WO2007045442A1 - Anlage und verfahren zum strahlungshärten einer beschichtung eines werkstückes unter schutzgas - Google Patents

Anlage und verfahren zum strahlungshärten einer beschichtung eines werkstückes unter schutzgas Download PDF

Info

Publication number
WO2007045442A1
WO2007045442A1 PCT/EP2006/010016 EP2006010016W WO2007045442A1 WO 2007045442 A1 WO2007045442 A1 WO 2007045442A1 EP 2006010016 W EP2006010016 W EP 2006010016W WO 2007045442 A1 WO2007045442 A1 WO 2007045442A1
Authority
WO
WIPO (PCT)
Prior art keywords
cabin
workpiece
curing
collecting area
hardening
Prior art date
Application number
PCT/EP2006/010016
Other languages
English (en)
French (fr)
Other versions
WO2007045442B1 (de
Inventor
Wilhelm Sturm
Josef Wallner
Original Assignee
Sturm Maschinenbau Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sturm Maschinenbau Gmbh filed Critical Sturm Maschinenbau Gmbh
Priority to EP06806343A priority Critical patent/EP1938033B1/de
Priority to PL06806343T priority patent/PL1938033T3/pl
Priority to BRPI0617672-0A priority patent/BRPI0617672A2/pt
Priority to US12/083,828 priority patent/US20090288310A1/en
Priority to CN2006800393038A priority patent/CN101292128B/zh
Priority to JP2008535957A priority patent/JP2009512543A/ja
Priority to EA200800882A priority patent/EA013578B1/ru
Publication of WO2007045442A1 publication Critical patent/WO2007045442A1/de
Publication of WO2007045442B1 publication Critical patent/WO2007045442B1/de

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D3/00Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials
    • B05D3/06Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials by exposure to radiation
    • B05D3/061Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials by exposure to radiation using U.V.
    • B05D3/065After-treatment
    • B05D3/067Curing or cross-linking the coating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05CAPPARATUS FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05C9/00Apparatus or plant for applying liquid or other fluent material to surfaces by means not covered by any preceding group, or in which the means of applying the liquid or other fluent material is not important
    • B05C9/08Apparatus or plant for applying liquid or other fluent material to surfaces by means not covered by any preceding group, or in which the means of applying the liquid or other fluent material is not important for applying liquid or other fluent material and performing an auxiliary operation
    • B05C9/12Apparatus or plant for applying liquid or other fluent material to surfaces by means not covered by any preceding group, or in which the means of applying the liquid or other fluent material is not important for applying liquid or other fluent material and performing an auxiliary operation the auxiliary operation being performed after the application
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D3/00Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials
    • B05D3/04Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials by exposure to gases
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F26DRYING
    • F26BDRYING SOLID MATERIALS OR OBJECTS BY REMOVING LIQUID THEREFROM
    • F26B15/00Machines or apparatus for drying objects with progressive movement; Machines or apparatus with progressive movement for drying batches of material in compact form
    • F26B15/10Machines or apparatus for drying objects with progressive movement; Machines or apparatus with progressive movement for drying batches of material in compact form with movement in a path composed of one or more straight lines, e.g. compound, the movement being in alternate horizontal and vertical directions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F26DRYING
    • F26BDRYING SOLID MATERIALS OR OBJECTS BY REMOVING LIQUID THEREFROM
    • F26B21/00Arrangements or duct systems, e.g. in combination with pallet boxes, for supplying and controlling air or gases for drying solid materials or objects
    • F26B21/14Arrangements or duct systems, e.g. in combination with pallet boxes, for supplying and controlling air or gases for drying solid materials or objects using gases or vapours other than air or steam, e.g. inert gases
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F26DRYING
    • F26BDRYING SOLID MATERIALS OR OBJECTS BY REMOVING LIQUID THEREFROM
    • F26B3/00Drying solid materials or objects by processes involving the application of heat
    • F26B3/28Drying solid materials or objects by processes involving the application of heat by radiation, e.g. from the sun
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D2258/00Small objects (e.g. screws)
    • B05D2258/02The objects being coated one after the other
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D3/00Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials
    • B05D3/04Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials by exposure to gases
    • B05D3/0406Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials by exposure to gases the gas being air
    • B05D3/0413Heating with air
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D3/00Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials
    • B05D3/04Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials by exposure to gases
    • B05D3/0486Operating the coating or treatment in a controlled atmosphere
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D3/00Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials
    • B05D3/06Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials by exposure to radiation
    • B05D3/061Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials by exposure to radiation using U.V.
    • B05D3/065After-treatment
    • B05D3/066After-treatment involving also the use of a gas

Definitions

  • the invention relates to a system for radiation curing a coating of a workpiece under protective gas according to the preamble of claim 1.
  • a system may comprise a curing booth on which at least one irradiation device for irradiating the provided inside the cabin workpiece is arranged, and a conveyor for transporting the workpiece in the hardening cabin.
  • the invention further relates to a method for radiation curing a coating of a workpiece under protective gas according to the preamble of claim 11, wherein the workpiece is conveyed to a curing cabin and irradiated there.
  • a generic system and a generic method are known for example from DE 202 03 407 Ul.
  • carbon dioxide-containing inert gas is introduced into a bottom trough of the system, whereby a protective gas bath is formed.
  • UV light sources for irradiating the workpiece are arranged.
  • the workpieces When operating the known system, the workpieces are immersed along a conveyor track in the protective gas-filled floor pan. The workpieces then pass through the floor pan in the horizontal direction, where they are irradiated by the UV light sources. After passing through the the trough arranged irradiation zone, the workpieces are lifted out of the bottom tray and thus the inert gas.
  • Carbon dioxide is preferably used as the protective gas according to the prior art. In case of malfunction, especially in an overfilling of the bottom tray, this carbon dioxide can flow out of the bottom tray in an unfavorable case and get from there to adjacent parts of the system or flow out of the system entirely. In this case, the carbon dioxide gas may possibly lead to a health impairment of bystanders.
  • the installation according to the invention is characterized in that a collection area is formed in the area of the curing cabin, in which lighter protective gas is collected compared with the ambient atmosphere, that the transport path of the workpiece passes through the collecting area and that the at least one irradiation device along the collecting area is arranged.
  • a first basic idea of the invention can be seen in the fact that a protective gas is used, which is lighter, that is less dense, compared with the ambient atmosphere.
  • This Shielding gas does not accumulate at the bottom of the curing cabin but rises in the curing cabin up to the ceiling.
  • the irradiation under protective gas is not carried out in an upwardly open bottom or immersion trough in the bottom region of the plant but rather in an upwardly closed, usually open-bottom collecting area on the ceiling of the curing cabin.
  • the transport path of the workpiece passes through the collection area arranged on the ceiling side and also the irradiation device is positioned in the ceiling area in the region of the collection area.
  • an inert gas which is lighter than the ambient atmosphere, has significant worker safety benefits. If, for example, an accidental overfilling of the system occurs due to a malfunction, the escaping gas initially does not collect in the surrounding rooms on the room floor but on the ceiling. Here, however, it usually does not present a hazard to workers at first and can be detected early by means of ceiling sensors. The system according to the invention and the method according to the invention are thus particularly safe.
  • the collecting area according to the invention can in particular be formed by a ceiling trough, that is to say an inverted floor trough, which is closed at the top and to the sides and open towards the bottom.
  • the collecting area may also have a closed area to the bottom for even better concentration of the protective gas, in which case at least one through-opening for the conveyor can be provided in this bottom-side area.
  • provision can be made, in particular, for the height of the ceiling to be relative to the earthworks. in the collection area is greater than the height of the ceiling in adjacent, located outside of the collection area areas.
  • the invention can be used in particular for UV radiation curing, wherein the irradiation device then serves to generate UV radiation.
  • As conveyor according to the invention for example, serve a overhead conveyor or a floor conveyor.
  • the transport path can enter the collection area substantially horizontally.
  • a particularly simple construction according to the invention is given by the fact that the transport path rises into the collecting area.
  • the transport path does not extend horizontally but obliquely to the horizontal from the collecting area environment into the collecting area and possibly out of the collecting area. This makes it possible to provide the collecting area with massive side walls, without a lock would be necessary, whereby a simple enclosure design ensures a particularly secure gas inclusion in the collection area.
  • the transport path rises vertically into the collecting area.
  • a particularly reliable and safe plant according to the invention is obtained in that the collecting area is arranged in an upper vertex of the transport path, that is, that the transport path reaches its highest point in the collecting area.
  • the transport path suitably has an inlet track section on the workpieces enter the collecting area, as well as a spatially separate outlet track section, on which the workpieces exit from the collecting area.
  • the collection area Preferably, both the inlet track section and the outlet track section run obliquely to the horizontal.
  • the workpieces can also be driven on one and the same transport path section in the collection area and driven out of this again.
  • a particularly economical and reliable plant is obtained according to the invention in that connects to the curing cabin at least one transport tunnel for supplying and / or discharging the workpiece into or out of the curing cabin. These transport tunnels are passed through by the transport track.
  • two transport tunnels are provided on the hardening cabin, one of which serves for feeding the workpiece into the hardening cabin and a second for removing the workpiece from the hardening cabin.
  • the collecting area according to the invention can be formed in a particularly simple manner by increasing the height of the ceiling with respect to the ground in the transport tunnel to the hardening cabin.
  • the ceiling height increases along the transport path to the collecting area.
  • the collecting area is completed in the lateral direction along the transport path by inclined ceiling elements.
  • the ceiling elements of the two transport tunnels and the curing cabin and / or the transport path in the region of the curing cabin form at least approximately an inverted V-shape, wherein the ceiling elements and the web can also extend approximately horizontally in the vertex.
  • the ceiling height on both sides of the sheets can then be about the same size.
  • the collecting area is closed laterally in the direction of the transport path by obliquely to the vertical wall elements.
  • these wall elements which are given in particular by the ceiling elements of the transport tunnel, at an angle between 30 ° and 60 °, preferably about 45 ° to the horizontal.
  • the collecting area can be limited laterally but also by approximately perpendicular wall elements.
  • Such vertically extending wall elements may be provided in particular for limiting transversely to the conveying direction.
  • a particularly reliable gas filling of the collecting area can be given by the fact that at least one supply opening for supplying protective gas is provided on the curing cabin, in particular on its ceiling area.
  • the protective gas is preferably supplied to the chamber in the collecting area itself, in particular on the cover side, since undesired gas turbulence and / or intermixing with ambient gas can thereby be prevented particularly well.
  • the protective gas could also be supplied outside the collecting area and, if appropriate, the hardening cabin, from where it then flows into the collecting area due to its buoyancy.
  • a plurality of feed openings are provided which in particular over a large area, for example as feed slots are formed.
  • the protective gas discontinuously, in particular as a function of a concentration and / or level measurement in the collecting area. But it can also be a continuous gas injection. To avoid an overfilling of the collecting area, in this case, a continuous gas discharge in the vicinity of the collecting area, in particular below the collecting area, may be provided.
  • At least one gas sensor is arranged in the ceiling region of the curing cabin.
  • the gas sensor may be, for example, a protective gas sensor and / or an ambient gas sensor.
  • the gas sensor may be located in the collection area and / or its surrounding areas to monitor the fill level of the collection area.
  • the gas sensor may be designed as an oxygen sensor. A detection of the oxygen content in the collection area may therefore be of particular importance, since oxygen can greatly hinder the radiation hardening process.
  • At least one gas lock is provided along the transport path.
  • the gas lock can be provided, for example, in the transport tunnel, where it can prevent harmful gas flows through the transport tunnel into the collecting area.
  • the collecting area can also be bounded laterally directly by a gas lock.
  • the at least one gas lock can, for example, have a nozzle curtain. Additionally or alternatively, for example, a curtain of flexible cloth, such as plastic lapping, may be provided.
  • a paint booth is arranged on the transport path. In this painting booth painting equipment for applying the coating to be cured are arranged.
  • an air treatment plant is provided for adjusting the humidity of the gas contained in the spray booth.
  • the air treatment plant can be designed in particular as a drying plant. This embodiment is based on the recognition that atmospheric moisture can get into it especially during the application process of the coating, where it then forms a kind of barrier layer, which can prevent complete curing.
  • the humidity in the paint booth By controlling the humidity in the paint booth, the tendency to form a barrier layer can be reduced and / or eliminated.
  • it may be provided for this purpose to blow air predried in the spray booth.
  • the humidity in the paint booth is about 40% or less.
  • the gas moisture is also controlled in the area between the paint booth and the curing booth.
  • a device for adjusting the gas humidity in the transport tunnel is also advantageously provided.
  • continuously or discontinuously prepared, ie pre-dried, air is blown into the transport tunnel and / or the paint booth.
  • pre-dried air is necessary especially at high layer thicknesses.
  • carbon dioxide (CO 2 ) and / or nitrogen (N 2 ) can be used as protective gas.
  • the ambient atmosphere is typically air. If a shielding gas is used, which at the same temperature has a greater or only slightly lower density than the ambient atmosphere, according to the invention, the protective gas is heated relative to the ambient atmosphere, whereby a density reduction of the protective gas is associated relative to the ambient gas.
  • a heating device for heating the protective gas is suitably provided. By heating the protective gas, it is also possible to collect such a protective gas, which is heavier than the ambient atmosphere at the same temperature, in the collecting area on the ceiling side.
  • the protective gas is heated before its release in the curing cabin, for which the heating device is suitably arranged outside of the curing cabin.
  • the protective gas can in principle also be heated within the curing cabin, for which purpose, for example, lamps can be provided.
  • the shielding gas at the introduction may also have about the same temperature as the ambient gas.
  • the irradiation device which irradiates the workpiece for coating hardening, can also be used simultaneously for gas heating.
  • a particularly economical operation is given at a protective gas temperature between 40 0 C and 100 0 C, in particular between 50 0 C and 80 0 C.
  • the ambient gas preferably has room temperature.
  • the invention is particularly suitable for the machining of large workpieces, such as whole axle groups for passenger cars or trucks.
  • the workpiece in the curing cabin is movable relative to the radiator.
  • the conveyor has at least one pivotable workpiece holder for pivoting the workpiece in the curing cabin.
  • the workpiece holder is pivotable at least in two, in particular in three axes.
  • the irradiation device has at least one moveable emitter for changing the irradiation angle of the workpiece.
  • the radiator may also have a pivotable reflector.
  • the irradiation device preferably has UV radiators.
  • the at least one radiator of the irradiation device can in principle be arranged in the irradiation booth.
  • the radiator can also be arranged outside the curing cabin, said cabin then having windows through which the radiation can enter the cabin.
  • radiation-permeable discs are arranged in the windows, in particular in the collecting area.
  • the windows are suitably elongate and extend in or transverse to the transport direction of the workpiece.
  • the radiators have reflectors.
  • the inner walls of the curing cabin are at least partially provided with a reflection material.
  • the reflection material produces a diffuse reflection in which an incident on the wall. Depending on the place of incidence, the light beam is reflected back in a different direction.
  • the reflection material may have a reflection layer whose angular position is varied regularly or irregularly along the wall.
  • the reflection material is provided only in the collecting area, so that a radiation reflection out of this area and thus an uncontrolled curing outside the collecting area is avoided.
  • the inner walls in areas outside the collecting area and / or outside of the hardening cabin are radiation-absorbing, that is to say blackened.
  • An absorbent inner wall is particularly advantageous in the feed region between the paint shop and curing booth, since in this area the coating is not yet cured.
  • the curing cabin is preferably darkened.
  • the irradiation device and the inner walls of the system also independent invention aspects can be seen.
  • the inventive method is characterized in that compared to the ambient atmosphere less dense shielding gas, in particular nitrogen, is introduced into the curing cabin, which collects in a arranged on the ceiling of the curing cabin collecting area, and that the workpiece is conveyed through the cover side arranged collecting area and is irradiated therein.
  • less dense shielding gas in particular nitrogen
  • the method can be carried out in particular with a system according to the invention, the advantages explained in this connection being achieved.
  • the workpieces are transported at least approximately horizontally into the curing cabin and are lifted at least approximately vertically into the inert gas atmosphere in the collecting area arranged on the ceiling side for curing.
  • the conveying device according to the invention for transporting the workpiece may in particular be a rotary indexing machine and / or chain automatic machine.
  • Fig. 1 is a schematic view of a radiation curing system according to the invention for carrying out the method according to the invention.
  • FIG. 1 A system for radiation hardening of the coating of workpieces under protective gas is shown in FIG.
  • the installation has a conveying device 60 in the form of a suspended conveyor, on which workpieces 1 are suspended via pivotable workpiece holders 67.
  • the conveyor 60 conveys the workpieces 1 along a transport path 63 shown in dotted lines in the conveying direction 80 through the system.
  • a painting booth 40 On the input side of the system, a painting booth 40 is provided in which the workpieces 1 are provided with the coating to be cured by means of a coating device 41.
  • a blower 32 is provided for ventilation of the spray booth 40.
  • a dehumidifier 34 is arranged for predrying the blown into the paint booth 40 air at the vent line.
  • the workpieces 1 From the paint booth 40, the workpieces 1 arrive on the transport path 63 in a connecting channel 50 into which if the air dehumidifier 34 pre-dried air is blown. From the connecting channel 50, the workpieces 1 continue on the transport path 63 into a first transport tunnel 21 and from there into a curing cabin 10. In the curing cabin 10, the workpieces 1 are irradiated to cure the coating with UV light. The UV light is generated by emitters, not shown, within the curing booth 10 and / or generated outside the curing booth 10 and radiated through windows 11 into the interior of the curing booth 10. Via a second transport tunnel 22, the workpieces 1 are removed from the curing cabin 10.
  • the curing that is the UV irradiation, under a protective gas atmosphere.
  • a supply line 17 which is fed from a reservoir 16 with inert gas.
  • the height of the ceiling 13 increases relative to the ground 8 along the transport path 63 to the curing booth 10.
  • the ceiling 13 extends approximately horizontally.
  • the height of the ceiling 13 relative to the ground 8 decreases with increasing distance from the curing cabin 10 again.
  • a reverse trough structure is formed in the system along the conveying direction 80, in the upper region of which a collecting region 5 for the protective gas is formed.
  • the collecting area 5 is limited by not shown, perpendicular to the ground 8 extending side wall elements of the transport tunnel 21, 22 and the curing cabin 10.
  • a shielding gas is used that is lighter than the surrounding gas in the remaining parts of the system.
  • This protective gas rises within the system upwards and accumulates in the collecting area 5. It is thus formed at the top of the system, a protective gas bubble, in which the UV curing is performed.
  • This protective gas bubble is limited in the transport tunnels 21 and 22 in boundary regions 25 and 26 with respect to the ambient atmosphere. Since two different gas phases meet in the boundary regions 25, 26, these boundary regions 25, 26 are generally not sharp.
  • the floor in the transport tunnels 21, 22 and the curing booth 10 along the transport path 63 runs approximately parallel to the ceiling 13.
  • the extent of the collecting area is essentially determined by the ceiling shape, the course of the floor can the transport tunnels 21, 22 and the curing cabin 10 are basically freely varied without significant loss of functionality.
  • the height of the ground with respect to the ground 8 in the transport tunnels 21, 22 and the hardening cabin 10 may be approximately constant.
  • the transport path 63 After passing through the paint booth 40, the transport path 63 rises in the transport tunnel 21 upwards, so that the workpieces 1 enter the protective gas bubble formed in the collecting area 5 on the ceiling side. In the curing cabin 10, in which the irradiation takes place, the transport path 63 runs approximately horizontally through the collecting area 5 along the window 11. In the outlet-side transport tunnel 22, the height of the transport path increases with increasing distance from the curing cabin 10, so that the workpieces 1, once cured, emerge again from the cover-side, protective gas-filled collecting area 5.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Microbiology (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Coating Apparatus (AREA)
  • Heating, Cooling, Or Curing Plastics Or The Like In General (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)

Abstract

Die Erfindung betrifft eine Anlage zum Strahlungshärten einer Beschichtung eines Werkstückes (1) unter Schutzgas, mit einer Härtungskabine (10) , an der zumindest eine Bestrahlungseinrichtung zum Bestrahlen des Kabineninneren vorgesehen ist, und einer Fördereinrichtung (60) zum Transport des Werkstückes (1) in der Härtungskabine (10) entlang einer Transportbahn (63). Dabei ist vorgesehen, dass im Bereich der Härtungskabine (10) an deren Decke (13) ein Sammelbereich (5) gebildet ist, in dem sich verglichen mit der Umgebungsatmosphäre leichteres Schutzgas sammelt, und dass die Transportbahn (63) des Werkstückes (1) den an der Decke angeordneten Sammelbereich (5) durchläuft. Die Erfindung betrifft ferner ein Verfahren zum Strahlungshärten einer Beschichtung eines Werkstückes (1) unter Schutzgas.

Description

Anlage und Verfahren zum Strahlungshärten einer Beschichtung eines Werkstückes unter Schutzgas
Die Erfindung betrifft eine Anlage zum Strahlungshärten einer Beschichtung eines Werkstückes unter Schutzgas gemäß dem Oberbegriff des Anspruchs 1. Eine solche Anlage kann eine Härtungskabine aufweisen, an der zumindest eine Bestrahlungseinrichtung zum Bestrahlen des im Kabineninneren vorgesehenen Werkstückes angeordnet ist, sowie eine Fördereinrichtung zum Transport des Werkstückes in der Härtungskabine.
Die Erfindung betrifft ferner ein Verfahren zum Strahlungshärten einer Beschichtung eines Werkstückes unter Schutzgas gemäß dem Oberbegriff des Anspruchs 11, bei dem das Werkstück in eine Härtungskabine gefördert und dort bestrahlt wird.
Eine gattungsgemäße Anlage sowie ein gattungsgemäßes Verfahren sind beispielsweise aus der DE 202 03 407 Ul bekannt. Bei der bekannten Anlage wird Kohlendioxid aufweisendes Schutzgas in eine Bodenwanne der Anlage eingefüllt, wodurch ein Schutzgasbad gebildet wird. An der Bodenwanne sind UV-Lichtquellen zum Bestrahlen des Werkstückes angeordnet .
Beim Betrieb der bekannten Anlage werden die Werkstücke entlang einer Förderbahn in die schutzgasgefüllte Bodenwanne eingetaucht. Anschließend durchlaufen die Werkstücke die Bodenwanne in horizontaler Richtung, wobei sie von den UV- Lichtquellen bestrahlt werden. Nach Durchlaufen der in der Bo- denwanne angeordneten Bestrahlungszone werden die Werkstücke wieder aus der Bodenwanne und somit dem Schutzgas herausgehoben.
Als Schutzgas wird gemäß dem Stand der Technik bevorzugt Kohlendioxid verwendet. Bei Betriebsstörungen, insbesondere bei einer Überbefüllung der Bodenwanne, kann dieses Kohlendioxid im ungünstigen Fall aus der Bodenwanne herausfließen und von dort in benachbarte Anlagenteile gelangen oder gänzlich aus der Anlage herausströmen. In diesem Fall kann das Kohlendioxidgas unter Umständen zu einer Gesundheitsbeeinträchtigung Umstehender führen .
A u f g a b e der Erfindung ist es, eine Anlage und ein Verfahren zum Strahlungshärten einer Beschichtung eines Werkstückes unter Schutzgas anzugeben, die besonders sicher und zugleich wirtschaftlich und zuverlässig sind.
Die Aufgabe wird durch eine Anlage mit den Merkmalen des Anspruchs 1 sowie durch ein Verfahren mit den Merkmalen des Anspruchs 11 gelöst. Bevorzugte Ausführungsbeispiele sind in den abhängigen Ansprüchen angegeben.
Die erfindungsgemäße Anlage ist dadurch gekennzeichnet, dass im Bereich der Härtungskabine an deren Decke ein Sammelbereich gebildet ist, in dem sich verglichen mit der Umgebungsatmo- sphäre leichteres Schutzgas sammelt, dass die Transportbahn des Werkstücks den Sammelbereich durchläuft und dass die mindestens eine Bestrahlungseinrichtung entlang des Sammelbereiches angeordnet ist.
Ein erster Grundgedanke der Erfindung kann darin gesehen werden, dass ein Schutzgas verwendet wird, das verglichen mit der Umgebungsatmosphäre leichter, also weniger dicht ist. Dieses Schutzgas reichert sich nicht am Boden der Härtungskabine an sondern steigt in der Härtungskabine nach oben zur Decke hin auf. Dementsprechend erfolgt gemäß der Erfindung die Bestrahlung unter Schutzgas auch nicht in einer nach oben offenen Boden- oder Tauchwanne im Bodenbereich der Anlage sondern vielmehr in einem nach oben geschlossenen, in der Regel nach unten offenen Sammelbereich an der Decke der Härtungskabine. Hierzu durchläuft die Transportbahn des Werkstücks den deckenseitig angeordneten Sammelbereich und auch die Bestrahlungseinrichtung ist im Deckenbereich im Bereich des Sammelbereiches positioniert .
Die Verwendung eines Schutzgases, welches leichter als die Umgebungsatmosphäre ist, hat in arbeiterschutztechnischer Hinsicht erhebliche Vorteile. Kommt es beispielsweise aufgrund einer Betriebsstörung zu einer versehentlichen Überbefüllung der Anlage, so sammelt sich das austretende Gas in den umgebenden Räumen zunächst nicht am Raumboden sondern an der Raumdecke an. Hier stellt es für Arbeiter jedoch in der Regel zunächst keine Gefährdung dar und kann frühzeitig durch Deckensensoren nachgewiesen werden. Die erfindungsgemäße Anlage und das erfindungsgemäße Verfahren sind somit besonders sicher.
Der erfindungsgemäße Sammelbereich kann insbesondere durch eine Deckenwanne, also eine invertierte Bodenwanne, gebildet sein, die nach oben und zu den Seiten hin abgeschlossen und nach unten, zum Boden hin, offen ist. Der Sammelbereich kann zur noch besseren Konzentration des Schutzgases hierin auch teilweise zum Boden hin eine abgeschlossene Fläche aufweisen, wobei in dieser bodenseitigen Fläche dann zumindest eine Durchgangsöffnung für die Fördereinrichtung vorgesehen sein kann. Zum lateralen Einschluss des Gases kann insbesondere vorgesehen sein, dass die Höhe der Decke bezüglich dem Erdbo- den im Sammelbereich größer ist als die Höhe der Decke in benachbarten, außerhalb des Sammelbereiches gelegenen Bereichen.
Die Erfindung kann insbesondere zum UV-Strahlungshärten verwendet werden, wobei die Bestrahlungseinrichtung dann zur Erzeugung von UV-Strahlung dient. Als Fördereinrichtung kann erfindungsgemäß beispielsweise ein Hängeförderer oder ein Flurförderer dienen.
Zum Einbringen des Werkstücks in den Sammelbereich ist es grundsätzlich möglich, seitlich am Sammelbereich Schleuseneinrichtungen vorzusehen, die einen seitlichen Schutzgasabfluss aus dem Sammelbereich verhindern, dabei jedoch einen Werkstückdurchgang zulassen. In diesem Fall kann die Transportbahn im Wesentlichen waagerecht in den Sammelbereich eintreten. Eine besonders einfach konstruierte Anlage ist nach der Erfindung jedoch dadurch gegeben, dass die Transportbahn in den Sammelbereich hinein ansteigt. In diesem Fall verläuft die Transportbahn nicht waagerecht sondern schräg zur Waagerechten aus der Sammelbereichsumgebung in den Sammelbereich hinein und gegebenenfalls wieder aus dem Sammelbereich hinaus. Hierdurch ist es möglich, den Sammelbereich mit massiven Seitenwänden zu versehen, ohne dass eine Schleuse notwendig wäre, wodurch bei einfacher Anlagengestaltung ein besonders sicherer Gasein- schluss im Sammelbereich gewährleistet wird. Grundsätzlich kann auch vorgesehen sein, dass die Transportbahn senkrecht in den Sammelbereich hinein ansteigt. Eine besonders zuverlässige und sichere Anlage wird erfindungsgemäß dadurch erhalten, dass der Sammelbereich in einem oberen Scheitel der Transportbahn angeordnet ist, das heißt, dass die Transportbahn im Sammelbereich ihren höchsten Punkt erreicht .
Für einen besonders hohen Werkstückdurchsatz weist die Transportbahn geeigneterweise einen Einlaufbahnabschnitt auf, auf dem die Werkstücke in den Sammelbereich eintreten, sowie einen räumlich hiervon getrennten Auslaufbahnabschnitt , auf dem die Werkstücke aus dem Sammelbereich austreten. Hierdurch wird eine kontinuierliche Werkstückförderung durch den Sammelbereich gewährleistet. Bevorzugt verlaufen dabei sowohl der Einlauf- bahnabschnitt als auch der Auslaufbahnabschnitt schräg zur Waagerechten. Die Werkstücke können aber auch auf ein und demselben Transportbahnabschnitt in den Sammelbereich hinein gefahren und wieder aus diesem heraus gefahren werden.
Eine besonders wirtschaftliche und zuverlässige Anlage wird nach der Erfindung dadurch erhalten, dass sich an die Härtungskabine mindestens ein Transporttunnel zum Zuführen und/oder Abführen des Werkstücks in die beziehungsweise aus der Härtungskabine anschließt. Diese Transporttunnel werden von der Transportbahn durchlaufen. Vorzugsweise sind an der Härtungskabine zwei Transporttunnel vorgesehen, von denen einer zum Zuführen des Werkstücks in die Härtungskabine und ein zweiter zum Abführen des Werkstücks aus der Härtungskabine dient .
Der erfindungsgemäße Sammelbereich kann in besonders einfacher Weise dadurch gebildet werden, dass die Höhe der Decke bezüglich dem Erdboden im Transporttunnel zur Härtungskabine hin zunimmt . Insbesondere steigt also die Deckenhöhe entlang der Transportbahn zum Sammelbereich hin an. Gemäß dieser Ausführungsform wird der Sammelbereich in Lateralrichtung längs der Transportbahn durch schräg verlaufende Deckenelemente abgeschlossen. Vorteilhafterweise bilden dabei die Deckenelemente der beiden Transporttunnel und der Härtungskabine und/oder die Transportbahn im Bereich der Härtungskabine zumindest näherungsweise eine invertierte V-Form, wobei die Deckenelemente und die Bahn im Scheitel auch streckenweise etwa waagerecht verlaufen können. Zum lateralen Begrenzen des Sammelbereichs zum Transporttunnel hin können an der Decke der Härtungskabine und/oder des Transporttunnels auch von der Decke nach unten verlaufende Schottwände, beispielsweise etwa senkrecht nach unten verlaufende Begrenzungsbleche vorgesehen sein, wobei die Deckenhöhe beiderseits der Bleche dann etwa gleich groß sein kann.
Bevorzugterweise ist der Sammelbereich lateral in Richtung der Transportbahn durch schräg zur Senkrechten verlaufende Wandelemente abgeschlossen. Geeigneterweise verlaufen diese Wandelemente, die insbesondere durch die Deckenelemente des Transporttunnels gegeben sind, unter einem Winkel zwischen 30° und 60°, bevorzugt etwa 45°, zur Waagerechten. Hierdurch werden unerwünschte Gasverwirbelungen im Sammelbereich, die zu unerwünschten KonzentrationsSchwankungen führen können, durch in den Sammelbereich rückströmendes Gas besonders wirksam unterbunden. Grundsätzlich kann der Sammelbereich lateral aber auch durch etwa senkrecht verlaufende Wandelemente begrenzt werden. Solche senkrecht verlaufenden Wandelemente können insbesondere zur Begrenzung quer zur Förderrichtung vorgesehen sein.
Eine besonders zuverlässige Gasbefüllung des Sammelbereichs kann dadurch gegeben sein, dass an der Härtungskabine, insbesondere an deren Deckenbereich, zumindest eine Zuführöffnung zum Zuführen von Schutzgas vorgesehen ist. Vorzugsweise wird das Schutzgas im Sammelbereich selbst, insbesondere deckensei- tig, in die Kammer zugeführt, da hierdurch unerwünschte Gasverwirbelungen und/oder Durchmischungen mit Umgebungsgas besonders gut verhindert werden können. Das Schutzgas könnte a- ber grundsätzlich auch außerhalb des Sammelbereichs und gegebenenfalls der Härtungskabine zugeführt werden, von wo es dann aufgrund seines Auftriebes in den Sammelbereich strömt. Um unerwünschte Gasverwirbelungen zu verhindern, ist es ferner vorteilhaft, dass mehrere Zuführöffnungen vorgesehen sind, die insbesondere großflächig, beispielsweise als Zuführschlitze, ausgebildet sind. Grundsätzlich ist es möglich, das Schutzgas diskontinuierlich, insbesondere in Abhängigkeit von einer Konzentrations- und/oder Füllstandsmessung im Sammelbereich, einzuleiten. Es kann aber auch eine kontinuierliche Gaseinleitung erfolgen. Zum Vermeiden einer Überbefüllung des Sammelbereichs kann in diesem Fall auch eine kontinuierliche Gasabführung in der Umgebung des Sammelbereichs, insbesondere unterhalb des Sammelbereichs, vorgesehen sein.
Gemäß einer weiteren bevorzugten Ausführungsform der Erfindung ist vorgesehen, dass im Deckenbereich der Härtungskabine zumindest ein Gassensor angeordnet ist. Bei dem Gassensor kann es sich beispielsweise um einen Schutzgassensor und/oder um einen Umgebungsgassensor handeln. Der Gassensor kann im Sammelbereich und/oder dessen Umgebungsbereichen angeordnet werden, um den Füllzustand des Sammelbereichs zu überwachen. Insbesondere kann der Gassensor als Sauerstoffsensor ausgebildet sein. Eine Erfassung des Sauerstoffgehaltes im Sammelbereich kann deshalb von besonderer Bedeutung sein, da Sauerstoff den Strahlungshärtungsprozess stark behindern kann.
Bevorzugt ist entlang der Transportbahn mindestens eine Gasschleuse vorgesehen. Hierdurch kann ein Fremdgaseinbruch in den Sammelbereich besonders wirksam verhindert werden. Die Gasschleuse kann dabei beispielsweise im Transporttunnel vorgesehen sein, wo sie schädliche Gasströmungen durch den Transporttunnel in den Sammelbereich verhindern kann. Grundsätzlich kann der Sammelbereich aber auch selbst lateral unmittelbar durch eine Gasschleuse begrenzt werden. Die mindestens eine Gasschleuse kann beispielsweise einen Düsenvorhang aufweisen. Zusätzlich oder alternativ kann beispielsweise ein Vorhang aus flexiblen Lappen, beispielsweise Kunststoffläppen, vorgesehen sein . Geeigneterweise ist an der Transportbahn eine Lackierkabine angeordnet. In dieser Lackierkabine sind Lackiereinrichtungen zum Aufbringen der zu härtenden Beschichtung angeordnet . Vorzugsweise ist dabei eine Luftaufbereitungsanlage zum Einstellen der Feuchtigkeit des in der Lackierkabine enthaltenen Gases vorgesehen. Die Luftaufbereitungsanlage kann insbesondere als Trocknungsanlage ausgebildet sein. Diesem Ausführungsbeispiel liegt die Erkenntnis zugrunde, dass atmosphärische Feuchtigkeit besonders beim Aufbringvorgang der Beschichtung in diese hineingelangen kann, wo sie dann eine Art Sperrschicht bildet, die eine vollständige Aushärtung verhindern kann. Durch Kontrolle der Luftfeuchtigkeit in der Lackierkabine kann die Neigung zur Sperrschichtbildung verringert und/oder beseitigt werden. Insbesondere kann hierzu vorgesehen sein, in die Lackierkabine vorgetrocknete Luft einzublasen. Vorzugsweise beträgt die Luftfeuchtigkeit in der Lackierkabine etwa 40% oder weniger.
Da auch nach Abschluss des Beschichtungsvorgangs vor der endgültigen Aushärtung noch atmosphärische Feuchtigkeit in die Beschichtung eindringen kann, ist es vorteilhaft, dass die Gasfeuchtigkeit auch im Bereich zwischen Lackierkabine und Härtungskabine kontrolliert wird. Hierzu ist vorteilhafterwei- se auch eine Einrichtung zum Einstellen der Gasfeuchtigkeit im Transporttunnel vorgesehen. Geeigneterweise wird in den Transporttunnel und/oder die Lackierkabine kontinuierlich oder diskontinuierlich aufbereitete, das heißt vorgetrocknete Luft eingeblasen. Die Verwendung vorgetrockneter Luft ist insbesondere bei hohen Schichtdicken notwendig. Die Kontrolle der atmosphärischen Feuchtigkeit während des Beschichtungsvorganges und beim Transport zwischen Lackierkabine und Bestrahlungsbe- reich und/oder die Regulierung beziehungsweise Einstellung einer genau definierten Luftfeuchtigkeit kann als eigenständiger Erfindungsaspekt angesehen werden. Als Schutzgas kann insbesondere Kohlendioxid (CO2) und/oder Stickstoff (N2) verwendet werden. Bei der Umgebungsatmosphäre handelt es sich typischerweise um Luft. Sofern ein Schutzgas verwendet wird, das bei gleicher Temperatur eine größere oder lediglich geringfügig geringere Dichte als die Umgebungsatmosphäre aufweist, wird nach der Erfindung das Schutzgas gegenüber der Umgebungsatmosphäre erwärmt, womit eine Dichteverminderung des Schutzgases relativ zum Umgebungsgas einhergeht. Hierzu ist geeigneterweise eine Heizvorrichtung zur Erwärmung des Schutzgases vorgesehen. Durch Erwärmen des Schutzgases ist es möglich, auch ein solches Schutzgas, das bei gleicher Temperatur schwerer als die Umgebungsatmosphäre ist, im decken- seitigen Sammelbereich zu sammeln.
Ein besonders zuverlässiger Betrieb der Anlage wird dadurch gewährleistet, dass das Schutzgas vor seiner Freisetzung in der Härtungskabine erwärmt wird, wofür die Heizvorrichtung geeigneterweise außerhalb der Härtungskabine angeordnet ist . Das Schutzgas kann aber grundsätzlich auch innerhalb der Härtungskabine erwärmt werden, wozu beispielsweise Lampen vorgesehen werden können. In diesem Fall kann das Schutzgas bei der Einleitung auch etwa dieselbe Temperatur wie das Umgebungsgas aufweisen. Insbesondere kann die Bestrahlungseinrichtung, die das Werkstück zum Beschichtungsaushärten bestrahlt, auch gleichzeitig zur Gaserwärmung verwendet werden. Ein besonders wirtschaftlicher Betrieb ist bei einer Schutzgastemperatur zwischen 400C und 1000C, insbesondere zwischen 500C und 800C gegeben. Das Umgebungsgas hat bevorzugt Raumtemperatur.
Die Erfindung ist insbesondere geeignet für die Bearbeitung großer Werkstücke, beispielsweise ganzer Achsengruppen für Personenkraftwagen oder Lastkraftwagen. Um die Beschichtung auch auf hinterschnittenen Werkstücken sicher aushärten zu können, ist es vorteilhaft, dass das Werkstück in der Härtungskabine relativ zum Strahler beweglich ist. Hierzu kann vorgesehen sein, dass die Fördereinrichtung zumindest einen verschwenkbaren Werkstückhalter zum Verschwenken des Werkstücks in der Härtungskabine aufweist. Vorteilhafterweise ist der Werkstückhalter zumindest in zwei, insbesondere in drei Achsen verschwenkbar. Alternativ oder zusätzlich kann vorgesehen sein, dass die Bestrahlungseinrichtung zumindest einen verfahrbaren Strahler zum Verändern des Bestrahlungswinkels des Werkstücks aufweist. Insbesondere kann vorgesehen sein, den Strahler zur Änderung der Raumrichtung eines emittierten Strahlenbündels zu verschwenken. Zu diesem Zwecke kann der Strahler auch einen verschwenkbaren Reflektor aufweisen.
Für ein UV-Strahlungshärtverfahren weist die Bestrahlungseinrichtung vorzugsweise UV-Strahler auf. Der zumindest eine Strahler der Bestrahlungseinrichtung kann grundsätzlich in der Bestrahlungskabine angeordnet sein. Ebenso kann der Strahler auch außerhalb der Härtungskabine angeordnet werden, wobei diese Kabine dann Fenster aufweist, durch welche die Strahlung in die Kabine eintreten kann. Hierzu sind in den Fenstern, insbesondere im Sammelbereich, vorzugsweise strahlungsdurchlässige Scheiben angeordnet. Die Fenster sind geeigneterweise länglich ausgebildet und erstreckten sich in oder quer zur Transportrichtung des Werkstücks. Als Strahler werden vorteil- hafterweise Röhrenstrahler eingesetzt. Geeigneterweise weisen die Strahler Reflektoren auf.
Zur Wirkungsgraderhöhung beim Härten ist es vorteilhaft, dass die Innenwände der Härtungskabine zumindest bereichsweise mit einem Reflexionsmaterial versehen sind. Für eine gute Aushärtung auch hinterschnittener Bauteile ist es in diesem Zusammenhang bevorzugt, dass durch das Reflexionsmaterial eine diffuse Reflexion erzeugt wird, bei der ein auf die Wand einfal- lender Lichtstrahl je nach Einfallsort in eine andere Richtung zurückreflektiert wird. Hierzu kann das Reflexionsmaterial eine Reflexionsschicht aufweisen, deren Winkelstellung entlang der Wand regelmäßig oder unregelmäßig variiert ist.
Vorteilhafterweise ist das Reflexionsmaterial nur im Sammelbereich vorgesehen, damit eine Strahlenreflexion aus diesem Bereich heraus und somit eine unkontrollierte Härtung außerhalb des Sammelbereichs vermieden wird. Vorzugsweise sind die Innenwände in Bereichen außerhalb des Sammelbereichs und/oder außerhalb der Härtungskabine Strahlen absorbierend, das heißt geschwärzt ausgeführt. Eine absorbierende Innenwand ist insbesondere im Zuführbereich zwischen Lackieranlage und Härtungskabine vorteilhaft, da in diesem Bereich die Beschichtung noch nicht ausgehärtet ist. Um Fremdlichteinflüsse zu verringern ist die Härtungskabine vorzugsweise ausgedunkelt.
In der Ausführung der Fördereinrichtung, der Bestrahlungseinrichtung und der Innenwände der Anlage können ebenfalls eigenständige Erfindungsaspekte gesehen werden.
Das erfindungsgemäße Verfahren ist dadurch gekennzeichnet, dass ein verglichen zur Umgebungsatmosphäre weniger dichtes Schutzgas, insbesondere Stickstoff, in die Härtungskabine eingebracht wird, welches sich in einem an der Decke der Härtungskabine angeordneten Sammelbereich sammelt, und dass das Werkstück durch den deckenseitig angeordneten Sammelbereich gefördert wird und darin bestrahlt wird.
Das Verfahren kann insbesondere mit einer erfindungsgemäßen Anlage durchgeführt werden, wobei die in diesem Zusammenhang erläuterten Vorteile erzielt werden. Nach der Erfindung kann auch vorgesehen sein, dass die Werkstücke zumindest annähernd horizontal in die Härtungskabine transportiert und zum Aushärten zumindest annähernd vertikal in die Schutzgasatmosphäre im deckenseitig angeordneten Sammelbereich hochgehoben werden. Bei der erfindungsgemäßen Fördereinrichtung zum Transport des Werkstückes kann es sich insbesondere um einen Rundtakt- und/oder Kettenautomaten handeln.
Die Erfindung wird nachfolgend anhand eines bevorzugten Ausführungsbeispiels näher erläutert, das schematisch in der einzigen Zeichnung dargestellt ist. Die einzige Zeichnung zeigt:
Fig. 1 eine schematische Ansicht einer erfindungsgemäßen Anlage zum Strahlungshärten für die Durchführung des erfindungsgemäßen Verfahrens.
Eine Anlage zum Strahlungshärten der Beschichtung von Werkstücken unter Schutzgas ist in Fig. 1 dargestellt. Die Anlage weist eine als Hängeförderer ausgebildete Fördereinrichtung 60 auf, an der Werkstücke 1 über schwenkbare Werkstückhalter 67 aufgehängt sind. Die Fördereinrichtung 60 fördert die Werkstücke 1 entlang einer punktiert dargestellten Transportbahn 63 in Förderrichtung 80 durch die Anlage.
Eingangsseitig der Anlage ist eine Lackierkabine 40 vorgesehen, in welcher die Werkstücke 1 mittels einer Beschichtungs- einrichtung 41 mit der auszuhärtenden Beschichtung versehen werden. An der Lackierkabine 40 ist ein Gebläse 32 zur Belüftung der Lackierkabine 40 vorgesehen. Dabei ist an der Belüftungsleitung ein Luftentfeuchter 34 zum Vortrocknen der in die Lackierkabine 40 eingeblasenen Luft angeordnet.
Von der Lackierkabine 40 gelangen die Werkstücke 1 auf der Transportbahn 63 in einen Verbindungskanal 50, in den eben- falls vom Luftentfeuchter 34 vorgetrocknete Luft eingeblasen wird. Vom Verbindungskanal 50 gelangen die Werkstücke 1 weiter auf der Transportbahn 63 in einen ersten Transporttunnel 21 und von dort in eine Härtungskabine 10. In der Härtungskabine 10 werden die Werkstücke 1 zur Aushärtung der Beschichtung mit UV-Licht bestrahlt. Das UV-Licht wird dabei durch nicht dargestellte Strahler innerhalb der Härtungskabine 10 erzeugt und/oder außerhalb der Härtungskabine 10 erzeugt und durch Fenster 11 in das Innere der Härtungskabine 10 eingestrahlt. Über einen zweiten Transporttunnel 22 werden die Werkstücke 1 aus der Härtungskabine 10 abgeführt.
Erfindungsgemäß erfolgt die Aushärtung, das heißt die UV- Bestrahlung, unter einer Schutzgasatmosphäre. Zum Zuführen des Schutzgases endet an der Decke 13 der Härtungskabine 10 eine Zuführleitung 17, die aus einem Reservoir 16 mit Schutzgas gespeist wird.
Ausgehend von der Lackierkabine 10 nimmt die Höhe der Decke 13 gegenüber dem Erdboden 8 entlang der Transportbahn 63 zur Härtungskabine 10 hin zu. In der Härtungskabine 10 verläuft die Decke 13 etwa waagerecht. Im anschließenden auslaufseitigen Transporttunnel 22 nimmt die Höhe der Decke 13 gegenüber dem Erdboden 8 mit zunehmender Entfernung von der Härtungskabine 10 wieder ab. Durch diese Deckenstruktur wird in der Anlage im Schnitt längs der Förderrichtung 80 eine umgekehrte Trogstruktur gebildet, in deren oberen Bereich ein Sammelbereich 5 für das Schutzgas ausgebildet ist. Seitlich, senkrecht zur Förderrichtung 80, dass heißt senkrecht zur Zeichenebene in der Figur, wird der Sammelbereich 5 durch nicht dargestellte, senkrecht zum Erdboden 8 verlaufende Seitenwandelemente der Transporttunnel 21, 22 und der Härtungskabine 10 begrenzt. Erfindungsgemäß wird ein Schutzgas verwendet, das leichter als das in den verbleibenden Anlageteilen befindliche Umgebungsgas ist. Dieses Schutzgas steigt innerhalb der Anlage nach oben und sammelt sich im Sammelbereich 5 an. Es wird somit im Scheitel der Anlage eine Schutzgasblase ausgebildet, in der die UV-Aushärtung durchgeführt wird. Diese Schutzgasblase ist in den Transporttunneln 21 beziehungsweise 22 in Grenzbereichen 25 und 26 gegenüber der Umgebungsatmosphäre begrenzt. Da in den Grenzbereichen 25, 26 zwei unterschiedliche Gasphasen aufeinander treffen, sind diese Grenzbereiche 25, 26 in der Regel nicht scharf ausgebildet.
In dem dargestellten Ausführungsbeispiel verläuft der Boden in den Transporttunneln 21, 22 und der Härtungskabine 10 entlang der Transportbahn 63 etwa parallel zur Decke 13. Da erfin- dungsgemäß die Ausdehnung des Sammelbereichs jedoch im wesentlichen durch die Deckenform bestimmt ist, kann der Verlauf des Bodens in den Transporttunneln 21, 22 und der Härtungskabine 10 grundsätzlich ohne wesentlichen Funktionalitätsverlust frei variiert werden. Insbesondere kann die Höhe des Bodens bezüglich dem Erdboden 8 in den Transporttunneln 21, 22 und der Härtungskabine 10 etwa gleich bleibend sein.
Nach Durchlauf der Lackierkabine 40 steigt die Transportbahn 63 im Transporttunnel 21 nach oben hin an, so dass die Werkstücke 1 in die deckenseitig im Sammelbereich 5 ausgebildete Schutzgasblase eintreten. In der Härtungskabine 10, in der die Bestrahlung erfolgt, verläuft die Transportbahn 63 etwa waagerecht durch den Sammelbereich 5 am Fenster 11 entlang. Im auslaufseitigen Transporttunnel 22 nimmt die Höhe der Transportbahn mit zunehmendem Abstand von der Härtungskabine 10 wieder ab, so dass die Werkstücke 1 nach erfolgter Aushärtung wieder aus dem deckenseitig angeordneten, schutzgasgefülltem Sammelbereich 5 austreten.

Claims

PATENTANSPRUCHE
1. Anlage zum Strahlungshärten einer Beschichtung eines Werkstückes (1) unter Schutzgas, mit
-einer Härtungskabine (10), an der zumindest eine Bestrahlungseinrichtung zum Bestrahlen des Kabineninneren vorgesehen ist, und
-einer Fördereinrichtung (60) zum Transport des Werkstückes (1) in der Härtungskabine (10) entlang einer Transportbahn (63) , dadurch g e k e n n z e i c h n e t ,
-dass im Bereich der Härtungskabine (10) an deren Decke (13) ein Sammelbereich (5) gebildet ist, in dem sich verglichen mit der Umgebungsatmosphäre leichteres Schutzgas sammelt,
-dass die Transportbahn (63) des Werkstücks (1) den Sammelbereich (5) durchläuft und
- dass die mindestens eine Bestrahlungseinrichtung entlang des Sammelbereiches (5) angeordnet ist.
2. Anlage nach Anspruch 1, dadurch g e k e n n z e i c h n e t , dass die Transportbahn (63) in den Sammelbereich (5) hinein ansteigt .
3. Anlage nach einem der Ansprüche 1 oder 2 , dadurch g e k e n n z e i c h n e t ,
-dass sich an die Härtungskabine (10) mindestens ein Transporttunnel (21, 22) zum Zuführen und/oder Abführen des Werkstücks (1) in die bzw. aus der Härtungskabine (10) anschließt und
-dass die Höhe der Decke (13) bezüglich dem Erdboden (8) im Transporttunnel (21, 22) zur Härtungskabine (10) hin zunimmt .
4. Anlage nach einem der Ansprüche 1 bis 3, dadurch g e k e n n z e i c h n e t , dass an der Härtungskabine (10) , insbesondere an deren Deckenbereich, zumindest eine Zuführöffnung zum Zuführen von Schutzgas vorgesehen ist.
5. Anlage nach einem der Ansprüche 1 bis 4, dadurch g e k e n n z e i c h n e t , dass im Deckenbereich der Härtungskabine (10) zumindest ein Gassensor angeordnet ist.
6. Anlage nach einem der Ansprüche 1 bis 5, dadurch g e k e n n z e i c h n e t , dass entlang der Transportbahn (63) mindestens eine Gasschleuse vorgesehen ist.
7. Anlage nach einem der Ansprüche 1 bis 6, dadurch g e k e n n z e i c h n e t ,
-dass an der Transportbahn (63) eine Lackierkabine (40) angeordnet ist und -dass eine Luftaufbereitungsanlage zum Einstellen der
Feuchtigkeit des in der Lackierkabine (40) enthaltenen
Gases vorgesehen ist.
8. Anlage nach einem der Ansprüche 1 bis 7, dadurch g e k e n n z e i c h n e t , dass eine Heizvorrichtung zum Erwärmen des Schutzgases vorgesehen ist.
9. Anlage nach einem der Ansprüche 1 bis 8, dadurch g e k e n n z e i c h n e t ,
-dass die Fördereinrichtung (60) zumindest einen verschwenkbaren Werkstückhalter (67) zum Verschwenken des Werkstücks (1) in der Härtungskabine (63) aufweist und/oder
- dass die Bestrahlungseinrichtung zumindest einen verfahrbaren Strahler zum Verändern des Bestrahlungswinkels des Werkstücks (1) aufweist.
10. Anlage nach einem der Ansprüche 1 bis 9, dadurch g e k e n n z e i c h n e t , dass die Innenwände der Härtungskabine (10) zumindest bereichsweise mit einem Reflexionsmaterial versehen sind.
11. Verfahren zum Strahlungshärten einer Beschichtung eines Werkstücks (1) unter Schutzgas, insbesondere in einer Anlage nach einem der Ansprüche 1 bis 10, bei dem
-das Werkstück in eine Härtungskabine (10) gefördert und dort bestrahlt wird, dadurch g e k e n n z e i c h n e t ,
- dass ein verglichen zur Umgebungsatmosphäre weniger dichtes Schutzgas, insbesondere Stickstoff, in die Härtungskabine (10) eingebracht wird, welches sich in einem an der Decke der Härtungskabine (10) angeordneten Sammelbereich (5) sammelt, und
-dass das Werkstück (1) durch den deckenseitig angeordneten Sammelbereich (5) gefördert wird und darin bestrahlt wird .
PCT/EP2006/010016 2005-10-20 2006-10-17 Anlage und verfahren zum strahlungshärten einer beschichtung eines werkstückes unter schutzgas WO2007045442A1 (de)

Priority Applications (7)

Application Number Priority Date Filing Date Title
EP06806343A EP1938033B1 (de) 2005-10-20 2006-10-17 Anlage und verfahren zum strahlungshärten einer beschichtung eines werkstückes unter schutzgas
PL06806343T PL1938033T3 (pl) 2005-10-20 2006-10-17 System i sposób utwardzania za pomocą promieniowania ultrafioletowego powłoki przedmiotu obrabianego w atmosferze gazu ochronnego
BRPI0617672-0A BRPI0617672A2 (pt) 2005-10-20 2006-10-17 instalação e processo por têmpera por radiação de um revestimento de uma peça com emprego de gás protetor
US12/083,828 US20090288310A1 (en) 2005-10-20 2006-10-17 System and Method for Radiation-Hardening a Coating of a Workpiece Under a Protective Gas
CN2006800393038A CN101292128B (zh) 2005-10-20 2006-10-17 用于在保护气下辐射硬化工件涂层的设备和方法
JP2008535957A JP2009512543A (ja) 2005-10-20 2006-10-17 保護ガス下での工作物コーティングの放射線硬化のためのプラントおよび方法
EA200800882A EA013578B1 (ru) 2005-10-20 2006-10-17 Установка и способ радиационного отверждения покрытия детали в среде защитного газа

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102005050371.3 2005-10-20
DE102005050371A DE102005050371B4 (de) 2005-10-20 2005-10-20 Anlage und Verfahren zum Strahlungshärten einer Beschichtung eines Werkstückes unter Schutzgas

Publications (2)

Publication Number Publication Date
WO2007045442A1 true WO2007045442A1 (de) 2007-04-26
WO2007045442B1 WO2007045442B1 (de) 2007-06-21

Family

ID=37667144

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2006/010016 WO2007045442A1 (de) 2005-10-20 2006-10-17 Anlage und verfahren zum strahlungshärten einer beschichtung eines werkstückes unter schutzgas

Country Status (11)

Country Link
US (1) US20090288310A1 (de)
EP (1) EP1938033B1 (de)
JP (1) JP2009512543A (de)
KR (1) KR20080063516A (de)
CN (1) CN101292128B (de)
BR (1) BRPI0617672A2 (de)
DE (1) DE102005050371B4 (de)
EA (1) EA013578B1 (de)
PL (1) PL1938033T3 (de)
UA (1) UA90022C2 (de)
WO (1) WO2007045442A1 (de)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1967284A3 (de) * 2007-03-06 2008-12-17 Ist Metz Gmbh Verfahren und Vorrichtung zur UV-Strahlungshärtung von Substratbeschichtungen
US20110274855A1 (en) * 2009-01-16 2011-11-10 Daimler Ag Method for coating a component
EP2696155A1 (de) 2012-08-07 2014-02-12 Sturm Maschinen- & Anlagenbau GmbH Verfahren und Vorrichtung zum UV-Härten
EP2821147A1 (de) 2013-07-01 2015-01-07 Sturm Maschinen- & Anlagenbau GmbH Beschichtungsanlage und Beschichtungsverfahren

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4649344B2 (ja) * 2006-02-17 2011-03-09 トリニティ工業株式会社 紫外線塗料硬化設備、塗料硬化方法
DE102007024745A1 (de) * 2007-05-26 2008-11-27 Bayerische Motoren Werke Aktiengesellschaft Vorrichtung zum Trocknen von Gegenständen, insbesondere von lackierten Fahrzeugkarosserien
US20140046471A1 (en) * 2012-08-10 2014-02-13 Globe Machine Manufacturing Company Robotic scanning and processing systems and method
CN114798344A (zh) 2016-12-27 2022-07-29 沙特基础工业全球技术公司 利用电磁辐射或滚筒加热对涂层进行干燥
CN109051793A (zh) * 2018-07-31 2018-12-21 中山易必固新材料科技有限公司 一种下沉式二氧化碳气体保护输送管
CN109365244A (zh) * 2018-10-24 2019-02-22 安徽柳溪智能装备有限公司 一种辐射炉
EP3930921A1 (de) * 2019-02-25 2022-01-05 Cefla Societa' Cooperativa Vorrichtung und verfahren zum trocknen/härten von chemischen produkten
IT201900002665A1 (it) * 2019-02-25 2020-08-25 Cefla Soc Cooperativa Apparato e metodo per l’essiccazione/polimerizzazione di prodotti chimici

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2887584A (en) * 1957-10-01 1959-05-19 High Voltage Engineering Corp Electron irradiation apparatus
DE19804202A1 (de) * 1998-02-03 1999-08-05 Viotechnik Ges Fuer Innovative Vorrichtung für die Bestrahlung von Gegenständen unter Schutzgas
DE10051109C1 (de) * 2000-10-14 2002-04-25 Messer Griesheim Gmbh Anlage zum Strahlungshärten
DE10157554A1 (de) * 2001-11-23 2003-06-12 Messer Griesheim Gmbh Anlage zum Strahlungshärten
DE10354165B3 (de) * 2003-11-19 2004-11-04 EISENMANN Maschinenbau KG (Komplementär: Eisenmann-Stiftung) Vorrichtung und Verfahren zur Aushärtung einer Beschichtung in einem Schutzgas

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3790801A (en) * 1972-09-08 1974-02-05 Ppg Industries Inc Apparatus for ultraviolet light treatment in a controlled atmosphere
FR2441432A1 (fr) * 1978-11-15 1980-06-13 Air Ind Perfectionnements apportes aux enceintes pour le traitement de pieces
JPS56121469U (de) * 1980-02-20 1981-09-16
LU84911A1 (fr) * 1983-07-14 1985-04-17 Cockerill Sambre Sa Procede et installation de cuisson d'un revetement organique applique sur un support
JPS6242768A (ja) * 1985-08-20 1987-02-24 Dynic Corp 電子線照射方法
JPH01159000U (de) * 1988-04-23 1989-11-02
JP2001141371A (ja) * 1999-11-11 2001-05-25 Kanto Yakin Kogyo Kk 雰囲気連続炉
US6655040B2 (en) * 2002-01-04 2003-12-02 The Diagnostics Group, Inc. Combination ultraviolet curing and infrared drying system
JP2003228176A (ja) * 2002-02-04 2003-08-15 Fuji Photo Film Co Ltd 塗膜層の含水調整装置及び平版印刷版の製造方法
JP4069642B2 (ja) * 2002-02-14 2008-04-02 大同特殊鋼株式会社 ストリップ連続焼鈍用横型炉
DE20203407U1 (de) * 2002-03-02 2002-06-27 Fa. Thomas Rippert, 33442 Herzebrock-Clarholz Anlage zur Lichthärtung von auf Werkstücken aufgebrachten Beschichtungsstoffen
JP4059782B2 (ja) * 2003-02-12 2008-03-12 富士フイルム株式会社 紫外線硬化型樹脂の硬化方法及びその装置
DE102004030674A1 (de) * 2004-06-24 2006-01-19 Basf Ag Vorrichtung und Verfahren zum Härten mit energiereicher Strahlung unter Inertgasatmosphäre
JP2006320813A (ja) * 2005-05-18 2006-11-30 Trinity Ind Corp 紫外線照射型硬化装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2887584A (en) * 1957-10-01 1959-05-19 High Voltage Engineering Corp Electron irradiation apparatus
DE19804202A1 (de) * 1998-02-03 1999-08-05 Viotechnik Ges Fuer Innovative Vorrichtung für die Bestrahlung von Gegenständen unter Schutzgas
DE10051109C1 (de) * 2000-10-14 2002-04-25 Messer Griesheim Gmbh Anlage zum Strahlungshärten
DE10157554A1 (de) * 2001-11-23 2003-06-12 Messer Griesheim Gmbh Anlage zum Strahlungshärten
DE10354165B3 (de) * 2003-11-19 2004-11-04 EISENMANN Maschinenbau KG (Komplementär: Eisenmann-Stiftung) Vorrichtung und Verfahren zur Aushärtung einer Beschichtung in einem Schutzgas

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1967284A3 (de) * 2007-03-06 2008-12-17 Ist Metz Gmbh Verfahren und Vorrichtung zur UV-Strahlungshärtung von Substratbeschichtungen
US20110274855A1 (en) * 2009-01-16 2011-11-10 Daimler Ag Method for coating a component
US8652585B2 (en) * 2009-01-16 2014-02-18 Daimler Ag Method for coating a component
EP2696155A1 (de) 2012-08-07 2014-02-12 Sturm Maschinen- & Anlagenbau GmbH Verfahren und Vorrichtung zum UV-Härten
EP2821147A1 (de) 2013-07-01 2015-01-07 Sturm Maschinen- & Anlagenbau GmbH Beschichtungsanlage und Beschichtungsverfahren

Also Published As

Publication number Publication date
PL1938033T3 (pl) 2013-03-29
US20090288310A1 (en) 2009-11-26
BRPI0617672A2 (pt) 2011-08-02
EA200800882A1 (ru) 2008-10-30
CN101292128A (zh) 2008-10-22
WO2007045442B1 (de) 2007-06-21
EA013578B1 (ru) 2010-06-30
DE102005050371A1 (de) 2007-04-26
DE102005050371B4 (de) 2012-08-16
UA90022C2 (ru) 2010-03-25
EP1938033B1 (de) 2012-09-19
KR20080063516A (ko) 2008-07-04
JP2009512543A (ja) 2009-03-26
EP1938033A1 (de) 2008-07-02
CN101292128B (zh) 2010-10-20

Similar Documents

Publication Publication Date Title
EP1938033B1 (de) Anlage und verfahren zum strahlungshärten einer beschichtung eines werkstückes unter schutzgas
EP1931480B2 (de) Vorrichtung und verfahren zum abtrennen von nasslack-overspray
DE3148196C2 (de) Anordnung zur Oberflächenbehandlung eines Gegenstandes mit Infrarotheizkörpern
EP2160253B1 (de) Beschichtungszone mit geneigten führungsschienen
WO2005011878A2 (de) Vorrichtung zur aushärtung einer aus einem material, das unter elektromagnetischer strahlung aushärtet, insbesondere aus einem uv-lack oder aus einem thermisch aushärtenden lack, bestehenden beschichtung eines gegenstandes
EP1749584B1 (de) Beschichtungszone und Beschichtungsanlage mit hochliegenden Geräten
DE102011120230B4 (de) Anlage zur Oberflächenbehandlung von Gegenständen
EP1651359A2 (de) Vorrichtung zur aushärtung einer aus einem material, das unter elektromagnetischer strahlung aushärtet, insbesondere aus einem uv-lack oder thermisch aushärtendem lack bestehenden beschichtung eines gegenstandes
EP3758917A1 (de) Vorrichtung und verfahren zum generativen herstellen eines dreidimensionalen objekts
DE69310250T2 (de) Vorrichtung zur Herstellung von Harzbeschichtung auf der Oberfläche eines dreidimensionalen Objektes
DE102004023536B4 (de) Vorrichtung zur Aushärtung einer aus einem Material, das unter elektromagnetischer Strahlung aushärtet, insbesondere aus einem UV-Lack oder aus einem thermisch aushärtenden Lack, bestehenden Beschichtung eines Gegenstandes
DE102004023537B4 (de) Vorrichtung zur Aushärtung einer aus einem Material, das unter elektromagnetischer Strahlung aushärtet, insbesondere aus einem UV-Lack oder aus einem thermisch aushärtenden Lack, bestehenden Beschichtung eines Gegenstandes
DE10051109C1 (de) Anlage zum Strahlungshärten
DE3323710A1 (de) Begasungsvorrichtung
DE102010014489B3 (de) Transportgestell zum Fördern eines Gegenstandes durch eine Trocknungsanlage, Verfahren zum Trocknen einer Beschichtung auf einem Gegenstand und Verwendung eines Transportgestells hierzu
DE102004023538A1 (de) Vorrichtung zur Aushärtung einer aus einem Material, das unter elektromagnetischer Strahlung aushärtet, insbesondere aus einem UV-Lack oder aus einem thermisch aushärtenden Lack, bestehenden Beschichtung eines Gegenstandes
WO2005015102A2 (de) Vorrichtung zur aushärtung einer aus einem material, das unter elektromagnetischer strahlung aushärtet, insbesondere aus einem uv-lack oder aus einem thermisch aushärtenden lack, bestehenden beschichtung eines gegenstandes
DE102010012534B4 (de) Anlage zum Beschichten von Gegenständen und Aushärten der Beschichtung mit elektromagnetischer Strahlung
DE3634386C2 (de)
DE19634693C2 (de) Verfahren und Vorrichtung zur Reduzierung bzw. zur Vermeidung des Luft- bzw. Gasaustausches im Bereich temperaturmäßig unterschiedlicher Zonen
WO2005012816A2 (de) Vorrichtung zur aushärtung einer aus einem material, das unter elektromagnetischer strahlung aushärtet, insbesondere aus einem uv-lack, oder aus einem thermisch aushärtenden lack, bestehenden beschichtung eines gegenstandes
DE102009005079B4 (de) Verfahren zum Beschichten eines Bauteils sowie Beschichtungsvorrichtung
DE20203407U1 (de) Anlage zur Lichthärtung von auf Werkstücken aufgebrachten Beschichtungsstoffen
EP0826221A1 (de) Elektronenstrahlanlage
DE2630298A1 (de) Vorrichtung zur ausbringung von schuettguetern aus silos, oefen o.dgl. behaeltern

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200680039303.8

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006806343

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 1516/KOLNP/2008

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 12083828

Country of ref document: US

Ref document number: MX/a/2008/005082

Country of ref document: MX

Ref document number: 200800882

Country of ref document: EA

ENP Entry into the national phase

Ref document number: 2008535957

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 1020087012035

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 2006806343

Country of ref document: EP

ENP Entry into the national phase

Ref document number: PI0617672

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20080422