WO2007049426A1 - 核磁気共鳴プローブおよび核磁気共鳴装置 - Google Patents

核磁気共鳴プローブおよび核磁気共鳴装置 Download PDF

Info

Publication number
WO2007049426A1
WO2007049426A1 PCT/JP2006/319424 JP2006319424W WO2007049426A1 WO 2007049426 A1 WO2007049426 A1 WO 2007049426A1 JP 2006319424 W JP2006319424 W JP 2006319424W WO 2007049426 A1 WO2007049426 A1 WO 2007049426A1
Authority
WO
WIPO (PCT)
Prior art keywords
thin film
superconducting thin
coil
film coil
support plate
Prior art date
Application number
PCT/JP2006/319424
Other languages
English (en)
French (fr)
Inventor
Haruhiro Hasegawa
Noboru Moriya
Hiroyuki Yamamoto
Kazuo Saitoh
Original Assignee
Hitachi, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi, Ltd. filed Critical Hitachi, Ltd.
Priority to JP2007542285A priority Critical patent/JP4755652B2/ja
Publication of WO2007049426A1 publication Critical patent/WO2007049426A1/ja

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/28Details of apparatus provided for in groups G01R33/44 - G01R33/64
    • G01R33/32Excitation or detection systems, e.g. using radio frequency signals
    • G01R33/34Constructional details, e.g. resonators, specially adapted to MR
    • G01R33/34046Volume type coils, e.g. bird-cage coils; Quadrature bird-cage coils; Circularly polarised coils
    • G01R33/34053Solenoid coils; Toroidal coils
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/28Details of apparatus provided for in groups G01R33/44 - G01R33/64
    • G01R33/32Excitation or detection systems, e.g. using radio frequency signals
    • G01R33/34Constructional details, e.g. resonators, specially adapted to MR
    • G01R33/34092RF coils specially adapted for NMR spectrometers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/28Details of apparatus provided for in groups G01R33/44 - G01R33/64
    • G01R33/32Excitation or detection systems, e.g. using radio frequency signals
    • G01R33/34Constructional details, e.g. resonators, specially adapted to MR
    • G01R33/34007Manufacture of RF coils, e.g. using printed circuit board technology; additional hardware for providing mechanical support to the RF coil assembly or to part thereof, e.g. a support for moving the coil assembly relative to the remainder of the MR system
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/28Details of apparatus provided for in groups G01R33/44 - G01R33/64
    • G01R33/32Excitation or detection systems, e.g. using radio frequency signals
    • G01R33/34Constructional details, e.g. resonators, specially adapted to MR
    • G01R33/34015Temperature-controlled RF coils
    • G01R33/34023Superconducting RF coils

Definitions

  • the present invention relates to a probe in a nuclear magnetic resonance (NMR) device comprising at least a superconducting magnet as means for applying a static magnetic field to a sample and a low-temperature probe having a probe coil at the tip.
  • NMR nuclear magnetic resonance
  • the present invention relates to a nuclear magnetic resonance probe comprising a superconducting thin film having a coil formed on a substrate, and a configuration of a nuclear magnetic resonance apparatus using the same.
  • JP-A-11-133127 Conventionally, the configuration of a nuclear magnetic resonance probe coil made of a superconducting thin film has been discussed in JP-A-11-133127.
  • This conventional example relates to a so-called birdcage type probe coil, and a probe coil is configured by arranging a substrate on which a superconducting thin film is formed on a cylindrical surface coaxial with a sample.
  • Patent Document 1 Japanese Patent Laid-Open No. 11 133127
  • a probe coil made of a superconducting thin film is useful for realizing a high Q value.
  • a superconductor has the property of complete diamagnetism and has a large magnetic susceptibility of 4 ⁇ . Therefore, in designing the probe coil, it is necessary to maintain the uniformity of the static magnetic field so as not to disturb the static magnetic field. Furthermore, the substrate on which the superconducting thin film is formed must be cooled to below the superconducting critical temperature, and the substrate on which the superconducting thin film is formed must be firmly supported, and these three conditions must be satisfied. is there.
  • the above conventional example has been discussed with respect to the so-called birdcage type probe coil which relates to a probe coil made of a superconducting thin film.
  • the support structure of the substrate on which the superconducting thin film is formed is a configuration arranged on a cylindrical surface coaxial with the sample.
  • the probe coil has a saddle type and solenoid type force.
  • the saddle type and solenoid type probe coil has two or more superconducting thin film substrates arranged in parallel. Therefore, it is difficult to apply the conventional configuration to the saddle type or solenoid type probe coil.
  • An object of the present invention is to provide a saddle-type or solenoid-type probe coil configuration, and in particular, a substrate on which a superconducting thin film is formed can be sufficiently cooled by heat conduction while maintaining the uniformity of a static magnetic field, Another object is to provide a structure capable of firmly supporting a superconducting thin film substrate.
  • a nuclear magnetic resonance probe coil of the present invention supports a cylindrical portion and a superconducting thin film coil extended in the length direction of a column having one end fixed to the columnar portion.
  • a central platform having a plate portion;
  • the superconducting thin film coil formed on the substrate is held on the support plate portion of the superconducting thin film coil, and the cylindrical portion is connected to a heat exchanger to which cold heat is supplied from the outside.
  • the support plate portion of the superconducting thin film coil is formed so as to have a parallel relationship with the magnetic field acting on the place where the nuclear magnetic resonance probe coil is placed.
  • the central base firmly holds the support plate portion of the superconducting thin film coil with a cylindrical portion interposed therebetween, and cools heat from the heat exchanger via the support plate portion of the superconducting thin film coil. It shall be efficiently transmitted to the thin film coil. Furthermore, the superconductivity The support plate portion of the thin film coil is formed so as to have a parallel relationship with the magnetic field acting on the place where the nuclear magnetic resonance probe coil is placed, and maintains the uniformity of the static magnetic field.
  • cooling effect can be further increased if the cylindrical portion of the central base and the support plate portion of the superconducting thin film coil are cut into an integral structure.
  • the probe coil has a birdcage type, a cage type and a solenoid type force solenoid type is more sensitive than a cage type and birdcage type.
  • Example 1 is used for a probe that is applied with a static magnetic field in the horizontal direction and stretched in a bar shape in the horizontal direction in order to realize a highly sensitive nuclear magnetic resonance apparatus.
  • a solenoid-type receiving probe coil with superconducting thin-film coil force is provided at the tip of the probe.
  • the present embodiment relates to the configuration of the probe coil.
  • FIG. 1 is a cross-sectional view showing the overall configuration of a nuclear magnetic resonance apparatus in which the probe coil of Example 1 is mounted.
  • 4 and 4 are two-way solenoid coils for capturing static magnetic fields.
  • the inner tank 6 is filled with liquid helium and the outer tank 7 is filled with liquid nitrogen. Bore part of solenoid coil 4 and 4 is a space, and probe 1 is mounted using this space
  • the probe 1 extends in a bar shape in the horizontal direction, and a probe coil 2 is provided at a position where a static magnetic field is covered on the sample to be measured at the tip of the probe 1.
  • the probe coil of Example 1 is a solenoid type.
  • the probe coil 2 at the tip of the probe 1 is arranged so that the hollow axial direction of the coil is the same as the moving direction of the sample, and the sample tube 3 into which the measurement sample is put can be inserted.
  • Sample tube 3 is divided into two solenoid coils Insert and pull out vertically using 4 and 4 split positions. Therefore, the probe
  • the receiving probe coil in order to increase the sensitivity, is not a birdcage type or a saddle type, but a force using a solenoid coil. Therefore, it is necessary to divide the superconducting magnet into two parts.
  • a high V and Q value are achieved that ensures magnetic field uniformity, reduces the space occupied by the probe coil. It is necessary to.
  • FIG. 2 is a perspective view schematically showing the configuration of the probe coil 2 of the first embodiment. It consists of a transmitting probe coil that transmits a high-frequency signal to the sample and a receiving probe coil that detects the output signal of the sample. Since the probe coil for reception requires higher sensitivity than the probe coil for transmission, a solenoid coil made of an oxide superconducting thin film that can achieve high sensitivity is used. On the other hand, the transmitting probe coil is a normal metal, and is a saddle coil that surrounds the receiving probe coil. The static magnetic field is applied in the horizontal direction, and the solenoid coil detects the vertical component of the magnetic moment output from the sample.
  • Reference numeral 13 denotes a normal metal film, which is provided at both ends of the oxide superconducting thin film 11 so as to form a capacitor by inserting an insulator between the oxide superconducting thin film 11.
  • 15 is It is a normal metal connection wiring and is connected to the normal metal film 13. Thereby, the normal metal connection wiring 15 and the oxide superconducting thin film 11 are connected via the capacitor, and a necessary circuit can be formed.
  • Coil 11 and coil 11 1S Coil 11 and coil 11 1S are connected in series.
  • the receiving probe coils that form a two-turn, two-parallel circuit connected in parallel.
  • the sample tube 3 is inserted into the space of the four parallel receiving coils 11 to which the detecting circuit 10 is connected to the receiving probe coil through the normal metal lead wire 17. .
  • 18 to 18 are coil pieces of a probe coil for transmission, and a normal metal, for example, a thickness of 0.
  • the transmitting probe coil is essentially a one-turn coil formed by coil pieces 18, 18, 18 and 18,
  • the transmitting probe coil 18 is normally conducting from the coil pieces 18 and 18 that connect each one-turn coil.
  • a large pulse current is applied from the transmitter circuit 20 via the metal lead-out wiring 17 ', and a magnetic moment of a component orthogonal to the static magnetic field is generated in the sample inserted in the space formed by the probe coil for reception.
  • the magnetic moment of the component orthogonal to the static magnetic field gradually relaxes, but at that time, the signal output from the sample is received by the receiving probe coil.
  • the receiving probe coil is a capacitor (C) resonance between the trimmer capacitor 9 placed in the probe 1 and the inductor (L) of the coil 11 and the normal metal connection wire 15 and the oxide superconducting thin film 11.
  • the circuit is configured, in order to increase the detection sensitivity, it is necessary to increase the Q value of the LC resonant circuit. In order to increase the Q value, it is necessary to reduce the parasitic resistance included in the LC resonance circuit.
  • the solenoid coil is composed of a superconductor.
  • FIGS. 3A and 3B are diagrams illustrating an example in which a one-turn coil made of the superconducting thin film 11 is formed on the sapphire substrate 12.
  • FIG. 3A is a plan view seen from the top surface of the substrate.
  • 12 is a sapphire (Al 2 O 3) substrate with a superconducting oxide superconductor YBa Cu 2 O on the surface.
  • a thin film 11 is formed to form a circular coil.
  • a round coil superconducting thin film 11 The part is open and extends outward.
  • Reference numeral 101 denotes a hole, which is a portion into which the sample tube 3 is inserted.
  • Reference numeral 102 denotes holes, which are provided at the four corners of the sapphire substrate 12 and are used as screw holes for structural connection after a 1-turn coil is stacked to form a probe coil.
  • 104 to 107 are holes, respectively, from the coil side 18 of the probe coil 8 for transmission.
  • Reference numeral 13 denotes a normal metal film made of Au, which is formed at a position corresponding to the open end of the superconducting thin film 11 and the extended end of the superconducting thin film 11.
  • FIG. 3 (B) is a cross-sectional view taken in the direction of the arrow at the position AA in FIG. 3 (A). It can be seen that the normal conductive metal film 13 forms a capacitor with the interlayer insulating film 311 sandwiched between the open end of the superconducting thin film 11 and the portion extending from here to the outside. .
  • CeO having a thickness of lOOnm is formed on the sapphire (Al 2 O 3) substrate 12 as a buffer layer.
  • the thickness of the 2 3 7 2 u O thin film was set to a value larger than the lOOnm magnetic penetration depth.
  • the unevenness of the surface of the YBa Cu O thin film increases as the film thickness increases to 1 m or more.
  • the film thickness of YBa Cu O thin film is suitably lOOnm or more and 1 ⁇ m or less.
  • the YBa Cu O thin film is processed by the usual fabrication process of resist coating, photolithography, and Ar etching, and a part is open and stretched outward.
  • a normal metal film 13 made of Au was formed.
  • the Au film thickness needs to be thicker than the skin depth.
  • the Au film thickness was 10 m. Au is easy to peel off when deposited directly on the CeO film.
  • Example 1 Using. In Example 1, a force layer using Nb T layer or PtZTi two-layer film may be used as the base film. Next, the Au film was processed by the usual fabrication process of resist coating, photolithography, and Ar etching to form the desired pattern.
  • the film is in close contact, so the distance between the metals that make up the capacitor does not change, so
  • the capacity value can be realized with good reproducibility.
  • a piercing force was applied to the sapphire substrate 12 to open a sample tube hole 101, a fixing screw hole 102, and a transmission coil hole 104 to 107.
  • Example 1 in order to realize the probe coil of FIG. 2, the sapphire substrate 12 on which the superconducting thin film coil described in FIG. 3 is stacked is stacked to produce a solenoid coil.
  • the structure should be considered so as to satisfy the three conditions of supporting the superconducting thin film substrate, cooling the superconducting thin film substrate below the superconducting critical temperature, and not disturbing the uniformity of the static magnetic field.
  • FIG. 4 is a perspective view showing the configuration of the center base of the first embodiment of the present invention devised to satisfy these three conditions.
  • the central platform 200 has a shape in which a cylindrical portion 211 and a support plate portion 212 of a superconducting thin film coil are connected.
  • the support plate portion 212 of the superconducting thin film coil has a shape extending in the longitudinal direction of the cylinder at the center position in the diameter direction of the cylindrical portion 211. Most of the right side of the upper half of the cylindrical portion 211 is cut out and used for coupling with a heat exchanger 23 and a holding plate having a trimmer capacitor pedestal as described later.
  • Reference numeral 213 denotes a protective part, which is the remaining part of the upper part of the cylindrical part 211 and has the same end face as the left end face of the cylindrical part 211.
  • the protective part 213 is provided with a hole 226. As will be described later, this hole is used for derivation of electrical wiring.
  • the cylindrical portion 211 and the support plate portion 212 of the superconducting thin film coil may be cut out from the cylindrical casing as an integral structure.
  • the cylindrical portion 211 is connected to a heat exchanger 23 to which cold is supplied from the outside.
  • the support plate portion 212 of the superconducting thin film coil is formed so as to have a parallel relationship with the magnetic field acting on the place where the nuclear magnetic resonance probe coil is placed.
  • the central base 200 has a high thermal conductivity, but it is preferable to use aluminum nitride, which is an electrical insulator. Then, the superconducting thin film can be efficiently cooled while being electrically insulated. Moreover, mechanical strength is also large.
  • the superconducting thin film coil support plate portion 212 is alternately provided with a sapphire substrate 12 and a spacer 14 on which a one-turn coil having a superconducting thin film 11 force is formed. Is laminated. Therefore, various holes are provided in the spacer 14 as in the sapphire substrate 12.
  • Reference numeral 221 denotes a hole corresponding to the hole 101 for the sample tube.
  • 222 is a hole corresponding to the hole 102 for the fixing screw of the sapphire substrate 12.
  • the four force diagrams provided around the sample tube hole 221 are complicated as in the case of the hole 102. Therefore, the display of other reference numerals is omitted.
  • Reference numeral 223 denotes a hole corresponding to the hole 104 for the probe coil for transmission of the sapphire substrate 12.
  • Four holes are provided around the hole 221 for the sample tube in the same manner as the holes 104 to 107 of the sapphire substrate 12. However, since the drawing becomes complicated, the display of other reference numerals is omitted.
  • the support plate portion 212 of the superconducting thin film coil is further provided with a hole 225 at a joint portion between the four holes 224 and the cylindrical portion 211 in the peripheral portion.
  • the hole 224 is a fixing screw hole for fixing the laminated body of the sapphire substrate 12 and the spacer 14 which are alternately laminated.
  • the hole 225 is a hole used to provide or lead out the normal metal connection wiring 15, normal metal lead-out wiring 17, 17 ′, etc. described in FIG. 2. In these holes corresponding to the sample tube holes 221 of the laminate of the superconducting thin film coil support plate 212, sapphire substrate 12 and spacer 14, the sample tube 3 is provided as described in FIG.
  • the support plate portion 212 of the superconducting thin film coil needs to be parallel to the Z-X plane.
  • the width of the support plate 212 of the superconducting thin film coil is approximately the same as that of the sapphire substrate 12 of the superconducting thin film coil described in FIG. It is assumed that the length has a margin for providing a fixing screw hole 224 for fixing the laminated body of the sapphire substrate 12 and the spacer 14 laminated on both sides of the sapphire substrate 12 of the superconducting thin film coil.
  • FIG. 5 is an exploded perspective view for explaining the configuration of the laminated body of the support plate portion 212, the sapphire substrate 12 and the spacer 14 of the superconducting thin film coil.
  • the sapphire substrate 12 and the spacer 14 are alternately stacked in the vertical direction around the support plate portion 212 of the superconducting thin film coil of the central base 200.
  • the superconducting thin film coil has four turns in the first embodiment, there are two sapphire substrates 12 and two spacers 14 in the vertical direction.
  • Spacer 14 has the same size as support plate portion 212 of the superconducting thin film coil, and the same hole is formed.
  • the superconducting thin film coil is supported.
  • the holes of the holding plate 212, the sapphire substrate 12, and the spacer 14 are provided at corresponding positions.
  • an example of the size of the thickness of the support plate portion 212 of the superconducting thin film coil, the sapphire substrate 12 and the spacer 14 is shown.
  • the support plate portion 212 of the superconducting thin film coil is 1.5 mm and the sapphire substrate 12 is 0.5mm and spacer 14 is 1.5mm.
  • the distance between the superconducting thin film coils is 2 mm, and the total thickness of the laminate is 9.5 mm.
  • the spacer 14 also has a high thermal conductivity like the central platform 200, but it is preferable to use aluminum nitride as an electrical insulator. Then, the superconducting thin film can be efficiently cooled while being electrically insulated.
  • FIG. 6 shows an outline of the correspondence to heat exchange while forming a laminated body of the support plate portion 212 of the superconducting thin film coil, the sapphire substrate 12 and the spacer 14 in accordance with the developed perspective view shown in FIG. It is a perspective view shown.
  • the sapphire substrate 12 on which the superconducting thin film coils are formed and the spacer 14 made of aluminum nitride are alternately stacked above and below the support plate portion 212 of the superconducting thin film coil of the central base 200.
  • the transmitting probe coil 18 is assembled through the hole 227, and necessary electrical wiring is performed through the hole 225.
  • the upper part of the transmitting probe coil is arranged on the upper surface of the uppermost spacer 14 and the lower part is arranged on the lower surface of the lowermost spacer 14.
  • a screw 19 made of aluminum nitride is used to fix the sapphire substrate 12 and the aluminum nitride spacer 14 to the support plate portion 212 of the superconducting thin film coil 200 in the central base 200 through the hole 222.
  • Reference numeral 22 denotes a support plate, which includes a heat exchanger 23 coupled to the cylindrical portion 211 of the center base 200 on the lower surface, and a trimmer pedestal 25 on the upper surface. As will be described with reference to FIG. 7, the support plate 22 is supported by an appropriate structural material of the nuclear magnetic resonance apparatus.
  • Reference numeral 24 denotes a trimmer capacitor, which is provided in the electric wiring connecting the detection circuit 10 and the superconducting thin film coil described in FIG. 2, and is held on the trimmer base 25.
  • the heat exchange 23 and the cylindrical portion 211 of the central platform 200 are mechanically coupled to transmit cold heat to the superconducting thin film coin on the sapphire substrate 12 as indicated by the dotted line in the figure.
  • FIG. 7A is a cross-sectional view showing an outline of the entire structure of the low-temperature probe of the first embodiment. To indicate that the center stand 200 is the center, this is hatched and the sapphire base Only the dot pattern is attached to the plate 12, and other hatching is omitted.
  • Fig. 7 (B) is a side view of the left side force of Fig. 7 (A).
  • Reference numerals 215 and 216 denote protective spacers provided on the upper and lower surfaces of the laminate of the superconducting thin-film coil support plate 212, the sapphire substrate 12 and the spacer 14. These protective spacers are also provided with sample holes 221 at positions corresponding to the respective sample holes 221.
  • screw holes are provided at positions corresponding to the four holes 224 in the peripheral portion of the support plate portion 212 of the superconducting thin film coil.
  • the force with which the screw 19 is engaged with the screw hole of the protective spacer 216 may be fixed by a nut supported by the lowermost spacer 14 shown in FIG.
  • Reference numeral 217 denotes a screw that connects the protective spacers 215 and 216 through the four holes 224 in the peripheral portion of the support plate portion 212 of the superconducting thin film coil.
  • the support plate 22 is coupled to the cylindrical portion 211 of the central platform 200 by screws 218 and supported by the structural member 220 of the nuclear magnetic resonance apparatus.
  • the heat exchanger 23 held on the support plate 22 is coupled to the cylindrical portion 211 of the center base 200 by screws 219.
  • a copper pipe 26 for supplying a refrigerant to the heat exchanger 23 is connected to the heat exchanger 23.
  • the trimmer capacitor 24 is operated by an operation piece (not shown) protected by a tube 27 while necessary wiring is performed through the hole 226.
  • the sapphire substrate 12 parallel to the central axis of the cryogenic probe and the static magnetic field can be maintained in parallel with high accuracy, and the only part where the superconductor and the magnetostatic field are linked is the small thickness of the superconducting thin film. Therefore, a uniform magnetic field can be realized with a small disturbance of the static magnetic field. Furthermore, the normal direction of the surface of the laminate centering on the support plate portion 212 of this superconducting thin film coil was taken as the normal direction of the static magnetic field, and was aligned with the direction of introduction of the sample tube 3.
  • the center base 200 of the first embodiment has a structure in which a columnar portion 211 and a support plate portion 212 are integrally connected, and the superconducting thin film coil substrate 12 and the spacer are connected to the support plate portion 212.
  • the spacers 14 and 14 were stacked alternately.
  • the heat conduction direction is the normal direction of the substrate as shown by the dotted arrows in FIG. It will be possible to cool efficiently.
  • the In plate particles are appropriately placed in the contact portions of the support plate 212, the superconducting thin film coil substrate 12, and the spacer 14, respectively. In the state shown in the above, the effect of heat transfer can be further improved by appropriately heating and pressurizing.
  • the central platform is formed by an integral structure in which the cylindrical portion and the support plate portion are connected, and the central axis in the longitudinal direction of the cylindrical portion is arranged so as to be substantially parallel to the central axis of the cryogenic probe.
  • the superconducting thin film substrate and the spacer are stacked on the support plate portion, and arranged so that the normal line of the support plate portion is substantially parallel to the normal line of the superconducting thin film substrate.
  • Example 2 of the present invention will be described.
  • the nuclear magnetic resonance apparatus of the first embodiment applied a static magnetic field in the horizontal direction!]
  • the nuclear magnetic resonance apparatus of the second embodiment applied a static magnetic field in the vertical direction.
  • the probe extends in the shape of a rod in the vertical direction, and includes a probe coil formed with a superconducting thin film coil substrate facing the tip of the probe.
  • Example 2 relates to the configuration of this probe coil.
  • FIG. 8 is a cross-sectional view of the overall configuration of the nuclear magnetic resonance apparatus in which the probe coil of Example 2 is mounted. It is a figure shown in the form of. 4 is a solenoid coil for capturing a static magnetic field in the vertical direction. A solenoid coil 5 is provided on the outer periphery of the solenoid coil 4 and is provided for correcting the magnetic field. These coils are mounted in the double tanks 6 and 7. The inner tank 6 is filled with liquid helium and the outer tank 7 is filled with liquid nitrogen. The bore portion of the solenoid coil 4 is a space, and the probe 1 is mounted using this space.
  • the probe 1 extends vertically in the shape of a rod, and a probe coil 2 is provided at a position where a static magnetic field is applied to the sample to be measured at the tip of the probe 1.
  • the probe coil of Example 2 is a saddle type.
  • the probe coil 2 at the tip of the probe 1 includes a receiving probe coil composed of two opposing superconducting thin film substrates, and a transmitting probe coil composed of two opposing normal metal films. Is provided.
  • the surface of the probe coil for reception and the surface of the probe coil for transmission are orthogonal.
  • the surface of the superconducting thin film substrate is in the vertical direction, and the sample tube 3 into which the measurement sample is placed is inserted between the two superconducting thin film substrates and the transmitting probe coil, and the vertical direction is the moving direction of the sample.
  • the sample tube 3 is pulled out by inserting the bore portion of the solenoid coil 4 in the vertical direction. Therefore, the probe coil 2 detects the horizontal component of the magnetic moment output from the sample. Note that the directions of the X, Y, and Z axes shown in the lower part of FIG. 8 are indicated on the same basis in the following drawings.
  • FIG. 9 is a development view schematically showing the configuration of the probe coil 2 of the second embodiment. It consists of a transmitting probe coil 48 made of a normal conducting material that transmits a high-frequency signal to the sample, and a receiving probe coil 42 that detects the output signal of the sample.
  • the surface of the transmitting probe coil 48 and the surface of the receiving probe coil 42 are orthogonal to each other.
  • the receiving probe coil 42 is a saddle coil formed of an oxide superconducting thin film that can realize high sensitivity, and is formed on the substrates 42a and 42b.
  • the transmitting probe coil 48 is a vertical coil made of copper foil with a thickness of 0.1 mm. The static magnetic field is applied in the vertical direction, and the receiving probe coil 42 detects the horizontal component of the magnetic moment output from the sample.
  • the reception probe coil 42 includes two opposing substrates 42a and 42b, and an oxide superconducting thin film coil is formed on the substrate.
  • the sample tube 3 is inserted between the two opposing substrates.
  • a large pulse current is applied to the transmission probe coil 48 from the transmission circuit to the sample.
  • a magnetic moment having a component perpendicular to the static magnetic field is generated.
  • the magnetic moment of the component orthogonal to the static magnetic field gradually relaxes, but at that time, the signal output from the sample is received by the receiving probe coil.
  • Example 2 consideration was given to satisfying the three conditions of cooling the superconducting thin film substrate below the superconducting critical temperature and supporting the superconducting thin film substrate, in particular, without disturbing the uniformity of the static magnetic field.
  • a center base 51 was used in Example 2 as shown in FIG.
  • the center platform 51 has a shape in which a columnar portion 511 and a support plate portion 512 of a superconducting thin film coil extended in the length direction of the columnar portion 511 are connected. Needless to say, the cylindrical portion 511 and the support plate portion 512 of the superconducting thin film coil may also have a cylindrical force cut out.
  • the central platform 51 is made of aluminum nitride.
  • the central axis in the length direction of the columnar portion 511 and the outer surface of the support plate portion are substantially parallel.
  • Reference numeral 513 denotes a protective unit similar to the protective unit 213 of the first embodiment.
  • the sapphire substrates 42a and 42b on which the superconducting thin film coil 42 is formed are arranged in close contact with the support plate portion 512 of the superconducting thin film coil of the central base 51, and further, the aluminum nitride is further removed.
  • a probe coil was constructed by fixing to the support plate portion 512 of the superconducting thin film coil of the central base 51 using a screw 49 comprising:
  • Aluminum nitride has a high thermal conductivity, but is an electrical insulator. Therefore, the superconducting thin film coil can be efficiently cooled while being electrically insulated.
  • a thermal contact material such as In is interposed between the sapphire substrates 42a and 42b and the support plate portion 512 of the superconducting thin film coil, so that heat conduction can be improved.
  • a hole 514 for introducing the sample tube 3 is formed in the support plate portion 512 of the superconducting thin film coil coaxially with the longitudinal central axis of the cylindrical portion 511.
  • Superconducting thin film coil support plate part 5 12 and cylindrical part 511 coupling part of superconducting thin film coil support part 512 Hole 515 for passing the connecting wire of superconducting thin film coil 42 of sapphire substrate 42b, probe coil for transmission
  • a hole 516 is provided for the connection line to pass therethrough.
  • the connecting wire of the superconducting thin film coil 42 is formed in the same manner as described in FIG.
  • the protection part 513 is provided with a hole 517 through which a connection line with a trimmer capacitor described later is passed.
  • the cylindrical part 511 has a hole 518 communicating with a hole 514 for introducing the sample tube 3. Made.
  • Reference numeral 52 denotes a support plate, which includes a heat exchanger 53 coupled to the cylindrical portion 511 of the center base 51 on the lower surface and a trimmer pedestal 55 on the upper surface. As described with reference to FIG. 10, the support plate 52 is supported by an appropriate structural material of the nuclear magnetic resonance apparatus.
  • Reference numeral 54 denotes a trimmer capacitor, which is provided in the electric wiring connecting the detection circuit 10 and the superconducting thin film coil described with reference to FIG.
  • the heat exchanger 23 and the columnar part 511 of the central base 51 are mechanically coupled to transmit cold heat to the superconducting thin film coil on the sapphire substrates 42a and 42b fixed to the support plate part 512 of the superconducting thin film coil.
  • 519 is a hole that communicates when the cylindrical portion 511 and the heat exchanger 53 are joined.
  • FIG. 10A is a cross-sectional view showing an outline of the entire structure of the low-temperature probe of the second embodiment. In order to show that the center stand 51 is the center, hatching is added to this, and only the dot pattern is attached to the sapphire substrate 12 and the other parts are not shown.
  • FIG. 11 is a plan view seen from the upper surface of FIG.
  • Reference numerals 61 to 64 denote protective spacers provided on the outer surfaces of the substrates 42a and 42b and the transmitting probe coil 48 fixed to the support plate portion 512 of the superconducting thin film coil.
  • these protective spacers are fixed by pressing the sapphire substrates 42a and 42b against the support plate portion 512 of the superconducting thin film coil with the screw 217 as in the first embodiment.
  • the support plate 52 is held by the structural material 220 of the nuclear magnetic resonance apparatus, and is coupled to the columnar portion 211 of the center base 200 by screws 218.
  • the heat exchanger 53 held by the support plate 22 is coupled to the columnar portion 511 of the center base 51 by screws 219.
  • a copper pipe 56 for supplying a cooling medium is connected to the heat exchanger 53.
  • the trimmer capacitor 54 is operated by an operation piece (not shown) protected by a tube 57 while necessary wiring is performed through the hole 517.
  • Example 2 the support plate portion 512 of the superconducting thin film coil is extended along the longitudinal center axis of the cylindrical portion 511 of the center platform 51, and the superconducting thin film coil is formed on the outer surface of the support plate portion 512 of the superconducting thin film coil.
  • the cable substrate 12 and the transmitting probe coil 48 are fixed. Therefore, the central axis of the low-temperature probe and the static magnetic field can be maintained in parallel with high accuracy, so that the portion where the superconductor and the static magnetic field are linked is only a small portion of the thickness of the superconducting thin film.
  • the central axis of the support plate portion 512 of the superconducting thin film coil was set as the normal direction of the static magnetic field, and was aligned with the direction in which the sample tube 3 was introduced.
  • the central base 51 of Example 2 has a structure in which the columnar portion 511 and the support plate portion 512 of the superconducting thin film coil are integrally connected, and the superconducting thin film coil substrate 12 is formed on the outer surface of the support plate portion 512 of the superconducting thin film coil. And the probe coil 48 for transmission was fixed.
  • the heat conduction direction is the normal direction of the substrate, so that the contact area is large and the cooling can be efficiently performed.
  • the material for thermal contact In is appropriately heated and pressurized by appropriately placing In particles in the contact portion during the assembly process of the superconducting thin film coil substrate 12 and the support plate portion 512 of the superconducting thin film coil. As a result, the effect of heat transfer can be increased.
  • a solenoid-type nuclear magnetic resonance probe coil satisfying the three conditions of cooling the superconducting thin film substrate below the superconducting critical temperature and supporting the superconducting thin film substrate without disturbing the uniformity of the static magnetic field. Can be realized.
  • FIG. 1 is a schematic diagram of the overall configuration of a nuclear magnetic resonance apparatus according to a first embodiment of the present invention.
  • FIG. 2 is a perspective view schematically showing a configuration of a probe coil of Example 1.
  • FIG. 3 (A)-(B) are composed of a superconducting thin film formed on the substrate of the first embodiment of the present invention.
  • FIG. 4 is a perspective view showing the configuration of the central platform of the first exemplary embodiment of the present invention.
  • FIG. 5 is a developed perspective view for explaining the configuration of a laminated body of a support plate portion, a substrate and a spacer of the probe coil of the first embodiment of the present invention.
  • FIG. 6 An outline of the correspondence between the probe coil support plate, the substrate and the spacer laminate and the heat exchange ⁇ according to the first embodiment of the present invention according to the exploded perspective view shown in Fig. 5. It is a perspective view.
  • FIG. 7 (A) is a cross-sectional view showing an outline of the overall structure of the low-temperature probe of Example 1 of the present invention, and (B) is a side view seen from the left side of FIG. 7 (A).
  • FIG. 8 is a cross-sectional view showing the overall configuration of a nuclear magnetic resonance apparatus in which the probe coil of Example 2 of the present invention is mounted.
  • FIG. 9 is a development view schematically showing a configuration of a probe coil of Example 2 of the present invention.
  • FIG. 10 (A) is a cross-sectional view showing an outline of the overall structure of the low-temperature probe of Example 2 of the present invention
  • FIG. 10 (B) is a plan view that also shows the upper surface force of FIG. 10 (A).

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Magnetic Resonance Imaging Apparatus (AREA)

Abstract

 磁場均一性、冷却性、支持性が良く、Q値の高い超電導薄膜からなるソレノイド型プローブコイルを提供すること。 円柱形状部と支持板部をつなぎ合わせた一体もので中心台を形成し、この中心台を用いてプローブコイルを構成する。

Description

明 細 書
核磁気共鳴プローブおよび核磁気共鳴装置
技術分野
[0001] 本発明は、試料に静磁場を加える手段である超電導磁石と先端部にプローブコィ ルを備えた低温プローブとから少なくとも構成される核磁気共鳴装置 (NMR: Nuclea r Magnetic Resonance)において、プローブコイルが基板上に开成された超電導薄膜 からなる核磁気共鳴プローブおよびこれを利用した核磁気共鳴装置の構成に関する
背景技術
[0002] 従来、超電導薄膜からなる核磁気共鳴プローブコイルの構成については、特開平 11— 133127号公報において論じられている。この従来例は、いわゆる鳥かご型プ ローブコイルに関するものであり、超電導薄膜を形成した基板を試料に同軸の円筒 状面上に配置し、プローブコイルを構成している。
[0003] 特許文献 1 :特開平 11 133127号公報
発明の開示
発明が解決しょうとする課題
[0004] 高分解能、高感度の核磁気共鳴装置を実現するためには、試料に大きな静磁場を 印加すること、および高感度のプローブコイルを用いることが有効である。均一な強 磁場を発生するためには、磁場を発生する超電導磁石のボア径を小さくすることが望 ましぐボアの中に配置するプローブコイルは占有空間を小さくする必要がある。プロ ーブコイルは共振回路を形成する力 高感度のプローブコイルを実現するためには
、プローブコイルの Q値(Quality factor)を高めることが有効であり、高い Q値を実現 するためには共振回路を形成するプローブコイル内に含まれる抵抗を低減すること が有効である。
[0005] 従来、超電導薄膜を用いてプローブコイルを作製する試みは、上記特開平 11—1 33127号公報において論じられている。超電導体は直流抵抗が零であると共に、高 周波抵抗も小さぐプローブコイルの構成要素として有用である。実際、この場合、共 振回路内に含まれる抵抗は、構成要素の抵抗と構成要素の接続部の接触抵抗の和 としてのみ表され、超電導薄膜自体の構成要素としての寄与は無視できる。
[0006] 超電導薄膜からなるプローブコイルは、高い Q値を実現するために有用であるが、 一方、超電導体は完全反磁性という性質を有し、 ΐΖ4 πという大きな磁化率を有 する。従って、プローブコイルの設計に際しては、静磁場を乱さないように、静磁場の 均一性を保つことが必要である。さらに、超電導薄膜を形成した基板を超電導臨界 温度以下に冷却すること、超電導薄膜を形成した基板を堅固に支持する構造である ことが必要であり、これらの 3つの条件を満足することが必要である。
[0007] 上記従来例は、超電導薄膜からなるプローブコイルに関するものである力 いわゆ る鳥力ご型プローブコイルにっ 、て論じたものである。超電導薄膜を形成した基板の 支持構造は、試料に同軸の円筒状面上に配置した構成である。プローブコイルには 鳥かご型以外にサドル型、ソレノイド型がある力 サドル型、ソレノイド型プローブコィ ルは、超電導薄膜を形成した基板を 2枚以上概ね平行に配置する。従って、上記従 来例の構成をサドル型またはソレノイド型プローブコイルに適用することは難しい。
[0008] 本発明の目的は、サドル型またはソレノイド型プローブコイルの構成を提供すること であり、特に、静磁場の均一性を保ちながら、超電導薄膜を形成した基板を熱伝導 により十分冷却でき、かつ超電導薄膜基板を堅固に支持できる構成を提供すること にある。
課題を解決するための手段
[0009] 上記目的を達成するために、本発明の核磁気共鳴プローブコイルは、円柱形状部 と該円柱形状部に一端が固着された円柱の長さ方向に延伸された超電導薄膜コィ ルの支持板部とを有する中心台を備える。前記超電導薄膜コイルの支持板部に基板 上に形成された超電導薄膜コイルを保持し、前記円柱形状部を外部から冷熱を供給 される熱交換器に接続する。前記超電導薄膜コイルの支持板部は、核磁気共鳴プロ ーブコイルが置かれる場所に作用している磁場と平行の関係になるように形成する。
[0010] すなわち、前記中心台は円柱形状部を介在させて前記超電導薄膜コイルの支持 板部を強固に保持するとともに、熱交換器の冷熱を前記超電導薄膜コイルの支持板 部を介して前記超電導薄膜コイルに効率よく伝えるものとする。さらに、前記超電導 薄膜コイルの支持板部は、核磁気共鳴プローブコイルが置かれる場所に作用して ヽ る磁場と平行の関係になるように形成して、静磁場の均一性を保持する。
[0011] なお、前記中心台の円柱形状部と超電導薄膜コイルの支持板部とは、一体構造に 切り出されるものとすると、より冷却効果を増大できる。
発明の効果
[0012] 本発明によれば、前記超電導薄膜コイルを強固に保持し、且つ、冷却効果が大きく 、磁場の乱れを防止した核磁気共鳴プローブコイルを実現できる。
発明を実施するための最良の形態
[0013] 以下、本発明の実施例を図を参照して説明する。
[0014] (実施例 1)
一般に、プローブコイルには鳥かご型、鞍型とソレノイド型がある力 ソレノイド型の 方が鞍型や鳥力ご型よりも感度が高い。実施例 1は、高感度の核磁気共鳴装置を実 現するために、静磁場を水平方向に印加し、水平方向に棒状に延伸したプローブに 用いるものである。プローブの先端に超電導薄膜コイル力もなるソレノイド型の受信 用プローブコイルを備えている。本実施例は、このプローブコイルの構成に関するも のである。
[0015] 図 1は実施例 1のプローブコイルを実装した核磁気共鳴装置の全体構成を断面図 の形で示す図である。 4および 4は静磁場をカ卩えるための 2分割されたソレノイドコィ
1 2
ルであり、横方向に置かれたものである。 5および 5は、ソレノイドコイル 4および 4
1 2 1 2 の外周に設けられた 2分割されたソレノイドコイルであり、磁場の補正のために設けら れる。これらのコイルは、 2重化されたタンク 6、 7の中に実装される。内側のタンク 6に は、液体へリウムが充填され、外側のタンク 7には液体窒素が充填される。ソレノイドコ ィル 4および 4のボア部は空間とされ、この空間を利用してプローブ 1が実装される
1 2
。プローブ 1は水平方向に棒状に延伸しており、プローブ 1の先端部 被測定試料 に静磁場をカ卩える位置一には、プローブコイル 2が設けられる。
[0016] 実施例 1のプローブコイルはソレノイド型である。プローブ 1の先端部のプローブコィ ル 2はコイルの中空の軸方向が試料の移動方向と同じ方向になるように配置され、計 測試料を入れる試料管 3が挿入可能である。試料管 3は 2分割されたソレノイドコイル 4および 4の分割位置を利用して鉛直方向に挿入、引出する。従って、プローブコ
1 2
ィル 2は試料から出力された磁気モーメントのうち鉛直方向の成分を検出することに なる。なお、図 1の下段に示した X、 Yおよび Z軸の方向は、以下の図面においても、 同じ基準で示される。
[0017] 実施例 1では感度を高めるために受信用プローブコイルは鳥かご型や鞍型ではな くソレノイドコイルを用いた力 そのために超電導磁石を 2つに分割して配置する必要 が生じた。高感度のプローブコイルを実現するためには、上記、ソレノイド型を用いる ことのほかに、磁場均一性を確保する、プローブコイルの占有空間を小さくする、高 V、Q値(Quality factor)を実現することが必要である。
[0018] 均一な強磁場を発生するためには、磁場を生成するソレノイドコイル 4および 4の
1 2 ボア径を小さくすることが望ましぐボアの中に配置するプローブコイル 2の占有空間 も小さくする必要がある。実施例 1では 2つに分割した超電導磁石を用いているため 、分割していない超電導磁石を用いる従来例に比べて、均一な磁場空間を生成する ため、試料空間を小さくする必要がある。また、高い Q値を実現するためには、ソレノ イドコイル 2を低抵抗の材料から形成すること、ある 、は超電導体から構成することが 有効である。
[0019] 図 2は、実施例 1のプローブコイル 2の構成を模式的に示す斜視図である。試料に 高周波数の信号を送信する送信用プローブコイルと、試料の出力信号を検出する受 信用プローブコイルとからなる。受信用プローブコイルは、送信用プローブコイルより も高い感度を必要とするため、高感度を実現できる酸ィ匕物超電導薄膜で形成したソ レノイドコイルとした。これに対して、送信用プローブコイルは常伝導金属で、受信用 プローブコイルを外側力 取り囲む鞍型コイルとした。静磁場は水平方向に印加し、 ソレノイドコイルは試料から出力した磁気モーメントのうち鉛直方向の成分を検出する
[0020] 11〜11は、酸化物超電導薄膜で形成され、それぞれ、一部が開放された 1ター
1 4
ンの受信用コイルである。実施例 1では、 1ターンの受信用コイルが平行して 4個設け られる。 13は常伝導金属膜であり、酸ィ匕物超電導薄膜 11の両端部で、酸化物超電 導薄膜 11との間に絶縁体を挿入してキャパシタを形成するように設けられる。 15は 常伝導金属接続配線であり、常伝導金属膜 13と接続される。これにより、常伝導金 属接続配線 15と酸ィ匕物超電導薄膜 11がキャパシタを介して接続されることとなり、必 要な回路が形成できる。
[0021] コイル 11およびコイル 11 1S コイル 11およびコイル 11 1S それぞれ、直列に接
1 2 3 4
続され、これらが、並列に接続された 2ターン、 2パラレルの回路を形成した受信用プ ローブコイルとなっている。図の例では、受信用プローブコイルには、常伝導金属引 き出し配線 17を介して検出回路 10が接続される 4個の平行した受信用コイル 11の 空間部に試料管 3が挿入される。
[0022] 18〜18 は送信用プローブコイルのコイル片であり、常伝導金属、例えば厚さ 0.
1 10
lmmの銅箔、で鞍型コイルを形成するように組み立てられている。送信用プローブコ ィルは、実質的に、コイル片 18、 18、 18および 18が構成する 1ターンのコイルと、
1 3 5 8
コイル片 18、 18、 18および 18が構成する 1ターンのコイルとで受信用プローブコ
2 4 6 7
ィルを取り囲む 1ターンのコイルの 2個並列接続とされている。送信用プローブコイル 18には、それぞれの 1ターンのコイルを接続するコイル片 18および 18 から常伝導
9 10 金属引き出し配線 17'を介して送信回路 20から大きなパルス電流を印加し、受信用 プローブコイルの形成する空間部に挿入されている試料に静磁場と直交する成分の 磁気モーメントを生じさせる。この静磁場と直交する成分の磁気モーメントは次第に 緩和するが、その時、試料から出力される信号を受信用プローブコイルにより受信す る。
[0023] 受信用プローブコイルは、プローブ 1の中に置かれたトリマコンデンサ 9とコイル 11 のインダクタ (L) 常伝導金属接続配線 15と酸化物超電導薄膜 11との間のキャパ シタ (C)共振回路を構成するが、検出感度を高めるためには、その LC共振回路の Q 値を高める必要がある。 Q値を高めるためには LC共振回路に含まれる寄生抵抗を低 減する必要があり、本発明ではソレノイドコイルを超電導体で構成した。
[0024] 図 3 (A)、 (B)は、サファイア基板 12上に超電導薄膜 11からなる 1ターンコイルを形 成した例を説明する図である。図 3 (A)は基板の上面から見た平面図である。 12は サファイア (Al O )基板であり、表面に酸化物超電導体 YBa Cu Oからなる超電導
2 3 2 3 7
薄膜 11が成膜されて円形コイルを形成して ヽる。円形コイルの超電導薄膜 11の一 部は、開放されていて、外側方向に延伸されている。 101は孔であり、試料管 3が挿 入される部分である。 102は孔であり、サファイア基板 12の四隅に設けられ、 1ターン コイルを積層してプローブコイルを形成した後、構造的に連結するネジ止め用の孔と なる。 104〜107は孔であり、それぞれ、送信用プローブコイル 8のコイル辺 18から
4
18を通すために設けられる。 13は Auからなる常伝導金属膜であり、超電導薄膜 11 の開放されて ヽる端部と、ここ力 外側方向に延伸されて ヽる部分に対応する位置に 形成されている。図 3 (B)は、図 3 (A)の A— A位置で矢印方向に見た断面図である 。超電導薄膜 11の開放されている端部と、ここから外側方向に延伸されている部分 に対応する位置に常伝導金属膜 13とが層間絶縁膜 311を挟んでキャパシタを形成 していることが分かる。
[0025] 図 3 (A)、(B)を参照して説明した超電導薄膜 11からなる 1ターンコイルの形成 方法の概要を以下に説明する。
[0026] まず、サファイア(Al O )基板 12の上にバッファ層として膜厚 lOOnmの CeOを成
2 3 2 膜し、次に酸化物超電導体 YBa Cu Oからなる超電導薄膜 11を成膜した。 YBa C
2 3 7 2 u O薄膜の膜厚は、磁場侵入長の lOOnmより大きい値とした。
3 7
但し、膜厚が 1 m以上に厚くなると YBa Cu O薄膜の表面の凹凸が大きくなるの
2 3 7
で、 YBa Cu O薄膜の膜厚は、 lOOnm以上 1 μ m以下が適当であり、実施例 1では
2 3 7
150nmとした。次に、レジスト塗布、ホトリソグラフィ、 Arエッチングの通常の作製プロ セスにより、 YBa Cu O薄膜を加工し、一部は、開放されていて、外側方向に延伸さ
2 3 7
れて 、る円形状のパターンを形成した。
[0027] 次に、シャドーマスクを用いて、膜厚 250nmの CeOを成膜し、層間絶縁膜 311を
2
形成した。次に、下地膜として Nbを形成した後、 Auからなる常伝導金属膜 13を成膜 した。 Auの膜厚は表皮深さより厚いことが必要であり、実施例 1では Auの膜厚は 10 mとした。 Auは直接、 CeO膜に成膜すると剥離しやすいため、下地膜として Nbを
2
用いた。実施例 1では Nbを用いた力 下地膜として Tほたは PtZTiの 2層膜を用い ても良い。次に、レジスト塗布、ホトリソグラフィ、 Arエッチングの通常の作製プロセス により、 Au膜を加工し、所望のノターンを形成した。
[0028] これにより、 2つの金属 Au膜と YBa Cu O膜の間に、絶縁体である層間絶縁膜 Ce Oを挿入して、 Au/CeO /YBa Cu O構造のキャパシタを形成した。成膜した薄
2 2 2 3 7
膜は十分密着しているので、キャパシタを構成する金属間距離は変化せず、従って
、再現性良く容量値を実現することができる。
[0029] 次に、サファイア基板 12に孔あけ力卩ェを行い、試料管用の孔 101、固定ネジ用の 孔 102および送信コイル用の孔 104〜 107を開けた。
[0030] 実施例 1では、図 2のプローブコイルを実現するために、図 3で説明した超電導薄 膜コイルを形成したサファイア基板 12を積み重ね、ソレノイドコイルを作製する。この 際、特に、静磁場の均一性を乱さない、超電導薄膜基板を超電導臨界温度以下に 冷却する、超電導薄膜基板を支持するという 3つの条件を満足するように配慮した構 造とする。
[0031] 図 4は、これら 3つの条件を満足するために工夫された本発明の第 1の実施例の中 心台の構成を示す斜視図である。中心台 200は円柱形状部 211と超電導薄膜コィ ルの支持板部 212とが接続された形状である。該超電導薄膜コイルの支持板部 212 は前記円柱形状部 211の直径方向の中央位置で、円柱の長さ方向に延伸された形 状である。円柱形状部 211の上半分部の右側の大部分は切り欠かれていて、後述す るように、熱交^^ 23およびトリマコンデンサ台座を備える保持板との結合に利用さ れる。 213は保護部であり、円柱形状部 211の上部の残された部分であり、円柱形状 部 211の左端面と同じ端面を持つ。保護部 213には孔 226が設けられる。この孔は、 後述するように、電気配線の導出用に利用される。もちろん、円柱形状部 211と超電 導薄膜コイルの支持板部 212とは一体構造として円柱カゝら切り出されたものであって 良い。円柱形状部 211は、後述するように、外部から冷熱を供給される熱交換器 23 に接続する。前記超電導薄膜コイルの支持板部 212は、核磁気共鳴プローブコイル が置かれる場所に作用している磁場と平行の関係になるように形成する。なお、中心 台 200は熱伝導度が大きいが、電気的には絶縁物である窒化アルミによるのが良い 。そうすれば、電気的には絶縁をしながら、効率よく超電導薄膜を冷却することができ る。また、機械的な強度も大きい。
[0032] 前記超電導薄膜コイルの支持板部 212には、図 5を参照して説明するように、超電 導薄膜 11力もなる 1ターンコイルを形成したサファイア基板 12とスぺーサ 14が交互 に積層される。そのため、スぺーサ 14にもサファイア基板 12と同様に各種の孔が設 けられる。 221は試料管用の孔 101に対応する孔である。 222はサファイア基板 12 の固定ネジ用の孔 102に対応する孔である。この孔は、孔 102と同様に試料管用の 孔 221の周りに 4個設けられる力 図が煩雑になるので、他の参照符号の表示は省 略した。 223はサファイア基板 12の送信用プローブコイル用の孔 104に対応する孔 である。この孔は、サファイア基板 12の孔 104〜107と同様に試料管用の孔 221の 周りに 4個設けられるが、図が煩雑になるので、他の参照符号の表示は省略した。
[0033] 前記超電導薄膜コイルの支持板部 212には、さらに、周辺部に 4個の孔 224と円柱 形状部 211との接合部に孔 225が設けられる。孔 224は交互に積層されたサフアイ ァ基板 12とスぺーサ 14の積層体を固定するための固定ネジ用の孔である。孔 225 は図 2で説明した常伝導金属接続配線 15、常伝導金属引き出し配線 17, 17'等を 設けあるいは外部に導出するために使用される孔である。これら、前記超電導薄膜コ ィルの支持板部 212、サファイア基板 12およびスぺーサ 14の積層体の試料管用の 孔 221に対応する孔には、図 1で説明したように、試料管 3が挿入されるから、前記超 電導薄膜コイルの支持板部 212は、 Z—X面と平行である必要がある。超電導薄膜コ ィルの支持板部 212の幅は図 3で説明した超電導薄膜コイルのサファイア基板 12と ほぼ同じとする。長さは超電導薄膜コイルのサファイア基板 12の両側に積層された サファイア基板 12とスぺーサ 14の積層体を固定するための固定ネジ用の孔 224を 設けるための余裕を持ったものとする。
[0034] 図 5は、前記超電導薄膜コイルの支持板部 212、サファイア基板 12およびスぺーサ 14の積層体の構成を説明する展開斜視図である。中心台 200の超電導薄膜コイル の支持板部 212を中心に、上下方向に、サファイア基板 12およびスぺーサ 14を交 互に積層する。図 2で説明したように、実施例 1では超電導薄膜コイルは 4ターンとさ れているから、サファイア基板 12およびスぺーサ 14は、それぞれ、上下方向に 2枚で ある。スぺーサ 14は超電導薄膜コイルの支持板部 212と同一サイズとされるとともに 、同じ孔が形成される。図が煩雑になるので、最上段のスぺーサ 14に、前記超電導 薄膜コイルの支持板部 212に付した孔の参照符号と他の主要な参照符号を付すの みで、他の孔の参照符号は省略する。図に示すように、前記超電導薄膜コイルの支 持板部 212、サファイア基板 12およびスぺーサ 14のそれぞれの孔を対応する位置 に設ける。ここで、前記超電導薄膜コイルの支持板部 212、サファイア基板 12および スぺーサ 14の厚さのサイズの例を示すと、超電導薄膜コイルの支持板部 212が 1. 5 mm、サファイア基板 12が 0. 5mm、スぺーサ 14が 1. 5mmである。この例によれば 、超電導薄膜コイル間の距離が 2mm、積層体全体の厚さが 9. 5mmとなる。なお、ス ぺーサ 14も、中心台 200と同様、熱伝導度が大きいが、電気的には絶縁物である窒 化アルミによるのが良い。そうすれば、電気的には絶縁をしながら、効率よく超電導 薄膜を冷却することができる。
[0035] 図 6は、図 5に示した展開斜視図に従って前記超電導薄膜コイルの支持板部 212、 サファイア基板 12およびスぺーサ 14の積層体を形成するとともに熱交 との対 応の概要を示す斜視図である。中心台 200の超電導薄膜コイルの支持板部 212の 上下に超電導薄膜コイルを形成したサファイア基板 12と窒化アルミからなるスぺーサ 14を交互に積み重ねる。この状態で、図 2で説明した各超電導薄膜コイル間の電気 的な接続を孔 225を通して行う。さらに、孔 227を通して送信用プローブコイル 18を 組み立てて、必要な電気的配線を孔 225を通して行う。送信用プローブコイルの上 辺部分は最上段のスぺーサ 14の上面に、底辺部分は最下段のスぺーサ 14の下面 に位置するように配置される。 19は窒化アルミからなるネジであり、孔 222を通して、 サファイア基板 12、窒化アルミスぺーサ 14を中心台 200の超電導薄膜コイルの支持 板部 212に固定するために使用される。
[0036] 22は支持板であり、下面に中心台 200の円柱形状部 211と結合される熱交換器 2 3を備え、上面にトリマ台座 25を備える。支持板 22は、図 7で説明するように、核磁気 共鳴装置の適宜の構造材で支持される。 24はトリマコンデンサであり、図 2で説明し た検出回路 10と超電導薄膜コイルとを接続する電気配線に設けられるものであり、ト リマ台座 25に保持される。熱交翻 23と中心台 200の円柱形状部 211とは、機械的 に結合され、図に点線で示すように、冷熱をサファイア基板 12上の超電導薄膜コィ ノレに伝える。
[0037] 図 7 (A)は実施例 1の低温プローブの全体構造の概要を示す断面図である。中心 台 200が中心となっていることを示すために、これにハッチングを付し、サファイア基 板 12にドットの模様を付したのみで他の部分のハッチングは省略して示す。図 7 (B) は、図 7 (A)の左側面力も見た側面図である。 215, 216は超電導薄膜コイルの支持 板部 212、サファイア基板 12およびスぺーサ 14の積層体の上下面に設けた保護ス ぺーサである。これらの保護スぺーサにも、試料孔 221がそれぞれの試料孔 221に 対応する位置に設けられる。また、前記超電導薄膜コイルの支持板部 212の周辺部 の 4個の孔 224に対応する位置にネジ穴が設けられる。ここでは、ネジ 19が保護スぺ ーサ 216のネジ穴と係合するものとしている力 図 6で示す最下段のスぺーサ 14で 支持されるナットにより固定されるものとしても良い。 217はネジであり、前記超電導 薄膜コイルの支持板部 212の周辺部の 4個の孔 224を通して保護スぺーサ 215, 21 6間を結合する。
[0038] 支持板 22はネジ 218により中心台 200の円柱形状部 211に結合されるとともに、核 磁気共鳴装置の構造材 220に支持される。支持板 22に保持されている熱交 23 はネジ 219により中心台 200の円柱形状部 211に結合される。熱交換器 23には熱 交 23に冷媒を供給する銅パイプ 26が接続される。トリマコンデンサ 24は孔 226 を通して必要な配線が行われるとともに、チューブ 27で保護された図示しない操作 片により操作される。
[0039] 高 、感度を実現するためには、磁場の均一度を高める必要がある力 超電導体は 完全反磁性という性質を有し、—ΐΖ4 πという大きな磁化率を有する。従って、超電 導体と静磁場が鎖交する部分が大きくなるほど、静磁場は大きく乱れる。実施例 1は 、中心台 200の円柱形状部 211の長さ方向の中心軸に沿って超電導薄膜コイルの 支持板部 212を延伸し、これを基礎に超電導薄膜コイルのサファイア基板 12とスぺ ーサ 14とを交互に積層するものとした。したがって、低温プローブの中心軸と平行な サファイア基板 12と静磁場とは精度よく平行が維持でき、これより、超電導体と静磁 場が鎖交する部分は超電導薄膜の厚さという小さい部分のみとなり、従って、静磁場 の乱れは小さぐ均一な磁場を実現できる。さらに、この超電導薄膜コイルの支持板 部 212を中心とする積層体の面の法線方向を静磁場の法線方向とし、試料管 3の導 入方向と合わせた。
[0040] 超電導薄膜コイル基板を十分に冷却するためには、冷却のために熱伝導経路上に 置く構成要素を少なくし、構成要素の接続をできるだけ避けることが望ましい。止むを 得ず構成要素同士を繋げる場合には、 Inのような熱接触用材料を介在させ、接触面 積をできるだけ大きくすることが望ましい。また、熱伝導率の高い材料を用いることが 望ましい。図 6に示すように、実施例 1の中心台 200は、円柱形状部 211と支持板部 212とを一体的に接続した構造であるとともに、支持板部 212に超電導薄膜コイル基 板 12とスぺーサ 14とを交互に積み重ねた。従って、積み重ねた超電導薄膜コイル基 板 12を支持板部 212を通じて冷却する際、図 6の点線の矢印で示すように、熱の伝 導方向が基板の法線方向になるので、接触面積が大きぐ効率よく冷却できることに なる。なお、図 6では、熱接触用材料 Inについては言及しな力つた力 支持板部 212 と超電導薄膜コイル基板 12とスぺーサ 14のそれぞれの接触部に適宜 Inの粒子を置 いて、図 6に示す状態で、適宜、加温および加圧することにより、より熱伝達の効果を あげることができる。
[0041] 実施例 1によれば、静磁場を水平方向に印加した時の、 Q値が高ぐ磁場均一性が 良ぐ占有空間の小さい、超電導体力もなるソレノイドコイルが実現できる。すなわち、 円柱形状部と支持板部をつなぎ合わせた一体ものの構成で中心台を形成し、この円 柱形状部の長さ方向の中心軸が低温プローブの中心軸と概ね平行となるように配置 する。また、支持板部に超電導薄膜基板とスぺーサを積み重ね、支持板部の法線が 超電導薄膜基板の法線と概ね平行の関係になるように配置する。これにより、静磁場 の均一性を乱さない、超電導薄膜基板を超電導臨界温度以下に冷却する、超電導 薄膜基板を支持するという 3つの条件を満足したプローブコイルを実現することがで きた。
[0042] (実施例 2)
次に、本発明の実施例 2を説明する。実施例 1の核磁気共鳴装置は静磁場を水平 方向に印力!]したが、実施例 2の核磁気共鳴装置は静磁場を鉛直方向に印加するも のである。プローブは鉛直方向に棒状に延伸しており、プローブの先端に超電導薄 膜コイル基板を対向して形成したプローブコイルを備えている。実施例 2は、このプロ ーブコイルの構成に関するものである。
[0043] 図 8は実施例 2のプローブコイルを実装した核磁気共鳴装置の全体構成を断面図 の形で示す図である。 4は鉛直方向に静磁場をカ卩えるためのソレノイドコイルである。 5は、ソレノイドコイル 4の外周に設けられたソレノイドコイルであり、磁場の補正のため に設けられる。これらのコイルは、 2重化されたタンク 6、 7の中に実装される。内側の タンク 6には、液体へリウムが充填され、外側のタンク 7には液体窒素が充填される。 ソレノイドコイル 4のボア部は空間とされ、この空間を利用してプローブ 1が実装される 。プローブ 1は鉛直方向に棒状に延伸しており、プローブ 1の先端部 被測定試料 に静磁場をカ卩える位置一には、プローブコイル 2が設けられる。実施例 2のプローブ コイルは鞍型である。プローブ 1の先端部のプローブコイル 2は 2枚の対向する超電 導薄膜基板から構成される受信用プローブコイルと、 2枚の対向する常伝導金属膜 カゝら構成される送信用プローブコイルとを備える。受信用プローブコイルの面と送信 用プローブコイルの面とは直行する。超電導薄膜基板の面は鉛直方向であり、計測 試料を入れる試料管 3は 2枚の超電導薄膜基板と送信用プローブコイルとの間に挿 入され、鉛直方向が試料の移動方向となる。試料管 3はソレノイドコイル 4のボア部を 鉛直方向に挿入され、引出される。従って、プローブコイル 2は試料から出力された 磁気モーメントのうち水平方向の成分を検出することになる。なお、図 8の下段に示し た X、 Yおよび Z軸の方向は、以下の図面においても、同じ基準で示される。
[0044] 図 9は、実施例 2のプローブコイル 2の構成を模式的に示す展開図である。試料に 高周波数の信号を送信する常電導材料からなる送信用プローブコイル 48と、試料の 出力信号を検出する受信用プローブコイル 42とからなる。送信用プローブコイル 48 の面と受信用プローブコイル 42の面とは直交する関係にある。受信用プローブコィ ル 42は高感度を実現できる酸ィ匕物超電導薄膜で形成した鞍型コイルとし、基板 42a 、 42b上に形成される。送信用プローブコイル 48は厚さ 0. 1mmの銅箔カゝらなる鞍型 コイルとした。静磁場は鉛直方向に印加し、受信用プローブコイル 42は試料から出 力した磁気モーメントのうち水平方向の成分を検出する。
[0045] 受信用プローブコイル 42は、対向する 2枚の基板 42a、 42bから構成され、基板上 には酸化物超電導薄膜コイルが形成されている。対向する 2枚の基板の間に試料管 3が挿入される。
[0046] 送信用プローブコイル 48には、送信回路から大きなパルス電流を印加し、試料に 静磁場と直交する成分の磁気モーメントを生じさせる。この静磁場と直交する成分の 磁気モーメントは次第に緩和するが、その時、試料から出力される信号を受信用プロ ーブコイルにより受信する。
[0047] 実施例 2では、特に、静磁場の均一性を乱さな 、、超電導薄膜基板を超電導臨界 温度以下に冷却する、超電導薄膜基板を支持するという 3つの条件を満足するように 配慮した。これら 3つの条件を満足するために、実施例 2では図 9に示すように中心 台 51を用いた。中心台 51は、円柱形状部 511と円柱形状部 511の長さ方向に延伸 された超電導薄膜コイルの支持板部 512とを接続した形状である。円柱形状部 511 と超電導薄膜コイルの支持板部 512とは、円柱力も切り出されたものとしても良いこと はいうまでも無い。中心台 51は窒化アルミで作成される。円柱形状部 511の長さ方 向の中心軸と支持板部の外面は概ね平行である。 513は、実施例 1の保護部 213と 同様の保護部である。
[0048] 図 9に示すように、中心台 51の超電導薄膜コイルの支持板部 512に超電導薄膜コ ィル 42を形成したサファイア基板 42a, 42bを密着するように配置し、さらに、窒化ァ ルミからなるネジ 49を用いて中心台 51の超電導薄膜コイルの支持板部 512に固定 してプローブコイルを構成した。窒化アルミは熱伝導度は大きいが、電気的には絶縁 物である。したがって、電気的には絶縁をしながら、効率よく超電導薄膜コイルを冷 却することができる。この際、サファイア基板 42a, 42bと超電導薄膜コイルの支持板 部 512との間には、実施例 1と同様、 Inのような熱接触用材料を介在さて、熱伝導を 良くすることができる。
[0049] 超電導薄膜コイルの支持板部 512には試料管 3を導入するための孔 514が円柱形 状部 511の長さ方向の中心軸と同軸に形成される。超電導薄膜コイルの支持板部 5 12と円柱形状部 511の結合部の超電導薄膜コイルの支持板部 512にはサファイア 基板 42bの超電導薄膜コイル 42の接続線を通すための孔 515、送信用プローブコィ ルの接続線を通すための孔 516が設けられる。ここで、超電導薄膜コイル 42の接続 線は実施例 1の図 2で説明したと同様に形成される。保護部 513には、実施例 1の保 護部 213と同様、後述するトリマコンデンサとの接続線を通すための孔 517が設けら れる。円柱形状部 511には試料管 3を導入するための孔 514と連通する孔 518が形 成される。
[0050] 中心台 51に超電導薄膜コイル 42を形成したサファイア基板 42a, 42bおよび送信 コイル 48が配置された後、後述するように、実施例 1の保護スぺーサ 215, 216に対 応する保護スぺーサ 61〜64が設けられる。
[0051] 52は支持板であり、下面に中心台 51の円柱形状部 511に結合される熱交換器 53 を備え、上面にトリマ台座 55を備える。支持板 52は、図 10で説明するように、核磁気 共鳴装置の適宜の構造材で支持される。 54はトリマコンデンサであり、図 2で説明し た検出回路 10と超電導薄膜コイルとを接続する電気配線に設けられるものであり、ト リマ台座 55に保持される。熱交翻 23と中心台 51の円柱形状部 511とは、機械的 に結合され、超電導薄膜コイルの支持板部 512に固定されたサファイア基板 42a、 4 2b上の超電導薄膜コイルに冷熱を伝える。 519は円柱形状部 511と熱交換器 53が 結合されたとき連通する孔である。
[0052] 図 10 (A)は実施例 2の低温プローブの全体構造の概要を示す断面図である。中心 台 51が中心となっていることを示すために、これにハッチングを付し、サファイア基板 12にドットの模様を付したのみで他の部分のハッチングは省略して示す。図 10 (B) は
、図 10 (A)の上面から見た平面図である。 61〜64は、超電導薄膜コイルの支持板 部 512に固定された基板 42a、 42bおよび送信用プローブコイル 48の外面に設けた 保護スぺーサである。これらの保護スぺーサは、図 9では表示を省略したが、実施例 1と同様に、ネジ 217により前記サファイア基板 42a、 42bを超電導薄膜コイルの支持 板部 512に押し付けて固定する。もちろん、送信用プローブコイル 48に対しても同様 である。
[0053] 支持板 52は核磁気共鳴装置の構造材 220に保持されるとともに、ネジ 218により 中心台 200の円柱形状部 211に結合される。支持板 22に保持されて ヽる熱交換器 53はネジ 219により中心台 51の円柱形状部 511に結合される。熱交換器 53には冷 媒を供給する銅パイプ 56が接続される。トリマコンデンサ 54は孔 517を通して必要な 配線が行われるとともに、チューブ 57で保護された、図示しない操作片により、操作 される。 [0054] 高 、感度を実現するためには、磁場の均一度を高める必要がある力 超電導体は 完全反磁性という性質を有し、—ΐΖ4 πという大きな磁化率を有する。従って、超電 導体と静磁場が鎖交する部分が大きくなるほど、静磁場は大きく乱れる。実施例 2は 、中心台 51の円柱形状部 511の長さ方向の中心軸に沿つて超電導薄膜コイルの支 持板部 512を延伸し、超電導薄膜コイルの支持板部 512の外面に超電導薄膜コィ ル基板 12と送信用プローブコイル 48を固定するものとした。したがって、低温プロ一 ブの中心軸と静磁場とは精度よく平行が維持でき、これより、超電導体と静磁場が鎖 交する部分は超電導薄膜の厚さという小さい部分のみとなる。その結果、静磁場の乱 れは小さぐ均一な磁場を実現できる。さらに、この超電導薄膜コイルの支持板部 51 2の中心軸を静磁場の法線方向とし、試料管 3の導入方向とあわせた。
[0055] 超電導薄膜コイル基板を十分に冷却するためには、冷却のために熱伝導経路上に 置く構成要素を少なくし、構成要素の接続をできるだけ避けることが望ましい。止むを 得ず構成要素同士を繋げる場合には、 Inのような熱接触用材料を介在させ、接触面 積をできるだけ大きくすることが望ましい。また、熱伝導率の高い材料を用いることが 望ましい。実施例 2の中心台 51は、円柱形状部 511と超電導薄膜コイルの支持板部 512とを一体的に接続した構造であるとともに、超電導薄膜コイルの支持板部 512の 外面に超電導薄膜コイル基板 12と送信用プローブコイル 48固定した。従って、超電 導薄膜コイル基板 12を超電導薄膜コイルの支持板部 512を通じて冷却する際、熱の 伝導方向が基板の法線方向になるので、接触面積が大きぐ効率よく冷却できること になる。なお、実施例 2でも、熱接触用材料 Inを超電導薄膜コイル基板 12と超電導 薄膜コイルの支持板部 512の組み立て過程で接触部に適宜 Inの粒子を置いて、適 宜、加温および加圧することにより、より熱伝達の効果をあげることができる。
産業上の利用可能性
[0056] 本発明により、静磁場の均一性を乱さない、超電導薄膜基板を超電導臨界温度以 下に冷却する、超電導薄膜基板を支持するという 3つの条件を満足したソレノイド型 の核磁気共鳴プローブコイルを実現できる。
図面の簡単な説明
[0057] [図 1]本発明の第 1の実施例の核磁気共鳴装置の全体構成の概略図である。 [図 2]実施例 1のプローブコイルの構成を模式的に示す斜視図である。
[図 3] (A) - (B)は、本発明の第 1の実施例の基板上に形成した超電導薄膜からなる
1ターンコイルを説明する図である。
[図 4]本発明の第 1の実施例の中心台の構成を示す斜視図である。
[図 5]本発明の第 1の実施例のプローブコイルの支持板部、基板およびスぺーサの 積層体の構成を説明する展開斜視図である。
[図 6]図 5に示した展開斜視図に従って本発明の第 1の実施例のプローブコイルの支 持板部、基板およびスぺーサの積層体と熱交^^との対応の概要を示す斜視図で ある。
[図 7] (A)は本発明の実施例 1の低温プローブの全体構造の概要を示す断面図、 (B )は、図 7 (A)の左側面から見た側面図である。
[図 8]本発明の実施例 2のプローブコイルを実装した核磁気共鳴装置の全体構成を 断面図の形で示す図である。
[図 9]本発明の実施例 2のプローブコイルの構成を模式的に示す展開図である。
[図 10] (A)は本発明の実施例 2の低温プローブの全体構造の概要を示す断面図、 ( B)は、図 10(A)の上面力も見た平面図である。
符号の説明
1…低温プローブ、 2…プローブコイル、 3…試料管、 4…超電導磁石、 5…補正用 超電導磁石、 6, 7···タンク、 10…検出回路、 11···超電導薄膜の受信用コイル、 12, 42a, 42b…サファイア基板、 13···常伝導金属膜、 14···窒化アルミスぺーサ、 15··· 常伝導金属接続配線、 17···常伝導金属線、 18, 48···鞍型送信用プローブコイル、 19, 49, 217···窒ィ匕アルミネジ、 20···送信回路、 21, 51···中心台、 22, 512···支 持板、 23, 53···熱交^^、 24, 54···トリマコンデンサ、 25, 55···トリマ台座、 26, 5 6···銅ノィプ、 27…チューブ、 101, 102, 104力ら 107, 221, 222, 223, 224, 2 25, 226, 514, 515, 516, 517, 518, 519···孔、 51, 200···中心台、 211, 511 …円柱形状部、 212
, 512···支持板部、 213···保護部、 61〜64, 216, 217···保護スぺーサ、 218, 21 9…ネジ、 220…構造材、 311…絶縁膜。

Claims

請求の範囲
[1] 核磁気共鳴装置の所定の静磁場に置かれるとともに、基板上に形成した超電導薄 膜コイルよりなる受信用プローブコイルと送信用プローブコイルとを有するプローブコ ィルと、前記超電導薄膜コイルを冷却する手段とを備える核磁気共鳴プローブにお いて、
前記超電導薄膜コイルは、円柱形状部と該円柱形状部の直径方向の中央位置で 、円柱の長さ方向に延伸された超電導薄膜コイルの支持板部とが接続された中心台 の前記超電導薄膜コイルの支持板部に保持され、前記超電導薄膜コイルを冷却す る手段は前記中心台と結合されたものであり、
前記円柱形状部の円柱の長さ方向に延伸された超電導薄膜コイルの支持板部は 前記静磁場と概ね平行の関係あることを特徴とする核磁気共鳴プローブ。
[2] 前記超電導薄膜コイルを形成した基板は、前記超電導薄膜コイルの支持板部の両 側に積層して保持されたものであり、前記送信用プローブコイルは積層された前記超 電導薄膜コイルを外側カゝら取り囲む形の常伝導金属の鞍型コイルである請求項 1記 載の核磁気共鳴プローブ。
[3] 前記超電導薄膜コイルを形成した基板は、前記超電導薄膜コイルの支持板部の両 側面に保持されたものであり、前記送信用プローブコイルは前記超電導薄膜コイル の支持板部の前記両側面と直交する両側面に保持された常伝導金属の鞍型コイル である請求項 1記載の核磁気共鳴プローブ。
[4] 前記超電導薄膜コイルの支持板部に積層された前記超電導薄膜コイルを形成した 基板と前記超電導薄膜コイルの支持板部とによる積層構造は、前記基板間に所定の スぺーサを挿入されたものである請求項 2記載の核磁気共鳴プローブ。
[5] 前記静磁場は水平方向に向くものとされるとともに、前記超電導薄膜コイルの支持 板部に積層された前記超電導薄膜コイルを形成した基板、前記スぺーサ、および、 前記超電導薄膜コイルの支持板部よりなる積層構造は、前記超電導薄膜コイルの中 心部を貫く前記静磁場と鉛直方向の孔を備える請求項 4記載の核磁気共鳴プローブ
[6] 前記静磁場は鉛直方向に向くものとされるとともに、前記超電導薄膜コイルの支持 板部の中心部には前記静磁場と同じ方向の孔を備える請求項 3記載の核磁気共鳴 プローブ。
[7] 前記超電導薄膜コイルの支持板部に積層された前記超電導薄膜コイルを形成した 基板、前記スぺーサ、および、前記超電導薄膜コイルの支持板部よりなる積層構造 の両方の最外面には、前記積層構造の保護スぺーサが設けられ、該保護スぺーサ には前記超電導薄膜コイルの中心部を貫く前記静磁場と鉛直方向の孔を備える請 求項 5記載の核磁気共鳴プローブ。
[8] 前記超電導薄膜コイルの支持板部の側面に保持された前記超電導薄膜コイルを 形成した基板および常伝導金属の鞍型コイルの外面には前記基板および鞍型コィ ルの保護スぺーサが設けられる請求項 3記載の核磁気共鳴プローブ。
[9] 前記超電導薄膜コイルを冷却する手段は、前記核磁気共鳴装置の構造物に片端 が保持された支持板の一面に保持されるとともに、前記支持板の他面には前記受信 用プローブコイルと共振回路を構成するトリマコンデンサが保持され、前記支持板の 他端は円柱形状部に形成された切り欠き部と結合されるとともに、前記超電導薄膜コ ィルを冷却する手段の端面が前記円柱形状部の前記超電導薄膜コイルの支持板部 が形成された端面と反対の端面に結合されたものである請求項 1記載の核磁気共鳴 プローブ。
[10] 前記超電導薄膜コイルを冷却する手段は、前記支持板に沿って延伸されるパイプ を介して冷媒を供給される請求項 9記載の核磁気共鳴プローブ。
[11] 前記中心台およびスぺーサは窒化アルミからなる請求項 4記載の核磁気共鳴プロ ーブ。
[12] 前記中心台の円柱形状部と前記超電導薄膜コイルの支持板部は窒化アルミからな る円柱状の材料から切り出されたものである請求項 1記載の核磁気共鳴プローブ。
[13] 静磁場を発生する磁石と、該静磁場の中に試料を搬送する手段と、前記静磁場に 置かれるとともに、基板上に形成した超電導薄膜コイルよりなる受信用プローブコィ ルと送信用プローブコイルとを有するプローブコイルと、前記超電導薄膜コイルを冷 却する手段とを備える核磁気共鳴装置において、
前記超電導薄膜コイルは、円柱形状部と該円柱形状部の直径方向の中央位置で 、円柱の長さ方向に延伸された超電導薄膜コイルの支持板部とが接続された中心台 の前記超電導薄膜コイルの支持板部に保持され、前記超電導薄膜コイルを冷却す る手段は前記中心台と結合されたものであり、
前記円柱形状部の円柱の長さ方向に延伸された超電導薄膜コイルの支持板部は 前記静磁場と概ね平行の関係あり、
前記試料は前記超電導薄膜コイルの支持板部に積層された前記超電導薄膜コィ ルを形成した基板、および、前記超電導薄膜コイルの支持板部よりなる積層構造に 設けられた、前記超電導薄膜コイルの中心部を貫く前記静磁場と鉛直方向の孔に導 入されることを特徴とする核磁気共鳴装置。
静磁場を発生する磁石と、該静磁場の中に試料を搬送する手段と、前記静磁場に 置かれるとともに、基板上に形成した超電導薄膜コイルよりなる受信用プローブコィ ルと送信用プローブコイルとを有するプローブコイルと、前記超電導薄膜コイルを冷 却する手段とを備える核磁気共鳴装置において、
前記超電導薄膜コイルは、円柱形状部と該円柱形状部の直径方向の中央位置で 、円柱の長さ方向に延伸された超電導薄膜コイルの支持板部とが接続された中心台 の前記超電導薄膜コイルの支持板部に保持され、前記超電導薄膜コイルを冷却す る手段は前記中心台と結合されたものであり、
前記円柱形状部の円柱の長さ方向に延伸された超電導薄膜コイルの支持板部は 前記静磁場と概ね平行の関係あり、
前記試料は前記超電導薄膜コイルの支持板部に設けられた前記静磁場と平行方 向の孔に導入されることを特徴とする核磁気共鳴装置。
PCT/JP2006/319424 2005-10-25 2006-09-29 核磁気共鳴プローブおよび核磁気共鳴装置 WO2007049426A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007542285A JP4755652B2 (ja) 2005-10-25 2006-09-29 核磁気共鳴プローブおよび核磁気共鳴装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005309631 2005-10-25
JP2005-309631 2005-10-25

Publications (1)

Publication Number Publication Date
WO2007049426A1 true WO2007049426A1 (ja) 2007-05-03

Family

ID=37967547

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/319424 WO2007049426A1 (ja) 2005-10-25 2006-09-29 核磁気共鳴プローブおよび核磁気共鳴装置

Country Status (2)

Country Link
JP (1) JP4755652B2 (ja)
WO (1) WO2007049426A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010122829A1 (ja) * 2009-04-20 2010-10-28 株式会社神戸製鋼所 Nmr用プローブ
KR101038562B1 (ko) 2010-02-25 2011-06-02 한국외국어대학교 연구산학협력단 고체상 핵자기 공명 프로브 장치 및 그 회로
JP2016151494A (ja) * 2015-02-18 2016-08-22 日本電子株式会社 磁気共鳴信号検出モジュール
JP2017219518A (ja) * 2016-06-10 2017-12-14 株式会社デンソー Esr検出器

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04230880A (ja) * 1990-04-25 1992-08-19 Spectrospin Ag 核磁気共鳴分光計の高周波受信巻線装置
US5508613A (en) * 1994-08-29 1996-04-16 Conductus, Inc. Apparatus for cooling NMR coils
JP2000028696A (ja) * 1998-07-14 2000-01-28 Taiyo Toyo Sanso Co Ltd 核磁気共鳴分析装置用希釈冷凍機
JP2001242230A (ja) * 2000-02-12 2001-09-07 Bruker Ag 試料の断熱材を備えた冷却nmrプローブヘッド
JP2005003435A (ja) * 2003-06-10 2005-01-06 Hitachi Ltd 核磁気共鳴装置
JP2005172597A (ja) * 2003-12-10 2005-06-30 Hitachi Ltd 核磁気共鳴測定装置
JP2006053020A (ja) * 2004-08-11 2006-02-23 Hitachi Ltd 核磁気共鳴装置
JP2006162450A (ja) * 2004-12-08 2006-06-22 Hitachi Ltd Nmr装置およびnmr計測用プローブ
JP2006162258A (ja) * 2004-12-02 2006-06-22 Hitachi Ltd 核磁気共鳴プローブコイル

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0625750B2 (ja) * 1985-09-11 1994-04-06 株式会社日立製作所 荷電物質の分離装置

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04230880A (ja) * 1990-04-25 1992-08-19 Spectrospin Ag 核磁気共鳴分光計の高周波受信巻線装置
US5508613A (en) * 1994-08-29 1996-04-16 Conductus, Inc. Apparatus for cooling NMR coils
JP2000028696A (ja) * 1998-07-14 2000-01-28 Taiyo Toyo Sanso Co Ltd 核磁気共鳴分析装置用希釈冷凍機
JP2001242230A (ja) * 2000-02-12 2001-09-07 Bruker Ag 試料の断熱材を備えた冷却nmrプローブヘッド
JP2005003435A (ja) * 2003-06-10 2005-01-06 Hitachi Ltd 核磁気共鳴装置
JP2005172597A (ja) * 2003-12-10 2005-06-30 Hitachi Ltd 核磁気共鳴測定装置
JP2006053020A (ja) * 2004-08-11 2006-02-23 Hitachi Ltd 核磁気共鳴装置
JP2006162258A (ja) * 2004-12-02 2006-06-22 Hitachi Ltd 核磁気共鳴プローブコイル
JP2006162450A (ja) * 2004-12-08 2006-06-22 Hitachi Ltd Nmr装置およびnmr計測用プローブ

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010122829A1 (ja) * 2009-04-20 2010-10-28 株式会社神戸製鋼所 Nmr用プローブ
KR101038562B1 (ko) 2010-02-25 2011-06-02 한국외국어대학교 연구산학협력단 고체상 핵자기 공명 프로브 장치 및 그 회로
JP2016151494A (ja) * 2015-02-18 2016-08-22 日本電子株式会社 磁気共鳴信号検出モジュール
JP2017219518A (ja) * 2016-06-10 2017-12-14 株式会社デンソー Esr検出器

Also Published As

Publication number Publication date
JP4755652B2 (ja) 2011-08-24
JPWO2007049426A1 (ja) 2009-04-30

Similar Documents

Publication Publication Date Title
JP4593255B2 (ja) Nmr装置およびnmr計測用プローブ
US7173424B2 (en) Nuclear magnetic resonance apparatus
US7352186B2 (en) Nuclear magnetic resonance probe coil
US7449889B1 (en) Heat pipe cooled superconducting magnets with ceramic coil forms
US8162037B2 (en) Device for generating a pulsed magnetic field
JP3771947B2 (ja) 超伝導磁気共鳴イメージング装置の磁石アセンブリ
US9170310B2 (en) Cryogenically cooled whole-body RF coil array and MRI system having same
US7446534B2 (en) Cold normal metal and HTS NMR probe coils with electric field shields
JP2008233025A (ja) Nmr計測装置
JP2008122141A (ja) Nmr計測用プローブ、およびそれを用いたnmr装置
JP2014041103A (ja) 磁気共鳴信号検出モジュール
JPS6159709A (ja) 磁石装置
WO2007049426A1 (ja) 核磁気共鳴プローブおよび核磁気共鳴装置
US6289681B1 (en) Superconducting magnet split cryostat interconnect assembly
JP4647984B2 (ja) 核磁気共鳴プローブコイル
JP2002162455A (ja) 低温nmrプローブrfコイル用被覆金属フォイル
JP4861149B2 (ja) 核磁気共鳴装置
JP2010038922A (ja) 弱い外部電場を有するnmrらせんrfプローブコイル対
US7436182B1 (en) Cryogenic NMR probe capacitors with dielectric heat sinks
JP5006542B2 (ja) Nmr装置およびnmr計測用プローブ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
ENP Entry into the national phase

Ref document number: 2007542285

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06810830

Country of ref document: EP

Kind code of ref document: A1