JP2007134603A - Method for manufacturing nonvolatile semiconductor memory device comprising variable resistive element - Google Patents

Method for manufacturing nonvolatile semiconductor memory device comprising variable resistive element Download PDF

Info

Publication number
JP2007134603A
JP2007134603A JP2005327982A JP2005327982A JP2007134603A JP 2007134603 A JP2007134603 A JP 2007134603A JP 2005327982 A JP2005327982 A JP 2005327982A JP 2005327982 A JP2005327982 A JP 2005327982A JP 2007134603 A JP2007134603 A JP 2007134603A
Authority
JP
Japan
Prior art keywords
memory device
semiconductor memory
manufacturing
nonvolatile semiconductor
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005327982A
Other languages
Japanese (ja)
Other versions
JP4238248B2 (en
Inventor
Nobuo Yamazaki
信夫 山崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP2005327982A priority Critical patent/JP4238248B2/en
Priority to PCT/JP2006/319131 priority patent/WO2007055071A1/en
Priority to TW095141722A priority patent/TW200735329A/en
Publication of JP2007134603A publication Critical patent/JP2007134603A/en
Application granted granted Critical
Publication of JP4238248B2 publication Critical patent/JP4238248B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B63/00Resistance change memory devices, e.g. resistive RAM [ReRAM] devices
    • H10B63/80Arrangements comprising multiple bistable or multi-stable switching components of the same type on a plane parallel to the substrate, e.g. cross-point arrays
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/011Manufacture or treatment of multistable switching devices
    • H10N70/021Formation of switching materials, e.g. deposition of layers
    • H10N70/026Formation of switching materials, e.g. deposition of layers by physical vapor deposition, e.g. sputtering
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/011Manufacture or treatment of multistable switching devices
    • H10N70/061Shaping switching materials
    • H10N70/063Shaping switching materials by etching of pre-deposited switching material layers, e.g. lithography
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/20Multistable switching devices, e.g. memristors
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/801Constructional details of multistable switching devices
    • H10N70/821Device geometry
    • H10N70/826Device geometry adapted for essentially vertical current flow, e.g. sandwich or pillar type devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/801Constructional details of multistable switching devices
    • H10N70/881Switching materials
    • H10N70/883Oxides or nitrides
    • H10N70/8836Complex metal oxides, e.g. perovskites, spinels

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Semiconductor Memories (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for manufacturing a nonvolatile semiconductor memory device capable of suppressing variations in resistance value according to the difference of a PCMO crystallinity of a variable resistive element and completely securing a circuit operational margin. <P>SOLUTION: The method for manufacturing the semiconductor memory device with the variable resistive element for storing data formed between an upper electrode and a lower electrode comprises the steps of sputtering an electrically conductive metallic oxide in an atmosphere including no oxygen, and forming the variable resistive element. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、上部電極と下部電極の間にデータを蓄積するための可変抵抗体を形成してなる不揮発性半導体記憶装置の製造方法に関する。   The present invention relates to a method for manufacturing a nonvolatile semiconductor memory device in which a variable resistor for storing data is formed between an upper electrode and a lower electrode.

近年、フラッシュメモリに代わる高速動作可能な次世代不揮発性ランダムアクセスメモリ(NVRAM:Nonvolatile Random Access Memory) として、FeRAM(Ferroelectric RAM)、MRAM(Magnetic RAM)、OUM(Ovonic Unified Memory)等の様々なデバイス構造が提案され、高性能化、高信頼性化、低コスト化、及び、プロセス整合性という観点から、激しい開発競争が行われている。しかしながら、現状のこれらメモリデバイスには各々一長一短があり、SRAM、DRAM、フラッシュメモリの各利点を併せ持つ「ユニバーサルメモリ」の理想実現には未だ遠い。   In recent years, next-generation non-volatile random access memory (NVRAM) capable of high-speed operation in place of flash memory, FeRAM (Ferroelectric RAM), MRAM (Magnetic RAM), OUM (Ovonic Unified Memory), etc. A structure has been proposed, and intense development competition has been conducted from the viewpoint of high performance, high reliability, low cost, and process consistency. However, each of these current memory devices has advantages and disadvantages, and it is still far from the ideal realization of a “universal memory” having the advantages of SRAM, DRAM, and flash memory.

これら既存技術に対し、米国ヒューストン大のShangquing LiuやAlex Ignatiev等によって、超巨大磁気抵抗効果で知られるペロブスカイト材料に電圧パルスを印加することによって可逆的に電気抵抗を変化させる方法が開示されている(例えば、特許文献1及び非特許文献1参照)。これは超巨大磁気抵抗効果で知られるペロブスカイト材料を用いながらも、磁場の印加なしに室温においても数桁にわたる抵抗変化が現れるという極めて画期的なものである。   In contrast to these existing technologies, a method of reversibly changing electrical resistance by applying a voltage pulse to a perovskite material known for its giant magnetoresistive effect is disclosed by Shangquing Liu and Alex Ignatiev of Houston University in the United States. (For example, refer to Patent Document 1 and Non-Patent Document 1). This is an extremely epoch-making phenomenon in which a perovskite material known for its supergiant magnetoresistance effect is used, and a resistance change of several orders of magnitude appears even at room temperature without applying a magnetic field.

この現象を利用した可変抵抗素子を用いた抵抗性不揮発性メモリRRAM(シャープ株式会社の登録商標、Resistance Random Access Memory)は、MRAMと異なり磁場を一切必要としないため消費電力が極めて低く、微細化、高集積化も容易であり、抵抗変化のダイナミックレンジがMRAMに比べ格段に広いため多値記憶が可能であるという優れた特徴を有する。実際のデバイスにおける基本構造は極めて単純で、基板垂直方向に下部電極材料、ペロブスカイト型酸化物、上部電極材料の順に積層された構造となっている。尚、特許文献1に例示する素子構造では、下部電極材料はランタン・アルミニウム酸化物LaAlO(LAO)の単結晶基板上に堆積されたイットリウム・バリウム・銅酸化物YBaCu(YBCO)膜、ペロブスカイト型酸化物は結晶性プラセオジウム・カルシウム・マンガン酸化物Pr1−xCaMnO(PCMO)膜、上部電極材料はスパッタリングで堆積されたAg膜で、夫々形成されている。この記憶素子の動作は、上部及び下部電極間に印加する電圧パルスを51ボルトとして正、負に印加することにより抵抗を可逆的に変化させることができることが報告された。この可逆的な抵抗変化動作(以下、適宜「スイッチング動作」と称す。)における抵抗値を読み出すことによって、新規な不揮発性記憶装置が可能であることを意味している。 Unlike a MRAM, a resistive non-volatile memory RRAM using a variable resistance element utilizing this phenomenon (registered trademark of Sharp Corporation, Resistance Random Access Memory) does not require a magnetic field at all, and therefore has extremely low power consumption and miniaturization. High integration is also easy, and since the dynamic range of resistance change is much wider than that of MRAM, it has an excellent feature that multi-value storage is possible. The basic structure of an actual device is very simple, and is a structure in which a lower electrode material, a perovskite oxide, and an upper electrode material are stacked in this order in the direction perpendicular to the substrate. In the element structure exemplified in Patent Document 1, the lower electrode material is yttrium / barium / copper oxide YBa 2 Cu 3 O 7 (YBCO) deposited on a lanthanum / aluminum oxide LaAlO 3 (LAO) single crystal substrate. ) Film, a perovskite oxide is a crystalline praseodymium / calcium / manganese oxide Pr 1-x Ca x MnO 3 (PCMO) film, and the upper electrode material is an Ag film deposited by sputtering. It has been reported that the operation of this memory element can reversibly change the resistance by applying a positive or negative voltage pulse applied between the upper and lower electrodes of 51 volts. It means that a novel nonvolatile memory device is possible by reading the resistance value in this reversible resistance change operation (hereinafter referred to as “switching operation” as appropriate).

このような可変抵抗素子を利用したデバイス構造の半導体記憶装置としてクロスポイント構造の半導体記憶装置が提案されている(例えば、特許文献2参照)。   As a semiconductor memory device having a device structure using such a variable resistance element, a semiconductor memory device having a cross-point structure has been proposed (for example, see Patent Document 2).

一般的に、DRAM、NOR型フラッシュメモリ、FeRAM等の半導体記憶装置は、メモリを蓄積する素子部分と、このメモリ素子を選択するための選択トランジスタとを備えて1つのメモリセルが構成されている。これに対し、クロスポイント構造のメモリセルは、この選択トランジスタを廃して、ビット線とワード線の交点(クロスポイント)にメモリデータを蓄積する記憶材料体のみを配して形成される。このクロスポイント構造のメモリセル構成では、選択されたビット線とワード線の交点の蓄積データを、選択トランジスタを用いずに直接読み出すことになるため、選択メモリセルに接続する選択ビット線或いは選択ワード線に接続する非選択メモリセルを介して流れる寄生電流が、選択メモリセルを流れる読み出し電流に重畳することによる動作スピードの遅延、消費電流の増大等の問題があるものの、単純な構造であるためメモリセル面積の縮小による大容量化が可能であるとして注目されている。以下にもっとも簡便なクロスポイント構造の製造方法を説明する。   In general, a semiconductor memory device such as a DRAM, a NOR flash memory, or an FeRAM has one memory cell including an element portion for storing memory and a selection transistor for selecting the memory element. . On the other hand, a memory cell having a cross-point structure is formed by eliminating this selection transistor and arranging only a storage material body for storing memory data at the intersection (cross point) between a bit line and a word line. In this memory cell configuration of the cross-point structure, the accumulated data at the intersection of the selected bit line and word line is directly read without using the selection transistor, so that the selected bit line or selected word connected to the selected memory cell Although the parasitic current flowing through the non-selected memory cell connected to the line is superimposed on the read current flowing through the selected memory cell, there are problems such as a delay in operation speed and an increase in current consumption. Attention has been paid to the fact that the capacity can be increased by reducing the memory cell area. The simplest method for producing a crosspoint structure will be described below.

図1は、クロスポイント構造のメモリセルの平面レイアウト図である。下部電極配線Bの配線パターンを定義する領域R1と、上部電極配線Tの配線パターンを定義する領域R2を夫々示している。ここで、上部電極配線Tと下部電極配線Bの何れか一方がワード線となり、他方がビット線となる。また、図6及び図7は、従来の製造方法を工程順に示したものであり、図1のX−X´に沿った垂直断面図と、図1のY−Y´に沿った垂直断面図を夫々示している。   FIG. 1 is a plan layout diagram of a memory cell having a cross-point structure. A region R1 for defining the wiring pattern of the lower electrode wiring B and a region R2 for defining the wiring pattern of the upper electrode wiring T are shown. Here, one of the upper electrode wiring T and the lower electrode wiring B is a word line, and the other is a bit line. 6 and 7 show the conventional manufacturing method in the order of steps, and are a vertical sectional view along XX 'in FIG. 1 and a vertical sectional view along YY' in FIG. Respectively.

先ず、図6(a)に示すように、トランジスタ回路等(図示せず)を形成したシリコン半導体基板上11にメモリセル下の層間絶縁膜12を形成した後、トランジスタ回路等の存在により発生する段差を緩和するために、所謂CMP法(化学的機械的研磨法:Chemical Mechanical Polishing Method)により表面を平坦化する。   First, as shown in FIG. 6A, after an interlayer insulating film 12 under a memory cell is formed on a silicon semiconductor substrate 11 on which a transistor circuit or the like (not shown) is formed, it is generated due to the presence of the transistor circuit or the like. In order to alleviate the level difference, the surface is flattened by a so-called CMP method (Chemical Mechanical Polishing Method).

続いて、図6(b)に示すように、下部電極配線Bとなる電極材料膜13を全面に堆積した後、フォトリソグラフィの手法によって、ストライプ状(ライン&スペース)にパターンニングしたレジストR1をマスクとして、電極材料膜13をエッチングすることにより、下部電極配線Bを形成する。   Subsequently, as shown in FIG. 6B, after depositing an electrode material film 13 to be the lower electrode wiring B on the entire surface, a resist R1 patterned in a stripe shape (line & space) by a photolithography technique is formed. The lower electrode wiring B is formed by etching the electrode material film 13 as a mask.

引き続き、レジストR1を除去した後、図6(c)に示すように、隣接する下部電極配線B間の領域を埋め込むのに十分な膜厚の絶縁膜14を全面に堆積する。   Subsequently, after removing the resist R1, as shown in FIG. 6C, an insulating film 14 having a thickness sufficient to fill a region between adjacent lower electrode wirings B is deposited on the entire surface.

引き続き、図6(d)に示すように、CMP法により、絶縁膜14を下部電極配線Bの表面レベルまで研磨する。この結果、下部電極配線B間が絶縁膜14で埋め込まれる。埋め込まれた絶縁膜14の表面と下部電極配線Bの表面とが略同じ高さになることにより、表面全体が略平滑な構造が形成される。該研磨工程の目的は、引き続いて成膜される可変抵抗体膜をでき得る限り平坦な表面上に成膜することにある。これは、後工程の可変抵抗体膜のエッチングにおいて、可変抵抗体膜と下部電極膜との間にエッチングの選択比が無いため、下部電極の段差上に可変抵抗体膜を成膜するのが困難なことに因る。   Subsequently, as shown in FIG. 6D, the insulating film 14 is polished to the surface level of the lower electrode wiring B by the CMP method. As a result, the lower electrode wiring B is filled with the insulating film 14. Since the surface of the buried insulating film 14 and the surface of the lower electrode wiring B have substantially the same height, a structure in which the entire surface is substantially smooth is formed. The purpose of the polishing step is to form a variable resistor film to be subsequently formed on the flat surface as much as possible. This is because in the subsequent etching of the variable resistor film, there is no etching selectivity between the variable resistor film and the lower electrode film, so the variable resistor film is formed on the step of the lower electrode. Due to difficulties.

引き続き、図7(e)に示すように、可変抵抗体となる金属酸化膜15を全面にスパッタリング成膜する。このスパッタリングは酸素を含んだ雰囲気で行われる。引き続き、図7(f)に示すように、上部電極配線Tとなる電極材料膜16を全面に成膜する。   Subsequently, as shown in FIG. 7E, a metal oxide film 15 to be a variable resistor is formed by sputtering on the entire surface. This sputtering is performed in an atmosphere containing oxygen. Subsequently, as shown in FIG. 7F, an electrode material film 16 to be the upper electrode wiring T is formed on the entire surface.

引き続き、フォトリソグラフィの手法によってストライプ状(ライン&スペース)にパターンニングしたレジストR2をマスクとして、上記電極材料膜16をエッチングすることにより、上部電極配線Tを形成する。更に、図7(g)に示すように、上部電極配線T間に残存する可変抵抗体膜15をエッチングして除去する。   Subsequently, the upper electrode wiring T is formed by etching the electrode material film 16 using the resist R2 patterned in a stripe shape (line & space) by a photolithography technique as a mask. Further, as shown in FIG. 7G, the variable resistor film 15 remaining between the upper electrode wirings T is removed by etching.

引き続き、レジストR2を除去した後、図7(h)に示すように、メタル配線下の層間絶縁膜17を全面に堆積する。その後、下部電極配線B、上部電極配線T、メモリセル以外のトランジスタ回路等へのコンタクト(コンタクト形成部は図示せず)を形成し、メタル配線(図示せず)を行う。   Subsequently, after removing the resist R2, an interlayer insulating film 17 under the metal wiring is deposited on the entire surface as shown in FIG. 7 (h). Thereafter, contacts (contact forming portions are not shown) to the lower electrode wiring B, the upper electrode wiring T, transistor circuits other than the memory cells, etc. are formed, and metal wiring (not shown) is performed.

上述したクロスポイント型デバイスの可変抵抗体であるPCMO膜形成(図7(e)参照)は、焼結されたPCMOターゲットを用いてスパッタリング形成されるが、特許文献1には、スパッタの際に欠損した酸素を補う目的で適宜量の酸素ガスをスパッタリングガスであるArガスに混入して導入している。このように形成されたPCMO膜は、ほぼ非晶質であることが知られている。非晶質PCMO膜は通常極めて抵抗が高いため、デバイス動作には向かず、プロセス中の熱処理工程などで結晶化を行い所望の抵抗レベルまで下げる必要がある。   The PCMO film formation (see FIG. 7E), which is the variable resistor of the cross-point device described above, is formed by sputtering using a sintered PCMO target. An appropriate amount of oxygen gas is introduced into the Ar gas, which is a sputtering gas, for the purpose of supplementing the deficient oxygen. It is known that the PCMO film thus formed is almost amorphous. Amorphous PCMO films usually have extremely high resistance, so they are not suitable for device operation, and it is necessary to crystallize them in a heat treatment step during the process to lower them to a desired resistance level.

米国特許第6204139号明細書US Pat. No. 6,204,139 Liu,S.Q.ほか、“Electric−pulse−induced reversible Resistance change effect in magnetoresistive films”,Applied Physics Letter, Vol.76,pp.2749−2751,2000年Liu, S .; Q. In addition, “Electrical-pulse-induced reversible resistance change effect in magnetosensitive films”, Applied Physics Letter, Vol. 76, pp. 2749-2751, 2000

しかしながら、このように結晶化して低抵抗化したPCMO膜は、下地の電極表面または絶縁膜表面の状態に強い影響を受ける。この結果、可変抵抗体であるPCMO膜は、PCMO膜結晶化度が個々に異なり、個々の可変抵抗体の抵抗値に極めて大きなバラツキを生じさせる。そのため、回路動作させる上で必要なマージンが小さくなってしまい、不安定性の増大や不良率の増加を招くといった問題があった。   However, the PCMO film thus crystallized and reduced in resistance is strongly influenced by the state of the underlying electrode surface or insulating film surface. As a result, the PCMO film that is a variable resistor has a different crystallinity of the PCMO film and causes extremely large variations in resistance values of the individual variable resistors. For this reason, there is a problem that a margin necessary for circuit operation is reduced, leading to an increase in instability and an increase in defect rate.

本発明は上記問題点に鑑みてなされたものであり、その目的は、可変抵抗体のPCMO結晶化度の違いによる抵抗値バラツキを抑え、回路動作マージンを十分確保することができる不揮発性半導体記憶装置の製造方法を提供する点にある。   The present invention has been made in view of the above problems, and an object thereof is a nonvolatile semiconductor memory capable of suppressing a resistance value variation due to a difference in PCMO crystallinity of a variable resistor and ensuring a sufficient circuit operation margin. The object is to provide a method of manufacturing the apparatus.

上記目的を達成するための本発明に係る不揮発性半導体記憶装置の製造方法は、上部電極と下部電極の間にデータを蓄積するための可変抵抗体を形成してなる可変抵抗素子を備えてなる不揮発性半導体記憶装置の製造方法であって、金属酸化物を、酸素を含まない雰囲気中でスパッタリングし、前記可変抵抗体を形成する可変抵抗体形成工程を実行することを第1の特徴とする。   In order to achieve the above object, a method for manufacturing a nonvolatile semiconductor memory device according to the present invention includes a variable resistance element formed by forming a variable resistor for storing data between an upper electrode and a lower electrode. A method for manufacturing a nonvolatile semiconductor memory device, characterized in that a variable resistor forming step of forming a metal resistor by sputtering a metal oxide in an atmosphere not containing oxygen is performed. .

上記目的を達成するための本発明に係る不揮発性半導体記憶装置の製造方法は、同方向に延伸する複数の上部電極配線と前記上部電極配線の延伸方向と直交する方向に延伸する複数の下部電極配線を備え、前記上部電極配線と前記下部電極配線の間にデータを蓄積するための可変抵抗体を形成してなる可変抵抗素子をマトリクス状に配列してなるクロスポイント構造のメモリセルアレイを備える不揮発性半導体記憶装置の製造方法であって、前記複数の下部電極配線上に、金属酸化物を、酸素を含まない雰囲気中でスパッタリングし、前記可変抵抗体を形成する可変抵抗体形成工程を実行することを第2の特徴とする。   In order to achieve the above object, a method for manufacturing a nonvolatile semiconductor memory device according to the present invention includes a plurality of upper electrode wires extending in the same direction and a plurality of lower electrodes extending in a direction perpendicular to the extending direction of the upper electrode wires. Nonvolatile including a memory cell array having a cross-point structure in which variable resistance elements formed by forming variable resistors for storing data between the upper electrode wiring and the lower electrode wiring are arranged in a matrix A method for manufacturing a volatile semiconductor memory device, comprising: performing a variable resistor formation step of sputtering a metal oxide on the plurality of lower electrode wirings in an oxygen-free atmosphere to form the variable resistor. This is the second feature.

上記何れかの特徴の本発明に係る不揮発性半導体記憶装置の製造方法は、前記スパッタリングは、Ar、He、Ne、Kr、Xeの何れか1つをスパッタリングガスとして用いることを第3の特徴とする。   A method for manufacturing a nonvolatile semiconductor memory device according to the present invention having any one of the above characteristics is characterized in that the sputtering uses any one of Ar, He, Ne, Kr, and Xe as a sputtering gas. To do.

上記何れかの特徴の本発明に係る不揮発性半導体記憶装置の製造方法は、前記スパッタリングの成膜温度範囲が、500℃〜800℃であることを第4の特徴とする。   The manufacturing method of the nonvolatile semiconductor memory device according to the present invention having any one of the above characteristics is characterized in that the film forming temperature range of the sputtering is 500 ° C. to 800 ° C.

上記何れかの特徴の本発明に係る不揮発性半導体記憶装置の製造方法は、前記金属酸化物が、一般式Pr1−XCa[Mn1−Z]O(但し、0≦x≦1,0≦z<1)で表される系の酸化物であることを第5の特徴とする。 In the method for manufacturing a nonvolatile semiconductor memory device according to the present invention having any one of the above characteristics, the metal oxide has the general formula Pr 1-X Ca X [Mn 1-Z M Z ] O 3 (where 0 ≦ x The fifth characteristic is that the oxide is a system represented by ≦ 1, 0 ≦ z <1).

上記特徴の本発明に係る不揮発性半導体記憶装置の製造方法は、前記一般式中のMはTa,Ti,Cu,Cr,Co,Fe,Ni,Gaの中の何れか1つを含むことを第6の特徴とする。   In the method for manufacturing a nonvolatile semiconductor memory device according to the present invention having the above characteristics, M in the general formula includes any one of Ta, Ti, Cu, Cr, Co, Fe, Ni, and Ga. The sixth feature.

上記第1〜第4の特徴の本発明に係る不揮発性半導体記憶装置の製造方法は、前記金属酸化物がTiの酸化物またはNiの酸化物であることを第7の特徴とする。   The method for manufacturing a nonvolatile semiconductor memory device according to the first to fourth features of the present invention has the seventh feature that the metal oxide is an oxide of Ti or an oxide of Ni.

上記特徴の不揮発性半導体記憶装置の製造方法によれば、可変抵抗素子の抵抗値のバラツキを小さくできる。これによって、当該可変抵抗素子を含む不揮発性半導体記憶装置を構成した場合に、回路動作マージンが大きくなり、安定したメモリ動作が可能となり、更に、不良率を低減することが可能となる。   According to the method for manufacturing the nonvolatile semiconductor memory device having the above characteristics, the variation in the resistance value of the variable resistance element can be reduced. As a result, when a nonvolatile semiconductor memory device including the variable resistance element is configured, the circuit operation margin is increased, stable memory operation is possible, and the defect rate can be further reduced.

以下、本発明に係る不揮発性半導体記憶装置の製造方法(以下、適宜「本発明方法」と略称する)の実施形態を図面に基づいて説明する。   Embodiments of a method for manufacturing a nonvolatile semiconductor memory device according to the present invention (hereinafter referred to as “method of the present invention” where appropriate) will be described below with reference to the drawings.

図1は、本発明方法におけるメモリセルアレイを形成するための平面レイアウト図であり、下部電極配線Bの配線パターンを定義する領域R1と、上部電極配線Tの配線パターンを定義する領域R2を夫々示している。当該平面レイアウト図は、従来のクロスポイント構造のメモリセルアレイの平面レイアウト図と同じであり、上部電極配線Tと下部電極配線Bの交差部分(クロスポイント部分)に、上部電極と下部電極の間にデータを蓄積するための可変抵抗体を形成してなる可変抵抗素子がマトリクス状に配置されている。尚、以下の実施形態では、メモリセルの可変抵抗体として巨大磁気抵抗効果を有するCMR材料(例えばPCMO:Pr0.7Ca0.3MnO)薄膜を用いてクロスポイント構造のメモリセル及びメモリセルアレイを構成したRRAMを一例として、そのメモリセルアレイ構成の具体的な製造方法を示す。 FIG. 1 is a plan layout view for forming a memory cell array in the method of the present invention, showing a region R1 for defining the wiring pattern of the lower electrode wiring B and a region R2 for defining the wiring pattern of the upper electrode wiring T, respectively. ing. The planar layout diagram is the same as the planar layout diagram of a conventional memory cell array having a cross-point structure, and is located at the intersection (cross-point portion) between the upper electrode wiring T and the lower electrode wiring B between the upper electrode and the lower electrode. Variable resistor elements formed by variable resistors for storing data are arranged in a matrix. In the following embodiments, a memory cell and a memory having a cross-point structure using a CMR material (for example, PCMO: Pr 0.7 Ca 0.3 MnO 3 ) thin film having a giant magnetoresistance effect as a variable resistor of the memory cell. A specific manufacturing method of the memory cell array configuration will be described by taking as an example the RRAM that configures the cell array.

〈第1実施形態〉
本発明方法の一実施形態について図2及び図3を基に説明する。ここで、図2及び図3は、本実施形態における本発明方法の各工程を順に示している。図2及び図3は、図1のX−X´に沿った垂直断面図と、図1のY−Y´に沿った垂直断面図を、夫々示している。尚、本発明において「垂直」は、特に断らない限り、半導体基板11の表面に対して垂直な場合を意味する。
<First Embodiment>
One embodiment of the method of the present invention will be described with reference to FIGS. Here, FIG.2 and FIG.3 has shown each process of this invention method in this embodiment in order. 2 and 3 respectively show a vertical cross-sectional view along XX ′ in FIG. 1 and a vertical cross-sectional view along YY ′ in FIG. In the present invention, “vertical” means a case perpendicular to the surface of the semiconductor substrate 11 unless otherwise specified.

先ず、従来の製造方法と同様に、トランジスタ回路等(図示せず)を形成したシリコン半導体基板11上に、メモリセル下の層間絶縁膜としてBPSG膜12を1300nmの膜厚で形成し、CMP法により600nmまで研磨し、表面を平坦化する。続いて、図2(a)に示すように、下部電極配線BとなるPt膜13(第1電極膜に相当)を全面にスパッタする。本実施形態では、膜厚が200nmとなるようにPt膜13を堆積した。   First, as in the conventional manufacturing method, a BPSG film 12 having a thickness of 1300 nm is formed as an interlayer insulating film under a memory cell on a silicon semiconductor substrate 11 on which a transistor circuit or the like (not shown) is formed, and a CMP method. To 600 nm to flatten the surface. Subsequently, as shown in FIG. 2A, a Pt film 13 (corresponding to the first electrode film) to be the lower electrode wiring B is sputtered on the entire surface. In this embodiment, the Pt film 13 is deposited so that the film thickness becomes 200 nm.

続いて、図2(b)に示すように、フォトリソグラフィの手法によってストライプ状(ライン&スペース)にパターンニングしたレジストR1をマスクとして、Pt膜13をエッチングすることにより、下部電極配線Bを形成する。本実施形態では、ライン幅0.3μm、スペース幅0.3μmのストライプ状のレジストパターンを用いて、エッチングを行った。   Subsequently, as shown in FIG. 2B, the lower electrode wiring B is formed by etching the Pt film 13 using the resist R1 patterned in a stripe shape (line & space) by a photolithography technique as a mask. To do. In this embodiment, etching was performed using a striped resist pattern having a line width of 0.3 μm and a space width of 0.3 μm.

引き続き、レジストR1を除去した後、図2(c)に示すように、絶縁膜であるシリコン酸化膜14を全面に堆積する。シリコン酸化膜14の膜厚は、下部電極配線B間を埋め込むのに十分な膜厚にする。本実施形態では、膜厚が400nmとなるようにシリコン酸化膜14を堆積した。   Subsequently, after removing the resist R1, as shown in FIG. 2C, a silicon oxide film 14 as an insulating film is deposited on the entire surface. The film thickness of the silicon oxide film 14 is set to a film thickness sufficient to fill the space between the lower electrode wirings B. In the present embodiment, the silicon oxide film 14 is deposited so as to have a film thickness of 400 nm.

引き続き、CMP法によりシリコン酸化膜14を下部電極配線Bの表面レベルまで研磨する研磨工程を実行する。以上が、下部電極配線Bを形成する下部電極配線形成工程である。   Subsequently, a polishing process is performed to polish the silicon oxide film 14 to the surface level of the lower electrode wiring B by the CMP method. The above is the lower electrode wiring forming process for forming the lower electrode wiring B.

研磨工程の結果、図2(d)に示すように、下部電極配線B間をシリコン酸化膜14で埋め込み、埋め込まれたシリコン酸化膜14の表面と下部電極配線Bの表面を略同じ高さに平滑化することにより、表面全体が略一様な平面状の構造が形成される。   As a result of the polishing process, as shown in FIG. 2D, the space between the lower electrode wirings B is filled with the silicon oxide film 14, and the surface of the embedded silicon oxide film 14 and the surface of the lower electrode wiring B are made substantially the same height. By smoothing, a planar structure having a substantially uniform surface is formed.

引き続き、図3(e)に示すように、PCMO(Pr0.7Ca0.3MnO)を材料とする可変抵抗体18を下部電極配線Bとシリコン酸化膜14の表面に膜厚が100nmとなるようにスパッタリング形成する。スパッタリング条件は、例えば、Arガス流量210sccm、圧力20mTorr、基板温度670℃である。反応室内に導入されるガスはArのみであり、無酸素雰囲気で形成されるPCMO膜は結晶化した膜になる。また可変抵抗体18としては、TiOやNiO等の酸化物もTiOターゲットやNiOターゲットを前記スパッタリング条件と同一の条件でTiO膜やNiO膜を形成して使用することが可能である。尚、PCMO膜18は、Pr1−XCa[Mn1−Z]O(但し、0≦x≦1,0≦z<1)で表される系の酸化物である。MはTa,Ti,Cu,Cr,Co,Fe,Ni,Gaの中の何れか1つを含むことが望ましい。 Subsequently, as shown in FIG. 3E, the variable resistor 18 made of PCMO (Pr 0.7 Ca 0.3 MnO 3 ) is formed on the surface of the lower electrode wiring B and the silicon oxide film 14 with a film thickness of 100 nm. Sputtering is performed so that The sputtering conditions are, for example, an Ar gas flow rate of 210 sccm, a pressure of 20 mTorr, and a substrate temperature of 670 ° C. The gas introduced into the reaction chamber is only Ar, and the PCMO film formed in an oxygen-free atmosphere becomes a crystallized film. As the variable resistor 18, it is possible to use to form a TiO 2 film and NiO film oxide such as TiO 2 and NiO also TiO 2 target and NiO targets under the same conditions as the sputtering conditions. Note that the PCMO film 18 is an oxide of a system represented by Pr 1-X Ca X [Mn 1-Z M Z ] O 3 (where 0 ≦ x ≦ 1, 0 ≦ z <1). M preferably contains any one of Ta, Ti, Cu, Cr, Co, Fe, Ni, and Ga.

引き続き、図3(f)に示すように、PCMO膜18上に、上部電極TとなるPt膜16をスパッタリング法で形成する。また、本実施形態では、Pt膜16の膜厚は100nmとした。   Subsequently, as shown in FIG. 3F, a Pt film 16 to be the upper electrode T is formed on the PCMO film 18 by a sputtering method. In the present embodiment, the thickness of the Pt film 16 is 100 nm.

その後、フォトリソグラフィの手法によって、Pt膜16上の上部電極Tとなる領域に、上部電極パターンに基づいて、図3(g)に示すようなレジストR2を形成する。そして、このレジストR2をマスクとして、Pt膜16及びPCMO膜18をドライエッチング法により同時にエッチングし、その後レジスト除去して、図3(g)に示すような上部電極T(Pt膜16)及び可変抵抗体(PCMO膜18)を形成する。   Thereafter, a resist R2 as shown in FIG. 3G is formed in a region to be the upper electrode T on the Pt film 16 based on the upper electrode pattern by a photolithography technique. Then, using this resist R2 as a mask, the Pt film 16 and the PCMO film 18 are simultaneously etched by a dry etching method, and then the resist is removed to form the upper electrode T (Pt film 16) and the variable as shown in FIG. A resistor (PCMO film 18) is formed.

更に、その後、図3(h)に示すように、SiO膜17をCVD法により400nm堆積する。そして、回路動作に必要なコンタクトホールおよびメタル配線工程を施し完成となる(図示せず)。 Further, thereafter, as shown in FIG. 3H, a SiO 2 film 17 is deposited by 400 nm by the CVD method. Then, contact holes and metal wiring steps necessary for circuit operation are performed to complete the circuit (not shown).

尚、上述したPCMO膜18のスパッタリング条件はこれに限られたものではなく、安定したスパッタリングが行われ、PCMO膜18が結晶化すれば良く、スパッタリングガスにはAr以外の希ガス元素、例えばHe、Ne、Kr、Xeを用いても良い。また基板温度はPCMO膜が安定に結晶化する500℃〜800℃の範囲内であることが望ましい。   Note that the sputtering conditions for the PCMO film 18 described above are not limited to this, it is sufficient that stable sputtering is performed and the PCMO film 18 is crystallized, and the sputtering gas includes a rare gas element other than Ar, for example, He. , Ne, Kr, and Xe may be used. The substrate temperature is preferably in the range of 500 ° C. to 800 ° C. at which the PCMO film is stably crystallized.

本発明方法及び従来技術により形成された不揮発性半導体記憶装置の抵抗値分布を図4に、また、本発明方法及び従来技術により形成された不揮発性半導体記憶装置の抵抗値のチップ内バラツキを図5に示す。   FIG. 4 shows the resistance value distribution of the nonvolatile semiconductor memory device formed by the method of the present invention and the prior art, and FIG. 4 shows the in-chip variation of the resistance value of the nonvolatile semiconductor memory device formed by the method of the present invention and the prior art. As shown in FIG.

図4は、本発明方法及び従来技術によって半導体基板上に形成されたPCMO膜の抵抗分布を示している。尚、スパッタリング成膜温度はいずれも670℃である。図4に示すように、上記実施形態のArガスを用いたスパッタリング条件では、抵抗値の分布を測定した結果、20〜60KΩになり、可変抵抗体として適切な抵抗値が得られた。また、従来技術に係る酸素雰囲気でのスパッタリング条件では、抵抗値の分布を測定した結果、1〜10KΩが得られた。即ち、従来方法の場合は抵抗値の分布が1桁以上に渡り広がっているが、本発明の場合その分布が狭まっておりバラツキが大きく改善されていることがわかる。従って、本発明方法によるスパッタリング条件の方が抵抗値の分布のばらつきの改善が得られたと言える。   FIG. 4 shows the resistance distribution of the PCMO film formed on the semiconductor substrate by the method of the present invention and the prior art. Note that the sputtering film formation temperature is 670 ° C. in all cases. As shown in FIG. 4, under the sputtering conditions using Ar gas in the above embodiment, the resistance value distribution was measured, and as a result, the resistance value was 20 to 60 KΩ, and an appropriate resistance value was obtained as a variable resistor. Moreover, under the sputtering conditions in an oxygen atmosphere according to the prior art, 1 to 10 KΩ was obtained as a result of measuring the distribution of resistance values. That is, in the case of the conventional method, the distribution of the resistance value spreads over one digit, but in the case of the present invention, the distribution is narrowed and the variation is greatly improved. Therefore, it can be said that the variation in resistance value distribution was improved under the sputtering conditions according to the method of the present invention.

続いて、図5は、本発明方法及び従来技術によって形成されたPCMO膜の抵抗値のウエハ内のバラツキを示している。ここで、ウエハ内のバラツキは、ウエハ内の抵抗値の標準偏差の3σと抵抗値の平均値を用い、3σ/抵抗値の平均値をバラツキとして示した。図5に示すように、本発明方法によるArガスを用いたスパッタリング条件と従来の酸素雰囲気でのスパッタリング条件の場合の抵抗値分布を比較すると、本発明方法の場合のチップ内のばらつきは8〜40%程度であるのに対し、従来の方法では40〜200%程度である。即ち、チップ内のバラツキも、従来技術に対し、本発明方法の場合は、10分の1程度に減少しており、本発明方法による無酸素雰囲気でのスパッタリング条件を使用することで、抵抗値のバラツキの大幅な低減が図れたと言える。   Next, FIG. 5 shows the variation in the resistance value of the PCMO film formed by the method of the present invention and the prior art in the wafer. Here, for the variation in the wafer, 3σ of the standard deviation of the resistance value in the wafer and the average value of the resistance values are used, and the average value of 3σ / resistance value is shown as the variation. As shown in FIG. 5, when the resistance value distribution is compared between the sputtering condition using Ar gas according to the method of the present invention and the sputtering condition in the conventional oxygen atmosphere, the variation in the chip in the case of the method of the present invention is 8˜. While it is about 40%, it is about 40 to 200% in the conventional method. That is, the variation in the chip is also reduced to about 1/10 in the case of the method of the present invention compared to the prior art. By using the sputtering conditions in the oxygen-free atmosphere according to the method of the present invention, the resistance value is reduced. It can be said that a significant reduction in the variation was achieved.

このように、抵抗値のバラツキが大幅に低減されたのはPCMO膜の結晶化度が非常に高くなっていることに起因している。これはスパッタリング時に酸化性ガスである酸素を含まず、Arガスのみでスパッタリングしているために結晶化温度が低下しているためである。TiOやNiOについても同様にArガスのみでスパッタリングすると結晶化温度が低下するので、結晶化度が高い膜が形成できるので抵抗値のバラツキを低減することができる。またTiOやNiOについてもスパッタリングガスにはAr以外の希ガス元素、例えばHe、Ne、Kr、Xeを用いても良い。従って、本発明方法によれば、バラツキが極めて小さく、その結果として、動作マージンが十分に確保できる良好な不揮発性半導体記憶装置の実現が可能である。 As described above, the variation in resistance value is greatly reduced because the crystallinity of the PCMO film is very high. This is because the crystallization temperature is lowered because oxygen, which is an oxidizing gas, is not contained during sputtering and sputtering is performed using only Ar gas. Similarly, sputtering of TiO 2 and NiO with only Ar gas lowers the crystallization temperature, so that a film with a high degree of crystallinity can be formed, and variations in resistance can be reduced. Also for TiO 2 and NiO, a rare gas element other than Ar, such as He, Ne, Kr, or Xe, may be used as the sputtering gas. Therefore, according to the method of the present invention, the variation is extremely small, and as a result, it is possible to realize a good non-volatile semiconductor memory device that can ensure a sufficient operation margin.

クロスポイント構造のメモリセルアレイの平面レイアウト図Planar layout of memory cell array with cross-point structure 本発明に係る半導体記憶装置の製造方法の第1実施形態における各工程を示す工程断面図Sectional drawing which shows each process in 1st Embodiment of the manufacturing method of the semiconductor memory device concerning this invention. 本発明に係る半導体記憶装置の製造方法の第1実施形態における各工程を示す工程断面図Sectional drawing which shows each process in 1st Embodiment of the manufacturing method of the semiconductor memory device concerning this invention. 本発明に係る半導体記憶装置及び従来技術に係る半導体記憶装置の抵抗値分布を示すグラフThe graph which shows resistance value distribution of the semiconductor memory device which concerns on this invention, and the semiconductor memory device which concerns on a prior art 本発明に係る半導体記憶装置及び従来技術に係る半導体記憶装置の抵抗値のばらつきを示すグラフThe graph which shows the dispersion | variation in resistance value of the semiconductor memory device which concerns on this invention, and the semiconductor memory device which concerns on a prior art 従来技術に係る半導体記憶装置の製造方法の各工程を示す工程断面図Process sectional drawing which shows each process of the manufacturing method of the semiconductor memory device based on a prior art 従来技術に係る半導体記憶装置の製造方法の各工程を示す工程断面図Process sectional drawing which shows each process of the manufacturing method of the semiconductor memory device based on a prior art

符号の説明Explanation of symbols

11:半導体基板(シリコン基板)
12:層間絶縁膜(BPSG膜)
13:Pt膜
14:シリコン酸化膜
15:可変抵抗体
16:Pt膜
17:層間絶縁膜
18:可変抵抗体
B: 下部電極配線
T: 上部電極配線
R1:レジスト
R2:レジスト
11: Semiconductor substrate (silicon substrate)
12: Interlayer insulating film (BPSG film)
13: Pt film 14: Silicon oxide film 15: Variable resistor 16: Pt film 17: Interlayer insulating film 18: Variable resistor B: Lower electrode wiring T: Upper electrode wiring R1: Resist R2: Resist

Claims (7)

上部電極と下部電極の間にデータを蓄積するための可変抵抗体を形成してなる可変抵抗素子を備えてなる不揮発性半導体記憶装置の製造方法であって、
金属酸化物を、酸素を含まない雰囲気中でスパッタリングし、前記可変抵抗体を形成する可変抵抗体形成工程を実行することを特徴とする不揮発性半導体記憶装置の製造方法。
A method for manufacturing a nonvolatile semiconductor memory device comprising a variable resistance element formed by forming a variable resistor for storing data between an upper electrode and a lower electrode,
A method of manufacturing a nonvolatile semiconductor memory device, comprising performing a variable resistor forming step of sputtering a metal oxide in an atmosphere not containing oxygen to form the variable resistor.
同方向に延伸する複数の上部電極配線と前記上部電極配線の延伸方向と直交する方向に延伸する複数の下部電極配線を備え、前記上部電極配線と前記下部電極配線の間にデータを蓄積するための可変抵抗体を形成してなる可変抵抗素子をマトリクス状に配列してなるクロスポイント構造のメモリセルアレイを備える不揮発性半導体記憶装置の製造方法であって、
前記複数の下部電極配線上に、金属酸化物を、酸素を含まない雰囲気中でスパッタリングし、前記可変抵抗体を形成する可変抵抗体形成工程を実行することを特徴とする不揮発性半導体記憶装置の製造方法。
A plurality of upper electrode wirings extending in the same direction and a plurality of lower electrode wirings extending in a direction orthogonal to the extending direction of the upper electrode wiring, and for storing data between the upper electrode wiring and the lower electrode wiring A method for manufacturing a nonvolatile semiconductor memory device including a memory cell array having a cross-point structure in which variable resistance elements formed by forming the variable resistors are arranged in a matrix,
A non-volatile semiconductor memory device comprising: a step of forming a variable resistor by sputtering a metal oxide on the plurality of lower electrode wirings in an atmosphere not containing oxygen; Production method.
前記スパッタリングは、Ar、He、Ne、Kr、Xeの何れか1つをスパッタリングガスとして用いることを特徴とする請求項1または2に記載の不揮発性半導体記憶装置の製造方法。   The method for manufacturing a nonvolatile semiconductor memory device according to claim 1, wherein the sputtering uses any one of Ar, He, Ne, Kr, and Xe as a sputtering gas. 前記スパッタリングの成膜温度範囲が、500℃〜800℃であることを特徴とする請求項1乃至3の何れか1項に記載の不揮発性半導体記憶装置の製造方法。   4. The method for manufacturing a nonvolatile semiconductor memory device according to claim 1, wherein a film forming temperature range of the sputtering is 500 ° C. to 800 ° C. 5. 前記金属酸化物が、一般式Pr1−XCa[Mn1−Z]O(但し、0≦x≦1,0≦z<1)で表される系の酸化物であることを特徴とする請求項1乃至4の何れか1項に記載の不揮発性半導体記憶装置の製造方法。 Said metal oxide has the general formula Pr 1-X Ca X [Mn 1-Z M Z] O 3 ( where, 0 ≦ x ≦ 1,0 ≦ z <1) an oxide of system represented by The method for manufacturing a nonvolatile semiconductor memory device according to claim 1, wherein: 前記一般式中のMはTa,Ti,Cu,Cr,Co,Fe,Ni,Gaの中の何れか1つを含むことを特徴とする請求項5に記載の不揮発性半導体記憶装置の製造方法。   6. The method of manufacturing a nonvolatile semiconductor memory device according to claim 5, wherein M in the general formula includes any one of Ta, Ti, Cu, Cr, Co, Fe, Ni, and Ga. . 前記金属酸化物がTiの酸化物またはNiの酸化物であることを特徴とする請求項1乃至4の何れか1項に記載の不揮発性半導体記憶装置の製造方法。   5. The method for manufacturing a nonvolatile semiconductor memory device according to claim 1, wherein the metal oxide is an oxide of Ti or an oxide of Ni.
JP2005327982A 2005-11-11 2005-11-11 Manufacturing method of nonvolatile semiconductor memory device provided with variable resistance element Expired - Fee Related JP4238248B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2005327982A JP4238248B2 (en) 2005-11-11 2005-11-11 Manufacturing method of nonvolatile semiconductor memory device provided with variable resistance element
PCT/JP2006/319131 WO2007055071A1 (en) 2005-11-11 2006-09-27 Process for producing nonvolatile semiconductor memory device comprising variable resistive element
TW095141722A TW200735329A (en) 2005-11-11 2006-11-10 Method for manufacturing nonvolatile semiconductor memory device comprising variable resistive element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005327982A JP4238248B2 (en) 2005-11-11 2005-11-11 Manufacturing method of nonvolatile semiconductor memory device provided with variable resistance element

Publications (2)

Publication Number Publication Date
JP2007134603A true JP2007134603A (en) 2007-05-31
JP4238248B2 JP4238248B2 (en) 2009-03-18

Family

ID=38023078

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005327982A Expired - Fee Related JP4238248B2 (en) 2005-11-11 2005-11-11 Manufacturing method of nonvolatile semiconductor memory device provided with variable resistance element

Country Status (3)

Country Link
JP (1) JP4238248B2 (en)
TW (1) TW200735329A (en)
WO (1) WO2007055071A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013207130A (en) * 2012-03-29 2013-10-07 Ulvac Japan Ltd Resistance change element and method for manufacturing the same
US8575589B2 (en) 2007-11-14 2013-11-05 Kabushiki Kaisha Toshiba Nonvolatile semiconductor memory device and method of manufacturing the same
US8581424B2 (en) 2009-03-09 2013-11-12 Kabushiki Kaisha Toshiba Information recording/reproducing device
US9269903B2 (en) 2011-06-08 2016-02-23 Ulvac, Inc. Method of manufacturing variable resistance element and apparatus for manufacturing the same

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5264139B2 (en) * 2007-10-09 2013-08-14 スパンション エルエルシー Manufacturing method of semiconductor device
TWI612698B (en) * 2013-10-09 2018-01-21 財團法人工業技術研究院 Non-volatile memory cell and non-volatile memory for multi-bit storage
CN112736198B (en) * 2020-12-31 2023-06-02 上海集成电路装备材料产业创新中心有限公司 Resistive random access memory and preparation method thereof

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4249992B2 (en) * 2002-12-04 2009-04-08 シャープ株式会社 Semiconductor memory device and memory cell writing and erasing method
JP2005123361A (en) * 2003-10-16 2005-05-12 Sony Corp Resistance change type nonvolatile memory and its manufacturing method, and method of forming resistance change layer
JP2005203463A (en) * 2004-01-14 2005-07-28 Sharp Corp Nonvolatile semiconductor memory

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8575589B2 (en) 2007-11-14 2013-11-05 Kabushiki Kaisha Toshiba Nonvolatile semiconductor memory device and method of manufacturing the same
US8581424B2 (en) 2009-03-09 2013-11-12 Kabushiki Kaisha Toshiba Information recording/reproducing device
US9269903B2 (en) 2011-06-08 2016-02-23 Ulvac, Inc. Method of manufacturing variable resistance element and apparatus for manufacturing the same
JP2013207130A (en) * 2012-03-29 2013-10-07 Ulvac Japan Ltd Resistance change element and method for manufacturing the same

Also Published As

Publication number Publication date
TW200735329A (en) 2007-09-16
WO2007055071A1 (en) 2007-05-18
JP4238248B2 (en) 2009-03-18

Similar Documents

Publication Publication Date Title
US8268667B2 (en) Memory device using ion implant isolated conductive metal oxide
JP4829502B2 (en) Manufacturing method of semiconductor memory device
JP4061328B2 (en) Variable resistance element and manufacturing method thereof
KR100680563B1 (en) Nonvolatile semiconductor memory device
US8030695B2 (en) Structure and manufacturing method of semiconductor memory device
JP4017650B2 (en) Variable resistance element and manufacturing method thereof
KR100672272B1 (en) Method for manufacturing nonvolatile semiconductor memory device
JP4783070B2 (en) Semiconductor memory device and manufacturing method thereof
TWI403011B (en) Nonvolatile semiconductor memory device
JP2005167064A (en) Nonvolatile semiconductor storage device
JP4238248B2 (en) Manufacturing method of nonvolatile semiconductor memory device provided with variable resistance element
JP3903323B2 (en) Resistance change element and nonvolatile memory using the same
JP4939324B2 (en) Variable resistance element and manufacturing method thereof
US20080237693A1 (en) Storage of non-volatile memory device and method of forming the same
JP2006344876A (en) Nonvolatile memory element and its manufacturing method
WO2010026624A1 (en) Method for fabricating nonvolatile semiconductor memory device
JP2006196566A (en) Variable resistance thin-film element and nonvolatile memory element using the same
JP2009043850A (en) Variable resistance element, and manufacturing method thereof

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080715

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080901

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081125

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081219

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111226

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111226

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121226

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121226

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees