WO2007049348A1 - 放射線撮像装置および放射線検出信号処理方法 - Google Patents

放射線撮像装置および放射線検出信号処理方法 Download PDF

Info

Publication number
WO2007049348A1
WO2007049348A1 PCT/JP2005/019793 JP2005019793W WO2007049348A1 WO 2007049348 A1 WO2007049348 A1 WO 2007049348A1 JP 2005019793 W JP2005019793 W JP 2005019793W WO 2007049348 A1 WO2007049348 A1 WO 2007049348A1
Authority
WO
WIPO (PCT)
Prior art keywords
image
pixel
image processing
output
processing
Prior art date
Application number
PCT/JP2005/019793
Other languages
English (en)
French (fr)
Inventor
Shoichi Okamura
Original Assignee
Shimadzu Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corporation filed Critical Shimadzu Corporation
Priority to CN2005800502628A priority Critical patent/CN101208041B/zh
Priority to PCT/JP2005/019793 priority patent/WO2007049348A1/ja
Priority to JP2007542540A priority patent/JPWO2007049348A1/ja
Publication of WO2007049348A1 publication Critical patent/WO2007049348A1/ja

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/48Diagnostic techniques
    • A61B6/488Diagnostic techniques involving pre-scan acquisition

Definitions

  • the present invention relates to a radiation imaging apparatus and a radiation detection signal processing method for obtaining a radiation image based on a radiation detection signal detected by irradiating a subject, and more particularly to output of an image processed image.
  • an imaging apparatus that detects an X-ray and obtains an X-ray image performs the following processing.
  • the detected signal is subjected to gamma curve conversion, spatial frequency processing according to the imaging region, Processing such as automatic brightness adjustment is performed. After many of these image processing, it is displayed on a monitor and printed on film.
  • Image Intensifier (I. I) has been used as an X-ray detector in the past.
  • flat panel X-ray detectors hereinafter abbreviated as “FPD”.
  • FPD flat panel X-ray detectors
  • correction processing such as offset correction, gain correction, and defect correction is further required before the above-described image processing.
  • Patent Document 1 Japanese Patent Laid-Open No. 2003-325494 (Page 5-7, Fig. 1)
  • image processing including correction processing such as offset Z gain Z defect correction described above requires a certain amount of processing time.
  • the processing time can be shortened to a level where there is no problem by installing an arithmetic processing circuit with high processing capacity. Since it has a processing circuit, It is difficult to shorten the management time. As a result, for example, it takes time to confirm the position (confirmation of the body position of the subject and the positional relationship with the FPD). If the position cannot be confirmed immediately, it will take time to re-shoot the image. As a result, improvement in examination efficiency is hindered, and the burden on the subject increases.
  • a method is generally adopted in which an image obtained by image processing is displayed in a preview in the middle of performing image processing to such an extent that position confirmation can be performed.
  • the preview image is subjected to image processing including correction processing while maintaining the original image size.
  • an image at a point in time before performing a time-consuming process for example, a spatial frequency process corresponding to the imaging region, is used as a preview image. Therefore, the process itself is relatively simple. It takes some time to output a preview image.
  • Patent Document 1 a preview image that has not been subjected to correction processing (the first image in Patent Document 1) is separate from the finally obtained radiation image (the second image in Patent Document 1). Image), and this method can reduce the time until the preview image is output. Furthermore, the time until the output of the finally obtained radiographic image can be reduced. In addition to the technique described in Patent Document 1, another technique that can reduce the time until image output is desired.
  • the image processing is divided into first to third image processing.
  • First, the first image processing is performed on the X-ray detection signal obtained by detecting the X-ray transmitted through the subject by the detector.
  • Second image processing including at least processing in which the amount of pixels of the first image is reduced to output a second image based on the first image processed and output from the first image.
  • the first image processing means outputs the third image based on the first image processed and output by the first image processing means.
  • the third image processing is performed according to the output result of the second image, and the third image is regarded as a radiographic image that is finally obtained.
  • the third image processing for the first image is performed, and the output result of the second image output by the second image processing (ie, the second image processing result)
  • the third image processing is performed after the output of the preview image.
  • the second image which is a preview image
  • the second image processing includes at least a process in which the pixel amount of the first image is reduced, so the time until the second image is output by at least the amount of the reduced pixel amount. Can be reduced. As a result, it is possible to reduce the time until the image for confirmation is output.
  • the image processing is performed in the order of the above-described offset correction ⁇ gain correction ⁇ deletion correction ⁇ ... ⁇ leakage current correction ⁇ ...,
  • the process up to is the first image process
  • the defect correction process is the second image process that includes the process of reducing the pixel amount of the first image
  • the preview image is output at the defect correction stage.
  • the third image processing which is a process after the defect correction, according to the preview image output by the defect correction with the pixel amount of the first image reduced. Even if the pixel amount of one image is reduced, it takes time to process the defect correction itself, so it still takes time to output the image for confirmation. processing Oite is also desirable to further reduce the time for the output image for confirmation.
  • the present invention has been made in view of such circumstances, and provides a radiation imaging apparatus and a radiation detection signal processing method capable of reducing the time until output of an image for confirmation. For the purpose.
  • the present invention has the following configuration.
  • the radiation imaging apparatus of the present invention is a radiation imaging apparatus that obtains a radiation image based on a radiation detection signal, and detects radiation that has passed through the subject and radiation irradiating means that irradiates the subject with radiation.
  • the second image processing means for performing the second image processing including at least the process of reducing the pixel amount of the first image to output the second image, and the first image processing by the first image processing means for output In order to output the third image based on the first image, the third image processing is performed on the first image.
  • the third image processing that uses the third image as a radiation image that is finally obtained It is characterized by having a means.
  • the first image processing means is detected from the radiation detection means in order to output the first image based on the radiation detection signal detected from the radiation detection means.
  • First image processing is performed on the detected radiation detection signal.
  • the second image processing means reduces the pixel amount of the first image.
  • the second image processing including at least the above processing is performed, and the third image processing means performs the third image processing on the first image, and uses the third image as a finally obtained radiation image.
  • the third image processing on the first image by the third image processing means is performed after the output result of the second image output by the second image processing means by the second image processing means, and the third image processing is performed on the second image. Assume that this is done according to the output result of the image. That is, the second image is output first for confirmation of the third image. Then, in order to output the second image, the second image processing includes at least processing in which the pixel amount of the first image is reduced, so the time until the second image is output by at least the reduced pixel amount. Can be reduced. As a result, the time until the confirmation image is output can be reduced.
  • a second image is output based on the pixel arrangement map.
  • This pixel arrangement map shows pixel arrangement information. Therefore, when compared with outputting the second image based only on the first image in the second image processing, the second image is output when the second image is output based on both the first image and the pixel arrangement map. The time until the second image is output can be further reduced. As a result, the time until the image for confirmation can be reduced.
  • the pixel arrangement map described above includes a pixel value to be arranged in a pixel after the pixel amount is reduced and position information based on a plurality of pixels before the pixel amount is reduced.
  • the pixel information of the first image While performing the process of reducing the amount, based on each of these pixel values associated with the position information based on the plurality of pixels before the pixel amount reduction in the pixel arrangement map, the pixel after the pixel amount reduction
  • the image processing means is configured to arrange each pixel value.
  • each of these pixels associated with the position information based on the plurality of pixels before the pixel amount reduction of the pixel arrangement map is performed while performing the process of reducing the pixel amount of the first image.
  • the pixel values are arranged in the pixels after the pixel amount is reduced, thereby including defect correction in which the pixel amount of the first image is reduced. Since the processing time for normal defect correction is relatively large, the second image obtained by reducing the amount of pixels in the first image can be obtained by performing the second image processing based on such a pixel arrangement map. The time until image output can be reduced.
  • the radiation detection signal processing method of the present invention is a radiation detection signal processing method for performing signal processing for obtaining a radiation image based on a radiation detection signal detected by irradiating a subject, wherein the signal
  • the processing includes a first image processing step for performing first image processing on the radiation detection signal to output a first image based on the radiation detection signal, a pixel arrangement map indicating the pixel arrangement information, and the first image.
  • Second image processing for performing second image processing including at least processing for reducing the amount of pixels of the first image in order to output the second image based on the first image output by the first image processing in the processing step And the output result of the second image processed and output in the second image processing step, and the first image processed and output by the first image processing means.
  • the third image processing is performed in accordance with the output result of the second image, and the third image processing step is used for converting the third image into a finally obtained radiographic image.
  • the first image processing is performed on the radiation detection signal in the first image processing step.
  • the second image processing step reduces the pixel amount of the first image.
  • Second image processing including at least the above processing, and in the third image processing step, the third image processing is performed on the first image, and the third image is finally processed.
  • the obtained radiographic image is used.
  • the third image processing for the first image in the third image processing step is performed after the output result of the second image output by the second image processing in the second image processing step, and the third image processing is performed.
  • the second image is output first to confirm the third image.
  • the second image processing includes at least a process in which the pixel amount of the first image is reduced. Therefore, until the second image is output by an amount corresponding to at least the reduced pixel amount. The time required can be reduced. As a result, it is possible to reduce the time until the output of the image for confirmation.
  • a second image is output based on the pixel arrangement map.
  • This pixel arrangement map shows pixel arrangement information. Therefore, compared to outputting the second image based on only the first image in the second image processing, the second image processing is based on both the first image and the pixel arrangement map. The time until the second image is output can be further reduced. As a result, the time until the image for confirmation can be reduced.
  • An example of the radiation detection signal processing method of the present invention is that the signal processing described above further includes a pixel arrangement map creation step of creating the pixel arrangement map described above. By preparing a pixel arrangement map in advance in the pixel arrangement map creation process, it is possible to prepare for the preparation of the second image processing.
  • the above-described pixel arrangement map includes a pixel value to be arranged in a pixel after the pixel amount is reduced and position information based on a plurality of pixels before the pixel amount is reduced.
  • the position based on a plurality of pixels before the pixel amount reduction of the pixel arrangement map is performed while performing the process of reducing the pixel amount of the first image. Based on each of these pixel values associated with the information, the pixel values are arranged in the pixels after the pixel amount is reduced.
  • each pixel value associated with the position information based on the plurality of pixels before the pixel amount reduction in the pixel arrangement map is performed while performing the process of reducing the pixel amount of the first image.
  • defect correction in which the pixel amount of the first image is reduced is included.
  • the processing time is relatively large, so the second image processing based on such a pixel arrangement map.
  • the first image processing is performed on the radiation detection signal in order to output the first image based on the radiation detection signal.
  • the second image processing including at least the process of reducing the pixel amount of the first image is performed
  • Third image processing is performed on the first image
  • the third image is used as the final radiation image. Note that the third image processing for the first image is performed after the output result of the second image output after the second image processing, and the third image processing is performed according to the output result of the second image. That is, the second image is output first for confirmation of the third image.
  • the second image processing includes at least processing in which the pixel amount of the first image is reduced. Therefore, until the second image is output by at least the reduced pixel amount. Time can be reduced. As a result, it is possible to reduce the time until the confirmation image is output.
  • a second image is output based on the pixel arrangement map. This pixel arrangement map shows pixel arrangement information. Therefore, compared to outputting the second image based on only the first image in the second image processing, the second image is output when the second image is output based on both the first image and the pixel arrangement map. The time until the image is output can be further reduced. As a result, it is possible to reduce the time until the image for confirmation is output.
  • FIG. 1 is a block diagram of an X-ray fluoroscopic apparatus according to an embodiment.
  • FIG. 2 This is an equivalent circuit of a flat panel X-ray detector used in an X-ray fluoroscopic apparatus as seen from the side.
  • FIG. 4 is a block diagram showing a specific configuration of each image processing unit and a data flow of each image and the like.
  • FIG. 5 is a flowchart showing a series of signal processing by each image processing unit.
  • FIG. 6 is a flowchart showing a series of signal processing by a conventional image processing unit used for comparison with FIG.
  • FIG. 11 is an explanatory view schematically showing an arrangement pixel map.
  • FIG. 12 is a flowchart showing a series of preprocessing including creation of a pixel arrangement map.
  • FIG. 13 is a flow chart showing more specifically the defect correction in which the pixel amount in step T1 in FIG. 5 is reduced.
  • the image processing means is divided into a first image processing means, a second image processing means, and a third image processing means, and based on a radiation detection signal detected from the radiation detection means.
  • the first image processing means performs first image processing on the radiation detection signal detected from the radiation detection means.
  • the second image and the third image are output based on the first image output by the first image processing by the first image processing means. Therefore, the second image processing means performs the second image processing including at least the process of reducing the pixel amount of the first image, and the third image processing means performs the third image processing on the first image.
  • the third image is used as the final radiation image.
  • the second image processing for outputting the second image includes at least processing for reducing the pixel amount of the first image. Therefore, the time until the output of the image can be reduced. Furthermore, in the second image processing, in addition to the first image described above, the second image is output based on the pixel arrangement map indicating the pixel arrangement information, so the time until the output of the image for confirmation is reached. Realized the purpose of further reducing.
  • FIG. 1 is a block diagram of the X-ray fluoroscopic apparatus according to the embodiment
  • FIG. 2 is an equivalent circuit of the flat panel X-ray detector used in the X-ray fluoroscopic apparatus as viewed from the side.
  • Figure 3 shows the equivalent circuit of a flat panel X-ray detector in plan view.
  • a flat panel X-ray detector (hereinafter referred to as “FPD” as appropriate) is taken as an example of radiation detection means
  • an X-ray fluoroscopic imaging device is taken as an example of the radiation imaging apparatus.
  • the X-ray fluoroscopic apparatus includes a top plate 1 on which the subject M is placed, and an X-ray tube 2 that irradiates the subject M with X-rays. And an FPD 3 that detects X-rays transmitted through the subject M.
  • the X-ray tube 2 corresponds to the radiation irradiation means in this invention
  • the FPD 3 corresponds to the radiation detection means in this invention.
  • the X-ray fluoroscopic apparatus includes a top plate control unit 4 that controls the vertical movement and horizontal movement of the top plate 1, an FPD control unit 5 that controls scanning of the FPD 3, and a tube voltage of the X-ray tube 2.
  • the image processing unit 9 that performs various processing based on the X-ray detection signal, the controller 10 that controls each of these components, the memory unit 11 that stores processed images, and the operator set the input settings. It has an input unit 12 to perform and a monitor 13 to display processed images.
  • the top board control unit 4 moves the top board 1 horizontally to accommodate the subject's eyelid to the imaging position,
  • the subject M is moved up and down, rotated, and moved horizontally to set the subject M to a desired position, imaged while moving horizontally, or moved horizontally after the imaged and moved away from the imaged position.
  • the FPD control unit 5 performs control related to scanning by moving the FPD 3 horizontally or rotating around the body axis of the subject M.
  • the high voltage generator 6 generates a tube voltage and a tube current for irradiating X-rays and applies them to the X-ray tube 2.
  • the X-ray tube controller 7 moves the X-ray tube 2 horizontally, Controls scanning by rotating around the axis of the body axis of M, and controls the setting of the illumination field of the collimator (not shown) on the X-ray tube 2 side.
  • the X-ray tube 2 and the FPD 3 move while facing each other so that the FPD 3 can detect the X-rays emitted from the X-ray tube 2.
  • the controller 10 includes a central processing unit (CPU) and the like, and the memory unit 11 includes a storage medium represented by ROM (Read-only Memory), RAM (Random-Access Memory), and the like. It is configured.
  • the input unit 12 includes a pointing device represented by a mouse, a keyboard, a joystick, a trackball, and a touch panel.
  • the FPD3 detects X-rays that have passed through the subject M, and based on the detected X-rays, the image processing unit 9 performs image processing to capture the subject M. I do.
  • the image processing unit 9 includes a first image processing unit 9a that performs first image processing on the X-ray detection signal to output a first image based on the X-ray detection signal, and a pixel
  • a first image processing unit 9a that performs first image processing on the X-ray detection signal to output a first image based on the X-ray detection signal
  • a pixel In order to output the second image based on the pixel arrangement map indicating the arrangement information and the first image processed and output by the first image processing unit 9a, the process of reducing the pixel amount of the first image is performed.
  • a third image processing unit 9c that performs third image processing is provided (see FIGS. 1 and 4).
  • the first image processing unit 9a corresponds to the first image processing means in the present invention
  • the second image processing unit 9b corresponds to the second image processing means in the present invention
  • the third image processing unit 9c corresponds to the present invention.
  • the memory unit 11 includes a first image memory unit 11a for writing and storing the first image output by the first image processing by the first image processing unit 9a, and a defect correction map and pixels described later. It is equipped with a uniform irradiation image memory unit ib that stores the uniform irradiation image that is the basis of the arrangement map (see Fig. 1 and Fig. 4). Further, as shown in FIG. 4, the uniform irradiation image memory unit l ib includes a defect correction map memory unit 11 A for storing a defect correction map, a pixel arrangement map memory unit 11 B for storing a pixel arrangement map, and a power. Become.
  • the FPD 3 also includes a glass substrate 31, a thin film transistor TFT formed on the glass substrate 31, and a force.
  • the thin film transistor TFT has a large number of switching elements 32 (for example, 3072 ⁇ 3072) formed in a vertical and horizontal two-dimensional matrix arrangement.
  • the switching elements 32 are formed separately from each other.
  • FPD3 is also a two-dimensional array radiation detector.
  • an X-ray sensitive semiconductor 34 is laminated on the carrier collecting electrode 33, and the carrier collecting electrode 33 is formed of the switching element 32 as shown in FIGS.
  • a plurality of gate bus lines 36 are connected from the gate driver 35, and each gate bus line 36 is connected to the gate G of the switching element 32.
  • a multiplexer 37 that collects charge signals and outputs them to one is connected to a plurality of data bus lines 39 via amplifiers 38, as shown in FIGS.
  • each data bus line 39 is connected to the drain D of the switching element 32.
  • FIG. 4 is a block diagram showing a specific configuration of each image processing unit 9a to 9c and a flow of data such as each image.
  • FIG. 5 shows a series of signal processing by each image processing unit 9a to 9c.
  • FIG. 6 is a flowchart showing a series of signal processing by a conventional image processing unit used for comparison with FIG. 5, and
  • FIG. 7 shows a uniform irradiation image force defect correction map and pixels.
  • FIG. 8 is an explanatory diagram showing the flow of creating the arrangement map.
  • FIG. 8 is an explanatory diagram schematically showing the defective pixels in the uniform irradiation image
  • FIG. FIG. 10 is an explanatory diagram schematically showing a pixel to be arranged
  • FIG. 10 is an explanatory diagram schematically showing a defect correction map
  • FIG. 11 is an explanatory diagram schematically showing an arrangement pixel map.
  • Fig. 12 is a flowchart showing a series of pre-processing including creation of a pixel location map.
  • FIG. 13 is a flowchart showing in more detail the defect correction with a reduced pixel of step T1 in FIG.
  • the X-ray detection signal detected from the FPD 3 is digitally input by the AZD modification 8 and explained as an example.
  • the offset value may be superimposed on the image due to dark current even though X-rays are not irradiated. Therefore, an offset image when X-rays are not irradiated is obtained in advance.
  • Original image power based on X-ray detection signal Offset correction is performed to subtract the offset image described above.
  • the gain of the output side is adjusted by adjusting the gain of the amplifier 38 for each detection element. This gain correction is also called “calibration”. It is. Specifically, the amplified output is obtained in advance, and the gain is adjusted so that the output side is aligned.
  • the signal level of the pixel detected by the detection element may be abnormally high or low compared to the surrounding signal level. Therefore, when power is applied, replacement with the surrounding pixel value is performed, or loss correction is performed by interpolating with a value calculated based on the surrounding pixel value.
  • correction processing includes, for example, leakage current correction that corrects leakage current that occurs along the data bus line 39, correction of signal level difference (luminance difference) that occurs on the top, bottom, left, and right of the entire image, and FPD3 time There are lag corrections, line noise corrections with different values superimposed on each gate bus line 36, and electrostatic noise corrections.
  • the number of correction processes and types of correction processes Is different. Therefore, the number of correction processes and the types of correction processes are not particularly limited. If the correction process in step S104 is unnecessary, step S104 may be skipped.
  • the correction processing in steps S101 to S104 is image processing related to the characteristics of FPD3. Note that the processing after step S 105 described later is image processing for facilitating diagnosis.
  • Step S 105 Various image processing
  • step S106 Various image processing other than steps S106 to S108 described later are performed before the gamma conversion in step S106.
  • Specific image processing includes, for example, dual energy subtraction.
  • the number of image processing and the type of image processing differ, including gamma conversion in step S106, frequency processing in step S107, and automatic brightness adjustment in step S108, which will be described later, depending on the imaging region and diagnostic purpose. Therefore, the number of image processing and the type of image processing are not particularly limited. If the image processing in step S105 is not necessary, step S105 may be skipped.
  • Step S 106 Gamma Conversion Perform gamma curve conversion. Specifically, signal strength conversion processing is performed to correct non-linearity due to the characteristics of image output devices such as monitors and film processors, and to add contrast in a specific luminance range.
  • Spatial frequency processing is performed according to the imaging region. Specifically, in order to emphasize the shading and shape shading in a well-balanced manner without deteriorating the graininess, a process of enhancing or reducing a specific frequency component is performed.
  • the maximum value power and the minimum value for all the remaining pixels are matched to match that pixel. Performs automatic brightness adjustment that performs scaling to determine the range of.
  • the image processing unit 9 is divided into a first image processing unit 9a, a second image processing unit 9b, and a third image processing unit 9c, and the conventional steps S101 to S108 described above are performed.
  • Each image process is also divided into a first image process, a second image process, and a third image process in accordance with the image processing units 9a to 9c.
  • a specific example of how to divide is shown in the flowchart in Fig. 5.
  • the first image processing unit 9a performs the first image processing on the X-ray detection signal detected from the FPD 3. Do.
  • the first image processed and output by the first image processing unit 9a is sent to the first image memory unit 11a of the memory unit 11 via the controller 10, and the first image memory unit 1 Memorize by writing the first image in la.
  • the stored first image is read out and sent to the second image processing unit 9b or the third image processing unit 9c via the controller 10.
  • the second image processing unit 9b performs the second image processing including at least a process in which the pixel amount of the first image is reduced, and the third image
  • the processing unit 9c performs third image processing on the first image.
  • the third image processing unit 9c uses the third image as the finally obtained X-ray image.
  • the output second image and third image are output and displayed on the monitor 13. If necessary, the second image and the third image may be temporarily stored in the memory unit 11 as in the case of the first image. If necessary, display the output of the first image on the monitor 13 in the same way as the second and third images.
  • This pixel arrangement map shows pixel arrangement information (see FIG. 11).
  • the pixel arrangement map is arrangement information in which pixel values to be arranged in pixels after the pixel amount is reduced and position information based on a plurality of pixels before the pixel amount is reduced.
  • each of these pixels associated with the position information based on the plurality of pixels before the pixel amount reduction of the pixel arrangement map is performed while performing the process of reducing the pixel amount of the first image. Based on the values, the pixel values are arranged in the pixels after the pixel amount is reduced.
  • each process associated with the position information based on the plurality of pixels before the pixel amount reduction of the pixel arrangement map is performed while performing the process of reducing the pixel amount of the first image.
  • the pixel value of the first image is reduced by arranging those pixel values in the pixels after the pixel amount has been reduced (step T1 in FIG. 5 and step W1 in FIG. 13). ⁇ See W5).
  • the third image processing on the first image by the third image processing unit 9c is subjected to the second image processing by the second image processing unit 9b and output. It is assumed that the processing is performed after the output result of the second image, and the third image processing is performed according to the output result of the second image. That is, the second image is output first for confirmation of the third image.
  • a preview display is displayed on the monitor 13. To do.
  • the processing up to steps SI and S2 is the first image processing by the first image processing unit 9a. Therefore, an image obtained through offset correction and gain correction becomes the first image.
  • the first image is stored in the first image memory unit 11a.
  • the processes up to steps SI and S2 correspond to the first image processing process in the present invention. As described above, the second image processing is performed before the third image processing.
  • the entire first image is composed of 3072 ⁇ 3072 pixel values arranged vertically and horizontally, and in the process of reducing the pixel amount, an image having an array power of 768 ⁇ 768 pixel values vertically and horizontally is output.
  • the 768 ⁇ 768 image with a reduced amount of pixels is different from the original 3072 ⁇ 3072 image.
  • image processing 1 is performed as the various image processing required.
  • gamma conversion in step T4 and automatic brightness adjustment in step T5 described later are performed. Therefore, the conventional frequency processing in step S107 is skipped.
  • Step T4 Gamma conversion Except for the fact that the target of processing is a 768 ⁇ 768 image with a reduced amount of pixels in the original 3072 ⁇ 3072 image, the description is omitted because it is the same as the conventional step S106.
  • Steps T1 to T5 correspond to the second image processing step in the present invention.
  • steps U1 to U6 corresponding to the third image processing by the third image processing unit 9c are performed. Note that, in steps U1 to U6 described later, the first image of 3072 ⁇ 3072 will be described as a processing target.
  • Step U3 Various image processing
  • step U1 to U6 correspond to the third image processing step in the present invention.
  • Step VI Determine like-illuminated image
  • a uniform irradiation image is obtained.
  • the sign of this uniformly irradiated image is A.
  • the uniform irradiation image A is obtained in advance than a series of signal processing by the image processing units 9a to 9c in FIG.
  • Uniform irradiation image A is an image obtained by uniformly irradiating the entire FPD 3 with X-rays without placing the subject M on the top 1.
  • the uniform irradiation image is stored in the uniform irradiation image memory unit 11a.
  • Step V2 Check the coordinates of the missing pixel
  • the signal level of the pixel may be abnormally high or low compared to the signal level in the vicinity.
  • a pixel having an abnormally high or low signal level that is, a pixel value
  • a predetermined value threshold value
  • a predetermined range that is determined in advance
  • the target pixel value is abnormally high or low compared to the surrounding pixel values, and the target pixel is regarded as a defective pixel.
  • the symbol of this missing pixel is D, and the coordinates of a certain missing pixel D are (X, y).
  • the defect correction map B is a map as shown in FIG.
  • the defect correction is performed for the defective pixel D, which is the upper left pixel, based on the surrounding pixels (15 in FIG. 9) in the group. Is done.
  • the defect correction is performed by replacing the coordinates of the defective pixel with the pixel value of one of the surrounding pixels.
  • the upper left pixel The defective pixel D to be replaced is indicated by hatching with a right oblique line, and the pixel that is the source of replacement by the defect correction (that is, the pixel to be arranged in the defective pixel D) is indicated by hatching with the left oblique line.
  • the coordinates of the pixel to be placed are (X, y)
  • the defect correction map B has the coordinates (x, y) of the pixel to be placed dd at the coordinates (X, y) of the defective pixel D (the left diagonal line in FIG. No., see tsuching).
  • step U1 by arranging the pixel value to be placed with coordinates (x, y) at the coordinates (X, y) of the missing pixel D by d + 1 d + 1 dd, the pixel value to which the missing pixel D pixel value should be placed.
  • the defect correction map B in FIG. 10 normal pixels that do not correspond to the defective pixel D are represented by “(one, one)”.
  • the defect correction map B is stored in the defect correction map memory unit 11A of the uniform irradiation image memory unit 11a. Coordinates (X, y d
  • the defect correction in step U1 is performed.
  • This defect correction map B is composed of the same pixel values as the original 3072 x 3072 image.
  • Cutout an image consisting of an array of 768 x 768 pixel values in the vertical and horizontal directions.
  • Step V4 Is the upper left pixel missing?
  • the upper left pixel is a normal pixel, the upper left pixel is selected and the coordinates of the upper left pixel are written on the pixel arrangement map.
  • the upper left pixel is the defective pixel D
  • a pixel to be arranged having coordinates ( ⁇ , y) is selected, and the coordinates (X, y) are replaced with d +1 d +1 d +1 d +1 coordinates of the defective pixel D ( Write to x, y). Then d d in Figure 11
  • the coordinates of the surrounding pixels are written only in the part corresponding to the missing pixel D (see the hatched hatching in Fig. 11).
  • Step V7 Creation of pixel arrangement map
  • the pixel arrangement map C is created by writing the other pixels in the pixel arrangement map C in the same procedure.
  • This pixel arrangement map C is stored in the pixel arrangement map memory unit 11B of the uniform irradiation image memory unit 11a.
  • the defect correction with the reduced pixel amount in step T1 described above is performed.
  • the process of Step V7 corresponds to the pixel arrangement map creating process in the present invention.
  • a 768 ⁇ 768 image is cut out from the original 3072 ⁇ 3072 image.
  • the clipping method is created by extracting every 4 pixels in both vertical and horizontal directions.
  • the field of view size of the image is the same as the original 3072 x 3072 image, and an image with low resolution is cut out.
  • Each pixel of the cropped 768 x 768 image corresponds to the upper left pixel, and corresponds to each pixel in the pixel arrangement map. Therefore, the pixel values in the pixel arrangement map C are arranged on the extracted pixels (that is, the pixels after the pixel amount is reduced). At this time, for the cut out defective pixel D (that is, the defective pixel after the pixel amount is reduced), the pixel value of the pixel that is the replacement source in the pixel arrangement map C (that is, the pixel that should be arranged in the defective pixel D) is arranged. As a result, defect correction is performed while performing processing with a reduced amount of pixels.
  • the pixel arrangement map C includes 16 pixels composed of 4 x 4 images out of 3072 x 3072 images extracted from the 768 x 768 image after the pixel amount reduction and 3072 x 3072 images before the pixel amount reduction. It is the arrangement information that associates the position information based on the pixels (see Fig. 9).
  • the upper left pixel is a normal pixel instead of the defective pixel D
  • the normal pixel after the pixel amount is reduced and the upper left pixel of the 16 pixels before the pixel amount are reduced, respectively.
  • the pixel arrangement map is obtained by associating the defective pixel D after the pixel amount reduction with the normal pixels of the 16 pixels before the pixel amount reduction. Make up C. Then, by replacing the defective pixel D after decreasing the pixel amount with the normal pixel before decreasing the pixel amount, the defect correction with the reduced pixel amount in step T1 is performed.
  • the present embodiment configured as described above, in order to output the second image even when a general-purpose arithmetic processing circuit is mounted such as a low-order machine or a general-purpose machine. Since the second image processing includes at least processing in which the pixel amount of the first image is reduced, the time until the second image is output can be reduced by at least the reduced pixel amount. As a result, it is possible to reduce the time until the image for confirmation is output. Thereby, for example, the time until position confirmation can be reduced. As a result, the examination efficiency can be improved and the burden on the subject M can be reduced.
  • the second image is output based on the pixel arrangement map C in addition to the first image described above.
  • This pixel arrangement map C shows pixel arrangement information as shown in FIG. Therefore, compared to outputting the second image based on only the first image in the second image processing, the second image is output when the second image is output based on both the first image and the pixel arrangement map C. (2) Further reduce the time until image output be able to. As a result, it is possible to reduce the time until the image for confirmation is output.
  • the pixel arrangement map C is arrangement information in which pixel values to be arranged in pixels after the pixel amount is reduced and position information based on a plurality of pixels before the pixel amount is reduced.
  • the processing of reducing the pixel amount of the first image (see the extraction of the upper left pixel in step W1) is performed, and the plurality of pixels before reduction of the pixel amount of the pixel arrangement map C are performed.
  • each pixel value is arranged in the pixel after the pixel amount is reduced (See Step W3).
  • the process of reducing the pixel amount of the first image (see step T1) is performed, and the second image processing is associated with position information based on a plurality of pixels before the pixel amount of the pixel arrangement map C is reduced.
  • the pixel value is arranged in the pixel after the pixel amount is reduced, thereby including defect correction (step T1) in which the pixel amount of the first image is reduced.
  • the processing time is relatively large, so by performing the second image processing based on this pixel arrangement map C, the defect correction obtained by reducing the pixel amount of the first image was obtained. The time until the output of the second image can be reduced.
  • the pixel arrangement map C is created in advance in advance of the flowchart of FIG. 5 (a series of signal processing by the image processing units 9a to 9c). Thus, it is possible to prepare for the preparation of the second image processing.
  • the X-ray fluoroscopic apparatus as shown in FIG. 1 has been described as an example.
  • the present invention is, for example, an X-ray fluoroscopic apparatus disposed on a C-type arm. It may also be applied to devices. The present invention may also be applied to an X-ray CT apparatus.
  • the flat panel X-ray detector (FPD) 3 has been described as an example.
  • the present invention is applicable to any X-ray detection means that is normally used. Is possible.
  • the force described with reference to an X-ray detector that detects X-rays is taken as an example.
  • the invention of this invention detects radiation as exemplified by a ⁇ -ray detector that detects y-rays emitted from a subject administered with a radioisotope (RI) such as an ECT (Emission Computed Tomography) device. If it is a radiation detector, it will not specifically limit.
  • the present invention is not particularly limited as long as it is an apparatus that detects an image by detecting radiation as exemplified by the ECT apparatus described above.
  • the FPD 3 includes a radiation (X-ray in the embodiment) sensitive semiconductor, and directly converts the incident radiation into a charge signal by the radiation sensitive semiconductor.
  • the conversion type detector is equipped with a light sensitive semiconductor instead of a radiation sensitive type, and a scintillator. The incident radiation is converted into light by the scintillator, and the converted light is converted into a light sensitive type. It may be an indirect conversion type detector that converts a charge signal using a semiconductor.
  • the image processed in the middle is stored in a storage medium represented by the memory unit 11 or the like, and the image up to the middle stage is stored.
  • the processing is the first image processing
  • the image processing up to the stage before or after being stored in the storage medium may be the first image processing. Also, it is not always necessary to store the data in the storage medium in the middle of image processing.
  • the output of the second image is displayed on the monitor 13 and displayed as a preview.
  • the output form of the second image is limited to the preview display on the monitor 13. Not. For example, it may be output to a printer.
  • the extraction has been described as an example of the process of reducing the pixel amount of the first image.
  • the process is not particularly limited as long as the process reduces the pixel amount, such as reducing the pixel amount.
  • the second image processing includes at least defect correction by reducing the pixel amount of the first image, but at least the second image processing includes processing to reduce the pixel amount of the first image. If this is included, the process of reducing the pixel amount of the first image is not limited to defect correction.
  • the processing power S lag correction for reducing the pixel amount of the first image may be used.
  • at least lag correction by reducing the pixel amount of the first image is performed. Will be included.
  • the form of the pixel arrangement map used for the processing for reducing the pixel amount of the first image is also different.
  • the force including other processing processing after step T2 in FIG. 5 besides the defect correction by reducing the pixel amount of the first image. It may be output as the second image after performing defect correction only by reducing the pixel amount of the first image.
  • the defect correction in which the pixel amount of the first image is reduced is performed by replacing the pixel value with the peripheral pixel value, but the calculation is performed based on the peripheral pixel value. You may do this by interpolating with values.
  • the statistics of the surrounding pixel values for example, interpolation with the average of the surrounding pixel values and interpolation with the median of the surrounding pixel values. It is preferable to interpolate with the calculation regarding.
  • the pixel amount of the first image is drawn every four pixels in both the vertical and horizontal directions, but may be drawn every other pixel. For example, it may be drawn every 8 pixels both vertically and horizontally, or it may be drawn every 8 pixels vertically and every 4 pixels horizontally.
  • the upper left pixel is used as the reference for the defective pixel, but other pixels are used as the reference for the defective pixel. ,.
  • the center pixel may be used as a reference for the defective pixel.
  • the present invention is suitable for a radiation imaging apparatus equipped with a general-purpose arithmetic processing circuit such as a low-level machine or a general-purpose machine.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Medical Informatics (AREA)
  • Engineering & Computer Science (AREA)
  • Radiology & Medical Imaging (AREA)
  • Molecular Biology (AREA)
  • Biophysics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Optics & Photonics (AREA)
  • Pathology (AREA)
  • Physics & Mathematics (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Apparatus For Radiation Diagnosis (AREA)
  • Image Processing (AREA)

Abstract

 この発明の放射線撮像装置は、において、第1画像処理部と第2画像処理部と第3画像処理部とに分けて、放射線検出信号に基づいて第1画像処理部が第1画像を出力した後に、第1画像の画素量を減らした処理を少なくとも含んだ第2画像処理を、画素の配置情報を示した画素配置マップに基づいて第2画像処理部が行って第2画像を出力し、第3画像処理部は第1画像に基づいて最終的な放射線画像である第3画像を出力する。画素配置マップを先に作成することで画素配置マップの分だけ第2画像を出力するまでの時間を低減させることができる。その結果、確認のための画像の出力までの時間を低減させることができる。

Description

放射線撮像装置および放射線検出信号処理方法
技術分野
[0001] この発明は、被検体を照射して検出された放射線検出信号に基づいて放射線画 像を得る放射線撮像装置および放射線検出信号処理方法に係り、特に、画像処理 された画像の出力に関する。
背景技術
[0002] 放射線撮像装置の例として X線を検出して X線画像を得る撮像装置では、以下のよ うな処理が行われる。すなわち、 X線を被検体に向けて照射し、被検体を透過した X 線を検出器で検出した後に、その検出された信号に対してガンマ曲線変換や、撮像 部位に応じた空間周波数処理、自動輝度調整などの処理が行われる。これらの多く の画像処理を経た後に、モニタに表示されて、フィルムに焼き付けられる。
[0003] 従来において X線検出器としてイメージインテンシファイア(I. I)が用いられていた 力 近年において、フラットパネル型 X線検出器 (以下、『FPD』と略記する)が用いら れている。 FPDの場合には、上述した画像処理に前に、オフセット補正、ゲイン補正 、欠損補正などの補正処理がさらに必要となる。
[0004] ところで、画像を取得した直後では補正処理を施して!/、な 、プレビュー画像を出力 表示して、そのプレビュー画像を画像の確認のために用いて、さらに補正用画像取 得後では補正処理後の放射線画像を出力する技術がある(例えば、特許文献 1参照
) o
特許文献 1:特開 2003— 325494号公報 (第 5— 7頁、図 1)
発明の開示
発明が解決しょうとする課題
[0005] し力しながら、上述したオフセット Zゲイン Z欠損補正といった補正処理を含んだ画 像処理にはある程度の処理時間を要する。高級機の場合には、処理能力の高い演 算処理回路を搭載することで、処理時間を問題ない程度にまで短縮する方法が採ら れるが、低級機や汎用機の場合には、汎用の演算処理回路を搭載しているので、処 理時間を短縮化するのが難しい。それによつて、例えば位置確認 (被検体の体位や FPDとの位置関係の確認)までに時間を要してしまうという問題につながる。位置確 認が即座に行えないと、撮像の撮り直しなどが手間取る。その結果、検査効率の向 上を妨げ、被検体への負担が増大してしまう。
[0006] そこで、位置確認が行える程度にまで画像処理を施した途中の段階で、画像処理 で得られた画像をプレビュー表示する手法が、一般的に採用されている。しかし、こ の手法では、プレビュー画像は、本来の画像サイズのままで補正処理を含んだ画像 処理が行われている。そして、後段で時間のかかる処理、例えば撮像部位に応じた 空間周波数処理を施す手前の時点の画像をプレビュー画像として用いることが多 ヽ 。したがって、処理そのものは、比較的にシンプルである力 プレビュー画像を出力 するまでに多少の時間がかかってしまう。
[0007] また、上述した特許文献 1のように、最終的に得られる放射線画像 (特許文献 1では 第 2画像)とは別に、補正処理を施していないプレビュー画像 (特許文献 1では第 1画 像)を用意する手法があり、この手法ではプレビュー画像を出力するまでの時間を低 減させることができる。さらには、最終的に得られる放射線画像の出力までの時間を 低減させることができる。このような特許文献 1のような手法以外にも、画像の出力ま での時間を低減させることができる別の手法が望まれる。
[0008] そこで、画像処理を第 1〜第 3画像処理に分けて、先ず、被検体を透過した X線を 検出器で検出して得られた X線検出信号に対して第 1画像処理を行い、第 1画像処 理されて出力された第 1画像に基づいて第 2画像を出力するために第 1画像の画素 量を減らした処理を少なくとも含んだ第 2画像処理を行い、第 2画像処理されて出力 された第 2画像の出力結果の後に、第 1画像処理手段で第 1画像処理されて出力さ れた第 1画像に基づいて第 3画像を出力するために第 1画像に対して第 3画像処理 を第 2画像の出力結果に応じて行い、その第 3画像を最終的に得られる放射線画像 とすると 、う手法が考えられる。
[0009] この手法によれば、上述した第 2画像をプレビュー画像とすれば、第 1画像に対す る第 3画像処理を、第 2画像処理されて出力された第 2画像の出力結果 (すなわちプ レビュー画像の出力)の後に行い、その第 3画像処理を第 2画像の出力結果 (プレビ ユー画像の出力)に応じて行う。すなわち、第 3画像の確認のためにプレビュー画像 である第 2画像を先に出力する。すると、第 2画像を出力するために第 2画像処理は 、第 1画像の画素量を減らした処理を少なくとも含んでいるので、少なくとも減らした 画素量の分だけ第 2画像を出力するまでの時間を低減させることができる。その結果 、確認のための画像の出力までの時間を低減させることができる。
[0010] しかし、上述した手法でも、画像処理の種類によっては、確認のための画像 (ここで は第 2画像)の出力までに長時間を要してしまう場合がある。例えば、画像処理は、 上述したオフセット補正→ゲイン補正→欠損補正→· · ·→リーク電流補正→· "などの 順に行うが、欠損補正については処理時間が比較的にかかる。したがって、欠損補 正の前までの処理を第 1画像処理として、欠損補正の処理を、第 1画像の画素量を 減らした処理を含んだ第 2画像処理として、欠損補正の段階でプレビュー画像を出 力するのが好ましい。そして、第 1画像の画素量を減らした欠損補正で出力されたプ レビュー画像に応じて欠損補正以降の処理である第 3画像処理を行うのが好ましい。 しかし、欠損補正の段階で第 1画像の画素量を減らしても、欠損補正そのもので処理 時間がかかるので、確認のための画像の出力までの時間が依然とかかってしまう。こ のように、欠損補正に限らず、他の画像処理においても、確認のための画像の出力 までの時間をさらに低減させることが望まれる。
[0011] この発明は、このような事情に鑑みてなされたものであって、確認のための画像の 出力までの時間を低減させることができる放射線撮像装置および放射線検出信号処 理方法を提供することを目的とする。
課題を解決するための手段
[0012] この発明は、このような目的を達成するために、次のような構成をとる。
すなわち、この発明の放射線撮像装置は、放射線検出信号に基づいて放射線画 像を得る放射線撮像装置であって、被検体に向けて放射線を照射する放射線照射 手段と、被検体を透過した放射線を検出する放射線検出手段と、放射線検出手段か ら検出された放射線検出信号に基づいて第 1画像を出力するために放射線検出信 号に対して第 1画像処理を行う第 1画像処理手段と、画素の配置情報を示した画素 配置マップおよび第 1画像処理手段で第 1画像処理されて出力された第 1画像に基 づいて第 2画像を出力するために第 1画像の画素量を減らした処理を少なくとも含ん だ第 2画像処理を行う第 2画像処理手段と、第 1画像処理手段で第 1画像処理されて 出力された第 1画像に基づいて第 3画像を出力するために第 1画像に対して第 3画 像処理を行! ヽ、その第 3画像を最終的に得られる放射線画像とする第 3画像処理手 段とを備えて ヽることを特徴とするものである。
[0013] この発明の放射線撮像装置によれば、放射線検出手段から検出された放射線検 出信号に基づいて第 1画像を出力するために、第 1画像処理手段は、放射線検出手 段から検出された放射線検出信号に対して第 1画像処理を行う。その第 1画像処理 手段で第 1画像処理されて出力された第 1画像に基づいて第 2画像および第 3画像 を出力するために、第 2画像処理手段は、第 1画像の画素量を減らした処理を少なく とも含んだ第 2画像処理を行うとともに、第 3画像処理手段は、第 1画像に対して第 3 画像処理を行い、その第 3画像を最終的に得られる放射線画像とする。第 3画像処 理手段による第 1画像に対する第 3画像処理を、第 2画像処理手段によって第 2画像 処理されて出力された第 2画像の出力結果の後に行い、その第 3画像処理を第 2画 像の出力結果に応じて行うとする。すなわち、第 3画像の確認のために第 2画像を先 に出力する。すると、第 2画像を出力するために第 2画像処理は、第 1画像の画素量 を減らした処理を少なくとも含んでいるので、少なくとも減らした画素量の分だけ第 2 画像を出力するまでの時間を低減させることができる。その結果、確認のための画像 の出力までの時間を低減させることができる。
[0014] ここで、第 2画像処理では、上述した第 1画像のほかに画素配置マップに基づいて 第 2画像を出力する。この画素配置マップは画素の配置情報を示している。したがつ て、第 2画像処理において第 1画像のみに基づいて第 2画像を出力するときと比較す ると、第 1画像および画素配置マップの双方に基づいて第 2画像を出力するときの方 が第 2画像を出力するまでの時間をより一層低減させることができる。その結果、確認 のための画像の出力までの時間を低減させることができる。
[0015] この発明の放射線撮像装置の一例は、上述した画素配置マップは、画素量減少後 の画素に配置すべき画素値と画素量減少前の複数の画素に基づく位置情報とをそ れぞれ対応付けた配置情報であって、上述した第 2画像処理では、第 1画像の画素 量を減らした処理を行いつつ、画素配置マップの画素量減少前の複数の画素に基 づく位置情報に対応付けられた各々のこれらの画素値に基づいて、画素量減少後 の画素にそれらの画素値をそれぞれ配置するように、画像処理手段を構成すること である。つまり、第 2画像処理では、第 1画像の画素量を減らした処理を行いつつ、画 素配置マップの画素量減少前の複数の画素に基づく位置情報に対応付けられた各 々のこれらの画素値に基づいて、画素量減少後の画素にそれらの画素値をそれぞ れ配置することで、第 1画像の画素量を減らした欠損補正を含むことになる。通常の 欠損補正については処理時間が比較的に力かるので、このような画素配置マップに 基づく第 2画像処理を行うことで、第 1画像の画素量を減らした欠損補正で得られた 第 2画像の出力までの時間を低減させることができる。
[0016] また、この発明の放射線検出信号処理方法は、被検体を照射して検出された放射 線検出信号に基づいて放射線画像を得る信号処理を行う放射線検出信号処理方法 であって、前記信号処理は、放射線検出信号に基づいて第 1画像を出力するために 放射線検出信号に対して第 1画像処理を行う第 1画像処理工程と、画素の配置情報 を示した画素配置マップおよび第 1画像処理工程で第 1画像処理されて出力された 第 1画像に基づいて第 2画像を出力するために第 1画像の画素量を減らした処理を 少なくとも含んだ第 2画像処理を行う第 2画像処理工程と、第 2画像処理工程で第 2 画像処理されて出力された第 2画像の出力結果の後に、第 1画像処理手段で第 1画 像処理されて出力された第 1画像に基づいて第 3画像を出力するために第 1画像に 対して第 3画像処理を第 2画像の出力結果に応じて行い、その第 3画像を最終的に 得られる放射線画像とする第 3画像処理工程とを備えていることを特徴とするもので ある。
[0017] また、この発明の放射線検出信号処理方法によれば、放射線検出信号に基づいて 第 1画像を出力するために、第 1画像処理工程では、放射線検出信号に対して第 1 画像処理を行う。その第 1画像処理工程で第 1画像処理されて出力された第 1画像 に基づいて第 2画像および第 3画像を出力するために、第 2画像処理工程では、第 1 画像の画素量を減らした処理を少なくとも含んだ第 2画像処理を行うとともに、第 3画 像処理工程では、第 1画像に対して第 3画像処理を行い、その第 3画像を最終的に 得られる放射線画像とする。なお、第 3画像処理工程での第 1画像に対する第 3画像 処理を、第 2画像処理工程で第 2画像処理されて出力された第 2画像の出力結果の 後に行い、その第 3画像処理を第 2画像の出力結果に応じて行う。すなわち、第 3画 像の確認のために第 2画像を先に出力する。すると、第 2画像を出力するために第 2 画像処理は、第 1画像の画素量を減らした処理を少なくとも含んでいるので、少なくと も減らした画素量の分だけ第 2画像を出力するまでの時間を低減させることができる 。その結果、確認のための画像の出力までの時間を低減させることができる。
[0018] ここで、第 2画像処理工程では、上述した第 1画像のほかに画素配置マップに基づ いて第 2画像を出力する。この画素配置マップは画素の配置情報を示している。した がって、第 2画像処理において第 1画像のみに基づいて第 2画像を出力するときと比 較すると、第 1画像および画素配置マップの双方に基づいて第 2画像を出力するとき の方が第 2画像を出力するまでの時間をより一層低減させることができる。その結果、 確認のための画像の出力までの時間を低減させることができる。
[0019] この発明の放射線検出信号処理方法の一例は、上述した信号処理は、上述した画 素配置マップを作成する画素配置マップ作成工程をさらに備えて 、ることである。画 素配置マップ作成工程で画素配置マップを予め作成することで、第 2画像処理の準 備に備えることができる。
[0020] また、この発明の放射線検出信号処理方法の一例は、上述した画素配置マップは 、画素量減少後の画素に配置すべき画素値と画素量減少前の複数の画素に基づく 位置情報とをそれぞれ対応付けた配置情報であって、上述した第 2画像処理工程で は、第 1画像の画素量を減らした処理を行いつつ、画素配置マップの画素量減少前 の複数の画素に基づく位置情報に対応付けられた各々のこれら画素値に基づいて、 画素量減少後の画素にそれらの画素値をそれぞれ配置することである。つまり、第 2 画像処理では、第 1画像の画素量を減らした処理を行いつつ、画素配置マップの画 素量減少前の複数の画素に基づく位置情報に対応付けられた各々のこれらの画素 値に基づいて、画素量減少後の画素にそれらの画素値をそれぞれ配置することで、 第 1画像の画素量を減らした欠損補正を含むことになる。通常の欠損補正について は処理時間が比較的に力かるので、このような画素配置マップに基づく第 2画像処理 を行うことで、第 1画像の画素量を減らした欠損補正で得られた第 2画像の出力まで の時間を低減させることができる。
発明の効果
[0021] この発明に係る放射線撮像装置および放射線検出信号処理方法によれば、放射 線検出信号に基づいて第 1画像を出力するために放射線検出信号に対して第 1画 像処理を行う。第 1画像処理されて出力された第 1画像に基づいて第 2画像および第 3画像を出力するために、第 1画像の画素量を減らした処理を少なくとも含んだ第 2 画像処理を行うとともに、第 1画像に対して第 3画像処理を行い、その第 3画像を最終 的に得られる放射線画像とする。なお、第 1画像に対する第 3画像処理を、第 2画像 処理されて出力された第 2画像の出力結果の後に行い、その第 3画像処理を第 2画 像の出力結果に応じて行う。すなわち、第 3画像の確認のために第 2画像を先に出 力する。すると、第 2画像を出力するために第 2画像処理は、第 1画像の画素量を減 らした処理を少なくとも含んで 、るので、少なくとも減らした画素量の分だけ第 2画像 を出力するまでの時間を低減させることができる。その結果、確認のための画像の出 力までの時間を低減させることができる。ここで、第 2画像処理では、上述した第 1画 像のほかに画素配置マップに基づいて第 2画像を出力する。この画素配置マップは 画素の配置情報を示している。したがって、第 2画像処理において第 1画像のみに基 づいて第 2画像を出力するときと比較すると、第 1画像および画素配置マップの双方 に基づいて第 2画像を出力するときの方が第 2画像を出力するまでの時間をより一層 低減させることができる。その結果、確認のための画像の出力までの時間を低減させ ることがでさる。
図面の簡単な説明
[0022] [図 1]実施例に係る X線透視撮影装置のブロック図である。
[図 2]X線透視撮影装置に用いられて ヽる側面視したフラットパネル型 X線検出器の 等価回路である。
[図 3]平面視したフラットパネル型 X線検出器の等価回路である。
[図 4]各画像処理部の具体的な構成および各画像等のデータの流れを示したブロッ ク図である。 [図 5]各画像処理部による一連の信号処理を示すフローチャートである。
[図 6]図 5の比較のために用いられる従来の画像処理部による一連の信号処理を示 すフローチャートである。
圆 7]—様照射画像力 欠損補正マップおよび画素配置マップを作成する流れを示 した説明図である。
圆 8]—様照射画像中の欠損画素を模式的に表した説明図である。
圆 9]一様照射画像中の欠損画素および配置すべき画素を模式的に表した説明図 である。
圆 10]欠損補正マップを模式的に表した説明図である。
圆 11]配置画素マップを模式的に表した説明図である。
[図 12]画素配置マップの作成を含んだ一連の前処理を示すフローチャートである。
[図 13]図 5のステップ T1の画素量を減らした欠損補正をより具体的に示したフローチ ヤートである。
符号の説明
[0023] 2 · · - X線管
3 · · - フラットパネル型 X線検出器 (FPD)
9 · · - 画像処理部
9a · ·· 第 1画像処理部
9b · - 第 2画像処理部
9c · ·· 第 3画像処理部
C · ·
D · · - 欠損画素
発明を実施するための最良の形態
[0024] 放射線撮像装置にお!、て画像処理手段を、第 1画像処理手段と第 2画像処理手段 と第 3画像処理手段とに分けて、放射線検出手段から検出された放射線検出信号に 基づいて第 1画像を出力するために、第 1画像処理手段は、放射線検出手段から検 出された放射線検出信号に対して第 1画像処理を行う。その第 1画像処理手段で第 1画像処理されて出力された第 1画像に基づいて第 2画像および第 3画像を出力す るために、第 2画像処理手段は、第 1画像の画素量を減らした処理を少なくとも含ん だ第 2画像処理を行うとともに、第 3画像処理手段は、第 1画像に対して第 3画像処理 を行い、その第 3画像を最終的に得られる放射線画像とする。第 3画像の確認のため に第 2画像を先に出力すると、第 2画像を出力するために第 2画像処理は、第 1画像 の画素量を減らした処理を少なくとも含んでいるので、確認のための画像の出力まで の時間を低減することができる。さらに、第 2画像処理では、上述した第 1画像のほか に画素の配置情報を示した画素配置マップに基づ 、て第 2画像を出力するので、確 認のための画像の出力までの時間をより一層低減させるという目的を実現した。 実施例
[0025] 以下、図面を参照してこの発明の実施例を説明する。図 1は、実施例に係る X線透 視撮影装置のブロック図であり、図 2は、 X線透視撮影装置に用いられている側面視 したフラットパネル型 X線検出器の等価回路であり、図 3は、平面視したフラットパネ ル型 X線検出器の等価回路である。本実施例では放射線検出手段としてフラットパ ネル型 X線検出器 (以下、適宜「FPD」という)を例に採るとともに、放射線撮像装置と して X線透視撮影装置を例に採って説明する。
[0026] 本実施例に係る X線透視撮影装置は、図 1に示すように、被検体 Mを載置する天 板 1と、その被検体 Mに向けて X線を照射する X線管 2と、被検体 Mを透過した X線を 検出する FPD3とを備えている。 X線管 2は、この発明における放射線照射手段に相 当し、 FPD3はこの発明における放射線検出手段に相当する。
[0027] X線透視撮影装置は、他に、天板 1の昇降および水平移動を制御する天板制御部 4や、 FPD3の走査を制御する FPD制御部 5や、 X線管 2の管電圧や管電流を発生 させる高電圧発生部 6を有する X線管制御部 7や、 FPD3から電荷信号である X線検 出信号をディジタルィ匕して取り出す AZD変 8や、 AZD変 8から出力され た X線検出信号に基づいて種々の処理を行う画像処理部 9や、これらの各構成部を 統括するコントローラ 10や、処理された画像などを記憶するメモリ部 11や、オペレー タが入力設定を行う入力部 12や、処理された画像などを表示するモニタ 13などを備 えている。
[0028] 天板制御部 4は、天板 1を水平移動させて被検体 Μを撮像位置にまで収容したり、 昇降、回転および水平移動させて被検体 Mを所望の位置に設定したり、水平移動さ せながら撮像を行ったり、撮像終了後に水平移動させて撮像位置カゝら退避させる制 御などを行う。 FPD制御部 5は、 FPD3を水平移動させたり、被検体 Mの体軸の軸心 周りに回転移動させることによる走査に関する制御などを行う。高電圧発生部 6は、 X 線を照射させるための管電圧や管電流を発生して X線管 2に与え、 X線管制御部 7は 、 X線管 2を水平移動させたり、被検体 Mの体軸の軸心周りに回転移動させること〖こ よる走査に関する制御や、 X線管 2側のコリメータ(図示省略)の照視野の設定の制 御などを行う。なお、 X線管 2や FPD3の走査の際には、 X線管 2から照射された X線 を FPD3が検出できるように X線管 2および FPD3が互いに対向しながらそれぞれの 移動を行う。
[0029] コントローラ 10は、中央演算処理装置 (CPU)などで構成されており、メモリ部 11は 、 ROM (Read-only Memory)や RAM (Random— Access Memory)などに代表される 記憶媒体などで構成されている。また、入力部 12は、マウスやキーボードやジョイス ティックゃトラックボールゃタツチパネルなどに代表されるポインティングデバイスで構 成されている。 X線透視撮影装置では、被検体 Mを透過した X線を FPD3が検出して 、検出された X線に基づ!/、て画像処理部 9で画像処理を行うことで被検体 Mの撮像 を行う。
[0030] なお、画像処理部 9は、 X線検出信号に基づいて第 1画像を出力するために X線検 出信号に対して第 1画像処理を行う第 1画像処理部 9aと、画素の配置情報を示した 画素配置マップおよび第 1画像処理部 9aで第 1画像処理されて出力された第 1画像 に基づいて第 2画像を出力するために第 1画像の画素量を減らした処理を少なくとも 含んだ第 2画像処理を行う第 2画像処理部 9bと、第 1画像処理部 9aで第 1画像処理 されて出力された第 1画像に基づいて第 3画像を出力するために第 1画像に対して 第 3画像処理を行う第 3画像処理部 9cとを備えている(図 1、図 4を参照)。なお、各画 像処理部 9a〜9cの具体的な信号処理については、図 4、図 5で後述する。画素配置 マップについても、図 7〜図 13で後述する。第 1画像処理部 9aは、この発明における 第 1画像処理手段に相当し、第 2画像処理部 9bは、この発明における第 2画像処理 手段に相当し、第 3画像処理部 9cは、この発明における第 3画像処理手段に相当す る。
[0031] なお、メモリ部 11は、第 1画像処理部 9aで第 1画像処理されて出力された第 1画像 を書き込んで記憶する第 1画像用メモリ部 11aと、後述する欠損補正マップや画素配 置マップの基となる一様照射画像を記憶する一様照射画像用メモリ部 l ibと備えて いる(図 1、図 4を参照)。さらに、一様照射画像用メモリ部 l ibは、図 4に示すように、 欠損補正マップを記憶する欠損補正マップ用メモリ部 11 Aと画素配置マップを記憶 する画素配置マップ用メモリ部 11Bと力 なる。
[0032] FPD3は、図 2に示すように、ガラス基板 31と、ガラス基板 31上に形成された薄膜ト ランジスタ TFTと力も構成されている。薄膜トランジスタ TFTについては、図 2、図 3に 示すように、縦'横式 2次元マトリクス状配列でスイッチング素子 32が多数個(例えば 、 3072個 X 3072個)形成されており、キャリア収集電極 33ごとにスイッチング素子 32 が互いに分離形成されている。すなわち、 FPD3は、 2次元アレイ放射線検出器でも ある。
[0033] 図 2に示すようにキャリア収集電極 33の上には X線感応型半導体 34が積層形成さ れており、図 2、図 3に示すようにキャリア収集電極 33は、スイッチング素子 32のソー ス Sに接続されて!、る。ゲートドライバ 35からは複数本のゲートバスライン 36が接続さ れているとともに、各ゲートバスライン 36はスイッチング素子 32のゲート Gに接続され ている。一方、図 3に示すように、電荷信号を収集して 1つに出力するマルチプレクサ 37には増幅器 38を介して複数本のデータバスライン 39が接続されているとともに、 図 2、図 3に示すように各データバスライン 39はスイッチング素子 32のドレイン Dに接 続されている。
[0034] 図示を省略する共通電極にバイアス電圧を印加した状態で、ゲートバスライン 36の 電圧を印加(または OVに)することでスイッチング素子 32のゲートが ONされて、キヤ リア収集電極 33は、検出面側で入射した X線カゝら X線感応型半導体 34を介して変換 された電荷信号 (キャリア)を、スイッチング素子 32のソース Sとドレイン Dとを介してデ ータバスライン 39に読み出す。なお、スイッチング素子が ONされるまでは、電荷信 号はキャパシタ(図示省略)で暫定的に蓄積されて記憶される。各データバスライン 3 9に読み出された電荷信号を増幅器 38で増幅して、マルチプレクサ 37で 1つの電荷 信号にまとめて出力する。出力された電荷信号を AZD変 8でディジタルィ匕して X線検出信号として出力する。
[0035] 次に、本実施例に係る各画像処理部 9a〜9cの一連の信号処理および画素配置マ ップについて、図 4のブロック図、図 5、図 6、図 12、図 13のフローチャートおよび図 7 〜図 11の説明図を参照して説明する。図 4は、各画像処理部 9a〜9cの具体的な構 成および各画像等のデータの流れを示したブロック図であり、図 5は、各画像処理部 9a〜9cによる一連の信号処理を示すフローチャートであり、図 6は、図 5の比較のた めに用いられる従来の画像処理部による一連の信号処理を示すフローチャートであ り、図 7は、一様照射画像力 欠損補正マップおよび画素配置マップを作成する流れ を示した説明図であり、図 8は、一様照射画像中の欠損画素を模式的に表した説明 図であり、図 9は、一様照射画像中の欠損画素および配置すべき画素を模式的に表 した説明図であり、図 10は、欠損補正マップを模式的に表した説明図であり、図 11 は、配置画素マップを模式的に表した説明図であり、図 12は、画素配置マップの作 成を含んだ一連の前処理を示すフローチャートであり、図 13は、図 5のステップ T1の 画素量を減らした欠損補正をより具体的に示したフローチャートである。なお、この処 理では、 FPD3から検出された X線検出信号を AZD変 8でディジタルィ匕した後 力 を例に採って説明する。
[0036] 先ず、従来の画像処理部による一連の信号処理(図 6を参照)について説明する。
[0037] (ステップ S101)オフセット補正
X線を照射していないのにも関わらず暗電流によってオフセット値が画像に重畳さ れる場合がある。そこで、 X線が非照射時のオフセット画像を予め求める。 X線検出信 号に基づく原画像力 上述したオフセット画像を減算するオフセット補正を行う。
[0038] (ステップ S 102)ゲイン補正
キャパシタ(図示省略)やスイッチング素子 32を構成する検出素子ごとに蓄積され る電荷の量にバラツキがあり、それによつて検出素子ごとの X線検出信号に基づく画 素の信号レベル (画素値)についてもバラツキがある。力かるバラツキを低減させるた めに、例えば検出素子ごとの増幅器 (アンプ) 38のゲインをそれぞれ調節して出力側 をそろえるゲイン補正を行う。このゲイン補正は『キャリブレーション (校正)』とも呼ば れている。具体的には、増幅後の出力を予め求めて、その出力側がそろうようにゲイ ンを調整する。
[0039] (ステップ S 103)欠損補正
検出素子で検出された画素の信号レベルが周辺の信号レベルと比較して異常に 高いあるいは低い場合がある。そこで、力かる場合には周辺の画素値で置換する、あ るいは周辺の画素値に基づいて演算された値で補間する欠損補正を行う。
[0040] (ステップ S 104)各種の補正処理
ステップ S101〜S103以外の各種の補正処理を行う。具体的な補正処理としては 、例えば、データバスライン 39に沿って生じる漏れ電流を補正するリーク電流補正や 、画像全体の上下 Z左右で生じる信号レベル差 (輝度差)の補正や、 FPD3の時間 遅れによるラグの補正や、ゲートバスライン 36ごとに異なる値が重畳されるラインノィ ズの補正や、静電気ノイズの補正などがある。 X線感応型半導体 34や FPD3の個体 差などに応じて、上述したステップ S101のオフセット補正、ステップ S102のゲイン補 正、ステップ S 103の欠損補正を含めて、補正処理の数や補正処理の種類は異なる 。したがって、補正処理の数や補正処理の種類については特に限定されない。また 、ステップ S 104の補正処理が不要であれば、ステップ S 104をスキップしてもよい。ス テツプ S101〜S104の補正処理は、 FPD3の特性に関する画像処理である。なお、 後述するステップ S 105以降の処理は、診断を行いやすくするための画像処理であ る。
[0041] (ステップ S 105)各種の画像処理
後述するステップ S 106〜S 108以外の各種の画像処理をステップ S 106のガンマ 変換の前に行う。具体的な画像処理としては、例えば、デュアルエナジーサブトラク シヨンなどがある。撮像部位や診断目的に応じて、後述するステップ S 106のガンマ 変換、ステップ S107の周波数処理、ステップ S108の自動輝度調整を含めて、画像 処理の数や画像処理の種類は異なる。したがって、画像処理の数や画像処理の種 類についても特に限定されない。また、ステップ S 105の画像処理が不要であれば、 ステップ S 105をスキップしてもよい。
[0042] (ステップ S 106)ガンマ変換 ガンマ曲線変換を行う。具体的には、モニタやフィルム現像機などの画像出力機器 の特性による非直線性を補正したり、特定の輝度範囲のコントラストをつけたりするた めに信号強度の変換処理を行う。
[0043] (ステップ S 107)周波数処理
撮像部位に応じた空間周波数処理を行う。具体的には、粒状性を悪化させずに、 濃淡陰影や形状陰影をバランスよく強調するために、特定の周波数成分を強調した り低下させたりする処理を行う。
[0044] (ステップ S 108)自動輝度調整
欠損画素でなく正常な画素であって、極端に大きな画素値あるいは極端に小さな 画素値が存在する場合には、その画素に一致するように、残りの全ての画素につい て最大値力 最小値までの範囲を確定するスケーリングを行う自動輝度調整を行う。
[0045] 上述したステップ S101〜S108に代表される従来の画像処理部による一連の信号 処理(図 6を参照)では、最後の画像処理である自動輝度調整が行われた画像が、 最終的に得られる X線画像となる。ここで、位置確認を行おうとすると確認可能な画 像、すなわち出力表示可能な画像は、全てのステップ S101〜S108で処理が行わ れた X線画像となる。つまり、位置確認のためには、全てのステップ S101〜S108が 終了して初めて画像の確認が可能になる。そこで、本実施例では、図 4に示すように プレビュー画像を出力表示する。
[0046] 図 4に示すように、画像処理部 9を第 1画像処理部 9aと第 2画像処理部 9bと第 3画 像処理部 9cとに分けて、上述した従来のステップ S101〜S108の各画像処理も、各 画像処理部 9a〜9cに合わせて第 1画像処理と第 2画像処理と第 3画像処理とに分け る。具体的な分け方の例については、図 5のフローチャートに示す。
[0047] FPD3から検出された X線検出信号に基づいて第 1画像を出力するために、第 1画 像処理部 9aは、 FPD3から検出された X線検出信号に対して第 1画像処理を行う。 その第 1画像処理部 9aで第 1画像処理されて出力された第 1画像を、コントローラ 10 を介してメモリ部 11の第 1画像用メモリ部 11aに送り込んで、その第 1画像用メモリ部 1 laに第 1画像を書き込むことでー且記憶する。記憶された第 1画像を読み出してコ ントローラ 10を介して、第 2画像処理部 9bまたは第 3画像処理部 9cに送り込む。第 1 画像に基づいて第 2画像および第 3画像を出力するために、第 2画像処理部 9bは、 第 1画像の画素量を減らした処理を少なくとも含んだ第 2画像処理を行うとともに、第 3画像処理部 9cは、第 1画像に対して第 3画像処理を行う。第 3画像処理部 9cは、そ の第 3画像を最終的に得られる X線画像とする。これらの出力された第 2画像および 第 3画像についてはモニタ 13に出力表示する。なお、必要に応じて第 2画像および 第 3画像についても、第 1画像と同様にメモリ部 11に一旦記憶してもよい。また、必要 に応じて第 1画像についても、第 2画像および第 3画像と同様にモニタ 13に出力表 示してちょい。
[0048] ここで、第 2画像処理では、上述した第 1画像のほかにメモリ部 11の一様照射画像 用メモリ部 l ibの画素配置マップ用メモリ部 11Bに記憶された画素配置マップに基づ いて第 2画像を出力する。この画素配置マップは画素の配置情報を示している(図 1 1を参照)。
[0049] 本実施例では、画素配置マップは、画素量減少後の画素に配置すべき画素値と画 素量減少前の複数の画素に基づく位置情報とをそれぞれ対応付けた配置情報であ つて、第 2画像処理では、第 1画像の画素量を減らした処理を行いつつ、画素配置マ ップの画素量減少前の複数の画素に基づく位置情報に対応付けられた各々のこれ らの画素値に基づいて、画素量減少後の画素にそれらの画素値をそれぞれ配置す る。
[0050] つまり、第 2画像処理では、第 1画像の画素量を減らした処理を行いつつ、画素配 置マップの画素量減少前の複数の画素に基づく位置情報に対応付けられた各々の これらの画素値に基づいて、画素量減少後の画素にそれらの画素値をそれぞれ配 置することで、第 1画像の画素量を減らした欠損補正(図 5のステップ T1および図 13 の各ステップ W1〜W5を参照)を含むことになる。
[0051] また、後述する図 5のフローチャートでも明らかなように、第 3画像処理部 9cによる 第 1画像に対する第 3画像処理を、第 2画像処理部 9bによって第 2画像処理されて 出力された第 2画像の出力結果の後に行い、その第 3画像処理を第 2画像の出力結 果に応じて行うとする。すなわち、第 3画像の確認のために第 2画像を先に出力する 。本実施例では、この第 2画像の出力形態の一例として、モニタ 13にプレビュー表示 する。
[0052] 先ず、図 5の一連の信号処理について説明する。
[0053] (ステップ S1)オフセット補正
従来のステップ S101と同様なので、その説明を省略する。
[0054] (ステップ S2)ゲイン補正
従来のステップ S 102と同様なので、その説明を省略する。ただし、ステップ SI, S2 までの処理を第 1画像処理部 9aによる第 1画像処理とする。したがって、オフセット補 正、ゲイン補正を経て得られた画像が第 1画像となる。この第 1画像を第 1画像用メモ リ部 11aにー且記憶する。このステップ SI, S2までの工程は、この発明における第 1 画像処理工程に相当する。上述したように第 3画像処理よりも第 2画像処理を先に行
[0055] (ステップ T1)画素量を減らした欠損補正
第 1画像の画素量を減らした欠損補正を行う。この画素量を減らした欠損補正につ いては、図 13で詳しく後述する。なお、画素量を減らすことで分解能が低い画像が 出力される。本実施例では、全体の第 1画像は縦横で 3072 X 3072の画素値の並び からなり、画素量を減らす処理では縦横で 768 X 768の画素値の並び力 なる画像を 出力する。
[0056] (ステップ T2)各種の補正処理
処理の対象が元の 3072 X 3072の画像でなぐ画素量が減った 768 X 768の画像で あることを除けば、従来のステップ S 104と同様なので、その説明を省略する。
[0057] (ステップ T3)画像処理 1
この画素量が減った 768 X 768の画像につ!、ては、元の 3072 X 3072の画像と相違し 、位置確認として必要な処理のみを行えばよい。ここでは必要な各種の画像処理とし て、画像処理 1のみを行う。また、各種の画像処理以降の処理について、ここでは必 要な処理として、後述するステップ T4のガンマ変換およびステップ T5の自動輝度調 整のみを行う。したがって、従来のステップ S 107の周波数処理についてはスキップ する。
[0058] (ステップ T4)ガンマ変換 処理の対象が元の 3072 X 3072の画像でなぐ画素量が減った 768 X 768の画像で あることを除けば、従来のステップ S 106と同様なので、その説明を省略する。
[0059] (ステップ T5)自動輝度調整
処理の対象が元の 3072 X 3072の画像でなぐ画素量が減った 768 X 768の画像で あることを除けば、従来のステップ S 108と同様なので、その説明を省略する。ただし 、ステップ T1〜T5までの処理を第 2画像処理部 9bによる第 2画像処理とする。した がって、画素量を減らした欠損補正、各種の補正処理、画像処理 ガンマ変換、自 動輝度調整を経て得られた画像が第 2画像となる。このステップ T1〜T5までの工程 は、この発明における第 2画像処理工程に相当する。
[0060] (ステップ Ml)プレビュー表示
この第 2画像をモニタ 13に出力表示することで、第 3画像の確認のためのプレビュ 一表示を行う。この第 2画像の出力結果の後に、第 3画像処理部 9cによる第 3画像処 理に相当するステップ U1〜U6を行う。なお、後述するステップ U1〜U6では、 3072 X 3072の第 1画像を処理の対象として説明する。
[0061] (ステップ U1)欠損補正
従来のステップ S 103と同様なので、その説明を省略する。
[0062] (ステップ U2)各種の補正処理
従来のステップ S 104と同様なので、その説明を省略する。
[0063] (ステップ U3)各種の画像処理
従来のステップ S 105と同様なので、その説明を省略する。
[0064] (ステップ U4)ガンマ変換
従来のステップ S 106と同様なので、その説明を省略する。
[0065] (ステップ U5)周波数処理
従来のステップ S 107と同様なので、その説明を省略する。
[0066] (ステップ U6)自動輝度調整
従来のステップ S 108と同様なので、その説明を省略する。ただし、ステップ U1〜U 6までの処理を第 3画像処理部 9cによる第 3画像処理とする。したがって、欠損補正 、各種の補正処理、各種の画像処理、ガンマ変換、周波数処理、自動輝度調整を経 て得られた画像が第 3画像となる。このステップ U1〜U6までの工程は、この発明に おける第 3画像処理工程に相当する。
[0067] 次に、画素配置マップや上述したステップ T1の画素量を減らした欠損補正につい て、図 7〜図 13を参照して説明する。
[0068] (ステップ VI)—様照射画像を求める
図 12のフローチャートに示すように、一様照射画像を求める。図 7に示すように、こ の一様照射画像の符号を Aとする。一様照射画像 Aは、図 5の各画像処理部 9a〜9 cによる一連の信号処理よりも事前に予め求められる。一様照射画像 Aは、被検体 M を天板 1に載置せずに FPD3全体に一様に X線を照射して得られる画像である。この 一様照射画像を一様照射画像用メモリ部 11aに記憶する。
[0069] (ステップ V2)欠損画素の座標を調べる
上述したように、画素の信号レベルが周辺に信号レベルと比較して異常に高いある いは低い場合がある。力かる場合には、異常に高いあるいは低い信号レベル (すな わち画素値)を有した画素を欠損画素とする。異常に高 、あるいは低 、画素値を検 出する場合には、予め決定された所定値 (閾値)や所定範囲を設定し、対象となる画 素値と周辺の画素値との差を求め、その差が閾値を超えたり、あるいは所定範囲外 の場合には、対象となる画素値は周辺の画素値と比較して異常に高 、あるいは低!ヽ として、その対象となる画素を欠損画素とする。図 8に示すように、この欠損画素の符 号を Dとして、ある欠損画素 Dの座標を (X , y )とする。
d d
[0070] 座標(x, y )のように他の欠損画素 Dの座標についても調べたら、これらの欠損画 d d
素 Dの座標に基づ 、て、図 7に示すように欠損補正マップ Bおよび画素配置マップ C を作成する。欠損補正マップ Bは、図 10に示すようなマップとなる。
[0071] 本実施例では、図 9に示すように、縦横で 4 X 4の画素値の並びを 1つのグループと して、そのグループにおいて欠損画素 D (ここでは座標 (X , y )の欠損画素)を左上 d d
画素とする。つまり、左上画素を欠損画素 Dの基準としたときに、そのグループにおけ る周辺の複数(図 9では 15個)の画素に基づ 、て左上画素である欠損画素 Dにつ ヽ て欠損補正が行われる。本実施例では、周辺の画素のうちの 1つの画素の画素値で 欠損画素の座標に置換することで、欠損補正を行うとする。図 9では、左上画素であ る欠損画素 Dを右斜線のハッチングで示すとともに、欠損補正で置換の元となる画素 (すなわち欠損画素 Dに配置すべき画素)を左斜線のハッチングで示す。また、図 9 では、配置すべき画素の座標を (X , y )
d+ 1 d+1 とする。
[0072] すると、欠損補正マップ Bは、図 10に示すように、欠損画素 Dの座標 (X , y )に配 d d 置すべき画素の座標 (x , y ) (図 10中の左斜線のノ、ツチングを参照)を示す。そ d + 1 d+1
して、座標 (x , y )を有した配置すべき画素値を欠損画素 Dの座標 (X , y )に d+1 d+ 1 d d 配置することで欠損画素 Dの画素値が配置すべき画素値に置換されて、上述したス テツプ U1の欠損補正が行われる。なお、図 10の欠損補正マップ Bでは、欠損画素 D に該当しない正常な画素については『(一,一)』で表す。この欠損補正マップ Bを一 様照射画像用メモリ部 11aの欠損補正マップ用メモリ部 11Aに記憶する。座標 (X , y d
)以外の欠損画素 Dについても、欠損補正マップ用メモリ部 11Aに記憶された欠損 d
補正マップ Bを読み出して参照することで、ステップ U1の欠損補正が行われる。
[0073] この欠損補正マップ Bは元の 3072 X 3072の画像と同じ画素値の並びからなるが、 一方で、 3072 X 3072の画像から画素量を減らす処理 (以下、『切り出し』と呼ぶ)では 縦横で 768 X 768の画素値の並びからなる画像を切り出す。
[0074] (ステップ V3)左上画素の切り出し
このように切り出すには、縦横ともに 4画素ごとに引き出して作成する。図 9に示すよ うに左上画素を基準にして切り出すと、図 11に示すような画素配置マップ Cとなる。 具体的には、欠損画素 Dに限らず他の正常な画素についても、縦横で 4 X 4の画素 値の並びを 1つのグノレープとして、そのグノレープにおいて左上画素の画素値および その座標のみを切り出して、同じグループの周辺の画素については切り捨てる。した 力 sつて、横方向(X方向)に ίま、図 11に示すように、 1, · ··, X , X , X , · ··, 3069 d-4 d d+4
と 768個の x座標が切り出される。そして、縦方向(y方向)には、図 11に示すように、 1, · ··, y , y , y , · ··, 3069と 768個の y座標力 ^切り出される。
d-4 d d + 4
[0075] (ステップ V4)左上画素は欠損?
この一連の切り出しの際には、左上画素が欠損画素 Dである力否かを判断する。も し、正常な画素であるならば、ステップ V5に進む。もし、欠損画素 Dであるならば、ス テツプ V6に進む。 [0076] (ステップ V5)左上画素の選択
左上画素が正常な画素であれば、その左上画素を選択して、画素配置マップじに 左上画素の座標を書き込む。
[0077] (ステップ V6)それ以外の画素の選択
左上画素が欠損画素 Dであれば、それ以外の正常な画素を選択して、画素配置マ ップ Cにその画素の座標を書き込む。例えば、図 9に示すように座標 (X , y )を有し d d た欠損画素 Dが左上画素の場合には、その欠損画素 Dと同じグループにおいて座 標 (X , y )以外の周辺の画素のうちから、正常な画素を 1つ選択する。図 9では、例 d d
えば座標 (χ , y )を有した配置すべき画素を選択して、その座標 (X , y )を d +1 d +1 d +1 d +1 欠損補正マップ Bの欠損画素 Dの座標 (x , y )の箇所に書き込む。すると、図 11に d d
示すように切り出された画素のうち欠損画素 Dに該当する箇所のみ周辺の画素の座 標が書き込まれる(図 11の中の左斜線のハッチングを参照)。
[0078] (ステップ V7)画素配置マップの作成
このようにして、他の画素についても同じ手順で画素配置マップ Cに書き込むことで 、画素配置マップ Cを作成する。この画素配置マップ Cを一様照射画像用メモリ部 11 aの画素配置マップ用メモリ部 11Bに記憶する。画素配置マップ用メモリ部 11Bに記 憶された画素配置マップ Cを読み出して参照することで、上述したステップ T1の画素 量を減らした欠損補正が行われる。このステップ V7の工程は、この発明における画 素配置マップ作成工程に相当する。
[0079] このように作成された画素配置マップ Cに基づいて以下のようなステップ T1の画素 量を減らした欠損補正を行う。
[0080] (ステップ W1)左上画素の切り出し
図 13のフローチャートに示すように、元の 3072 X 3072の画像から 768 X 768の画像 を切り出す。切り出し方法は、ステップ VIでも述べたように縦横ともに 4画素ごとに引 き出して作成する。その結果、画像の視野サイズは元の 3072 X 3072の画像と同じで 、分解能が低い画像が切り出される。
[0081] (ステップ W2)画素配置マップ Cの参照
上述した画素配置マップ Cを参照する。 [0082] (ステップ W3)画素値の配置
切り出された 768 X 768の画像の各画素は左上画素に該当し、画素配置マップじの 各画素にそれぞれ該当する。したがって、画素配置マップ Cの画素値を切り出された 画素(すなわち画素量減少後の画素)に配置する。このとき、切り出された欠損画素 D (すなわち画素量減少後の欠損画素)については、画素配置マップ Cにおける置 換の元となる画素(すなわち欠損画素 Dに配置すべき画素)の画素値を配置すること で、画素量を減らした処理を行いつつ、欠損補正を行うことになる。
[0083] このように、画素配置マップ Cは、 768 X 768の画像に切り出された画素量減少後の 画素と画素量減少前の 3072 X 3072の画像のうち 4 X 4の画像からなる 16個(図 9を参 照)の画素に基づく位置情報とをそれぞれ対応付けた配置情報である。特に、本実 施例では、左上画素が欠損画素 Dでなく正常な画素の場合には、画素量減少後の 正常な画素と画素量減少前の 16個の画素のうちの左上画素とをそれぞれ対応付け るとともに、左上画素が欠損画素 Dの場合には、画素量減少後の欠損画素 Dと画素 量減少前の 16個の画素のうちの正常な画素とをそれぞれ対応付けて画素配置マツ プ Cを構成して ヽる。そして画素量減少後の欠損画素 Dに画素量減少前の正常な画 素を配置して置換することで、ステップ T1の画素量を減らした欠損補正が行われる。
[0084] 以上のように構成された本実施例によれば、低級機や汎用機のように汎用の演算 処理回路を搭載して ヽる場合であっても、第 2画像を出力するために第 2画像処理は 、第 1画像の画素量を減らした処理を少なくとも含んでいるので、少なくとも減らした 画素量の分だけ第 2画像を出力するまでの時間を低減させることができる。その結果 、確認のための画像の出力までの時間を低減させることができる。それによつて、例 えば位置確認までの時間を低減させることもできる。その結果、検査効率の向上を図 り、被検体 Mへの負担を低減させることもできる。
[0085] ここで、第 2画像処理では、上述した第 1画像のほかに画素配置マップ Cに基づい て第 2画像を出力する。この画素配置マップ Cは、図 11に示すように画素の配置情 報を示している。したがって、第 2画像処理において第 1画像のみに基づいて第 2画 像を出力するときと比較すると、第 1画像および画素配置マップ Cの双方に基づいて 第 2画像を出力するときの方が第 2画像を出力するまでの時間をより一層低減させる ことができる。その結果、確認のための画像の出力までの時間を低減させることがで きる。
[0086] 本実施例では、画素配置マップ Cは、画素量減少後の画素に配置すべき画素値と 画素量減少前の複数の画素に基づく位置情報とをそれぞれ対応付けた配置情報で あって、上述した第 2画像処理では、第 1画像の画素量を減らした処理 (ステップ W1 の左上画素の切り出しを参照)を行 、つつ、画素配置マップ Cの画素量減少前の複 数の画素に基づく位置情報に対応付けられた各々のこれらの画素値に基づいて (ス テツプ W2の『画素配置マップの参照』を参照)、画素量減少後の画素にそれらの画 素値をそれぞれ配置する (ステップ W3を参照)。つまり、第 2画像処理では、第 1画像 の画素量を減らした処理 (ステップ T1を参照)を行 、つつ、画素配置マップ Cの画素 量減少前の複数の画素に基づく位置情報に対応付けられた各々のこれらの画素値 に基づいて、画素量減少後の画素にそれらの画素値をそれぞれ配置することで、第 1画像の画素量を減らした欠損補正 (ステップ T1)を含むことになる。通常の欠損補 正については処理時間が比較的に力かるので、このような画素配置マップ Cに基づく 第 2画像処理を行うことで、第 1画像の画素量を減らした欠損補正で得られた第 2画 像の出力までの時間を低減させることができる。
[0087] また、本実施例では、図 12のフローチャートのように画素配置マップ Cを図 5のフロ 一チャート(各画像処理部 9a〜9cによる一連の信号処理)よりも事前に予め作成す ることで、第 2画像処理の準備に備えることができる。
[0088] この発明は、上記実施形態に限られることはなぐ下記のように変形実施することが できる。
[0089] (1)上述した実施例では、図 1に示すような X線透視撮影装置を例に採って説明し たが、この発明は、例えば C型アームに配設された X線透視撮影装置にも適用しても よい。また、この発明は、 X線 CT装置にも適用してもよい。
[0090] (2)上述した実施例では、フラットパネル型 X線検出器 (FPD) 3を例に採って説明 したが、通常において用いられる X線検出手段であれば、この発明は適用することが できる。
[0091] (3)上述した実施例では、 X線を検出する X線検出器を例に採って説明した力 こ の発明は、 ECT (Emission Computed Tomography)装置のように放射性同位元素(R I)を投与された被検体から放射される y線を検出する γ線検出器に例示されるよう に、放射線を検出する放射線検出器であれば特に限定されない。同様に、この発明 は、上述した ECT装置に例示されるように、放射線を検出して撮像を行う装置であれ ば特に限定されない。
[0092] (4)上述した実施例では、 FPD3は、放射線 (実施例では X線)感応型の半導体を 備え、入射した放射線を放射線感応型の半導体で直接的に電荷信号に変換する直 接変換型の検出器であつたが、放射線感応型の替わりに光感応型の半導体を備え るとともにシンチレータを備え、入射した放射線をシンチレータで光に変換し、変換さ れた光を光感応型の半導体で電荷信号に変換する間接変換型の検出器であっても よい。
[0093] (5)上述した実施例では、画像処理の途中の段階で、その途中で処理された画像 をメモリ部 11などに代表される記憶媒体にー且記憶し、途中の段階までの画像処理 を第 1画像処理としたが、記憶媒体に記憶されるよりも前あるいは後の段階までの画 像処理を第 1画像処理としてもよい。また、必ずしも画像処理の途中の段階で記憶媒 体にー且記憶する必要はな 、。
[0094] (6)上述した実施例では、第 2画像の出力をモニタ 13に出力表示してプレビュー表 示を行った力 第 2画像の出力形態については、モニタ 13でのプレビュー表示に限 定されない。例えば、プリンタに出力してもよい。
[0095] (7)上述した実施例では、第 1画像の画素量を減らした処理として、切り出しを例に 採って説明したが、例えばキャリアを同時に読み出す、あるいは限られた領域を指定 することで画素量を減らすなどのように、画素量を減らす処理であれば、特に限定さ れない。
[0096] (8)上述した実施例では、第 2画像処理では、第 1画像の画素量を減らした欠損補 正を少なくとも含んだが、第 1画像の画素量を減らす処理を少なくとも第 2画像処理 で含むのであれば、その第 1画像の画素量を減らす処理については欠損補正に限 定されない。例えば、第 1画像の画素量を減らす処理力 Sラグ補正であってもよい。こ の場合には、第 2画像処理では、第 1画像の画素量を減らしたラグ補正を少なくとも 含むことになる。また、第 1画像の画素量を減らす処理の内容に応じてそれに用いら れる画素配置マップの形態も異なる。
[0097] (9)上述した実施例では、第 2画像処理では、第 1画像の画素量を減らした欠損補 正以外にも他の処理(図 5のステップ T2以降の処理)を含んだ力 第 1画像の画素量 を減らした欠損補正のみを行った後に第 2画像として出力してもよい。
[0098] (10)上述した実施例では、第 1画像の画素量を減らした欠損補正を、周辺の画素 値で置換することで行ったが、周辺の画素値に基づ 、て演算された値で補間するこ とで行ってもよい。周辺の画素値に基づいて演算された値で補間する場合には、例 えば周辺の画素値の平均値で補間、周辺の画素値の中央値で補間のように、周辺 の画素値の統計量に関する演算で補間するのが好ましい。
[0099] (11)上述した実施例では、第 1画像の画素量を減らすのに縦横ともに 4画素ごとに 引き出したが、それ以外の画素ごとに引き出してもよい。例えば、縦横ともに 8画素ご とに引き出してもよいし、縦は 8画素、横は 4画素ごとに引き出してもよい。
[0100] (12)上述した実施例では、第 1画像の画素量を減らした欠損補正では、左上画素 を欠損画素の基準にして 、たが、それ以外の画素を欠損画素の基準としてもょ 、。 例えば中央画素を欠損画素の基準にしてもよい。
[0101] (13)上述した実施例では、第 1画像の画素量を減らした欠損補正では、グループ における正常な画素を 1つ選択して置換した力 そのグループに正常な画素が 1つも ない場合には、それ以外のグループで欠損画素にもっとも近接した正常な画素を選 択して置換してもよ ヽ。補間することで欠損補正を行う場合も同様である。
産業上の利用可能性
[0102] 以上のように、この発明は、低級機や汎用機のように汎用の演算処理回路を搭載し て 、る放射線撮像装置に適して 、る。

Claims

請求の範囲
[1] 放射線検出信号に基づ 、て放射線画像を得る放射線撮像装置であって、被検体 に向けて放射線を照射する放射線照射手段と、被検体を透過した放射線を検出す る放射線検出手段と、放射線検出手段から検出された放射線検出信号に基づいて 第 1画像を出力するために放射線検出信号に対して第 1画像処理を行う第 1画像処 理手段と、画素の配置情報を示した画素配置マップおよび第 1画像処理手段で第 1 画像処理されて出力された第 1画像に基づいて第 2画像を出力するために第 1画像 の画素量を減らした処理を少なくとも含んだ第 2画像処理を行う第 2画像処理手段と 、第 1画像処理手段で第 1画像処理されて出力された第 1画像に基づいて第 3画像 を出力するために第 1画像に対して第 3画像処理を行い、その第 3画像を最終的に 得られる放射線画像とする第 3画像処理手段とを備えていることを特徴とする放射線 撮像装置。
[2] 請求項 1に記載の放射線撮像装置にお!ヽて、前記画素配置マップは、画素量減少 後の画素に配置すべき画素値と画素量減少前の複数の画素に基づく位置情報とを それぞれ対応付けた配置情報であって、前記第 2画像処理では、前記第 1画像の画 素量を減らした処理を行いつつ、画素配置マップの画素量減少前の複数の画素に 基づく位置情報に対応付けられた各々の前記画素値に基づいて、画素量減少後の 画素にそれらの画素値をそれぞれ配置するように、前記第 2画像処理手段を構成す ることを特徴とする放射線撮像装置。
[3] 被検体を照射して検出された放射線検出信号に基づ!、て放射線画像を得る信号 処理を行う放射線検出信号処理方法であって、前記信号処理は、放射線検出信号 に基づいて第 1画像を出力するために放射線検出信号に対して第 1画像処理を行う 第 1画像処理工程と、画素の配置情報を示した画素配置マップおよび第 1画像処理 工程で第 1画像処理されて出力された第 1画像に基づいて第 2画像を出力するため に第 1画像の画素量を減らした処理を少なくとも含んだ第 2画像処理を行う第 2画像 処理工程と、第 2画像処理工程で第 2画像処理されて出力された第 2画像の出力結 果の後に、第 1画像処理手段で第 1画像処理されて出力された第 1画像に基づいて 第 3画像を出力するために第 1画像に対して第 3画像処理を第 2画像の出力結果に 応じて行い、その第 3画像を最終的に得られる放射線画像とする第 3画像処理工程と を備えて ヽることを特徴とする放射線検出信号処理方法。
[4] 請求項 3に記載の放射線検出信号処理方法にお 、て、前記信号処理は、前記画 素配置マップを作成する画素配置マップ作成工程をさらに備えていることを特徴する 放射線検出信号処理方法。
[5] 請求項 3または請求項 4に記載の放射線検出信号処理方法において、前記画素 配置マップは、画素量減少後の画素に配置すべき画素値と画素量減少前の複数の 画素に基づく位置情報とをそれぞれ対応付けた配置情報であって、前記第 2画像処 理工程では、前記第 1画像の画素量を減らした処理を行いつつ、画素配置マップの 画素量減少前の複数の画素に基づく位置情報に対応付けられた各々の前記画素値 に基づ!/ヽて、画素量減少後の画素にそれらの画素値をそれぞれ配置することを特徴 とする放射線検出信号処理方法。
PCT/JP2005/019793 2005-10-27 2005-10-27 放射線撮像装置および放射線検出信号処理方法 WO2007049348A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN2005800502628A CN101208041B (zh) 2005-10-27 2005-10-27 放射线摄像装置及放射线检测信号处理方法
PCT/JP2005/019793 WO2007049348A1 (ja) 2005-10-27 2005-10-27 放射線撮像装置および放射線検出信号処理方法
JP2007542540A JPWO2007049348A1 (ja) 2005-10-27 2005-10-27 放射線撮像装置および放射線検出信号処理方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2005/019793 WO2007049348A1 (ja) 2005-10-27 2005-10-27 放射線撮像装置および放射線検出信号処理方法

Publications (1)

Publication Number Publication Date
WO2007049348A1 true WO2007049348A1 (ja) 2007-05-03

Family

ID=37967472

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/019793 WO2007049348A1 (ja) 2005-10-27 2005-10-27 放射線撮像装置および放射線検出信号処理方法

Country Status (3)

Country Link
JP (1) JPWO2007049348A1 (ja)
CN (1) CN101208041B (ja)
WO (1) WO2007049348A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011232282A (ja) * 2010-04-30 2011-11-17 Shimadzu Corp 放射線撮像装置

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013073627A1 (ja) * 2011-11-15 2013-05-23 株式会社 東芝 画像処理装置及び方法
CN104224126A (zh) * 2014-09-17 2014-12-24 中国人民解放军空军总医院 一种诊断皮肤症状的装置及系统

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09247540A (ja) * 1996-03-01 1997-09-19 Olympus Optical Co Ltd 画素欠陥補正装置
JP2002248095A (ja) * 2000-12-20 2002-09-03 Canon Inc X線デジタル撮影装置
JP2005205086A (ja) * 2004-01-26 2005-08-04 Hitachi Medical Corp X線診断装置
JP2005211488A (ja) * 2004-01-30 2005-08-11 Canon Inc 画像処理方法及び装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5265013A (en) * 1990-11-19 1993-11-23 General Electric Company Compensation of computed tomography data for X-ray detector afterglow artifacts
JP4304437B2 (ja) * 2003-06-20 2009-07-29 株式会社島津製作所 放射線撮像装置
JP4415635B2 (ja) * 2003-10-08 2010-02-17 株式会社島津製作所 放射線撮像装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09247540A (ja) * 1996-03-01 1997-09-19 Olympus Optical Co Ltd 画素欠陥補正装置
JP2002248095A (ja) * 2000-12-20 2002-09-03 Canon Inc X線デジタル撮影装置
JP2005205086A (ja) * 2004-01-26 2005-08-04 Hitachi Medical Corp X線診断装置
JP2005211488A (ja) * 2004-01-30 2005-08-11 Canon Inc 画像処理方法及び装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011232282A (ja) * 2010-04-30 2011-11-17 Shimadzu Corp 放射線撮像装置

Also Published As

Publication number Publication date
JPWO2007049348A1 (ja) 2009-04-30
CN101208041B (zh) 2010-04-14
CN101208041A (zh) 2008-06-25

Similar Documents

Publication Publication Date Title
US7203279B2 (en) Radiographic apparatus, and radiation detection signal processing method
JP4850730B2 (ja) 撮像装置、その処理方法及びプログラム
EP1487193B1 (en) Method and apparatus for correcting defect pixels in radiation imaging, computer program and computer-readable recording medium
EP1423733B1 (en) Method and apparatus for identifying and correcting line artifacts in a solid state x-ray detector
JP4035320B2 (ja) パネル検出器のピクセル置換の方法及び装置
JP2012075099A (ja) ダイナミック・レンジを拡大したディジタルx線検出器
JP4739060B2 (ja) 放射線撮像装置、放射線撮像システム、及びその制御方法
JP4935895B2 (ja) エッジ評価方法とエッジ検出方法と画像補正方法と画像処理システム
JP3277866B2 (ja) X線診断装置
JP2008246022A (ja) 放射線撮影装置
JP5844517B2 (ja) 画像アーティファクトを消去するシステム及び方法
JP6917782B2 (ja) 放射線撮影装置、放射線撮影方法およびプログラム
WO2007049348A1 (ja) 放射線撮像装置および放射線検出信号処理方法
US7729475B2 (en) Radiation image capturing apparatus
JP4640136B2 (ja) X線診断装置
US20100020930A1 (en) Radiographic apparatus and radiation detection signal processing method
US20210067710A1 (en) Charge sharing calibration method and system
JP2008245999A (ja) 放射線撮影装置
WO2007023542A1 (ja) 放射線撮像装置および放射線検出信号処理方法
JP2012134781A (ja) 欠陥画素マップ作成方法、欠陥画素マップ作成システム、コンソールおよび放射線画像撮影装置
KR20080068854A (ko) 방사선 촬상장치 및 방사선 검출신호 처리방법
JP2005204983A (ja) 放射線撮像装置
JP4501489B2 (ja) 放射線撮像装置
JP2007275196A (ja) 光または放射線画像表示装置及びこれを備えた光または放射線撮像装置
JP5456404B2 (ja) 欠陥画素検出方法および画像処理装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2007542540

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 200580050262.8

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 05799100

Country of ref document: EP

Kind code of ref document: A1