WO2007055071A1 - Process for producing nonvolatile semiconductor memory device comprising variable resistive element - Google Patents

Process for producing nonvolatile semiconductor memory device comprising variable resistive element Download PDF

Info

Publication number
WO2007055071A1
WO2007055071A1 PCT/JP2006/319131 JP2006319131W WO2007055071A1 WO 2007055071 A1 WO2007055071 A1 WO 2007055071A1 JP 2006319131 W JP2006319131 W JP 2006319131W WO 2007055071 A1 WO2007055071 A1 WO 2007055071A1
Authority
WO
WIPO (PCT)
Prior art keywords
memory device
semiconductor memory
manufacturing
nonvolatile semiconductor
film
Prior art date
Application number
PCT/JP2006/319131
Other languages
French (fr)
Japanese (ja)
Inventor
Shinobu Yamazaki
Original Assignee
Sharp Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Kabushiki Kaisha filed Critical Sharp Kabushiki Kaisha
Publication of WO2007055071A1 publication Critical patent/WO2007055071A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body
    • H01L27/10Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including a plurality of individual components in a repetitive configuration
    • H01L27/101Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including a plurality of individual components in a repetitive configuration including resistors or capacitors only
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B63/00Resistance change memory devices, e.g. resistive RAM [ReRAM] devices
    • H10B63/80Arrangements comprising multiple bistable or multi-stable switching components of the same type on a plane parallel to the substrate, e.g. cross-point arrays
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices without a potential-jump barrier or surface barrier, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/011Manufacture or treatment of multistable switching devices
    • H10N70/021Formation of the switching material, e.g. layer deposition
    • H10N70/026Formation of the switching material, e.g. layer deposition by physical vapor deposition, e.g. sputtering
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices without a potential-jump barrier or surface barrier, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/011Manufacture or treatment of multistable switching devices
    • H10N70/061Patterning of the switching material
    • H10N70/063Patterning of the switching material by etching of pre-deposited switching material layers, e.g. lithography
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices without a potential-jump barrier or surface barrier, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/20Multistable switching devices, e.g. memristors
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices without a potential-jump barrier or surface barrier, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/801Constructional details of multistable switching devices
    • H10N70/821Device geometry
    • H10N70/826Device geometry adapted for essentially vertical current flow, e.g. sandwich or pillar type devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices without a potential-jump barrier or surface barrier, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/801Constructional details of multistable switching devices
    • H10N70/881Switching materials
    • H10N70/883Oxides or nitrides
    • H10N70/8836Complex metal oxides, e.g. perovskites, spinels

Definitions

  • the present invention relates to a method for manufacturing a nonvolatile semiconductor memory device in which a variable resistor for storing data is formed between an upper electrode and a lower electrode.
  • a transistor circuit or the like is formed.
  • the surface is flattened by a so-called CMP method (Chemical Mechanical Polishing Method).
  • Patent Document 2 Japanese Patent Laid-Open No. 2003-68984
  • the sputtering uses any one of Ar, He, Ne, Kr, and Xe as a sputtering gas. Three features.
  • a nonvolatile semiconductor memory device manufacturing method having any one of the above characteristics is characterized in that the sputtering film forming temperature range force is 500 ° C to 800 ° C.
  • the fifth characteristic is that it is an acid oxide of the system.
  • FIG. 6 is a process cross-sectional view showing each process of a manufacturing method of a semiconductor memory device according to the prior art.
  • FIG. 4 shows a resistance value distribution of the nonvolatile semiconductor memory device formed by the method of the present invention and the conventional technique, and a chip of the resistance value of the nonvolatile semiconductor memory device formed by the method of the present invention and the conventional technique.
  • Figure 5 shows the variation.
  • the distribution of the resistance value spreads over one digit, but in the case of the present invention, the distribution is narrowed and the variation is greatly improved. Therefore, it can be said that the variation in the distribution of resistance values was improved under the sputtering conditions according to the method of the present invention.
  • the variation in the chip is also reduced to about 1/10 in the case of the method of the present invention compared to the prior art, and the resistance value is obtained by using the sputtering conditions in an oxygen-free atmosphere by the method of the present invention. It can be said that there was a significant reduction in variability.
  • the variation in resistance value is greatly reduced because the crystallinity of the PCMO film is very high. This is because the crystallization temperature is lowered because sputtering is performed only with Ar gas without oxygen, which is an oxygen-containing gas, during sputtering. Similarly, TiO and NiO are crystallized by sputtering only with Ar gas. Since the crystallization temperature is lowered, the degree of crystallinity is high, and a film can be formed, so that variation in resistance value can be reduced. Also for TiO and NiO, the sputtering gas contains rare metals other than Ar.

Abstract

This invention provides a process for producing a nonvolatile semiconductor memory device that can suppress a variation in resistance value derived from the difference in degree of crystallization of PCMO in variable resistors and can satisfactorily ensure a circuit operation margin. The production process is a process for producing a semiconductor memory device comprising a variable resistor for storing data between upper and lower electrodes and comprises a variable resistor formation step of sputtering an electrically conductive metal oxide in an oxygen-free atmosphere to form the variable resistor.

Description

明 細 書  Specification
可変抵抗素子を備えた不揮発性半導体記憶装置の製造方法  Manufacturing method of nonvolatile semiconductor memory device provided with variable resistance element
技術分野  Technical field
[0001] 本発明は、上部電極と下部電極の間にデータを蓄積するための可変抵抗体を形 成してなる不揮発性半導体記憶装置の製造方法に関する。  The present invention relates to a method for manufacturing a nonvolatile semiconductor memory device in which a variable resistor for storing data is formed between an upper electrode and a lower electrode.
背景技術  Background art
[0002] 近年、フラッシュメモリに代わる高速動作可能な次世代不揮発性ランダムアクセスメ モリ (NVRAM : Nonvolatile Random Access Memory)として、 FeRAM (Fer roelectric RAM)、 MRAM (Magnetic RAM)、 OUM (Ovonic Unified Me mory)等の様々なデバイス構造が提案され、高性能化、高信頼性化、低コスト化、及 び、プロセス整合性という観点から、激しい開発競争が行われている。しかしながら、 現状のこれらメモリデバイスには各々一長一短があり、 SRAM, DRAM,フラッシュメ モリの各利点を併せ持つ「ユニバーサルメモリ」の理想実現には未だ遠 、。 [0002] In recent years, next-generation non-volatile random access memory (NVRAM) that can operate at high speed instead of flash memory is used as FeRAM (Ferroelectric RAM), MRAM (Magnetic RAM), OUM (Ovonic Unified Mem). various device structures such as ory ) have been proposed, and intense development competition is taking place from the viewpoint of high performance, high reliability, low cost, and process consistency. However, these current memory devices have their merits and demerits, and it is still far from the ideal realization of “universal memory” that combines the advantages of SRAM, DRAM, and flash memory.
[0003] これら既存技術に対し、米国ヒューストン大の Shangquing Liuや Alex Ignatiev 等によって、超巨大磁気抵抗効果で知られるぺロブスカイト材料に電圧パルスを印 加することによって可逆的に電気抵抗を変化させる方法が開示されている(例えば、 特許文献 1及び非特許文献 1参照)。これは超巨大磁気抵抗効果で知られるぺロブ スカイト材料を用いながらも、磁場の印加なしに室温においても数桁にわたる抵抗変 化が現れるという極めて画期的なものである。  [0003] In contrast to these existing technologies, Shangquing Liu and Alex Ignatiev of the University of Houston in the United States have applied a voltage pulse to a perovskite material known for its giant magnetoresistance effect to reversibly change its electrical resistance. (For example, refer to Patent Document 1 and Non-Patent Document 1). This is an epoch-making thing, with the use of a perovskite material known for its giant magnetoresistive effect, but with resistance changes of several orders of magnitude even at room temperature without the application of a magnetic field.
[0004] この現象を利用した可変抵抗素子を用いた抵抗性不揮発性メモリ RRAM (シヤー プ株式会社の登録商標、 Resistance Random Access Memory)は、 MRAM と異なり磁場を一切必要としないため消費電力が極めて低ぐ微細化、高集積化も容 易であり、抵抗変化のダイナミックレンジが MRAMに比べ格段に広 、ため多値記憶 が可能であると ヽぅ優れた特徴を有する。実際のデバイスにおける基本構造は極め て単純で、基板垂直方向に下部電極材料、ぺロブスカイト型酸化物、上部電極材料 の順に積層された構造となっている。尚、特許文献 1に例示する素子構造では、下部 電極材料はランタン'アルミニウム酸ィ匕物 LaAlO (LAO)の単結晶基板上に堆積さ れたイットリウム 'バリウム ·銅酸化物 YBa Cu O (YBCO)膜、ぺロブスカイト型酸ィ匕 物は結晶性プラセォジゥム'カルシウム ·マンガン酸化物 Pr Ca MnO (PCMO) 膜、上部電極材料はスパッタリングで堆積された Ag膜で、夫々形成されている。この 記憶素子の動作は、上部及び下部電極間に印加する電圧パルスを 51ボルトとして正 、負に印加することにより抵抗を可逆的に変化させることができることが報告された。 この可逆的な抵抗変化動作 (以下、適宜「スイッチング動作」と称す。 )における抵抗 値を読み出すことによって、新規な不揮発性記憶装置が可能であることを意味してい る。 [0004] Resistive non-volatile memory RRAM (registered trademark of Resistance Co., Ltd., Resistance Random Access Memory) using a variable resistance element that utilizes this phenomenon does not require any magnetic field unlike MRAM, and consumes very little power. Low miniaturization and high integration are easy, and the dynamic range of resistance change is much wider than that of MRAM. Therefore, it has excellent characteristics that multi-value storage is possible. The basic structure of an actual device is extremely simple, with a lower electrode material, a perovskite oxide, and an upper electrode material stacked in that order in the vertical direction of the substrate. In the element structure exemplified in Patent Document 1, the lower electrode material is deposited on a single crystal substrate of lanthanum aluminum oxide LaAlO (LAO). Yttrium barium copper oxide YBa Cu O (YBCO) film, perovskite type oxide is crystalline prasedium calcium manganese oxide Pr Ca MnO (PCMO) film, upper electrode material is deposited by sputtering Each is formed with an Ag film. It has been reported that the operation of this memory element can reversibly change the resistance by applying a positive and negative voltage pulse between the upper and lower electrodes of 51 volts. It means that a novel nonvolatile memory device is possible by reading the resistance value in this reversible resistance change operation (hereinafter referred to as “switching operation” as appropriate).
[0005] このような可変抵抗素子を利用したデバイス構造の半導体記憶装置としてクロスポ イント構造の半導体記憶装置が提案されている (例えば、特許文献 2参照)。  [0005] A semiconductor memory device having a cross-point structure has been proposed as a semiconductor memory device having a device structure using such a variable resistance element (see, for example, Patent Document 2).
[0006] 一般的に、 DRAM, NOR型フラッシュメモリ、 FeRAM等の半導体記憶装置は、メ モリを蓄積する素子部分と、このメモリ素子を選択するための選択トランジスタとを備 えて 1つのメモリセルが構成されている。これに対し、クロスポイント構造のメモリセル は、この選択トランジスタを廃して、ビット線とワード線の交点(クロスポイント)にメモリ データを蓄積する記憶材料体のみを配して形成される。このクロスポイント構造のメモ リセル構成では、選択されたビット線とワード線の交点の蓄積データを、選択トランジ スタを用いずに直接読み出すことになるため、選択メモリセルに接続する選択ビット 線或いは選択ワード線に接続する非選択メモリセルを介して流れる寄生電流が、選 択メモリセルを流れる読み出し電流に重畳することによる動作スピードの遅延、消費 電流の増大等の問題があるものの、単純な構造であるためメモリセル面積の縮小に よる大容量ィ匕が可能であるとして注目されている。以下にもっとも簡便なクロスポイン ト構造の製造方法を説明する。  [0006] Generally, a semiconductor memory device such as a DRAM, NOR flash memory, or FeRAM has an element portion that stores memory and a selection transistor for selecting the memory element. It is configured. On the other hand, a memory cell having a cross-point structure is formed by eliminating this selection transistor and arranging only a storage material body for storing memory data at the intersection (cross point) between a bit line and a word line. In this memory cell configuration of the cross-point structure, the accumulated data at the intersection of the selected bit line and word line is directly read without using the selected transistor, so the selected bit line connected to the selected memory cell or the selected memory cell is selected. Although the parasitic current flowing through the unselected memory cell connected to the word line is superimposed on the read current flowing through the selected memory cell, there are problems such as a delay in operation speed and an increase in current consumption. Therefore, it has been attracting attention as being capable of large capacity by reducing the memory cell area. The simplest method for manufacturing a crosspoint structure will be described below.
[0007] 図 1は、クロスポイント構造のメモリセルの平面レイアウト図である。下部電極配線 B の配線パターンを定義する領域 R1と、上部電極配線 Tの配線パターンを定義する領 域 R2を夫々示している。ここで、上部電極配線 Tと下部電極配線 Bの何れか一方が ワード線となり、他方がビット線となる。また、図 6及び図 7は、従来の製造方法を工程 順に示したものであり、図 1の Χ—ΧΊこ沿った垂直断面図と、図 1の Υ—ΥΊこ沿った 垂直断面図を夫々示して 、る。 [0008] 先ず、図 6 (a)に示すように、トランジスタ回路等(図示せず)を形成したシリコン半導 体基板上 11にメモリセル下の層間絶縁膜 12を形成した後、トランジスタ回路等の存 在により発生する段差を緩和するために、所謂 CMP法 (化学的機械的研磨法: Che mical Mechanical Polishing Method)により表面を平坦ィ匕する。 FIG. 1 is a plan layout diagram of a memory cell having a cross-point structure. A region R1 that defines the wiring pattern of the lower electrode wiring B and a region R2 that defines the wiring pattern of the upper electrode wiring T are shown. Here, one of the upper electrode wiring T and the lower electrode wiring B is a word line, and the other is a bit line. 6 and 7 show the conventional manufacturing method in the order of steps. The vertical cross-sectional view along the Χ-ΧΊ of Fig. 1 and the vertical cross-sectional view along the Υ-ΥΊ of Fig. 1 are respectively shown. Show me. First, as shown in FIG. 6A, after forming an interlayer insulating film 12 under the memory cell on a silicon semiconductor substrate 11 on which a transistor circuit or the like (not shown) is formed, a transistor circuit or the like is formed. In order to alleviate the level difference caused by the presence of the surface, the surface is flattened by a so-called CMP method (Chemical Mechanical Polishing Method).
[0009] 続いて、図 6 (b)に示すように、下部電極配線 Bとなる電極材料膜 13を全面に堆積 した後、フォトリソグラフィの手法によって、ストライプ状 (ライン &スペース)にパターン ユングしたレジスト R1をマスクとして、電極材料膜 13をエッチングすることにより、下 部電極配線 Bを形成する。  Subsequently, as shown in FIG. 6 (b), after depositing an electrode material film 13 to be the lower electrode wiring B over the entire surface, the pattern was formed in stripes (lines & spaces) by a photolithography technique. The lower electrode wiring B is formed by etching the electrode material film 13 using the resist R1 as a mask.
[0010] 引き続き、レジスト R1を除去した後、図 6 (c)に示すように、隣接する下部電極配線 B間の領域を埋め込むのに十分な膜厚の絶縁膜 14を全面に堆積する。  [0010] Subsequently, after removing the resist R1, as shown in FIG. 6 (c), an insulating film 14 having a film thickness sufficient to fill the region between the adjacent lower electrode wirings B is deposited on the entire surface.
[0011] 引き続き、図 6 (d)に示すように、 CMP法により、絶縁膜 14を下部電極配線 Bの表 面レベルまで研磨する。この結果、下部電極配線 B間が絶縁膜 14で埋め込まれる。 埋め込まれた絶縁膜 14の表面と下部電極配線 Bの表面とが略同じ高さになることに より、表面全体が略平滑な構造が形成される。該研磨工程の目的は、引き続いて成 膜される可変抵抗体膜をでき得る限り平坦な表面上に成膜することにある。これは、 後工程の可変抵抗体膜のエッチングにおいて、可変抵抗体膜と下部電極膜との間 にエッチングの選択比が無いため、下部電極の段差上に可変抵抗体膜を成膜する のが困難なことに因る。  Subsequently, as shown in FIG. 6D, the insulating film 14 is polished to the surface level of the lower electrode wiring B by the CMP method. As a result, the space between the lower electrode wirings B is filled with the insulating film 14. Since the surface of the buried insulating film 14 and the surface of the lower electrode wiring B have substantially the same height, a structure in which the entire surface is substantially smooth is formed. The purpose of the polishing step is to form a variable resistor film to be subsequently formed on the flat surface as much as possible. This is because in the subsequent etching of the variable resistor film, there is no etching selection ratio between the variable resistor film and the lower electrode film, so the variable resistor film is formed on the step of the lower electrode. Due to difficulties.
[0012] 引き続き、図 7 (a)に示すように、可変抵抗体となる金属酸ィ匕膜 15を全面にスパッタ リング成膜する。このスパッタリングは酸素を含んだ雰囲気で行われる。引き続き、図 7 (b)に示すように、上部電極配線 Tとなる電極材料膜 16を全面に成膜する。  Subsequently, as shown in FIG. 7 (a), a metal oxide film 15 to be a variable resistor is formed on the entire surface by sputtering. This sputtering is performed in an atmosphere containing oxygen. Subsequently, as shown in FIG. 7B, an electrode material film 16 to be the upper electrode wiring T is formed on the entire surface.
[0013] 引き続き、フォトリソグラフィの手法によってストライプ状 (ライン &スペース)にパター ンユングしたレジスト R2をマスクとして、上記電極材料膜 16をエッチングすることによ り、上部電極配線 Tを形成する。更に、図 7 (c)に示すように、上部電極配線 T間に残 存する可変抵抗体膜 15をエッチングして除去する。  [0013] Subsequently, the upper electrode wiring T is formed by etching the electrode material film 16 using the resist R2 patterned in a stripe shape (line & space) by a photolithography technique as a mask. Further, as shown in FIG. 7C, the variable resistor film 15 remaining between the upper electrode wirings T is removed by etching.
[0014] 引き続き、レジスト R2を除去した後、図 7 (d)に示すように、メタル配線下の層間絶 縁膜 17を全面に堆積する。その後、下部電極配線 B、上部電極配線 T、メモリセル以 外のトランジスタ回路等へのコンタクト(コンタクト形成部は図示せず)を形成し、メタル 配線 (図示せず)を行う。 Subsequently, after removing the resist R2, as shown in FIG. 7D, an interlayer insulating film 17 under the metal wiring is deposited on the entire surface. After that, contacts to the lower electrode wiring B, the upper electrode wiring T, transistor circuits other than the memory cells, etc. (contact forming portions are not shown) are formed, and metal Perform wiring (not shown).
[0015] 上述したクロスポイント型デバイスの可変抵抗体である PCMO膜形成(図 7 (a)参照 )は、焼結された PCMOターゲットを用いてスパッタリング形成されるが、特許文献 1 には、スパッタの際に欠損した酸素を補う目的で適宜量の酸素ガスをスパッタリング ガスである Arガスに混入して導入している。このように形成された PCMO膜は、ほぼ 非晶質であることが知られている。非晶質 PCMO膜は通常極めて抵抗が高いため、 デバイス動作には向かず、プロセス中の熱処理工程などで結晶化を行い所望の抵 抗レベルまで下げる必要がある。  [0015] PCMO film formation (see Fig. 7 (a)), which is a variable resistor of the cross-point device described above, is formed by sputtering using a sintered PCMO target. An appropriate amount of oxygen gas is mixed with Ar gas, which is a sputtering gas, and introduced for the purpose of supplementing the missing oxygen. It is known that the PCMO film thus formed is almost amorphous. Amorphous PCMO films usually have extremely high resistance, so they are not suitable for device operation, and it is necessary to crystallize them during the heat treatment step in the process to lower the resistance level to a desired level.
[0016] 特許文献 1:米国特許第 6204139号明細書  [0016] Patent Document 1: US Pat. No. 6,204,139
特許文献 2:特開 2003 - 68984号公報  Patent Document 2: Japanese Patent Laid-Open No. 2003-68984
特干文献 1 : Liu, Q. ま Electric― pulse― induced reversible Resis tance change effect m magnetoresistive films , Applied Physics Let ter, Vol. 76, pp. 2749 - 2751, 2000年  Special Reference 1: Liu, Q. Ma Electric- pulse- induced reversible Resis tance change effect m magnetoresistive films, Applied Physics Let ter, Vol. 76, pp. 2749-2751, 2000
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0017] し力しながら、このように結晶化して低抵抗ィ匕した PCMO膜は、下地の電極表面ま たは絶縁膜表面の状態に強い影響を受ける。この結果、可変抵抗体である PCMO 膜は、 PCMO膜結晶化度が個々に異なり、個々の可変抵抗体の抵抗値に極めて大 きなバラツキを生じさせる。そのため、回路動作させる上で必要なマージンが小さくな つてしま!、、不安定性の増大や不良率の増加を招くと!、つた問題があった。  [0017] However, the PCMO film crystallized and reduced in resistance in this way is strongly influenced by the state of the underlying electrode surface or insulating film surface. As a result, the PCMO film, which is a variable resistor, has a different crystallinity of the PCMO film, resulting in a very large variation in the resistance value of each variable resistor. For this reason, the margin necessary for circuit operation has been reduced! Instability and failure rate have been increased!
[0018] 本発明は上記問題点に鑑みてなされたものであり、その目的は、可変抵抗体の PC MO結晶化度の違いによる抵抗値バラツキを抑え、回路動作マージンを十分確保す ることができる不揮発性半導体記憶装置の製造方法を提供する点にある。  [0018] The present invention has been made in view of the above problems, and an object of the present invention is to suppress variation in resistance value due to a difference in PCMO crystallinity of the variable resistor and to ensure a sufficient circuit operation margin. Another object is to provide a method for manufacturing a nonvolatile semiconductor memory device.
課題を解決するための手段  Means for solving the problem
[0019] 上記目的を達成するための本発明に係る不揮発性半導体記憶装置の製造方法は 、上部電極と下部電極の間にデータを蓄積するための可変抵抗体を形成してなる可 変抵抗素子を備えてなる不揮発性半導体記憶装置の製造方法であって、金属酸ィ匕 物を、酸素を含まない雰囲気中でスパッタリングし、前記可変抵抗体を形成する可変 抵抗体形成工程を実行することを第 1の特徴とする。 In order to achieve the above object, a method for manufacturing a nonvolatile semiconductor memory device according to the present invention includes a variable resistance element in which a variable resistor for storing data is formed between an upper electrode and a lower electrode. A method of manufacturing a nonvolatile semiconductor memory device comprising: a variable resistance body formed by sputtering a metal oxide in an atmosphere not containing oxygen. The first feature is to execute the resistor forming step.
[0020] 上記目的を達成するための本発明に係る不揮発性半導体記憶装置の製造方法は 、同方向に延伸する複数の上部電極配線と前記上部電極配線の延伸方向と直交す る方向に延伸する複数の下部電極配線を備え、前記上部電極配線と前記下部電極 配線の間にデータを蓄積するための可変抵抗体を形成してなる可変抵抗素子をマト リクス状に配列してなるクロスポイント構造のメモリセルアレイを備える不揮発性半導 体記憶装置の製造方法であって、前記複数の下部電極配線上に、金属酸化物を、 酸素を含まない雰囲気中でスパッタリングし、前記可変抵抗体を形成する可変抵抗 体形成工程を実行することを第 2の特徴とする。  In order to achieve the above object, a method for manufacturing a nonvolatile semiconductor memory device according to the present invention includes a plurality of upper electrode wires extending in the same direction and extending in a direction perpendicular to the extending direction of the upper electrode wires. A cross-point structure comprising a plurality of lower electrode wirings and variable resistance elements formed by forming variable resistors for storing data between the upper electrode wirings and the lower electrode wirings in a matrix shape. A method of manufacturing a nonvolatile semiconductor memory device including a memory cell array, wherein a variable resistor is formed by sputtering a metal oxide on the plurality of lower electrode wirings in an oxygen-free atmosphere. The second feature is to execute the resistor forming process.
[0021] 上記何れかの特徴の本発明に係る不揮発性半導体記憶装置の製造方法は、前記 スパッタリングは、 Ar、 He、 Ne、 Kr、 Xeの何れか 1つをスパッタリングガスとして用い ることを第 3の特徴とする。  [0021] In the method of manufacturing a nonvolatile semiconductor memory device according to the present invention having any one of the above features, the sputtering uses any one of Ar, He, Ne, Kr, and Xe as a sputtering gas. Three features.
[0022] 上記何れかの特徴の本発明に係る不揮発性半導体記憶装置の製造方法は、前記 スパッタリングの成膜温度範囲力 500°C〜800°Cであることを第 4の特徴とする。  [0022] A nonvolatile semiconductor memory device manufacturing method according to the present invention having any one of the above characteristics is characterized in that the sputtering film forming temperature range force is 500 ° C to 800 ° C.
[0023] 上記何れかの特徴の本発明に係る不揮発性半導体記憶装置の製造方法は、前記 金属酸化物が、一般式 Pr Ca [Mn M ]0 (但し、 0≤x≤ 1, 0≤z< 1)で表さ  [0023] In any one of the above features of the method for manufacturing a nonvolatile semiconductor memory device according to the present invention, the metal oxide may be represented by the general formula Pr Ca [Mn M] 0 (where 0≤x≤1, 0≤z <1)
1 -X X 1 -Z Z 3  1 -X X 1 -Z Z 3
れる系の酸ィ匕物であることを第 5の特徴とする。  The fifth characteristic is that it is an acid oxide of the system.
[0024] 上記特徴の本発明に係る不揮発性半導体記憶装置の製造方法は、前記一般式中 の Mは Ta, Ti, Cu, Cr, Co, Fe, Ni, Gaの中の何れか 1つを含むことを第 6の特徴 とする。 [0024] In the method of manufacturing a nonvolatile semiconductor memory device according to the present invention having the above characteristics, M in the general formula is any one of Ta, Ti, Cu, Cr, Co, Fe, Ni, and Ga. Inclusion is the sixth feature.
[0025] 上記第 1〜第 4の特徴の本発明に係る不揮発性半導体記憶装置の製造方法は、 前記金属酸ィ匕物が Tiの酸ィ匕物または Niの酸ィ匕物であることを第 7の特徴とする。 発明の効果  [0025] In the method for manufacturing a nonvolatile semiconductor memory device according to the first to fourth features of the present invention, the metal oxide is a Ti oxide or a Ni oxide. The seventh feature. The invention's effect
[0026] 上記特徴の不揮発性半導体記憶装置の製造方法によれば、可変抵抗素子の抵抗 値のノ ツキを小さくできる。これによつて、当該可変抵抗素子を含む不揮発性半導 体記憶装置を構成した場合に、回路動作マージンが大きくなり、安定したメモリ動作 が可能となり、更に、不良率を低減することが可能となる。  [0026] According to the method for manufacturing a nonvolatile semiconductor memory device having the above characteristics, it is possible to reduce the variation in resistance value of the variable resistance element. As a result, when a nonvolatile semiconductor memory device including the variable resistance element is configured, the circuit operation margin is increased, stable memory operation is possible, and the defect rate can be further reduced. Become.
図面の簡単な説明 [0027] [図 1]クロスポイント構造のメモリセルアレイの平面レイアウト図 Brief Description of Drawings [0027] [FIG. 1] a planar layout of a memory cell array having a cross-point structure
[図 2]本発明に係る半導体記憶装置の製造方法の第 1実施形態における各工程を示 す工程断面図  FIG. 2 is a process cross-sectional view showing each process in the first embodiment of the method for manufacturing a semiconductor memory device according to the present invention.
[図 3]本発明に係る半導体記憶装置の製造方法の第 1実施形態における各工程を示 す工程断面図  FIG. 3 is a process sectional view showing each process in the first embodiment of the method for manufacturing a semiconductor memory device according to the invention.
圆 4]本発明に係る半導体記憶装置及び従来技術に係る半導体記憶装置の抵抗値 分布を示すグラフ  [4] Graph showing resistance distribution of the semiconductor memory device according to the present invention and the semiconductor memory device according to the prior art
[図 5]本発明に係る半導体記憶装置及び従来技術に係る半導体記憶装置の抵抗値 のばらつきを示すグラフ  FIG. 5 is a graph showing variations in resistance values of the semiconductor memory device according to the present invention and the semiconductor memory device according to the prior art.
[図 6]従来技術に係る半導体記憶装置の製造方法の各工程を示す工程断面図 [図 7]従来技術に係る半導体記憶装置の製造方法の各工程を示す工程断面図 符号の説明  FIG. 6 is a process cross-sectional view showing each process of a manufacturing method of a semiconductor memory device according to the prior art.
[0028] 11 :半導体基板 (シリコン基板) [0028] 11: Semiconductor substrate (silicon substrate)
12 :層間絶縁膜 (BPSG膜)  12: Interlayer insulation film (BPSG film)
13 : Pt膜  13: Pt film
14 :シリコン酸ィ匕膜  14: Silicon oxide film
15 :可変抵抗体  15: Variable resistor
16 : Pt膜  16: Pt film
17 :層間絶縁膜  17: Interlayer insulation film
18 :可変抵抗体  18: Variable resistor
B : 下部電極配線  B: Lower electrode wiring
T: 上部電極配線  T: Upper electrode wiring
R1 :レジスト  R1: resist
R2 :レジスト  R2: Resist
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0029] 以下、本発明に係る不揮発性半導体記憶装置の製造方法 (以下、適宜「本発明方 法」と略称する)の実施形態を図面に基づ!、て説明する。 Hereinafter, an embodiment of a method for manufacturing a nonvolatile semiconductor memory device according to the present invention (hereinafter abbreviated as “the method of the present invention” as appropriate) will be described with reference to the drawings.
[0030] 図 1は、本発明方法におけるメモリセルアレイを形成するための平面レイアウト図で あり、下部電極配線 Bの配線パターンを定義する領域 Rlと、上部電極配線 Tの配線 パターンを定義する領域 R2を夫々示している。当該平面レイアウト図は、従来のクロ スポイント構造のメモリセルアレイの平面レイアウト図と同じであり、上部電極配線丁と 下部電極配線 Bの交差部分 (クロスポイント部分)に、上部電極と下部電極の間にデ ータを蓄積するための可変抵抗体を形成してなる可変抵抗素子がマトリクス状に配 置されている。尚、以下の実施形態では、メモリセルの可変抵抗体として巨大磁気抵 抗効果を有する CMR材料(例えば PCMO : Pr Ca MnO )薄膜を用いてクロス FIG. 1 is a plan layout view for forming a memory cell array in the method of the present invention. There are a region Rl for defining the wiring pattern of the lower electrode wiring B and a region R2 for defining the wiring pattern of the upper electrode wiring T, respectively. The plan layout diagram is the same as the plan layout diagram of a memory cell array having a conventional cross-point structure. In addition, variable resistance elements formed by forming variable resistors for storing data are arranged in a matrix. In the following embodiments, a CMR material (for example, PCMO: Pr Ca MnO) thin film having a giant magnetic resistance effect is used as a variable resistor of a memory cell to cross
0. 7 0. 3 3  0. 7 0. 3 3
ポイント構造のメモリセル及びメモリセルアレイを構成した RRAMを一例として、その メモリセルアレイ構成の具体的な製造方法を示す。  A specific manufacturing method of the memory cell array configuration will be described by taking, as an example, a point structure memory cell and an RRAM that constitutes the memory cell array.
[0031] 〈第 1実施形態〉  <First Embodiment>
本発明方法の一実施形態について図 2及び図 3を基に説明する。ここで、図 2及び 図 3は、本実施形態における本発明方法の各工程を順に示している。図 2及び図 3は 、図 1の X— ΧΊこ沿った垂直断面図と、図 1の Υ— ΥΊこ沿った垂直断面図を、夫々 示している。尚、本発明において「垂直」は、特に断らない限り、半導体基板 11の表 面に対して垂直な場合を意味する。  An embodiment of the method of the present invention will be described with reference to FIGS. Here, FIG. 2 and FIG. 3 show each step of the method of the present invention in this embodiment in order. 2 and 3 show a vertical cross-sectional view along the X-axis in FIG. 1 and a vertical cross-sectional view along the X-axis in FIG. 1, respectively. In the present invention, “vertical” means a case perpendicular to the surface of the semiconductor substrate 11 unless otherwise specified.
[0032] 先ず、従来の製造方法と同様に、トランジスタ回路等(図示せず)を形成したシリコ ン半導体基板 11上に、メモリセル下の層間絶縁膜として BPSG膜 12を 1300nmの 膜厚で形成し、 CMP法により 600nmまで研磨し、表面を平坦化する。続いて、図 2 ( a)に示すように、下部電極配線 Bとなる Pt膜 13 (第 1電極膜に相当)を全面にスパッ タする。本実施形態では、膜厚が 200nmとなるように Pt膜 13を堆積した。  First, as in the conventional manufacturing method, a BPSG film 12 having a thickness of 1300 nm is formed as an interlayer insulating film under a memory cell on a silicon semiconductor substrate 11 on which a transistor circuit or the like (not shown) is formed. Then, the surface is polished to 600 nm by CMP to flatten the surface. Subsequently, as shown in FIG. 2A, a Pt film 13 (corresponding to the first electrode film) to be the lower electrode wiring B is sputtered over the entire surface. In this embodiment, the Pt film 13 is deposited so that the film thickness becomes 200 nm.
[0033] 続、て、図 2 (b)に示すように、フォトリソグラフィの手法によってストライプ状 (ライン &スペース)にパターンユングしたレジスト R1をマスクとして、 Pt膜 13をエッチングす ることにより、下部電極配線 Bを形成する。本実施形態では、ライン幅 0. 3 m、スぺ ース幅 0. 3 /z mのストライプ状のレジストパターンを用いて、エッチングを行った。  Subsequently, as shown in FIG. 2B, the Pt film 13 is etched by using the resist R1 patterned in stripes (line & space) by a photolithography technique as a mask. Electrode wiring B is formed. In this embodiment, etching was performed using a striped resist pattern having a line width of 0.3 m and a space width of 0.3 / zm.
[0034] 引き続き、レジスト R1を除去した後、図 2 (c)に示すように、絶縁膜であるシリコン酸 化膜 14を全面に堆積する。シリコン酸ィ匕膜 14の膜厚は、下部電極配線 B間を埋め 込むのに十分な膜厚にする。本実施形態では、膜厚力 00nmとなるようにシリコン 酸化膜 14を堆積した。 [0035] 引き続き、 CMP法によりシリコン酸化膜 14を下部電極配線 Bの表面レベルまで研 磨する研磨工程を実行する。以上が、下部電極配線 Bを形成する下部電極配線形 成工程である。 Subsequently, after removing the resist R1, as shown in FIG. 2 (c), a silicon oxide film 14 as an insulating film is deposited on the entire surface. The film thickness of the silicon oxide film 14 should be sufficient to fill the space between the lower electrode wirings B. In this embodiment, the silicon oxide film 14 is deposited so that the film thickness force becomes 00 nm. Subsequently, a polishing process is performed in which the silicon oxide film 14 is polished to the surface level of the lower electrode wiring B by the CMP method. The above is the lower electrode wiring formation process for forming the lower electrode wiring B.
[0036] 研磨工程の結果、図 2 (d)に示すように、下部電極配線 B間をシリコン酸ィ匕膜 14で 埋め込み、埋め込まれたシリコン酸ィ匕膜 14の表面と下部電極配線 Bの表面を略同じ 高さに平滑ィ匕することにより、表面全体が略一様な平面状の構造が形成される。  As a result of the polishing process, as shown in FIG. 2 (d), the space between the lower electrode wirings B is buried with the silicon oxide film 14, and the surface of the embedded silicon oxide film 14 and the lower electrode wiring B By smoothing the surface to approximately the same height, a planar structure having a substantially uniform surface is formed.
[0037] 引き続き、図 3 (e)に示すように、 PCMO (Pr Ca MnO )を材料とする可変抵  [0037] Subsequently, as shown in FIG. 3 (e), a variable resistance made of PCMO (Pr Ca MnO) is used.
0. 7 0. 3 3  0. 7 0. 3 3
抗体 18を下部電極配線 Bとシリコン酸ィ匕膜 14の表面に膜厚が lOOnmとなるようにス ノ ッタリング形成する。スパッタリング条件は、例えば、 Arガス流量 210sccm、圧力 2 OmTorr、基板温度 670°Cである。反応室内に導入されるガスは Arのみであり、無酸 素雰囲気で形成される PCMO膜は結晶化した膜になる。また可変抵抗体 18として は、 TiOや NiO等の酸化物も TiOターゲットや NiOターゲットを前記スパッタリング The antibody 18 is deposited on the surface of the lower electrode wiring B and the silicon oxide film 14 so as to have a film thickness of lOOnm. The sputtering conditions are, for example, an Ar gas flow rate of 210 sccm, a pressure of 2 OmTorr, and a substrate temperature of 670 ° C. The only gas introduced into the reaction chamber is Ar, and the PCMO film formed in an oxygen-free atmosphere becomes a crystallized film. In addition, as the variable resistor 18, an oxide such as TiO or NiO can also be formed by sputtering the TiO target or NiO target.
2 2 twenty two
条件と同一の条件で TiO膜や NiO膜を形成して使用することが可能である。尚、 PC  It is possible to use a TiO film or NiO film formed under the same conditions. PC
2  2
MO膜 18は、 Pr Ca [Mn M ]0 (但し、 0≤x≤ 1, 0≤z< 1)で表される系の l -X X 1 -Z Z 3  The MO film 18 is composed of Pr Ca [Mn M] 0 (where 0≤x≤ 1, 0≤z <1). L -X X 1 -Z Z 3
酸化物である。 Mは Ta, Ti, Cu, Cr, Co, Fe, Ni, Gaの中の何れか 1つを含むこと が望ましい。  It is an oxide. M preferably contains one of Ta, Ti, Cu, Cr, Co, Fe, Ni, and Ga.
[0038] 引き続き、図 3 (f)に示すように、 PCMO膜 18上に、上部電極 Tとなる Pt膜 16をス ノ ッタリング法で形成する。また、本実施形態では、 Pt膜 16の膜厚は lOOnmとした。  Subsequently, as shown in FIG. 3 (f), a Pt film 16 to be the upper electrode T is formed on the PCMO film 18 by a sputtering method. In this embodiment, the thickness of the Pt film 16 is lOOnm.
[0039] その後、フォトリソグラフィの手法によって、 Pt膜 16上の上部電極 Tとなる領域に、 上部電極パターンに基づいて、図 3 (g)に示すようなレジスト R2を形成する。そして、 このレジスト R2をマスクとして、 Pt膜 16及び PCMO膜 18をドライエッチング法により 同時にエッチングし、その後レジスト除去して、図 3 (g)に示すような上部電極 T(Pt膜 16)及び可変抵抗体 (PCMO膜 18)を形成する。  Thereafter, a resist R2 as shown in FIG. 3 (g) is formed on the Pt film 16 in a region to be the upper electrode T by a photolithography technique based on the upper electrode pattern. Then, using this resist R2 as a mask, the Pt film 16 and the PCMO film 18 are simultaneously etched by a dry etching method, and then the resist is removed to form the upper electrode T (Pt film 16) and the variable as shown in FIG. A resistor (PCMO film 18) is formed.
[0040] 更に、その後、図 3 (h)〖こ示すように、 SiO膜 17を CVD法により 400nm堆積する。  [0040] After that, as shown in FIG. 3 (h), an SiO film 17 is deposited to a thickness of 400 nm by the CVD method.
2  2
そして、回路動作に必要なコンタクトホールおよびメタル配線工程を施し完成となる( 図示せず)。  Then, contact holes and metal wiring steps necessary for circuit operation are performed to complete the circuit (not shown).
[0041] 尚、上述した PCMO膜 18のスパッタリング条件はこれに限られたものではなぐ安 定したスパッタリングが行われ、 PCMO膜 18が結晶化すれば良ぐスパッタリングガ スには Ar以外の希ガス元素、例えば He、 Ne、 Kr、 Xeを用いても良い。また基板温 度は PCMO膜が安定に結晶化する 500°C〜800°Cの範囲内であることが望ましい。 [0041] The sputtering conditions for the PCMO film 18 described above are not limited to this, and stable sputtering is performed. A rare gas element other than Ar, such as He, Ne, Kr, or Xe, may be used for the gas. The substrate temperature is preferably in the range of 500 ° C to 800 ° C where the PCMO film crystallizes stably.
[0042] 本発明方法及び従来技術により形成された不揮発性半導体記憶装置の抵抗値分 布を図 4に、また、本発明方法及び従来技術により形成された不揮発性半導体記憶 装置の抵抗値のチップ内バラツキを図 5に示す。  FIG. 4 shows a resistance value distribution of the nonvolatile semiconductor memory device formed by the method of the present invention and the conventional technique, and a chip of the resistance value of the nonvolatile semiconductor memory device formed by the method of the present invention and the conventional technique. Figure 5 shows the variation.
[0043] 図 4は、本発明方法及び従来技術によって半導体基板上に形成された PCMO膜 の抵抗分布を示している。尚、スパッタリング成膜温度はいずれも 670°Cである。図 4 に示すように、上記実施形態の Arガスを用いたスパッタリング条件では、抵抗値の分 布を測定した結果、 20〜60ΚΩになり、可変抵抗体として適切な抵抗値が得られた 。また、従来技術に係る酸素雰囲気でのスパッタリング条件では、抵抗値の分布を測 定した結果、 1〜10ΚΩが得られた。即ち、従来方法の場合は抵抗値の分布が 1桁 以上に渡り広がっているが、本発明の場合その分布が狭まっておりバラツキが大きく 改善されていることがわかる。従って、本発明方法によるスパッタリング条件の方が抵 抗値の分布のばらつきの改善が得られたと言える。  FIG. 4 shows the resistance distribution of the PCMO film formed on the semiconductor substrate by the method of the present invention and the prior art. Note that the sputtering deposition temperature is 670 ° C in all cases. As shown in FIG. 4, under the sputtering conditions using Ar gas of the above embodiment, the resistance value distribution was measured. As a result, the resistance value was 20 to 60 μΩ, and an appropriate resistance value as a variable resistor was obtained. In addition, under the sputtering conditions in an oxygen atmosphere according to the prior art, 1 to 10 Ω was obtained as a result of measuring the distribution of resistance values. That is, in the case of the conventional method, the distribution of the resistance value spreads over one digit, but in the case of the present invention, the distribution is narrowed and the variation is greatly improved. Therefore, it can be said that the variation in the distribution of resistance values was improved under the sputtering conditions according to the method of the present invention.
[0044] 続いて、図 5は、本発明方法及び従来技術によって形成された PCMO膜の抵抗値 のウェハ内のバラツキを示している。ここで、ウェハ内のバラツキは、ウェハ内の抵抗 値の標準偏差の 3 σと抵抗値の平均値を用い、 3 σ Ζ抵抗値の平均値をバラツキと して示した。図 5に示すように、本発明方法による Arガスを用いたスパッタリング条件 と従来の酸素雰囲気でのスパッタリング条件の場合の抵抗値分布を比較すると、本 発明方法の場合のチップ内のばらつきは 8〜40%程度であるのに対し、従来の方法 では 40〜200%程度である。即ち、チップ内のバラツキも、従来技術に対し、本発明 方法の場合は、 10分の 1程度に減少しており、本発明方法による無酸素雰囲気での スパッタリング条件を使用することで、抵抗値のバラツキの大幅な低減が図れたと言 える。  [0044] Subsequently, FIG. 5 shows the variation in the resistance value of the PCMO film formed by the method of the present invention and the prior art in the wafer. Here, the variation within the wafer is shown by using the standard deviation 3 σ of the resistance value within the wafer and the average value of the resistance value, and the average value of 3 σ Ζ resistance value as the variation. As shown in FIG. 5, when the resistance value distribution is compared between the sputtering conditions using Ar gas according to the method of the present invention and the sputtering conditions in a conventional oxygen atmosphere, the variation in the chip in the case of the method of the present invention is 8 Compared to about 40%, the conventional method is about 40 to 200%. That is, the variation in the chip is also reduced to about 1/10 in the case of the method of the present invention compared to the prior art, and the resistance value is obtained by using the sputtering conditions in an oxygen-free atmosphere by the method of the present invention. It can be said that there was a significant reduction in variability.
[0045] このように、抵抗値のバラツキが大幅に低減されたのは PCMO膜の結晶化度が非 常に高くなつていることに起因している。これはスパッタリング時に酸ィ匕性ガスである 酸素を含まず、 Arガスのみでスパッタリングしているために結晶化温度が低下してい るためである。 TiOや NiOについても同様に Arガスのみでスパッタリングすると結晶 化温度が低下するので、結晶化度が高 、膜が形成できるので抵抗値のバラツキを低 減することができる。また TiOや NiOについてもスパッタリングガスには Ar以外の希 [0045] As described above, the variation in resistance value is greatly reduced because the crystallinity of the PCMO film is very high. This is because the crystallization temperature is lowered because sputtering is performed only with Ar gas without oxygen, which is an oxygen-containing gas, during sputtering. Similarly, TiO and NiO are crystallized by sputtering only with Ar gas. Since the crystallization temperature is lowered, the degree of crystallinity is high, and a film can be formed, so that variation in resistance value can be reduced. Also for TiO and NiO, the sputtering gas contains rare metals other than Ar.
2  2
ガス元素、例えば He、 Ne、 Kr、 Xeを用いても良い。従って、本発明方法によれば、 バラツキが極めて小さぐその結果として、動作マージンが十分に確保できる良好な 不揮発性半導体記憶装置の実現が可能である。 Gas elements such as He, Ne, Kr, and Xe may be used. Therefore, according to the method of the present invention, it is possible to realize a good non-volatile semiconductor memory device that can sufficiently secure an operation margin as a result of extremely small variations.

Claims

請求の範囲 The scope of the claims
[1] 上部電極と下部電極の間にデータを蓄積するための可変抵抗体を形成してなる可 変抵抗素子を備えてなる不揮発性半導体記憶装置の製造方法であって、  [1] A method of manufacturing a nonvolatile semiconductor memory device including a variable resistance element formed by forming a variable resistor for storing data between an upper electrode and a lower electrode,
金属酸化物を、酸素を含まない雰囲気中でスパッタリングし、前記可変抵抗体を形 成する可変抵抗体形成工程を実行することを特徴とする不揮発性半導体記憶装置 の製造方法。  A method of manufacturing a nonvolatile semiconductor memory device, comprising performing a variable resistor forming step of sputtering a metal oxide in an oxygen-free atmosphere to form the variable resistor.
[2] 同方向に延伸する複数の上部電極配線と前記上部電極配線の延伸方向と直交す る方向に延伸する複数の下部電極配線を備え、前記上部電極配線と前記下部電極 配線の間にデータを蓄積するための可変抵抗体を形成してなる可変抵抗素子をマト リクス状に配列してなるクロスポイント構造のメモリセルアレイを備える不揮発性半導 体記憶装置の製造方法であって、  [2] A plurality of upper electrode wirings extending in the same direction and a plurality of lower electrode wirings extending in a direction perpendicular to the extending direction of the upper electrode wirings are provided, and data is provided between the upper electrode wirings and the lower electrode wirings. A method of manufacturing a nonvolatile semiconductor memory device including a memory cell array having a cross-point structure in which variable resistance elements formed by forming variable resistors for storing the charge are arranged in a matrix,
前記複数の下部電極配線上に、金属酸化物を、酸素を含まない雰囲気中でスパッ タリングし、前記可変抵抗体を形成する可変抵抗体形成工程を実行することを特徴と する不揮発性半導体記憶装置の製造方法。  A non-volatile semiconductor memory device characterized by performing a variable resistor forming step of sputtering a metal oxide on the plurality of lower electrode wirings in an oxygen-free atmosphere to form the variable resistor. Manufacturing method.
[3] 前記スパッタリングは、 Ar、 He、 Ne、 Kr、 Xeの何れか 1つをスパッタリングガスとし て用いることを特徴とする請求項 1に記載の不揮発性半導体記憶装置の製造方法。  [3] The method for manufacturing a nonvolatile semiconductor memory device according to [1], wherein the sputtering uses any one of Ar, He, Ne, Kr, and Xe as a sputtering gas.
[4] 前記スパッタリングの成膜温度範囲が、 500°C〜800°Cであることを特徴とする請 求項 1乃至 3の何れか 1項に記載の不揮発性半導体記憶装置の製造方法。  [4] The method for manufacturing a nonvolatile semiconductor memory device according to any one of claims 1 to 3, wherein a film forming temperature range of the sputtering is 500 ° C to 800 ° C.
[5] 前記金属酸化物が、一般式 Pr Ca [Mn M ]0 (但し、 0≤x≤ 1, 0≤z< 1)  [5] The metal oxide has a general formula Pr Ca [Mn M] 0 (where 0≤x≤ 1, 0≤z <1)
l -X X 1 -Z Z 3  l -X X 1 -Z Z 3
で表される系の酸ィ匕物であることを特徴とする請求項 1乃至 3の何れ力 1項に記載の 不揮発性半導体記憶装置の製造方法。  4. The method for manufacturing a non-volatile semiconductor memory device according to claim 1, wherein the oxide is a compound represented by the formula:
[6] 前記一般式中の Mは Ta, Ti, Cu, Cr, Co, Fe, Ni, Gaの中の何れか 1つを含む ことを特徴とする請求項 5に記載の不揮発性半導体記憶装置の製造方法。 6. The nonvolatile semiconductor memory device according to claim 5, wherein M in the general formula includes any one of Ta, Ti, Cu, Cr, Co, Fe, Ni, and Ga. Manufacturing method.
[7] 前記金属酸ィ匕物が Tiの酸ィ匕物または Niの酸ィ匕物であることを特徴とする請求項 1 乃至 3の何れか 1項に記載の不揮発性半導体記憶装置の製造方法。 7. The method for manufacturing a nonvolatile semiconductor memory device according to claim 1, wherein the metal oxide is a Ti oxide or a Ni oxide. Method.
PCT/JP2006/319131 2005-11-11 2006-09-27 Process for producing nonvolatile semiconductor memory device comprising variable resistive element WO2007055071A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005-327982 2005-11-11
JP2005327982A JP4238248B2 (en) 2005-11-11 2005-11-11 Manufacturing method of nonvolatile semiconductor memory device provided with variable resistance element

Publications (1)

Publication Number Publication Date
WO2007055071A1 true WO2007055071A1 (en) 2007-05-18

Family

ID=38023078

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/319131 WO2007055071A1 (en) 2005-11-11 2006-09-27 Process for producing nonvolatile semiconductor memory device comprising variable resistive element

Country Status (3)

Country Link
JP (1) JP4238248B2 (en)
TW (1) TW200735329A (en)
WO (1) WO2007055071A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013207130A (en) * 2012-03-29 2013-10-07 Ulvac Japan Ltd Resistance change element and method for manufacturing the same

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5264139B2 (en) * 2007-10-09 2013-08-14 スパンション エルエルシー Manufacturing method of semiconductor device
JP5175525B2 (en) 2007-11-14 2013-04-03 株式会社東芝 Nonvolatile semiconductor memory device
JP5337234B2 (en) 2009-03-09 2013-11-06 株式会社東芝 Information recording / reproducing apparatus and manufacturing method thereof
US9269903B2 (en) 2011-06-08 2016-02-23 Ulvac, Inc. Method of manufacturing variable resistance element and apparatus for manufacturing the same
TWI612698B (en) * 2013-10-09 2018-01-21 財團法人工業技術研究院 Non-volatile memory cell and non-volatile memory for multi-bit storage
CN112736198B (en) * 2020-12-31 2023-06-02 上海集成电路装备材料产业创新中心有限公司 Resistive random access memory and preparation method thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004234707A (en) * 2002-12-04 2004-08-19 Sharp Corp Semiconductor memory device and method for writing and erasing for memory cell
JP2005123361A (en) * 2003-10-16 2005-05-12 Sony Corp Resistance change type nonvolatile memory and its manufacturing method, and method of forming resistance change layer
JP2005203463A (en) * 2004-01-14 2005-07-28 Sharp Corp Nonvolatile semiconductor memory

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004234707A (en) * 2002-12-04 2004-08-19 Sharp Corp Semiconductor memory device and method for writing and erasing for memory cell
JP2005123361A (en) * 2003-10-16 2005-05-12 Sony Corp Resistance change type nonvolatile memory and its manufacturing method, and method of forming resistance change layer
JP2005203463A (en) * 2004-01-14 2005-07-28 Sharp Corp Nonvolatile semiconductor memory

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013207130A (en) * 2012-03-29 2013-10-07 Ulvac Japan Ltd Resistance change element and method for manufacturing the same

Also Published As

Publication number Publication date
JP2007134603A (en) 2007-05-31
TW200735329A (en) 2007-09-16
JP4238248B2 (en) 2009-03-18

Similar Documents

Publication Publication Date Title
US7259387B2 (en) Nonvolatile semiconductor memory device
JP4829502B2 (en) Manufacturing method of semiconductor memory device
US8268667B2 (en) Memory device using ion implant isolated conductive metal oxide
US8030695B2 (en) Structure and manufacturing method of semiconductor memory device
JP4783070B2 (en) Semiconductor memory device and manufacturing method thereof
KR101147945B1 (en) Variable resistance element, and its manufacturing method
KR100672272B1 (en) Method for manufacturing nonvolatile semiconductor memory device
JP2005167064A (en) Nonvolatile semiconductor storage device
JP2006140489A (en) Nonvolatile memory element having one resistor and one diode, and nonvolatile memory element array
JPWO2006013819A1 (en) Resistance change element and resistance change type memory using the same
WO2007055071A1 (en) Process for producing nonvolatile semiconductor memory device comprising variable resistive element
CN101159309A (en) Method for implementing low power consumption resistance memory
JP3903323B2 (en) Resistance change element and nonvolatile memory using the same
JP4939414B2 (en) Variable resistance element
US20080237693A1 (en) Storage of non-volatile memory device and method of forming the same
WO2006132045A1 (en) Nonvolatile storage element and fabrication method thereof
CN101101960A (en) A resistance memory for reducing reset operation current
WO2007007608A1 (en) Semiconductor memory device and its fabrication method
JP2006196566A (en) Variable resistance thin-film element and nonvolatile memory element using the same
JP2023171210A (en) Semiconductor device and manufacturing method thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06810622

Country of ref document: EP

Kind code of ref document: A1