 2化 PPM X0104を 5 μ g/m 100 μ L/well、 4°C、ー晚インキュベーションし固相化を行 つた o
[0087] 翌日 300 LZwellの洗浄緩衝液 (0. 05% (v/v) Tween20, PBS)で 3回洗浄 後、 ABI社のィムノアッセィスタビライザー(ABI # 10— 601— 001)を 150 Lカロえ 、ブロッキングを行った。室温で数時間後、あるいは 4°Cで一晩保管後、精製蛋白質 、ヒト血清などを、動物血清などを含む希釈緩衝液(50mM Tris-Cl pH8. 0, 0. 15M NaCl)で適当に希釈したものをカ卩ぇ 2時間室温でインキュベートした。次いで 、動物血清などを含む PBS (—)で 20 /z gZmLとなるように希釈した HRPO (ホース ラディッシュペルォキシダーゼ)標識 Fab '化 PPMX0105抗体をカ卩ぇ 2時間室温でィ ンキュペートした。反応液を捨てた後、 300 LZwellの洗浄緩衝液で 5回洗浄した 後、添付のプロトコールに従 、Scytek社の TMB (Cat # TM4999)を用いて発色さ せ、マイクロプレートリーダーで吸光度を測定した。サンプル中の PTX3タンパク質濃 度の換算には、表計算ソフト GlaphPad PRISM (GlaphPad software Inc. ver . 3. 0)を用いて解析した。
[0088] <実施例 19 従来の測定系との標準曲線の比較 >
ELISAの標準曲線は濃度検定された PTX3タンパク質標準品 (ALEXIS社)を用 いて、 3、 1. 1、 0. 37、 0. 12、 0. 041、 0. 014、 0. 005ngZmLの標準品希釈液 を用いて作製した。さらに、 ELISAの感度比較のため WO2005Z080981号パンフ レットにおいて患者血中濃度を測定したキットを用いて上記と同様に標準曲線を求め 今回作製した複数の測定系と WO2005Z080981号パンフレットで使用の抗体に よる測定との比較において、プレートにコートする抗体に PPMX0104、標識抗体とし て PPMX0105を使用したキットにおいて明らかに新規測定系の感度がすぐれてい ることが確認できた(図 12)。
尚、従来の測定系使用抗体の認識部位が、 PTX3分子の N端部位を認識する抗 体であったのに対し、新たな測定キット使用の PPMX0104および PPMX0105は P TX3の立体構造ェピトープを認識する抗体であった。
<実施例 20 従来測定系との比較 (添加回収試験および再現性試験) >
添加回収試験および再現性試験は、上記同様、 ELISAの感度比較のために WO 2005Z080981において患者血中濃度を測定したキットを用いて測定も同時に行 い比較検討用データを採取した。実際、添カ卩回収試験に用いた試料は以下のよう〖こ 調製を行なった。すなわち、リファレンスとなる試料には検体希釈バッファーに、対照 となる試料には 8種類のヒト血漿サンプルに抗原を最終濃度 2、 5、 10ng/mLとなる ように添加し調整を行なった。また、再現性試験については、 6人の健常者から調製 された血漿サンプル、 3種類の不安定狭心症患者力 調製された血漿サンプルを用 い後述の方法に従い測定を行なった。測定方法は以下の通りである。すなわち、検 体希釈バッファー 100 μ Lを注入したゥエルに、調整をしたサンプル 10 μ Lを注入し 室温 1時間の振盪反応を行った。次に、プレートを洗浄液 (PBS, 0. 05% Tween2 0)で 5回洗浄後、標識抗体液を各ゥエルに 100 L注入し、室温にて 1時間の振盪 反応を行なった。反応後、プレートを洗浄液で 5回洗浄し、 TMB発色液 (Scy Tek Laboratories)を各ゥエルに 100 /z L注入し、室温にて 30分間反応させ、反応停止 液(Scy Tek Laboratories)を各ゥエルに 100 μ L注入し反応を停止させマイクロ プレートリーダーにて 450nmの波長の吸光度測定を行なった。
その結果、新規測定系における添加回収は低濃度から高濃度の!/、ずれにぉ 、て も良好な回収率を示したのに対し、既存測定系では低濃度の添カ卩において低い回 収率であった (表 3)。一方、再現性試験において、新規測定系で良好な CV値が得 られたのに対し、既存測定系では低濃度の PTX3添カ卩時特に無添カ卩時に高い CV 値であった (表 4)。これらの結果は、新規測定系の開発により高感度で精度ある測定 を可能にできたことを示して 、る
[表 3]
添加回収試験における従来測定系との比較
Figure imgf000031_0001
表 4] 試料 既存測定系吸光度値 新規測定系吸光度値
Mean SD CV(%) Mean SD CV(%)
Ong/ml 0.014 0.00141 10.1 0.013 0.00055 4.3
0.125ng/ml 0.037 0.00281 7.6 0.035 2.0 標準物質 0.25ng/ml 0.063 0.00191 3.0 0.055 0.00084 1.5 (リコンビナ ng/ml 0.184 0.00636 3.5 0.174 0.9 ン卜 PTX3) 4ng/ml 0.634 0.05162 8.1 0.623 0.00592 0.9
10ng/ml 1.446 0.07283 5.0 1.430 0.01841 1.3
16ng ml 2.327 0.02263 1.0 2.172 0.01736 0.8
1 0.147 0.00483 3.3 0.124 1.6
2 0.142 0.00636 4.5 0.124 0.00207 1.7 健常人 3 0.130 0.00354 2.7 0.108 0.00217 2.0 血漿検体 4 0.282 0.00424 1.5 0.226 0.00336 1.5
5 0.269 0.01485 5.5 0.224 0.00385 1.7
6 0.145 0.00441 3.0 0.00365 3.2 狭心症 1 0.737 0.02831 3.8 0.594 0.00646 1.1 血漿検体 2 0.02242 2.3 0.825 0.00466 0.6 <実施例 21 心疾患患者血液中 PTX3の測定 >
p
健康なヒトと心疾患患者の血中 PTX3濃度を比較するために、現在治療中の疾患 がない健康なヒトの末梢血力も採取した血漿検体 92検体 (Normal)、胸痛症状をも
Ό o
つ心疾患患者 (胸痛症状を訴え、症状、負荷心電図、負荷心筋シンチレーシヨンの 検査結果力 狭心症が疑われたが、冠動脈造影の結果動脈硬化は認められず、循 環器内科の専門医による診断により狭心症が否定された患者)の冠動脈力 採取し た血漿検体 31検体 (Chest Pain)、安定狭心症患者の冠動脈力も採取した血漿検 体 24検体(Stable Angina)につ 、て実施例 18で作製した新規測定キットを用いて 測定を行なった。
具体的には、抗体固相化プレートに 100 Lの検体希釈バッファーを各ゥエルに注 入し、標準品および検体を各ゥエルに 10 L注入後、室温にて 1時間の振盪反応を 行なった。次に、プレートを洗浄液 (PBS, 0. 05% Tween20)で 5回洗浄後、標識 抗体液を各ゥエルに 100 L注入し、室温にて 1時間の振盪反応を行なった。反応 後、プレートを洗浄液で 5回洗浄後、 TMB発色液(Scy Tek Laboratories)を各 ゥエルに 100 L注入し、室温にて 30分間反応させ、反応停止液(Scy Tek Labo ratories)を各ゥエルに 100 μ L注入し反応を停止させマイクロプレートリーダーにて 450nmの波長の吸光度測定を行なった。
その結果、 Normalの平均値が 1. 27ngZmL、胸痛(Chest Pain)の平均値が 2 . 57ngZmL、安定狭心症(Stable Angina)の平均値が 3. 13ngZmLとなり健常 人(Normal)と胸痛(Chest Pain)、健常人(Normal)と安定狭心症(Stable Ang ina)の間には有意差(pく 0. 0001)が認められた(図 13)。
以上のことから、本発明の抗 PTX3モノクローナル抗体を用いて血液中 PTX3濃度 を測定することにより軽度の血管障害と判定することができることが認められた。
<実施例 22 冠動脈病変枝数と血液中 PTX3濃度 >
心疾患の程度と血液中 PTX3濃度の関連を検討するために、心疾患患者の血液 中 PTX3濃度の測定を実施例 18で作製した新規測定キットを用いて行った。本研究 に用いた検体は、冠動脈病変無しと診断されたヒトの末梢血カゝら採取した血漿検体 4 4検体 (OVD)、 1つの冠動脈において病変が確認された患者力 採取した血漿検体 15検体(1VD)、 2つの冠動脈において病変が確認された患者力 採取した血漿検 体 22検体(2VD)、および 3つの冠動脈において病変が確認された患者力 採取し た血漿検体 11検体(3VD)につ 、て PTX3の測定を実施例 17の測定方法に従 、実 施した。その結果、 PTX3濃度は、 0VDの平均値が 1. 49ngZmL、 1VDの平均値 が 1. 73ngZmL、 2VDの平均値が 2. 03ng/mL,および 3VDの平均値が 2. 29η gZmLとなり、 OVDと 2VDの測定値の間に P = 0. 05、 OVDと 3VDの間に P = 0. 0 1でそれぞれ有意差が認められた(図 14)。
以上のことから、本発明の抗 PTX3モノクローナル抗体を用いて血液中 PTX3濃度 が高まるにつれ、心疾患の程度、例えば冠動脈病変の程度が重篤になるという相関 が認められた。

Claims

請求の範囲
[I] 抗 PTX3モノクローナル抗体を用いて被検試料中の PTX3濃度を測定することを特 徴とする、軽度の血管障害の程度の判定方法。
[2] 軽度の血管障害が、心疾患、脳疾患における軽度の血管障害である請求項 1記載 の判定方法。
[3] 心疾患における軽度の血管障害が冠動脈病変である請求項 2記載の判定方法。
[4] 被検試料が、血液、血清または血漿である請求項 1〜3のいずれか 1項記載の判定 方法。
[5] 支持体に固定した抗 PTX3モノクローナル抗体と標識物質で標識された抗 PTX3 モノクローナル抗体を用いる請求項 1〜4の 、ずれか一項記載の判定方法。
[6] 抗 PTX3モノクローナル抗体力 PTX3の立体構造ェピトープを認識する抗 PTX3 モノクローナル抗体またはそのフラグメントである請求項 1〜5のいずれ力 1項記載の 判定方法。
[7] 抗 PTX3モノクローナル抗体が、 PPMXO 104 (FERM BP— 10719)および PP
MX0105 (FERM BP— 10720)の産生物である請求項 1〜6の!、ずれか 1項記載 の判定方法。
[8] 抗 PTX3モノクローナル抗体またはそのフラグメントを含有する、軽度の血管障害の 程度の診断薬。
[9] 支持体に固定した抗 PTX3モノクローナル抗体と、標識物質で標識された抗 PTX3 モノクローナル抗体を含むものである請求項 8記載の診断薬。
[10] 抗 PTX3モノクローナル抗体力 PTX3の立体構造ェピトープを認識するモノクロ ーナル抗体である請求項 8または 9記載の診断薬。
[II] 抗 PTX3モノクローナル抗体が、 PPMX0104 (FERM BP— 10719)および PP MX0105 (FERM BP— 10720)の産生物である請求項 10記載の診断薬。
[12] PTX3の立体構造ェピトープを認識することを特徴とする抗 PTX3モノクローナル 抗体またはそのフラグメント。
[13] ハイプリドーマ PPMX0104 (FERM BP— 10719)およびハイプリドーマ PPMX0
105 (FERM BP- 10720)が産生するモノクローナル抗体である請求項 12記載の 抗 PTX3モノクローナル抗体。
[14] PTX3の立体構造ェピトープを認識する抗 PTX3モノクローナル抗体またはそのフ ラグメントを産生するハイプリドーマ。
[15] ハイプリドーマが、 PPMX0104 (FERM BP— 10719)およびハイプリドーマ PP
MX0105 (FERM BP— 10720)である請求項 14記載のハイプリドーマ。
exidcoo .
リコンビナント PTX ンパク質添加血漿 +臨床検体血漿
Figure imgf000036_0001
0 20 30 40 50 60 70 80
溶出フラクション No.
¾ % % %義— ,
Figure imgf000037_0001
Figure imgf000037_0002
Figure imgf000037_0003
3/14
PCT/JP2006/322505 元条件 (÷2- E) 非還元条件 (2 E)
A B C D A' B' C' D,
Figure imgf000038_0001
4/14 55340 PCT/JP2006/322505 還元条件 (*2- E) 非還元条件 (2闞 E)
I 1 I 1
A B C D A' B' C' D'
Figure imgf000039_0001
5/14
WO 2007/055340 PCT/JP2006/322505
[図 5]
還元条件 (÷2關 E) 非還元条件
Figure imgf000040_0001
Figure imgf000041_0001
215nmにおける吸光度
o o o o p p o p p ^- 菊 ff¾3 ()
28060 0.10040100141601200
I
Figure imgf000041_0002
ァセ卜二トリル (%)
[9园
1/9
d OWSSO/ OOZ OAV 7/14
O 2007/055340 PCT/JP2006/322505]
A450
O h CO
PIM0X10U
intact
ピリジルェチル化済
み、酵素消化前
Figure imgf000042_0001
8/14
WO 2007/055340 PCT/JP2006/322505
[図 8]
A450
ピリジルェチル化済
素消化前
Figure imgf000043_0001
Figure imgf000044_0001
3 124786 10/14
ssxwdd ]
Figure imgf000045_0001
差替え用紙 (規則 26) 1]
toidd ss
Figure imgf000046_0001
差替え用紙 (規則 26) 12/14 図 12]
Figure imgf000047_0001
差替え用紙 (規則 26)
Figure imgf000048_0001
(n=92) (n=31) (n=24)
14/14
Figure imgf000049_0001
差替え用紙 (規則 26)
PCT/JP2006/322505 2005-11-11 2006-11-10 Ptx3高感度測定法 WO2007055340A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP06832519A EP1947460B1 (en) 2005-11-11 2006-11-10 Method of measuring ptx3 with high sensitivity
US12/092,272 US7955807B2 (en) 2005-11-11 2006-11-10 Method of measuring PTX3 with high sensitivity
JP2007544209A JP5137015B2 (ja) 2005-11-11 2006-11-10 Ptx3高感度測定法

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2005326987 2005-11-11
JP2005-326987 2005-11-11
JP2006109443 2006-04-12
JP2006-109443 2006-04-12

Publications (1)

Publication Number Publication Date
WO2007055340A1 true WO2007055340A1 (ja) 2007-05-18

Family

ID=38023333

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/322505 WO2007055340A1 (ja) 2005-11-11 2006-11-10 Ptx3高感度測定法

Country Status (4)

Country Link
US (1) US7955807B2 (ja)
EP (1) EP1947460B1 (ja)
JP (1) JP5137015B2 (ja)
WO (1) WO2007055340A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011524531A (ja) * 2008-06-20 2011-09-01 エフ.ホフマン−ラ ロシュ アーゲー ペントラキシン3(ptx3)を使用する薬物安全性試験

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI741216B (zh) * 2017-09-19 2021-10-01 臻崴生物科技有限公司 專一性抑制或減緩ptx3與ptx3受體結合之單株抗體或其抗原結合片段及其用途
TWI754171B (zh) * 2018-09-14 2022-02-01 臻崴生物科技有限公司 含單株抗體或其抗原結合片段之醫藥組成物及其用途
CN110514844A (zh) * 2019-08-14 2019-11-29 湖南山河生物医学技术孵化中心(有限合伙) 一种人五聚素3磁微粒化学发光免疫定量检测试剂盒及其制备方法
CN111024956A (zh) * 2019-12-31 2020-04-17 江苏美克医学技术有限公司 一种检测ptx3的时间分辨荧光免疫层析试剂盒

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07209293A (ja) * 1994-01-20 1995-08-11 Teijin Ltd 活性化プロテインcの測定方法
JP2000297098A (ja) * 1999-04-13 2000-10-24 Welfide Corp 抗mcp−1抗体認識ペプチドミミックス、その製造方法およびその用途
WO2001025427A1 (fr) * 1999-10-01 2001-04-12 Kyowa Hakko Kogyo Co., Ltd. Adn reagissant a la contrainte de cisaillement
WO2005080981A1 (ja) * 2004-02-25 2005-09-01 Perseus Proteomics Inc. 血管障害の程度の判定方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4025400B2 (ja) * 1997-04-16 2007-12-19 財団法人化学及血清療法研究所 新規免疫制御分子及びその製造方法
JPH1111494A (ja) 1997-06-19 1999-01-19 Takako Hashimoto 袋の集合体
US20040137544A1 (en) * 2002-10-31 2004-07-15 Roberto Latini PTX3 as an early prognostic indicator of cardiovascular and cerebrovascular pathologies
ITMI20040858A1 (it) * 2004-04-29 2004-07-29 Farma Dev S R L Anticorpi monoclonali ibridomi metodo migliorato per determinare la proteina ptx3 e kit per detta determinazione

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07209293A (ja) * 1994-01-20 1995-08-11 Teijin Ltd 活性化プロテインcの測定方法
JP2000297098A (ja) * 1999-04-13 2000-10-24 Welfide Corp 抗mcp−1抗体認識ペプチドミミックス、その製造方法およびその用途
WO2001025427A1 (fr) * 1999-10-01 2001-04-12 Kyowa Hakko Kogyo Co., Ltd. Adn reagissant a la contrainte de cisaillement
WO2005080981A1 (ja) * 2004-02-25 2005-09-01 Perseus Proteomics Inc. 血管障害の程度の判定方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
"Medical Dictionary", 1990, NANZANDO
See also references of EP1947460A4

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011524531A (ja) * 2008-06-20 2011-09-01 エフ.ホフマン−ラ ロシュ アーゲー ペントラキシン3(ptx3)を使用する薬物安全性試験
JP2012230118A (ja) * 2008-06-20 2012-11-22 F. Hoffmann-La Roche Ag ペントラキシン3(ptx3)を使用する薬物安全性試験

Also Published As

Publication number Publication date
EP1947460B1 (en) 2012-05-30
JP5137015B2 (ja) 2013-02-06
US20100062449A1 (en) 2010-03-11
US7955807B2 (en) 2011-06-07
EP1947460A1 (en) 2008-07-23
JPWO2007055340A1 (ja) 2009-04-30
EP1947460A4 (en) 2009-02-18

Similar Documents

Publication Publication Date Title
WO1994004563A1 (en) PEPTIDES CONTAINING RESPECTIVE AMINO ACID SEQUENCES SELECTED FROM AMONG THOSE OF LIPOPROTEIN(a) AND APOLIPOPROTEIN(a), ANTIBODIES RESPECTIVELY RECOGNIZING THESE AMINO ACID SEQUENCES, AND METHOD OF ASSAYING WITH THESE ANTIBODIES
US9347954B2 (en) Antibody capable of binding to specific region of periostin, and method of measuring periostin using the same
KR20170002500A (ko) 항muc1 항체 또는 그의 항원 결합성 단편 및 그 용도
JP2009020049A (ja) 脳血管疾患の診断方法
JP2018524585A (ja) Pla2r1エピトーププロファイルおよびpla2r1エピトープスプレッディングの分析に基づく膜性腎症の予後およびモニタリング
EP2159577A1 (en) Novel marker for arteriosclerotic disease
JP5002001B2 (ja) インスリンレセプターαサブユニットの測定方法
JP5137015B2 (ja) Ptx3高感度測定法
US8865871B2 (en) Antibodies and kits for immunodetection of epitope tags
CN108026522B (zh) 特异性纯化的抗普莱晒谱星抗体
JP5280214B2 (ja) 炎症性腸疾患の診断方法
JP2915530B2 (ja) ラミニン フラグメント
JP2009288219A (ja) 心血管イベント発症リスクの診断方法
US20230296594A1 (en) Method for measuring fragments containing human type iv collagen 7s domain and kit for use therein
JP5593502B2 (ja) ケマリン濃度の測定方法
WO2008012941A1 (fr) Méthode de diagnostic d&#39;une insuffisance cardiaque
JP3023103B2 (ja) ラミニンフラグメント測定方法
JP4803943B2 (ja) 肝細胞増殖因子活性化因子阻害因子−1に対する抗体とその用途
KR101416777B1 (ko) 방사선 피폭에 의한 심장 손상 또는 폐 손상 예측용 바이오마커 및 그 예측방법
JP2868841B2 (ja) Gmp異常症の検出方法及びキット
JP2002308900A (ja) 抗ヒト肝性トリグリセリドリパーゼ抗体
JP2005154389A (ja) Cd44の形態を識別する抗体
JPH0342572A (ja) ラミニン測定試薬
WO2006121047A1 (ja) 生体試料中メグシンの測定方法
JP2011251969A (ja) 抗ヒト肝性トリグリセリドリパーゼ抗体

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
ENP Entry into the national phase

Ref document number: 2007544209

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2006832519

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 12092272

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE