WO2007055110A1 - レーザ光源のスタンバイ方法 - Google Patents

レーザ光源のスタンバイ方法 Download PDF

Info

Publication number
WO2007055110A1
WO2007055110A1 PCT/JP2006/321472 JP2006321472W WO2007055110A1 WO 2007055110 A1 WO2007055110 A1 WO 2007055110A1 JP 2006321472 W JP2006321472 W JP 2006321472W WO 2007055110 A1 WO2007055110 A1 WO 2007055110A1
Authority
WO
WIPO (PCT)
Prior art keywords
laser light
light source
wavelength conversion
laser
temperature
Prior art date
Application number
PCT/JP2006/321472
Other languages
English (en)
French (fr)
Inventor
Akira Tokuhisa
Yasutoshi Takada
Original Assignee
Nikon Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corporation filed Critical Nikon Corporation
Priority to JP2007544093A priority Critical patent/JP5194795B2/ja
Priority to US11/992,321 priority patent/US7974320B2/en
Priority to CN2006800342873A priority patent/CN101268416B/zh
Priority to KR1020087003686A priority patent/KR101527224B1/ko
Priority to EP06832396A priority patent/EP1947506B1/en
Publication of WO2007055110A1 publication Critical patent/WO2007055110A1/ja
Priority to IL190455A priority patent/IL190455A/en
Priority to HK08110998.3A priority patent/HK1115199A1/xx
Priority to US13/154,705 priority patent/US9083151B2/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/10Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/23Arrangements of two or more lasers not provided for in groups H01S3/02 - H01S3/22, e.g. tandem arrangements of separate active media
    • H01S3/2383Parallel arrangements
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/35Non-linear optics
    • G02F1/353Frequency conversion, i.e. wherein a light beam is generated with frequency components different from those of the incident light beams
    • G02F1/3534Three-wave interaction, e.g. sum-difference frequency generation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/005Optical devices external to the laser cavity, specially adapted for lasers, e.g. for homogenisation of the beam or for manipulating laser pulses, e.g. pulse shaping
    • H01S3/0092Nonlinear frequency conversion, e.g. second harmonic generation [SHG] or sum- or difference-frequency generation outside the laser cavity
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/10Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
    • H01S3/10007Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating in optical amplifiers
    • H01S3/10015Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating in optical amplifiers by monitoring or controlling, e.g. attenuating, the input signal
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/23Arrangements of two or more lasers not provided for in groups H01S3/02 - H01S3/22, e.g. tandem arrangements of separate active media
    • H01S3/2375Hybrid lasers
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/35Non-linear optics
    • G02F1/353Frequency conversion, i.e. wherein a light beam is generated with frequency components different from those of the incident light beams
    • G02F1/3532Arrangements of plural nonlinear devices for generating multi-colour light beams, e.g. arrangements of SHG, SFG, OPO devices for generating RGB light beams
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/35Non-linear optics
    • G02F1/353Frequency conversion, i.e. wherein a light beam is generated with frequency components different from those of the incident light beams
    • G02F1/354Third or higher harmonic generation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/005Optical devices external to the laser cavity, specially adapted for lasers, e.g. for homogenisation of the beam or for manipulating laser pulses, e.g. pulse shaping
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/06Construction or shape of active medium
    • H01S3/063Waveguide lasers, i.e. whereby the dimensions of the waveguide are of the order of the light wavelength
    • H01S3/067Fibre lasers
    • H01S3/06754Fibre amplifiers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/06Arrangements for controlling the laser output parameters, e.g. by operating on the active medium
    • H01S5/0607Arrangements for controlling the laser output parameters, e.g. by operating on the active medium by varying physical parameters other than the potential of the electrodes, e.g. by an electric or magnetic field, mechanical deformation, pressure, light, temperature
    • H01S5/0612Arrangements for controlling the laser output parameters, e.g. by operating on the active medium by varying physical parameters other than the potential of the electrodes, e.g. by an electric or magnetic field, mechanical deformation, pressure, light, temperature controlled by temperature

Definitions

  • the present invention relates to a laser light source that amplifies laser light generated by a semiconductor laser force using an optical fiber amplifier and then forms deep ultraviolet light by a wavelength conversion optical system using a wavelength conversion element. This is related to a method for making the device stand by (including a method for quickly turning it on and off).
  • Laser light has been used for various purposes in recent years. For example, laser light is used for cutting or processing metal, as a light source of a photolithography apparatus in a semiconductor manufacturing apparatus, or used in various measuring apparatuses. It is used for surgical and therapeutic devices such as surgery, ophthalmology and dentistry.
  • a solid-state laser in this specification, a semiconductor laser (used as a concept including a diode laser)
  • the wavelength of laser light emitted from the solid-state laser is in the visible region. Force In the infrared region, a method for directly generating ultraviolet light has not been established. For example, the wavelength is too long for use in inspection equipment. Therefore, a method has been developed for converting such long-wavelength light emitted from solid-state laser power into short-wavelength deep ultraviolet light (for example, 8th harmonic wave: wavelength 193) using a nonlinear optical crystal. For example, it is described in JP-A-2001-353176 (Patent Document 1). BBO crystals, LBO crystals, CLBO crystals, etc. are known as nonlinear optical crystals used for such purposes.
  • a laser beam generated by DFB—LD force is amplified using a plurality of optical fiber amplifiers (FDFA), and then deep UV is used by the wavelength conversion optical system as described above. It is common to use light.
  • FDFA optical fiber amplifiers
  • Patent Document 1 JP 2001-353176 A
  • An optical fiber amplifier used for such a purpose particularly an optical fiber amplifier that amplifies light having a wavelength of 1.55 ⁇ m supplemented with Er, generates a large amount of heat during high output operation.
  • an optical fiber amplifier when such an optical fiber amplifier is turned on and off, a large temperature change occurs, which causes various unstable states.
  • the temperature of the housing rises due to the heat generation of the optical fiber amplifier in the latter stage of the high output operation, and the heat of the low output operation is accordingly generated.
  • the temperature of the optical fiber will also rise.
  • the polarization state of the light output from the optical fiber amplifier changes accordingly.
  • the polarization state changes there is a problem that the conversion efficiency in the wavelength conversion optical system to which the output from the optical fiber amplifier is input changes, and the laser output light finally obtained fluctuates.
  • the laser light source is always in an output state even when the output light having the power of the laser light source is not used.
  • the wavelength conversion element used in the deep ultraviolet light generation part or the optical element such as a lens is damaged, so that the output state is not used until the output light is not used. Maintaining the laser beam has the problem of shortening the life of the laser light source.
  • the thermal equilibrium of the wavelength conversion optical system is lost, and as a result, fluctuations in the finally obtained laser output light cannot be avoided.
  • the present invention has been made in view of such circumstances, and a laser beam generated from a laser oscillation unit is optically amplified using an optical fiber amplifier, and then wavelength conversion optics using a wavelength conversion element. It is an object of the present invention to provide a laser light source standby method and a method of turning on and off at a higher speed that can shorten the start-up time of the laser light source for wavelength conversion by the system.
  • a first means for solving the above-described problem is a method of setting a laser light source that converts the wavelength of a laser beam generated from a laser oscillation unit by a wavelength conversion optical system using a wavelength conversion element on standby. In the standby mode, the wavelength conversion efficiency of the wavelength conversion element is lowered.
  • the wavelength conversion efficiency of the wavelength conversion element is lowered, the output of the generated light having the converted frequency is lowered, and in particular, deep ultraviolet light is hardly generated. Therefore, the wavelength conversion element is hardly damaged by deep ultraviolet light.
  • the wavelength conversion element is hardly damaged by deep ultraviolet light. In order to put the laser light source into the standby state force use state, it is possible to quickly put the laser light source into the use state by returning the wavelength conversion efficiency of the wavelength conversion element.
  • a second means for solving the above-mentioned problem is the first means, characterized in that the laser light power deep ultraviolet light subjected to wavelength conversion is used.
  • a third means for solving the above-mentioned problem is the first means, wherein a method for reducing the wavelength conversion efficiency of the wavelength conversion element is a method for reducing the wavelength of the semiconductor laser constituting the laser oscillation unit. It is characterized in that at least one temperature for controlling the oscillation wavelength is set to a temperature different from the temperature when the laser light source is normally used.
  • a laser light source is normally used” means that a desired laser beam is output from the laser light source.
  • the wavelength of the laser light (fundamental wave) generated from the semiconductor laser changes. Even in this case, since the output of the optical fiber amplifier is kept almost constant and enters the wavelength conversion optical system, the thermal balance of the optical fiber amplifier and the wavelength conversion optical system is the same as when the laser light source is used. Kept. The output from the optical fiber amplifier is sent to the wavelength conversion optical system as it is, but the wavelength conversion efficiency decreases because the wavelengths are different, and in particular, deep ultraviolet light is hardly generated. Therefore, the wavelength conversion element is not significantly damaged by deep ultraviolet light. When shifting from the standby state to the use state, the temperature of the semiconductor laser may be restored. The temperature change is slight and half Since the heat capacity of the conductor laser is small, the stanno squid can be quickly brought into use.
  • a fourth means for solving the above problem is the first means, wherein a method of reducing the wavelength conversion efficiency of the wavelength conversion element is controlled in temperature among the wavelength conversion elements. It is characterized in that at least one temperature of the wavelength conversion element is different from the temperature when the laser light source is normally used.
  • the temperature of the wavelength conversion element is also changed as the temperature force when the laser light source is normally used. In this way, the phase matching state of the wavelength conversion element is lost, the wavelength conversion efficiency is lowered, and in particular, deep ultraviolet light is hardly generated. Accordingly, the wavelength conversion element is hardly damaged by the deep ultraviolet light.
  • the standby power is also shifted to the use state, the temperature of the wavelength conversion element may be restored. The change in temperature is slight and the heat capacity of the wavelength conversion element is small, so that the standby force can be quickly changed to the use state. In particular, it is preferable to change the temperature of the temperature phase matching crystal used in the previous stage of the wavelength conversion optical system.
  • a fifth means for solving the above-mentioned problem is the first means, wherein the wavelength conversion element is a nonlinear optical crystal, and a method for reducing the wavelength conversion efficiency of the wavelength conversion element is provided.
  • the angle between the crystal axis of the nonlinear optical crystal and the optical axis is different from the angle when the laser light source is normally used.
  • a sixth means for solving the above-mentioned problem is the first means, characterized in that the laser light source power optically amplifies the laser light using an optical fiber amplifier. It is a life.
  • Seventh means for solving the above-mentioned problem is to provide a stano-no laser light source that forms deep ultraviolet light from laser light generated from a plurality of laser oscillation units by a wavelength conversion optical system using a wavelength conversion element.
  • a standby mode the relative relationship of the timing of the pulse laser beam generated from each laser oscillation unit is shifted from the relative relationship when the laser light source is normally used. This is a laser light source standby method.
  • a pulse laser beam that also generates each of these laser oscillation unit forces Wavelength conversion is performed by matching the phase to make the same optical path and making it incident on the wavelength conversion element. Therefore, if the timing relationship of the pulses generated from each laser oscillator is shifted from the timing when these laser light sources are normally used, this phase will not match, and the conversion efficiency of the wavelength conversion element will decrease. In particular, deep ultraviolet light is hardly generated. When the standby state force is also in use, it can be brought into use very quickly by matching the phases.
  • the control since the control is performed by shifting the timing of the pulse generated by the laser oscillation force, the control can be performed on the order of nsec. Therefore, the time of the “standby” state can be made extremely short, for example, including the time of the order of nesc. Therefore, according to the present means, ON / OFF in units of pulses, generation of an arbitrary pulse pattern, and control of pulse energy are possible.
  • An eighth means for solving the above-described problem is the seventh means, wherein the laser oscillation unit includes a semiconductor laser and an electro-optic element (EOM), and each laser oscillation unit includes The relative relationship of the timing of the generated pulsed laser beam is the relative relationship of the pulsed laser beam generated from the semiconductor laser, or the relative relationship of the timing of the pulsed laser beam cut out by the EOM. It is characterized by this.
  • EOM electro-optic element
  • a ninth means for solving the above-mentioned problem is the seventh means, wherein the laser light source is provided with each laser beam corresponding to each laser oscillator. It is characterized by optical amplification using an amplifier.
  • a laser light source that amplifies laser light generated from a laser oscillation unit using an optical fiber amplifier and then converts the wavelength by a wavelength conversion optical system that uses a wavelength conversion element. It is possible to provide a standby method of a laser light source and a method of turning on and off at a higher speed that can shorten the start-up time.
  • FIG. 1 is a diagram for explaining a laser light source standby method according to a first embodiment of the invention.
  • FIG. 1 is a diagram for explaining a laser light source standby method according to a first embodiment of the invention.
  • FIG. 2 is a diagram showing a pulse waveform of an eighth harmonic when the generation timing of the pulses is shifted.
  • FIG. 1 is a diagram for explaining a laser light source standby method according to an embodiment of the present invention, and shows an outline of a laser light source.
  • the laser beam (fundamental wave) from which the first semiconductor laser 1 (DFB—LD) force is also emitted is amplified by the first optical fiber amplifier 2 (FDFA) and enters the wavelength conversion optical system.
  • the light that enters the wavelength conversion optical system is first condensed by the condenser lens 3 onto the second harmonic generator 4 that is LBO force, and the second harmonic generator 4 generates a second harmonic together with the fundamental wave. .
  • These lights are condensed by the condensing lens 5 onto the third harmonic generator 6 having LBO force, and the third harmonic generator 6 generates a third harmonic together with the second harmonic.
  • These lights are condensed by a condenser lens 7 on a repulsive fifth harmonic generator 8, and a fifth harmonic is generated from the fifth harmonic generator 8.
  • the laser light (fundamental wave) from which the second semiconductor laser 9 (DFB—LD) force is also emitted is amplified by the second optical fiber amplifier 10 (FDFA) and enters the wavelength conversion optical system.
  • the light that has entered the wavelength conversion optical system is first condensed by the condenser lens 11 through the mirror M to the second harmonic generator 12 that also has LBO force, and the second harmonic generator 12 together with the fundamental wave.
  • a double wave is generated.
  • These lights are condensed through a condenser lens 13 and a dichroic mirror 14 onto a seventh harmonic generator 16 composed of CLBO.
  • the fifth harmonic generated from the fifth harmonic generator 8 passes through the condenser lens 15, is reflected by the dichroic mirror 14, and is collected by the seventh harmonic generator 16.
  • 7th harmonic wave generator 16 generates 7th harmonic wave. Basically, it enters 7th harmonic wave generator 16 with 2nd harmonic wave. The wave passes through the 7th harmonic generator 16 as it is, and the 7th harmonic and the fundamental wave are collected by the 8th harmonic generator 17 which also has CLBO force. The 8th harmonic wave generator 17 generates an 8th harmonic wave, which is the output of the laser light source.
  • the temperatures of the semiconductor laser 1 and the semiconductor laser 9 are set so that the laser light (8th harmonic wave) is output from the laser light source. Change the temperature by about 3 ° C from the normal temperature (normally around room temperature) when the laser is used (when the laser light source is used). Since the temperature of the semiconductor laser 1 and the semiconductor laser 9 is controlled by the LD temperature controllers 18 and 19, respectively, the temperature change can be easily realized by changing the set temperature. With a temperature change of about 3 ° C, the wavelength of the laser light generated from the semiconductor lasers 1 and 9 changes by about 0.3 nm.
  • This change has little effect on the optical fiber amplifier 2 and the optical fiber amplifier 10, but changes the conversion efficiency of each wavelength conversion element of the wavelength conversion optical system, and in particular, deep UV light hardly occurs. . Therefore, even if the laser light is incident on the wavelength conversion optical system, the wavelength conversion element is not damaged.
  • the standby state power is shifted to the use state (the state in which the laser beam (8th harmonic) is output)
  • the settings of the LD temperature controllers 18 and 19 are changed, and the temperatures of the semiconductor laser 1 and the semiconductor laser 9 are changed. It only needs to be restored, but it takes less than 1 minute for the temperature to return to normal, so the warm-up time can be reduced to less than 1 minute. Note that changing the temperature during standby is not limited to both the semiconductor laser 1 and the semiconductor laser 9, and any one of them is effective.
  • the temperatures of the second harmonic generator 4, the third harmonic generator 6, and the second harmonic generator 12 are set to the normal laser light source. Change the temperature by about 1 ° C from the operating temperature.
  • These 2nd harmonic generator 4, 3rd harmonic generator 6 and 2nd harmonic generator 12 are also composed of LBO force, which is a temperature phase-matched crystal. It is used to make visible light or to change visible light to visible light having a shorter wavelength.
  • These wavelength conversion elements are temperature controlled by crystal temperature controllers 20 and 21 (normally 120 ° C to 150 ° C), so it is easy to change the temperature (note that other wavelength conversion elements are also temperature controlled). Controlled force Temperature controller is not shown.) O
  • Standby state force When moving to the operation state, change the settings of the crystal temperature controllers 20, 21 based on the temperature of the 2nd harmonic generator 4, 3rd harmonic generator 6, 2nd harmonic generator 12 It can be restored, but it takes less than 1 minute for the temperature to return to its original state, so the warm-up time can be reduced to less than 1 minute. It should be noted that changing the temperature during standby is effective if it is not the second harmonic generator 4, the third harmonic generator 6, the second harmonic generator 12 or all 12 of them. . Changing the temperature of the seventh harmonic generator 16 has some effect. However, it is more effective to change the temperature of the previous harmonic generator as much as possible.
  • the temperature change is determined experimentally so that deep ultraviolet light does not occur so much that it becomes a problem in the wavelength conversion optical system. And give it. In terms of shortening the warm-up time, it is preferable to minimize the temperature change.
  • the timing of the pulses generated from the semiconductor laser 1 and the timing of the pulses generated from the semiconductor laser 9 are determined for each semiconductor laser 1. Shift the output timing of the pulse generator 22 that supplies the signal to 9 by shifting the output timing.
  • the 5th harmonic wave generated by the fundamental wave power generated from the semiconductor laser 1 is reflected by the dichroic mirror 14 and incident on the 7th harmonic wave generator 16, and generated from the semiconductor laser 9.
  • the fundamental wave and the 2nd harmonic wave formed from it are transmitted through the dichroic mirror 14 and incident on the 7th harmonic wave generator 16, and the 2nd harmonic wave and 5th harmonic wave are overlapped. In combination, the 7th harmonic is efficiently generated.
  • Timing of pulses generated from this semiconductor laser 1 and the semiconductor If the timing of the pulse generated from the laser 9 is shifted from the timing of the operating state, the overlapping of the 2nd harmonic and the 5th harmonic is reduced, or the force is completely overlapped. As a result, the generation efficiency of the seventh harmonic wave is reduced, or the seventh harmonic wave is not generated. Therefore, the generation of deep ultraviolet light is reduced, and the seventh harmonic generator 16 and the eighth harmonic generator 17 are not damaged.
  • FIG. 2 is a diagram showing the pulse waveform of the eighth harmonic when the pulse generation timing is shifted in this way.
  • the 8th harmonic has a part where one pulse is missing in the middle of the force generated at intervals of 500nsec. This is the place where the relative relationship of the pulse generation timing is shifted to the normal use state.
  • the standby state can be used. If such a method is used, an arbitrary pulse train pattern can be generated and the energy of each pulse can be controlled.
  • an electro-optic element (EOM) is arranged in the vicinity of each of the semiconductor laser 1 and the semiconductor laser 9, and the electro-optic element is used to relatively shift the timing of the pulsed laser light generated by each electro-optic element force.
  • the timing for cutting out the laser light may be relatively shifted.
  • the explanation about the wavelength conversion optical system in this case is the same as that of the third embodiment.
  • the present invention can be realized by reducing the wavelength conversion efficiency of the wavelength conversion element by some method.
  • the wavelength conversion element is a nonlinear optical crystal
  • the present invention can be achieved by changing the angle between the crystal axis and the optical axis or changing the positional relationship of each element of the wavelength conversion optical system. It can be realized.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)
  • Semiconductor Lasers (AREA)

Abstract

 レーザ光源をスタンバイさせるとき、半導体レーザ1と半導体レーザ9の温度を、通常レーザ光源が使用されているときの温度より3°C程度変化させる。3°C程度の温度変化で、半導体レーザ1,9の発生するレーザ光の波長は0.3nm程度変化する。この変化は、光ファイバ増幅器2と光ファイバ増幅器10にはほとんど影響を与えないが、波長変換光学系の各波長変換素子での変換効率が変化し、特に深紫外光はほとんど発生しなくなる。よって、レーザ光を波長変換光学系に入射させたままでも、波長変換素子がダメージを受けることが無くなる。よって、レーザ光源の立ち上げ時間を短縮することが可能な、レーザ光源のスタンバイ方法を提供することができる。

Description

明 細 書
レーザ光源のスタンバイ方法
技術分野
[0001] 本発明は、半導体レーザ力 発生するレーザ光を、光ファイバ増幅器を用いて光増 幅し、その後、波長変換素子を用いた波長変換光学系により深紫外光を形成するレ 一ザ光源をスタンバイさせる方法 (高速にオン'オフさせる方法を含む)に関するもの である。
背景技術
[0002] レーザ光は近年において種々の用途に用いられており、例えば、金属の切断や加 ェを行ったり、半導体製造装置におけるフォトリソグラフィ装置の光源として用いられ たり、各種測定装置に用いられたり、外科、眼科、歯科等の手術および治療装置に 用いられたりしている。
[0003] このようなレーザ光源として固体レーザ (本明細書においては、半導体レーザ (ダイ オードレーザを含む概念として使用する))を用いる場合、固体レーザから放出される レーザ光の波長は、可視領域力 赤外領域であり、直接紫外光を発生させる方法は 確立されていない。例えば検査装置に使用するには、波長が長すぎて向いていない 。そこで、このような固体レーザ力 放出される長波長の光を、非線形光学結晶を用 いることにより短波長の深紫外光 (例えば 8倍波:波長 193應)に変換して用いる方法 が開発され、例えば特開 2001— 353176号公報 (特許文献 1)に記載されている。こ のような目的に用いられる非線形光学結晶としては、 BBO結晶、 LBO結晶、 CLBO 結晶等が知られている。
[0004] このようなレーザ光源においては、たとえば DFB— LD力 発生するレーザ光を複 数の光ファイバ増幅器 (FDFA)を用いて増幅し、その後、上記のような波長変換光 学系により深紫外光にするのが一般的である。
特許文献 1 :特開 2001— 353176号公報
発明の開示
発明が解決しょうとする課題 [0005] このような目的に使用される光ファイバ増幅器、特に Erを添カ卩した波長 1.55 μ mの 光を増幅する光ファイバ増幅器は、高出力動作時に多量の熱を発生する。また、この ような光ファイバ増幅器をオン'オフすると大きな温度変化が発生し、その際にさまざ まな不安定状態を引き起こす。このような光ファイバ増幅器を小型のパッケージに納 めて使うと、高出力動作の後段の光ファイバ増幅器の発熱により筐体の温度が上昇 し、それにつれて低出力動作の発熱して 、な 、前段の光ファイバの温度も上昇する 。光ファイバの温度が上昇すると、それにつれて、光ファイバ増幅器から出力される 光の偏光の状態が変化する。偏光の状態が変化すると、光ファイバ増幅器からの出 力が入力される波長変換光学系における変換効率が変化し、最終的に得られるレー ザ出力光が変動するという問題がある。
[0006] 従って、従来は、このようなレーザ光源の使用を開始する前に、十分な時間のゥォ ームアップを行い、熱的平衡が確立し、最終的に得られるレーザ出力光の変動が許 容範囲に収まって力 使用を開始する方法が行われていた。しかし、熱的平衡が確 立するまでに 24時間程度を必要とする場合があり、その長さが問題となっていた。
[0007] この対策として、レーザ光源力もの出力光を使用しない間でも、常にレーザ光源を 出力状態にしておく方法が考えられる。し力しながら、レーザ光源をオン状態にして おくと、深紫外光発生部分に使用される波長変換素子又はレンズ等の光学素子がダ メージを受けるので、出力光を使用しないときにまで出力状態を保つことは、レーザ 光源の短寿命化につながるという問題点がある。他の対策として、光ファイバ増幅器 力もの光が波長変換光学系に入る前に、機械的なシャツタで、レーザ光を遮ることが 考えられる。しカゝしながら、この場合には、波長変換光学系の熱的平衡が崩れ、その 結果、最終的に得られるレーザ出力光の変動が避けられないという問題点がある。
[0008] 本発明はこのような事情に鑑みてなされたもので、レーザ発振部から発生するレー ザ光を、光ファイバ増幅器を用いて光増幅し、その後、波長変換素子を用いた波長 変換光学系により波長変換するレーザ光源の立ち上げ時間を短縮することが可能な 、レーザ光源のスタンバイ方法、及びより高速にオン'オフを行う方法を提供すること を課題とする。
課題を解決するための手段 [0009] 前記課題を解決するための第 1の手段は、レーザ発振部から発生するレーザ光を、 波長変換素子を用いた波長変換光学系により波長変換するレーザ光源をスタンバイ させる方法であって、スタンバイ時には、前記波長変換素子の波長変換効率を低下 させることを特徴とするレーザ光源のスタンバイ方法である。
[0010] 波長変換素子の波長変換効率を低下させると、発生する変換された周波数の光の 出力が下がり、特に、深紫外光はほとんど発生しなくなる。よって、深紫外光によって 波長変換素子がダメージを受けることが極めて少なくなる。レーザ光源をスタンバイ 状態力 使用状態にするには、波長変換素子の波長変換効率を元に戻すことによつ て、迅速に使用状態とすることができる。
[0011] なお、本明細書及び請求の範囲において「波長変換素子の波長変換効率を低下 させる」とは、完全に 0となる場合を含む意味に使用している。
[0012] 前記課題を解決するための第 2の手段は、前記第 1の手段であって、波長変換され たレーザ光力 深紫外光であることを特徴とするものである。
[0013] 前記課題を解決するための第 3の手段は、前記第 1の手段であって、前記波長変 換素子の波長変換効率を低下させる方法が、前記レーザ発振部を構成する半導体 レーザの少なくとも 1つの、発振波長を制御する温度を、当該レーザ光源が通常使用 されている場合の温度と異なる温度にすることであることを特徴とするものである。
[0014] なお、本明細書及び請求の範囲において、「レーザ光源が通常使用されている」と は、レーザ光源から所望のレーザ光が出力されて 、ることを 、う。
[0015] スタンバイ時に、半導体レーザの温度を、レーザ光源が通常使用されている場合の 温度と異なる温度とすると、半導体レーザから発生するレーザ光 (基本波)の波長が 変化する。このようにしても、光ファイバ増幅器の出力はほぼ一定に保たれて波長変 換光学系に入るので、光ファイバ増幅器及び波長変換光学系の熱的平衡は、レー ザ光源の使用時と同等に保たれる。光ファイバ増幅器からの出力は、そのまま波長 変換光学系に送られるが、波長が異なっているため波長変換効率が下がり、特に、 深紫外光はほとんど発生しなくなる。よって、深紫外光によって波長変換素子がダメ ージを受けることが極めて少なくなる。スタンバイ状態から使用状態に移行する場合 には、半導体レーザの温度を元に戻せばよい。温度の変化は僅かでよぐかつ、半 導体レーザの熱容量が小さ 、ので、スタンノイカも使用状態への移行は迅速に行わ れる。
[0016] 前記課題を解決するための第 4の手段は、前記第 1の手段であって、前記波長変 換素子の波長変換効率を低下させる方法が、前記波長変換素子のうち温度制御さ れている波長変換素子の少なくとも 1つの温度を、当該レーザ光源が通常使用され ている場合の温度と異なる温度することであることを特徴とするものである。
[0017] レーザ光源をスタンバイ状態にするときは、波長変換素子の温度を、レーザ光源が 通常使用されている時の温度力も変化させる。このようにすると、波長変換素子の位 相整合状態が崩れ、波長変換効率が下がり、特に、深紫外光はほとんど発生しなく なる。よって、深紫外光によって波長変換素子がダメージを受けることが極めて少なく なる。スタンバイ力も使用状態に移行する場合には、波長変換素子の温度を元に戻 せばよい。温度の変化は僅かでよぐかつ、波長変換素子の熱容量が小さいので、ス タンバイ力も使用状態への移行は迅速に行われる。特に、波長変換光学系の前段で 使用される温度位相整合結晶の温度を変化させることが好ましい。
[0018] 前記課題を解決するための第 5の手段は、前記第 1の手段であって、前記波長変 換素子が非線形光学結晶であり、前記波長変換素子の波長変換効率を低下させる 方法が、前記非線形光学結晶の結晶軸と光軸とのなす角度を、当該レーザ光源が 通常使用されて 、る場合の角度と異なる角度にする方法であることを特徴とするもの である。
[0019] 前記課題を解決するための第 6の手段は、前記第 1の手段であって、前記レーザ光 源力 前記レーザ光を、光ファイバ増幅器を用いて光増幅するものであることを特徴 とするちのである。
[0020] 前記課題を解決するための第 7の手段は、複数のレーザ発振部から発生するレー ザ光から、波長変換素子を用いた波長変換光学系により深紫外光を形成するレーザ 光源をスタンノ ィさせる方法であって、スタンバイ時には、前記各レーザ発振部から 発生するパルスレーザ光のタイミングの相対的な関係を、当該レーザ光源が通常使 用されている場合の相対的な関係からずらせることを特徴とするレーザ光源のスタン バイ方法である。 [0021] 複数のレーザ発振部から発生するレーザ光から、波長変換素子を用いた波長変換 光学系により深紫外光を形成するレーザ光源においては、これらの各レーザ発振部 力も発生するパルスレーザ光の位相を合わせて同一光路とし、波長変換素子に入射 させることにより、波長変換を行っている。よって、各レーザ発振部から発生するパル スのタイミングの関係を、これらのレーザ光源が通常使用されている場合のタイミング からずらすと、この位相が合わなくなり、波長変換素子の変換効率が低下し、特に深 紫外光はほとんど発生しなくなる。スタンバイ状態力も使用状態にする場合には、位 相が合うようにすることにより、極めて迅速に使用状態にすることができる。
[0022] なお、本手段にお 、て、レーザ発振部力 発生するパルスのタイミングをずらすこと によって制御を行っているので、 nsecのオーダで制御が可能である。よって、「スタン バイ」状態の時間は極めて短くすることができ、例えば nescのオーダの時間を含む概 念である。よって、本手段によれば、パルス単位でのオン'オフや、任意のパルスパタ ーンの発生、パルスエネルギーの制御が可能になる。
[0023] 前記課題を解決するための第 8の手段は、前記第 7の手段であって、前記レーザ発 振部が半導体レーザと電気光学素子 (EOM)を有し、前記各レーザ発振部から発生 するパルスレーザ光のタイミングの相対的な関係は、前記半導体レーザから発生す るパルスレーザ光の相対的な関係、又は前記 EOMによってパルス切り出しされるパ ルスレーザ光のタイミングの相対的な関係であることを特徴とするものである。
[0024] 前記課題を解決するための第 9の手段は、前記第 7の手段であって、前記レーザ光 源が、前記各レーザ光を、前記各レーザ発振器に対応して設けられた光ファイバ増 幅器を用いて光増幅するものであることを特徴とするものである。
発明の効果
[0025] 本発明によれば、レーザ発振部から発生するレーザ光を、光ファイバ増幅器を用い て光増幅し、その後、波長変換素子を用いた波長変換光学系により波長変換するレ 一ザ光源の立ち上げ時間を短縮することが可能な、レーザ光源のスタンバイ方法、 及びより高速にオン'オフを行う方法を提供することができる。
図面の簡単な説明
[0026] [図 1]本発明の第 1実施の形態であるレーザ光源のスタンバイ方法を説明するための 図である。
[図 2]ノ ルスの発生タイミングをずらせたときの 8倍波のパルス波形を示す図である。 符号の説明
[0027] 1…半導体レーザ、 2…光ファイバ増幅器、 3…集光レンズ、 4···2倍波発生器、 5··· 集光レンズ、 6···3倍波発生器、 7···集光レンズ、 8···5倍波発生器、 9…半導体レー ザ、 10···光ファイバ増幅器、 11···集光レンズ、 12···2倍波発生器、 13···集光レンズ 、 14…ダイクロイツクミラー、 15···集光レンズ、 16···7倍波発生器、 17···8倍波発生 器、 18 -LD温度コントローラ、 19 -LD温度コントローラ、 20…結晶温度コントロー ラ、 21···結晶温度コントローラ、 22···パルス発生器
発明を実施するための最良の形態
[0028] 以下、本発明の実施の形態の例を、図を用いて説明する。図 1は、本発明の実施 の形態であるレーザ光源のスタンバイ方法を説明するための図であり、レーザ光源の 概要を示す図である。
[0029] 第 1の半導体レーザ 1 (DFB— LD)力も放出されたレーザ光 (基本波)は、第 1の光 ファイバ増幅器 2 (FDFA)で増幅され、波長変換光学系に入る。波長変換光学系に 入った光は、まず、集光レンズ 3により、 LBO力 なる 2倍波発生器 4に集光され、 2 倍波発生器 4からは、基本波と共に 2倍波が発生する。これらの光は集光レンズ 5に より、 LBO力もなる 3倍波発生器 6に集光され、 3倍波発生器 6からは、 2倍波と共に 3 倍波が発生する。これらの光は、集光レンズ 7により、 ΒΒΟ力 なる 5倍波発生器 8に 集光され、 5倍波発生器 8からは 5倍波が発生する。
[0030] 一方、第 2の半導体レーザ 9 (DFB— LD)力も放出されたレーザ光 (基本波)は、第 2の光ファイバ増幅器 10 (FDFA)で増幅され、波長変換光学系に入る。波長変換光 学系に入った光は、まず、集光レンズ 11により、ミラー Mを介して LBO力もなる 2倍波 発生器 12に集光され、 2倍波発生器 12からは、基本波と共に 2倍波が発生する。こ れらの光は、集光レンズ 13とダイクロイツクミラー 14を通して、 CLBOからなる 7倍波 発生器 16に集光される。先に、 5倍波発生器 8から発生した 5倍波は、集光レンズ 15 を通り、ダイクロイツクミラー 14で反射されて、 7倍波発生器 16に集光される。 7倍波 発生器 16からは、 7倍波が発生するが、 2倍波と共に 7倍波発生器 16に入った基本 波はそのまま 7倍波発生器 16を通過し、 7倍波と基本波が CLBO力もなる 8倍波発生 器 17に集光される。 8倍波発生器 17からは 8倍波が発生し、これがレーザ光源の出 力となる。
[0031] 第 1の実施の形態においては、このようなレーザ光源をスタンバイさせるとき、半導 体レーザ 1と半導体レーザ 9の温度を、レーザ光源からレーザ光(8倍波)を出力させ て 、るとき(レーザ光源が使用されて 、るとき)の通常の温度 (通常は常温程度)より 3 °C程度変化させる。半導体レーザ 1と半導体レーザ 9とは、それぞれ LD温度コント口 ーラ 18、 19で温度制御されているので、その設定温度を変えることにより、温度変化 を容易に実現することができる。 3°C程度の温度変化で、半導体レーザ 1, 9から発生 するレーザ光の波長は 0.3nm程度変化する。この変化は、光ファイバ増幅器 2と光フ アイバ増幅器 10にはほとんど影響を与えないが、波長変換光学系の各波長変換素 子での変換効率を変化させ、特に深紫外光はほとんど発生しなくなる。よって、レー ザ光を波長変換光学系に入射させたままでも、波長変換素子がダメージを受けること が無くなる。
[0032] スタンバイ状態力も使用状態 (レーザ光 (8倍波)を出力させる状態)に移るときは、 L D温度コントローラ 18, 19の設定を変えて、半導体レーザ 1と半導体レーザ 9の温度 を元に戻せばよいが、温度が元に戻るまでには 1分以内程度しか要しないので、ゥォ ームアップ時間を 1分以内にすることができる。なお、スタンバイ時に温度を変化させ るのは、半導体レーザ 1と半導体レーザ 9の両方でなくてもよぐそのうち任意の 1個 でも効果を有する。
[0033] どの程度の温度変化を与えればよ!、かは、波長変換光学系によって異なるので、 波長変換光学系において深紫外光が問題になるほど発生しなくなるような温度変化 を、実験的に決定して与えればよい。ウォームアップ時間を短縮する意味からは、温 度変化はなるべく少なくすることが好まし 、。
[0034] 第 2の実施の形態においては、このようなレーザ光源をスタンバイさせるとき、 2倍波 発生器 4と 3倍波発生器 6と 2倍波発生器 12の温度を、通常レーザ光源が使用され ているときの温度より 1°C程度変化させる。これら、 2倍波発生器 4, 3倍波発生器 6, 2 倍波発生器 12は、温度位相整合結晶である LBO力も構成されており、赤外光を可 視光にしたり、可視光をより波長の短い可視光にするのに用いられている。これらの 波長変換素子は、結晶温度コントローラ 20, 21で温度制御(通常 120°C〜150°C) されているので、温度を変化させるのは容易である(なお、他の波長変換素子も温度 制御されている力 温度コントローラの図示を省略している。 )o
[0035] 温度を 1°C程度ずらすと、これらの温度位相整合結晶の位相整合状態が崩れ、波 長変換効率が低下する。従って、深紫外光の発生が大幅に低下し、深紫外光を扱う 波長変換素子 16, 17の損傷を防止することができる。
[0036] スタンバイ状態力 オペレーション状態に移るときは、結晶温度コントローラ 20, 21 の設定を変えて、 2倍波発生器 4, 3倍波発生器 6, 2倍波発生器 12の温度を元に戻 せばよいが、温度が元に戻るまでには 1分以内程度しか要しないので、ウォームアツ プ時間を 1分以内にすることができる。なお、スタンバイ時に温度を変化させるのは、 2倍波発生器 4, 3倍波発生器 6, 2倍波発生器 12全部でなくてもよぐそのうち任意 の 1個ないし 2個でも効果を有する。 7倍波発生器 16の温度を変化させても、ある程 度の効果がある。しかし、なるべく前段の倍波発生器の温度を変化させる方が有効で ある。
[0037] どの程度の温度変化を与えればよ!、かは、波長変換光学系によって異なるので、 波長変換光学系において深紫外光が問題になるほど発生しなくなるような温度変化 を、実験的に決定して与えればよい。ウォームアップ時間を短縮する意味からは、温 度変化はなるべく少なくすることが好まし 、。
[0038] 第 3の実施の形態においては、このようなレーザ光源をスタンバイさせるとき、半導 体レーザ 1から発生するパルスのタイミングと半導体レーザ 9から発生するパルスのタ イミングを、各半導体レーザ 1、 9に信号を供給するパルス発生器 22の出力タイミング をずらすことにより、ずらす。波長変換光学系においては、半導体レーザ 1から発生し た基本波力も形成された 5倍波がダイクロイツクミラー 14によって反射されて 7倍波発 生器 16に入射するタイミングと、半導体レーザ 9から発生した基本波と、それから形 成された 2倍波が、ダイクロイツクミラー 14を透過して 7倍波発生器 16に入射するタイ ミングを同じとして、これらのうち 2倍波と 5倍波を重ね合わせ、それにより 7倍波を効 率良く発生させて 、る。この半導体レーザ 1から発生するパルスのタイミングと半導体 レーザ 9から発生するパルスのタイミングを、使用動状態のタイミングからずらせると、 2倍波と 5倍波の重なりが少なくなつたり、全く重なり合わな力つたりする。これにより、 7倍波の発生効率が下がったり、 7倍波が発生しなくなったりする。よって、深紫外光 の発生が低下し、 7倍波発生器 16や 8倍波発生器 17にダメージを与えることがない
[0039] スタンバイ状態力 使用状態に戻すには、パルスの発生タイミングの相対的な関係 を元に戻せばよぐ瞬間的に使用状態に入ることができる。図 2は、このようにしてパ ルスの発生タイミングをずらせたときの 8倍波のパルス波形を示す図である。この場合 、 8倍波は、 500nsec間隔で発生している力 途中で 1パルスが欠落しているところが ある。この場所が、パルスの発生タイミングの相対的な関係を通常の使用状態力 ず らせた場所である。すなわち、この場合、 500nSecで、スタンバイ状態から使用状態に 移れることが分かる。又、このような方法を使用すれば、任意のパルス列のパターンを 発生したり、個々のパルスのエネルギーを制御することも可能である。
[0040] 又、半導体レーザ 1及び半導体レーザ 9の近傍にそれぞれ電気光学素子 (EOM) を配置し、各電気光学素子力 発生するパルスレーザ光のタイミングを相対的にずら すために、電気光学素子のノ ルスレーザ光を切り出すタイミングを相対的にずらすよ うにしてもよい。この場合の、波長変換光学系に関する説明は、第 3の実施の形態と 同じである。
[0041] 以上、 3つの実施の形態について説明してきたが、本発明は、波長変換素子の波 長変換効率を、何らかの方法で低下させれば成り立つものである。たとえば、波長変 換素子が非線形光学結晶の場合は、その結晶軸と光軸とのなす角を変えるとか、波 長変換光学系の各素子の位置的関係を変えるような方法でも、本発明を実現するこ とがでさる。

Claims

請求の範囲
[1] レーザ発振部から発生するレーザ光を、波長変換素子を用いた波長変換光学系に より波長変換するレーザ光源をスタンバイさせる方法であって、スタンバイ時には、前 記波長変換素子の波長変換効率を低下させることを特徴とするレーザ光源のスタン バイ方法。
[2] 前記波長変換されたレーザ光が、深紫外光であることを特徴とする請求項 1に記載 のレーザ光源のスタンバイ方法。
[3] 前記波長変換素子の波長変換効率を低下させる方法が、前記レーザ発振部を構成 する半導体レーザの少なくとも 1つの、発振波長を制御する温度を、当該レーザ光源 が通常使用されている場合の温度と異なる温度にすることであることを特徴とする請 求項 1に記載のレーザ光源のスタンバイ方法。
[4] 前記波長変換素子の波長変換効率を低下させる方法が、前記波長変換素子のうち 温度制御されている波長変換素子の少なくとも 1つの温度を、当該レーザ光源が通 常使用されている場合の温度と異なる温度することであることを特徴とする請求項 1 に記載のレーザ光源のスタンバイ方法。
[5] 前記波長変換素子が非線形光学結晶であり、前記波長変換素子の波長変換効率を 低下させる方法が、前記非線形光学結晶の結晶軸と光軸とのなす角度を、当該レー ザ光源が通常使用されて ヽる場合の角度と異なる角度にする方法であることを特徴 とする請求項 1に記載のレーザ光源のスタンバイ方法。
[6] 前記レーザ光源は、前記レーザ光を、光ファイバ増幅器を用いて光増幅するもので あることを特徴とする請求項 1に記載のレーザ光源のスタンバイ方法。
[7] 複数のレーザ発振部から発生するレーザ光から、波長変換素子を用いた波長変換 光学系により深紫外光を形成するレーザ光源をスタンバイさせる方法であって、スタ ンノ ィ時には、前記各レーザ発振部力 発生するパルスレーザ光のタイミングの相対 的な関係を、当該レーザ光源が通常使用されている場合の相対的な関係力 ずらせ ることを特徴とするレーザ光源のスタンバイ方法。
[8] 前記レーザ発振部が半導体レーザと電気光学素子 (EOM)を有し、前記各レーザ発 振部から発生するパルスレーザ光のタイミングの相対的な関係は、前記半導体レー ザ力 発生するパルスレーザ光の相対的な関係、又は前記 EOMによってパルス切 り出しされるパルスレーザ光のタイミングの相対的な関係であることを特徴とする請求 項 7に記載のレーザ光源のスタンバイ方法。
前記レーザ光源は、前記各レーザ光を、前記各レーザ発振器に対応して設けられた 光ファイバ増幅器を用いて光増幅するものであることを特徴とする請求項 7に記載の レーザ光源のスタンバイ方法。
PCT/JP2006/321472 2005-11-10 2006-10-27 レーザ光源のスタンバイ方法 WO2007055110A1 (ja)

Priority Applications (8)

Application Number Priority Date Filing Date Title
JP2007544093A JP5194795B2 (ja) 2005-11-10 2006-10-27 レーザ光源のスタンバイ方法
US11/992,321 US7974320B2 (en) 2005-11-10 2006-10-27 Method for having laser light source in standby status
CN2006800342873A CN101268416B (zh) 2005-11-10 2006-10-27 激光光源的待机方法
KR1020087003686A KR101527224B1 (ko) 2005-11-10 2006-10-27 레이저 광원의 스탠바이 방법
EP06832396A EP1947506B1 (en) 2005-11-10 2006-10-27 Method for having laser light source in standby status
IL190455A IL190455A (en) 2005-11-10 2008-03-26 Method for holding a laser light source in standby status
HK08110998.3A HK1115199A1 (en) 2005-11-10 2008-10-02 Method for having laser light source in standby status
US13/154,705 US9083151B2 (en) 2005-11-10 2011-06-07 Method for having laser light source in standby status

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005-325862 2005-11-10
JP2005325862 2005-11-10

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US11/992,321 A-371-Of-International US7974320B2 (en) 2005-11-10 2006-10-27 Method for having laser light source in standby status
US13/154,705 Continuation US9083151B2 (en) 2005-11-10 2011-06-07 Method for having laser light source in standby status

Publications (1)

Publication Number Publication Date
WO2007055110A1 true WO2007055110A1 (ja) 2007-05-18

Family

ID=38023116

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/321472 WO2007055110A1 (ja) 2005-11-10 2006-10-27 レーザ光源のスタンバイ方法

Country Status (8)

Country Link
US (2) US7974320B2 (ja)
EP (1) EP1947506B1 (ja)
JP (1) JP5194795B2 (ja)
KR (1) KR101527224B1 (ja)
CN (1) CN101268416B (ja)
HK (1) HK1115199A1 (ja)
IL (1) IL190455A (ja)
WO (1) WO2007055110A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011158749A (ja) * 2010-02-02 2011-08-18 Nikon Corp レーザ装置
WO2014021370A1 (ja) * 2012-07-31 2014-02-06 株式会社ニコン レーザ装置、該レーザ装置を備えた露光装置及び検査装置
JP2014089474A (ja) * 2014-01-14 2014-05-15 Nikon Corp レーザ装置

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IL195050A (en) 2008-11-02 2015-03-31 Elbit Sys Electro Optics Elop Modulation of frequency difference generator is pumped by fiber laser
US20170026292A1 (en) * 2015-07-20 2017-01-26 Schweitzer Engineering Laboratories, Inc. Communication link failure detection in a software defined network
JP2020053423A (ja) * 2018-09-21 2020-04-02 浜松ホトニクス株式会社 レーザ装置及びレーザ波形制御方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04109226A (ja) * 1990-08-30 1992-04-10 Hitachi Metals Ltd 波長変換素子
JPH10153806A (ja) * 1996-11-22 1998-06-09 Ushio Inc 高調波出力安定化方法および紫外線レーザ装置並びにマーキング装置
JP2001353176A (ja) 2000-04-13 2001-12-25 Nikon Corp レーザ治療装置
WO2004054050A1 (ja) * 2002-12-10 2004-06-24 Nikon Corporation 紫外光源、紫外光源を用いた光治療装置、および紫外光源を用いた露光装置

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4660204A (en) * 1984-08-02 1987-04-21 Hughes Aircraft Company CO2 TEA laser utilizing an intra-cavity prism Q-switch
US5060233A (en) * 1989-01-13 1991-10-22 International Business Machines Corporation Miniature blue-green laser source using second-harmonic generation
US5867305A (en) * 1996-01-19 1999-02-02 Sdl, Inc. Optical amplifier with high energy levels systems providing high peak powers
JPH1126857A (ja) * 1997-07-02 1999-01-29 Fuji Photo Film Co Ltd レーザーダイオード励起固体レーザー装置および放射線画像読取装置
JP3997450B2 (ja) * 1998-03-13 2007-10-24 ソニー株式会社 波長変換装置
JP3977529B2 (ja) * 1998-11-18 2007-09-19 三菱電機株式会社 波長変換レーザ装置およびレーザ加工装置
US6490309B1 (en) * 1999-07-21 2002-12-03 Fuji Photo Film Co., Ltd. Laser-diode-pumped laser apparatus in which Pr3+-doped laser medium is pumped with GaN-based compound laser diode
US7110426B2 (en) * 2001-08-06 2006-09-19 Sony Corporation Laser beam generating apparatus
TWI232965B (en) * 2003-12-23 2005-05-21 Univ Tsinghua A high-efficiency multiple-pass nonlinear optical frequency converter and amplitude modulator with a built-in electro-optic phase compensator
JP4458839B2 (ja) * 2003-12-25 2010-04-28 株式会社ニデック レーザ治療装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04109226A (ja) * 1990-08-30 1992-04-10 Hitachi Metals Ltd 波長変換素子
JPH10153806A (ja) * 1996-11-22 1998-06-09 Ushio Inc 高調波出力安定化方法および紫外線レーザ装置並びにマーキング装置
JP2001353176A (ja) 2000-04-13 2001-12-25 Nikon Corp レーザ治療装置
WO2004054050A1 (ja) * 2002-12-10 2004-06-24 Nikon Corporation 紫外光源、紫外光源を用いた光治療装置、および紫外光源を用いた露光装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1947506A4

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011158749A (ja) * 2010-02-02 2011-08-18 Nikon Corp レーザ装置
WO2014021370A1 (ja) * 2012-07-31 2014-02-06 株式会社ニコン レーザ装置、該レーザ装置を備えた露光装置及び検査装置
US9608400B2 (en) 2012-07-31 2017-03-28 Nikon Corporation Laser device, and exposure device and inspection device provided with laser device
JP2014089474A (ja) * 2014-01-14 2014-05-15 Nikon Corp レーザ装置

Also Published As

Publication number Publication date
KR101527224B1 (ko) 2015-06-08
JPWO2007055110A1 (ja) 2009-04-30
EP1947506A9 (en) 2008-10-08
EP1947506B1 (en) 2012-05-02
IL190455A0 (en) 2008-11-03
US9083151B2 (en) 2015-07-14
IL190455A (en) 2012-12-31
US7974320B2 (en) 2011-07-05
CN101268416B (zh) 2011-03-30
EP1947506A4 (en) 2009-10-28
KR20080066912A (ko) 2008-07-17
US20090110012A1 (en) 2009-04-30
JP5194795B2 (ja) 2013-05-08
US20110268142A1 (en) 2011-11-03
HK1115199A1 (en) 2008-11-21
CN101268416A (zh) 2008-09-17
EP1947506A1 (en) 2008-07-23

Similar Documents

Publication Publication Date Title
JP4009969B2 (ja) 紫外光源、光治療装置、露光装置および被検物検査装置
US9083151B2 (en) Method for having laser light source in standby status
WO2011158927A1 (ja) 紫外レーザ装置
JP2011128330A (ja) レーザ装置
JP6592784B2 (ja) 固体レーザシステムおよびエキシマレーザシステム
US9608400B2 (en) Laser device, and exposure device and inspection device provided with laser device
JP6020441B2 (ja) 紫外レーザ装置
JP6508058B2 (ja) 光源装置及び波長変換方法
JP5246262B2 (ja) レーザ装置、光治療装置、露光装置、デバイス製造方法、及び被検物検査装置
JP2006060162A (ja) レーザ光源装置の励起光の制御方法及びレーザ光源装置
JP2006317724A (ja) 波長変換光学系及びレーザ装置
JP4071806B2 (ja) 波長変換装置
JP2011053314A (ja) 光源装置
JP4449614B2 (ja) 波長変換光学系及びレーザ装置
JP2015180903A (ja) レーザ装置、該レーザ装置を備えた露光装置及び検査装置
JP5397773B2 (ja) 光源装置
JP2015180902A (ja) レーザ装置、このレーザ装置を備えた露光装置及び検査装置
JP5709072B2 (ja) レーザ装置および光発生方法
JP2012037813A (ja) 紫外レーザ装置
JP2001183712A (ja) 波長変換装置
JP2006030720A (ja) 波長変換光学系
JP2004157449A (ja) 波長変換装置及び方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200680034287.3

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application
ENP Entry into the national phase

Ref document number: 2007544093

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2006832396

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 190455

Country of ref document: IL

WWE Wipo information: entry into national phase

Ref document number: 11992321

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1636/KOLNP/2008

Country of ref document: IN

NENP Non-entry into the national phase

Ref country code: DE