WO2007055028A1 - 直線偏波アンテナ及びそれを用いるレーダ装置 - Google Patents

直線偏波アンテナ及びそれを用いるレーダ装置 Download PDF

Info

Publication number
WO2007055028A1
WO2007055028A1 PCT/JP2005/020858 JP2005020858W WO2007055028A1 WO 2007055028 A1 WO2007055028 A1 WO 2007055028A1 JP 2005020858 W JP2005020858 W JP 2005020858W WO 2007055028 A1 WO2007055028 A1 WO 2007055028A1
Authority
WO
WIPO (PCT)
Prior art keywords
linearly polarized
antenna element
dielectric substrate
antenna
polarized antenna
Prior art date
Application number
PCT/JP2005/020858
Other languages
English (en)
French (fr)
Inventor
Tasuku Teshirogi
Aya Hinotani
Takashi Kawamura
Original Assignee
Anritsu Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Anritsu Corporation filed Critical Anritsu Corporation
Priority to US11/794,872 priority Critical patent/US7623073B2/en
Priority to JP2007544040A priority patent/JP4681614B2/ja
Priority to PCT/JP2005/020858 priority patent/WO2007055028A1/ja
Priority to CN2005800467183A priority patent/CN101103491B/zh
Priority to EP05806098.9A priority patent/EP1950832B1/en
Publication of WO2007055028A1 publication Critical patent/WO2007055028A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/16Resonant antennas with feed intermediate between the extremities of the antenna, e.g. centre-fed dipole
    • H01Q9/28Conical, cylindrical, cage, strip, gauze, or like elements having an extended radiating surface; Elements comprising two conical surfaces having collinear axes and adjacent apices and fed by two-conductor transmission lines
    • H01Q9/285Planar dipole
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/36Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
    • H01Q1/38Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith formed by a conductive layer on an insulating support
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/52Means for reducing coupling between antennas; Means for reducing coupling between an antenna and another structure
    • H01Q1/521Means for reducing coupling between antennas; Means for reducing coupling between an antenna and another structure reducing the coupling between adjacent antennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q13/00Waveguide horns or mouths; Slot antennas; Leaky-waveguide antennas; Equivalent structures causing radiation along the transmission path of a guided wave
    • H01Q13/10Resonant slot antennas
    • H01Q13/18Resonant slot antennas the slot being backed by, or formed in boundary wall of, a resonant cavity ; Open cavity antennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q17/00Devices for absorbing waves radiated from an antenna; Combinations of such devices with active antenna elements or systems
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q19/00Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic
    • H01Q19/10Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using reflecting surfaces
    • H01Q19/108Combination of a dipole with a plane reflecting surface
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/06Arrays of individually energised antenna units similarly polarised and spaced apart
    • H01Q21/061Two dimensional planar arrays
    • H01Q21/062Two dimensional planar arrays using dipole aerials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/06Details
    • H01Q9/14Length of element or elements adjustable

Definitions

  • the present invention relates to a linearly polarized antenna and a radar apparatus using the same, which employ a technology for realizing high performance, high mass productivity, and low cost.
  • the present invention relates to linearly polarized antennas suitable for UWB (Ultra-wideband) radars to be used in the future as radars) and radar devices using the same.
  • UWB Ultra-wideband
  • this antenna is required to have low loss and high gain in order to suppress useless power consumption so that it can be probed by weak radio waves as defined by UWB and can be driven by a battery. Therefore, it is necessary that the array can be easily achieved.
  • the feeding portion of the antenna element can be manufactured by a pattern printing technique for low cost.
  • UWB radar is supposed to use the 22-29GHz band.
  • the radio astronomy and the earth exploration satellite service (EESS) passive sensors are protected.
  • RR radio wave emission prohibited band (23.6 to 24.0 GHz) is included.
  • Average power density in GHz is 41.3 dBm or less, peak power density is 0 dBmZ50M
  • Non-Patent Document 1 FCC 02-48 New Part 15 Rules, FIRST REPORT A ND ORDER
  • the FCC is a method that does not rely on the side lobe of the antenna.
  • the following non-patent document 2 shows that the radiated power density of the RR radio wave emission forbidden band is 61.3 dBm Improve the revised rules!
  • Non-Patent Literature 2 Second Report and Order and Second Memorandum Opinion and Order "FCC 04—285, Dec. 16, 2004
  • a conventional UWB radar employs a system in which a continuous wave (CW) from a continuous oscillator is turned on and off with a semiconductor switch.
  • CW continuous wave
  • the SRD band is very close to the RR radio wave emission prohibited band, and EES
  • Non-Patent Literature 3 Residual ⁇ carrier free burst oscillator for automotive UWD radar applications, "Electronics Letters, 28 th April 2005, Vol. 41, No. 9
  • the burst oscillator oscillates only when the pulse is on, and stops when the pulse is off. If such a burst oscillator is used in a UWB radar, no residual carrier is generated.
  • the band shown by the solid line in FIG. 18 can be used for the UWB radar, and as a result, the radiated power density in the RR radio wave emission prohibited band can be kept sufficiently low. It becomes possible.
  • the antenna has a characteristic with a sharp gain and a drop (notch) in the RR radio wave emission prohibited band, by using this antenna in combination with the burst oscillator, UWB radar that meets the new FCC regulations can be realized.
  • the present invention intends to provide an antenna suitable for UWB radar having a gain notch in such an RR radio wave emission prohibited band.
  • a so-called patch antenna is known in which a rectangular or circular flat antenna element is patterned on a dielectric substrate.
  • this patch antenna is generally in a narrow band, and in order to widen it, it is necessary to use a substrate having a low dielectric constant and increase its thickness.
  • a low-loss substrate is required for use in the quasi-millimeter wave band, and Teflon (registered trademark) is known as such a substrate.
  • antennas There is a known dipole antenna consisting of a pair of triangles called antennas.
  • the object of the present invention is to suppress the influence of surface waves as described above, have good radiation characteristics over a wide band, suppress radiation in the RR radio wave emission prohibited band, and achieve high mass productivity and low cost. It is to provide a linearly polarized antenna capable of realizing the above and a radar apparatus using the same.
  • a dielectric substrate (21, 21 ', 21 "),
  • the linearly polarized antenna elements (23, 23 ') formed on the opposite surface of the dielectric substrate and one end sides thereof are connected to the ground plane conductor, and penetrate the dielectric substrate along the thickness direction.
  • the antenna element is formed of a dipole antenna element having a pair of input terminals (25a, 25b),
  • One end side is in contact with one of the pair of input terminals of the dipole antenna element. And the other end side further includes a feed pin (25) provided penetrating the dielectric substrate and the ground plane conductor,
  • the other force of the pair of input terminals of the dipole antenna element is provided to provide a linearly polarized antenna according to the first aspect, wherein the ground plane conductor is short-circuited through the dielectric substrate.
  • the linearly polarized antenna according to the first aspect is provided, wherein the frame-shaped conductor (32, 32 ′) has at least a pair of non-uniform width portions facing each other with the antenna element interposed therebetween. .
  • a linearly polarized antenna according to a third aspect wherein the pair of non-uniform width portions are a pair of triangular portions.
  • a plurality of sets of the antenna element formed on the dielectric substrate and the power supply pins connected to one end of one of the pair of input terminals of the antenna element are provided, and the plurality of metal posts constituting the cavity and the A frame-shaped conductor is formed in a lattice shape so as to surround each of the plurality of sets of antenna elements,
  • a third feature of the present invention is further provided with a power feeding section (40) provided on the ground plane conductor side for distributing and supplying an excitation signal to each of the plurality of antenna elements via the plurality of power feed pins.
  • a power feeding section (40) provided on the ground plane conductor side for distributing and supplying an excitation signal to each of the plurality of antenna elements via the plurality of power feed pins.
  • the power supply section includes a power supply dielectric substrate (41) provided on the opposite side of the dielectric substrate across the ground plane conductor, and a microstrip type formed on the surface of the power supply dielectric substrate.
  • the linearly polarized antenna according to the fifth aspect is provided, characterized in that the linearly polarized antenna is configured by the power feeding line (42).
  • Each of the dipole antenna elements has a predetermined base width W and a predetermined height L.
  • Each of the dipole antenna elements has a predetermined protrusion width W and a predetermined height L.
  • Z2 is formed in a deformed rhombus shape, and one top is arranged opposite to each other
  • a linearly polarized antenna according to the second aspect characterized in that it constitutes a bowtie antenna, is provided.
  • a first linearly polarized antenna element (23, 23 ') and a second linearly polarized antenna element (23', 23) are provided on the dielectric substrate (21 ").
  • the plurality of metal posts (30) are connected at one end side to the ground plane conductor, penetrate the dielectric substrate along its thickness direction, and each other end side is the dielectric substrate. Are provided at predetermined intervals so as to separate and surround the first linearly polarized antenna element and the second linearly polarized antenna element, respectively. Make up the separated cavity,
  • the first linearly polarized antenna element and the second linearly polarized antenna element are provided at predetermined intervals so as to be separated from each other.
  • the other end sides of the plurality of metal posts are short-circuited along the direction of arrangement, and are directed in the direction of the first linearly polarized antenna element and the second linearly polarized antenna element.
  • a straight line according to the first aspect characterized in that a first frame-like conductor (32) and a second frame-like conductor (32 ') are provided on the opposite surface side of the dielectric substrate extending a predetermined distance.
  • a polarized antenna is provided.
  • One of the first linearly polarized antenna element and the second linearly polarized antenna element is applied as a transmission antenna (51) of the radar apparatus (50), and the other is the radar apparatus (50).
  • a linearly polarized antenna according to the ninth aspect, which is applied as a receiving antenna (52), is provided.
  • the cavity and the frame conductor constitute a resonator, and the resonator and the antenna element are formed.
  • the frequency characteristics are such that the gain of the linearly polarized antenna decreases within a predetermined range.
  • the structural parameters are the inner dimension Lw of the cavity, the rim width L of the frame conductor,
  • a linearly polarized antenna according to the eleventh aspect is provided.
  • the receiving antenna and the transmitting antenna are constituted by first and second linearly polarized antenna elements (23, 23 ′), and the first and second linearly polarized antenna elements (23, 23). ')
  • a dielectric substrate (21, 21 ', 21 "),
  • the linearly polarized antenna elements (23, 23 ') formed on the opposite surface of the dielectric substrate and one end sides thereof are connected to the ground plane conductor, and penetrate the dielectric substrate along the thickness direction.
  • a frame-shaped conductor (32, 3) provided with a short circuit along the direction and extending a predetermined distance in the direction of the antenna element,
  • Each of the plurality of metal posts (30) has one end side connected to the ground plane conductor, penetrates the dielectric substrate along the thickness direction, and each other end side is an opposite surface of the dielectric substrate.
  • the first linearly polarized antenna element and the second linearly polarized antenna element are provided at predetermined intervals so as to be separated from each other.
  • the first linearly polarized antenna element and the second linearly polarized antenna element are provided at predetermined intervals so as to be separated from each other.
  • the other end sides of the plurality of metal posts are short-circuited along the direction of arrangement, and are directed in the direction of the first linearly polarized antenna element and the second linearly polarized antenna element.
  • a radar device (50) characterized in that a first frame-like conductor (32) and a second frame-like conductor (3 ⁇ ) are provided on the opposite surface side of the dielectric substrate, extending a predetermined distance. Is provided.
  • the antenna element is formed of a dipole antenna element having a pair of input terminals (25a, 25b),
  • One end side is further connected to one of the pair of input terminals of the dipole antenna element, and the other end side further includes a feed pin (25) provided penetrating the dielectric substrate and the ground plane conductor.
  • a radar apparatus (50) according to a thirteenth aspect is provided, wherein the other force of the pair of input terminals of the dipole antenna element is used to short-circuit the ground plane conductor through the dielectric substrate.
  • a radar apparatus (50) according to a thirteenth aspect is provided, wherein the frame conductor (32, 32 ') has at least a pair of non-uniform width portions facing each other with the antenna element interposed therebetween.
  • a radar apparatus (50) according to the fifteenth aspect is provided, wherein the pair of non-uniform width portions are a pair of triangular portions.
  • a plurality of sets of the antenna element formed on the dielectric substrate and the power supply pins connected to one end of one of the pair of input terminals of the antenna element are provided, and the plurality of metal posts constituting the cavity and the A frame-shaped conductor is formed in a lattice shape so as to surround each of the plurality of sets of antenna elements,
  • a power supply section (40) provided on the ground plane conductor side and for distributing and supplying an excitation signal to the plurality of antenna elements via the plurality of sets of power supply pins is further provided.
  • a radar apparatus (50) according to an aspect of the present invention is provided.
  • the power supply section includes a power supply dielectric substrate (41) provided on the opposite side of the dielectric substrate across the ground plane conductor, and a microstrip type formed on the surface of the power supply dielectric substrate.
  • a radar apparatus (50) according to a seventeenth aspect is provided, characterized in that the radar apparatus (50) is configured by a power supply line (42).
  • Each of the dipole antenna elements has a predetermined bottom width W
  • a radar device (50) according to a fourteenth aspect is provided, wherein the radar device (50) is configured to have a bow-tie antenna formed in a triangular shape having Z2 and arranged with the tops facing each other.
  • Each of the dipole antenna elements has a predetermined protrusion width W and a predetermined height L.
  • a radar apparatus (50) which comprises a bow tie antenna having B Z2 and formed in a deformed rhombus shape and having one apex facing each other.
  • a resonator is formed by the cavity and the frame-shaped conductor, and the resonance frequency of the resonator is set to a desired value by adjusting structural parameters of the resonator and the antenna element. It becomes frequency characteristics that the gain of the polarization antenna falls within a predetermined range.
  • a radar apparatus (50) according to any one of the thirteenth to twentieth aspects is provided.
  • the structural parameters include an internal dimension Lw of the cavity, a rim width L of the frame-shaped conductor,
  • a radar device (50) according to the twenty-first aspect is provided.
  • metal posts penetrating the dielectric substrate are arranged so as to surround the antenna element to form a cavity structure, and the tips of the metal posts are arranged in the direction of alignment.
  • a frame-shaped conductor (rimZconducting rim) that is short-circuited along the antenna element and extended in the antenna element direction by a predetermined distance is provided, so that the generation of surface waves can be suppressed and the antenna radiation characteristics can be made to the desired characteristics.
  • the frequency characteristic of the antenna gain can have a sharp drop (notch) in the RR radio wave emission prohibited band by utilizing the resonance phenomenon of the cavity. This is effective in reducing radio interference with the EESS and radio astronomy services mentioned above.
  • linearly polarized antenna according to the present invention even when arrayed, it is possible to prevent the characteristics from being disturbed by the influence of surface waves between the antenna elements.
  • FIG. 1 is a perspective view for explaining the configuration of the first embodiment of the linearly polarized antenna according to the present invention.
  • FIG. 2 is a front view for explaining the configuration of the linearly polarized antenna according to the first embodiment of the present invention.
  • FIG. 3 is a rear view for explaining the configuration of the linearly polarized antenna according to the first embodiment of the present invention.
  • 4A is an enlarged sectional view taken along line 4A-4A in FIG.
  • FIG. 4B is an enlarged sectional view taken along line 4B-4B in the modification of FIG.
  • FIG. 5 is an enlarged sectional view taken along line 5-5 of FIG.
  • FIG. 6 is an enlarged front view for explaining the configuration of the main part of the first embodiment of the linearly polarized antenna according to the present invention.
  • FIG. 7 is an enlarged front view for explaining the configuration of a modification of the main part of the linearly polarized antenna according to the first embodiment of the present invention.
  • FIG. 8 is a characteristic diagram when the configuration of the main part of the linearly polarized antenna according to the first embodiment of the present invention is omitted and when the configuration of the main part is used.
  • FIG. 9 is a front view for explaining the configuration of an array to which the second embodiment of the linearly polarized antenna according to the present invention is applied.
  • FIG. 10 is a side view for explaining the configuration of the array to which the second embodiment of the linearly polarized antenna according to the present invention is applied.
  • FIG. 11 is a rear view for explaining the configuration of the array to which the second embodiment of the linearly polarized antenna according to the present invention is applied.
  • FIG. 12A is an enlarged front view for explaining the configuration of the main part to which the third embodiment of the linearly polarized antenna according to the present invention is applied.
  • FIG. 12B is an enlarged front view for explaining the configuration of a modification of the main part to which the third embodiment of the linearly polarized antenna according to the present invention is applied.
  • FIG. 12C is an enlarged front view for explaining the structure of another modified example of the main part to which the third embodiment of the linearly polarized antenna according to the present invention is applied.
  • FIG. 13 shows the case of using the configuration of the main part to which the modification of the third embodiment of the linearly polarized antenna according to the present invention shown in FIG. 12C is applied, and the straight line according to the present invention shown in FIG. FIG. 6 is a characteristic diagram when using the configuration of the main part to which the first embodiment of the polarization antenna is applied.
  • FIG. 14 is a front view for explaining the configuration of the array to which the fourth embodiment of the linearly polarized antenna according to the present invention is applied.
  • FIG. 15 is a characteristic diagram when an array configuration to which the fourth embodiment of the linearly polarized antenna according to the present invention is applied is used.
  • FIG. 16 is a block diagram for explaining a configuration of a radar apparatus to which a fifth embodiment according to the present invention is applied.
  • FIG. 17 is a front view for explaining the configuration of a linearly polarized antenna used in a radar apparatus to which the fifth embodiment of the present invention is applied.
  • Figure 18 shows the quasi-millimeter wave UWB spectrum mask and the desired frequency band (recommended) FIG.
  • 1 to 5 show a basic structure of a linearly polarized antenna 20 according to a first embodiment to which the present invention is applied.
  • FIG. 1 is a perspective view shown to explain the configuration of the first embodiment of the linearly polarized antenna according to the present invention.
  • FIG. 2 is a front view for explaining the configuration of the first embodiment of the linearly polarized antenna according to the present invention.
  • FIG. 3 is a rear view for explaining the configuration of the first embodiment of the linearly polarized antenna according to the present invention.
  • FIG. 4A is an enlarged sectional view taken along line 4A-4A of FIG.
  • FIG. 4B is an enlarged sectional view taken along line 4B-4B in the modification of FIG.
  • FIG. 5 is an enlarged sectional view taken along line 5-5 of FIG.
  • the linearly polarized antenna according to the present invention basically includes a dielectric substrate 21, and a ground plane conductor 22 superposed on one surface side of the dielectric substrate 21, as shown in Figs.
  • a linearly polarized antenna element 23 formed on the opposite surface of the dielectric substrate 21 and one end of each of the antenna elements 23 are connected to the ground plane conductor 22 and penetrates the dielectric substrate 21 along its thickness direction.
  • each other end side extends to the opposite surface of the dielectric substrate 21 and is provided at a predetermined interval so as to surround the antenna element 23, whereby a plurality of metal posts 30 constituting a cavity, and the dielectric substrate 21 is provided with a frame-like conductor 32 which is short-circuited along the direction of arrangement of the other end sides of the plurality of metal posts 30 on the opposite surface side of 21 and extends in the direction of the antenna element 23 by a predetermined distance.
  • the linearly polarized antenna 20 is a substrate made of a material having a low dielectric constant (around 3.5), for example, a dielectric substrate 21 having a thickness of 1.2 mm,
  • pattern printing is performed on the ground plane conductor 22 provided on one side of the dielectric substrate 21 (the rear side in FIGS. 1 and 2) and on the opposite side of the dielectric substrate 21 (the front side in FIGS. 1 and 2).
  • the carrier formed by technology Dipole type antenna element 23 consisting of a pair of element antennas 23a and 23b for exciting the biti with linearly polarized waves, and one feed pin 25 and one short circuit for feeding the antenna element 23 It has a pin (short pin) 26.
  • feed pin 25 and short-circuit pin 26 each penetrate through dielectric substrate 21 in the thickness direction, and feed pin 25 further penetrates hole 22a of ground plane conductor 22, and short-circuit pin 26 is ground plane guide. Shorted to body 22.
  • the dipole antenna element 23 is a balanced element antenna, balanced feeding is also possible.
  • the feeding pin 25 is provided on one element antenna 23 b of the pair of element antennas 23 a and 23 b constituting the dipole antenna element 23.
  • the power is fed by a coaxial cable, a coplanar line using the ground plane conductor 22 as a ground line, or a microstrip line described later, and the other element antenna 23a is short-circuited to the ground plane conductor 22 via a short-circuit pin 26.
  • the material of the dielectric substrate 21 a material such as R04003 (Rogers) having a low loss in the quasi-millimeter wave band can be used.
  • a material of the dielectric substrate 21 any material having a low loss and a dielectric constant of about 2 to 5 can be used.
  • a glass cloth Teflon substrate or various thermosetting resin substrates are candidates. .
  • the linearly polarized antenna having only such a structure, as described above, the surface wave along the surface of the dielectric substrate 21 is excited, so that it is desired as a linearly polarized antenna due to the influence of the surface wave.
  • the characteristics of can not be obtained.
  • one end side is connected to the ground plane conductor 22 and penetrates the dielectric substrate 21.
  • the other end side extends to the opposite surface of the dielectric substrate 21 and adopts a cavity structure formed, for example, by providing cylindrical metal posts 30 at predetermined intervals so as to surround the antenna element 23. Yes.
  • each metal post 30 is sequentially arranged along the arrangement direction on the opposite surface side of the dielectric substrate 21.
  • a frame-like conductor 32 is provided which is short-circuited and has a connecting position force with each metal post 30 extending a predetermined distance in the direction of the antenna element 23.
  • the surface wave can be suppressed by the synergistic effect of the cavity structure and the frame-shaped conductor 32.
  • the plurality of metal posts 30 are formed with a plurality of holes 301 penetrating the dielectric substrate 21, and are subjected to plating (through-hole plating) on the inner walls of the plurality of holes 301.
  • plating through-hole plating
  • the lower ends of the plurality of hollow metal posts 3 () by through-hole plating are connected to the ground plane conductor 22 via lands 302 formed by pattern printing technology on one end side of the dielectric substrate 21. It is made to be.
  • the frequency used for this linearly polarized antenna 20 is 26 GHz in the UWB, and is a dipole type.
  • the antenna element 23 has a pair of input terminals 25a and 25b, and uses a triangular bow tie antenna having a width W of about 1.8 mm and an overall length L of about 3.5 mm.
  • an example of a triangular shape is shown as the antenna element 23 that should be adopted for the linearly polarized antenna 20.
  • the antenna element 23 to be employed in the linearly polarized antenna 20 has a pair of input terminals 25a and 25b instead of a triangular shape, and has a predetermined protruding width.
  • a modified diamond-shaped antenna element 23 having W and an overall length L can also be used.
  • the outer shape of the dielectric substrate 21 is a square centered on the center of the antenna element 23. As shown in Fig. 2, the length of one side is L (hereinafter referred to as the outer length), and the The outer shape is also a concentric square.
  • the cavity has an inner dimension Lw, and a distance extending from the cavity inner wall of the frame conductor 32 (hereinafter referred to as a rim width) to L. To do.
  • the diameters of the plurality of metal posts 30 forming the cavity are each 0.3 mm, and the interval between the metal posts 30 is 0.9 mm.
  • FIG. 8 shows radiation directivities on the vertical planes (yz plane in FIGS. 1 and 2) of three types of antennas using bowtie antennas.
  • F1 is provided with a plurality of metal posts 30 and a frame-like conductor 32.
  • F2 indicates the radiation directivity when there is a cavity due to a plurality of metal posts 30 but there is no frame-like conductor 32.
  • F3 indicates the radiation directivity when both the cavity by the plurality of metal posts 30 and the frame-shaped conductor 32 are provided.
  • the radiation characteristics required for a linearly polarized antenna are symmetric and broad single-peak characteristics with the 0 ° direction as the center.
  • the radiation directivity F1 in the case where the cavity and the frame-shaped conductor 32 by the plurality of metal posts 30 are not provided has a large asymmetry around the 0 ° direction. Although it is not a unimodal characteristic, it becomes directional. [0098] This is because, as can be easily imagined, there is no cavity due to the plurality of metal posts 30, and therefore, the wave excited by the bow tie antenna is diffused in the dielectric substrate 21 as a surface wave. This is the result.
  • the radiation directivity F3 when both the cavity with the metal posts 30 and the frame-shaped conductor 32 are provided is a symmetric and broad unidirectional characteristic with respect to the 0 ° direction. It has become.
  • the rim width L suppresses surface waves and, as will be described later, the RR radio wave emission prohibited band.
  • a typical value for the rim width L is 1.2 mm.
  • This rim width L 1.2 mm corresponds to a surface wave wavelength of approximately 1Z4.
  • a transmission path with a length of ⁇ g / 4 ( ⁇ g is the wavelength in the tube) is formed with an infinite impedance to the surface wave.
  • the rim width L may be changed and set according to the frequency.
  • the linearly polarized antenna 20 of the above embodiment is used for various UWB communication systems. It is possible to be.
  • the linearly polarized antenna 20 of the first embodiment is used when the gain required for the UWB radar or the like is insufficient or when the beam needs to be narrowed.
  • FIG. 9 to FIG. 11 show the configuration of an arrayed linearly polarized antenna 20 ′ as a second embodiment of the linearly polarized antenna according to the present invention.
  • FIG. 9 is a front view for explaining the configuration of the array to which the second embodiment of the linearly polarized antenna according to the present invention is applied.
  • FIG. 10 is a side view for explaining the configuration of the array to which the second embodiment of the linearly polarized antenna according to the present invention is applied.
  • FIG. 11 is a rear view for explaining the configuration of a rotating array to which the second embodiment of the linearly polarized antenna according to the present invention is applied.
  • the linearly polarized wave antenna 20 ' according to the second embodiment includes a vertically long rectangular common dielectric substrate 21' and ground plane conductor 22 ', and the antenna element 23 of the first embodiment is Consists of an array of 4 rows! RU
  • a power feeding unit 40 for distributing and feeding the excitation signal to a plurality of antenna elements is formed.
  • antenna elements 23 (1) to 23 (8) are formed in two rows and four stages by a triangular bowtie antenna formed in the same manner as in the first embodiment. It is provided.
  • each antenna element 23 (1) to 23 (8) is formed by arranging a plurality of metal posts 30 whose one end is connected to the ground plane conductor 2 ⁇ as in the first embodiment. It is surrounded by
  • each antenna element 23 (1) to 23 (8) has a frame-like conductor whose connecting position force to each metal post 30 extends in the direction of each antenna element 23 by a predetermined distance (the above-mentioned rim width L). 32 ⁇
  • each metal post 30 is connected along the alignment direction.
  • each antenna element 23 (1) to 23 (8) generates surface waves for each antenna element. It becomes a configuration that can suppress it!
  • the cavity between the adjacent antenna elements and the frame-shaped conductor 32 ' It can be formed in a lattice shape as a whole.
  • the frame-shaped conductor 32 'provided between two adjacent two antenna elements is formed so as to extend to both antenna elements by a predetermined distance (the rim width L described above).
  • the hole 22 of the conductor 22 ' is passed through non-conducting, and further passes through the power feeding dielectric substrate 41 constituting the power feeding section 40, and the other end is projected from the surface.
  • the microstrip type power feeding lines 42 (a) to 42 (h) and 42 having the ground plane conductor 22 ′ as the ground are provided. (;) To 42 () are formed.
  • the power supply lines 42 (a) to 42 (h) and 42 (1 /;) to 42 () are connected to the input / output power supply line 42a connected to the transmitter or receiver (not shown).
  • the line 42b 'branched rightward from the input / output power supply line 42a is divided into two power supply lines 42c' and 42 ⁇ 'which are bifurcated up and down in the same way as the left side.
  • the four lines 42c 'and 42d' have four feed lines 42e 'to 42, which are bifurcated respectively.
  • each antenna element 23 generates a surface wave by means of a plurality of metal posts 30 and a frame-like conductor 32'. Therefore, the mutual coupling force between the elements is reduced, and a desired radiation characteristic having a single peak directivity is obtained as in the first embodiment described above.
  • the antenna elements are arranged in four stages in the vertical direction to form an array! Even if it contains a component to the RR radio emission prohibition band in the UWB band, it can suppress the radiation in the high elevation direction, which is a problem, so it is a disturbance to the RR radio emission prohibition band There is also an effect of reducing.
  • the feed section 40 of the linearly polarized antenna 20 'arranged as described above distributes and supplies an excitation signal to each antenna element through a microstrip-type feed line 42 formed on a feed dielectric substrate 41.
  • a microstrip-type feed line 42 formed on a feed dielectric substrate 41.
  • the latter method has an advantage that the feeding dielectric substrate 41 can be omitted.
  • the linearly polarized antenna of the present invention comprises a resonator by providing the dielectric substrate 21 with a plurality of metal posts 30 and a frame-like conductor 32, and this resonator is linearly polarized. It can be considered that the antenna element 23 is excited.
  • the linearly polarized antenna of the present invention constitutes a resonator, there is a resonance frequency.
  • the input impedance of the linearly polarized antenna becomes very large and it does not radiate.
  • the resonance frequency of the resonator is determined by the structure parameter of the resonator and the linearly polarized antenna element.
  • this structural parameter includes the internal dimension Lw and the rim width L of the cavity, as well as the basic dimension.
  • the frequency characteristic of the antenna gain is that a deep drop (notch) force S is generated in the vicinity of the resonance frequency.
  • this resonance frequency can be matched with, for example, the above-mentioned RR radio wave emission prohibited band (23.6-24. OGHz), such an antenna can be used as a transmitting antenna for UWB radar. Interference with satellites and the like can be greatly reduced.
  • FIG. 12A, 12B, and 12C are respectively for explaining the configuration of the main part to which the third embodiment of the linearly polarized antenna 20 according to the present invention is applied and the configuration of two modified examples different from the configuration.
  • FIG. 12A, 12B, and 12C are respectively for explaining the configuration of the main part to which the third embodiment of the linearly polarized antenna 20 according to the present invention is applied and the configuration of two modified examples different from the configuration.
  • FIG. 12A, 12B, and 12C are respectively for explaining the configuration of the main part to which the third embodiment of the linearly polarized antenna 20 according to the present invention is applied and the configuration of two modified examples different from the configuration.
  • FIG. 12A, 12B, and 12C are respectively for explaining the configuration of the main part to which the third embodiment of the linearly polarized antenna 20 according to the present invention is applied and the configuration of two modified examples different from the configuration.
  • FIG. 12A, 12B, and 12C are respectively for explaining the configuration of the main part to which the third embodiment of the linearly
  • the linearly polarized antenna 20 shown in FIGS. 12A, B, and C is characterized in that the width of the frame conductor 32 is not uniform.
  • the linearly polarized antenna 20 shown in Fig. 12A shows an example in the case where it is corrugated as an arbitrary shape that can be taken in order to make the widths of the frame conductors 32 uneven.
  • the linearly polarized antenna 20 shown in Fig. 12B shows an example of a case where the linear conductor 20 is configured by an arc as an arbitrary shape that can be taken to make the widths of the frame-shaped conductors 32 uneven.
  • the linearly polarized antenna 20 shown in Fig. 12C shows an example in which the linear conductor 32 is configured with a triangle as an arbitrary shape that can be taken to make the widths of the frame-shaped conductors 32 uneven.
  • FIG. 13 is a diagram for explaining the effect when the shape of the frame-shaped conductor 32 shown in FIG. 12C, in which the configuration of the frame-shaped conductor 32 is the simplest in the linearly polarized antenna 20, is a triangle.
  • hi in Fig. 12C is selected to be about 0.26mm.
  • H2 is about 1.26mm.
  • the frequency width at the point where lOdBi is reduced from the gain at 26 GHz is about 260 MHz in the case of the rectangular frame-shaped conductor 32 shown by the broken line, whereas it is shown by the solid line. In the case of the triangular frame-shaped conductor 32, it is over 500 MHz.
  • the notch bandwidth is not sufficient to cover the width of the RR radio wave emission prohibited band of 400 MHz.
  • the notch bandwidth sufficiently covers the RR radio wave emission prohibited band width of 400 MHz.
  • FIG. 14 is a front view for explaining the configuration of the main part to which the fourth embodiment of the linearly polarized antenna according to the present invention is applied.
  • an array antenna is configured using an antenna element in which the shape of the frame-shaped conductor 32 is a triangle. It is.
  • the configuration of the array antenna shown in FIG. 14 is the same 2 ⁇ 4 element array as FIG.
  • FIG. 15 shows the frequency characteristics of the antenna gain of the array antenna shown in FIG.
  • the IJ gain is kept at 5 dBi for 25 to 29 GHz, and 23.6 to
  • the linearly polarized antenna according to the present invention has a notch by appropriately selecting a structural parameter of a resonator, a frame-shaped conductor, or a bow-tie antenna element. It is possible to cover the above-mentioned RR radio wave emission prohibition band with the frequency and the bandwidth of the RR.
  • the frequency at which the notch is generated can be obtained by appropriately selecting one or both of the structural parameters of the resonator and the antenna element. It can be easily matched with the RR radio wave emission prohibited band.
  • the linearly polarized antenna according to the present invention preferably includes the antenna element 23, 23 'force, a dipole antenna element 23 having a pair of input terminals 25a, 25b, in addition to the basic configuration described above.
  • One end side of which is connected to one of the pair of input terminals 25a, 25b of the dipole antenna elements 23, 23 ', and the other end side is connected to the dielectric substrates 21, 21' and the ground plane.
  • a feed pin 25 provided through the conductors 22 and 22 'is further provided, and the other of the pair of input terminals 25a and 25b of the dipole antenna elements 23 and 23' is the dielectric substrate 21. , 21 ', and the ground plane conductors 22 and 22' are short-circuited!
  • the linearly polarized antenna according to the present invention preferably has at least a pair of the frame-shaped conductors 32, 32 'and the antenna elements 23, 23' facing each other.
  • the non-uniform width portion for example, a pair of triangular portions.
  • the linearly polarized antenna according to the present invention preferably has the antenna elements 23, 23 'formed on the dielectric substrates 21, 21' and the antenna element 23.
  • a plurality of power supply pins 25 each having one end connected to one of the pair of input terminals 25a and 25b, and a plurality of metal posts 30 and the frame-shaped conductors 32 constituting the cavity.
  • 32 ' is formed in a lattice shape so as to surround each of the plurality of sets of antenna elements 23, 23', provided on the ground plane conductors 22, 22 'side, and the plurality of sets of antenna elements 23, 23'
  • a power supply unit 40 for distributing and supplying an excitation signal via a plurality of sets of power supply pins 25 is further provided.
  • the linearly polarized antenna according to the present invention is preferably configured such that the power feeding unit 40 includes the dielectric substrates 21, 21 'sandwiched between the ground plane conductors 22, 22'.
  • a power supply dielectric substrate 41 provided on the opposite side and a shape formed on the surface of the power supply dielectric substrate 41. It is characterized by a microstrip-type feed line 42 formed.
  • the linearly polarized antenna according to the present invention is preferably configured so that the dipole antenna elements 23 and 23 'force each have a predetermined base width W and a predetermined width.
  • the bow is formed in a triangular shape with a height of Z2 and the tops are opposite to each other.
  • the linearly polarized antenna according to the present invention preferably has the dipole antenna elements 23 and 23 'force each having a predetermined projecting width W.
  • the linearly polarized antenna according to the present invention preferably includes the cavity and the frame conductor to form a resonator, and the resonator and the antenna elements 23, 23 '
  • the frequency characteristic is such that the gain of the linearly polarized antenna decreases within a predetermined range.
  • the linearly polarized antenna according to the present invention is preferably configured such that the structural parameters include an internal dimension Lw of the cavity, a rim width L of the frame-shaped conductor,
  • FIG. 16 is a block diagram for explaining the configuration of a radar apparatus to which the fifth embodiment of the present invention is applied.
  • FIG. 16 shows a configuration of a UWB radar apparatus 50 that uses the linearly polarized antennas 20 and 20 ′ according to the above-described embodiments as the transmitting antenna 51 and the receiving antenna 52, respectively.
  • the radar device 50 shown in FIG. 16 is an on-vehicle radar device, and the transmission unit 54 that receives timing control by the control unit 53 generates a pulse wave with a carrier frequency of 26 GHz at a predetermined period to generate a transmission antenna. Radiates from space 51 to space 1 to be explored. The pulse wave reflected and returned by the object la in space 1 is received by the receiving antenna 52, and the received signal is input to the receiving unit 55.
  • the receiving unit 55 performs detection processing on the received signal in response to timing control by the control unit 53.
  • the signal obtained by this detection processing is output to the analysis processing unit 56, where analysis processing is performed on one space to be searched, and the analysis result is notified to the control unit 53 if necessary.
  • the linearly polarized antennas 20 and 20 'described above can be used as the transmitting antenna 51 and the receiving antenna 52 of the radar apparatus 50 having such a configuration.
  • FIG. 17 shows a linearly polarized antenna 60 in consideration of the above points.
  • the linearly polarized antenna 2 of FIG. 15 described above first and second linearly polarized antennas having the same configuration as FIG.
  • FIG. 17 is a front view for explaining the configuration of the linearly polarized antenna 60 used in the radar apparatus to which the fifth embodiment of the present invention is applied.
  • the transmitting antenna 51 and the receiving antenna 52 provided in the linearly polarized antenna 60 surround each antenna element 23 by the cavity structure 32 'and the frame-shaped conductor 32'.
  • it since it is not affected by surface waves, it has a wide band and gain characteristics that suppress radiation to the RR radio wave emission prohibited band.
  • the feeding force (not shown) of the transmitting antenna 51 and the receiving antenna 52 shown in Fig. 17 has the array structure shown in Fig. 15 described above.
  • the reflected wave from the object la which has a wave characteristic and is radiated from the transmitting antenna 51 to the search space, can be received by the receiving antenna 52 with high sensitivity.
  • the transmission antenna 51 and the reception antenna 52 of the radar apparatus 50 may be the same as the linearly polarized antennas 20 and 20 20.
  • the radar apparatus basically includes a transmission unit 54 that radiates radar pulses to the space 1 via the transmission antenna 51, and the radar filter that returns from the space 1.
  • a receiving unit 55 that receives a reflected reflection of the light via the receiving antenna 52
  • an analysis processing unit 56 that searches for the object la existing in the space 1 based on the reception output from the receiving unit 55
  • an analysis processing A control unit 53 that controls at least one of the transmission unit 54 and the reception unit 55 based on an output from the unit 56, and the transmission antenna 51 and the reception antenna 52 are first and second linearly polarized wave types.
  • Antenna elements 23 and 23 ', and the first and second linearly polarized antenna elements 23 and 23' 1S are respectively dielectric substrates 21, 21 'and 21 ", and the dielectric substrates 21, Ground plane conductors 22 and 22 'superposed on one side of 21' and 21 ", and linearly polarized antenna elements 2 3 and 23 formed on the opposite side of the dielectric substrates 21, 21 'and 21''And one end of each is connected to the ground plane conductors 22, 22', and the dielectric substrate 21, 2, 21 " And the other end of each extends to the opposite surface of the dielectric substrate 21, 21 /, 21g, and is provided at a predetermined interval so as to surround the antenna elements 23, 23 '.
  • a plurality of metal bumps 30 constituting a cavity and the other side of the plurality of metal posts 30 are short-circuited on the opposite side of the dielectric substrates 21, 21 /, 21 ′′ along the arrangement direction thereof; Frame-shaped conductors 32 and 32 'provided to extend in the direction of the antenna elements 23 and 23', and a plurality of metal posts 30 are connected to the ground plane conductors 22 and 22 'at one end thereof.
  • the first linearly polarized antenna element 23 extends through the dielectric substrate 21 "along its thickness direction, and the other end of each extends to the opposite surface of the dielectric substrate 21".
  • the first linearly polarized antenna elements 23, 23 ′ and the second linearly polarized antenna elements 23, 23 ′ extend a predetermined distance in the direction opposite to the dielectric substrate 21 ′′.
  • the first frame-shaped conductor 32 and the second frame-shaped conductor 3 ⁇ are provided.
  • the radar apparatus according to the present invention is preferably a dipole antenna having a pair of input terminals 25a and 25b, preferably the antenna elements 23 and 23 ', in addition to the basic configuration described above. Formed on the elements 23 and 23 ′, one end side is connected to one of the pair of input terminals 25a and 25b of the dipole antenna elements 23 and 23 ′, and the other end side is connected to the dielectric substrate 21 and It further includes a feed pin 25 provided through the ground plane conductors 22 and 22 ', and the other of the pair of input terminals 25a and 25b of the dipole antenna elements 23 and 23' is the dielectric substrate 21 ". It is characterized in that the ground plane conductors 22 and 22 'are short-circuited.
  • the radar apparatus according to the present invention preferably has at least a pair of inequalities facing each other with the frame-shaped conductors 32, 32 'force sandwiched between the antenna elements 23, 23', in addition to the above basic configuration. It has a width portion, for example, a pair of triangular portions.
  • the radar device preferably has the above basic configuration, and preferably the antenna elements 23, 23 'formed on the dielectric substrate 21 "and the antenna elements 23, 23'.
  • a plurality of sets of the power supply pins 25 connected to one of the pair of input terminals 25a and 25b are provided, and the plurality of metal posts 30 and the frame-shaped conductors 32 and 32 ′ constituting the cavity are
  • the radar apparatus according to the present invention, the basic configuration mosquito ⁇ Ete, preferably, the paper collecting section 40, opposite side of the dielectric substrate 21 'sandwiching the ground plane conductor 22, 22 1
  • the power supply dielectric substrate 41 and a microstrip-type power supply line 42 formed on the surface of the power supply dielectric substrate 41 are provided!
  • the radar apparatus according to the present invention preferably has the above-mentioned basic configuration, and preferably the dipole antenna elements 23 and 23 'have a predetermined base width W and a predetermined height L, respectively.
  • a bow tie antenna which is formed in a triangular shape with Z2 and whose tops are opposed to each other.
  • the radar apparatus according to the present invention preferably has the above basic configuration, and preferably the dipole antenna elements 23 and 23 'each have a predetermined protrusion width W and a predetermined height L.
  • Bodies that have a Z2 shape and are formed in a deformed rhombus shape, with their tops facing each other. It is characterized by constructing a Utai antenna.
  • a resonator is configured by the cavity and the frame-shaped conductors 32 and 32 ', in addition to the basic configuration described above, and the resonator and the antenna element.
  • the structural parameters of 23 and 23 'and setting the resonance frequency of the resonator to a desired value the frequency characteristics that the gain of the linearly polarized antenna falls within a predetermined range are obtained. It is characterized by that.
  • the radar apparatus according to the present invention is preferably based on the above basic configuration.
  • the structural parameters include the inner dimension Lw of the cavity, the rim width L of the frame-shaped conductors 32 and 32 ', in front
  • the total length L of the antenna elements 23 and 23 is small, and the width 23 and 23 of the antenna elements are small.
  • It is characterized by including at least one.
  • the linearly polarized antenna according to the present invention preferably has a first linearly polarized antenna element 23, 23 'as the antenna element, in addition to the basic configuration of the linearly polarized antenna.
  • the second linearly polarized antenna elements 23 ′ and 23 are formed on the dielectric substrate 21 ′′, and the plurality of metal posts 30 are connected to the ground plane conductor 22 at one end side thereof, and the dielectric
  • the first linearly polarized antenna elements 23, 23 ′, and the other end side of the body substrate 21 ′′ extending along the thickness direction thereof, and extending to the opposite surface of the dielectric substrate 21 ′′.
  • the second linearly polarized antenna elements 23 and 23 ' are provided at predetermined intervals so as to be separated from each other, thereby constituting separated cavities, respectively, as the frame-shaped conductors 32 and 32'.
  • Each of the first linearly polarized antenna element and the front The other end sides of the plurality of metal posts 30 provided at predetermined intervals so as to separate and surround the second linearly polarized antenna element are short-circuited along the arrangement direction thereof, and the first Linearly polarized antenna elements 23, 23 'and the second linearly polarized antenna elements 23, 23' extending in a direction by a predetermined distance and having a first frame shape on the opposite surface side of the dielectric substrate 21 ⁇ A conductor 32 and a second frame-shaped conductor 32 'are provided.
  • the linearly polarized antenna according to the present invention preferably has the first linearly polarized antenna elements 23 and 23 'and the second linearly polarized antenna.
  • One of the antenna elements 23, 23 ′ is applied as a transmission antenna 51 of the radar apparatus 50, and the other is applied as a reception antenna 52 of the radar apparatus 50.
  • the fifth embodiment described above is an example in which the linearly polarized antenna according to the present invention is used in a UWB radar device.
  • the linearly polarized antenna according to the present invention is not limited to a UWB radar device. It can be applied to various communication systems.

Landscapes

  • Variable-Direction Aerials And Aerial Arrays (AREA)
  • Details Of Aerials (AREA)
  • Aerials With Secondary Devices (AREA)
  • Radar Systems Or Details Thereof (AREA)
  • Waveguide Aerials (AREA)

Abstract

 直線偏波アンテナは、誘電体基板と、前記誘電体基板の一面側に重合される地板導体と、前記誘電体基板の反対面に形成された直線偏波型のアンテナ素子と、それぞれの一端側が前記地板導体に接続され、前記誘電体基板をその厚さ方向に沿って貫通し、且つそれぞれの他端側が前記誘電体基板の反対面まで延びて、前記アンテナ素子を囲むように所定間隔で設けられることにより、キャビティを構成する複数の金属ポストと、前記誘電体基板の反対面側に、前記複数の金属ポストの各他端側をその並び方向に沿って短絡し、且つ前記アンテナ素子方向に所定距離延びて設けられる、例えば、三角形部分を有する枠状導体とを有する。この直線偏波アンテナは、キャビティと枠状導体とにより、表面波の発生を抑制して、アンテナの放射特性を所望の特性にすることができると共に、キャビティの共振現象を利用することにより、アンテナ利得の周波数特性がRR電波発射禁止帯で鋭い落ち込み(ノッチ)を持つようにすることができるので、EESSや電波天文業務との電波干渉を低減するのに有効である。

Description

明 細 書
直線偏波アンテナ及びそれを用いるレーダ装置
技術分野
[0001] 本発明は高性能化、高い量産性及び低コストィ匕を実現するための技術を採用した 直線偏波アンテナ(linearly polarized antenna)及びそれを用いるレーダ装置に 係り、特に、車載レーダ(automotive radars)として今後使用される UWB (Ultra - wideband)レーダに適した直線偏波アンテナ及びそれを用 、るレーダ装置に関 する。
背景技術
[0002] 主に、車載用あるいは携帯用の短距離用レーダ(short range radar: SRR)とし て、 22〜29GHzの準ミリ波帯を使用する UWBを利用することが提案されて ヽる。
[0003] このような UWBで使用されるレーダ装置のアンテナとしては、放射特性が広帯域で あることの他に、車載時に、例えば、車体とバンパーとの隙間等に設置されることを考 慮して、小型で且つ薄型平面構造であることが必要である。
[0004] また、このアンテナとしては、 UWBで規定されて 、る微弱電波で探査が行え、バッ テリ駆動可能なように無駄な電力消費を抑えるために、低損失、高利得が要求されて おり、そのためにアレー化を容易に達成できることが必要である。
[0005] また、このアンテナとしては、低コストィ匕のために、アンテナ素子の給電部がパター ン印刷技術で製作できることが望まし 、。
[0006] ところで、前述のように、 UWBレーダでは 22〜29GHz帯を使用することになつて いる力 この帯域の中には電波天文や地球探査衛星業務 (EESS)のパッシブセン サを保護するための RR電波発射禁止帯(23. 6〜24. 0GHz)が含まれている。
[0007] 2002年、 FCC (米国連邦通信委員会)は、次の非特許文献 1にお 、て、 22〜29
GHzに置ける平均電力密度を 41. 3dBm以下、ピーク電力密度が 0dBmZ50M
Hzとする規定を公開して 、る。
[0008] この規定の中には、前記 EESSへの電波干渉を抑えるため、仰角サイドロープを数 年毎に 25dBから一 35dBへと低減することも併せて規定されて 、る。 非特許文献 1 :FCC 02-48 New Part 15 Rules, FIRST REPORT A ND ORDER
[0009] しかしながら、これを実現するためには、 UWBレーダに用いるアンテナの垂直方向 の寸法が大きくなり、一般の乗用車に搭載することが困難になることが想定される。
[0010] このため、 FCCは、アンテナのサイドローブに頼らない方法として、 2004年に下記 非特許文献 2で、前記 RR電波発射禁止帯の放射電力密度をこれまでより 20dB小さ い 61. 3dBmZMHzとする改定ルールを迫加して!/、る。
非特干文献 2 : Second Report and Order and Second Memorandum Opinion and Order" FCC 04— 285, Dec. 16, 2004
[0011] 従来の UWBレーダは、連続発振器からの連続波(CW)を半導体スィッチでオン Z オフする方式を採用して 、る。
[0012] この方式では、スィッチのアイソレーションの不完全性により、大きな残留キャリアが 発生するため、図 18に破線で示すように、前記残留キャリアを、ドップラーレーダ用 に割り当てられている 24. 05〜24. 25GHzの SRD (Short Range Device)バン ドに避難させている。
[0013] し力しながら、 SRDバンドは前記 RR電波発射禁止帯と極めて接近しており、 EES
Sなどとの干渉が避けられな 、と 、う深刻な問題がある。
[0014] この問題を解決するため、下記の非特許文献 3に示すバースト発振器を UWBレー ダに用いる方法が提案されて 、る。
非特干文献 3 : Residual― carrier free burst oscillator for automotive UWD radar applications, "Electronics Letters, 28 th April 2005, Vol. 41, No. 9
[0015] バースト発振器はパルスがオンのときのみ発振し、オフでは発振が停止するもので 、このようなバースト発振器を UWBレーダに使えば残留キャリアは発生しない。
[0016] このため、任意のスペクトル配置ができるので、図 18に実線で示すような帯域を U WBレーダに用いることができる結果、 RR電波発射禁止帯での放射電力密度を十分 低く抑えることが可能となる。
[0017] しかし、バースト発振器のみで上記の放射電力密度をスペクトルピークより 20dB以 上低くするのは容易でない。
[0018] この場合、もし、アンテナが上記 RR電波発射禁止帯で利得に鋭 、落ち込み (ノッチ )を持つ特性を有するものであれば、このアンテナを前記バースト発振器と組み合わ せて使用することにより、 FCCの新規定を満たす UWBレーダを実現することができ る。
[0019] 本発明は、このような RR電波発射禁止帯に利得のノッチを有する UWBレーダ用と して好適なアンテナを提供することを意図して 、る。
[0020] これらの諸要求を満足するアンテナとして、まず、第 1に、広帯域の薄型平面アンテ ナを実現する必要がある。
[0021] 薄型平面アンテナとしては、誘電体基板上に矩形や円形の平板状のアンテナ素子 をパターン形成して構成した所謂パッチアンテナが知られている。
[0022] しかるに、このパッチアンテナは一般的に狭帯域であり、これを広帯域ィ匕するため には、誘電率の低い基板を用い、その厚さを厚くしなければならない。
[0023] また、準ミリ波帯で使用するには低損失の基板が必要であり、このような基板として テフロン (登録商標)が知られて 、る。
[0024] しかるに、このテフロンは金属膜の接合に難点があるため、アンテナの製作が難しく
、コスト高になるという問題がある。
[0025] そこで、 UWDに必要な広帯域の素子アンテナとして、円偏波や直線偏波を用いる ことが考えられており、円偏波の場合には、スパイラルアンテナ等の良好な特性を有 するアンテナがある。
[0026] しかるに、最近、実現化が検討されている通信機能を含んだ車載用短距離用レー ダの場合には、円偏波を使用することができないので、直線偏波を使用する UWDァ ンテナが必要となる。
[0027] しかるに、直線偏波の場合には、一般的に、広帯域の素子アンテナを得るのが容 易ではな!/、と!/、う問題がある。
[0028] ところで、比較的に広帯域の直線偏波の素子アンテナとしては、ボウタイ (bow tie
)アンテナと呼ばれる三角形の対で構成するダイポールアンテナが知られて 、る。
[0029] しかるに、このボウタイアンテナをアレーアンテナに用いた場合、各アンテナ間の相 互結合のため指向性が乱れやす 、と 、う問題がある。
[0030] 通常、誘電体基板を用いた平面アンテナで広帯域ィ匕をはかるには、基板の厚みを 伝搬波長の 1Z4程度に厚くする方法がとられており、これは単一素子で使う場合に は有効である。
[0031] し力しながら、複数の素子を配列したアレーアンテナの場合には、誘電体基板を厚 くすると、誘電体基板表面に沿って伝搬する表面波が励振されて、各エレメントが表 面波の影響を互いに受けて所望の特性が得られな 、と 、う問題がある。 発明の開示
[0032] 本発明の目的は、上述したような表面波による影響を抑え、広帯域にわたって良好 な放射特性を有し、且つ RR電波発射禁止帯における放射を抑圧すると共に、高い 量産性および低コストィ匕を実現することが可能な直線偏波アンテナ及びそれを用い るレーダ装置を提供することである。
[0033] 前記目的を達成するために、本発明の第 1の態様によると、
誘電体基板 (21、 21' 、21" )と、
前記誘電体基板の一面側に重合される地板導体(22、 22' )と、
前記誘電体基板の反対面に形成された直線偏波型のアンテナ素子(23、 23' )と それぞれの一端側が前記地板導体に接続され、前記誘電体基板をその厚さ方向 に沿って貫通し、且つそれぞれの他端側が前記誘電体基板の反対面まで延びて、 前記アンテナ素子を囲むように所定間隔で設けられることにより、キヤビティを構成す る複数の金属ポスト(30)と、
前記誘電体基板の反対面側に、前記複数の金属ポストの各他端側をその並び方 向に沿って短絡し、且つ前記アンテナ素子方向に所定距離延びて設けられる枠状 導体 (32、 32' )とを具備する直線偏波アンテナが提供される。
[0034] また、前記目的を達成するために、本発明の第 2の態様によると、
前記アンテナ素子が、一対の入力端子(25a、 25b)を有するダイポール型のアンテ ナ素子で形成され、
一端側が、前記ダイポール型のアンテナ素子の前記一対の入力端子の一方に接 続され、他端側が、前記誘電体基板及び前記地板導体を貫通して設けられる給電ピ ン(25)をさらに具備し、
前記ダイポール型のアンテナ素子の前記一対の入力端子の他方力 前記誘電体 基板を貫通して前記地板導体を短絡することを特徴とする第 1の態様に従う直線偏 波アンテナが提供される。
[0035] また、前記目的を達成するために、本発明の第 3の態様によると、
前記枠状導体 (32、 32' )が、前記アンテナ素子を挟んで対向する少なくとも一対 の不均等幅部分を有していることを特徴とする第 1の態様に従う直線偏波アンテナ提 供される。
[0036] また、前記目的を達成するために、本発明の第 4の態様によると、
前記一対の不均等幅部分が、一対の三角形部分であることを特徴とする第 3の態 様に従う直線偏波アンテナ提供される。
[0037] また、前記目的を達成するために、本発明の第 5の態様によると、
前記誘電体基板に形成される前記アンテナ素子と該アンテナ素子の前記一対の 入力端子の一方に一端側が接続される前記給電ピンとがそれぞれ複数組設けられ、 前記キヤビティを構成する複数の金属ポスト及び前記枠状導体が前記複数組の各 アンテナ素子を囲むように格子状に形成され、
前記地板導体側に設けられ、前記複数組の各アンテナ素子に前記複数組の給電 ピンを介して励振信号を分配供給するための給電部 (40)をさらに具備することを特 徴とする第 3の態様に従う直線偏波アンテナが提供される。
[0038] また、前記目的を達成するために、本発明の第 6の態様によると、
前記給電部は、前記地板導体を挟んで前記誘電体基板の反対側に設けられた給 電用誘電体基板 (41)と、前記給電用誘電体基板の表面に形成されたマイクロストリ ップ型の給電ライン (42)とにより構成されていることを特徴とする第 5の態様に従う直 線偏波アンテナが提供される。
[0039] また、前記目的を達成するために、本発明の第 7の態様によると、
前記ダイポール型のアンテナ素子は、それぞれ、所定の底辺幅 Wと所定の高さ L
B B
Z2を有して三角形状に形成され、互いに頂部が対向して配置されたボウタイアンテ ナを構成することを特徴とする第 2の態様に従う直線偏波アンテナが提供される。
[0040] また、前記目的を達成するために、本発明の第 8の態様によると、
前記ダイポール型のアンテナ素子は、それぞれ、所定の突出幅 Wで所定の高さ L
B
Z2を有して変形菱形形状に形成され、互いに一方の頂部が対向して配置された
B
ボウタイアンテナを構成することを特徴とする第 2の態様に従う直線偏波アンテナが 提供される。
[0041] また、前記目的を達成するために、本発明の第 9の態様によると、
前記アンテナ素子として、第 1の直線偏波型のアンテナ素子(23、 23' )と、第 2の 直線偏波型のアンテナ素子(23' 、 23)とが前記誘電体基板 (21" )に形成され、 前記複数の金属ポスト(30)が、それぞれの一端側が前記地板導体に接続され、前 記誘電体基板をその厚さ方向に沿って貫通し、且つそれぞれの他端側が前記誘電 体基板の反対面まで延びて、前記第 1の直線偏波型のアンテナ素子及び前記第 2 の直線偏波型のアンテナ素子とを分離して囲むように所定間隔で設けられることによ り、それぞれ、分離したキヤビティを構成し、
前記枠状導体 (32、 32' )として、それぞれ、前記第 1の直線偏波型のアンテナ素 子及び前記第 2の直線偏波型のアンテナ素子とを分離して囲むように所定間隔で設 けられる前記複数の金属ポストの各他端側をその並び方向に沿って短絡し、且つ前 記第 1の直線偏波型のアンテナ素子及び前記第 2の直線偏波型のアンテナ素子方 向に所定距離延びて前記誘電体基板の反対面側に第 1の枠状導体 (32)及び第 2 の枠状導体 (32' )とが設けられていることを特徴とする第 1の態様に従う直線偏波 アンテナが提供される。
[0042] また、前記目的を達成するために、本発明の第 10の態様によると、
前記第 1の直線偏波型のアンテナ素子及び前記第 2の直線偏波型のアンテナ素子 の一方がレーダ装置(50)の送信アンテナ(51)として適用され、他方が前記レーダ 装置 (50)の受信アンテナ(52)として適用されことを特徴とする第 9の態様に従う直 線偏波アンテナが提供される。
[0043] また、前記目的を達成するために、本発明の第 11の態様によると、
前記キヤビティ及び枠状導体とで共振器を構成し、前記共振器と前記アンテナ素 子との構造パラメータを調整して、前記共振器の共振周波数を所望の値に設定する こと〖こより、当該直線偏波アンテナの利得が所定範囲で低下する周波数特性となるよ うにしたことを特徴とする第 1乃至第 10の態様のいずれか一に従う直線偏波アンテナ が提供される。
[0044] また、前記目的を達成するために、本発明の第 12の態様によると、
前記構造パラメータは、前記キヤビティの内寸 Lw、前記枠状導体のリム幅 L、前記
R
アンテナ素子の全長 L、前記アンテナ素子の横幅 Wの少なくとも一つを含むことを
B B
特徴とする第 11の態様に従う直線偏波アンテナが提供される。
[0045] また、前記目的を達成するために、本発明の第 13の態様によると、
レーダパルスを送信アンテナ(51)を介して空間へ放射する送信部(54)と、 前記空間から戻ってくる前記レーダパルスの反射波を受信アンテナ(52)を介して 受信する受信部 (55)と、
前記受信部からの受信出力に基づ 、て前記空間に存在する物体を探査する解析 処理部 (56)と、
解析処理部からの出力に基づ!/、て前記送信部及び受信部の少なくとも一方を制御 する制御部(53)とを具備し、
前記受信アンテナ及び送信アンテナが、第 1及び第 2の直線偏波型のアンテナ素 子(23、 23' )で構成され、前記第 1及び第 2の直線偏波型のアンテナ素子(23、 23 ' )が、それぞれ、
誘電体基板 (21、 21' 、21" )と、
前記誘電体基板の一面側に重合される地板導体(22、 22' )と、
前記誘電体基板の反対面に形成された直線偏波型のアンテナ素子(23、 23' )と それぞれの一端側が前記地板導体に接続され、前記誘電体基板をその厚さ方向 に沿って貫通し、且つそれぞれの他端側が前記誘電体基板の反対面まで延びて、 前記アンテナ素子を囲むように所定間隔で設けられることにより、キヤビティを構成す る複数の金属ポスト(30)と、
前記誘電体基板の反対面側に、前記複数の金属ポストの各他端側をその並び方 向に沿って短絡し、且つ前記アンテナ素子方向に所定距離延びて設けられる枠状 導体 (32、3 )とを具備し、
前記複数の金属ポスト(30)が、それぞれの一端側が前記地板導体に接続され、前 記誘電体基板をその厚さ方向に沿って貫通し、且つそれぞれの他端側が前記誘電 体基板の反対面まで延びて、前記第 1の直線偏波型のアンテナ素子及び前記第 2 の直線偏波型のアンテナ素子とを分離して囲むように所定間隔で設けられることによ り、それぞれ、分離したキヤビティを構成し、
前記枠状導体 (32、 32' )として、それぞれ、前記第 1の直線偏波型のアンテナ素 子及び前記第 2の直線偏波型のアンテナ素子とを分離して囲むように所定間隔で設 けられる前記複数の金属ポストの各他端側をその並び方向に沿って短絡し、且つ前 記第 1の直線偏波型のアンテナ素子及び前記第 2の直線偏波型のアンテナ素子方 向に所定距離延びて前記誘電体基板の反対面側に第 1の枠状導体 (32)及び第 2 の枠状導体 (3^ )とが設けられて 、ることを特徴とするレーダ装置 (50)が提供され る。
[0046] また、前記目的を達成するために、本発明の第 14の態様によると、
前記アンテナ素子が、一対の入力端子(25a、 25b)を有するダイポール型のアンテ ナ素子で形成され、
一端側が、前記ダイポール型のアンテナ素子の前記一対の入力端子の一方に接 続され、他端側が、前記誘電体基板及び前記地板導体を貫通して設けられる給電ピ ン(25)をさらに具備し、
前記ダイポール型のアンテナ素子の前記一対の入力端子の他方力 前記誘電体 基板を貫通して前記地板導体を短絡することを特徴とする第 13の態様に従うレーダ 装置 (50)が提供される。
[0047] また、前記目的を達成するために、本発明の第 15の態様によると、
前記枠状導体 (32、 32' )が、前記アンテナ素子を挟んで対向する少なくとも一対 の不均等幅部分を有していることを特徴とする第 13の態様に従うレーダ装置(50)が 提供される。
[0048] また、前記目的を達成するために、本発明の第 16の態様によると、 前記一対の不均等幅部分が、一対の三角形部分であることを特徴とする第 15の態 様に従うレーダ装置 (50)が提供される。
[0049] また、前記目的を達成するために、本発明の第 17の態様によると、
前記誘電体基板に形成される前記アンテナ素子と該アンテナ素子の前記一対の 入力端子の一方に一端側が接続される前記給電ピンとがそれぞれ複数組設けられ、 前記キヤビティを構成する複数の金属ポスト及び前記枠状導体が前記複数組の各 アンテナ素子を囲むように格子状に形成され、
前記地板導体側に設けられ、前記複数組の各アンテナ素子に前記複数組の給電 ピンを介して励振信号を分配供給するための給電部 (40)をさらに具備することを特 徴とする第 14の態様に従うレーダ装置 (50)が提供される。
[0050] また、前記目的を達成するために、本発明の第 18の態様によると、
前記給電部は、前記地板導体を挟んで前記誘電体基板の反対側に設けられた給 電用誘電体基板 (41)と、前記給電用誘電体基板の表面に形成されたマイクロストリ ップ型の給電ライン (42)とにより構成されていることを特徴とする第 17の態様に従う レーダ装置 (50)が提供される。
[0051] また、前記目的を達成するために、本発明の第 19の態様によると、
前記ダイポール型のアンテナ素子は、それぞれ、所定の底辺幅 W
Bと所定の高さ L
B
Z2を有して三角形状に形成され、互いに頂部が対向して配置されたボウタイアンテ ナを構成することを特徴とする第 14の態様に従うレーダ装置 (50)が提供される。
[0052] また、前記目的を達成するために、本発明の第 20の態様によると、
前記ダイポール型のアンテナ素子は、それぞれ、所定の突出幅 Wで所定の高さ L
B
B Z2を有して変形菱形形状に形成され、互いに一方の頂部が対向して配置された ボウタイアンテナを構成することを特徴とする第 14の態様に従うレーダ装置(50)が 提供される。
[0053] また、前記目的を達成するために、本発明の第 21の態様によると、
前記キヤビティ及び枠状導体とで共振器を構成し、前記共振器と前記アンテナ素 子との構造パラメータを調整して、前記共振器の共振周波数を所望の値に設定する こと〖こより、当該直線偏波アンテナの利得が所定範囲で低下する周波数特性となるよ うにしたことを特徴とする第 13乃至第 20の態様のいずれか一に従うレーダ装置(50) が提供される。 また、前記目的を達成するために、本発明の第 22の態様によると、 前記構造パラメータは、前記キヤビティの内寸 Lw、前記枠状導体のリム幅 L、前記
R
アンテナ素子の全長 L、前記アンテナ素子の横幅 Wの少なくとも一つを含むことを
B B
特徴とする第 21の態様に従うレーダ装置 (50)が提供される。
[0054] 以上のように構成される本発明の直線偏波アンテナでは、誘電体基板を貫通する 金属ポストをアンテナ素子を囲むように並べてキヤビティ構造とし、さらに、この金属ポ ストの先端を並び方向に沿って短絡し、且つアンテナ素子方向に所定距離延びた枠 状導体 (rimZconducting rim)を設けているので、表面波の発生を抑制でき、ァ ンテナの放射特性を所望の特性にすることができる。
[0055] また、本発明の直線偏波アンテナでは、キヤビティの共振現象を利用することにより 、アンテナ利得の周波数特性が RR電波発射禁止帯で鋭 ヽ落ち込み (ノッチ)を持つ ようにすることができ、上述した EESSや電波天文業務との電波干渉を低減するのに 有効である。
[0056] さらに、本発明の直線偏波アンテナでは、アレー化した場合でも、アンテナ素子間 で表面波の影響による特性の暴れを防止することができる。
図面の簡単な説明
[0057] [図 1]図 1は、本発明による直線偏波アンテナの第 1の実施形態の構成を説明するた めに示す斜視図である。
[図 2]図 2は、本発明による直線偏波アンテナの第 1の実施形態の構成を説明するた めに示す正面図である。
[図 3]図 3は、本発明による直線偏波アンテナの第 1の実施形態の構成を説明するた めに示す背面図である。
[図 4A]図 4Aは、図 2の 4A— 4A線拡大断面図である。
[図 4B]図 4Bは、図 2の変形例における 4B—4B線拡大断面図である。
[図 5]図 5は、図 2の 5— 5線拡大断面図である。
[図 6]図 6は、本発明による直線偏波アンテナの第 1の実施形態の要部の構成を説明 するために示す拡大正面図である。 [図 7]図 7は、本発明による直線偏波アンテナの第 1の実施形態の要部の変形例の構 成を説明するために示す拡大正面図である。
[図 8]図 8は、本発明による直線偏波アンテナの第 1の実施形態の要部の構成を除い たとき及び要部の構成を用いたときの特性図である。
[図 9]図 9は、本発明による直線偏波アンテナの第 2の実施形態が適用されるアレー の構成を説明するために示す正面図である。
[図 10]図 10は、本発明による直線偏波アンテナの第 2の実施形態が適用されるァレ 一の構成を説明するために示す側面図である。
圆 11]図 11は、本発明による直線偏波アンテナの第 2の実施形態が適用されるァレ 一の構成を説明するために示す背面図である。
[図 12A]図 12Aは、本発明による直線偏波アンテナの第 3の実施形態が適用される 要部の構成を説明するために示す拡大正面図である。
[図 12B]図 12Bは、本発明による直線偏波アンテナの第 3の実施形態が適用される 要部の変形例の構成を説明するために示す拡大正面図である。
[図 12C]図 12Cは、本発明による直線偏波アンテナの第 3の実施形態が適用される 要部の他の変形例の構成を説明するために示す拡大正面図である。
[図 13]図 13は、図 12Cに示す本発明による直線偏波アンテナの第 3の実施形態の 変形例が適用される要部の構成を用いたときと、図 2に示す本発明による直線偏波 アンテナの第 1の実施形態が適用される要部の構成を用いたときの特性図である。
[図 14]図 14は、本発明による直線偏波アンテナの第 4の実施形態が適用されるァレ 一の構成を説明するために示す正面図である。
[図 15]図 15は、本発明による直線偏波アンテナの第 4の実施形態が適用されるァレ 一の構成を用いたときの特性図である。
[図 16]図 16は、本発明による第 5の実施形態が適用されるレーダ装置の構成を説明 するために示すブロック図である。
[図 17]図 17は、本発明による第 5の実施形態が適用されるレーダ装置に用いられる 直線偏波アンテナの構成を説明するために示す正面図である。
[図 18]図 18は、準ミリ波帯 UWBのスペクトラムマスクと望ましい使用周波数帯 (推奨 帯域)を示す図である。
発明を実施するための最良の形態
[0058] 以下、図面に基づいて本発明の幾つかの実施の形態を説明する。
[0059] (第 1実施形態)
図 1乃至図 5は、本発明を適用した第 1実施形態による直線偏波アンテナ 20の基 本構造を示している。
[0060] すなわち、図 1は、本発明による直線偏波アンテナの第 1の実施形態の構成を説明 するために示す斜視図である。
[0061] また、図 2は、本発明による直線偏波アンテナの第 1の実施形態の構成を説明する ために示す正面図である。
[0062] また、図 3は、本発明による直線偏波アンテナの第 1の実施形態の構成を説明する ために示す背面図である。
[0063] また、図 4Aは、図 2の 4A—4A線拡大断面図である。
[0064] また、図 4Bは、図 2の変形例における 4B—4B線拡大断面図である。
[0065] また、図 5は、図 2の 5— 5線拡大断面図である。
[0066] 本発明による直線偏波アンテナは、基本的には、図 1乃至図 5に示すように、誘電 体基板 21と、前記誘電体基板 21の一面側に重合される地板導体 22と、前記誘電体 基板 21の反対面に形成された直線偏波型のアンテナ素子 23と、それぞれの一端側 が前記地板導体 22に接続され、前記誘電体基板 21をその厚さ方向に沿って貫通し 、且つそれぞれの他端側が前記誘電体基板 21の反対面まで延びて、前記アンテナ 素子 23を囲むように所定間隔で設けられることにより、キヤビティを構成する複数の 金属ポスト 30と、前記誘電体基板 21の反対面側に、前記複数の金属ポスト 30の各 他端側をその並び方向に沿って短絡し、且つ前記アンテナ素子 23方向に所定距離 延びて設けられる枠状導体 32とを有して 、る。
[0067] この直線偏波アンテナ 20は、具体的には、低誘電率(3. 5前後)を有する材質から なる基板で、例えば、その厚さが 1. 2mmの誘電体基板 21と、その誘電体基板 21の 一面側(図 1、図 2で背面側)に設けられた地板導体 22と、誘電体基板 21の反対面 側(図 1、図 2で前面側)に、例えば、パターン印刷技術によって形成された前記キヤ ビティを直線偏波で励振するための一対の素子アンテナ 23a、 23bからなるダイポー ル型のアンテナ素子 23と、このアンテナ素子 23に給電するため 1つの給電ピン (fee d pin) 25と 1つの短絡ピン(short pin) 26とを有している。
[0068] これらの給電ピン 25と短絡ピン 26とは、それぞれ誘電体基板 21をその厚さ方向に 貫通し、給電ピン 25はさらに地板導体 22の穴 22aを貫通し、短絡ピン 26は地板導 体 22に短絡される。
[0069] 上記ダイポール型のアンテナ素子 23は、平衡型素子のアンテナであるので、平衡 給電も可能である。
[0070] その場合には、上記 1つの給電ピン 25と 1つの短絡ピン 26の代わりに、 2つの給電 ピンを設け、この 2つの共に地板導体 22に形成する 2つの穴を通過させるように構成 すればよい。
[0071] し力しながら、通常は、同軸線路やマイクロストリップ線路等を用いてアンテナに給 電する場合が多い。
[0072] これらの同軸線路やマイクロストリップ線路等は、いわゆる不平衡線路であるので、 上述したダイポール型のアンテナ素子 23のような平衡型素子のアンテナに給電する 場合には、給電ピンとアンテナとの間にバラン (balun)を挿入する必要がある。
[0073] し力しながら、 UWDで必要とする広帯域特性を実現するためには、バランが非常 に大きくなつてしまうので、実用的ではない。
[0074] そこで、この問題を解決するために、本発明では、上述したように、ダイポール型の アンテナ素子 23を構成する一対の素子アンテナ 23a、 23bの一方の素子アンテナ 2 3bに給電ピン 25を介して、例えば、同軸ケーブルや、地板導体 22をアースラインと するコプレーナ線路あるいは後述するマイクロストリップ線路等により給電すると共に 、他方の素子アンテナ 23aを短絡ピン 26を介して地板導体 22に短絡する構成とする ことにより、実質的には不平衡型の給電線であっても、バランを用いることなく給電す ることがでさるよう〖こして!/、る。
[0075] これにより、アンテナ素子 23から直線偏波の電波を放射することができる。
[0076] 上記の誘電体基板 21の材質としては、準ミリ波帯で低損失の R04003 (Rogers社 )などの材料を用いることができる。 [0077] この誘電体基板 21の材質としては、低損失で誘電率が 2〜5程度の材料であれば 使用可能であり、例えば、ガラスクロステフロン基板や各種熱硬化榭脂基板が候補と なる。
[0078] ただし、これだけの構造のみによる直線偏波アンテナでは、前記したように、誘電体 基板 21の表面に沿った表面波が励振されるため、その表面波の影響によって直線 偏波アンテナとして所望の特性が得られな 、。
[0079] そこで、この実施形態の直線偏波アンテナ 20では、上記構造に加えて、図 4A、図 5に示しているように、一端側が地板導体 22に接続され、誘電体基板 21を貫通して 、他端側が誘電体基板 21の反対面まで延びた、例えば、円柱状の金属ポスト 30を、 アンテナ素子 23を囲むように所定間隔で設けることによって形成される、キヤビティ構 造を採用している。
[0080] さらに、この実施形態の直線偏波アンテナ 20では、上記キヤビティ構造に加えて、 誘電体基板 21の反対面側に、各金属ポスト 30の他端側をその並び方向に沿って順 次短絡し、且つ各金属ポスト 30との接続位置力もアンテナ素子 23方向に所定距離 延びた枠状導体 32を設けて 、る。
[0081] そして、この実施形態の直線偏波アンテナ 20では、このキヤビティ構造と、枠状導 体 32との相乗効果によって、表面波を抑圧することができるようにして!/、る。
[0082] なお、複数の金属ポスト 30は、図 4Bに示すように、誘電体基板 21を貫通する複数 の穴 301を形成し、この複数の穴 301の内壁にメツキ加工 (スルーホールメツキ)する ことによって複数の中空状の金属ポスト として実現することもできる。
[0083] この場合、スルーホールメツキによる複数の中空状の金属ポスト 3( の下端部は、 誘電体基板 21の一端側にパターン印刷技術によって形成されるランド 302を介して 地板導体 22に接続されるようになされて 、る。
[0084] 以下、上記のキヤビティ構造と枠状導体 32とによる表面波抑圧の効果を説明する ために、各部の構造パラメータと、当該構造パラメータを変えて得られた直線偏波ァ ンテナ 20の特性にっ 、てのシミュレーション結果にっ 、て説明する。
[0085] 先ず、各部の構造パラメータとなり得る要素について説明する。
[0086] この直線偏波アンテナ 20の使用周波数は UWB内の 26GHzであり、ダイポール型 のアンテナ素子 23は、図 6に示すよう、一対の入力端子 25a、 25bを有すると共に、 横幅 Wが約 1. 8mm、全長 Lが約 3. 5mmの三角形状のボウタイアンテナを用いて
B B
いる。
[0087] なお、以下の説明および実施形態では、直線偏波アンテナ 20に採用すべきとして アンテナ素子 23として三角形状の例を示している。
[0088] しかるに、図 7に示すように、直線偏波アンテナ 20に採用すべきアンテナ素子 23と しては、三角形状に代えて、一対の入力端子 25a、 25bを有すると共に、所定の突出 幅 W、全長 Lを有する変形菱形形状のアンテナ素子 23を用いることもできる。
B B
[0089] また、誘電体基板 21の外形はアンテナ素子 23の中心を中心とする正方形で、図 2 に示すように、その一辺の長さを L (以下、外形長と記す)とし、キヤビティの外形もこ れと同心の正方形として 、る。
[0090] また、キヤビティは、図 4A, Bに示すように、その内寸を Lwとし、さらに、枠状導体 3 2のキヤビティ内壁から内側へ延びる距離 (以下、リム幅と記す)を Lとする。
R
[0091] また、キヤビティを形成する複数の金属ポスト 30の直径は、それぞれ、 0. 3mmであ り、各金属ポスト 30の間隔は 0. 9mmである。
[0092] 図 8は、ボウタイアンテナを用いた 3種類のアンテナの垂直面(図 1、図 2で yz面)の 放射指向性を示している。
[0093] 図 8で、 F1は複数の金属ポスト 30によるキヤビティ及び枠状導体 32が設けられて
Vヽな 、場合の放射指向性のシミュレーション結果を示して 、る。
[0094] また、 F2は複数の金属ポスト 30によるキヤビティはあるが枠状導体 32がない場合 の放射指向性を示している。
[0095] また、 F3は複数の金属ポスト 30によるキヤビティ及び枠状導体 32の両方を設けた 場合の放射指向性を示して 、る。
[0096] ここで、直線偏波アンテナとして要求される放射特性は、 0° 方向を中心として対称 でブロードな単峰特性である。
[0097] 図 8から明らかなように、複数の金属ポスト 30によるキヤビティ及び枠状導体 32が設 けられていない場合の放射指向性 F1では、 0° 方向を中心としての非対称性が大き く、単峰特性とは言えな 、指向性になって 、る。 [0098] これは、容易に想像されるように、複数の金属ポスト 30によるキヤビティが存在しな V、ために、ボウタイアンテナで励振された波が表面波として誘電体基板 21内を拡散 されてしまう結果である。
[0099] 一方、複数の金属ポスト 30によるキヤビティはあるが枠状導体 32がない場合の放 射指向性 F2では金属ポスト 30によるキヤビティが存在しているので、特性のよいアン テナが得られるように想像される力 実際には、図 8に示されているようにやはり 0° 方向を中心として非対称である。
[0100] これは複数の金属ポスト 30によるキヤビティだけでは十分に表面波を抑圧できない ことを示している。
[0101] これに対して、複数の金属ポスト 30によるキヤビティ及び枠状導体 32の両方を設け た場合の放射指向性 F3は、 0° 方向を中心として対称でブロードな単峰特性の指向 '性になっている。
[0102] これは、複数の金属ポスト 30によるキヤビティと枠状導体 32の両方によって、キヤビ ティの外側に伝送していく表面波が抑圧され、キヤビティの開口力 だけ電波放射が 起きるためであり、枠状導体 32を設けていることの効果が大きいことが分かる。
[0103] なお、リム幅 Lは、表面波を抑圧すると共に、後述するように、 RR電波発射禁止帯
R
でアンテナ利得にノッチが生じるようにシミュレーションまたは実験により決定される。
[0104] 典型的なリム幅 L の値は、 1. 2mmである。
R
[0105] このリム幅 L = 1. 2mmは、表面波の波長のほぼ 1Z4に相当している。
R
[0106] つまり、このリム幅 L = 1. 2mmの部分は、その先端側力 ポスト壁側を見たとき、
R
表面波に対してインピーダンスが無限大となる λ g/4 ( λ gは管内波長)の長さの伝 送路を形成する。
[0107] したがって、誘電体基板 21の表面に沿った電流が流れないことになり、この電流阻 止作用によって表面波の励振が抑圧され、放射特性の暴れを防 、で 、ることになる
[0108] よって、直線偏波アンテナ 20を上記した以外の他の周波数帯に適用する場合には 、その周波数に応じてリム幅 Lを変更設定すればよい。
R
[0109] そして、上記実施形態の直線偏波アンテナ 20は、 UWBの各種通信システムに用 いることがでさる。
[0110] (第 2実施形態)
上記第 1実施形態の直線偏波アンテナ 20では、 UWBレーダ等として必要とされる 利得が不足する場合や、ビームを絞る必要がある場合には、上記直線偏波アンテナ
20をアレー化にすればよ!、。
[0111] 図 9乃至図 11は、本発明による直線偏波アンテナの第 2の実施形態として、アレー 化した直線偏波アンテナ 20' の構成を示している。
[0112] すなわち、図 9は、本発明による直線偏波アンテナの第 2の実施形態が適用される アレーの構成を説明するために示す正面図である。
[0113] また、図 10は、本発明による直線偏波アンテナの第 2の実施形態が適用されるァレ 一の構成を説明するために示す側面図である。
[0114] また、図 11は、本発明による直線偏波アンテナの第 2の実施形態が適用される回 転アレーの構成を説明するために示す背面図である。
[0115] この第 2の実施形態による直線偏波アンテナ 20' は、縦長矩形の共通の誘電体基 板 21' 及び地板導体 22' 〖こ、前記第 1の実施形態のアンテナ素子 23を、 2列 4段 にアレー化して構成されて!、る。
[0116] また、この直線偏波アンテナ 2( の地板導体 22^ 側には、複数のアンテナ素子に 励振信号を分配給電するための給電部 40が形成されている。
[0117] 誘電体基板 21' の表面には、前記第 1の実施形態と同様に形成された三角形状 のボウタイアンテナによる 8つのアンテナ素子 23 (1)〜23 (8)が 2列 4段に設けられ ている。
[0118] また、各アンテナ素子 23 (1)〜23 (8)は、前記第 1の実施形態と同様に、一端側が 地板導体 2^ に接続されて!ヽる複数の金属ポスト 30を並べて形成したキヤビティに より囲まれている。
[0119] さらに、各アンテナ素子 23 (1)〜23 (8)は、各金属ポスト 30との接続位置力も各ァ ンテナ素子 23方向に所定距離 (前記したリム幅 L分)延びた枠状導体 32^ により、
R
各金属ポスト 30の他端側をその並び方向に沿って連結して 、る。
[0120] すなわち、各アンテナ素子 23 (1)〜23 (8)は、各アンテナ素子毎に表面波の発生 を抑圧可能な構成となれて!/ヽる。
[0121] なお、この直線偏波アンテナ 2( のように複数のアンテナ素子 23 (1)〜23 (8)を 縦横に配列した場合、隣合うアンテナ素子の間のキヤビティ及び枠状導体 32' を共 通化して、全体として格子状に形成することができる。
[0122] ただし、 2つの隣合う 2つのアンテナ素子の間に設けられる枠状導体 32' は、その 両アンテナ素子へ所定距離 (前記したリム幅 L )延びるように形成される。
R
[0123] 各アンテナ素子 23 (1)〜23 (8)の給電点に一端側を接続された各給電ピン 25 (1 ;)〜 25 (8)は、誘電体基板 21' を貫通し、地板導体 22' の穴 22 を非導通に通 過し、さらに給電部 40を構成する給電用誘電体基板 41を貫通してその表面に他端 側を突出させている。
[0124] そして、給電用誘電体基板 41の表面には、図 11に示しているように、地板導体 22 ' をアースとするマイクロストリップ型の給電ライン 42 (a)〜42 (h)及び 42 ( ;)〜 42 ( )が形成されている。
[0125] この給電ライン 42 (a)〜42 (h)及び 42 (1/ ;)〜 42 ( )は、図示しない送信部ま たは受信部に接続される入出力用の給電ライン 42aから左右に 2分岐された 2つの 給電ライン 42b、 42b' と、そのうち左方への延びたライン 42bから上下に 2分岐され た 2つのライン 42c、 42dと、その 2つのライン 42c、 42d力もそれぞれ 2分岐された 4 つの給電ライン 42e〜42hとを有して!/、る。
[0126] そして、この 4つの給電ライン 42e〜42hは、図 11にお!/ヽて右列のアンテナ素子 23
(1)〜23 (4)の各給電ピン 25 (1)〜25 (4)に接続されている。
[0127] また、入出力用の給電ライン 42aから右方に分岐したライン 42b' も、左方側とほぼ 同様に、上下に 2分岐された 2つの給電ライン 42c' 、 42ά' と、その 2つのライン 42 c' 、42d' 力 それぞれ 2分岐された 4つの給電ライン 42e' 〜42 とを有してい る。
[0128] そして、この 4つの給電ライン 42e' 〜42 は、図 9において左列のアンテナ素子 23 (5)〜23 (8)の各給電ピン 25 (5)〜25 (8)に接続されて!、る。
[0129] ここで、入出力用の給電ライン 42aからみて各給電ピン 25 (1)〜25 (8)までの線路 長はすべて等しく設定されているので、各アンテナ素子は同位相で給電され、放射 ビームはアンテナ正面を向くことになる。
[0130] このように構成された第 2の実施形態による直線偏波アンテナ 20' では、個々のァ ンテナ素子 23は、複数の金属ポスト 30によるキヤビティと枠状導体 32' によって表 面波の発生が抑圧されるため、素子間の相互結合力 、さくなり、前述した第 1の実施 形態と同様に単峰の指向性となる所望の放射特性が得られる。
[0131] また、この第 2の実施形態による直線偏波アンテナ 20' では、アンテナ素子を縦方 向に 4段設けてアレー化して!/、るので、垂直面のビーム広がりを適度に狭めることが でき、 UWB帯における RR電波発射禁止帯への成分が含まれて ヽる場合であっても 、問題となる高仰角方向への放射を抑えることができるので、 RR電波発射禁止帯へ の妨害を低減する効果もある。
[0132] 上記のアレー化した直線偏波アンテナ 20' の給電部 40は、給電用誘電体基板 41 上に形成したマイクロストリップ型の給電ライン 42によって各アンテナ素子へ励振信 号の分配供給を行って 、るが、コプレーナ線路で給電部を構成することも可能である
[0133] この場合、前記同様に給電用誘電体基板 41の表面上にコプレーナ線路型の給電 ラインを形成する方法と、地板導体 22' に直接コプレーナ線路型の給電ラインを形 成する方法の 、ずれであってもよ 、。
[0134] 特に、後者の方法では、給電用誘電体基板 41を省略できると 、う利点がある。
[0135] ところで、本発明の直線偏波アンテナは、誘電体基板 21に、複数の金属ポスト 30 によるキヤビティと枠状導体 32を設けることによって共振器を構成し、この共振器を直 線偏波アンテナ素子 23で励振していると考えることができる。
[0136] 本発明の直線偏波アンテナは、共振器を構成しているので、共振周波数が存在し
、その共振周波数では直線偏波アンテナの入力インピーダンスが非常に大きくなり、 放射をしなくなる。
[0137] この場合、共振器の共振周波数は、前記共振器と直線偏波のアンテナ素子の構造 ノ ラメータで決まる。
[0138] この構造パラメータは、前述したように、キヤビティの内寸 Lw、リム幅 Lのほか、素
R
子アンテナの卷数、素子の基本長 aO、線路幅 Wなどである。 [0139] したがって、アンテナ利得の周波数特性は、前記共振周波数付近で急激に深!ヽ落 ち込み (ノッチ)力 S生じること〖こなる。
[0140] この共振周波数を、例えば、前記した RR電波発射禁止帯(23. 6〜24. OGHz)に 一致させることができればこのようなアンテナを UWBレーダの送信アンテナとして用 いることにより、地球探査衛星などとの干渉を大幅に低減することができる。
[0141] し力しながら、上記のノッチは一般には狭帯域であるので、製作誤差なども考慮し て上記の RR電波発射禁止帯を力パーするためには、ノッチの帯域を十に分広げるこ とが重要となる。
[0142] (第 3実施形態)
次に、上記ノッチを広帯域ィ匕するための構成を採用した本発明による直線偏波アン テナの第 3の実施形態について説明する。
[0143] 図 12A、 B、 Cは、それぞれ、本発明による直線偏波アンテナ 20の第 3の実施形態 が適用される要部の構成及びそれとは異なる 2つの変形例の構成を説明するために 示す正面図である。
[0144] すなわち、図 12A、 B、 Cに示す直線偏波アンテナ 20は、いずれも枠状導体 32の 幅を不均等にしているのが特徴である。
[0145] 図 12Aに示す直線偏波アンテナ 20は、枠状導体 32の幅を不均等にするためにと り得る任意の形状として波型した場合の一例を示している。
[0146] 図 12Bに示す直線偏波アンテナ 20は、枠状導体 32の幅を不均等にするためにと り得る任意の形状として円弧で構成される場合の一例を示している。
[0147] 図 12Cに示す直線偏波アンテナ 20は、枠状導体 32の幅を不均等にするためにと り得る任意の形状として三角形で構成される場合の一例を示している。
[0148] これは、前述の図 2に示すように枠状導体 32が方形の均等幅である場合には、そ の先端側力もポスト壁側を見たとき、共振周波数においてはインピーダンス無限大の λ Ζ4伝送路を形成し、共振が極めて鋭くなるのに対し、枠状導体 32の幅を図 12A
、 B、 Cに示すように不均等とすることにより共振が鈍くなるためである。
[0149] 図 13は、直線偏波アンテナ 20のうち、枠状導体 32の構成が最も単純な図 12Cに 示す前記枠状導体 32の形状が三角形の場合の効果を説明する図である。 [0150] この場合の具体例として、図 12C中の hiを約 0. 26mm. h2を約 1. 26mmに選ん でいる。
[0151] 図 13中、破線で示す特性は、リム幅 L = 1. Ommの方形の均等幅である図 2に示
R
すような枠状導体 32の場合のアンテナ利得の周波数特性である。
[0152] また、実線で示す特性は、上述したように、 hl = 0. 26mm, h2 = l. 26mmの三 角形の不均等幅である図 12Cに示すような枠状導体 32の場合のアンテナ利得の周 波数特性である。
[0153] 図 13から明らかなように、 26GHzにおける利得から lOdBi低下したところでの周波 数幅は、破線で示す方形の枠状導体 32の場合には、約 260MHzであるのに対し、 実線で示す三角形の枠状導体 32の場合には、 500MHz以上に及んでいる。
[0154] すなわち、 RR電波発射禁止帯の幅は 400MHzであるから、破線で示す方形の枠 状導体 32の場合にはノッチの帯域幅が RR電波発射禁止帯の幅 400MHzをカバー するのに不十分であるのに対し、実線で示す三角形の枠状導体 32の場合にはノッ チの帯域幅が RR電波発射禁止帯の幅 400MHzを十分にカバーしていることが分か る。
[0155] (第 4実施形態)
図 14は、本発明による直線偏波アンテナの第 4の実施形態が適用される要部の構 成を説明するために示す正面図である。
[0156] すなわち、第 4の実施形態が適用される直線偏波アンテナは、図 12Cに示したよう に、前記枠状導体 32の形状を三角形にしたアンテナ素子を用いてアレーアンテナを 構成した場合である。
[0157] 図 14に示すアレーアンテナの構成は、図 9と同じ 2 X 4素子アレーである。
[0158] 図 15は、図 14に示すアレーアンテナのアンテナ利得の周波数特性を示している。
[0159] この例では、 25〜29GHzにわたつて禾 IJ得力 5dBiに保たれており、且つ 23. 6〜
24. 0GHzに、ピークレベル力も約 lOdBi以上低下した鋭いノッチが生じていると共 に、このノッチも必要な帯域幅が得られて 、ることが分かる。
[0160] すなわち、本発明による直線偏波アンテナは、共振器、枠状導体あるいはボウタイ 型のアンテナ素子のいずれかの構造パラメータを適切に選択することにより、ノッチ が生じる周波数やその帯域幅が前記した RR電波発射禁止帯を覆うようにすることが できる。
[0161] このように、本発明による直線偏波アンテナでは、共振器またはアンテナ素子の!/ヽ ずれか一方、あるいは両方の構造パラメータを適切に選択することにより、ノッチが生 じる周波数を前記した RR電波発射禁止帯に容易に一致させることができる。
[0162] そして、本発明による直線偏波アンテナは、上記の基本構成にカ卩えて、好ましくは、 前記アンテナ素子 23、 23' 力 一対の入力端子 25a、 25bを有するダイポール型の アンテナ素子 23、 23' で形成され、一端側が、前記ダイポール型のアンテナ素子 2 3、 23' の前記一対の入力端子 25a、 25bの一方に接続され、他端側が、前記誘電 体基板 21、 21' 及び前記地板導体 22、 22' を貫通して設けられる給電ピン 25をさ らに具備し、前記ダイポール型のアンテナ素子 23、 23' の前記一対の入力端子 25 a、 25bの他方が、前記誘電体基板 21、 21' を貫通して前記地板導体 22、 22' を 短絡することを特徴として!/ヽる。
[0163] また、本発明による直線偏波アンテナは、上記の基本構成に加えて、好ましくは、 前記枠状導体 32、 32' 力 前記アンテナ素子 23、 23' を挟んで対向する少なくと も一対の不均等幅部分、例えば、一対の三角形状部分を有していることを特徴として いる。
[0164] また、本発明による直線偏波アンテナは、上記の基本構成に加えて、好ましくは、 前記誘電体基板 21、 21' に形成される前記アンテナ素子 23、 23' と該アンテナ素 子 23、 23' の前記一対の入力端子 25a、 25bの一方に一端側が接続される前記給 電ピン 25とがそれぞれ複数組設けられ、前記キヤビティを構成する複数の金属ポスト 30及び前記枠状導体 32、 32' が前記複数組の各アンテナ素子 23、 23' を囲むよ うに格子状に形成され、前記地板導体 22、 22' 側に設けられ、前記複数組の各ァ ンテナ素子 23、 23' に前記複数組の給電ピン 25を介して励振信号を分配供給する ための給電部 40をさらに具備することを特徴としている。
[0165] また、本発明による直線偏波アンテナは、上記の基本構成に加えて、好ましくは、 前記給電部 40が、前記地板導体 22、 22' を挟んで前記誘電体基板 21、 21' の反 対側に設けられた給電用誘電体基板 41と、前記給電用誘電体基板 41の表面に形 成されたマイクロストリップ型の給電ライン 42とにより構成されていることを特徴として いる。
[0166] また、本発明による直線偏波アンテナは、上記の基本構成に加えて、好ましくは、 前記ダイポール型のアンテナ素子 23、 23' 力 それぞれ、所定の底辺幅 Wと所定
B
の高さ L Z2を有して三角形状に形成され、互いに頂部が対向して配置されたボウ
B
タイアンテナを構成することを特徴として 、る。
[0167] また、本発明による直線偏波アンテナは、上記の基本構成に加えて、好ましくは、 前記ダイポール型のアンテナ素子 23、 23' 力 それぞれ、所定の突出幅 Wで所定
B
の高さ L
B Z2を有して変形菱形形状に形成され、互いに一方の頂部が対向して配置 されたボウタイアンテナを構成することを特徴として!、る。
[0168] また、本発明による直線偏波アンテナは、上記の基本構成に加えて、好ましくは、 前記キヤビティ及び枠状導体とで共振器を構成し、前記共振器と前記アンテナ素子 23、 23' との構造パラメータを調整して、前記共振器の共振周波数を所望の値に設 定すること〖こより、当該直線偏波アンテナの利得が所定範囲で低下する周波数特性 となるようにしたことを特徴として 、る。
[0169] また、本発明による直線偏波アンテナは、上記の基本構成に加えて、好ましくは、 前記構造パラメータは、前記キヤビティの内寸 Lw、前記枠状導体のリム幅 L、前記
R
アンテナ素子 23、 23' の全長 L、前記アンテナ素子の横幅 Wの少なくとも一つを
B B
含むことを特徴としている。
[0170] (第 5の実施形態)
図 16は、本発明による第 5の実施形態が適用されるレーダ装置の構成を説明する ために示すブロック図である。
[0171] すなわち、図 16は、上記した各実施形態による直線偏波アンテナ 20、 20' を送信 アンテナ 51及び受信アンテナ 52として使用した UWBのレーダ装置 50の構成を示し ている。
[0172] この図 16に示すレーダ装置 50は車載用のレーダ装置であり、制御部 53によるタイ ミング制御を受ける送信部 54が、キャリア周波数 26GHzのパルス波を所定周期で生 成して送信アンテナ 51から探査対象の空間 1へ放射する。 [0173] 空間 1の物体 laで反射して戻ってきたパルス波は、受信アンテナ 52で受信され、 その受信信号が受信部 55に入力される。
[0174] この受信部 55は、制御部 53によるタイミング制御を受けて受信信号の検波処理を 行う。
[0175] この検波処理で得られた信号は、解析処理部 56に出力され、探査対象の空間 1〖こ 対する解析処理がなされ、必要であれはその解析結果が制御部 53に通知される。
[0176] このような構成のレーダ装置 50の送信アンテナ 51と受信アンテナ 52として、前記し た直線偏波アンテナ 20、 20' を用いることができる。
[0177] しかるに、車載用とする場合、送信アンテナ 51と受信アンテナ 52を一体的に形成 することが望ましい。
[0178] 図 17は、上記の点を考慮した直線偏波アンテナ 60であり、構造的には前記した図 15の直線偏波アンテナ 2( と同構成の第 1及び第 2の直線偏波アンテナ 20' によ る送信アンテナ 51と受信アンテナ 52とを、横長の共通の誘電体基板 21グの左右に 設けたものである。
[0179] すなわち、図 17は、本発明による第 5の実施形態が適用されるレーダ装置に用いら れる直線偏波アンテナ 60の構成を説明するために示す正面図である。
[0180] この直線偏波アンテナ 60に設けられている送信アンテナ 51及び受信アンテナ 52 は、前述したように、複数の金属ポスト 30によるキヤビティ構造と枠状導体 32' で各 アンテナ素子 23を囲っており、表面波の影響がないため、広帯域で、かつ RR電波 発射禁止帯への放射を抑圧する利得特性を有して ヽる。
[0181] し力も、図 17に示す送信アンテナ 51及び受信アンテナ 52の給電部(図示せず)は 、それぞれ、前記した図 15に示したアレー構造としているので、前述したような良好 な直線偏波特性となり、送信アンテナ 51から探査空間へ放射された直線偏波の、物 体 laによる反射波を受信アンテナ 52によって高感度に受信することができる。
[0182] なお、レーダ装置 50の送信アンテナ 51及び受信アンテナ 52として、前記直線偏波 アンテナ 20、 20〃 と同等のものを採用してもよい。
[0183] すなわち、本発明によるレーダ装置は、基本的には、レーダパルスを送信アンテナ 51を介して空間 1へ放射する送信部 54と、前記空間 1から戻ってくる前記レーダパ ルスの反射波を受信アンテナ 52を介して受信する受信部 55と、前記受信部 55から の受信出力に基づ 、て前記空間 1に存在する物体 laを探査する解析処理部 56と、 解析処理部 56からの出力に基づいて前記送信部 54及び受信部 55の少なくとも一 方を制御する制御部 53とを具備し、前記送信アンテナ 51及び受信アンテナ 52が第 1及び第 2の直線偏波型のアンテナ素子 23、 23' で構成され、前記第 1及び第 2の 直線偏波型のアンテナ素子 23、 23' 1S それぞれ、誘電体基板 21、 21' 、 21" と 、前記誘電体基板 21、 21' 、 21"の一面側に重合される地板導体 22、 22' と、前 記誘電体基板 21、 21' 、 21〃の反対面に形成された直線偏波型のアンテナ素子 2 3、 23' と、それぞれの一端側が前記地板導体 22、 22' に接続され、前記誘電体 基板 21、 2 、 21"をその厚さ方向に沿って貫通し、且つそれぞれの他端側が前 記誘電体基板 21、 21/ 、 21グの反対面まで延びて、前記アンテナ素子 23、 23' を囲むように所定間隔で設けられることにより、キヤビティを構成する複数の金属ボス ト 30と、前記誘電体基板 21、 21/ 、 21"の反対面側に、前記複数の金属ポスト 30 の各他端側をその並び方向に沿って短絡し、且つ前記アンテナ素子 23、 23' 方向 に所定距離延びて設けられる枠状導体 32、 32' とを具備し、前記複数の金属ポスト 30が、それぞれの一端側が前記地板導体 22、 22' に接続され、前記誘電体基板 2 1"をその厚さ方向に沿って貫通し、且つそれぞれの他端側が前記誘電体基板 21 "の反対面まで延びて、前記第 1の直線偏波型のアンテナ素子 23、 23' 及び前記 第 2の直線偏波型のアンテナ素子 23、 23' とを分離して囲むように所定間隔で設け られることにより、それぞれ、分離したキヤビティを構成し、前記枠状導体 32、 32' と して、それぞれ、前記第 1の直線偏波型のアンテナ素子 23、 23' 及び前記第 2の直 線偏波型のアンテナ素子 23、 23' とを分離して囲むように所定間隔で設けられる前 記複数の金属ポスト 30の各他端側をその並び方向に沿って短絡し、且つ前記第 1の 直線偏波型のアンテナ素子 23、 23' 及び前記第 2の直線偏波型のアンテナ素子 2 3、 23' 方向に所定距離延びて前記誘電体基板 21"の反対面側に第 1の枠状導 体 32及び第 2の枠状導体 3^ とが設けられて 、ることを特徴として 、る。
また、本発明によるレーダ装置は、上記の基本構成にカ卩えて、好ましくは、前記アン テナ素子 23、 23' 力 一対の入力端子 25a、 25bを有するダイポール型のアンテナ 素子 23、 23' で形成され、一端側が、前記ダイポール型のアンテナ素子 23、 23' の前記一対の入力端子 25a、 25bの一方に接続され、他端側が、前記誘電体基板 2 1〃及び前記地板導体 22、 22' を貫通して設けられる給電ピン 25をさらに具備し、 前記ダイポール型のアンテナ素子 23、 23' の前記一対の入力端子 25a、 25bの他 方が、前記誘電体基板 21"を貫通して前記地板導体 22、 22' を短絡することを特 徴としている。
[0185] また、本発明によるレーダ装置は、上記の基本構成にカ卩えて、好ましくは、前記枠 状導体 32、 32' 力 前記アンテナ素子 23、 23' を挟んで対向する少なくとも一対 の不均等幅部分、例えば、一対の三角形状部分を有していることを特徴としている。
[0186] また、本発明によるレーダ装置は、上記の基本構成にカ卩えて、好ましくは、前記誘 電体基板 21" に形成される前記アンテナ素子 23、 23' と該アンテナ素子 23、 23 ' の前記一対の入力端子 25a、 25bの一方に接続される前記給電ピン 25とがそれ ぞれ複数組設けられ、前記キヤビティを構成する複数の金属ポスト 30及び前記枠状 導体 32、 32' が前記複数組の各アンテナ素子 23、 23' を囲むように格子状に形 成され、前記地板導体 22、 22' 側に設けられ、前記複数組の各アンテナ素子 23、 2 3' に前記複数組の給電ピン 25を介して励振信号を分配供給するための給電部 40 をさらに具備することを特徴として 、る。
[0187] また、本発明によるレーダ装置は、上記の基本構成にカ卩えて、好ましくは、前記給 電部 40は、前記地板導体 22、 221 を挟んで前記誘電体基板 21" の反対側に設け られた給電用誘電体基板 41と、前記給電用誘電体基板 41の表面に形成されたマイ クロストリップ型の給電ライン 42とにより構成されて 、ることを特徴として!/、る。
[0188] また、本発明によるレーダ装置は、上記の基本構成にカ卩えて、好ましくは、前記ダイ ポール型のアンテナ素子 23、 23' は、それぞれ、所定の底辺幅 Wと所定の高さ L
B B
Z2を有して三角形状に形成され、互いに頂部が対向して配置されたボウタイアンテ ナを構成することを特徴として 、る。
[0189] また、本発明によるレーダ装置は、上記の基本構成にカ卩えて、好ましくは、前記ダイ ポール型のアンテナ素子 23、 23' は、それぞれ、所定の突出幅 Wで所定の高さ L
B B
Z2を有して変形菱形形状に形成され、互いに一方の頂部が対向して配置されたボ ウタイアンテナを構成することを特徴として 、る。
[0190] また、本発明によるレーダ装置は、上記の基本構成にカ卩えて、好ましくは、前記キヤ ビティ及び枠状導体 32、 32' とで共振器を構成し、前記共振器と前記アンテナ素子 23、 23' との構造パラメータを調整して、前記共振器の共振周波数を所望の値に設 定すること〖こより、当該直線偏波アンテナの利得が所定範囲で低下する周波数特性 となるようにしたことを特徴として 、る。
[0191] また、本発明によるレーダ装置は、上記の基本構成にカ卩えて、好ましくは、前記構 造パラメータは、前記キヤビティの内寸 Lw、前記枠状導体 32、 32' のリム幅 L、前
R
記アンテナ素子 23、 23 の全長 L、前記アンテナ素子の 23、 23 横幅 Wの少な
B B
くとも一つを含むことを特徴として 、る。
[0192] また、本発明による直線偏波アンテナは、上記直線偏波アンテナの基本構成にカロ えて、好ましくは、前記アンテナ素子として、第 1の直線偏波型のアンテナ素子 23、 2 3' と、第 2の直線偏波型のアンテナ素子 23' 、 23とが前記誘電体基板 21" に形 成され、前記複数の金属ポスト 30が、それぞれの一端側が前記地板導体 22に接続 され、前記誘電体基板 21"をその厚さ方向に沿って貫通し、且つそれぞれの他端 側が前記誘電体基板 21"の反対面まで延びて、前記第 1の直線偏波型のアンテナ 素子 23、 23' 及び前記第 2の直線偏波型のアンテナ素子 23、 23' とを分離して囲 むように所定間隔で設けられることにより、それぞれ、分離したキヤビティを構成し、前 記枠状導体 32、 32' として、それぞれ、前記第 1の直線偏波型のアンテナ素子及び 前記第 2の直線偏波型のアンテナ素子とを分離して囲むように所定間隔で設けられ る前記複数の金属ポスト 30の各他端側をその並び方向に沿って短絡し、且つ前記 第 1の直線偏波型のアンテナ素子 23、 23' 及び前記第 2の直線偏波型のアンテナ 素子 23、 23' 方向に所定距離延びて前記誘電体基板 21〃 の反対面側に第 1の枠 状導体 32及び第 2の枠状導体 32' とが設けられることを特徴として!/、る。
[0193] また、本発明による直線偏波アンテナは、上記の基本構成に加えて、好ましくは、 前記第 1の直線偏波型のアンテナ素子 23、 23' 及び前記第 2の直線偏波型のアン テナ素子 23、 23' の一方がレーダ装置 50の送信アンテナ 51として適用され、他方 が前記レーダ装置 50の受信アンテナ 52として適用されることを特徴としている。 産業上の利用可能性
なお、上記第 5の実施形態は、本発明による直線偏波アンテナを UWBのレーダ装 置に用いた例である力 本発明による直線偏波アンテナは、 UWBのレーダ装置だけ でなぐ UWB以外の周波数帯で、各種の通信システムにも適用することが可能であ る。

Claims

請求の範囲
[1] 誘電体基板と、
前記誘電体基板の一面側に重合される地板導体と、
前記誘電体基板の反対面に形成された直線偏波型のアンテナ素子と、 それぞれの一端側が前記地板導体に接続され、前記誘電体基板をその厚さ方向 に沿って貫通し、且つそれぞれの他端側が前記誘電体基板の反対面まで延びて、 前記アンテナ素子を囲むように所定間隔で設けられることにより、キヤビティを構成す る複数の金属ポストと、
前記誘電体基板の反対面側に、前記複数の金属ポストの各他端側をその並び方 向に沿って短絡し、且つ前記アンテナ素子方向に所定距離延びて設けられる枠状 導体とを具備する直線偏波アンテナ。
[2] 前記アンテナ素子が、一対の入力端子を有するダイポール型のアンテナ素子で形 成され、
一端側が、前記ダイポール型のアンテナ素子の前記一対の入力端子の一方に接 続され、他端側が、前記誘電体基板及び前記地板導体を貫通して設けられる給電ピ ンをさらに具備し、
前記ダイポール型のアンテナ素子の前記一対の入力端子の他方力 前記誘電体 基板を貫通して前記地板導体を短絡することを特徴とする請求項 1に記載の直線偏 波アンテナ。
[3] 前記枠状導体が、前記アンテナ素子を挟んで対向する少なくとも一対の不均等幅 部分を有して 、ることを特徴とする請求項 1に記載の直線偏波アンテナ。
[4] 前記一対の不均等幅部分が、一対の三角形状部分であることを特徴とする請求項
3に記載の直線偏波アンテナ。
[5] 前記誘電体基板に形成される前記アンテナ素子と該アンテナ素子の前記一対の 入力端子の一方に一端側が接続される前記給電ピンとがそれぞれ複数組設けられ、 前記キヤビティを構成する複数の金属ポスト及び前記枠状導体が前記複数組の各 アンテナ素子を囲むように格子状に形成され、
前記地板導体側に設けられ、前記複数組の各アンテナ素子に前記複数組の給電 ピンを介して励振信号を分配供給するための給電部をさらに具備することを特徴とす る請求項 3に記載の直線偏波アンテナ。
[6] 前記給電部は、前記地板導体を挟んで前記誘電体基板の反対側に設けられた給 電用誘電体基板と、前記給電用誘電体基板の表面に形成されたマイクロストリップ型 の給電ラインとにより構成されていることを特徴とする請求項 5に記載の直線偏波アン テナ。
[7] 前記ダイポール型のアンテナ素子は、それぞれ、所定の底辺幅 Wと所定の高さ L
B B
Z2を有して三角形状に形成され、互いに頂部が対向して配置されたボウタイアンテ ナを構成することを特徴とする請求項 2に記載の直線偏波アンテナ。
[8] 前記ダイポール型のアンテナ素子は、それぞれ、所定の突出幅 Wで所定の高さ L
B
B Z2を有して変形菱形形状に形成され、互いに一方の頂部が対向して配置された ボウタイアンテナを構成することを特徴とする請求項 2に記載の直線偏波アンテナ。
[9] 前記アンテナ素子として、第 1の直線偏波型のアンテナ素子と、第 2の直線偏波型 のアンテナ素子とが前記誘電体基板に形成され、
前記複数の金属ポストが、それぞれの一端側が前記地板導体に接続され、前記誘 電体基板をその厚さ方向に沿って貫通し、且つそれぞれの他端側が前記誘電体基 板の反対面まで延びて、前記第 1の直線偏波型のアンテナ素子及び前記第 2の直 線偏波型のアンテナ素子とを分離して囲むように所定間隔で設けられることにより、 それぞれ、分離したキヤビティを構成し、
前記枠状導体として、それぞれ、前記第 1の直線偏波型のアンテナ素子及び前記 第 2の直線偏波型のアンテナ素子とを分離して囲むように所定間隔で設けられる前 記複数の金属ポストの各他端側をその並び方向に沿って短絡し、且つ前記第 1の直 線偏波型のアンテナ素子及び前記第 2の直線偏波型のアンテナ素子方向に所定距 離延びて前記誘電体基板の反対面側に第 1の枠状導体及び第 2の枠状導体とが設 けられて 、ることを特徴とする請求項 1に記載の直線偏波アンテナ。
[10] 前記第 1の直線偏波型のアンテナ素子及び前記第 2の直線偏波型のアンテナ素子 の一方がレーダ装置の送信アンテナとして適用され、他方が前記レーダ装置の受信 アンテナとして適用されことを特徴とする請求項 9に記載の直線偏波アンテナ。
[11] 前記キヤビティ及び枠状導体とで共振器を構成し、前記共振器と前記アンテナ素 子との構造パラメータを調整して、前記共振器の共振周波数を所望の値に設定する こと〖こより、当該直線偏波アンテナの利得が所定範囲で低下する周波数特性となるよ うにしたことを特徴とする請求項 1乃至 10のいずれか一に記載の直線偏波アンテナ。
[12] 前記構造パラメータは、前記キヤビティの内寸 Lw、前記枠状導体のリム幅 L、前記
R
アンテナ素子の全長 L、前記アンテナ素子の横幅 Wの少なくとも一つを含むことを
B B
特徴とする請求項 11に記載の直線偏波アンテナ。
[13] レーダパルスを送信アンテナを介して空間へ放射する送信部と、
前記空間から戻ってくる前記レーダパルスの反射波を受信アンテナを介して受信 する受信部と、
前記受信部からの受信出力に基づ 、て前記空間に存在する物体を探査する解析 処理部と、
解析処理部からの出力に基づ!/、て前記送信部及び受信部の少なくとも一方を制御 する制御部とを具備し、
前記受信アンテナ及び送信アンテナが、第 1及び第 2の直線偏波型のアンテナ素 子で構成され、前記第 1及び第 2の直線偏波型のアンテナ素子が、それぞれ、 誘電体基板と、
前記誘電体基板の一面側に重合される地板導体と、
前記誘電体基板の反対面に形成された直線偏波型のアンテナ素子と、 それぞれの一端側が前記地板導体に接続され、前記誘電体基板をその厚さ方向 に沿って貫通し、且つそれぞれの他端側が前記誘電体基板の反対面まで延びて、 前記アンテナ素子を囲むように所定間隔で設けられることにより、キヤビティを構成す る複数の金属ポストと、
前記誘電体基板の反対面側に、前記複数の金属ポストの各他端側をその並び方 向に沿って短絡し、且つ前記アンテナ素子方向に所定距離延びて設けられる枠状 導体とを具備し、
前記複数の金属ポストが、それぞれの一端側が前記地板導体に接続され、前記誘 電体基板をその厚さ方向に沿って貫通し、且つそれぞれの他端側が前記誘電体基 板の反対面まで延びて、前記第 1の直線偏波型のアンテナ素子及び前記第 2の直 線偏波型のアンテナ素子とを分離して囲むように所定間隔で設けられることにより、 それぞれ、分離したキヤビティを構成し、
前記枠状導体として、それぞれ、前記第 1の直線偏波型のアンテナ素子及び前記 第 2の直線偏波型のアンテナ素子とを分離して囲むように所定間隔で設けられる前 記複数の金属ポストの各他端側をその並び方向に沿って短絡し、且つ前記第 1の直 線偏波型のアンテナ素子及び前記第 2の直線偏波型のアンテナ素子方向に所定距 離延びて前記誘電体基板の反対面側に第 1の枠状導体及び第 2の枠状導体とが設 けられて 、ることを特徴とするレーダ装置。
[14] 前記アンテナ素子が、一対の入力端子を有するダイポール型のアンテナ素子で形 成され、
一端側が、前記ダイポール型のアンテナ素子の前記一対の入力端子の一方に接 続され、他端側が、前記誘電体基板及び前記地板導体を貫通して設けられる給電ピ ンをさらに具備し、
前記ダイポール型のアンテナ素子の前記一対の入力端子の他方力 前記誘電体 基板を貫通して前記地板導体を短絡することを特徴とする請求項 13に記載のレーダ 装置。
[15] 前記枠状導体が、前記アンテナ素子を挟んで対向する少なくとも一対の不均等幅 部分を有して 、ることを特徴とする請求項 13に記載のレーダ装置。
[16] 前記一対の不均等幅部分が、一対の三角形状部分であることを特徴とする請求項
15に記載のレーダ装置。
[17] 前記誘電体基板に形成される前記アンテナ素子と該アンテナ素子の前記一対の 入力端子の一方に一端側が接続される前記給電ピンとがそれぞれ複数組設けられ、 前記キヤビティを構成する複数の金属ポスト及び前記枠状導体が前記複数組の各 アンテナ素子を囲むように格子状に形成され、
前記地板導体側に設けられ、前記複数組の各アンテナ素子に前記複数組の給電 ピンを介して励振信号を分配供給するための給電部をさらに具備することを特徴とす る請求項 14に記載のレーダ装置。
[18] 前記給電部は、前記地板導体を挟んで前記誘電体基板の反対側に設けられた給 電用誘電体基板と、前記給電用誘電体基板の表面に形成されたマイクロストリップ型 の給電ラインとにより構成されていることを特徴とする請求項 17に記載のレーダ装置
[19] 前記ダイポール型のアンテナ素子は、それぞれ、所定の底辺幅 Wと所定の高さ L
B B
Z2を有して三角形状に形成され、互いに頂部が対向して配置されたボウタイアンテ ナを構成することを特徴とする請求項 14に記載のレーダ装置。
[20] 前記ダイポール型のアンテナ素子は、それぞれ、所定の突出幅 Wで所定の高さ L
B
Z2を有して変形菱形形状に形成され、互いに一方の頂部が対向して配置された
B
ボウタイアンテナを構成することを特徴とする請求項 14に記載のレーダ装置。
[21] 前記キヤビティ及び枠状導体とで共振器を構成し、前記共振器と前記アンテナ素 子との構造パラメータを調整して、前記共振器の共振周波数を所望の値に設定する こと〖こより、当該直線偏波アンテナの利得が所定範囲で低下する周波数特性となるよ うにしたことを特徴とする請求項 13乃至 20の 、ずれか一に記載のレーダ装置。
[22] 前記構造パラメータは、前記キヤビティの内寸 Lw、前記枠状導体のリム幅 L、前記
R
アンテナ素子の全長 L、前記アンテナ素子の横幅 Wの少なくとも一つを含むことを
B B
特徴とする請求項 21に記載のレーダ装置。
PCT/JP2005/020858 2005-11-14 2005-11-14 直線偏波アンテナ及びそれを用いるレーダ装置 WO2007055028A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US11/794,872 US7623073B2 (en) 2005-11-14 2005-11-14 Linearly polarized antenna and radar apparatus using the same
JP2007544040A JP4681614B2 (ja) 2005-11-14 2005-11-14 直線偏波アンテナ及びそれを用いるレーダ装置
PCT/JP2005/020858 WO2007055028A1 (ja) 2005-11-14 2005-11-14 直線偏波アンテナ及びそれを用いるレーダ装置
CN2005800467183A CN101103491B (zh) 2005-11-14 2005-11-14 线性极化天线及采用其的雷达设备
EP05806098.9A EP1950832B1 (en) 2005-11-14 2005-11-14 Rectilinear polarization antenna and radar device using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2005/020858 WO2007055028A1 (ja) 2005-11-14 2005-11-14 直線偏波アンテナ及びそれを用いるレーダ装置

Publications (1)

Publication Number Publication Date
WO2007055028A1 true WO2007055028A1 (ja) 2007-05-18

Family

ID=38023040

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/020858 WO2007055028A1 (ja) 2005-11-14 2005-11-14 直線偏波アンテナ及びそれを用いるレーダ装置

Country Status (5)

Country Link
US (1) US7623073B2 (ja)
EP (1) EP1950832B1 (ja)
JP (1) JP4681614B2 (ja)
CN (1) CN101103491B (ja)
WO (1) WO2007055028A1 (ja)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009019944A (ja) * 2007-07-11 2009-01-29 Toto Ltd 駆動装置
EP2045875A1 (en) * 2007-10-02 2009-04-08 The Furukawa Electric Co., Ltd. Antenna for radar device
WO2009049191A2 (en) * 2007-10-11 2009-04-16 Raytheon Company Patch antenna
JP2009100253A (ja) * 2007-10-17 2009-05-07 Furukawa Electric Co Ltd:The レーダ装置用アンテナ
JP2009212727A (ja) * 2008-03-03 2009-09-17 Anritsu Corp レーダ用アンテナ
JP2010511361A (ja) * 2007-12-18 2010-04-08 ビ−エイイ− システムズ パブリック リミテッド カンパニ− アンテナ給電モジュール
JP2010091379A (ja) * 2008-10-07 2010-04-22 National Institute Of Information & Communication Technology パルスレーダ装置
US8159409B2 (en) 2009-01-20 2012-04-17 Raytheon Company Integrated patch antenna
CN102956966A (zh) * 2011-08-12 2013-03-06 卡西欧计算机株式会社 贴片天线装置及电波接收设备
JP5676722B1 (ja) * 2013-11-13 2015-02-25 三井造船株式会社 平面アンテナ及びレーダ装置
JP2015532570A (ja) * 2012-10-22 2015-11-09 日本テキサス・インスツルメンツ株式会社 導波路カプラー
US10008783B2 (en) 2013-12-03 2018-06-26 Murata Manufacturing Co., Ltd. Patch antenna
JP6490319B1 (ja) * 2018-05-15 2019-03-27 三菱電機株式会社 アレーアンテナ装置及び通信機器
JP2020028078A (ja) * 2018-08-16 2020-02-20 株式会社デンソーテン アンテナ装置

Families Citing this family (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6791500B2 (en) * 2002-12-12 2004-09-14 Research In Motion Limited Antenna with near-field radiation control
US20070194978A1 (en) * 2006-01-27 2007-08-23 Tasuku Teshirogi Uwb short-range radar
US7864130B2 (en) 2006-03-03 2011-01-04 Powerwave Technologies, Inc. Broadband single vertical polarized base station antenna
US7990329B2 (en) 2007-03-08 2011-08-02 Powerwave Technologies Inc. Dual staggered vertically polarized variable azimuth beamwidth antenna for wireless network
US8330668B2 (en) 2007-04-06 2012-12-11 Powerwave Technologies, Inc. Dual stagger off settable azimuth beam width controlled antenna for wireless network
EP2165388B1 (en) 2007-06-13 2018-01-17 Intel Corporation Triple stagger offsetable azimuth beam width controlled antenna for wireless network
JP2009105782A (ja) * 2007-10-25 2009-05-14 Brother Ind Ltd 回路基板および電話装置
US8508427B2 (en) 2008-01-28 2013-08-13 P-Wave Holdings, Llc Tri-column adjustable azimuth beam width antenna for wireless network
GB2460233B (en) * 2008-05-20 2010-06-23 Roke Manor Research Ground plane
US8130149B2 (en) * 2008-10-24 2012-03-06 Lockheed Martin Corporation Wideband strip fed patch antenna
JP5227820B2 (ja) * 2009-01-26 2013-07-03 古河電気工業株式会社 レーダ装置用アンテナ
EP2551956A4 (en) * 2010-03-23 2014-12-03 Furukawa Electric Co Ltd ANTENNA AND INTEGRATED ANTENNA
EP2579695A4 (en) * 2010-06-04 2015-11-11 Furukawa Electric Co Ltd FITTED PCB, ANTENNA, WIRELESS COMMUNICATION DEVICE AND MANUFACTURING METHOD THEREFOR
US9252499B2 (en) * 2010-12-23 2016-02-02 Mediatek Inc. Antenna unit
CN102270779B (zh) * 2011-07-27 2013-07-10 东南大学 亚毫米波的领结脉冲加载天线
EP2595243B1 (en) * 2011-11-15 2017-10-25 Alcatel Lucent Wideband antenna
US20130196539A1 (en) * 2012-01-12 2013-08-01 John Mezzalingua Associates, Inc. Electronics Packaging Assembly with Dielectric Cover
FR2999814B1 (fr) * 2012-12-14 2018-04-13 Airbus Operations Systeme de protection parafoudre pour radome et procede de montage associe
EP2955787B1 (en) * 2013-02-07 2019-08-14 Mitsubishi Electric Corporation Antenna device and array antenna device
CN103904410B (zh) * 2014-04-10 2016-07-27 中国科学院东北地理与农业生态研究所 一种探地雷达超宽带背腔式领结天线设备
JP2015207799A (ja) * 2014-04-17 2015-11-19 ソニー株式会社 無線通信装置並びに無線通信システム
US9825357B2 (en) * 2015-03-06 2017-11-21 Harris Corporation Electronic device including patch antenna assembly having capacitive feed points and spaced apart conductive shielding vias and related methods
USD801318S1 (en) * 2016-04-05 2017-10-31 Vorbeck Materials Corp. Antenna inlay
US10530036B2 (en) * 2016-05-06 2020-01-07 Gm Global Technology Operations, Llc Dualband flexible antenna with segmented surface treatment
CN209607903U (zh) 2017-05-25 2019-11-08 纳特拉技术公司 天线图案以及天线的几何阵列
US11888218B2 (en) * 2017-07-26 2024-01-30 California Institute Of Technology Method and apparatus for reducing surface waves in printed antennas
DE102018105837A1 (de) * 2018-03-14 2019-09-19 HELLA GmbH & Co. KGaA Fahrzeug mit einer Einrichtung zur passiven Zugangskontrolle
US11011815B2 (en) * 2018-04-25 2021-05-18 Texas Instruments Incorporated Circularly-polarized dielectric waveguide launch for millimeter-wave data communication
CN118099744A (zh) * 2018-09-20 2024-05-28 瑞士电信公司 方法和设备
KR102626886B1 (ko) 2019-02-19 2024-01-19 삼성전자주식회사 안테나 및 상기 안테나를 포함하는 전자 장치
WO2020182311A1 (en) 2019-03-14 2020-09-17 Huawei Technologies Co., Ltd. Redirecting structure for electromagnetic waves
CN110011070A (zh) * 2019-04-12 2019-07-12 中国科学院声学研究所南海研究站 一种用于合成孔径雷达的双极化微带天线阵
JP6853857B2 (ja) * 2019-07-29 2021-03-31 株式会社フジクラ アンテナ
CN112027010B (zh) * 2020-09-14 2021-04-23 唐开强 一种防触礁防搁浅船舶用智能定位装置
CN112421217B (zh) * 2020-11-19 2022-07-15 西安电子科技大学 一种1-比特数字编码超材料天线单元
CN115799824B (zh) * 2022-12-14 2023-07-25 东莞市优比电子有限公司 一种直线阵列天线

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4069483A (en) * 1976-11-10 1978-01-17 The United States Of America As Represented By The Secretary Of The Navy Coupled fed magnetic microstrip dipole antenna
JPH10319117A (ja) * 1997-05-21 1998-12-04 Sekisui Chem Co Ltd 地中探査用アンテナ及び地中探査装置
JPH1117377A (ja) * 1997-06-25 1999-01-22 Nec Corp 電子回路のシールド構造
JPH11308044A (ja) * 1998-04-17 1999-11-05 Yokowo Co Ltd アレーアンテナ
JP3192699B2 (ja) * 1991-08-23 2001-07-30 東洋通信機株式会社 マイクロストリップアンテナ及びその製造方法
JP2002043838A (ja) * 2000-07-25 2002-02-08 Mitsubishi Electric Corp アンテナ装置
WO2003021824A1 (fr) * 2001-08-30 2003-03-13 Anritsu Corporation Instrument de test de terminal radio portable utilisant une antenne auto-complementaire unique
JP2003087045A (ja) * 2001-09-06 2003-03-20 Mitsubishi Electric Corp ボウタイアンテナ
JP2005525735A (ja) * 2002-05-13 2005-08-25 ハネウェル・インターナショナル・インコーポレーテッド レーダ信号受信のための方法および装置

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4460894A (en) * 1982-08-11 1984-07-17 Sensor Systems, Inc. Laterally isolated microstrip antenna
FR2651926B1 (fr) * 1989-09-11 1991-12-13 Alcatel Espace Antenne plane.
US5563616A (en) * 1994-03-18 1996-10-08 California Microwave Antenna design using a high index, low loss material
JP3883251B2 (ja) * 1997-04-18 2007-02-21 九州電力株式会社 レーダアンテナ
US6181279B1 (en) * 1998-05-08 2001-01-30 Northrop Grumman Corporation Patch antenna with an electrically small ground plate using peripheral parasitic stubs
JP3927688B2 (ja) * 1998-06-04 2007-06-13 三井造船株式会社 漏水検出装置用アンテナ
JP3759876B2 (ja) * 2000-12-26 2006-03-29 シャープ株式会社 アンテナ一体化ミリ波回路
DE10259833A1 (de) * 2002-01-03 2003-07-24 Harris Corp Unterdrückung gegenseitiger Kopplung in einer Anordnung planer Antennenelemente
GB2387036B (en) * 2002-03-26 2005-03-02 Ngk Spark Plug Co Dielectric antenna
DE10309075A1 (de) * 2003-03-03 2004-09-16 Robert Bosch Gmbh Planare Antennenanordnung
US7079078B2 (en) * 2003-04-09 2006-07-18 Alps Electric Co., Ltd. Patch antenna apparatus preferable for receiving ground wave and signal wave from low elevation angle satellite
DE10353686A1 (de) * 2003-11-17 2005-06-16 Robert Bosch Gmbh Symmetrische Antenne in Schichtbauweise
JP2005277501A (ja) * 2004-03-23 2005-10-06 Amplet:Kk Uwbアンテナ
US7057564B2 (en) * 2004-08-31 2006-06-06 Freescale Semiconductor, Inc. Multilayer cavity slot antenna

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4069483A (en) * 1976-11-10 1978-01-17 The United States Of America As Represented By The Secretary Of The Navy Coupled fed magnetic microstrip dipole antenna
JP3192699B2 (ja) * 1991-08-23 2001-07-30 東洋通信機株式会社 マイクロストリップアンテナ及びその製造方法
JPH10319117A (ja) * 1997-05-21 1998-12-04 Sekisui Chem Co Ltd 地中探査用アンテナ及び地中探査装置
JPH1117377A (ja) * 1997-06-25 1999-01-22 Nec Corp 電子回路のシールド構造
JPH11308044A (ja) * 1998-04-17 1999-11-05 Yokowo Co Ltd アレーアンテナ
JP2002043838A (ja) * 2000-07-25 2002-02-08 Mitsubishi Electric Corp アンテナ装置
WO2003021824A1 (fr) * 2001-08-30 2003-03-13 Anritsu Corporation Instrument de test de terminal radio portable utilisant une antenne auto-complementaire unique
JP2003087045A (ja) * 2001-09-06 2003-03-20 Mitsubishi Electric Corp ボウタイアンテナ
JP2005525735A (ja) * 2002-05-13 2005-08-25 ハネウェル・インターナショナル・インコーポレーテッド レーダ信号受信のための方法および装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1950832A4 *

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009019944A (ja) * 2007-07-11 2009-01-29 Toto Ltd 駆動装置
EP2045875A1 (en) * 2007-10-02 2009-04-08 The Furukawa Electric Co., Ltd. Antenna for radar device
US8378893B2 (en) 2007-10-11 2013-02-19 Raytheon Company Patch antenna
WO2009049191A2 (en) * 2007-10-11 2009-04-16 Raytheon Company Patch antenna
WO2009049191A3 (en) * 2007-10-11 2009-06-04 Raytheon Co Patch antenna
JP2009100253A (ja) * 2007-10-17 2009-05-07 Furukawa Electric Co Ltd:The レーダ装置用アンテナ
JP2010511361A (ja) * 2007-12-18 2010-04-08 ビ−エイイ− システムズ パブリック リミテッド カンパニ− アンテナ給電モジュール
JP2009212727A (ja) * 2008-03-03 2009-09-17 Anritsu Corp レーダ用アンテナ
JP2010091379A (ja) * 2008-10-07 2010-04-22 National Institute Of Information & Communication Technology パルスレーダ装置
US8159409B2 (en) 2009-01-20 2012-04-17 Raytheon Company Integrated patch antenna
CN102956966A (zh) * 2011-08-12 2013-03-06 卡西欧计算机株式会社 贴片天线装置及电波接收设备
JP2015532570A (ja) * 2012-10-22 2015-11-09 日本テキサス・インスツルメンツ株式会社 導波路カプラー
JP5676722B1 (ja) * 2013-11-13 2015-02-25 三井造船株式会社 平面アンテナ及びレーダ装置
US10008783B2 (en) 2013-12-03 2018-06-26 Murata Manufacturing Co., Ltd. Patch antenna
JP6490319B1 (ja) * 2018-05-15 2019-03-27 三菱電機株式会社 アレーアンテナ装置及び通信機器
WO2019220536A1 (ja) * 2018-05-15 2019-11-21 三菱電機株式会社 アレーアンテナ装置及び通信機器
JP2020028078A (ja) * 2018-08-16 2020-02-20 株式会社デンソーテン アンテナ装置
JP7181024B2 (ja) 2018-08-16 2022-11-30 株式会社デンソーテン アンテナ装置

Also Published As

Publication number Publication date
CN101103491B (zh) 2012-01-11
EP1950832A1 (en) 2008-07-30
EP1950832B1 (en) 2013-09-04
US20070290939A1 (en) 2007-12-20
JPWO2007055028A1 (ja) 2009-04-30
CN101103491A (zh) 2008-01-09
US7623073B2 (en) 2009-11-24
EP1950832A4 (en) 2009-12-23
JP4681614B2 (ja) 2011-05-11

Similar Documents

Publication Publication Date Title
WO2007055028A1 (ja) 直線偏波アンテナ及びそれを用いるレーダ装置
JP4695077B2 (ja) 円偏波アンテナ及びそれを用いるレーダ装置
EP2917963B1 (en) Dual polarization current loop radiator with integrated balun
US6166692A (en) Planar single feed circularly polarized microstrip antenna with enhanced bandwidth
JP2020108147A (ja) アンテナ装置、レーダーシステム、および通信システム
EP1418643A2 (en) Microstrip antenna array with periodic filters
WO2014123024A1 (ja) アンテナ装置およびアレーアンテナ装置
US5717410A (en) Omnidirectional slot antenna
JPH1056322A (ja) マイクロストリップ給電円筒形スロット・アンテナ
AU2006272392A1 (en) Leaky wave antenna with radiating structure including fractal loops
JP5103227B2 (ja) レーダ用アンテナ
JP2006311478A (ja) 円偏波マイクロストリップアンテナ及び円偏波マイクロストリップアンテナ装置
JP2009100253A (ja) レーダ装置用アンテナ
JP5042698B2 (ja) 多周波共用送受信装置
Ghaloua et al. Mutual coupling reduction and miniaturization arrays antennas using new structure of EBG
CN112803159A (zh) 一种馈电线阵与雷达天线
Chang et al. A novel circularly polarized patch antenna with a serial multislot type of loading
JPH07249933A (ja) 2周波共用マイクロストリップアンテナ
US6952184B2 (en) Circularly polarized antenna having improved axial ratio
JP2009278356A (ja) アンテナ
EP4080676A1 (en) Electromagnetic band-gap structure
De et al. Design and development of a multi-feed end-fired microstrip antenna for TCAS airborne system
De et al. An investigation on end-fire radiation from linearly polarized microstrip antenna for airborne systems
RU167296U1 (ru) Широкополосная двухдиапазонная микрополосковая антенна
US9356360B1 (en) Dual polarized probe coupled radiating element

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2007544040

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2005806098

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 11794872

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 200580046718.3

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWP Wipo information: published in national office

Ref document number: 11794872

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWP Wipo information: published in national office

Ref document number: 2005806098

Country of ref document: EP