WO2007043416A1 - 電波到達状態推定システム及び電波到達状態推定方法ならびにプログラム - Google Patents
電波到達状態推定システム及び電波到達状態推定方法ならびにプログラム Download PDFInfo
- Publication number
- WO2007043416A1 WO2007043416A1 PCT/JP2006/319887 JP2006319887W WO2007043416A1 WO 2007043416 A1 WO2007043416 A1 WO 2007043416A1 JP 2006319887 W JP2006319887 W JP 2006319887W WO 2007043416 A1 WO2007043416 A1 WO 2007043416A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- diffraction
- wave
- radio wave
- estimation
- diffracted
- Prior art date
Links
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B17/00—Monitoring; Testing
- H04B17/30—Monitoring; Testing of propagation channels
- H04B17/391—Modelling the propagation channel
- H04B17/3913—Predictive models, e.g. based on neural network models
Definitions
- Radio wave arrival state estimation system radio wave arrival state estimation method and program
- the present invention relates to a system for rapidly estimating the effect of diffraction in radio wave propagation characteristic (radio wave arrival state) estimation, a method thereof, and a program.
- a radio wave propagation characteristic estimation system (radio wave propagation simulator) is used to assist in the arrangement of base stations and masters in a wireless communication system, and optimization of parameters of the arranged base stations and masters, etc. .
- a radio wave propagation simulator evaluates received power, delay spread, etc. at an arbitrary reception point, and determines the installation place of the appropriate transmission station, achieving efficiency such as reduction of the number of base stations to be allocated. Be done. Also, by determining the optimal transmitting station parameters, the network quality of the wireless communication system can be improved.
- Radio wave propagation simulation can be roughly classified into statistical methods and deterministic methods.
- an estimation formula of propagation power loss (hereinafter referred to simply as propagation loss) with distance, frequency, etc. as an argument is given, and the parameter is obtained by actual measurement of the propagation loss. It is a method to determine statistically based on a large number of data. The details of the statistical method are disclosed, for example, in Non-Patent Document 1 (Yoshio Hosoya (edited), "Radio Wave Propagation Bookbook", Realize, 1999).
- the propagation environment to be estimated (structures or objects that affect the propagation of radio waves, etc.) is simulated in advance on a computer, and the radio waves emitted from the antenna are It deterministically calculates the influence of the structure or object on the network, and estimates the radio wave condition at the reception point.
- the deterministic method is inferior to the statistical method in terms of the amount of operation processing, the estimation accuracy is high because the influence of the propagation environment is considered deterministically.
- ray tracing method is often used among several deterministic methods .
- the ray tracing method considers the radio waves emitted by the antenna as a collection of many radio waves (rays), and combines rays reaching the observation point assuming that each ray repeatedly propagates reflection and transmission geometrically optically. Then, the propagation loss and the delay amount are obtained.
- the ray tracing method is further roughly divided into a ray laying method and an imaging method. The details of the ray laying method and the imaging method are disclosed, for example, in Non-Patent Document 1 and JP-A-9-33584.
- the ray laying method assumes that rays emitted discretely at a constant angle of transmitting antenna force propagate while reflecting and transmitting repeatedly by a structure or an object, and a method of tracking the ray locus sequentially. It is.
- propagation estimation is performed with high accuracy using the ray-lapping method, it is desirable to consider the effects of diffraction in addition to reflection and transmission.
- a method of estimating the effect of diffraction using the ray laying method there is a method disclosed in Japanese Patent Laid-Open No. 2004-294133. According to this method, when a ray passes near the edge of a structure, a ray corresponding to a diffracted wave is generated at the edge.
- the imaging method is a method of determining a reflection transmission path of a ray connecting transmission and reception points by determining a reflection point with respect to a reflection surface. Since the imaging method can search for the exact ray propagation path between the transmitting and receiving points, it can achieve higher estimation accuracy than the ray-lapping method. However, there is also the problem that the amount of arithmetic processing increases dramatically if the number of structures to be considered and the maximum number of reflection 'transmission' diffractions are increased. In particular, when the radio wave propagation characteristics from the transmission point are to be evaluated surfacely, in the imaging method, it is necessary to search the propagation path of the ray for each reception point, so the amount of calculation processing is further increased.
- JP-A-9-33584, JP-A-9-119955, JP-A-9-153867, JP-A-2003-318842 and JP-A-2005-72667 As a method of reducing the arithmetic processing of the imaging method, for example, JP-A-9-33584, JP-A-9-119955, JP-A-9-153867, JP-A-2003-318842 and JP-A-2005-72667. There is a method disclosed in
- JP-A-9-33584, JP-A-9-119955 and JP-A 2003-31 8842 and JP-A-2005-72667 both reduce the structure to be considered in propagation estimation, or simplify the shape of the structure to search for the ray propagation path.
- the amount of arithmetic processing is reduced.
- a building located at a road and an intersection is selected. Store the data, and estimate the propagation considering only the building concerned.
- the road is decomposed into straight subelements based on road data indicating the position of the road.
- the minimum value and the maximum value of the propagation delay time are defined in advance, and only the structure in which the propagation delay time is between the minimum value and the maximum value Propagation estimation taking into account
- a structure with a transmission point force within the line of sight and a structure within the line of sight are searched for from the line of sight, and propagation estimation is performed considering only the structure.
- Non-Patent Document 1 Yoshio Hosoya (Supervised), “Radio Wave Propagation Book", Realize, 1999 Patent Document 1: Japanese Patent Application Laid-Open No. 9-33584
- Patent Document 2 Japanese Patent Application Laid-Open No. 2004-294133
- Patent Document 3 Japanese Patent Application Laid-Open No. 9 119955
- Patent Document 4 Japanese Patent Application Laid-Open No. 9-153867
- Patent document 5 Unexamined-Japanese-Patent No. 2003-318842
- Patent Document 6 JP-A-2005-72667
- diffraction causes multiple rays to be generated from one ray, and the number of rays to be processed increases accordingly.
- the amount of computational processing increases significantly compared to the case without consideration.
- JP-A-9-33584 JP-A-9-119955, JP-A-9-153867, JP-A 2003-318842 and JP-A 2005-72667. Since the disclosed method is originally based on the imaging method, the amount of arithmetic processing is significantly increased compared to the layout method.
- a radio wave arrival state estimation system estimates radio wave propagation characteristics from a defined transmission point in a limited evaluation area to a plurality of reception points in the evaluation area.
- non-diffracted wave estimation means for estimating a component other than the diffraction wave among the radio wave components reaching the reception points, and the radio wave components from the transmission points to the reception points
- Diffraction wave estimation means for estimating only the component of the diffraction wave, total radio wave propagation at each of the reception points in consideration of the estimation result of the non-diffraction wave estimation means and the estimation result of the diffraction wave estimation means
- a total radio wave component calculation means for calculating characteristics.
- a radio wave arrival state estimation system estimates radio wave propagation characteristics from a defined transmission point in a limited evaluation area to a plurality of reception points in the evaluation area.
- a non-diffracted wave estimation means for estimating a component other than a diffracted wave among the radio wave components reaching the reception point, which is an estimation system, and the non-diffracted wave estimation Diffraction-considered reception point extracting means for extracting, as diffraction-considered reception points, reception points whose components other than the diffraction wave are in a predetermined range among the reception points based on the estimation result by the means;
- Diffraction wave estimation means for estimating only the component of the diffraction wave among radio wave components from the transmission point to the reception point extracted as each of the diffraction-considered reception points, the estimation result of the non-diffraction wave estimation means, and the diffraction wave
- a total radio wave component calculation means for calculating the total radio wave propagation characteristic at each receiving point in consideration of the estimation result of the estimation
- the non-diffracted wave estimation means uses a Leirning method that does not take diffraction effects into consideration.
- the radio wave arrival state estimation method estimates radio wave propagation characteristics from a defined transmission point in a limited evaluation area to a plurality of reception points in the evaluation area. And a non-diffracted wave estimation step of estimating components other than the diffracted wave among the radio wave components from the transmission point to each of the reception points, and among the radio wave components from the transmission point to each of the reception points. Considering the diffracted wave estimation step of estimating only the component of the diffracted wave, the estimation result of the non-diffracted wave estimation step and the estimation result of the diffracted wave estimation step, the total radio wave propagation characteristic at each receiving point And calculating a total radio wave component calculating step.
- the radio wave arrival state estimation method estimates radio wave propagation characteristics from radio waves transmitted from a defined transmission point in a limited evaluation area to a plurality of reception points in the evaluation area.
- a non-diffracted wave estimation step of estimating components other than the diffracted wave among the radio wave components from the transmission point to each of the reception points, and the estimation result in the non-diffracted wave estimation step
- a diffraction-considered reception point extraction step of extracting, as diffraction-considered reception points, reception points having components other than diffracted waves within predetermined ranges, among the reception points.
- the estimation result in the non-diffracted wave estimation step and the diffracted wave estimation step Taking into account the estimation results of The total wave component calculating Sutetsu calculating the propagation characteristics of the total in each reception point It is characterized by including
- a ray laying method in which the diffraction effect is not considered is used.
- a program according to the present invention provides a computer with a radio wave propagation characteristic estimation method for estimating radio wave propagation characteristics from a defined transmission point in a limited evaluation area to a plurality of reception points in the evaluation area.
- Non-diffracted wave estimation processing for estimating a component other than a diffraction wave among radio wave components from the transmission point to each of the reception points, and a program for causing the transmission point to reach each of the reception points.
- a diffracted wave estimation process for estimating only the component of the diffracted wave, the estimation result in the non-diffracted wave estimation process, and the estimation result in the diffracted wave estimation process are taken into consideration, And calculating a total radio wave propagation characteristic.
- a program according to the present invention is a computer for estimating radio wave propagation characteristics of radio waves from a predetermined transmission point in a limited evaluation area to a plurality of reception points in the evaluation area.
- a non-diffracted wave estimation process for estimating a component other than a diffraction wave among radio wave components from the transmission point to each of the reception points, and an estimation result in the non-diffracted wave estimation process.
- a diffraction-considered reception point extraction process of extracting, as diffraction-considered reception points, reception points having components other than diffracted waves within a predetermined range among the respective reception points, and Diffraction wave estimation processing that estimates only the component of the diffracted wave among the radio wave components reaching the reception point extracted as each diffraction-considered reception point, the estimation result in the non-diffraction wave estimation processing, and the diffraction wave estimation processing Estimated result of Taking into account the bets, characterized in that it comprises a said total wave component calculating process of calculating the propagation characteristics of the total in each reception point.
- the non-diffracted wave estimation process uses a Leirning method that does not take diffraction effects into consideration. Further, it is preferable to use a deterministic propagation estimation method or a statistical propagation estimation method in which the component is limited, in the diffraction wave estimation process.
- the present invention is fast and accurate for estimation other than diffracted waves such as direct waves, reflected waves, and transmitted waves.
- the radio wave propagation estimation method and using a light wave propagation estimation method with addition of operation different from the estimation method used for radio wave propagation estimation other than the diffracted wave for the diffracted wave, the amount of operation processing can be greatly increased. It is possible to perform high-accuracy propagation estimation in consideration of diffraction that is not caused.
- the present invention estimates a direct wave other than a diffracted wave, a reflected wave, a transmitted wave, etc. out of the radio wave arrival states at the receiving point using a high-speed and high-precision radio wave propagation estimation method.
- the reception point considering diffraction is obtained, and the calculation processing amount is not greatly increased by using the radio wave propagation estimation method whose calculation load is lighter than the above radio wave propagation estimation method for the obtained diffraction consideration reception point. It is possible to perform high-accuracy propagation estimation that takes into account stray diffraction.
- FIG. 1 is a schematic functional block diagram of an embodiment of the present invention.
- FIG. 2 is a flowchart showing an outline of the operation of the embodiment of the present invention.
- FIG. 3 is a diagram for explaining the operation of the embodiment of the present invention.
- FIG. 4 is a flowchart showing the operation of the first embodiment of the present invention.
- FIG. 5 is an example of a streamlined diffraction estimate in an embodiment of the present invention.
- FIG. 6 is an example of an efficient diffraction estimate in an embodiment of the present invention.
- FIG. 7 is a flowchart showing the operation of the second embodiment of the present invention.
- FIG. 8 is a flowchart showing the operation of the third embodiment of the present invention.
- FIG. 9 is a flowchart showing the operation of the third embodiment of the present invention.
- FIG. 1 is a functional block diagram schematically showing an embodiment of the present invention.
- the system according to the present embodiment is a wireless communication that estimates the propagation condition (arrival state) of radio waves from a defined transmission point in a limited evaluation area to one or more reception points in the evaluation area. It is a radio wave propagation characteristic estimation system in the system.
- the present system includes a non-diffraction wave estimation unit 10, a diffraction-considered reception point extraction unit 20, a diffraction wave estimation unit 30, a total radio wave component calculation unit 40, and a control unit 50. , And a memory 60.
- the non-diffraction wave estimation means 10 uses the predetermined radio wave propagation state estimation method to transmit the transmission point force without taking into account the diffraction effect. It has a function to estimate the wave 'transmission wave' etc.).
- the radio wave propagation state estimation method applied to the non-diffraction wave estimation means 10 includes a deterministic method, and specifically, there is a ray laying method etc. In this ray laying method, a diffraction wave is not considered. Calculate the components other than the diffracted wave (direct wave ⁇ reflected wave ⁇ transmitted wave etc.).
- the diffraction-considered receiving point extraction means 20 for estimating the point at which the diffraction wave is estimated to arrive is relatively relatively diffracted with the contribution of components other than the diffraction wave being smaller. It has a function to extract diffraction-considered reception points that are expected to have a large component contribution.
- the diffraction-considered receiving point refers to a receiving point where diffracted waves must be taken into consideration.
- Diffraction wave estimation means 30 for estimating the arrival state of the diffraction wave has a function of estimating only the component of the diffraction wave in the propagation characteristics from the transmission point to each diffraction consideration receiving point.
- the radio wave propagation state estimation method applied to the diffracted wave estimation means 30 includes a radio wave propagation state estimation method with a smaller operation load than the radio wave propagation state estimation method applied to the non-diffracted wave estimation means 10. Apply. Specifically, as described in the embodiment, only the component of the diffracted wave is estimated among the propagation characteristics leading to each diffraction-considered reception point, using a deterministic propagation estimation method or imaging method or the like.
- the total radio wave component calculation means 40 combines the estimation result of the arrival state of the radio wave estimated by the non-diffraction wave estimation means 10 with the estimation result of the radio wave arrival state estimated by the diffracted wave estimation means 30. And have a function to estimate the total radio wave propagation characteristics (the arrival state of radio waves).
- the control unit 50 is a CPU that controls the respective units 10 to 40, and the memory 60 functions as a working memory of the CPU.
- FIG. 2 is a flowchart showing an outline of the operation of FIG. 1, and FIG. 3 is a diagram for explaining the outline.
- a transmission point 100 black circle
- a plurality of reception points are defined in the evaluation area.
- the receiving points are arranged in a grid of 5 rows and 7 columns.
- the non-diffraction wave estimation means 10 the arrival state of components other than the diffraction wave among the propagation characteristics reaching the transmission point force receiving points is estimated by the Leirning method without considering the diffraction effect (step Sl).
- each receiving point is a diffraction-considered receiving point
- the propagation loss at the receiving point is within a predetermined range. The reason why such judgment can be made is as follows. If there is no obstacle such as a structure between the transmitting point and the receiving point, the direct wave can reach the receiving point, so the propagation loss is relatively small and the diffracted wave is also less likely to occur.
- step S3 the total radio wave propagation characteristic is calculated in consideration of the estimation result in step S1 and the estimation result in step S3 (step S4).
- Example 1 A first embodiment of the present invention will be described. It is assumed that the evaluation area, the transmission point of the wireless system, and the reception point assumed in this embodiment are the same as those shown in FIG.
- FIG. 4 is a flow chart showing the operation of this embodiment.
- the diffraction effect is not taken into consideration!
- the components other than the diffraction wave are estimated among the radio wave components from the transmission point 100 to each reception point by the Leirning method (step S 11).
- Ll-n, m be the propagation loss at the reception point in the nth row and the mth column obtained here.
- step S13 among the radio wave components from the transmitting point 100 to each receiving point, only the component of the diffracted wave is estimated (step S13).
- a propagation estimation method different from the Leirning method used in step S11 is applied to the estimation of this diffraction component.
- L2 _ n, m be the propagation loss at the reception point in the n-th row and the m-th column obtained here. Furthermore, the radio wave component at each reception point is estimated by considering the estimation result obtained in step S11 and the estimation result obtained in step S13 (step 14). Specifically, by adding Ll-n, m and L2-n, m in a linear region, a propagation loss considering all components can be obtained. Alternatively, each propagation electric field loss may be added in consideration of the phase difference between the propagation path obtained in step S11 and the propagation path obtained in step S13.
- step S12 When estimating the diffraction component in step S12, for example, the efficiency of estimation according to the propagation environment is achieved by the method described below.
- the first method for efficiently estimating the diffraction component calculates only the diffraction component on the top surface (roof) of the structure located between the transmission point and the reception point.
- An example of the diffracted wave on the top of the structure is shown in Fig.5.
- this method it is only necessary to search for the rotation point in consideration of the buildings existing between the transmission point and the reception point, so the amount of calculation processing can be small.
- a second method of efficiently estimating the diffraction component is to connect the transmission point and the reception point along the road, and calculate only the diffraction component at the structure of the intersection in the middle route.
- Fig. 6 shows an example of the diffraction wave at the structure of the intersection.
- the third method for efficiently estimating the diffraction component refers to the distance between the transmission point and the reception point, the relief information, etc., and calculates the diffraction component by a statistical method.
- the Okumura-Koto model is applicable.
- the propagation loss calculated by most models includes components other than diffracted waves. Therefore, it is preferable to regard the one obtained by adding a certain level of loss to the calculated propagation loss as a diffraction loss to obtain a diffraction component.
- a fourth method for efficiently estimating the diffraction component is a reception for obtaining the diffraction component by referring to the propagation loss estimation result obtained by step SI 1 (ray launch method without considering the diffraction). Based on the average propagation loss around the point, calculate the diffraction loss at the receiving point.
- the average propagation loss around the reception point the average value of those propagation losses is used for the reception point where the propagation loss reaches a certain level or more around the reception point.
- the average propagation loss includes components other than diffracted waves, and in general, the diffracted components are smaller than these components. Therefore, a component obtained by adding a certain level of loss to the average propagation loss is regarded as a diffraction loss.
- the fifth method for efficiently estimating the diffraction component refers to the propagation loss estimation result obtained in step S 11 (ray launching method not considering diffraction), and from the receiving point for obtaining the diffraction component From the propagation loss estimation result and arrival direction estimation result in step S11 on the upper surface or side surface of the structure or object within the line of sight, the component reaching the reception point is extracted by newly considering the diffraction on the upper surface or side surface. And calculate the diffraction loss at the reception point by considering all those propagation losses.
- the efficiency efficiency of estimation of the diffraction component as described above is achieved by performing calculation of the diffraction component by means other than the ray lanching method as in the present embodiment.
- high-speed and high-accuracy ray-runching method is applied to estimation other than diffracted waves such as direct waves, reflected waves, and transmitted waves, and efficient propagation estimation is performed to estimate diffracted waves. It is possible to provide a radio wave propagation characteristic estimation system, a method, and a program for performing highly accurate propagation estimation in consideration of diffraction without significantly increasing the amount of calculation processing.
- FIG. 7 is a flow chart showing the operation of this embodiment.
- the diffraction effect is not taken into consideration!
- the components other than the diffraction wave are estimated among the radio wave components from the transmission point 100 to each reception point by the Leirning method (step S 21).
- Ll-n, m be the propagation loss at the reception point in the nth row and the mth column obtained here.
- step S21 From the propagation estimation results at each reception point in step S21, it is determined whether the reception point is a diffraction-considered reception point, and a diffraction-considered reception point in the evaluation area is extracted (step S22). . In determining whether each receiving point is a diffraction-considered receiving point or not, it is checked whether the propagation loss at the receiving point is within a predetermined range. Details of the extraction method are described below.
- step S22 when one or more diffraction-considered reception points are found, only the component of the diffracted wave is estimated among the radio wave components from the transmission point 100 to the diffraction-considered reception point (step S23).
- a propagation estimation method different from the Leirning method used in step S21 is applied to the estimation of the diffraction component.
- the efficiency of estimation according to the propagation environment is sought.
- the propagation loss at the reception point in the n-th row and the m-th column obtained here is L 2 ⁇ n, m.
- the radio wave component at each reception point is estimated by considering the estimation result obtained in step S21 and the estimation result obtained in step S23 together (step S24). Specifically, when the receiving point (n, m) is a diffraction-considered receiving point, propagation is performed with all components taken into account by adding Ll-n, m and L2-n, m in the linear region. There is a loss. Alternatively, in consideration of the phase difference between the propagation path obtained in step S21 and the propagation path obtained in step S23, the respective propagation field losses may be added. In the case where the reception point with consideration for diffraction is also found in step S22, the processing in step S23 and step S24 is not performed, and the estimation result in step S22 becomes the final estimation result as it is.
- step S22 When extracting a diffraction-considered reception point in step S22, for example, the following method is used.
- the first method of extracting a diffraction-considered reception point measures the linear distance from the transmission point to each reception point, and the propagation loss at the reception point is determined by a propagation loss equation in which the propagation loss is attenuated according to the distance.
- the Reception points that are below a certain level with respect to the propagation loss are considered as diffraction-considered reception points.
- the propagation loss equation for example, a theoretical equation of free space propagation loss may be used, or a statistical equation such as an Okumura-Tatsumi model may be used.
- the second method of extracting the diffraction-considered receiving point is to obtain the diffraction component by referring to the propagation loss estimation result obtained in the above step S 21 (does not consider the diffraction !, the lasering method).
- Reception points whose propagation loss is below a certain level with respect to the average propagation loss around the reception point are considered as diffraction-considered reception points.
- the average propagation loss around the reception point the average value of those propagation losses is used for the reception point where the propagation loss reaches a certain level or more around the reception point.
- the diffracted component has a larger propagation loss than the component other than the diffracted wave, so the contribution to the propagation loss is small. Therefore, at the receiving point where the contribution by components other than the diffracted wave is large, there is almost no influence by the addition of the diffracted component.
- the amount of arithmetic processing is reduced by removing such a receiving point from the receiving point taking into consideration the diffraction.
- the third method of extracting a diffraction-considered receiving point considers a receiving point whose average propagation loss around the receiving point is smaller than the maximum allowable propagation loss of the radio system under evaluation. It is regarded as a receiving point. If the average propagation loss around a reception point is less than the minimum reception sensitivity of the wireless system currently being evaluated, it is assumed that the reception point is far enough from the base station power, even if the diffraction component is calculated. It is also unlikely that a significant value (less than the maximum allowable propagation loss of the wireless system under evaluation) will be estimated. In this method, such reception points are removed from diffraction-considered reception points.
- the reception point at which the average propagation loss around the reception point is a certain level or more with respect to the propagation loss determined by the propagation loss equation which attenuates according to the distance is considered as the diffraction consideration reception point. You may use.
- the first or second extraction method is preferably combined with the third extraction method.
- the third extraction method By combining the two, it is possible to further reduce the number of diffraction-considered reception points compared to the single case, and the amount of calculation processing can be reduced accordingly.
- the radio wave propagation characteristic is further reduced by reducing the amount of calculation processing by limiting the reception points for estimating the diffraction component to only the extracted diffraction consideration reception points.
- a sex estimation system and its method and program can be provided.
- FIG. 8 is a flowchart showing the operation of this embodiment.
- the diffraction effect is not taken into consideration!
- the components other than the diffraction wave are estimated among the radio wave components from the transmission point 100 to each reception point by the Leirning method (step S 31).
- Ll-n, m be the propagation loss at the reception point in the nth row and the mth column obtained here.
- step S31 From the propagation estimation results at each reception point in step S31, it is determined whether or not the reception point is a diffraction-considered reception point, and a diffraction-considered reception point in the evaluation area is extracted (step S31). S32). In determining whether each receiving point is a diffraction-considered receiving point or not, it is checked whether the propagation loss at the receiving point is within a predetermined range. Details of the extraction method are as described in Example 2.
- step S32 when one or more diffraction-considered reception points are found, only the component of the diffracted wave is estimated among the radio wave components from the transmission point 100 to the diffraction-considered reception point (step S33).
- a propagation estimation method different from the Leirning method used in step S31 is applied. Also, among the methods for efficiently estimating the diffraction component shown in the first embodiment, a plurality of different methods are applied, and the diffraction component for each is estimated.
- the propagation losses at the reception point in the n-th row and the m-th column obtained here are L 2 ⁇ n, m — 1 and L 2 — n, m ⁇ 2, respectively.
- L2_n, m-1, L2_n, m-2 or the sum of both is adopted as the propagation loss L2-n, m at each diffraction-considered reception point.
- the radio wave component at each reception point is estimated by considering the estimation result obtained in step S31 and the estimation result obtained in step S33 together (step S34). Specifically, when the receiving point (n, m) is a diffraction-considered receiving point, propagation is performed with all components taken into account by adding Ll-n, m and L2-n, m in the linear region. There is a loss.
- the propagation path obtained in step S31 and the propagation path obtained in step S33 may be added together in consideration of the phase difference.
- the processing in step S33 and step S34 is not performed, and the estimation result in step S32 becomes the final estimation result as it is.
- estimation of the diffraction component is performed by a plurality of different methods with respect to the first embodiment and the second embodiment. In this way, even if the diffraction component estimated by a certain method is not sufficient, the necessary and sufficient diffraction loss can be estimated at the reception point by applying the result estimated by another method. Sex is high. This will improve the estimation accuracy.
- FIG. 9 is a flowchart showing the operation of this embodiment.
- the diffraction effect is not taken into consideration!
- the components other than the diffraction wave are estimated among the radio wave components from the transmission point 100 to each reception point by the Leirning method (step S 41).
- Ll-n, m be the propagation loss at the reception point in the nth row and the mth column obtained here.
- step S41 From the propagation estimation results at each receiving point in step S41, it is determined whether or not the receiving point is a diffraction-considered receiving point, and a diffraction-considered receiving point in the evaluation area is extracted (step S42-1). ).
- determining whether or not each receiving point is a diffraction-considered receiving point it is checked whether the propagation loss at the receiving point is within a predetermined range. Details of the extraction method are as described in Example 2.
- step S 42-1 when one or more diffraction-considered reception points are found, only the component of the diffracted wave is estimated among the radio wave components from the transmission point 100 to the diffraction-considered reception point.
- Step S43-1 To estimate this diffraction component, a propagation estimation method different from that used in step S41 is applied. Further, when estimating the diffraction component in step S43-1, the efficiency efficiency of estimation according to the propagation environment is achieved by the method shown in the first embodiment.
- the propagation loss at the reception point in the n-th row and the m-th column obtained here is L 2 ⁇ n, m. Furthermore, the estimation result obtained in step S41 and the estimation result obtained in step S43 1 are The radio wave component at each reception point is estimated with consideration (step S44-1). Specifically, when the receiving point (n, m) is the diffraction-considered receiving point, propagation loss in consideration of all components is obtained by adding Ll_n, m and L2-n, m in the linear region. Be
- the respective propagation field losses may be added. Thereafter, from the propagation estimation results at each receiving point in step S44-1, it is determined whether or not the receiving point is a diffraction-considered receiving point, and a diffraction-considered receiving point in the evaluation area is extracted (step S42-2) ). If one or more diffraction-considered reception points are found here, the components of the diffraction wave are estimated using a method different from the Leirning method used in step S41 or the method used in step S43-1. In step S43-2), the estimation result obtained in step S44-1 and the estimation result power obtained in step S43-2 also estimate radio wave components at each reception point (step S44-2).
- step S44-N-1 the propagation characteristics obtained in step S44-N-1 become the final estimation results as they are.
- the extraction of the diffraction-considered receiving point and the estimation of the diffraction component are repeatedly performed on the first embodiment and the second embodiment. From this, even if the necessary and sufficient diffraction loss can not be estimated in one diffraction component estimation, the necessary and sufficient diffraction loss can be estimated by applying another method in the second and subsequent estimations. The possibility is high. This will improve the estimation accuracy.
- the arrangement consideration (layout) information of a structure such as a building existing in an area for estimating the arrival state of radio waves is used to obtain a diffraction-considered reception point. It is different from 1 to 4.
- the line-of-sight determination between the transmission point and the reception point in the area is performed. And If an obstacle such as a building is out of sight, ie, between the transmitting and receiving points, the receiving point is estimated to be a diffraction-considered receiving point.
- the estimation method of the radio wave propagation condition after extracting the diffraction-considered reception point by this method is the same as the method shown in the first to fourth embodiments, and therefore the description thereof is omitted here.
- the diffraction-considered reception point extracted using the method of the present embodiment is compared with the diffraction-considered reception point extracted using the method of the first to fourth embodiments, and A method of finally extracting as a diffraction-considered receiving point or a method of finally extracting a point extracted by either method as a diffraction-considered receiving point can also be adopted.
- the above embodiments and examples have been described on the assumption that functions are implemented in hardware.
- the above functions can also be realized as software by reading a program that executes each means (process) into a computer and executing the program.
- this program is held on a recording medium such as a magnetic disk, a semiconductor storage device, or the like, is read by the recording medium power computer device, and implements the above-mentioned function by controlling its operation.
Landscapes
- Engineering & Computer Science (AREA)
- Artificial Intelligence (AREA)
- Evolutionary Computation (AREA)
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Mobile Radio Communication Systems (AREA)
- Monitoring And Testing Of Transmission In General (AREA)
Abstract
演算処理量を大幅に増加させること無く回折を考慮した高精度な伝搬推定を行う。無線通信システムにおける電波伝搬特性推定システムは、限られた評価エリア内の定められた送信点から、前記評価エリア内の複数個の受信点に至る電波の伝搬特性を推定し、前記送信点から前記各受信点に至る電波成分のうち回折波以外の成分を推定する非回折波推定手段と、前記送信点から前記各受信点に至る電波成分のうち回折波の成分のみを推定する回折波推定手段と、前記非回折波推定手段での推定結果と前記回折波推定手段での推定結果とを考慮して、前記各受信点における合計の電波伝搬特性を計算する合計電波成分計算手段とを含む。
Description
明 細 書
電波到達状態推定システム及び電波到達状態推定方法ならびにプログ ラム
技術分野
[0001] 本発明は、電波伝搬特性 (電波到達状態)推定における回折の効果を高速に推定 するためのシステム及びその方法ならびにプログラムに関する。
背景技術
[0002] 無線通信システムにおける基地局や親機等の配置や、配置された基地局や親機 等のパラメータの最適化を援助するために電波伝搬特性推定システム (電波伝搬シ ミュレータ)が用いられる。電波伝搬シミュレータによって任意の受信点での受信電力 や遅延拡がり等を評価して、しかるべき送信局の設置場所を決定することで、配置す るべき基地局数の削減等の効率ィ匕が達成される。また、最適な送信局のパラメータを 決定することで、無線通信システムのネットワーク品質を向上させることができる。
[0003] 電波伝搬シミュレーションは大別して、統計論的手法によるものと決定論的手法に よるものとがある。統計論的手法では、距離や周波数などを引数とする伝搬パワー損 失 (以下、単に伝搬損失と呼ぶ)の推定式を与え、そのパラメータを決定する際に、 伝搬損失の実測定で得られた多数のデータをもとに統計論的に決定する手法である 。統計論的手法の詳細に関しては、たとえば非特許文献 1 (細谷良雄 (監修)、「電波 伝搬ノヽンドブック」、リアライズ社、 1999年)に開示されている。一方、決定論的手法 にお!/、ては、推定する伝搬環境 (電波の伝搬に影響を与える構造物やオブジェクト など)をあらかじめ計算機上に模擬しておき、アンテナから放射される電波がこれらの 構造物やオブジェクトから被る影響を決定論的に計算し、受信点における電波状況 を推定するものである。決定論的手法は、演算処理量の観点では統計論的手法に 劣るが、伝搬環境の影響を決定論的に考慮する分、推定の精度は高い。特に、都市 部や屋内など電波伝搬に影響を与える構造物やオブジェクトが多 、環境では、統計 論的手法の適用は難しぐ決定論的手法を適用することが望ましい。
[0004] V、くつかの決定論的手法の中でよく用いられるものとしてレイトレーシング法がある
。レイトレーシング法は、アンテナ力も放射される電波を多数の電波線 (レイ)の集まり と考え、各レイが幾何光学的に反射や透過を繰り返して伝搬するものとして、観測点 に到達するレイを合成して伝搬損失や遅延量を求める手法である。レイトレーシング 法は、さらにレイラゥンチング法とイメージング法とに大別される。レイラゥンチング法 やイメージング法の詳細に関しては、たとえば非特許文献 1や、特開平 9— 33584号 公報に開示されている。
[0005] レイラゥンチング法は、送信アンテナ力 一定角度毎に離散的に放射されたレイが 、構造物やオブジェクトで反射や透過を繰り返しながら伝搬すると仮定し、レイの軌跡 を遂次的に追跡する手法である。レイラゥンチング法を用いて高精度に伝搬推定を 行う場合、反射や透過以外に回折の効果を考慮することが望ましい。レイラゥンチン グ法を用いて回折の効果を推定する手法として、特開 2004— 294133号公報に開 示された手法がある。本手法によれば、レイが構造物のエッジ近傍を通過する場合、 当該エッジにて回折波に相当するレイを発生させるものである。回折に伴う損失は、 回折波が回折発生後にどの方向に伝搬するかによって変わるため、回折発生後に は回折波成分として複数のレイを発生させる必要がある。このため、 1回の回折によ つて処理すべきレイの本数が増大するため、その分演算処理量が増大するという問 題がある。
[0006] 一方、イメージング法は送受信点間を結ぶレイの反射透過経路を、反射面に対す る鏡映点を求めて決定する手法である。イメージング法は、送受信点間の厳密なレイ の伝搬経路を探索することができるため、レイラゥンチング法に比べて高い推定精度 を実現できる。し力しながら、考慮する構造物の数や反射 '透過'回折の最大回数を 増やすと演算処理量が激増するという問題点もある。特に、送信点からの電波伝搬 特性を面的に評価する場合には、イメージング法では各受信点に対してレイの伝搬 経路を探索する必要があるため、その分さらに演算処理量が増大する。イメージング 法の演算処理を削減する手法として、たとえば特開平 9— 33584号公報、特開平 9 119955号公報、特開平 9— 153867号公報、特開 2003— 318842号公報、特 開 2005— 72667号公報に開示された手法がある。
[0007] このうち、特開平 9— 33584号公報、特開平 9— 119955号公報、特開 2003— 31
8842号公報、特開 2005— 72667号公報は、いずれも伝搬推定の際に考慮する構 造物を削減するか、構造物の形状を簡略ィ匕することで、レイの伝搬経路の探索に伴 う演算処理量を削減するものである。たとえば、特開平 9 33584号公報の手法によ れば、道路上に基地局を配置して道路に沿ってサービスエリアを構成するストリート マイクロセルにおいて、あら力じめ道路および交差点にある建物を選択して格納して おき、当該建物のみを考慮して伝搬推定を行う。特開平 9 119955号公報の手法 によれば、前記と同様のストリートマイクロセルにおいて、道路の位置を示す道路デ ータに基づいて道路を直線のサブエレメントに分解する。特開 2003— 318842号公 報の手法によれば、あら力じめ伝搬遅延時間の最小値と最大値を規定しておき、伝 搬遅延時間が最小値と最大値の間となる構造物のみを考慮して伝搬推定を行う。特 開 2005— 72767号公報の手法によれば、送信点力も見通し内にある構造物と受信 点から見通し内にある構造物を探索し、当該構造物のみを考慮して伝搬推定を行う 。これらの手法は、伝搬推定の際に考慮する構造物を削減するか、構造物の形状を 簡略化するため、演算処理量の削減と引き換えに、推定精度を犠牲にする可能性が ある。また、伝搬環境によっては十分な演算処理量の削減が達成できない場合があ る。
一方特開平 9 153867号公報は、あら力じめ送信点と受信点との間に存在する 建物の有無を識別しておき、建物無しの場合には直接波のみを考慮して伝搬損失を 求め、建物有りの場合にのみイメージング法を適用し、反射波'透過波'回折波の成 分を計算するものである。送受信点間が見通しの場合には直接波が支配的となるた め、この受信点には反射波 ·透過波 ·回折波の成分を考慮しな 、ことで演算処理の 削減を図る。し力しながら、建物が乱立する都市部での電波伝搬特性推定の場合、 たいていの観測点は見通し外になる。したがって、それら全ての点に対してイメージ ング法を適用すると、やはり演算処理量は多い。
非特許文献 1 :細谷良雄 (監修)、「電波伝搬ノヽンドブック」、リアライズ社、 1999年 特許文献 1:特開平 9— 33584号公報
特許文献 2 :特開 2004— 294133号公報
特許文献 3:特開平 9 119955号公報
特許文献 4:特開平 9— 153867号公報
特許文献 5:特開 2003— 318842号公報
特許文献 6:特開 2005 - 72667号公報
発明の開示
発明が解決しょうとする課題
[0009] これまでに述べてきたように、いずれの従来技術を用いても、演算処理量を大幅に 増加させること無く回折を考慮した高精度な伝搬推定を行う電波伝搬特性推定シス テム及びその方法ならびにプログラムを提供することができな力つた。たとえば、特開 2004— 294133号公報に開示された手法を用いた場合、回折によって 1本のレイか ら複数本のレイが発生し、その分処理すべきレイの本数が増加するため、回折を考 慮しない場合に比べて大幅に演算処理量が増加する。また、イメージング法の高速 化手段として特開平 9— 33584号公報、特開平 9— 119955号公報、特開平 9— 15 3867号公報、特開 2003— 318842号公報、特開 2005— 72667号公報に開示さ れた手法では、もともとがイメージング法をベースとしているため、レイラゥンチング法 に比べて演算処理量は大幅に増大する。
課題を解決するための手段
[0010] 本発明による電波到達状態推定システムは、限られた評価エリア内の定められた 送信点から、前記評価エリア内の複数個の受信点に至る電波の伝搬特性を推定す る電波伝搬特性推定システムであって、前記送信点力 前記各受信点に至る電波 成分のうち回折波以外の成分を推定する非回折波推定手段と、前記送信点から前 記各受信点に至る電波成分のうち回折波の成分のみを推定する回折波推定手段と 、前記非回折波推定手段での推定結果と前記回折波推定手段での推定結果とを考 慮して、前記各受信点における合計の電波伝搬特性を計算する合計電波成分計算 手段とを含むことを特徴とする。
[0011] 本発明による電波到達状態推定システムは、限られた評価エリア内の定められた 送信点から、前記評価エリア内の複数個の受信点に至る電波の伝搬特性を推定す る電波伝搬特性推定システムであって、前記送信点力 前記各受信点に至る電波 成分のうち回折波以外の成分を推定する非回折波推定手段と、前記非回折波推定
手段での推定結果をもとに、前記各受信点のうち、回折波以外の成分があらかじめ 定められた範囲内にある受信点を回折考慮受信点として抽出する回折考慮受信点 抽出手段と、前記送信点から前記各回折考慮受信点として抽出された受信点に至る 電波成分のうち回折波の成分のみを推定する回折波推定手段と、前記非回折波推 定手段での推定結果と前記回折波推定手段での推定結果とを考慮して、前記各受 信点における合計の電波伝搬特性を計算する合計電波成分計算手段とを含むこと を特徴とする。
[0012] 好ましくは、前記非回折波推定手段には、回折効果を考慮しないレイラゥンチング 法を用いる。また、前記回折波推定手段には、成分が限定された決定論的伝搬推定 法または統計論的伝搬推定法を用いることが好ま 、。
[0013] 本発明による電波到達状態推定方法は、限られた評価エリア内の定められた送信 点から、前記評価エリア内の複数個の受信点に至る電波の伝搬特性を推定する電 波伝搬特性推定方法であって、前記送信点から前記各受信点に至る電波成分のう ち回折波以外の成分を推定する非回折波推定ステップと、前記送信点から前記各 受信点に至る電波成分のうち回折波の成分のみを推定する回折波推定ステップと、 前記非回折波推定ステップでの推定結果と前記回折波推定ステップでの推定結果 とを考慮して、前記各受信点における合計の電波伝搬特性を計算する合計電波成 分計算ステップとを含むことを特徴とする。
[0014] 本発明による電波到達状態推定方法は、限られた評価エリア内の定められた送信 点から、前記評価エリア内の複数個の受信点に至る電波の伝搬特性を推定する電 波伝搬特性推定方法であって、前記送信点から前記各受信点に至る電波成分のう ち回折波以外の成分を推定する非回折波推定ステップと、前記非回折波推定ステツ プでの推定結果をもとに、前記各受信点のうち、回折波以外の成分があら力じめ定 められた範囲内にある受信点を回折考慮受信点として抽出する回折考慮受信点抽 出ステップと、前記送信点から前記各回折考慮受信点として抽出された受信点に至 る電波成分のうち回折波の成分のみを推定する回折波推定ステップと、前記非回折 波推定ステップでの推定結果と前記回折波推定ステップでの推定結果とを考慮して 、前記各受信点における合計の電波伝搬特性を計算する合計電波成分計算ステツ
プとを含むことを特徴とする。
[0015] 好ましくは、前記非回折波推定ステップには、回折効果を考慮しないレイラゥンチン グ法を用いる。また、前記回折波推定ステップには、成分が限定された決定論的伝 搬推定法または統計論的伝搬推定法を用いることが好ま 、。
[0016] 本発明によるプログラムは、限られた評価エリア内の定められた送信点から、前記 評価エリア内の複数個の受信点に至る電波の伝搬特性を推定する電波伝搬特性推 定方法をコンピュータにより実行させるためのプログラムであって、前記送信点から前 記各受信点に至る電波成分のうち回折波以外の成分を推定する非回折波推定処理 と、前記送信点から前記各受信点に至る電波成分のうち回折波の成分のみを推定 する回折波推定処理と、前記非回折波推定処理での推定結果と前記回折波推定処 理での推定結果とを考慮して、前記各受信点における合計の電波伝搬特性を計算 する合計電波成分計算処理とを含むことを特徴とする。
[0017] 本発明によるプログラムは、限られた評価エリア内の定められた送信点から、前記 評価エリア内の複数個の受信点に至る電波の伝搬特性を推定する電波伝搬特性推 定方法をコンピュータにより実行させるためのプログラムであって、前記送信点から前 記各受信点に至る電波成分のうち回折波以外の成分を推定する非回折波推定処理 と、前記非回折波推定処理での推定結果をもとに、前記各受信点のうち、回折波以 外の成分があらかじめ定められた範囲内にある受信点を回折考慮受信点として抽出 する回折考慮受信点抽出処理と、前記送信点から前記各回折考慮受信点として抽 出された受信点に至る電波成分のうち回折波の成分のみを推定する回折波推定処 理と、前記非回折波推定処理での推定結果と前記回折波推定処理での推定結果と を考慮して、前記各受信点における合計の電波伝搬特性を計算する合計電波成分 計算処理とを含むことを特徴とする。
[0018] 好ましくは、前記非回折波推定処理には、回折効果を考慮しないレイラゥンチング 法を用いる。また、前記回折波推定処理には、成分が限定された決定論的伝搬推定 法または統計論的伝搬推定法を用いることが好ま 、。
発明の効果
[0019] 本発明は、直接波,反射波,透過波など回折波以外の推定には高速かつ高精度な
電波伝搬推定手法を適用し、回折波には回折波以外の電波伝搬推定に用いた推 定手法とは異なる演算付加の軽い電波伝搬推定手法を用いることによって、演算処 理量を大幅に増カロさせること無ぐ回折を考慮した高精度な伝搬推定を行うことがで きる。
[0020] また、本発明は、高速かつ高精度な電波伝搬推定手法により、受信点の電波到達 状態のうち回折波以外の直接波 ·反射波 ·透過波などを推定し、この推定結果に基 づいて回折考慮受信点を求め、この求められた回折考慮受信点については前記の 電波伝搬推定手法より演算負荷の軽い電波伝搬推定手法を用いることにより、演算 処理量を大幅に増カロさせること無ぐ回折を考慮した高精度な伝搬推定を行うことが できる。
図面の簡単な説明
[0021] [図 1]本発明の実施の形態の概略機能ブロック図である。
[図 2]本発明の実施の形態の動作の概略を示すフローチャートである。
[図 3]本発明の実施の形態の動作を説明するための図である。
[図 4]本発明の第 1の実施例の動作を示すフローチャートである。
[図 5]本発明の実施例における効率化された回折推定の一例である。
[図 6]本発明の実施例における効率化された回折推定の一例である。
[図 7]本発明の第 2の実施例の動作を示すフローチャートである。
[図 8]本発明の第 3の実施例の動作を示すフローチャートである。
[図 9]本発明の第 3の実施例の動作を示すフローチャートである。
符号の説明
[0022] 10 非回折波推定手段
20 回折考慮受信点抽出手段
30 回折波推定手段
40 合計電波成分算出手段
40 制御部(CPU)
50 メモリ
発明を実施するための最良の形態
[0023] 以下に、図面を参照しつつ本発明の実施の形態について説明する。図 1は、本発 明の実施の形態の概略を示す機能ブロック図である。本実施の形態のシステムは、 限られた評価エリア内の定められた送信点から、評価エリア内の 1個又は複数個の受 信点に至る電波の伝搬状況 (到達状態)を推定する無線通信システムにおける電波 伝搬特性推定システムである。
[0024] 本システムは、図 1に示すように、非回折波推定手段 10と、回折考慮受信点抽出 手段 20と、回折波推定手段 30と、合計電波成分計算手段 40と、制御部 50と、メモリ 60とを含んで構成される。
[0025] 非回折波推定手段 10は、所定の電波伝搬状態の推定手法によって、回折効果を 考慮せずに送信点力 各受信点に至る伝搬特性のうち回折波以外の成分 (直接波 · 反射波'透過波など)を推定する機能を有す。ここで、非回折波推定手段 10に適用 する電波伝搬状態の推定手法には、決定論的手法があり、具体的にはレイラゥンチ ング法などがあり、このレイラゥンチング法のうち回折波を考慮せずに回折波以外の 成分 (直接波 ·反射波 ·透過波など)を計算する。
[0026] 回折波が到達すると推測される点を推定する回折考慮受信点抽出手段 20は、非 回折波推定手段 10における推定結果から、回折波以外の成分の寄与が小さぐ相 対的に回折成分の寄与が大きいと見込まれる回折考慮受信点を抽出する機能を有 す。ここで、回折考慮受信点とは、受信点のうち、回折波を考慮しなければいけない 受信点をいう。
[0027] 回折波の到達状態を推定する回折波推定手段 30は、送信点から各回折考慮受信 点に至る伝搬特性のうち回折波の成分のみを推定する機能を有す。ここで、回折波 推定手段 30に適用する電波伝搬状態の推定手法には、非回折波推定手段 10に適 用される電波伝搬状態の推定手法よりも演算負荷が少ない電波伝搬状態の推定手 法を適用する。具体的には、実施例に記載するように、決定論的伝搬推定法ゃィメ 一ジング法等を用い、各回折考慮受信点に至る伝搬特性のうち回折波の成分のみ を推定する。
[0028] 合計電波成分計算手段 40は、非回折波推定手段 10で推定した電波の到達状態 の推定結果と回折波推定手段 30で推定した電波の到達状態の推定結果とをあわせ
て考慮し、合計の電波伝搬特性 (電波の到達状態)を推定する機能を有す。
[0029] 制御部 50は、これら各手段 10〜40を制御する CPUであり、メモリ 60は、この CPU の作業用メモリとして機能する。
[0030] 図 2は、図 1の動作の概略を示すフローチャートであり、図 3はその概要を説明する ための図である。図 3において、評価エリア内には送信点 100 (黒丸)と、複数の受信 点 (灰菱形)が定められている。図 3の例では、受信点は 5行 7列のグリッド状に配置さ れている。まず、非回折波推定手段 10において、回折効果を考慮しないレイラゥン チング法によって、送信点力 各受信点に至る伝搬特性のうち回折波以外の成分の 到達状態を推定する (ステップ Sl)。
[0031] 次に、回折考慮受信点抽出手段 20において、ステップ S1での各受信点における 伝搬推定結果から、当該受信点が回折考慮受信点であるか否かを判定し、評価エリ ァ内の回折考慮受信点を抽出する (ステップ S2)。各受信点が回折考慮受信点であ る力否かの判定においては、例えば、当該受信点における伝搬損失があらかじめ規 定された範囲内にある力否かを検査して判定する。このような判定が可能な理由は 以下のとおりである。送信点と受信点との間に構造物等の障害物が無い場合は、直 接波が受信点に到達できるので伝播損失は比較的小さく且つ回折波も発生しにくい 。一方、間に障害物等がある場合には、伝播損失が比較的大きく且つその障害物に よって回折波が発生する可能性が高いと言える。このような傾向から、例えば、直接 波が到達できない状態での伝播損失の範囲を受信点ごとにあらかじめ規定しておく ことで、伝播損失がこの範囲内であるときに回折考慮受信点であるとの推定を行うこ とが可能となる。
[0032] さらに、送信点 100から当該回折考慮受信点に至る電波成分のうち回折波の成分 のみを推定する (ステップ S3)。その後、ステップ S1における推定結果とステップ S3 における推定結果とをあわせて考慮し、合計の電波伝搬特性を計算する (ステップ S 4)。
[0033] 上述した実施の形態をより良く理解するために、以下に示す具体的な例を参照し つつ、実施例を説明する。
[0034] 実施例 1.
本発明の第 1の実施例を説明する。本実施例において想定する評価エリア、無線 システムの送信点、受信点は図 3に示したものと同じものとする。図 4は本実施例の動 作を示すフローチャートである。
[0035] 本実施例では、まず、回折効果を考慮しな!、レイラゥンチング法によって、送信点 1 00から各受信点に至る電波成分のうち回折波以外の成分を推定する (ステップ S 11 )。ここで求まった第 n行第 m列の受信点における伝搬損失を Ll—n, mとする。次に 、送信点 100から各受信点に至る電波成分のうち回折波の成分のみを推定する (ス テツプ S13)。この回折成分の推定には、ステップ S11で用いたレイラゥンチング法と は異なる伝搬推定法を適用する。また、以下に示す手法によって伝搬環境に応じた 推定の効率化を図る。ここで求まった第 n行第 m列の受信点における伝搬損失を L2 _n, mとする。さらに、ステップ S11で得られた推定結果とステップ S13で得られた 推定結果とをあわせて考慮し、各受信点における電波成分を推定する (ステップ 14) 。具体的には、 Ll—n, mと L2— n, mとをリニア領域で足し合わせることにより、すべ ての成分を考慮した伝搬損失が得られる。あるいは、ステップ S 11で得られた伝搬パ スとステップ S 13で得られた伝搬パスの位相差を考慮し、それぞれの伝搬電界損失 を足し合わせても構わない。
[0036] ステップ S12において回折成分を推定する際、たとえば以下に示す手法によって 伝搬環境に応じた推定の効率ィヒを図る。
[0037] 回折成分の推定を効率ィ匕する第 1の手法は、送信点と受信点との間にある構造物 の上面 (屋根)での回折成分のみを計算する。構造物上面での回折波の例を図 5に 示す。本手法においては、送信点と受信点との間に存在する建物のみを考慮して回 折点を探索すればよ!、ので、演算処理量は小さくてすむ。
[0038] 回折成分の推定を効率化する第 2の手法は、送信点と受信点を道路に沿って結び 、その途中経路にある交差点の構造物での回折成分のみを計算する。交差点の構 造物での回折波の例を図 6に示す。本手法においては、あら力じめ道路の位置情報 と構造物の位置情報を対応させておくことにより、交差点での回折点を容易に検出 することができる。また、道路の位置情報がない場合には、隣接する建物間の距離か ら道路を判別する。
[0039] 回折成分の推定を効率化する第 3の手法は、送信点と受信点の間の距離や起伏 情報などを参照し、統計論的手法によって回折成分を計算する。ここで用いる統計 論的手法としては、たとえば奥村—秦モデルが適用可能である。ただし、たいていの モデルで算出される伝搬損失には、回折波以外の成分も含んでいる。そこで、算出 された伝搬損失に対して一定レベルの損失を付加したものを回折損失とみなし、回 折成分を得ることが好まし ヽ。
[0040] 回折成分の推定を効率ィ匕する第 4の手法は、ステップ SI 1 (回折を考慮しな 、レイ ラウンチング法)によって得られた伝搬損失推定結果を参照し、回折成分を求める受 信点周辺での平均的な伝搬損失をもとに、当該受信点における回折損失を計算す る。ここで、当該受信点周辺での平均的な伝搬損失として、当該受信点の周辺で伝 搬損失が一定レベル以上に達した受信点に対して、それらの伝搬損失の平均値を 用いる。前記平均伝搬損失には、回折波以外の成分を含み、一般的に回折成分は これらの成分に比べて小さい。そこで、前記平均伝搬損失に対して一定レベルの損 失を付加したものを回折損失とみなし、回折成分を得る。
[0041] 回折成分の推定を効率ィ匕する第 5の手法は、ステップ S 11 (回折を考慮しないレイ ラウンチング法)によって得られた伝搬損失推定結果を参照し、回折成分を求める受 信点から見通し内にある構造物やオブジェクトの上面や側面におけるステップ S11で の伝搬損失推定結果と到来方向推定結果から、当該上面や側面での回折を新たに 考慮することによって当該受信点に至る成分を抽出し、それらの伝搬損失を全て考 慮することにより当該受信点における回折損失を計算する。
[0042] 上述のような回折成分の推定の効率ィヒは、本実施の形態のように、回折成分の計 算をレイラゥンチング法とは別の手段で行うことにより達成されるものである。上述のよ うに、直接波 ·反射波 ·透過波など回折波以外の推定には高速かつ高精度なレイラウ ンチング法を適用し、回折波の推定には効率化された伝搬推定を行うことにより、演 算処理量を大幅に増カロさせること無ぐ回折を考慮した高精度な伝搬推定を行う電 波伝搬特性推定システム及びその方法ならびにプログラムを提供することができる。
[0043] 実施例 2.
本発明の第 2の実施例を説明する。本実施例において想定する評価エリア、無線
システムの送信点、受信点は図 3に示したものと同じものとする。図 7は本実施例の動 作を示すフローチャートである。
[0044] 本実施例では、まず、回折効果を考慮しな!、レイラゥンチング法によって、送信点 1 00から各受信点に至る電波成分のうち回折波以外の成分を推定する (ステップ S21 )。ここで求まった第 n行第 m列の受信点における伝搬損失を Ll—n, mとする。次に 、ステップ S21での各受信点における伝搬推定結果から、当該受信点が回折考慮受 信点であるか否かを判定し、評価エリア内の回折考慮受信点を抽出する (ステップ S 22)。各受信点が回折考慮受信点である力否かの判定においては、当該受信点に おける伝搬損失があらかじめ規定された範囲内にあるか否かを検査する。抽出方法 の詳細は以下に述べる。
[0045] ステップ S22において、 1個以上の回折考慮受信点が見つ力 た場合には、送信 点 100から当該回折考慮受信点に至る電波成分のうち回折波の成分のみを推定す る(ステップ S23)。この回折成分の推定には、ステップ S21で用いたレイラゥンチング 法とは異なる伝搬推定法を適用する。また、実施例 1で示した手法によって伝搬環境 に応じた推定の効率ィ匕を図る。ここで求まった第 n行第 m列の受信点における伝搬 損失を L2— n, mとする。
[0046] さらに、ステップ S21で得られた推定結果とステップ S23で得られた推定結果とをあ わせて考慮し、各受信点における電波成分を推定する (ステップ S24)。具体的には 、受信点 (n, m)が回折考慮受信点である場合、 Ll—n, mと L2— n, mとをリニア領 域で足し合わせることにより、すべての成分を考慮した伝搬損失が得られる。あるい は、ステップ S21で得られた伝搬パスとステップ S23で得られた伝搬パスの位相差を 考慮し、それぞれの伝搬電界損失を足し合わせても構わない。ステップ S22におい て回折考慮受信点が見つ力もな力つた場合には、ステップ S23 ·ステップ S24の処理 は行わず、ステップ S22の推定結果がそのまま最終的な推定結果となる。
[0047] ステップ S22において回折考慮受信点を抽出する際、たとえば以下に示す手法を 用いる。
[0048] 回折考慮受信点を抽出する第 1の手法は、送信点から各受信点までの直線距離を 測定し、当該受信点での伝搬損失が、距離に応じて減衰する伝搬損失式により求ま
る伝搬損失に対して一定レベル以下である受信点を回折考慮受信点とみなす。ここ で、前記伝搬損失式としては、例えば自由空間伝搬損失の理論式を用いても良いし 、奥村ー秦モデルなどの統計式を用いても良い。
[0049] 回折考慮受信点を抽出する第 2の手法は、前記ステップ S21 (回折を考慮しな!、レ イラゥンチング法)によって得られた伝搬損失推定結果を参照し、回折成分を求める 受信点での伝搬損失が、当該受信点周辺での平均的な伝搬損失に対して一定レべ ル以下である受信点を回折考慮受信点とみなす。ここで、当該受信点周辺での平均 的な伝搬損失として、当該受信点の周辺で伝搬損失が一定レベル以上に達した受 信点に対して、それらの伝搬損失の平均値を用いる。一般に回折成分は、回折波以 外の成分よりも伝搬損失が大きいため、伝搬損失に与える寄与は小さい。そのため、 回折波以外の成分による寄与が大きい受信点では、回折成分を付加することによる 影響がほとんどない。
[0050] 前記第 1または第 2の抽出手法では、このような受信点を回折考慮受信点力 取り 除くことで、演算処理量の低減を図るものである。
[0051] 回折考慮受信点を抽出する第 3の手法は、前記した当該受信点周辺での平均的 な伝搬損失が、評価中の無線システムの最大許容伝搬損失よりも小さい受信点を回 折考慮受信点とみなす。ある受信点周辺での平均的な伝搬損失が、現在評価中の 無線システムの最小受信感度を下回る場合、その受信点は基地局力 十分に遠いこ とが想定され、たとえ回折成分を計算しても有意な値 (評価中の無線システムの最大 許容伝搬損失よりも小さい値)が推定される可能性が低い。本手法では、このような 受信点を回折考慮受信点から取り除く。あるいは、前記した当該受信点周辺での平 均的な伝搬損失が、距離に応じて減衰する伝搬損失式により求まる伝搬損失に対し て一定レベル以上である受信点を回折考慮受信点とみなす手法を用いてもよい。
[0052] 前記第 1または第 2の抽出方法は、前記第 3の抽出方法と組み合わせることが好ま しい。両者を組み合わせることによって、単独の場合よりもさらなる回折考慮受信点の 削減が見込まれ、その分演算処理量の削減を実現できる。
[0053] 本実施例では、実施例 1に対して、回折成分の推定を行う受信点を抽出された回 折考慮受信点のみに限定することにより、さらに演算処理量を削減した電波伝搬特
性推定システム及びその方法ならびにプログラムを提供することができる。
[0054] 実施例 3.
本発明の第 3の実施例を説明する。本実施例において想定する評価エリア、無線 システムの送信点、受信点は図 3に示したものと同じものとする。図 8は本実施例の動 作を示すフローチャートである。
[0055] 本実施例では、まず、回折効果を考慮しな!、レイラゥンチング法によって、送信点 1 00から各受信点に至る電波成分のうち回折波以外の成分を推定する (ステップ S31 )。ここで求まった第 n行第 m列の受信点における伝搬損失を Ll—n, mとする。
[0056] 次に、ステップ S31での各受信点における伝搬推定結果から、当該受信点が回折 考慮受信点であるか否かを判定し、評価エリア内の回折考慮受信点を抽出する (ス テツプ S32)。各受信点が回折考慮受信点である力否かの判定においては、当該受 信点における伝搬損失があらかじめ規定された範囲内にあるか否かを検査する。抽 出方法の詳細は実施例 2で述べたとおりである。
[0057] ステップ S32において、 1個以上の回折考慮受信点が見つ力つた場合には、送信 点 100から当該回折考慮受信点に至る電波成分のうち回折波の成分のみを推定す る(ステップ S33)。この回折成分の推定には、ステップ S31で用いたレイラゥンチング 法とは異なる伝搬推定法を適用する。また、実施例 1で示した回折成分の推定を効 率化する手法のうち、異なる複数の手法を適用し、そのおのおのに対する回折成分 を推定する。
[0058] ここで求まった第 n行第 m列の受信点における伝搬損失を、それぞれ L2— n, m_ 1、 L2_n, m— 2とする。各回折考慮受信点に対して、 L2_n, m— 1、 L2_n, m —2のどちらかまたは両者の合計を、各回折考慮受信点における伝搬損失 L2—n, mとして採用する。
[0059] さらに、ステップ S31で得られた推定結果とステップ S33で得られた推定結果とをあ わせて考慮し、各受信点における電波成分を推定する (ステップ S34)。具体的には 、受信点 (n, m)が回折考慮受信点である場合、 Ll—n, mと L2— n, mとをリニア領 域で足し合わせることにより、すべての成分を考慮した伝搬損失が得られる。
[0060] あるいは、ステップ S31で得られた伝搬パスとステップ S33で得られた伝搬パスの
位相差を考慮し、それぞれの伝搬電界損失を足し合わせても構わない。ステップ S3 2において回折考慮受信点が見つ力もな力つた場合には、ステップ S33 ·ステップ S3 4の処理は行わず、ステップ S32の推定結果がそのまま最終的な推定結果となる。
[0061] 本実施例では、第 1の実施例や第 2の実施例に対して、回折成分の推定を異なる 複数の手法で行う。これにより、ある手法で推定した回折成分が必要十分な値ではな 力つた場合でも、別の手法で推定した結果を適用することにより、当該受信点におい て必要十分な回折損失が推定される可能性が高くなる。これにより推定精度の向上 を図るものである。
[0062] 実施例 4.
本発明の第 4の実施例を説明する。本実施例において想定する評価エリア、無線 システムの送信点、受信点は図 3に示したものと同じものとする。図 9は本実施例の動 作を示すフローチャートである。
[0063] 本実施例では、まず、回折効果を考慮しな!、レイラゥンチング法によって、送信点 1 00から各受信点に至る電波成分のうち回折波以外の成分を推定する (ステップ S41 )。ここで求まった第 n行第 m列の受信点における伝搬損失を Ll—n, mとする。次に ステップ S41での各受信点における伝搬推定結果から、当該受信点が回折考慮受 信点であるか否かを判定し、評価エリア内の回折考慮受信点を抽出する (ステップ S 42—1)。各受信点が回折考慮受信点である力否かの判定においては、当該受信点 における伝搬損失があらかじめ規定された範囲内にあるか否かを検査する。抽出方 法の詳細は実施例 2で述べたとおりである。
[0064] ステップ S42—1において、 1個以上の回折考慮受信点が見つ力つた場合には、送 信点 100から当該回折考慮受信点に至る電波成分のうち回折波の成分のみを推定 する(ステップ S43— 1)。この回折成分の推定には、ステップ S41で用いたレイラゥン チング法とは異なる伝搬推定法を適用する。また、ステップ S43— 1で回折成分を推 定する際、実施例 1で示した手法によって伝搬環境に応じた推定の効率ィヒを図る。
[0065] ここで求まった第 n行第 m列の受信点における伝搬損失を L2—n, mとする。さらに 、ステップ S41で得られた推定結果とステップ S43 1で得られた推定結果とをあわ
せて考慮し、各受信点における電波成分を推定する (ステップ S44— 1)。具体的に は、受信点 (n, m)が回折考慮受信点である場合、 Ll_n, mと L2— n, mとをリニア 領域で足し合わせることにより、すべての成分を考慮した伝搬損失が得られる。
[0066] あるいは、ステップ S41で得られた伝搬パスとステップ S43—1で得られた伝搬パス の位相差を考慮し、それぞれの伝搬電界損失を足し合わせても構わない。その後、 ステップ S44—1での各受信点における伝搬推定結果から、当該受信点が回折考慮 受信点であるか否かを判定し、評価エリア内の回折考慮受信点を抽出する (ステップ S42— 2)。ここで 1個以上の回折考慮受信点が見つ力つた場合には、ステップ S41 で用いたレイラゥンチング法や、ステップ S43—1で用いた手法とは異なる手法で回 折波の成分を推定し (ステップ S43— 2)、ステップ S44—1で得られた推定結果とス テツプ S43— 2で得られた推定結果力も各受信点における電波成分を推定する (ス テツプ S44— 2)。
[0067] その後、再び回折考慮受信点を抽出するステップを行う。ステップ 42— n (n= 1、 2 、 3、…;)からステップ 44— nまでの処理を、回折考慮受信点が抽出されなくなるまで 継続する。たとえばステップ S42—Nで回折考慮受信点が抽出されな力つたとすると 、ステップ S44—N— 1で求めた伝搬特性がそのまま最終的な推定結果となる。
[0068] 本実施例では、第 1の実施例や第 2の実施例に対して、回折考慮受信点の抽出と 回折成分推定を繰り返し行う。これ〖こより、 1回の回折成分推定で必要十分な回折損 失が推定されな力つた場合でも、 2回目以降の推定で別の手法を適用することにより 、必要十分な回折損失が推定される可能性が高くなる。これにより推定精度の向上を 図るものである。
[0069] 実施例 5.
上記実施例 1〜4では、回折考慮受信点を求める際に、回折効果を考慮しないレイ ラウンチング法を用いて 、た。
[0070] 本実施例では、電波の到達状態を推定する領域 (エリア)内に存在する建物等の 構造物の配置 (レイアウト)情報を用いて、回折考慮受信点を求める点において、実 施例 1〜4とは異なる。
[0071] 具体的には、まず、送信点とエリア内の受信点との間の見通し判定を行う。そして、
見通し外、即ち送受信点間に建物等の障害物がある場合に、その受信点を回折考 慮受信点と推定する。
[0072] この方法によって、回折考慮受信点を抽出した後の電波伝搬状況の推定方法は、 実施例 1〜4で示した方法と同様であるのでここでは説明を省略する。
[0073] また、本実施例の方法を用いて抽出した回折考慮受信点と、実施例 1〜4の方法を 用いて抽出した回折考慮受信点とを比較し、両者において抽出されている点を最終 的に回折考慮受信点として抽出することや、どちらか一方の方法で抽出されている 点を最終的に回折考慮受信点として抽出する方法も採ることができる。
[0074] 以上の実施形態および実施例の説明では、機能をノ、一ドウエア的に実現すること を観念して説明をしてきた。しかし、上記機能は、各手段 (処理)を実行するプロダラ ムをコンピュータ装置に読み込んで実行することにより、ソフトウェア的に実現すること もできる。例えば、このプログラムは磁気ディスク、半導体記憶装置その他の記録媒 体に保持され、その記録媒体力 コンピュータ装置に読み込まれ、その動作を制御 することにより上述した機能を実現するものである。
Claims
[1] 電波の到達状態を推定する方法であって、
第 1の電波伝搬状態の推定手法を用いて、送信元から送信された電波のうち回折 波以外の電波の到達状態を推定する非回折波推定ステップと、
前記第 1の推定手法とは異なる第 2の電波伝搬状態の推定手法を用いて、回折波 の到達状態を推定する回折波推定ステップと、
からなることを特徴とする電波到達状態推定方法。
[2] 前記非回折波推定ステップで推定した電波の到達状態と前記回折波推定ステップ で推定した電波の到達状態とから電波の到達状態を推定することを特徴とする請求 項 1記載の電波到達状態推定方法。
[3] 電波到達状態推定対象領域内の構造物の配置から、回折波が到達する 1または 複数の回折考慮受信点を推定し、推定した回折考慮受信点について、前記第 2の 電波伝搬状態の推定手法を用いて、回折波の到達状態を推定することを特徴とする 請求項 1または請求項 2に記載の電波到達状態推定方法。
[4] 電波の到達状態を推定する方法であって、
第 1の電波伝搬状態の推定手法を用いて、送信元から送信された電波のうち回折 波以外の電波の到達状態を推定する非回折波推定ステップと、
前記非回折波推定ステップで推定された電波の到達状態力 回折波が到達すると 推定される 1または複数の回折考慮受信点を推定する回折波到達点推定ステップと 前記回折波到達点推定ステップで推定した回折考慮受信点について、前記第 1の 電波伝搬状態の推定手法とは異なる第 2の電波伝搬状態の推定手法によって回折 波の到達状態を推定する回折波到達状態推定ステップと、
からなることを特徴とする電波到達状態推定方法。
[5] 前記非回折波推定ステップで推定した電波の到達状態と前記回折波到達状態推 定ステップで推定した電波の到達状態とから電波の到達状態を推定することを特徴 とする請求項 4に記載の電波到達状態推定方法。
[6] 前記第 2の電波伝搬状態の推定手法は、前記第 1の電波伝搬状態の推定手法より
も演算負荷が軽 、手法であることを特徴とする請求項 1から請求項 5の 、ずれかに記 載の電波到達状態推定方法。
[7] 前記第 1の電波伝搬状態の推定手法が回折効果を考慮しな!、レイラゥンチング法 であることを特徴とする請求項 1から請求項 6のいずれかに記載の電波到達状態推 定方法。
[8] 前記回折波推定ステップまたは前記回折波到達状態推定ステップにおいて回折 波の到達状態を推定する際に、
前記送信元と、少なくとも 1つの回折考慮受信点との間にある構造物の上面での回 折成分を用いることを特徴とする請求項 1から請求項 7のいずれかに記載の電波到 達状態推定方法。
[9] 前記回折波推定ステップまたは前記回折波到達状態推定ステップにおいて回折 波の到達状態を推定する際に、
少なくとも 1つの回折考慮受信点が道路上にある場合、前記送信元からこの回折考 慮受信点に至る経路にある交差点の構造物での回折成分を用いることを特徴とする 請求項 1から請求項 7のいずれかに記載の電波到達状態推定方法。
[10] 前記回折波推定ステップまたは前記回折波到達状態推定ステップにおいて回折 波の到達状態を推定する際に、
前記送信元から少なくとも 1つの回折考慮受信点に至る回折成分を統計論的手法 により推定することを特徴とする請求項 1から請求項 7のいずれかに記載の電波到達 状態推定方法。
[11] 前記回折波推定ステップまたは前記回折波到達状態推定ステップにおいて回折 波の到達状態を推定する際に、
前記送信元から少なくとも 1つの回折考慮受信点に至る回折成分を、前記非回折 波推定ステップで推定した前記回折考慮受信点周辺における電波到達状態の平均 的な値をもとに推定することを特徴とする請求項 1から請求項 7のいずれかに記載の 電波到達状態推定方法。
[12] 前記回折波推定ステップまたは前記回折波到達状態推定ステップにおいて回折 波の到達状態を推定する際に、
前記送信元から少なくとも 1つの回折考慮受信点に至る回折成分を、この回折考慮 受信点から見通し内にある構造物の上面または側面における回折効果を考慮した値 をもとに推定することを特徴とする請求項 1から請求項 7のいずれかに記載の電波到 達状態推定方法。
[13] 電波の到達状態を推定するシステムであって、
第 1の電波伝搬状態の推定手法を用いて、送信元から送信された電波のうち回折 波以外の電波の到達状態を推定する非回折波推定手段と、
前記第 1の推定手法とは異なる第 2の電波伝搬状態の推定手法を用いて、回折波 の到達状態を推定する回折波推定手段と、
カゝらなることを特徴とする電波到達状態推定システム。
[14] 前記非回折波推定手段で推定した電波の到達状態と前記回折波推定手段で推定 した電波の到達状態とから電波の到達状態を推定する到達状態推定手段を備えるこ とを特徴とする請求項 13記載の電波到達状態推定システム。
[15] 電波到達状態推定対象領域内の構造物の配置から、回折波が到達する 1または 複数の回折考慮受信点を推定し、推定した回折考慮受信点について、前記第 2の 電波伝搬状態の推定手法を用いて、回折波の到達状態を推定することを特徴とする 請求項 13または請求項 14に記載の電波到達状態推定システム。
[16] 電波の到達状態を推定するシステムであって、
第 1の電波伝搬状態の推定手法を用いて、送信元から送信された電波のうち回折 波以外の電波の到達状態を推定する非回折波推定手段と、
前記非回折波推定手段で推定された電波の到達状態から回折波が到達すると推 定される 1または複数の回折考慮受信点を推定する回折波到達点推定手段と、 前記回折波到達点推定手段で推定した回折考慮受信点について、前記第 1の電 波伝搬状態の推定手法とは異なる第 2の電波伝搬状態の推定手法によって回折波 の到達状態を推定する回折波到達状態推定手段と、
カゝらなることを特徴とする電波到達状態推定システム。
[17] 前記非回折波推定手段で推定した電波の到達状態と前記回折波到達状態推定手 段で推定した電波の到達状態とから電波の到達状態を推定することを特徴とする請
求項 16記載の電波到達状態推定システム。
[18] 前記第 2の電波伝搬状態の推定手法は、前記第 1の電波伝搬状態の推定手法より も演算負荷が軽い手法であることを特徴とする請求項 13から請求項 17のいずれか に記載の電波到達状態推定システム。
[19] 前記第 1の電波伝搬状態の推定手法が回折効果を考慮しないレイラゥンチング法 であることを特徴とする請求項 13から請求項 18のいずれかに記載の電波到達状態 推定システム。
[20] 前記回折波推定手段または前記回折波到達状態推定手段において回折波の到 達状態を推定する際に、
前記送信元と少なくとも 1つの回折考慮受信点との間にある構造物の上面での回 折成分を用いることを特徴とする請求項 13から請求項 19のいずれかに記載の電波 到達状態推定システム。
[21] 前記回折波推定手段または前記回折波到達状態推定手段において回折波の到 達状態を推定する際に、
少なくとも 1つの回折考慮受信点が道路上にある場合、前記送信元からこの回折考 慮受信点に至る経路にある交差点の構造物での回折成分を用いることを特徴とする 請求項 13から請求項 19のいずれかに記載の電波到達状態推定システム。
[22] 前記回折波推定手段または前記回折波到達状態推定手段において回折波の到 達状態を推定する際に、
前記送信元から少なくとも 1つの回折考慮受信点に至る回折成分を統計論的手法 により推定することを特徴とする請求項 13から請求項 19のいずれかに記載の電波到 達状態推定システム。
[23] 前記回折波推定手段または前記回折波到達状態推定手段において回折波の到 達状態を推定する際に、
前記送信元から少なくとも 1つの回折考慮受信点に至る回折成分を、前記非回折 波推定ステップで推定した前記回折考慮受信点周辺にける電波到達状態の平均的 な値をもとに推定することを特徴とする請求項 13から請求項 19のいずれかに記載の 電波到達状態推定システム。
[24] 前記回折波推定手段または前記回折波到達状態推定手段において回折波の到 達状態を推定する際に、
前記送信元から少なくとも 1つの回折考慮受信点に至る回折成分を、この回折考慮 受信点から見通し内にある構造物の上面または側面における回折効果を考慮した値 をもとに推定することを特徴とする請求項 13から請求項 19のいずれかに記載の電波 到達状態推定システム。
[25] 電波の到達状態を推定するプログラムであって、
第 1の電波伝搬状態の推定手法を用いて、送信元から送信された電波のうち回折 波以外の電波の到達状態を推定する非回折波推定処理と、
前記第 1の推定手法とは異なる第 2の電波伝搬状態の推定手法を用いて、回折波 の到達状態を推定する回折波推定処理と、
をコンピュータに実行させることを特徴とする電波到達状態推定プログラム。
[26] 前記非回折波推定処理で推定した電波の到達状態と前記回折波推定処理で推定 した電波の到達状態とから電波の到達状態を推定することを特徴とする請求項 25記 載の電波到達状態推定プログラム。
[27] 電波到達状態推定対象領域内の構造物の配置から、回折波が到達する 1または 複数の点である回折考慮受信点を推定し、推定した回折考慮受信点について、前 記第 2の電波伝搬状態の推定手法を用いて、回折波の到達状態を推定することを特 徴とする請求項 25または請求項 26に記載の電波到達状態推定プログラム。
[28] 電波の到達状態を推定するプログラムであって、
第 1の電波伝搬状態の推定手法を用いて、送信元から送信された電波のうち回折 波以外の電波の到達状態を推定する非回折波推定処理と、
前記非回折波推定処理で推定された電波の到達状態力 回折波が到達すると推 定される 1または複数の点である回折考慮受信点を推定する回折波到達点推定処 理と、
前記回折波到達点推定処理で推定した回折考慮受信点について、前期第 1の電 波伝搬状態の推定手法とは異なる第 2の電波伝搬状態の推定手法によって回折波 の到達状態を推定する回折波到達状態推定処理と、
をコンピュータに実行させることを特徴とする電波到達状態推定プログラム。
[29] 前記非回折波推定処理で推定した電波の到達状態と前記回折波到達状態推定処 理で推定した電波の到達状態とから電波の到達状態を推定することを特徴とする請 求項 28記載の電波到達状態推定プログラム。
[30] 前記第 2の電波伝搬状態の推定手法は、前記第 1の電波伝搬状態の推定手法より も演算負荷が軽 、手法であることを特徴とする請求項 25から請求項 29の 、ずれか に記載の電波到達状態推定プログラム。
[31] 前記第 1の電波伝搬状態の推定手法が回折効果を考慮しないレイラゥンチング法 であることを特徴とする請求項 25から請求項 30のいずれかに記載の電波到達状態 推定プログラム。
[32] 前記回折波推定処理または前記回折波到達状態推定処理において回折波の到 達状態を推定する際に、
前記送信元と、少なくとも 1つの回折考慮受信点との間にある構造物の上面での回 折成分を用いることを特徴とする請求項 25から請求項 31のいずれかに記載の電波 到達状態推定プログラム。
[33] 前記回折波推定処理または前記回折波到達状態推定処理において回折波の到 達状態を推定する際に、
少なくとも 1つの回折考慮受信点が道路上にある場合、前記送信元からこの回折考 慮受信点に至る経路にある交差点の構造物での回折成分を用いることを特徴とする 請求項 25から請求項 31のいずれかに記載の電波到達状態推定プログラム。
[34] 前記回折波推定処理または前記回折波到達状態推定処理において回折波の到 達状態を推定する際に、
前記送信元から少なくとも 1つの回折考慮受信点に至る回折成分を統計論的手法 により推定することを特徴とする請求項 25から請求項 31のいずれかに記載の電波到 達状態推定プログラム。
[35] 前記回折波推定処理または前記回折波到達状態推定処理において回折波の到 達状態を推定する際に、
前記送信元から少なくとも 1つの回折考慮受信点に至る回折成分を、前記非回折
波推定処理で推定した前記回折考慮受信点周辺における電波到達状態の平均的 な値をもとに推定することを特徴とする請求項 25から請求項 31のいずれかに記載の 電波到達状態推定プログラム。
前記回折波推定処理または前記回折波到達状態推定処理において回折波の到 達状態を推定する際に、
前記送信元から少なくとも 1つの回折考慮受信点に至る回折成分を、この回折考慮 受信点から見通し内にある構造物の上面または側面における回折効果を考慮した値 をもとに推定することを特徴とする請求項 25から請求項 31のいずれかに記載の電波 到達状態推定プログラム。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US12/089,036 US7933558B2 (en) | 2005-10-05 | 2006-10-04 | Radio wave arrival state estimation system, radio wave arrival state estimation method, and program |
EP06811226.7A EP1933157B1 (en) | 2005-10-05 | 2006-10-04 | Radio wave arrival state estimation system, radio wave arrival state estimation method, and program |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005-291936 | 2005-10-05 | ||
JP2005291936A JP5029796B2 (ja) | 2005-10-05 | 2005-10-05 | 電波到達状態推定システム及び電波到達状態推定方法ならびにプログラム |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2007043416A1 true WO2007043416A1 (ja) | 2007-04-19 |
Family
ID=37942660
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2006/319887 WO2007043416A1 (ja) | 2005-10-05 | 2006-10-04 | 電波到達状態推定システム及び電波到達状態推定方法ならびにプログラム |
Country Status (4)
Country | Link |
---|---|
US (1) | US7933558B2 (ja) |
EP (1) | EP1933157B1 (ja) |
JP (1) | JP5029796B2 (ja) |
WO (1) | WO2007043416A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2009031604A1 (ja) * | 2007-09-07 | 2009-03-12 | Nec Corporation | 電波到達状態推定システムと、その方法及びプログラム |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2124162B1 (en) * | 2007-02-16 | 2017-09-20 | NEC Corporation | Radio wave propagation characteristic estimation system |
JP5509666B2 (ja) * | 2008-05-08 | 2014-06-04 | 日本電気株式会社 | 電波伝搬特性推測支援システム、電波伝搬特性推測支援方法及び電波伝搬特性推測支援装置 |
JP5081136B2 (ja) * | 2008-11-26 | 2012-11-21 | 日立Geニュークリア・エナジー株式会社 | 無線通信装置の配置支援システム |
JP5480701B2 (ja) * | 2010-04-14 | 2014-04-23 | 日本放送協会 | 電界強度推定装置、方法及びプログラム |
WO2012080777A1 (en) | 2010-12-17 | 2012-06-21 | Aktiebolaget Skf | Support member, detection set comprising such a support member and bearing assembly including such a detection set |
JP5592927B2 (ja) * | 2012-12-18 | 2014-09-17 | 日本電信電話株式会社 | 伝搬特性推定装置、伝搬特性推定方法及び伝搬特性推定プログラム |
US9318799B2 (en) * | 2013-03-29 | 2016-04-19 | Broadcom Corporation | Wireless communication apparatus and method for controlling antenna radiation patterns based on fading conditions |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH09153867A (ja) * | 1995-11-30 | 1997-06-10 | Fujitsu Ltd | 電波伝搬シミュレータ |
JP2005072667A (ja) * | 2003-08-26 | 2005-03-17 | Ntt Docomo Inc | 受信特性推定装置及び受信特性推定方法 |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5623429A (en) * | 1994-04-06 | 1997-04-22 | Lucent Technologies Inc. | Techniques for expeditiously predicting electromagnetic wave propagation |
JP3092651B2 (ja) * | 1995-07-14 | 2000-09-25 | 株式会社エヌ・ティ・ティ・ドコモ | 電界強度計算装置 |
JP3117626B2 (ja) | 1995-10-25 | 2000-12-18 | 株式会社エヌ・ティ・ティ・ドコモ | 電界強度計算装置および電界強度推定方法 |
JPH1062468A (ja) * | 1996-08-21 | 1998-03-06 | Toshiba Corp | 電波伝搬経路推定方法および電波伝搬経路推定装置 |
JP2003318842A (ja) | 2002-04-26 | 2003-11-07 | Nippon Telegr & Teleph Corp <Ntt> | 受信電界強度推定計算装置及び方法並びにプログラム及び記録媒体 |
JP4304367B2 (ja) * | 2003-03-26 | 2009-07-29 | 日本電気株式会社 | 電波伝搬特性予測システム及びその方法並びにプログラム |
US7324588B2 (en) * | 2003-06-30 | 2008-01-29 | Nokia Corporation | Apparatus, and associated method, for testing a mobile terminal in test conditions that emulate an operating environment |
JP4530898B2 (ja) * | 2005-04-01 | 2010-08-25 | 株式会社日立製作所 | 電波伝搬の推定プログラム、電波伝搬の推定方法、この方法を実行する装置 |
-
2005
- 2005-10-05 JP JP2005291936A patent/JP5029796B2/ja not_active Expired - Fee Related
-
2006
- 2006-10-04 US US12/089,036 patent/US7933558B2/en not_active Expired - Fee Related
- 2006-10-04 EP EP06811226.7A patent/EP1933157B1/en not_active Not-in-force
- 2006-10-04 WO PCT/JP2006/319887 patent/WO2007043416A1/ja active Application Filing
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH09153867A (ja) * | 1995-11-30 | 1997-06-10 | Fujitsu Ltd | 電波伝搬シミュレータ |
JP2005072667A (ja) * | 2003-08-26 | 2005-03-17 | Ntt Docomo Inc | 受信特性推定装置及び受信特性推定方法 |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2009031604A1 (ja) * | 2007-09-07 | 2009-03-12 | Nec Corporation | 電波到達状態推定システムと、その方法及びプログラム |
US20100255803A1 (en) * | 2007-09-07 | 2010-10-07 | Hiroto Sugahara | Radio wave arrival status estimating system, its method and program |
JP5234291B2 (ja) * | 2007-09-07 | 2013-07-10 | 日本電気株式会社 | 電波到達状態推定システムと、その方法及びプログラム |
US9002388B2 (en) | 2007-09-07 | 2015-04-07 | Nec Corporation | Radio wave arrival status estimating system, its method and program |
Also Published As
Publication number | Publication date |
---|---|
JP5029796B2 (ja) | 2012-09-19 |
JP2007101376A (ja) | 2007-04-19 |
US20090128411A1 (en) | 2009-05-21 |
EP1933157A1 (en) | 2008-06-18 |
EP1933157A4 (en) | 2013-06-26 |
US7933558B2 (en) | 2011-04-26 |
EP1933157B1 (en) | 2017-09-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2007043416A1 (ja) | 電波到達状態推定システム及び電波到達状態推定方法ならびにプログラム | |
US7634265B2 (en) | Radio wave propagation characteristic estimation system, and its method and program | |
EP1605725A1 (en) | Wireless positioning approach using time delay estimates of multipath components | |
US8244511B2 (en) | Radio wave propagation characteristic estimation apparatus and computer program | |
EP2424293B1 (en) | Radio wave propagation characteristic estimation apparatus, method, and computer program | |
WO2009073335A2 (en) | Method and apparatus of combining mixed resolution databases and mixed radio frequency propagation techniques | |
WO2022176163A1 (ja) | 無線通信方法、無線通信システム、および無線通信プログラム | |
US8385911B1 (en) | Method for generating propagation characteristics of a multipath environment | |
US7379710B2 (en) | Radio-wave propagation characteristic forecasting system and its method, and program | |
JP5583170B2 (ja) | 散乱体位置推定装置、散乱体位置推定方法及びプログラム | |
JP5234291B2 (ja) | 電波到達状態推定システムと、その方法及びプログラム | |
WO2009088666A1 (en) | Method and apparatus for computation of wireless signal diffraction in a three-dimensional space | |
JPWO2009069507A1 (ja) | 電波伝搬シミュレータ及びそれに用いる電波伝搬特性推定方法並びにそのプログラム | |
JP6331072B2 (ja) | ホワイトスペース検出装置、ホワイトスペース検出方法、及びプログラム | |
JP4972471B2 (ja) | 電波伝搬解析装置 | |
KR102424104B1 (ko) | 무선 통신 시스템에서 전파 특성을 분석하기 위한 장치 및 방법 | |
JP6466147B2 (ja) | 算出装置、算出方法、及びプログラム | |
JP6311198B2 (ja) | ホワイトスペース検出装置、ホワイトスペース検出方法、及びプログラム | |
Arenas et al. | Implementation and validation of an angle of arrival (AoA) determination system for real-time on-board train positioning | |
KR101268731B1 (ko) | 광선 추적법을 이용한 반사 영역 결정 장치 및 그 방법 | |
WO2023136058A1 (ja) | 解析装置、解析方法、記録媒体 | |
KR100914324B1 (ko) | 우세 경로로 반사 경로를 고려한 경로 손실 계산 방법 | |
JP6346801B2 (ja) | 電界強度推定方法および電界強度推定装置 | |
WO2024176247A1 (en) | System and method for azimuth estimation | |
CN116990861A (zh) | 转换波多次波预测方法及相关装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
REEP | Request for entry into the european phase |
Ref document number: 2006811226 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2006811226 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 12089036 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |