WO2007051762A1 - Verfahren zur herstellung von trioxan und mindestens einem comonomer - Google Patents

Verfahren zur herstellung von trioxan und mindestens einem comonomer Download PDF

Info

Publication number
WO2007051762A1
WO2007051762A1 PCT/EP2006/067851 EP2006067851W WO2007051762A1 WO 2007051762 A1 WO2007051762 A1 WO 2007051762A1 EP 2006067851 W EP2006067851 W EP 2006067851W WO 2007051762 A1 WO2007051762 A1 WO 2007051762A1
Authority
WO
WIPO (PCT)
Prior art keywords
stream
comonomer
formaldehyde
trioxane
water
Prior art date
Application number
PCT/EP2006/067851
Other languages
English (en)
French (fr)
Inventor
Neven Lang
Ralf Böhling
Achim Stammer
Jan Oldenburg
Markus Siegert
Eckhard Ströfer
Original Assignee
Basf Se
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Basf Se filed Critical Basf Se
Priority to US12/091,976 priority Critical patent/US20080283384A1/en
Priority to CA002627080A priority patent/CA2627080A1/en
Priority to AU2006310554A priority patent/AU2006310554A1/en
Priority to JP2008538342A priority patent/JP2009513687A/ja
Priority to BRPI0618065A priority patent/BRPI0618065A2/pt
Priority to EP06807603A priority patent/EP1945689A1/de
Publication of WO2007051762A1 publication Critical patent/WO2007051762A1/de
Priority to NO20081897A priority patent/NO20081897L/no

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2/00Addition polymers of aldehydes or cyclic oligomers thereof or of ketones; Addition copolymers thereof with less than 50 molar percent of other substances
    • C08G2/10Polymerisation of cyclic oligomers of formaldehyde
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D317/00Heterocyclic compounds containing five-membered rings having two oxygen atoms as the only ring hetero atoms
    • C07D317/08Heterocyclic compounds containing five-membered rings having two oxygen atoms as the only ring hetero atoms having the hetero atoms in positions 1 and 3
    • C07D317/10Heterocyclic compounds containing five-membered rings having two oxygen atoms as the only ring hetero atoms having the hetero atoms in positions 1 and 3 not condensed with other rings
    • C07D317/12Heterocyclic compounds containing five-membered rings having two oxygen atoms as the only ring hetero atoms having the hetero atoms in positions 1 and 3 not condensed with other rings with only hydrogen atoms or radicals containing only hydrogen and carbon atoms, directly attached to ring carbon atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D319/00Heterocyclic compounds containing six-membered rings having two oxygen atoms as the only ring hetero atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D323/00Heterocyclic compounds containing more than two oxygen atoms as the only ring hetero atoms
    • C07D323/04Six-membered rings
    • C07D323/06Trioxane
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2/00Addition polymers of aldehydes or cyclic oligomers thereof or of ketones; Addition copolymers thereof with less than 50 molar percent of other substances
    • C08G2/18Copolymerisation of aldehydes or ketones
    • C08G2/20Copolymerisation of aldehydes or ketones with other aldehydes or ketones
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/582Recycling of unreacted starting or intermediate materials

Definitions

  • the present invention relates to a process for the combined preparation of trioxane and at least one further product (comonomer) formed by reacting formaldehyde and another starting material (comonomer starting material).
  • the trioxane is preferably used for the production of polyoxymethylene (POM).
  • POM polyoxymethylene
  • a comonomer is often polymerized into the POM for stabilization.
  • Suitable comonomers are, for. As dioxolane or butanediol formal.
  • trioxane and the comonomer needed to make POM are prepared in separate processes.
  • So z. B the preparation of 1, 3,5-trioxane known from DE-A 1 668 687.
  • the 1, 3,5-trioxane is prepared by distillation of aqueous formaldehyde solutions in the presence of acidic catalysts. The separation of the trioxane from the resulting in the reaction, water, formaldehyde and trioxane mixture is carried out by extraction.
  • DE-A 197 32 291 discloses a process for the separation of trioxane from the mixture containing trioxane, formaldehyde and water, in which trioxane is first removed from the mixture by pervaporation and subsequently the mixture enriched in trioxane by rectification in trioxane and a trioxane, Formaldehyde and water-containing mixture is separated.
  • a process for the preparation of dioxolane is described in DE-A 1 914 209.
  • ethylene glycol is reacted with aqueous formaldehyde to give dioxolane in the presence of a strongly acidic cation exchanger.
  • the process is preferably carried out so that the starting materials in approximately stoichiometric amounts, d. H. used in the molar ratio 1: 1 of alcohol to formaldehyde.
  • the method works in principle satisfactory in other proportions.
  • the workup of the obtained, generally hydrous acetal is done z. By dehydration with solid alkali or concentrated alkali or by distillation.
  • a process for the purification of dioxolane prepared by the reaction of ethylene glycol and formaldehyde in the presence of catalysts such as sulfuric acid, boron trifluoride, zinc chloride or acidic ion exchangers is known e.g. B. from DE-A 1 279 025 known.
  • catalysts such as sulfuric acid, boron trifluoride, zinc chloride or acidic ion exchangers
  • the vaporous, hydrous crude dioxolane is first fed to a column and azeotropically distilled, the outgoing distillate with a maximum After cooling, the water content of 10% is treated in countercurrent with alkali hydroxide and / or a concentrated aqueous alkali metal hydroxide, and finally the fractionated fraction of the treated product is distilled off, the dioxolane being drawn off at the bottom of the column.
  • the object of the present invention is to provide a process in which trioxane and a copolymer required for the preparation of POM are prepared in an energy-favorable manner.
  • the object is achieved by a process for the preparation of trioxane and at least one comonomer, which is obtained by reacting formaldehyde with at least one comonomer starting material, for the preparation of trioxane-based (co) polymers, which comprises the following steps:
  • reaction mixture A1 comprising a trioxane, formaldehyde, water, comonomer and, if appropriate, unreacted comonomer starting material being obtained
  • an aqueous formaldehyde solution and at least one comonomer starting material are fed to a reactor.
  • formaldehyde is converted to trioxane; on the other hand, the at least one comonomer starting material reacts with formaldehyde to form the comonomer.
  • the reaction is generally carried out at a pressure in the range of 0.5 to 10 bar, preferably in the range of 0.75 to 7 bar and in particular in the range of 0.8 to 4 bar and a temperature in the range of 60 to 190 ° C. , preferably in the range of 75 to 150 ° C and in particular in the range of 80 to 130 ° C.
  • Comonomers prepared by the process according to the invention are, for example, cyclic ethers of the formula (I)
  • R 1 to R 4 are independently hydrogen, a Ci to C 4 alkyl or a halogen-substituted alkyl group having 1 to 4 carbon atoms and R 5 is CH 2 , CH 2 O, a Ci to C 4 alkylene or a Ci to C 4 is haloalkyl-substituted methylene group or a corresponding oxymethylene group, and n is an integer in the range of 0 to 3.
  • Suitable comonomer cyclic ethers are, for example, ethylene oxide, 1, 2-propylene oxide, 1, 2-butylene oxide, 1, 3-butylene oxide, 1, 3-dioxane, 1, 3-dioxolane and 1, 3-dioxepane, which is also known as butanediol referred to as.
  • Z is -O- or -ORO-
  • R is a Ci to C 8 -alkylene or a C 3 to C 8 -cycloalkylene and m is 0 or 1.
  • Preferred comonomers of this type are ethylene diglycide, diglycidyl ether and diether from glycides and formaldehyde, dioxane or trioxane in the molar ratio 2: 1 and diether from 2 mol glycidyl compound and 1 mol of an aliphatic diol having 2 to 8 carbon atoms such as the diglycidyl ether of ethylene glycol, 1 , 4-Butanediols, 1, 3-butanediols, cyclobutane-1, 3-diols, 1, 2-propanediols and cyclohexane-1, 4-diols.
  • A A -
  • the at least one comonomer starting material is selected in each case such that the desired comonomer is produced by reaction with formaldehyde under the conditions prevailing in the reactor.
  • a comonomer prepared in the process according to the invention is 1, 3-dioxolane.
  • the comonomer starting material used to prepare the 1,3-dioxolane is ethylene glycol, which reacts with the formaldehyde with elimination of water to give the 1,3-dioxolane.
  • the reactions are generally carried out in the presence of an acidic catalyst.
  • the pKa of the catalyst is preferably less than 4.
  • Suitable catalysts are, for. As organic or mineral acids, boron trifluoride, zinc chloride or acidic ion exchanger.
  • the catalyst may be homogeneous or heterogeneous.
  • any reactor known to those skilled in the art is suitable. However, preference is given to reactors in which the reaction can be carried out continuously. Such reactors are z. As stirred tank, residence time, tubular reactors, evaporators of various types, column bottoms or columns with a suitable reaction zone. The choice of suitable columns is generally not critical in the context of the present invention. Suitable columns are known in the art.
  • the catalyst is preferably present as a coating on a carrier material.
  • Suitable carrier materials are, for. As zeolites, phenol or styrene-based resins.
  • the entire pack consists of the catalyst material.
  • the reaction mixture thus obtained is distilled in step b) in a first distillation stage at a first pressure.
  • This pressure preferably corresponds to the pressure at which the formaldehyde and the at least one comonomer starting material were converted to trioxane and comonomer. Pressure differences may result, for example, from a pressure drop in the reactor or in pipelines connecting the reactor to the first distillation stage. However, it is also possible to relax the reaction mixture to a lower pressure or to compress it to a higher pressure before entering the first distillation stage. However, the pressure of the first distillation stage preferably corresponds to the Pressure of reaction.
  • the first distillation stage is generally operated at a pressure in the range of 0.2 to 10 bar, preferably in the range of 0.4 to 5 bar and in particular in the range of 0.5 to 2.5 bar.
  • a stream B1 enriched in trioxane and comonomer and a stream B2 containing essentially water, formaldehyde and optionally comonomer starting material are obtained.
  • the distillation can be carried out in any distillation apparatus known to those skilled in the art. Preference is given to a distillation column. As a distillation column z. Eg pack or tray columns. Suitable packs are for. As structured packings, tissues, knits or packing packings. When using a tray column, any known in the art soils are usable.
  • the column of the first distillation stage generally comprises from 2 to 50 theoretical stages. Preferably, the column of the first distillation stage comprises 4 to 25 theoretical plates.
  • the reaction mixture which is fed to the first distillation stage generally contains from 0.1 to 25% by weight of trioxane, from 0.1 to 15% by weight of comonomer, from 20 to 80% by weight of formaldehyde, from 1 to 79.8% by weight .-% water and 0 to 10 wt .-% comonomer starting material.
  • the reaction mixture preferably contains from 0.4 to 20% by weight of trioxane, from 0.3 to 10% by weight of comonomer, from 30 to 69% by weight of formaldehyde, from 1 to 69% by weight of water and from 0 to 7% by weight. % Comonomer starting material.
  • the stream B1 enriched in trioxane and comonomer generally contains 25 to 80% by weight of trioxane, 10 to 65% by weight of comonomer, 1 to 20% by weight of formaldehyde and 5 to 25% by weight of water.
  • the stream B1 preferably contains from 30 to 60% by weight of trioxane, from 15 to 60% by weight of comonomer, from 1 to 15% by weight of formaldehyde and from 5 to 20% by weight of water.
  • the stream B2 generally contains 40 to 75% by weight of formaldehyde, 15 to 50% by weight of water and 5 to 50% by weight of the at least one comonomer starting material.
  • the stream B2 preferably contains from 40 to 75% by weight of formaldehyde, from 15 to 50% by weight of water and from 10 to 40% by weight of the at least one comonomer starting material.
  • stream B2 may contain at most 5% by weight, preferably not more than 3% by weight, and in particular not more than 2% by weight, of trioxane and comonomer.
  • steps a) and b) are carried out together in a reactive distillation column.
  • the reaction generally takes place in the lower part of the column.
  • the reaction is preferably carried out under such conditions that the resulting reaction products are present in gaseous form.
  • the reaction heat produced during the reaction can be used to evaporate the reaction products.
  • the separation takes place into the lower-boiling stream B1 enriched in trioxane and comonomer and the heavy-boiling stream B2 containing essentially water, formaldehyde and optionally comonomer starting material in a distillation section of the column which adjoins the reaction section ,
  • the starting materials are preferably added at the bottom of the column, the heavy boiling, essentially water, formaldehyde and optionally comonomer starting material containing stream B2 is preferably recycled as a liquid reflux in the reaction section of the column, the trioxane and comonomer-enriched stream B1 is withdrawn via the top of the reactive distillation column.
  • the reaction mixture A1 containing the trioxane, comonomer, formaldehyde, water and optionally comonomer starting material of the distillation column, in which the first distillation stage b) is carried out preferably added gaseous or liquid as side feed.
  • the stream B1 enriched in trioxane and comonomer is preferably taken off as top draw stream and stream B2 containing essentially water, formaldehyde and optionally comonomer starting material as bottom draw stream.
  • the second distillation stage of step c) is generally carried out in a second distillation column.
  • Suitable distillation columns for carrying out the second distillation stage are z.
  • the distillation of step c) is generally carried out at a pressure which is above the pressure of the first distillation stage.
  • the pressure of the second distillation stage is in the range between 0.2 and 17.5 bar, preferably in the range between 2 and 15 bar and particularly preferably in the range between 2.5 and 10 bar.
  • the pressure of the second distillation stage is preferably at least 0.5 bar, more preferably at least 1 bar and in particular at least 3 bar higher than the pressure of the first distillation stage.
  • the stream B1 enriched in trioxane and comonomer is converted into a trioxane, comonomer, water and formaldehyde.
  • the stream C1 generally contains 15 to 60% by weight of trioxane, 15 to 70% by weight of comonomer, 10 to 30% by weight of water and 1 to 20% by weight of formaldehyde, preferably 10 to 55% by weight.
  • % Trioxane 20 to 65 wt .-% comonomer, 15 to 25 wt .-% water and 2 to 15 wt .-% formaldehyde.
  • the stream C2 generally contains 0.1 to 7 wt .-% comonomer and 93 to 99.9 wt .-% of trioxane, preferably 0.1 to 5 wt .-% comonomer and 95 to 99.9 wt .-% of trioxane ,
  • the stream C2 may additionally contain up to 2% by weight of water and formaldehyde.
  • Stream B1 is preferably added to the second distillation column as a side feed, stream C1 is taken off as top draw stream and stream C2 as bottom draw stream.
  • the method additionally comprises the following steps:
  • the third distillation stage is preferably carried out in a third distillation column.
  • the third distillation column is generally a packed column or plate column.
  • the distillation column of the third distillation stage generally has at least 2 theoretical plates, preferably 5 to 50 theoretical plates and in particular 10 to 25 theoretical plates.
  • the pressure of the third distillation stage c) is generally in the range of 0.2 to 25 bar, preferably in the range of 2 to 20 bar and in particular in the range of 2.5 to 15 bar.
  • the pressure of the third distillation stage may be greater than, less than or equal to the pressure of the second distillation stage.
  • the stream D1 obtained in the distillation in the third distillation stage generally contains 15 to 70% by weight of trioxane, 10 to 75% by weight of comonomer, 5 to 20% by weight of formaldehyde and 0 to 20% by weight of water, preferably 20 to 60% by weight of trioxane, 15 to 75% by weight of comonomer, 5 to 15% by weight of formaldehyde and 0 to 15% by weight of water.
  • essentially consisting of water means that at least 90% by weight of water, preferably at least 93% by weight of water and in particular more than 95% by weight of water are contained.
  • the value products trioxane, comonomer, formaldehyde and water-containing stream D1 is recycled in a preferred embodiment in the first distillation stage b). This establishes a steady-state formaldehyde concentration. Part of the formaldehyde contained in stream D1 is separated off in the first distillation column and returned to the reactor in stream B2.
  • the method additionally comprises the following step:
  • the aqueous formaldehyde solution E1 fed to the concentration unit generally contains from 25 to 65% by weight of formaldehyde and from 35 to 75% by weight of water, preferably from 30 to 60% by weight of formaldehyde and from 40 to 70% by weight of water.
  • the formaldehyde-rich stream E3 obtained in the concentration generally contains at least 50% by weight of formaldehyde, preferably at least 55% by weight of formaldehyde.
  • the low-formaldehyde stream E2 generally contains at most 35% by weight of formaldehyde, preferably at most 30% by weight of formaldehyde.
  • B evaporator or distillation columns. All evaporator types known to those skilled in the art are suitable. Preference is given to continuously operating evaporators, for. B. Forced circulation evaporator, falling film evaporator, thin film evaporator, spiral tube evaporator or any other known to those skilled continuously operating evaporator. Particularly preferred evaporators are falling film evaporators.
  • any distillation column known to those skilled in the art can be used.
  • a distillation column z. B. tray columns or packed columns. Suitable packs are for.
  • the concentration of the aqueous formaldehyde solution is generally carried out at a pressure in the range of 0.05 to 1 bar and a temperature in the range of 40 to 98 ° C.
  • the formaldehyde-rich stream E3 obtained during the concentration preferably accumulates as the bottom draw stream and the formaldehyde-lean stream E2 as top or bottom draw stream.
  • the low-formaldehyde stream E2 is preferably fed to the third distillation stage.
  • low-boiling components In addition to water, formaldehyde, trioxane, comonomer and, if appropriate, comonomer starting material, up to 15% by weight, generally from 1 to 10% by weight, of low-boiling components can be present in particular in streams A1 and B1.
  • Conventional low-boiling components which can be formed in the synthesis and the subsequent distillative separation are methyl formate, methylal, dimethoxydimethyl ether, trimethoxydimethyl ether, methanol, formic acid and further hemiacetals and full acetals and secondary components caused by the respective comonomer starting material.
  • the low boilers optionally contained in the streams A1 and B1 can be separated off in a further embodiment in a low boiler separation stage.
  • the method additionally comprises the following step:
  • Trioxane, comonomer, formaldehyde and water-containing stream BV are obtained and the stream BV as stream B1 of the second distillation stage c) is supplied.
  • the low boiler removal step is also generally carried out in any distillation column. Suitable distillation columns are also tray columns as well as packed columns.
  • the stream B1 is preferably fed as side feed, the stream BV is preferably withdrawn as top draw stream and stream BV preferably as bottom draw stream.
  • the distillation column of the low-boiler separation stage generally comprises at least 2 theoretical plates, preferably 4 to 50 theoretical plates and in particular 4 to 40 theoretical plates.
  • the distillation of the low-boiling-off step is preferably carried out at a pressure in the range of 1 to 2.5 bar and a temperature in the range of 60 to 140 ° C.
  • FIGURE shows a process flow diagram of the process according to the invention for preparing trioxane and comonomer.
  • An aqueous formaldehyde solution 1 (stream E1) is fed to a concentration unit 2.
  • a concentration unit for example, an evaporator or a distillation column is suitable.
  • the aqueous formaldehyde solution is separated into a formaldehyde-rich stream 3 (stream E3) and a low-formaldehyde stream 4 (stream E2).
  • the formaldehyde-rich stream 3 is fed to a reactor 5.
  • at least one comonomer starting material 6 is fed to the reactor, which reacts by reaction with formaldehyde to give a comonomer which is used for the preparation of (co) polymers based on trioxane.
  • the comonomer starting material 6 can either be fed directly to the reactor or, before being added to the reactor 5, mixed with the formaldehyde-rich stream 3 and together with this fed to the reactor 5.
  • the formaldehyde and the comonomer starting material are reacted in aqueous solution to trioxane and comonomer, with a trioxane, comonomer, formaldehyde, water and optionally comonomer starting material containing reaction mixture 7 (stream A1) is obtained.
  • the reaction mixture 7 is fed to a first distillation column 8.
  • the addition is preferably carried out via a side feed.
  • the reaction mixture is distilled into a stream 9 (stream B1) enriched in trioxane and comonomer and a stream 10 (stream B2) containing essentially water, formaldehyde and optionally comonomer starting material.
  • the stream 9 enriched in trioxane and comonomer is withdrawn from the top of the first distillation column 8 and the stream 10 containing essentially water, formaldehyde and optionally comonomer starting material at the bottom.
  • the pressure at which the first distillation column 8 is operated preferably corresponds to the pressure in the reactor 5. In order to be able to achieve higher formaldehyde concentrations, however, it is also possible to operate the reactor at a higher pressure than the first distillation column.
  • the stream 10 containing essentially water, formaldehyde and optionally comonomer starting material is recycled to the reactor 5.
  • the stream 10 can either be added directly to the reactor 5 or before being added to the reactor 5 mixed with the formaldehyde-rich stream 3 and then added to the reactor 5 together with this.
  • the stream 9 enriched in trioxane and comonomer is fed to a second distillation column 11.
  • the supply is preferably carried out as a side feed.
  • the trioxane and comonomer enriched stream 9 is distilled into a trioxane, comonomer and water-containing stream 12 (stream C1) and a substantially comonomer and trioxane-containing product stream 13 (stream C2).
  • the trioxane, comonomer and water-containing stream 12 is taken from the second distillation column overhead and the product stream 13 at the bottom.
  • the distillation in the second distillation column 11 is carried out at a pressure which is higher than the pressure at which the first distillation column 8 is operated.
  • the trioxane, comonomer and water-containing stream 12 is fed to a third distillation column 14.
  • the addition of the trioxane, comonomer and water-containing stream 12 is preferably carried out as a side feed.
  • the low-formaldehyde stream 4, which is obtained in the concentration unit 2 is fed to the third distillation column.
  • the addition of the streams 4, 12 can be carried out as two separate feeds, preferably two side feeds or as a common feed. When added together, streams 4, 12 are mixed prior to addition.
  • a trioxane, comonomer, formaldehyde and water-containing stream 15 (stream D1) and a stream 16 consisting essentially of water (stream D2) are obtained by the distillation.
  • the trioxane, comonomer, formaldehyde and water-containing stream 15 is taken overhead and the substantially consisting of water stream 16 at the bottom of the third distillation column 14.
  • the trioxane, comonomer, formaldehyde and water-containing stream 15 is recycled to the first distillation column 8.
  • the addition may take place either directly as side feed into the first distillation column 8 or together with the reaction mixture 7, wherein the reaction mixture 7 and the trioxane, comonomer, formaldehyde and water-containing stream 15 are then mixed before addition to the first distillation column 8. Examples
  • a falling film evaporator as a concentration unit 6 kg / h of an aqueous formaldehyde solution of 50 wt .-% water and 50 wt .-% of formaldehyde are fed.
  • this is concentrated to a formaldehyde-rich stream of 4.4 kg / h with a composition of 60 wt .-% formaldehyde and 40 wt .-% water.
  • the formaldehyde-rich stream is fed together with a 70.9 wt .-% of trioxane, 18.0 wt .-% water and 11.1 wt .-% formaldehyde-containing top draw stream of a third distillation column of a reactive distillation column.
  • the mass flow of the top draw stream of the third distillation column is 11, 1 kg / h.
  • the formaldehyde is reacted in an equilibrium reaction at a temperature of 115 ° C and a pressure of 1, 7 bar to trioxane.
  • the resulting mixture is withdrawn overhead the reactive distillation column and is composed of 70 wt .-% of trioxane, 24 wt .-% water and 6 wt .-% formaldehyde together.
  • the mass flow of the withdrawn at the top of the reactive distillation column stream is 15.5 kg / h.
  • This stream is fed to a second distillation column and in this at a bottom temperature of 178 ° C and a pressure of 5.5 bar in a withdrawn at the top of the second distillation column stream of 12.5 kg / h, the 62.9 wt. % Trioxane, 29.7% by weight of water and 7.3% by weight of formaldehyde, and a product stream of 3 kg / h withdrawn at the bottom, containing 99.5% by weight of trioxane, 0.1% by weight. Contains% water and 0.4 wt .-% formaldehyde, distilled.
  • the withdrawn at the top of the second distillation column stream is fed together with the obtained at the top of the Aufkonzentri mecanicslab stream of 1, 6 kg / h with a composition of 20 wt .-% formaldehyde and 80% by weight of water to the third distillation column.
  • the third distillation column fall to the reactive distillation column supplied top take-off stream and a bottom take-off stream of 3 kg / h of 99.9 wt .-% water and 0.1 wt .-% of formaldehyde.
  • the distillation in the third distillation column is carried out at a bottom temperature of 155 ° C and a pressure of 5.5 bar.
  • the formaldehyde-rich stream is together with a 54.4 wt .-% of trioxane, 1 1, 7 wt .-% water, 25.3 wt .-% dioxolane and 8.6 wt .-% formaldehyde-containing top draw a third distillation column of a reactive distillation column fed.
  • the mass flow of the top draw stream of the third distillation column is 13.8 kg / h.
  • the formaldehyde are reacted in an equilibrium reaction to trioxane and ethylene glycol with formaldehyde to dioxolane at a temperature of 113 ° C and a pressure of 1, 7 bar in the presence of sulfuric acid as a catalyst.
  • the resulting mixture is withdrawn overhead from the reactive distillation column and is composed of 57.3% by weight of trioxane, 19.6% by weight of water, 18.4% by weight of dioxolane and 4.7% by weight of formaldehyde together.
  • the mass flow of the withdrawn at the top of the reactive distillation column stream is 19 kg / h.
  • This stream is fed to a second distillation column and in this at a bottom temperature of 167 ° C and a pressure of 5 bar in a withdrawn at the top of the second distillation column stream of 15.6 kg / h, the 48.1 wt .-% Trioxane, 23.9 wt .-% water, 22.4 wt .-% dioxolane and 5.6 wt .-% formaldehyde, and a withdrawn at the bottom product stream of 3.4 kg / h, the 99.4 wt.
  • the formaldehyde-rich stream together with a 22.8 wt .-% of trioxane, 0.3 wt .-% water, 70.9 wt .-% dioxolane and 6.1 wt .-% formaldehyde-containing top draw stream of a third distillation column of a reactive distillation column ,
  • the mass flow of the top draw stream of the third distillation column is 22.5 kg / h.
  • the formaldehyde in an equilibrium reaction to trioxane and ethylene glycol with formaldehyde to dioxolane at a temperature of 110 ° C. and a pressure of 1, 7 bar reacted in the presence of sulfuric acid as a catalyst.
  • the resulting mixture is withdrawn overhead the reactive distillation column and is composed of 34.6 wt .-% of trioxane, 1 1, 8 wt .-% water, 50.9 wt .-% dioxolane and 2.7 wt .-% formaldehyde together ,
  • the mass flow of the withdrawn at the top of the reactive distillation column stream is 31, 5 kg / h.
  • This stream is fed to a second distillation column and in this at a bottom temperature of 165 ° C and a pressure of 5 bar in a withdrawn at the top of the second distillation column stream of 25.6 kg / h, the 20.0 wt .-% trioxane, Contains 14.3% by weight of water, 62.4% by weight of dioxolane and 3.3% by weight of formaldehyde, and a product stream of 5.9 kg / h withdrawn at the bottom which contains 98.0% by weight. Trioxane, 0.8 wt .-% water, 1, 0 wt .-% dioxolane and 0.2 wt .-% formaldehyde containing distilled.
  • the stream withdrawn at the top of the second distillation column is fed to the third distillation column together with the flow of 2.7 kg / h produced at the top of the concentration unit with a composition of 20% by weight of formaldehyde and 80% by weight of water.
  • the third distillation column fall to the reactive distillation column supplied top take-off stream and a bottom draw stream of 5.8 kg / h of 99.9 wt .-% water and 0.1 wt .-% of formaldehyde.
  • the distillation in the third distillation column is carried out at a bottom temperature of 155 ° C and a pressure of 5 bar.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Heterocyclic Compounds That Contain Two Or More Ring Oxygen Atoms (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

Die Erfindung betrifft ein Verfahren zur Herstellung von Trioxan und mindestens einem Comonomer zur Herstellung von (Co)polymeren auf Trioxan-Basis, bei welchem in einem ersten Schritt Formaldehyd und mindestens ein Comonomer-Edukt in wässriger Lösung zu Trioxan und Comonomer umgesetzt werden, wobei ein Trioxan, Comonomer, Formaldehyd, Wasser und gegebenenfalls Comonomer-Edukt enthaltendes Reaktionsgemisch A1 erhalten wird. In einem zweiten Schritt wird das Reaktionsgemisch A1 in einer ersten Destillationsstufe bei einem ersten Druck destilliert, wobei ein an Trioxan und Comonomer angereicherter Strom B1 und ein im Wesentlichen Wasser, Formaldehyd und gegebenenfalls Comonomer-Edukt enthaltender Strom B2 erhalten werden. In einem dritten Schritt wird der Strom B1 in einer zweiten Destillationsstufe bei einem Druck, der oberhalb dem Druck der ersten Destillationsstufe liegt destilliert, wobei ein Trioxan, Comonomer und Wasser enthaltender Strom C1 und ein im Wesentlichen aus Comonomer und Trioxan bestehender Produktstrom C2 erhalten werden.

Description

Verfahren zur Herstellung von Trioxan und mindestens einem Comonomer
Beschreibung
Die vorliegende Erfindung betrifft ein Verfahren zur kombinierten Herstellung von Trioxan und mindestens einem weiteren durch Umsetzung von Formaldehyd und einem weiteren Edukt (Comonomer-Edukt) gebildeten Produkt (Comonomer).
Das Trioxan wird vorzugsweise zur Herstellung von Polyoxymethylen (POM) einge- setzt. Dabei wird zur Stabilisierung häufig ein Comonomer in das POM einpolymeri- siert. Geeignete Comonomere sind z. B. Dioxolan oder Butandiolformal.
Bei den aus dem Stand der Technik bekannten Verfahren werden das Trioxan und das zur Herstellung von POM benötigte Comonomer in getrennten Verfahren hergestellt. So ist z. B. die Herstellung von 1 ,3,5-Trioxan aus DE-A 1 668 687 bekannt. Das 1 ,3,5- Trioxan wird dabei durch Destillation wässriger Formaldehydlösungen in Gegenwart von sauren Katalysatoren hergestellt. Die Abtrennung des Trioxans aus dem bei der Reaktion entstehenden, Wasser, Formaldehyd und Trioxan enthaltenden Gemisch erfolgt durch Extraktion.
Aus DE-A 197 32 291 ist ein Verfahren zur Abtrennung von Trioxan aus dem Trioxan, Formaldehyd und Wasser enthaltenden Gemisch bekannt, bei dem dem Gemisch zunächst Trioxan durch Pervaporation entzogen wird und anschließend das an Trioxan angereicherte Gemisch durch Rektifikation in Trioxan und ein Trioxan, Formaldehyd und Wasser enthaltendes Gemisch getrennt wird.
Ein Verfahren zur Herstellung von Dioxolan ist in DE-A 1 914 209 beschrieben. Hierbei wird in Gegenwart eines stark sauren Kationenaustauschers als Katalysator Ethylen- glykol mit wässrigem Formaldehyd zu Dioxolan umgesetzt. Das Verfahren wird dabei vorzugsweise so durchgeführt, dass die Ausgangsstoffe in etwa stöchiometrischen Mengen, d. h. im Molverhältnis 1 : 1 von Alkohol zu Formaldehyd verwendet werden. Das Verfahren arbeitet jedoch auch prinzipiell bei anderen Mengenverhältnissen zufrieden stellend. Die Aufarbeitung des erhaltenen, im Allgemeinen wasserhaltigen Ace- tals geschieht z. B. durch Entwässerung mit festem Alkali oder konzentrierter Alkalilau- ge oder durch Destillation.
Ein Verfahren zur Reinigung von Dioxolan, das durch Reaktion von Ethylenglykol und Formaldehyd in Gegenwart von Katalysatoren wie Schwefelsäure, Bortrifluorid, Zinkchlorid oder sauren Ionenaustauschern hergestellt wurde, ist z. B. aus DE-A 1 279 025 bekannt. Hierbei wird das dampfförmige, wasserhaltige Rohdioxolan zunächst einer Kolonne zugeführt und azeotrop destilliert, das abgehende Destillat mit einem maxima- len Wassergehalt von 10% nach seiner Kühlung im Gegenstrom mit Alkalihydroxid und/oder einer konzentrierten wässrigen Alkalilauge behandelt und abschließend das behandelte Produkt fraktioniert destilliert, wobei das Dioxolan am Kolonnensumpf abgezogen wird.
Ein weiteres Verfahren zur Reinigung von Dioxolan ist aus DE-A 1 172 687 bekannt. Hierbei wird das Rohdioxolan mit einer nicht in jedem Verhältnis mit diesem mischbaren inerten organischen Flüssigkeit, die keine unter den Verfahrensbedingungen abspaltbaren Elemente enthält und auch keine Verbindungen solcher Elemente unter den Verfahrensbedingungen zu bilden vermag, in einem solchen Volumenverhältnis behandelt, dass eine Schichtentrennung auftritt. Die dioxolanhaltige Schicht wird abgetrennt und mit wässriger Alkali- oder Erdalkalilauge oder mit einem Alkali- oder Erdalkalioxid oder mit einem Alkali- oder Erdalkalimetall behandelt. Nach Abtrennung der dioxolanhaltigen Flüssigkeit wird diese destilliert und das erhaltene, gereinigte Dioxolan wird gegebenenfalls einer Nachbehandlung durch Filtration über ein Molekularsieb unterworfen.
Aufgabe der vorliegenden Erfindung ist es, ein Verfahren bereitzustellen, bei welchem Trioxan und ein zur Herstellung von POM benötigtes Copolymer energetisch günstig hergestellt werden.
Gelöst wird die Aufgabe durch ein Verfahren zur Herstellung von Trioxan und mindestens einem Comonomer, das durch Umsetzung von Formaldehyd mit mindestens einem Comonomer-Edukt gewonnen wird, zur Herstellung von (Co)polymeren auf Trio- xan-Basis, welches folgende Schritte umfasst:
a) Umsetzen von Formaldehyd und dem mindestens einen Comonomer-Edukt in wässriger Lösung zu Trioxan und Comonomer in einer Synthesestufe, wobei ein Trioxan, Formaldehyd, Wasser, Comonomer und gegebenenfalls nicht um- gesetztes Comonomer-Edukt enthaltendes Reaktionsgemisch A1 erhalten wird,
b) Destillieren des Reaktionsgemisches A1 in einer ersten Destillationsstufe bei einem ersten Druck, wobei ein an Trioxan und Comonomer angereicherter Strom B1 und ein im Wesentlichen Wasser, Formaldehyd und gegebenenfalls Comonomer-Edukt enthaltender Strom B2 erhalten werden,
c) Destillieren des Stromes B1 in einer zweiten Destillationsstufe bei einem Druck, der oberhalb dem Druck der ersten Destillationsstufe liegt, wobei ein im Wesentlichen Trioxan, Comonomer und Wasser enthaltender Strom C1 und ein im Wesentlichen Comonomer und Trioxan enthaltender Produktstrom C2 erhalten werden. Erfindungsgemäß werden in einem ersten Schritt eine wässrige Formaldehyd-Lösung und mindestens ein Comonomer-Edukt einem Reaktor zugeführt. Im Reaktor wird zum einen Formaldehyd zu Trioxan umgesetzt, zum anderen reagiert das mindestens eine Comonomer-Edukt mit Formaldehyd zu dem Comonomer. Die Reaktion wird im Allgemeinen bei einem Druck im Bereich von 0,5 bis 10 bar, bevorzugt im Bereich von 0,75 bis 7 bar und insbesondere im Bereich von 0,8 bis 4 bar und einer Temperatur im Bereich von 60 bis 190°C, bevorzugt im Bereich von 75 bis 150°C und insbesondere im Bereich von 80 bis 130°C durchgeführt.
Comonomere, die durch das erfindungsgemäße Verfahren hergestellt werden, sind zum Beispiel cyclische Ether der Formel (I)
Figure imgf000005_0001
wobei R1 bis R4 unabhängig voneinander Wasserstoff, ein Ci bis C4-Alkyl oder eine halogensubstituierte Alkylgruppe mit 1 bis 4 C-Atomen ist und R5 CH2, CH2O, ein Ci bis C4-Alkylen oder eine Ci bis C4-Haloalkyl substituierte Methylengruppe oder eine entsprechende Oxymethylengruppe ist und n eine ganze Zahl im Bereich von 0 bis 3 ist. Als Comonomer geeignete cyclische Ether sind zum Beispiel Ethylenoxid, 1 ,2- Propylenoxid, 1 ,2-Butylenoxid, 1 ,3-Butylenoxid, 1 ,3-Dioxan, 1 ,3-Dioxolan und 1 ,3- Dioxepan, welches auch als Butandiolformal bezeichnet wird.
Ebenfalls als Copolymere herstellbar sind bifunktionelle Verbindungen der Formel (II)
Figure imgf000005_0002
wobei Z -O- oder -ORO-, R ein Ci bis C8-Alkylen oder ein C3 bis C8-Cycloalkylen und m 0 oder 1 ist. Bevorzugte Comonomere dieser Art sind Ethylendiglycid, Diglycidether und Diether aus Glyciden und Formaldehyd, Dioxan oder Trioxan im Molverhältnis 2 : 1 sowie Diether aus 2 mol Glycidylverbindung und 1 mol eines aliphatischen Diols mit 2 bis 8 C-Atomen wie beispielsweise die Diglycidether des Ethylenglykols, 1 ,4- Butandiols, 1 ,3-Butandiols, Cyclobutan-1 ,3-diols, 1 ,2-Propandiols und Cyclohexan-1 ,4- diols. - A -
Das mindestens eine Comonomer-Edukt wird jeweils so gewählt, dass durch Reaktion mit Formaldehyd unter den im Reaktor herrschenden Bedingungen das gewünschte Comonomer erzeugt wird.
Besonders bevorzugt als im erfindungsgemäßen Verfahren hergestelltes Comonomer ist 1 ,3-Dioxolan. Das Comonomer-Edukt, das zur Herstellung des 1 ,3-Dioxolans eingesetzt wird, ist dabei Ethylenglykol, welches mit dem Formaldehyd unter Abspaltung von Wasser zu dem 1 ,3-Dioxolan reagiert.
Die Reaktionen werden im Allgemeinen in Gegenwart eines sauren Katalysators durchgeführt. Der pKs-Wert des Katalysators ist vorzugsweise kleiner als 4. Geeignete Katalysatoren sind z. B. organische oder mineralische Säuren, Bortrifluorid, Zinkchlorid oder saure Ionenaustauscher. Der Katalysator kann homogen oder heterogen vorlie- gen.
Als Reaktor zur Durchführung der Synthesestufe eignet sich jeder dem Fachmann bekannte Reaktor. Bevorzugt sind jedoch Reaktoren, in denen die Reaktion kontinuierlich durchgeführt werden kann. Solche Reaktoren sind z. B. Rührkessel, Verweilzeitkessel, Rohrreaktoren, Verdampfer verschiedener Bauarten, Kolonnensümpfe oder auch Kolonnen mit geeigneter Reaktionszone. Die Wahl geeigneter Kolonnen ist im Zusammenhang mit der vorliegenden Erfindung im Allgemeinen nicht kritisch. Geeignete Kolonnen sind dem Fachmann bekannt.
Bei Verwendung eines heterogenen Katalysators liegt dieser z. B. als Granulat oder als Packung vor. Hierbei ist jede, dem Fachmann bekannte Packung denkbar. So können z. B. strukturierte Packungen, Gestricke, Gewebe oder Füllkörperpackungen eingesetzt werden. Hierbei liegt der Katalysator vorzugsweise als Beschichtung auf einem Trägermaterial vor. Geeignete Trägermaterialien sind z. B. Zeolithe, phenol- oder styrolba- sierte Harze. Daneben ist es jedoch auch möglich, dass die gesamte Packung aus dem Katalysatormaterial besteht.
Nach der Umsetzung in Schritt a) wird das so erhaltene Reaktionsgemisch in Schritt b) in einer ersten Destillationsstufe bei einem ersten Druck destilliert. Dieser Druck ent- spricht dabei vorzugsweise dem Druck, bei der das Formaldehyd und das mindestens eine Comonomer-Edukt zu Trioxan und Comonomer umgesetzt wurden. Druckunterschiede können sich hierbei zum Beispiel durch einen Druckabfall im Reaktor oder in Rohrleitungen, die den Reaktor mit der ersten Destillationsstufe verbinden, ergeben. Es ist jedoch auch möglich, das Reaktionsgemisch vor dem Eintritt in die erste Destilla- tionsstufe auf einen geringeren Druck zu entspannen oder auf einen höheren Druck zu komprimieren. Bevorzugt entspricht der Druck der ersten Destillationsstufe jedoch dem Druck der Reaktion. Die erste Destillationsstufe wird im Allgemeinen bei einem Druck im Bereich von 0,2 bis 10 bar, bevorzugt im Bereich von 0,4 bis 5 bar und insbesondere im Bereich von 0,5 bis 2,5 bar betrieben.
In der ersten Destillationsstufe werden ein an Trioxan und Comonomer angereicherter Strom B1 und ein im Wesentlichen Wasser, Formaldehyd und gegebenenfalls Como- nomer-Edukt enthaltender Strom B2 erhalten. Die Destillation kann dabei in jeder beliebigen, dem Fachmann bekannten Destillationsvorrichtung durchgeführt werden. Bevorzugt ist eine Destillationskolonne. Als Destillationskolonne eignen sich z. B. Pa- ckungs- oder Bodenkolonnen. Geeignete Packungen sind z. B. strukturierte Packungen, Gewebe, Gestricke oder Füllkörperpackungen. Bei Verwendung einer Bodenkolonne sind jegliche, dem Fachmann bekannte Böden verwendbar.
Die Kolonne der ersten Destillationsstufe umfasst im Allgemeinen 2 bis 50 theoretische Stufen. Bevorzugt umfasst die Kolonne der ersten Destillationsstufe 4 bis 25 theoretische Trennstufen.
Das Reaktionsgemisch, das der ersten Destillationsstufe zugeführt wird, enthält im Allgemeinen 0,1 bis 25 Gew.-% Trioxan, 0,1 bis 15 Gew.-% Comonomer, 20 bis 80 Gew.-% Formaldehyd, 1 bis 79,8 Gew.-% Wasser und 0 bis 10 Gew.-% Comonomer- Edukt. Bevorzugt enthält das Reaktionsgemisch 0,4 bis 20 Gew.-% Trioxan, 0,3 bis 10 Gew.-% Comonomer, 30 bis 69 Gew.-% Formaldehyd, 1 bis 69 Gew.-% Wasser und 0 bis 7 Gew.-% Comonomer-Edukt.
Der an Trioxan und Comonomer angereicherte Strom B1 enthält im Allgemeinen 25 bis 80 Gew.-% Trioxan, 10 bis 65 Gew.-% Comonomer, 1 bis 20 Gew.-% Formaldehyd und 5 bis 25 Gew.-% Wasser. Bevorzugt enthält der Strom B1 30 bis 60 Gew.-% Trioxan, 15 bis 60 Gew.-% Comonomer, 1 bis 15 Gew.-% Formaldehyd und 5 bis 20 Gew.- % Wasser. Der Strom B2 enthält im Allgemeinen 40 bis 75 Gew.-% Formaldehyd, 15 bis 50 Gew.-% Wasser und 5 bis 50 Gew.-% des mindestens einen Comonomer- Eduktes. Bevorzugt enthält der Strom B2 40 bis 75 Gew.-% Formaldehyd, 15 bis 50 Gew.-% Wasser und 10 bis 40 Gew.-% des mindestens einen Comonomer-Eduktes. Zusätzlich kann der Strom B2 noch maximal 5 Gew.-%, vorzugsweise maximal 3 Gew.- % und insbesondere maximal 2 Gew.-% Trioxan und Comonomer enthalten.
In einer bevorzugten Ausführungsform werden die Schritte a) und b) gemeinsam in einer Reaktivdestillationskolonne durchgeführt. Hierbei erfolgt die Reaktion im Allgemeinen im unteren Teil der Kolonne. Die Reaktion wird dabei vorzugsweise unter solchen Bedingungen durchgeführt, dass die entstehenden Reaktionsprodukte gasförmig vorliegen. Bei exothermen Reaktionen kann dabei zum Verdampfen der Reaktionsprodukte auch die bei der Reaktion entstehende Reaktionswärme genutzt werden. Bei der Reaktivdestillationskolonne erfolgt die Auftrennung in den leichter siedenden, an Trioxan und Comonomer angereicherten Strom B1 und den schwer siedenden, im Wesentlichen Wasser, Formaldehyd und gegebenenfalls Comonomer-Edukt enthal- tenden Strom B2 in einem Destillationsteil der Kolonne, der sich an den Reaktionsteil anschließt.
Bei Verwendung einer Reaktivdestillationskolonne werden die Edukte vorzugsweise am Sumpf der Kolonne zugegeben, der schwer siedende, im Wesentlichen Wasser, Formaldehyd und gegebenenfalls Comonomer-Edukt enthaltende Strom B2 wird vorzugsweise als flüssiger Rücklauf in den Reaktionsteil der Kolonne zurückgeführt, der an Trioxan und Comonomer angereicherte Strom B1 wird über den Kopf der Reaktivdestillationskolonne abgezogen.
Wenn die Reaktion im Schritt a) und die erste Destillationsstufe b) in zwei unterschiedlichen Apparaten durchgeführt werden, wird das bei der Reaktion erhaltene, Trioxan, Comonomer, Formaldehyd, Wasser und gegebenenfalls Comonomer-Edukt enthaltende Reaktionsgemisch A1 der Destillationskolonne, in der die erste Destillationsstufe b) durchgeführt wird, vorzugsweise gasförmig oder flüssig als Seitenzulauf zugegeben. Der an Trioxan und Comonomer angereicherte Strom B1 wird vorzugsweise als Kopfabzugsstrom und der im Wesentlichen Wasser, Formaldehyd und gegebenenfalls Comonomer-Edukt enthaltende Strom B2 als Sumpfabzugsstrom entnommen.
Die zweite Destillationsstufe des Schrittes c) wird im Allgemeinen in einer zweiten Des- tillationskolonne durchgeführt. Geeignete Destillationskolonnen zur Durchführung der zweiten Destillationsstufe sind z. B. Bodenkolonnen oder Packungskolonnen. Bei Verwendung einer Bodenkolonne können alle beliebigen, dem Fachmann bekannten Böden verwendet werden. Bei Verwendung einer Packungskolonne können strukturierte Packungen, Gewebe, Gestricke oder Füllkörperschüttungen als Packungen eingesetzt werden.
Die Destillation des Schrittes c) wird im Allgemeinen bei einem Druck durchgeführt, der oberhalb des Drucks der ersten Destillationsstufe liegt. Im Allgemeinen liegt der Druck der zweiten Destillationsstufe im Bereich zwischen 0,2 und 17,5 bar, bevorzugt im Be- reich zwischen 2 und 15 bar und besonders bevorzugt im Bereich zwischen 2,5 und 10 bar. Der Druck der zweiten Destillationsstufe ist vorzugsweise mindestens 0,5 bar, mehr bevorzugt mindestens 1 bar und insbesondere mindestens 3 bar höher als der Druck der ersten Destillationsstufe.
Bei der Destillation der zweiten Destillationsstufe wird der an Trioxan und Comonomer angereicherte Strom B1 in einen Trioxan, Comonomer, Wasser und Formaldehyd ent- haltenden Strom C1 und einen im Wesentlichen Comonomer und Trioxan enthaltenden Produktstrom C2 getrennt. Der Strom C1 enthält dabei im Allgemeinen 15 bis 60 Gew.- % Trioxan, 15 bis 70 Gew.-% Comonomer, 10 bis 30 Gew.-% Wasser und 1 bis 20 Gew.-% Formaldehyd, vorzugsweise 10 bis 55 Gew.-% Trioxan, 20 bis 65 Gew.-% Comonomer, 15 bis 25 Gew.-% Wasser und 2 bis 15 Gew.-% Formaldehyd. Der Strom C2 enthält im Allgemeinen 0,1 bis 7 Gew.-% Comonomer und 93 bis 99,9 Gew.-% Trioxan, vorzugsweise 0,1 bis 5 Gew.-% Comonomer und 95 bis 99,9 Gew.-% Trioxan. Der Strom C2 kann zusätzlich bis zu 2 Gew.-% Wasser und Formaldehyd enthalten.
Der Strom B1 wird der zweiten Destillationskolonne vorzugsweise als Seitenzulauf zugegeben, der Strom C1 als Kopfabzugsstrom und der Strom C2 als Sumpfabzugsstrom entnommen.
In einer bevorzugten Ausführungsform umfasst das Verfahren zusätzlich folgende Schritte:
d) Destillieren des Stromes C1 in einer dritten Destillationsstufe, wobei ein Trioxan, Comonomer, Formaldehyd und Wasser enthaltender Strom D1 und ein im Wesentlichen aus Wasser bestehender Strom D2 erhalten werden,
e) Rückführung des Stromes D1 in die erste Destillationsstufe b).
Die dritte Destillationsstufe wird vorzugsweise in einer dritten Destillationskolonne durchgeführt. Die dritte Destillationskolonne ist im Allgemeinen eine Packungskolonne oder Bodenkolonne.
Die Destillationskolonne der dritten Destillationsstufe weist im Allgemeinen mindestens 2 theoretische Trennstufen, vorzugsweise 5 bis 50 theoretische Trennstufen und insbesondere 10 bis 25 theoretische Trennstufen auf.
Der Druck der dritten Destillationsstufe c) liegt im Allgemeinen im Bereich von 0,2 bis 25 bar, bevorzugt im Bereich von 2 bis 20 bar und insbesondere im Bereich von 2,5 bis 15 bar. Der Druck der dritten Destillationsstufe kann dabei größer, kleiner oder gleich dem Druck der zweiten Destillationsstufe sein.
Der bei der Destillation in der dritten Destillationsstufe erhaltene Strom D1 enthält im Allgemeinen 15 bis 70 Gew.-% Trioxan, 10 bis 75 Gew.-% Comonomer, 5 bis 20 Gew.- % Formaldehyd und 0 bis 20 Gew.-% Wasser, vorzugsweise 20 bis 60 Gew.-% Trioxan, 15 bis 75 Gew.-% Comonomer, 5 bis 15 Gew.-% Formaldehyd und 0 bis 15 Gew.- % Wasser. Im Sinne der vorliegenden Erfindung bedeutet im Wesentlichen aus Wasser bestehend, dass mindestens 90 Gew.-% Wasser, vorzugsweise mindestens 93 Gew.-% Wasser und insbesondere mehr als 95 Gew.-% Wasser enthalten sind.
Um zu vermeiden, dass Edukte oder Reaktionsprodukte, die jeweils Wertprodukte darstellen, als Abfallstrom aus dem Verfahren ausgetragen werden, wird der die Wertprodukte Trioxan, Comonomer, Formaldehyd und Wasser enthaltende Strom D1 in einer bevorzugten Ausführungsform in die erste Destillationsstufe b) zurückgeführt. Hierbei stellt sich eine stationäre Formaldehydkonzentration ein. Ein Teil des im Strom D1 ent- haltenen Formaldehyds wird in der ersten Destillationskolonne abgetrennt und im Strom B2 wieder dem Reaktor zugeführt.
In einer weiteren Ausführungsform umfasst das Verfahren zusätzlich folgenden Schritt:
f) Aufkonzentrierung einer wässrigen Formaldehydlösung E1 in einer Formalde- hydaufkonzentrierungseinheit, die der Synthesestufe vorgeschaltet ist, wobei ein formaldehydarmer Strom E2 und ein formaldehydreicher Strom E3 erhalten werden und der formaldehydreiche Strom E3 der Synthesestufe zugeführt wird.
Die der Aufkonzentrierungseinheit zugeführte wässrige Formaldehydlösung E1 enthält im Allgemeinen 25 bis 65 Gew.-% Formaldehyd und 35 bis 75 Gew.-% Wasser, vorzugsweise 30 bis 60 Gew.-% Formaldehyd und 40 bis 70 Gew.-% Wasser. Der bei der Aufkonzentrierung erhaltene formaldehydreiche Strom E3 enthält im Allgemeinen mindestens 50 Gew.-% Formaldehyd, vorzugsweise mindestens 55 Gew.-% Formaldehyd. Der formaldehydarme Strom E2 enthält im Allgemeinen höchstens 35 Gew.-% Formaldehyd, vorzugsweise höchstens 30 Gew.-% Formaldehyd.
Als Aufkonzentrierungseinheit eignen sich z. B. Verdampfer oder Destillationskolonnen. Dabei sind alle dem Fachmann bekannten Verdampferbauarten geeignet. Bevorzugt sind kontinuierlich arbeitende Verdampfer, z. B. Zwangsumlaufverdampfer, Fallfilmverdampfer, Dünnschichtverdampfer, Wendelrohrverdampfer oder jeder beliebige andere, dem Fachmann bekannte kontinuierlich arbeitende Verdampfer. Besonders bevorzugt als Verdampfer sind Fallfilmverdampfer.
Bei Verwendung einer Destillationskolonne als Formaldehydaufkonzentrierungseinheit ist jede, dem Fachmann bekannte Destillationskolonne einsetzbar. Als Destillationskolonne eignen sich z. B. Bodenkolonnen oder Packungskolonnen. Geeignete Packungen sind z. B. strukturierte Packungen, Gewebe, Gestricke oder Füllkörperpackungen. Die Aufkonzentrierung der wässrigen Formaldehydlösung wird im Allgemeinen bei einem Druck im Bereich von 0,05 bis 1 bar und einer Temperatur im Bereich von 40 bis 98°C durchgeführt.
Der bei der Aufkonzentrierung erhaltene formaldehydreiche Strom E3 fällt vorzugsweise als Sumpfabzugsstrom und der formaldehydarme Strom E2 als Kopf- oder Brüdenabzugsstrom an. Der formaldehydarme Strom E2 wird vorzugsweise der dritten Destillationsstufe zugeführt.
Neben Wasser, Formaldehyd, Trioxan, Comonomer und gegebenenfalls Comonomer- Edukt können insbesondere in den Strömen A1 und B1 noch bis zu 15 Gew.-%, im Allgemeinen 1 bis 10 Gew.-% Leichtsieder enthalten sein. Übliche Leichtsieder, die bei der Synthese und der nachfolgen destillativen Trennung gebildet werden können, sind Methylformiat, Methylal, Dimethoxydimethyl-ether, Trimethoxydimethylether, Methanol, Ameisensäure sowie weitere Halb- und Vollacetale und durch das jeweilige Comono- mer-Edukt verursachte Nebenkomponenten.
Die gegebenenfalls in den Strömen A1 und B1 enthaltenen Leichtsieder können in einer weiteren Ausführungsform in einer Leichtsieder-Abtrennstufe abgetrennt werden. Hierzu umfasst das Verfahren zusätzlich folgenden Schritt:
g) Destillieren des Stromes B1 in einer Leichtsieder-Abtrennstufe bei einem Druck zwischen 1 und 3 bar, wobei ein Leichtsieder enthaltender Strom B1 " und ein
Trioxan, Comonomer, Formaldehyd und Wasser enthaltender Strom BV erhal- ten werden und der Strom BV als Strom B1 der zweiten Destillationsstufe c) zugeführt wird.
Die Leichtsieder-Abtrennstufe wird im Allgemeinen ebenfalls in einer beliebigen Destillationskolonne durchgeführt. Geeignete Destillationskolonnen sind auch hier sowohl Bodenkolonnen als auch Packungskolonnen.
Wenn die Leichtsieder-Abtrennstufe in einer vierten Destillationskolonne durchgeführt wird, wird der Strom B1 vorzugsweise als Seitenzulauf zugeführt, der Strom BV wird vorzugsweise als Kopfabzugsstrom und der Strom BV vorzugsweise als Sumpfab- zugsstrom entnommen.
Die Destillationskolonne der Leichtsieder-Abtrennstufe umfasst im Allgemeinen mindestens 2 theoretische Trennstufen, vorzugsweise 4 bis 50 theoretische Trennstufen und insbesondere 4 bis 40 theoretische Trennstufen. Die Destillation der Leichtsieder-Abtrennstufe wird vorzugsweise bei einem Druck im Bereich von 1 bis 2,5 bar und einer Temperatur im Bereich von 60 bis 140°C durchgeführt.
Im Folgenden wird die Erfindung anhand einer Zeichnung näher beschrieben. Die einzige Figur zeigt ein Verfahrensfließbild des erfindungsgemäßen Verfahrens zur Herstellung von Trioxan und Comonomer.
Eine wässrige Formaldehydlösung 1 (Strom E1 ) wird einer Aufkonzentrierungseinheit 2 zugeführt. Als Aufkonzentrierungseinheit eignet sich zum Beispiel ein Verdampfer oder eine Destillationskolonne. In der Aufkonzentrierungseinheit 2 wird die wässrige Formaldehydlösung in einen formaldehydreichen Strom 3 (Strom E3) und einen for- maldehydarmen Strom 4 (Strom E2) getrennt. Der formaldehydreiche Strom 3 wird einem Reaktor 5 zugeführt. Neben dem formaldehydreichen Strom 3 wird dem Reaktor mindestens ein Comonomer-Edukt 6 zugeführt, welches durch Umsetzung mit Formaldehyd zu einem Comonomer reagiert, welches zur Herstellung von (Co)polymeren auf Trioxan-Basis eingesetzt wird. Das Comonomer-Edukt 6 kann dabei entweder direkt dem Reaktor zugeführt werden oder vor der Zugabe in den Reaktor 5 mit dem formaldehydreichen Strom 3 gemischt werden und mit diesem zusammen dem Reaktor 5 zugeführt werden. Im Reaktor 5 werden das Formaldehyd und das Comonomer-Edukt in wässriger Lösung zu Trioxan und Comonomer umgesetzt, wobei ein Trioxan, Comonomer, Formaldehyd, Wasser und gegebenenfalls Comonomer-Edukt enthaltendes Reaktionsgemisch 7 (Strom A1 ) erhalten wird.
Das Reaktionsgemisch 7 wird einer ersten Destillationskolonne 8 zugeführt. Die Zugabe erfolgt dabei vorzugsweise über einen Seitenzulauf. In der ersten Destillationskolonne 8 wird das Reaktionsgemisch in einen an Trioxan und Comonomer angereicherten Strom 9 (Strom B1 ) und einen im Wesentlichen Wasser, Formaldehyd und gegebenenfalls Comonomer-Edukt enthaltenden Strom 10 (Strom B2) destilliert. Der an Trioxan und Comonomer angereicherte Strom 9 wird der ersten Destillationskolonne 8 über Kopf und der im Wesentlichen Wasser, Formaldehyd und gegebenenfalls Comonomer-Edukt enthaltende Strom 10 am Sumpf entnommen. Der Druck, bei dem die erste Destillationskolonne 8 betrieben wird, entspricht dabei vorzugsweise dem Druck im Reaktor 5. Um höhere Formaldehydkonzentrationen erzielen zu können, ist es je- doch auch möglich, den Reaktor bei einem höheren Druck zu betreiben als die erste Destillationskolonne.
Der im Wesentlichen Wasser, Formaldehyd und gegebenenfalls Comonomer-Edukt enthaltende Strom 10 wird in den Reaktor 5 zurückgeführt. Dabei kann der Strom 10 entweder direkt dem Reaktor 5 zugegeben werden oder vor der Zugabe in den Reaktor 5 mit dem formaldehydreichen Strom 3 gemischt und dann gemeinsam mit diesem dem Reaktor 5 zugegeben werden.
Neben der in der Figur dargestellten Ausführungsform, bei der der Reaktor 5 und die erste Destillationskolonne 8 zwei getrennt Apparate sind, ist es auch möglich, eine Re- aktivdestillationskolonne einzusetzen, wobei die Umsetzung des Formaldehyds und des mindestens einen Comonomer-Eduktes zu Trioxan und Comonomer im Sumpf der Kolonne erfolgt und in der sich direkt daran anschließenden Kolonne die destillative Trennung durchgeführt wird.
Der an Trioxan und Comonomer angereicherte Strom 9 wird einer zweiten Destillationskolonne 1 1 zugeführt. Die Zufuhr erfolgt dabei vorzugsweise als Seitenzulauf. In der zweiten Destillationskolonne 1 1 wird der an Trioxan und Comonomer angereicherte Strom 9 in einen Trioxan, Comonomer und Wasser enthaltenden Strom 12 (Strom C1 ) und einen im Wesentlichen Comonomer und Trioxan enthaltenden Produktstrom 13 (Strom C2) destilliert. Der Trioxan, Comonomer und Wasser enthaltende Strom 12 wird der zweiten Destillationskolonne über Kopf und der Produktstrom 13 am Sumpf entnommen. Die Destillation in der zweiten Destillationskolonne 11 wird dabei bei einem Druck durchgeführt, der höher ist als der Druck, bei dem die erste Destillationskolonne 8 betrieben wird.
Der Trioxan, Comonomer und Wasser enthaltende Strom 12 wird einer dritten Destillationskolonne 14 zugeführt. Die Zugabe des Trioxan, Comonomer und Wasser enthaltenden Stromes 12 erfolgt vorzugsweise als Seitenzulauf. Zusätzlich wird der dritten Destillationskolonne der formaldehydarme Strom 4 zugeführt, der in der Aufkonzentrie- rungseinheit 2 anfällt. Die Zugabe der Ströme 4, 12 kann dabei als zwei getrennte Zuläufe, vorzugsweise zwei Seitenzuläufe oder als ein gemeinsamer Zulauf erfolgen. Bei gemeinsamer Zugabe werden die Ströme 4, 12 vor der Zugabe gemischt. In der dritten Destillationskolonne werden durch die Destillation ein Trioxan, Comonomer, Formalde- hyd und Wasser enthaltender Strom 15 (Strom D1 ) und ein im Wesentlichen aus Wasser bestehender Strom 16 (Strom D2) erhalten. Der Trioxan, Comonomer, Formaldehyd und Wasser enthaltende Strom 15 wird dabei über Kopf und der im Wesentlichen aus Wasser bestehende Strom 16 am Sumpf der dritten Destillationskolonne 14 entnommen.
Der Trioxan, Comonomer, Formaldehyd und Wasser enthaltende Strom 15 wird in die erste Destillationskolonne 8 zurückgeführt. Die Zugabe kann dabei entweder direkt als Seitenzulauf in die erste Destillationskolonne 8 erfolgen oder gemeinsam mit dem Reaktionsgemisch 7, wobei das Reaktionsgemisch 7 und der Trioxan, Comonomer, For- maldehyd und Wasser enthaltende Strom 15 dann vor Zugabe in die erste Destillationskolonne 8 gemischt werden. Beispiele
Vergleichsbeispiel
Einem Fallfilmverdampfer als Aufkonzentrierungseinheit werden 6 kg/h einer wässrigen Formaldehydlösung aus 50 Gew.-% Wasser und 50 Gew.-% Formaldehyd zugeführt. In der Aufkonzentrierungseinheit wird dieser zu einem formaldehydreichen Strom von 4,4 kg/h mit einer Zusammensetzung aus 60 Gew.-% Formaldehyd und 40 Gew.-% Wasser aufkonzentriert. Der formaldehydreiche Strom wird zusammen mit einem 70,9 Gew.-% Trioxan, 18,0 Gew.-% Wasser und 11 ,1 Gew.-% Formaldehyd enthaltenden Kopfabzugsstrom einer dritten Destillationskolonne einer Reaktivdestillationskolonne zugeführt. Der Massenstrom des Kopfabzugsstromes der dritten Destillationskolonne beträgt 11 ,1 kg/h. In der Reaktivdestillationskolonne wird das Formaldehyd in einer Gleichgewichtsreaktion bei einer Temperatur von 115°C und einem Druck von 1 ,7 bar zu Trioxan umgesetzt. Das entstehende Gemisch wird über Kopf der Reaktivdestillationskolonne abgezogen und setzt sich aus 70 Gew.-% Trioxan, 24 Gew.-% Wasser und 6 Gew.-% Formaldehyd zusammen. Der Massenstrom des am Kopf der Reaktivdestillationskolonne abgezogenen Stromes beträgt 15,5 kg/h. Dieser Strom wird einer zwei- ten Destillationskolonne zugeführt und in dieser bei einer Sumpftemperatur von 178°C und einem Druck von 5,5 bar in einen am Kopf der zweiten Destillationskolonne abgezogenen Strom von 12,5 kg/h, der 62,9 Gew.-% Trioxan, 29,7 Gew.-% Wasser und 7,3 Gew.-% Formaldehyd enthält, und einen am Sumpf abgezogenen Produktstrom von 3 kg/h, der 99,5 Gew.-% Trioxan, 0,1 Gew.-% Wasser und 0,4 Gew.-% Formaldehyd enthält, destilliert. Der am Kopf der zweiten Destillationskolonne abgezogene Strom wird zusammen mit dem am Kopf der Aufkonzentrierungseinheit anfallenden Strom von 1 ,6 kg/h mit einer Zusammensetzung aus 20 Gew.-% Formaldehyd und 80 Gew.- % Wasser der dritten Destillationskolonne zugeführt. In der dritten Destillationskolonne fallen der der Reaktivdestillationskolonne zugeführte Kopfabzugsstrom und ein Sumpf- abzugsstrom von 3 kg/h aus 99,9 Gew.-% Wasser und 0,1 Gew.-% Formaldehyd an. Die Destillation in der dritten Destillationskolonne wird bei einer Sumpftemperatur von 155°C und einem Druck von 5,5 bar durchgeführt.
Beispiel 1
Einem Fallfilmverdampfer als Aufkonzentrierungseinheit werden 6,8 kg/h einer wässrigen Formaldehydlösung aus 50 Gew.-% Wasser und 50 Gew.-% Formaldehyd zugeführt. In der Aufkonzentrierungseinheit wird dieser zu einem formaldehydreichen Strom von 5,2 kg/h aufkonzentriert. Dem formaldehydreichen Strom wird Ethylenglykol zugemischt, so dass dieser eine Zusammensetzung aus 59,9 Gew.-% Formaldehyd, 40 Gew.-% Wasser und 0,1 Gew.-% Ethylenglykol aufweist. Der formaldehydreiche Strom wird zusammen mit einem 54,4 Gew.-% Trioxan, 1 1 ,7 Gew.-% Wasser, 25,3 Gew.-% Dioxolan und 8,6 Gew.-% Formaldehyd enthaltenden Kopfabzugsstrom einer dritten Destillationskolonne einer Reaktivdestillationskolonne zugeführt. Der Massenstrom des Kopfabzugsstromes der dritten Destillationskolonne beträgt 13,8 kg/h. In der Reaktivdestillationskolonne werden das Formaldehyd in einer Gleichgewichtsreaktion zu Trioxan und Ethylenglykol mit Formaldehyd zu Dioxolan bei einer Temperatur von 113°C und einem Druck von 1 ,7 bar in Gegenwart von Schwefelsäure als Katalysator umgesetzt. Das entstehende Gemisch wird über Kopf der Reaktivdestillationskolonne abge- zogen und setzt sich aus 57,3 Gew.-% Trioxan, 19,6 Gew.-% Wasser, 18,4 Gew.-% Dioxolan und 4,7 Gew.-% Formaldehyd zusammen. Der Massenstrom des am Kopf der Reaktivdestillationskolonne abgezogenen Stromes beträgt 19 kg/h. Dieser Strom wird einer zweiten Destillationskolonne zugeführt und in dieser bei einer Sumpftemperatur von 167°C und einem Druck von 5 bar in einen am Kopf der zweiten Destillations- kolonne abgezogenen Strom von 15,6 kg/h, der 48,1 Gew.-% Trioxan, 23,9 Gew.-% Wasser, 22,4 Gew.-% Dioxolan und 5,6 Gew.-% Formaldehyd enthält, und einen am Sumpf abgezogenen Produktstrom von 3,4 kg/h, der 99,4 Gew.-% Trioxan, 0,1 Gew.-% Wasser, 0,1 Gew.-% Dioxolan und 0,4 Gew.-% Formaldehyd enthält, destilliert. Der am Kopf der zweiten Destillationskolonne abgezogene Strom wird zusammen mit dem am Kopf der Aufkonzentrierungseinheit anfallenden Strom von 1 ,6 kg/h mit einer Zusammensetzung aus 20 Gew.-% Formaldehyd und 80 Gew.-% Wasser der dritten Destillationskolonne zugeführt. In der dritten Destillationskolonne fallen der der Reaktivdestillationskolonne zugeführte Kopfabzugsstrom und ein Sumpfabzugsstrom von 3,4 kg/h aus 99,9 Gew.-% Wasser und 0,1 Gew.-% Formaldehyd an. Die Destillation in der drit- ten Destillationskolonne wird bei einer Sumpftemperatur von 155°C und einem Druck von 5 bar durchgeführt.
Beispiel 2
Einem Fallfilmverdampfer als Aufkonzentrierungseinheit werden 11 ,6 kg/h einer wäss- rigen Formaldehydlösung aus 50 Gew.-% Wasser und 50 Gew.-% Formaldehyd zugeführt. In der Aufkonzentrierungseinheit wird dieser zu einem formaldehydreichen Strom von 8,8 kg/h aufkonzentriert. Dem formaldehydreichen Strom wird Ethylenglykol zugemischt, so dass dieser eine Zusammensetzung aus 59,6 Gew.-% Formaldehyd, 39,7 Gew.-% Wasser und 0,7 Gew.-% Ethylenglykol aufweist. Der formaldehydreiche Strom wird zusammen mit einem 22,7 Gew.-% Trioxan, 0,3 Gew.-% Wasser, 70,9 Gew.-% Dioxolan und 6,1 Gew.-% Formaldehyd enthaltenden Kopfabzugsstrom einer dritten Destillationskolonne einer Reaktivdestillationskolonne zugeführt. Der Massenstrom des Kopfabzugsstromes der dritten Destillationskolonne beträgt 22,5 kg/h. In der Reaktiv- destillationskolonne werden das Formaldehyd in einer Gleichgewichtsreaktion zu Trioxan und Ethylenglykol mit Formaldehyd zu Dioxolan bei einer Temperatur von 110°C und einem Druck von 1 ,7 bar in Gegenwart von Schwefelsäure als Katalysator umgesetzt. Das entstehende Gemisch wird über Kopf der Reaktivdestillationskolonne abgezogen und setzt sich aus 34,6 Gew.-% Trioxan, 1 1 ,8 Gew.-% Wasser, 50,9 Gew.-% Dioxolan und 2,7 Gew.-% Formaldehyd zusammen. Der Massenstrom des am Kopf der Reaktivdestillationskolonne abgezogenen Stromes beträgt 31 ,5 kg/h. Dieser Strom wird einer zweiten Destillationskolonne zugeführt und in dieser bei einer Sumpftemperatur von 165°C und einem Druck von 5 bar in einen am Kopf der zweiten Destillationskolonne abgezogenen Strom von 25,6 kg/h, der 20,0 Gew.-% Trioxan, 14,3 Gew.-% Wasser, 62,4 Gew.-% Dioxolan und 3,3 Gew.-% Formaldehyd enthält, und einen am Sumpf abgezogenen Produktstrom von 5,9 kg/h, der 98,0 Gew.-% Trioxan, 0,8 Gew.-% Wasser, 1 ,0 Gew.-% Dioxolan und 0,2 Gew.-% Formaldehyd enthält, destilliert. Der am Kopf der zweiten Destillationskolonne abgezogene Strom wird zusammen mit dem am Kopf der Aufkonzentrierungseinheit anfallenden Strom von 2,7 kg/h mit einer Zusammensetzung aus 20 Gew.-% Formaldehyd und 80 Gew.-% Wasser der dritten Destilla- tionskolonne zugeführt. In der dritten Destillationskolonne fallen der der Reaktivdestillationskolonne zugeführte Kopfabzugsstrom und ein Sumpfabzugsstrom von 5,8 kg/h aus 99,9 Gew.-% Wasser und 0,1 Gew.-% Formaldehyd an. Die Destillation in der dritten Destillationskolonne wird bei einer Sumpftemperatur von 155°C und einem Druck von 5 bar durchgeführt.

Claims

Patentansprüche
1. Verfahren zur Herstellung von Trioxan und mindestens einem Comonomer, das durch Umsetzung von Formaldehyd mit mindestens einem Comonomer-Edukt gewonnen wird, zur Herstellung von (Co)polymeren auf Trioxan-Basis, welches folgende Schritte umfasst:
a) Umsetzen von Formaldehyd und dem mindestens einen Comonomer-Edukt in wässriger Lösung zu Trioxan und Comonomer in einer Synthesestufe, wo- bei ein Trioxan, Comonomer, Formaldehyd, Wasser und gegebenenfalls
Comonomer-Edukt enthaltendes Reaktionsgemisch A1 erhalten wird,
b) Destillieren des Reaktionsgemisches A1 in einer ersten Destillationsstufe bei einem ersten Druck, wobei ein an Trioxan und Comonomer angereicherter Strom B1 und ein im Wesentlichen Wasser, Formaldehyd und gegebenenfalls Comonomer-Edukt enthaltender Strom B2 erhalten werden,
c) Destillieren des Stromes B1 in einer zweiten Destillationsstufe bei einem Druck, der oberhalb dem Druck der ersten Destillationsstufe liegt, wobei ein Trioxan, Comonomer und Wasser enthaltender Strom C1 und ein im Wesentlichen aus Comonomer und Trioxan bestehender Produktstrom C2 erhalten werden.
2. Verfahren nach Anspruch 1 , dadurch gekennzeichnet, dass die Reaktion a) und die erste Destillationsstufe b) bei einem Druck im Bereich von 0,2 bis 10 bar und die zweite Destillationsstufe c) bei einem Druck im Bereich von 0,1 bis 2,5 bar durchgeführt wird.
3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die Reaktion a) in Gegenwart eines sauren Katalysators durchgeführt wird, wobei der Katalysator heterogen oder homogen vorliegen kann.
4. Verfahren nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass die Schritte a) und b) gemeinsam in einer Reaktivdestillationskolonne durchgeführt werden, wobei der im Wesentlichen Wasser, Formaldehyd und gegebenenfalls Comonomer-Edukt enthaltende Strom B2 als flüssiger Rücklauf dem Reaktionsteil zugeführt wird.
5. Verfahren nach Anspruch 1 , dadurch gekennzeichnet, dass die erste Destillationsstufe b) in einer ersten Destillationskolonne durchgeführt wird, der das Reak- tionsgemisch A1 als Seitenzulauf zugegeben wird und der Strom B1 als Kopfabzugsstrom und der Strom B2 als Sumpfabzugsstrom entnommen werden und die zweite Destillationsstufe in einer zweiten Destillationskolonne durchgeführt wird, der der Strom B1 als Seitenzulauf zugegeben wird und der Strom C1 als Kopfab- zugsstrom und der Strom C2 als Sumpfabzugsstrom entnommen werden
6. Verfahren nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass das Verfahren zusätzlich folgende Schritte umfasst:
d) Destillieren des Stromes C1 in einer dritten Destillationsstufe bei einem
Druck oberhalb dem Druck der zweiten Destillationsstufe c), wobei ein Trio- xan, Comonomer, Formaldehyd und Wasser enthaltender Strom D1 und ein im Wesentlichen aus Wasser bestehender Strom D2 erhalten werden,
e) Rückführung des Stromes D1 in die erste Destillationsstufe b).
7. Verfahren nach Anspruch 6, dadurch gekennzeichnet, dass die dritte Destillationsstufe d) bei einem Druck im Bereich von 1 bis 25 bar durchgeführt wird.
8. Verfahren nach Anspruch 6 oder 7, dadurch gekennzeichnet, dass die dritte Destillationsstufe in einer dritten Destillationskolonne durchgeführt wird, der der Strom C1 als Seitenzulauf zugeführt wird, der Strom D1 als Kopfabzugsstrom und der Strom D2 als Sumpfabzugsstrom entnommen werden.
9. Verfahren nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, dass das Verfahren zusätzlich folgenden Schritt umfasst:
f) Aufkonzentrierung einer wässrigen Formaldehydlösung E1 in einer Formal- dehydaufkonzentrierungseinheit, die der Synthesestufe vorgeschaltet ist, wobei ein formaldehydarmer Strom E2 und ein formaldehydreicher Strom E3 erhalten werden und der formaldehydreiche Strom E3 der Synthesestufe zugeführt wird.
10. Verfahren nach Anspruch 9, dadurch gekennzeichnet, dass der formaldehydar- me Strom der dritten Destillationsstufe zugeführt wird.
1 1. Verfahren nach Anspruch 9 oder 10, dadurch gekennzeichnet, dass die Formal- dehydaufkonzentrierungseinheit ein Verdampfer oder eine Destillationskolonne ist, wobei der formaldehydreiche Strom E3 als Sumpfabzugstrom und der formal- dehydarme Strom E2 als Kopf- oder Brüdenabzugsstrom anfällt.
12. Verfahren nach Anspruch 11 , dadurch gekennzeichnet, dass der Verdampfer ein Fallfilmverdampfer ist.
13. Verfahren nach einem der Ansprüche 1 bis 12, dadurch gekennzeichnet, dass das Verfahren zusätzlich folgenden Schritt umfasst:
g) Destillieren des Stromes B1 in einer Leichtsieder-Abtrennstufe bei einem Druck zwischen 1 und 3 bar, wobei ein Leichtsieder enthaltender Strom B1 " und ein Trioxan, Comonomer, Formaldehyd und Wasser enthaltender Strom B1 ' erhalten werden und der Strom B1 ' als Strom B1 der zweiten Destillationsstufe c) zugeführt wird.
14. Verfahren nach Anspruch 13, dadurch gekennzeichnet, dass die Leichtsieder- Abtrennstufe in einer vierten Destillationskolonne durchgeführt wird, der der Strom B1 als Seitenzulauf zugeführt wird und der Strom B1 " als Kopfabzugsstrom und der Strom B1 ' als Sumpfabzugsstrom entnommen werden.
15. Verfahren nach einem der Ansprüche 1 bis 14, dadurch gekennzeichnet, dass das Comonomer-Edukt Ethylenglykol und das Comonomer Dioxolan ist.
PCT/EP2006/067851 2005-10-31 2006-10-27 Verfahren zur herstellung von trioxan und mindestens einem comonomer WO2007051762A1 (de)

Priority Applications (7)

Application Number Priority Date Filing Date Title
US12/091,976 US20080283384A1 (en) 2005-10-31 2006-10-27 Process for Producing Trioxane and at Least One Comonomer
CA002627080A CA2627080A1 (en) 2005-10-31 2006-10-27 Process for producing trioxane and at least one comonomer
AU2006310554A AU2006310554A1 (en) 2005-10-31 2006-10-27 Process for producing trioxane and at least one comonomer
JP2008538342A JP2009513687A (ja) 2005-10-31 2006-10-27 トリオキサンおよび少なくとも1つのコモノマーの製造法
BRPI0618065A BRPI0618065A2 (pt) 2005-10-31 2006-10-27 processo para preparar trioxano e pelo menos um comonômero
EP06807603A EP1945689A1 (de) 2005-10-31 2006-10-27 Verfahren zur herstellung von trioxan und mindestens einem comonomer
NO20081897A NO20081897L (no) 2005-10-31 2008-04-22 Fremgangsmate for a fremstille trioksan og minst ±n komonemer

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102005051974.1 2005-10-31
DE102005051974A DE102005051974A1 (de) 2005-10-31 2005-10-31 Verfahren zur Herstellung von Trioxan und mindestens einem Comonomer

Publications (1)

Publication Number Publication Date
WO2007051762A1 true WO2007051762A1 (de) 2007-05-10

Family

ID=37478874

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2006/067851 WO2007051762A1 (de) 2005-10-31 2006-10-27 Verfahren zur herstellung von trioxan und mindestens einem comonomer

Country Status (11)

Country Link
US (1) US20080283384A1 (de)
EP (1) EP1945689A1 (de)
JP (1) JP2009513687A (de)
KR (1) KR20080075126A (de)
CN (1) CN101321789A (de)
AU (1) AU2006310554A1 (de)
BR (1) BRPI0618065A2 (de)
CA (1) CA2627080A1 (de)
DE (1) DE102005051974A1 (de)
NO (1) NO20081897L (de)
WO (1) WO2007051762A1 (de)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102459138A (zh) * 2009-06-04 2012-05-16 基因组股份公司 分离发酵液成分的方法
US8829206B2 (en) 2011-06-24 2014-09-09 Eastman Chemical Company Production of cyclic acetals or ketals using solid acid catalysts
US9056313B2 (en) 2011-06-24 2015-06-16 Eastman Chemical Company Catalysts for the production of hydroxy ether hydrocarbons by vapor phase hydrogenolysis of cyclic acetals and ketals
US8829207B2 (en) * 2011-06-24 2014-09-09 Eastman Chemical Company Production of cyclic acetals by reactive distillation
US8969598B2 (en) 2011-06-24 2015-03-03 Eastman Chemical Company Production of cyclic acetals or ketals using liquid-phase acid catalysts
US9000229B2 (en) 2011-06-24 2015-04-07 Eastman Chemical Company Production of hydroxy ether hydrocarbons by vapor phase hydrogenolysis of cyclic acetals and ketals
US8785697B2 (en) 2011-06-24 2014-07-22 Eastman Chemical Company Nickel modified catalyst for the production of hydroxy ether hydrocarbons by vapor phase hydrogenolysis of cyclic acetals and ketals
US9388105B2 (en) 2011-06-24 2016-07-12 Eastman Chemical Company Production of hydroxy ether hydrocarbons by liquid phase hydrogenolysis of cyclic acetals or cyclic ketals
CN108031132A (zh) * 2018-01-12 2018-05-15 无锡宝南机器制造有限公司 双塔降膜蒸发器组

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0009797A1 (de) * 1978-10-05 1980-04-16 Hoechst Aktiengesellschaft Verfahren zur gleichzeitigen Herstellung von Trioxan und cyclischen Formalen
EP0012304A1 (de) * 1978-12-08 1980-06-25 Hoechst Aktiengesellschaft Verfahren zur kontinuierlichen Herstellung von Trioxan
EP0017067A1 (de) * 1979-03-30 1980-10-15 Hoechst Aktiengesellschaft Verfahren zur kontinuierlichen Herstellung von Trioxan
EP0028361A2 (de) * 1979-10-31 1981-05-13 Hoechst Aktiengesellschaft Verfahren und Vorrichtung zur kontinuierlichen Herstellung von Trioxan
EP0187261A1 (de) * 1984-12-17 1986-07-16 Hoechst Aktiengesellschaft Verfahren zur kontinuierlichen Herstellung von Trioxan
WO2005063733A1 (de) * 2003-12-23 2005-07-14 Basf Aktiengesellschaft Verfahren zur abtrennung von trioxan aus einem trioxan/formaldehyd/wasser-gemisch mittels druckwechsel-rektifikation

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1668687B2 (de) * 1968-02-24 1976-06-24 Schering Ag, 1000 Berlin Und 4619 Bergkamen Neue 18-methyl-5alpha-h-androstane, verfahren zu ihrer herstellung sowie diese enthaltende arzneimittel
DE19630670A1 (de) * 1996-07-30 1998-02-05 Basf Ag Verfahren zur Herstellung von Aminen aus Olefinen an Zeolithen mit NES-Struktur
DE19732291A1 (de) * 1997-07-26 1999-01-28 Basf Ag Verfahren zur Abtrennung von Trioxan
DE10215976A1 (de) * 2002-04-11 2003-10-23 Basf Ag Herstellung von Polyoxymethylen und dafür geeignete Katalysatoren III

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0009797A1 (de) * 1978-10-05 1980-04-16 Hoechst Aktiengesellschaft Verfahren zur gleichzeitigen Herstellung von Trioxan und cyclischen Formalen
EP0012304A1 (de) * 1978-12-08 1980-06-25 Hoechst Aktiengesellschaft Verfahren zur kontinuierlichen Herstellung von Trioxan
EP0017067A1 (de) * 1979-03-30 1980-10-15 Hoechst Aktiengesellschaft Verfahren zur kontinuierlichen Herstellung von Trioxan
EP0028361A2 (de) * 1979-10-31 1981-05-13 Hoechst Aktiengesellschaft Verfahren und Vorrichtung zur kontinuierlichen Herstellung von Trioxan
EP0187261A1 (de) * 1984-12-17 1986-07-16 Hoechst Aktiengesellschaft Verfahren zur kontinuierlichen Herstellung von Trioxan
WO2005063733A1 (de) * 2003-12-23 2005-07-14 Basf Aktiengesellschaft Verfahren zur abtrennung von trioxan aus einem trioxan/formaldehyd/wasser-gemisch mittels druckwechsel-rektifikation

Also Published As

Publication number Publication date
DE102005051974A1 (de) 2007-05-03
BRPI0618065A2 (pt) 2016-09-13
US20080283384A1 (en) 2008-11-20
AU2006310554A1 (en) 2007-05-10
JP2009513687A (ja) 2009-04-02
CN101321789A (zh) 2008-12-10
NO20081897L (no) 2008-05-27
CA2627080A1 (en) 2007-05-10
EP1945689A1 (de) 2008-07-23
KR20080075126A (ko) 2008-08-14

Similar Documents

Publication Publication Date Title
WO2007051762A1 (de) Verfahren zur herstellung von trioxan und mindestens einem comonomer
EP1931650B1 (de) Verfahren zur herstellung von dioxolan
EP1893660B1 (de) Verfahren zur herstellung von polyoxymethylendimethylethern aus methanol und formaldehyd
WO2006061231A1 (de) Verfahren zur herstellung von acetalen
WO2007023187A1 (de) Verfahren zur herstellung von polyoxymethylenhomo- oder -copolymeren
EP2197870B1 (de) Verfahren zur abtrennung von trioxan aus einem trioxan/formaldehyd/wasser-gemisch mittels druckwechsel-rektifikation
EP1699776B1 (de) Verfahren zur abtrennung von trioxan aus einem trioxan/formaldehyd/wasser-gemisch mittels druckwechsel-rektifikation
WO2001047847A1 (de) Verfahren zur reinigung von durch hydrierung hergestelltem trimethylolpropan durch kontinuierliche destillation
EP2114544B1 (de) Verfahren zur abtrennung von trioxan aus einem trioxan/formaldehyd/wasser-gemisch mittels druckwechsel-rektifikation
EP1699537B1 (de) Verfahren zur abtrennung von trioxan aus einem trioxan/formaldehyd/wasser-gemisch
DE10290269B4 (de) Verfahren zur Herstellung von zyklischem Formal
EP2225296A1 (de) Verfahren zur herstellung von polyoxymethylenhomo- oder -copolymeren durch homo- oder copolymerisation von trioxan, ausgehend von methanol
EP1567514B1 (de) Verfahren zur gewinnung eines aliphatischen dialdehyd-monoacetals
EP1915358B1 (de) Integriertes verfahren zur herstellung von trioxan aus formaldehyd
EP1915359A1 (de) Integriertes verfahren zur herstellung von trioxan aus formaldehyd
EP1912965A1 (de) Integriertes verfahren zur herstellung von trioxan aus formaldehyd
EP2032553B1 (de) Integriertes verfahren zur herstellung von trioxan aus formaldehyd
DE2163907A1 (de) Kontinuierliches Verfahren zur Herstellung von Polyoxymethylendialkyläthern
DE102019207540B4 (de) Verfahren zur Herstellung von Polyoxymethylendimethylether
EP4178938A1 (de) Verfahren zur herstellung von polyoxymethylendimethylethern
EP2500335A1 (de) Verfahren zur Abtrennung von Ethylal aus Ethanol und Ethylal enthaltenden Gemischen

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200680045123.0

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application
DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2627080

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 567683

Country of ref document: NZ

WWE Wipo information: entry into national phase

Ref document number: MX/a/2008/005496

Country of ref document: MX

WWE Wipo information: entry into national phase

Ref document number: 12091976

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2008538342

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2157/CHENP/2008

Country of ref document: IN

Ref document number: DZP2008000274

Country of ref document: DZ

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2006807603

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2006310554

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 1020087013040

Country of ref document: KR

ENP Entry into the national phase

Ref document number: 2006310554

Country of ref document: AU

Date of ref document: 20061027

Kind code of ref document: A

WWP Wipo information: published in national office

Ref document number: 2006310554

Country of ref document: AU

WWP Wipo information: published in national office

Ref document number: 2006807603

Country of ref document: EP

ENP Entry into the national phase

Ref document number: PI0618065

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20080429