WO2007043389A1 - 四端子二重絶縁ゲート電界トランジスタを用いたcmos増幅器、それを用いた多入力cmos増幅器、高利得多入力cmos増幅器、高利得高安定多入力cmos増幅器および多入力cmos差動増幅器 - Google Patents

四端子二重絶縁ゲート電界トランジスタを用いたcmos増幅器、それを用いた多入力cmos増幅器、高利得多入力cmos増幅器、高利得高安定多入力cmos増幅器および多入力cmos差動増幅器 Download PDF

Info

Publication number
WO2007043389A1
WO2007043389A1 PCT/JP2006/319758 JP2006319758W WO2007043389A1 WO 2007043389 A1 WO2007043389 A1 WO 2007043389A1 JP 2006319758 W JP2006319758 W JP 2006319758W WO 2007043389 A1 WO2007043389 A1 WO 2007043389A1
Authority
WO
WIPO (PCT)
Prior art keywords
input
cmos amplifier
cmos
amplifier
terminal
Prior art date
Application number
PCT/JP2006/319758
Other languages
English (en)
French (fr)
Inventor
Toshihiro Sekigawa
Hanpei Koike
Original Assignee
National Institute Of Advanced Industrial Science And Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute Of Advanced Industrial Science And Technology filed Critical National Institute Of Advanced Industrial Science And Technology
Publication of WO2007043389A1 publication Critical patent/WO2007043389A1/ja

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/04Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements with semiconductor devices only
    • H03F3/16Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements with semiconductor devices only with field-effect devices
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/20Power amplifiers, e.g. Class B amplifiers, Class C amplifiers
    • H03F3/21Power amplifiers, e.g. Class B amplifiers, Class C amplifiers with semiconductor devices only
    • H03F3/211Power amplifiers, e.g. Class B amplifiers, Class C amplifiers with semiconductor devices only using a combination of several amplifiers
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/26Push-pull amplifiers; Phase-splitters therefor
    • H03F3/265Push-pull amplifiers; Phase-splitters therefor with field-effect transistors only
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/30Single-ended push-pull [SEPP] amplifiers; Phase-splitters therefor
    • H03F3/3001Single-ended push-pull [SEPP] amplifiers; Phase-splitters therefor with field-effect transistors
    • H03F3/301CMOS common drain output SEPP amplifiers
    • H03F3/3016CMOS common drain output SEPP amplifiers with symmetrical driving of the end stage
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/34DC amplifiers in which all stages are DC-coupled
    • H03F3/343DC amplifiers in which all stages are DC-coupled with semiconductor devices only
    • H03F3/345DC amplifiers in which all stages are DC-coupled with semiconductor devices only with field-effect devices

Definitions

  • CMOS amplifier using four-terminal double insulated gate field transistor, multi-input CMOS amplifier, high gain multi-input CMOS amplifier, high gain high stability multi-input CMOS amplifier and multi-input CMOS differential amplifier using the same
  • the present invention relates to a CMOS amplifier using a four-terminal double insulated gate field effect transistor, a multi-input CMOS amplifier using the same, a high-gain multi-input CMOS amplifier, a high-gain high-stable multi-input CMOS amplifier, and a multi-input CMOS.
  • the present invention relates to a differential amplifier.
  • CMOS inverter has the input / output characteristics shown schematically in Fig. 2.
  • Fig. 1 shows the case where the bodies of TP1 and TN1 are connected to their respective sources.
  • CMOS inverter As an amplifier, it is represented by the symbol in Fig. 3.
  • the power supply terminal is omitted.
  • the output voltage Vout can be expressed by the equation in Fig. 3, where the input offset voltage is Vofs.
  • the gain is extremely large (the gain of each stage is Al, A2)
  • This gain is called the open loop gain of the amplifier. Having such an extremely large open loop gain A
  • an inverting output amplifier with a linearity determined by the gain of the negative feedback circuit can be obtained by adding a negative feedback circuit as shown in Fig. 5. That is, if the output impedance of the amplifier is connected and the feedback impedance is Zf, the signal input terminal is connected to the input of the amplifier and the impedance is Zi, then the gain G of the amplifier in Fig. 5 is 1 + ZfZZi.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2003-297077
  • Patent Document 2 JP 05-291841 A
  • Patent Document 3 Japanese Patent Laid-Open No. 09-260962
  • Patent Document 4 Japanese Patent Laid-Open No. 05-235641
  • An object of the present invention is to provide a four-terminal double-insulation that does not limit the input impedance of the amplifier, eliminates the limit of the number of amplification stages due to the input offset voltage Vofs, and does not adversely affect the signal input path.
  • CMOS amplifier using a gate field transistor a multi-input CMOS amplifier using the same, a high-gain multi-input CMOS amplifier, a high-gain high-stable multi-input C MOS amplifier, and a multi-input CMOS differential amplifier.
  • the input terminal is not strong enough, the negative feedback circuit must be connected to the signal input terminal, resulting in the above-mentioned drawbacks.
  • a plurality of CMOS inverter amplifiers are used, their output terminals are connected to form one output terminal, and the input terminals of each CM OS inverter are used as the plurality of input terminals.
  • the open-loop gain as an amplifier is a force that is smaller than the open-loop gain of the CMOS inverter amplifier itself.
  • This disadvantage is that the output of the inverter is reversed by connecting an even number of CMOS inverter amplifiers to the output terminal.
  • the high-stable multi-input CMOS amplifier with the adjusted input offset voltage is connected in multiple stages to further increase the open-loop gain, thereby realizing a high-gain high-stable multi-input CMOS amplifier.
  • the CMOS inverter uses two four-terminal double insulated gate field effect transistors having different conductivity types from those of P-type and N-type, and each drain is connected to form one output terminal.
  • a CMOS inverter using a four-terminal double-insulated gate field-effect transistor that connects the second gate and the second gate as one input terminal may be replaced.
  • the source of the P-type four-terminal double insulated gate field effect transistor is the high-potential power source, and the N-type four-terminal double insulated gate field effect
  • the source of the transistor can be replaced by a CMOS inverter with a four-terminal double insulated gate field-effect transistor connected to a low-potential power source.
  • the advantage is that the threshold voltage of the four-terminal double insulated gate field effect transistor at each stage can be changed independently.
  • the absolute value of the threshold voltage of the first stage four-terminal double insulated gate field effect transistor is made larger than that of the latter stage, the open loop gain of the first stage is made larger than that of the latter stage, and the overall offset voltage of the latter stage is increased.
  • the effect on the amplifier can be reduced, and the effect of lowering the open loop gain due to multiple inputs in the first stage can be reduced.
  • CMOS inverter instead of connecting each second gate to a power supply for adjusting the threshold voltage, a four-terminal double insulated gate field effect transistor which is connected to each other as a second input terminal Replace with a CMOS inverter that also has power.
  • four elements are required to realize a two-input CMOS inverter by the above two means, but the advantage is that the number of elements can be reduced by half, as only two elements are required. It is.
  • at least one of the amplifiers having the plurality of input terminals is used as a high input impedance signal input terminal, and the other input terminals are used for a negative feedback circuit configuration or an offset voltage adjustment circuit configuration. Eliminate conventional drawbacks.
  • the drains of the first four-terminal double-insulated gate field effect transistor and the second four-terminal double-insulated gate field-effect transistor having the opposite conductivity type are connected to serve as output terminals.
  • One gate electrode is connected as the first input terminal
  • the second gate electrode of each of the two transistors is connected as the second input terminal
  • the source of each of the two transistors is respectively connected to the first power supply and It is connected to a second power source.
  • a plurality of the CMOS amplifiers each of the CMOS amplifiers
  • the input terminals of the amplifiers are used as input terminals, and the output terminals of the CMOS amplifiers are connected in common to form one output terminal.
  • Each of the CMOS amplifiers has an equivalent characteristic.
  • the CMOS amplifier described in the above (1) or the multi-input CMOS amplifier described in the above (2) or (3) is used as the first stage, an inverted output is obtained at the output terminal of the first stage, and the open loop gain is increased.
  • the CMOS amplifier described in (1) or the multi-input CMOS amplifier described in (2) or (3) is connected in an even number of stages.
  • the absolute value of the threshold voltage of each insulated gate field effect transistor of each CMOS amplifier constituting the first stage CMOS amplifier or the multi-input CMOS amplifier is expressed as each insulated gate field effect constituting the preceding stage CMOS amplifier. It is characterized by being larger than the absolute value of the threshold voltage of the transistor.
  • the CMOS amplifier described in (1) above is characterized in that at least one input terminal is used as a signal input terminal and one of the other input terminals is connected to a power source for adjusting an input offset voltage.
  • At least one input terminal is used as a signal input terminal, and one of the other input terminals is connected to a power supply for adjusting the input offset voltage. It is characterized by that.
  • At least one input terminal is a signal input terminal, and one of the other input terminals is a power source for adjusting an input offset voltage. It is characterized by being connected to.
  • the input offset voltage of the second CMOS amplifier is adjusted by connecting to an input terminal corresponding to the selected input terminal of the amplifier.
  • the multi-input CMOS amplifier described in (2) or (3) is the first multi-input CMOS amplifier described in (2) or (3), wherein one of the plurality of input terminals is selected. This is connected to the output terminal through a negative feedback circuit, and the other input terminals other than the selected terminal are kept at a reference potential, and a negative feedback amplifier is formed to offset the output terminal. A voltage adjustment potential is generated, and the output terminal is connected to an input terminal corresponding to the selected input terminal of the second multi-input CMOS amplifier having the same configuration as that of the multi-input CMOS amplifier. It is characterized by adjusting the input offset voltage.
  • the high gain multi-input CMOS amplifier described in (4) or (5) is the same as the high gain multi-input CMOS amplifier described in (4) or (5). This is connected to the output terminal through a negative feedback circuit, the other input terminals other than the selected terminal are kept at a reference potential, and a negative feedback amplifier is formed to form an offset voltage at the output terminal. An adjustment potential is generated, and the output terminal is connected to an input terminal corresponding to a selected input terminal of the high gain multi-input CMOS amplifier having the same configuration as the high gain multi-input CMOS amplifier. The input offset voltage of the input CMOS amplifier is adjusted.
  • a high-gain high-stable multi-input CMOS amplifier is characterized in that the CMOS amplifier described in (6) is connected in an odd number of stages so as to obtain an inverted output and increase an open-loop gain.
  • a high-gain, high-stable multi-input CMOS amplifier is obtained by using the multi-input CMOS amplifier or the high-gain multi-input CMOS amplifier described in (7) or (8) above to obtain an inverted output and increase an open loop gain. An odd-numbered cascade connection is used.
  • the multi-input CMOS amplifier according to any one of the above (2), (3) and (7), wherein the input terminal has three or more input terminals, and at least one of the input terminals is used for signal input.
  • One of the input terminals is an input terminal for adjusting an input offset voltage, and the other input terminal is an input terminal from a negative feedback circuit.
  • the high-gain multi-input CMOS amplifier as set forth in any one of (4), (5) and (8) above, wherein the number of the input terminals is three or more, and at least one of the input terminals is used for signal input.
  • One of the other input terminals is an input terminal for adjusting an input offset voltage, and the other input terminal is an input terminal from a negative feedback circuit.
  • a highly stable multi-input CMOS amplifier is the CMOS amplifier according to any one of (1), (6) and (9) above, (2), (3), (7), (10) and (14)
  • the multi-input CMOS amplifier according to any one of (1) and the high-gain multi-input CMOS amplifier according to any one of (4), (5), (8), (11) and (15) above A plurality of any one amplifier is used, and each output terminal is connected in common to form one output terminal.
  • the high-gain high-stable multi-input CMOS amplifier is the above-mentioned (1), so as to increase the open-loop gain with an inverting output at the output terminal of the high-stable multi-input CMOS amplifier of (16).
  • CMOS amplifier according to any one of the above (1), (6) and (9), the multiple according to any one of the above (2), (3), (7), (10) and (14) Input CMOS amplifier, any one of the above (4), (5), (8), (11) and (15), the high gain multi-input CMOS amplifier described in 1 above, and the high stable multi-input CMOS described in (16) above
  • An amplifier and any one of the above-mentioned (12), (13) and (17) high gain and high stability multi-input CMOS amplifiers described in item 1 are connected in odd-numbered stages and in even-numbered stages It is characterized in that the outputs of each connected one are connected in common to increase the common-mode rejection ratio.
  • the CMOS inverter is represented by the amplifier symbol in FIG.
  • the “one” symbol attached to the input terminal inside the triangle indicates that an inverted output is obtained.
  • Vout — A (Vin-Vofs).
  • the output impedance of this amplifier can be small, but it is usually not finite but has a finite value (this is pure resistance for simplicity).
  • a plurality of such CMOS inverter amplifiers are prepared, each output is connected to form one output terminal, and each input is a plurality of independent input terminals. Configure a CMOS amplifier.
  • n 2 as an example.
  • the output impedance is Roj
  • the input voltage is Vinj
  • the input offset voltage is Vofsj.
  • the output voltage Vout is
  • Vout —K1 * A1 * (Vinl—Vofsl) —K2 * A2 * (Vin2—Vofs2) — ⁇ Kn * An * (Vinn—Vofsn) ( ⁇ > 1) (1)
  • Vout -(1 / n) * A * (Vin 1 -Vofs)-(1 / n) * A * (Vin2— Vofs)-... (lZn) * A * (Vinn— Vofs),
  • the open loop gain is A * A * AZn. Since A is usually considered to be sufficiently larger than n, this results in a high gain multi-input CMOS amplifier with a sufficiently large open loop gain G.
  • the multi-input CMOS amplifier or the high-gain multi-input CMOS amplifier of the present invention such as FIG. 6 and FIG. 8, will be represented by the symbols shown in FIG. Open loop gains G, A, Al, A2, etc. should be sufficiently large.
  • Va Vofsl + (K2 * A2 * Vofs2H hKn * An * Vofsn) / (Kl * A1)
  • Fig. 10 a power supply having the above-mentioned potential Va with a circle symbol and Va, GRD represents a circuit node of the reference potential, in this case, ground.
  • the potential shown in the above formula (3) or (4) can be generated using the same multi-input CMOS amplifier or high-gain multi-input CMOS amplifier.
  • the first input terminal and the output terminal are connected through a negative feedback circuit to form a negative feedback amplifier, and the second to nth input terminals are used as reference potentials.
  • Vout (Kl * Al * Vof s 1 + K2 * A2 * Vof s2 H hKn * An * Vofsn) /
  • a high-gain, high-stable multi-input CMOS amplifier with an extremely large gain can be configured.
  • the number of input terminals of the amplifier in the subsequent stage is sufficient to be 2, or the input terminals other than those used for the input offset adjustment terminal are connected in common and connected to the output terminal of the previous stage. It may be connected.
  • the power supplies indicated by Val, Va2, and Va3 are input offset adjustment power supplies of the respective amplifiers
  • GRD is a circuit node of the reference potential.
  • n> 2 one of the other input terminals is surrounded by a broken line as shown in FIG. It can be used as a feedback signal input for a portion of the negative feedback circuit.
  • Zf and Zi are impedances constituting the negative feedback circuit, and an example of the negative feedback circuit is shown.
  • CMOS inverter amplifier instead of the normal insulated gate field effect transistor described above, P-type and N-type four-terminal double insulated gate field effect transistors XTP1 and XTN1 are used, and each second gate is thresholded as shown in Fig. 15. It is also possible to configure a CMOS inverter amplifier by connecting to the value voltage adjusting power sources Vptc and Vntc, respectively. In this case, since the absolute value of the threshold voltage is large and the amplifier has a large open loop gain, the first stage open loop gain can be used to construct the first stage of the various multi-input CMOS amplifiers having multiple input terminals. Can be reduced.
  • the threshold voltage is dynamically controlled to increase the absolute value of the threshold voltage during standby, such as when there is no signal, or when it is not in use, to minimize the through current flowing through the CMOS inverter. Te / J can be made.
  • Control of the threshold voltage is also possible with a normal insulated gate field effect transistor, and it must be noted that there is a PN junction between the force source or drain and body that can be made by varying the body bias. Don't be.
  • the threshold voltage control range becomes narrower than when a four-terminal double insulated gate field effect transistor is used, and the leakage current between the body and the source increases.
  • the use of a four-terminal double insulated gate field effect transistor has the advantage of reducing this limitation. Also, the gate leakage current can be made extremely small compared to the former.
  • P-type and N-type four-terminal double insulated gate field-effect transistors XT PI and XTN1 are used, and each second gate is connected to be used as a second input terminal.
  • a vessel can also be constructed.
  • each four-terminal double insulated gate field effect transistor first gate and second gate can be regarded as equivalent or can be configured so that the first input terminal and second gate of the amplifier of FIG. The characteristics of the input terminal force are the same.
  • one P-type and N-type four-terminal double insulated gate field-effect transistor each can form a two-input CMOS amplifier, which is half the number of elements compared to the case of using a normal insulated-gate field-effect transistor.
  • FIG. 16 The circuit configuration in FIG. 16 is represented by the symbols in FIG. Therefore, as shown in FIG. 18, if an input offset voltage adjusting power source Va is connected to one input terminal, a one-input highly stable CMOS amplifier with an adjusted input offset voltage can be configured. Therefore, if a plurality of these are used and connected with a common output terminal, a highly stable multi-input CMOS amplifier with an adjusted input offset voltage shown in FIG. 19 can be configured.
  • Val, Va2,..., Van indicate power supplies for adjusting the input offset voltage for each amplifier. As shown in Fig.
  • CMOS amplifier 20 if these are connected in multiple stages, it is possible to construct a high-gain, high-stable multi-input CMOS amplifier with a very large open-loop gain and a stable operating range.
  • the high-stability multi-input CMOS amplifier shown in Fig. 19 can be used in the first stage.
  • Figure 21 (For simplicity, only one signal input terminal is shown. Even so, adjust even-numbered amplifiers (two in the figure) and odd-numbered amplifiers (one in the figure) so that they have approximately the same sufficiently large open-loop gain. If the output is connected to a new output terminal, an approximate multi-input differential amplifier can be obtained.
  • the CMOS inverter is a circuit that operates at the highest speed, and an amplifier using the CMOS inverter can have a high cut-off frequency. In addition, it can operate even when the power supply voltage is small, and it can easily cope with a reduction in power supply voltage due to future element miniaturization, and can have a higher cut-off frequency. Furthermore, the power of the basic circuit being the same CMOS inverter makes it easy to mix digital and analog circuits.
  • FIG. 1 is a circuit diagram of a conventional CMOS inverter.
  • FIG. 2 is an input / output characteristic diagram of the circuit of FIG.
  • FIG. 3 Symbol representation of a conventional CMOS inverter circuit.
  • FIG. 4 is a circuit diagram of a conventional inverting amplifier.
  • FIG. 5 is a circuit diagram of an inverting amplifier having a conventional negative feedback circuit.
  • FIG. 6 is a circuit diagram of a multi-input CMOS amplifier comprising the CMOS inverter of the present invention.
  • FIG. 7 is a circuit diagram of a specific example of FIG.
  • FIG. 8 is a circuit diagram of a high-gain multi-input CMOS amplifier configured to amplify the output of the circuit of FIG.
  • FIG. 9 is a symbol display diagram of the circuits of FIGS. 6 and 8.
  • FIG. 10 is a circuit diagram of a multi-input CMOS amplifier or a high-gain multi-input CMOS amplifier in which an input offset voltage adjustment voltage is applied to one input terminal.
  • FIG. 11 is a circuit diagram in which a negative feedback circuit is added in FIG.
  • FIG. 12 is a circuit diagram of a multi-input CMOS amplifier or a high-gain multi-input CMOS amplifier in which the input offset voltage is adjusted to zero using the circuit of FIG.
  • FIG. 13 is an amplifier circuit diagram of a high gain and high stability multi-input CMOS amplifier in which the circuits of FIG. 10 or FIG. 12 are stacked in multiple stages.
  • FIG. 14 is a circuit diagram of a multi-input CMOS amplifier or a high-gain multi-input CMOS amplifier to which a negative feedback circuit is added in FIG.
  • FIG. 16 is an amplifier circuit diagram in which both the second gates of the circuit of FIG. 15 are connected to a common input terminal.
  • FIG. 17 is a symbol display diagram of FIG.
  • FIG. 18 is a circuit diagram of FIG. 16 in which a power source Va for adjusting an input offset voltage is connected to one input terminal.
  • ⁇ 21 Adjust even-numbered amplifiers and odd-numbered amplifiers so that they have approximately the same sufficiently large open-loop gain, and connect their outputs to create a new output terminal. It is a circuit diagram.
  • TP1 Vertical insulated gate field effect transistor
  • ⁇ 1, ⁇ 2 ⁇ type four-terminal insulated gate field effect transistor
  • ⁇ 1, ⁇ 2 ⁇ type four-terminal insulated gate field effect transistor
  • A, Al, A2, ⁇ , An, G Open loop gain of amplifier, or simply gain Vofs, Vofsl, Vofs2, ⁇ , Vofsn: Input offset voltage of amplifier
  • the input terminal of the amplifier is the potential
  • Vout, Voutl, Vout2 Amplifier output terminal or its potential GRD: Ground
  • FIG. P-type and N-type insulated gate field-effect transistors TP1 and TN1 are used to connect their drains as output terminals.
  • the source of TP1 is connected to the first power supply, and the source of TN1 is connected to the second power supply.
  • the CMOS inverter of FIG. 1 that is connected to each gate electrode as an input terminal is regarded as an amplifier and is represented by the symbol of FIG.
  • a multi-input CMOS amplifier having a plurality of input terminals and one output terminal is shown using the terminals as a plurality of input terminals, and using each output terminal as a single output terminal connected in common.
  • the Figure 7 shows an example of a specific circuit when the number is two.
  • each CMOS inverter amplifier has equivalent characteristics (for example, There is no extreme difference in open loop gain, input offset voltage, current drive capability, etc.), so a multi-input CMOS amplifier with multi-input terminals that can be regarded as input terminals with the same characteristics can be obtained.
  • a dual power supply circuit is shown in which the potential of the first power supply is + Vss (Vss> 0) and the potential of the second power supply is 1 Vss, but a single power supply may be used.
  • the reference potential is the ground (GND) potential and its value is 0V.
  • the open loop gain of the multi-input CMOS amplifier configured as described above is a force that is smaller than the open loop gain of the CMOS inverter amplifier, as shown in FIG. 8, which is the second embodiment of the present invention.
  • CMOS inverter amplifiers are connected in multiple stages (two stages are illustrated in the figure), a high gain multi-input CMOS amplifier having a sufficiently large open loop gain can be obtained.
  • each field effect constituting the first stage CMOS inverter Increase the open loop gain of each CMOS inverter in the first stage by making the absolute value of the threshold voltage of the transistor larger than that of each field effect transistor that constitutes the subsequent CMOS inverter.
  • the reduction of the first stage open loop gain due to the common connection of the output terminals can be reduced.
  • FIG. 10 shows a third embodiment of the present invention.
  • Any one of the input terminals of the multi-input CMOS amplifier in FIG. 6, the first in FIG. 10, is used as a terminal for connecting a power source Va for adjusting the input offset voltage of this amplifier.
  • the output voltage is also set to the reference potential.
  • Adjust the power supply Va to the potential shown in 3) or Equation (4). It is also possible to intentionally increase the input offset voltage by applying another potential and change the input voltage range in which the output voltage transitions from a high potential to a low potential. Then, it is possible to control whether the amplifier functions or stops.
  • the operating point of the amplifier that is, the DC bias point of the input and output is the reference potential (0 V).
  • This DC bias point can be set to other than the reference potential.
  • the output DC bias point is set at a place where the output voltage change with respect to the input voltage is not linear, and there is strong nonlinearity. If signals with different signal frequencies are applied to each input terminal (the same input terminal may be used, but different ones have less mutual interference on the input circuit), the so-called mixer and frequency of the two signals It can be operated as a converter. In the case of the high-gain multi-input CMOS amplifier shown in Fig. 8, the adjustment is more difficult, but the same can be done.
  • FIG. 12 shows a fourth embodiment of the present invention.
  • Two multi-input CMOS amplifiers shown in Fig. 6 with the same characteristics are used, and one amplifier 1 is used as the negative feedback amplifier shown in Fig. 11, and the reference potential (in this example) is applied to all input terminals other than the negative feedback signal input terminal. Is used to generate the potential for adjusting the input offset voltage, and this is used for the other amplifier 2. The other input terminals are used for signal input.
  • FIG. 13 shows a fifth embodiment of the present invention.
  • Multi-stage cascade connection using an odd number of amplifiers adjusted to zero the input offset voltage shown in Fig. 10 or Fig. 12 enables stable operation range and inverting output with extremely large open-loop gain and high stability
  • a multi-input CMOS amplifier can be configured. However, two input terminals for amplifiers other than the first stage are sufficient.
  • FIG. 14 shows a sixth embodiment of the present invention.
  • the number of input terminals is three or more, one is used as an input offset voltage adjustment terminal, and the other is used for feedback signal input from the negative feedback circuit.
  • the remaining input terminals are used for signal input. In this way, an amplifier having a gain determined by the negative feedback circuit and having an adjusted offset voltage can be configured.
  • FIG. 15 shows that P-type and N-type four-terminal double-insulated gate field-effect transistors XTP 1 and XTN 1 are used in place of ordinary insulated-gate field-effect transistors, and the first gates are connected to each other.
  • An example is shown in which a CMOS inverter is configured with input terminals, and each second gate connected to a power supply for adjusting the respective threshold voltage, Vptc and Vntc.
  • the C MOS inverter using this four-terminal double insulated gate field effect transistor can be used in place of the CMOS inverter in the sixth embodiment described above.
  • the threshold voltage of each four-terminal double-insulated gate field-effect transistor can be controlled by the potential applied to the second gate, so that the open loop gain can be changed at each stage, or as an amplifier.
  • the operation can be stopped, and the gate leakage current for that purpose is less than the body noise control of the normal insulated gate field effect transistor, and there is an advantage that there is no limitation due to the polarity of the voltage range that can be applied.
  • FIG. 16 shows a seventh embodiment of the present invention.
  • P-type and N-type four-terminal double insulated gate field effect transistors XTP 1 and XTN 1 connect each drain to output terminal Vout, connect each first gate to the first input terminal Vinl, and each second gate is connected to the second input terminal Vin2, and P-type four-terminal double
  • the source of the insulated gate field effect transistor is connected to the first power supply + Vs with a high potential
  • the drain of the N-type four-terminal double insulated gate field effect transistor is connected to the second power supply—Vs with a low potential.
  • a CMOS amplifier with two input terminals can be obtained by using only one each of the four-terminal double insulated gate field effect transistors of P-type and N-type.
  • the advantage is that the number of elements can be reduced.
  • the CMOS amplifier of this configuration can be replaced with the conventional multi-input CMOS amplifier using the insulated gate field effect transistor of the first and sixth embodiments, and a reduction in the number of elements of each configuration can be expected. .
  • FIG. 18 shows an eighth embodiment of the present invention.
  • One input terminal of the two-input C MOS amplifier indicated by the symbols in FIG. 16 and FIG. 17 is connected to a power source Va for adjusting the input offset voltage, and the other is used as a high-power circuit by a four-terminal double insulated gate field effect transistor used for signal input. It is a constant CMOS amplifier.
  • FIG. 19 shows a ninth embodiment of the present invention.
  • a new output terminal Vout is configured by using multiple high stability CMOS amplifiers with four-terminal double insulated gate field-effect transistors shown in Figure 18 and connecting each output in common. This is a highly stable multi-input CMOS amplifier using a four-terminal double insulated gate field effect transistor having an input offset voltage adjusted.
  • FIG. 20 shows a tenth embodiment of the present invention.
  • the high-stable CMOS amplifier in Figure 18 and the odd-stable high-stable multi-input CMOS amplifier in Figure 19 are connected in cascade to increase the open-loop gain, and the high-gain, high-stable multi-input CMOS amplifier has a stable operating range with inverted output. .
  • FIG. 21 shows an eleventh embodiment of the present invention.
  • CMOS amplifier In the above embodiment, only the inverting output CMOS amplifier has been described. However, to obtain a non-inverting output, it is only necessary to connect even-numbered stages. Therefore, even-numbered amplifiers (two in the figure) are connected to odd-numbered stages.
  • An approximate CMOS differential amplifier can be obtained by adjusting the amplifiers (one in the figure) to have approximately the same sufficiently large open-loop gain and connecting the outputs to a new output terminal. At this time, since the input offset voltage of each stage is adjusted, the operation can be performed more stably.
  • An example of adjusting the offset voltage of each amplifier with 1, Va2 and Va3 was shown. The figure shows the case where there is one signal input terminal, but if necessary, it can be made into a multi-input CMOS differential amplifier.
  • CMOS circuit As described above, the power explained based on the CMOS circuit In general, it is not necessary to use the C MOS circuit as long as the gain of the inverter is large.
  • a circuit similar to the above can be configured by configuring an inverter using a resistor or the like as a load of an N-type four-terminal insulated gate field-effect transistor and using it as an amplifier.
  • increasing the gain compared to the CMOS inverter amplifier is difficult to manufacture because the load resistance must be high, and even if it is possible, there is a concern about stability due to fluctuations in the resistance value.
  • the frequency response is deteriorated.
  • the controllability of the operation of the amplifier is difficult compared to a CMOS circuit that only provides a signal to turn off the N-type four-terminal insulated gate field effect transistor.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Logic Circuits (AREA)
  • Amplifiers (AREA)

Abstract

 増幅器の入力インピーダンスに制限を加えず、入力オフセット電圧Vofsによる増幅段数の制限をなくし、信号入力経路に悪影響を及ぼすことがないようにした四端子二重絶縁ゲート電界トランジスタを用いたCMOS増幅器、それを用いた多入力CMOS増幅器、高利得多入力CMOS増幅器、高利得高安定多入力CMOS増幅器および多入力CMOS差動増幅器を提供することにある。  P形およびN形の四端子二重絶縁ゲート電界効果トランジスタを用い、それぞれのドレインを共通接続して出力端子とし、それぞれの第一のゲートを接続して第一の入力端子とし、それぞれの第二のゲートを接続して第二の入力端子とするCMOS増幅器を構成する。このCMOS増幅器を複数個用い、その各出力端子を接続して一つの出力端子とし、各CMOS増幅器の入力端子は同複数個の2倍の独立した入力端子として用いて多入力CMOS増幅器を構成する。  

Description

明 細 書
四端子二重絶縁ゲート電界トランジスタを用いた CMOS増幅器、それを 用いた多入力 CMOS増幅器、高利得多入力 CMOS増幅器、高利得高安定多 入力 CMOS増幅器および多入力 CMOS差動増幅器
技術分野
[0001] 本発明は四端子二重絶縁ゲート電界効果トランジスタを用いた CMOS増幅器、そ れを用いた多入力 CMOS増幅器、高利得多入力 CMOS増幅器、高利得高安定多 入力 CMOS増幅器および多入力 CMOS差動増幅器に関する。
背景技術
[0002] 一般に図 1に示すように導電形の異なる絶縁ゲート電界効果トランジスタ (MOST) 2個を用い、 P形の MOST(TPl)のソースは高電位の第一の電源(+Vs)に接続し 、 N形の MOST (TN1)のソースは低電位の第二の電源(一Vs)に接続し、互いのド レインを接続して出力端子 (Vout)とし、また互 ヽのゲートを接続して入力端子 (Vin) とした回路は、いわゆる CMOSインバータと呼ばれている。この CMOSインバータは 図 2に模式的に示す入力 出力特性を有しており、出力電圧が高電位カゝら低電位 に遷移する入力電圧範囲においては利得 (GAIN、ゲイン、反転出力なので A>0と して Aで示す)がかなり大きぐこの現象を利用して信号の増幅器として用いること が知られている(例えば、特許文献 1〜4を参照)。
[0003] ただし、図 1では各 TP1および TN1のボディはそれぞれのソースに接続した場合を 示す。もちろんそれぞれにバイアス電圧を与えて、しきい値電圧の値の制御などを行 うことも良く知られている。この CMOSインバータを増幅器と見る観点から図 3の記号 で表すことにする。ただし、電源端子は省略してある。出力電圧 Voutは入力オフセッ ト電圧を Vofsとすると図 3の式のように表せる。さて、この CMOSインバータ増幅器を 奇数個用い、これを図 4のように多段(図では 3個を例示する)接続すれば利得の極 めて大きな(各段のゲインを Al、 A2、ぉょび八3とすれば八=ー八1 *八2 *八3とな る)反転出力の増幅器が得られることも良く知られている。この利得をその増幅器の オープンループゲインと呼ぶ。このような極めて大きなオープンループゲイン Aを有 する反転出力の増幅器は図 5のような負帰還回路を追加すると負帰還回路の利得で 定まる線形性の良い増幅器が得られることも良く知られている。すなわち、増幅器の 出力と入力を接続して 、る帰還インピーダンスを Zf、信号入力端子と増幅器の入力 を接続して 、るインピーダンスを Ziとすれば、図 5の増幅器の利得 Gは 1 +ZfZZiと なり、増幅器の利得の周波数特性は Zfと Ziの周波数特性で定まる力 簡単のため Zf 、 Ziをそれぞれ純抵抗 Rf、 Riとすると G= l +RfZRiとなる。
[0004] 特許文献 1:特開 2003— 297077号公報
特許文献 2:特開平 05 - 291841号公報
特許文献 3:特開平 09 - 260962号公報
特許文献 4:特開平 05 - 235641号公報
発明の開示
発明が解決しょうとする課題
[0005] ここで、利得 Gを大きくするためには、 Rfはあまり大きくすると寄生容量との時定数 が大きくなり周波数特性を劣化させる力 あまり大きくは出来ないので Riを小さくせざ るを得ない。しかし、図 5の増幅器の入力インピーダンスは Zi、純抵抗の場合は Riと なるので、この値があまり小さくなると信号入力側の回路の電流駆動能力などに与え る負担が大きくなる欠点を生じる。 MOSTの入力インピーダンスが極めて高 、ことの 利点が生力せなくなるわけである。この欠点は一つの出力端子に対応する入力端子 がーつしかないため、図 5の回路しか採用できないことにより生じている。
CMOSインバータを用 、た増幅器は、例えば特許文献 1〜4に提案されて 、るが すべて一つの出力端子に対応する入力端子は一つであり、上記欠点を有する。 さらに、このような増幅器で問題となるのはいわゆる入力オフセット電圧 Vofsが存在 することである。すなわち、図 2に示すように出力電圧が基準電位、この場合は接地 電位 (0V)、となる入力電圧はやはり基準電位に等しいことが理想である力 製造プ ロセスによる変動などで必ずしも基準電位ではなぐ基準電位力 見てある値、 Vofs だけずれてしまうのが普通である。 Vofsは通常極めて小さくなるように設計される力 それでも各段の利得だけ増幅されていくので最後には動作範囲を逸脱してしまう恐 れがある。この悪影響は増幅段数の制限を生じ、必要なオープンループゲインを確 保できない欠点につながる。
そのため、入力オフセット電圧調整が必要であるが入力端子が一つであると信号入 力端子に入力オフセット電圧調整回路を入れなければならず、信号の品質に悪影響 を及ぼす欠点を有する。
[0006] 本発明の目的は、増幅器の入力インピーダンスに制限を加えず、入力オフセット電 圧 Vofsによる増幅段数の制限をなくし、信号入力経路に悪影響を及ぼすことがない ようにした四端子二重絶縁ゲート電界トランジスタを用いた CMOS増幅器、それを用 いた多入力 CMOS増幅器、高利得多入力 CMOS増幅器、高利得高安定多入力 C MOS増幅器および多入力 CMOS差動増幅器を提供することにある。
課題を解決するための手段
[0007] 入力端子が一つし力ないため、負帰還回路を信号入力端子と接続しなければなら ず、前述した欠点を生じていた。これを解決するため、本発明では複数個の CMOS インバータ増幅器を用い、その各出力端子を接続して一つの出力端子とし、各 CM OSインバータの入力端子は同複数個の入力端子として用いて増幅器を構成する。 この場合、増幅器としてのオープンループゲインは CMOSインバータ増幅器自体の オープンループゲインより小さくなる力 この欠点は出力端子に新たに CMOSインバ ータ増幅器を偶数段接続することにより、各入力力 見て反転出力であり、かつォー プンループゲインの極めて大きな高利得多入力 CMOS増幅器を実現する。さらに必 要なら入力オフセット電圧の調整された上記高安定多入力 CMOS増幅器を多段接 続し、オープンループゲインの一層の増大を図り、高利得高安定多入力 CMOS増 幅器を実現する。
[0008] また、上記 CMOSインバータを P形および N形と導電形の異なる四端子二重絶縁 ゲート電界効果トランジスタを 2個用い、各ドレインを接続して一つの出力端子とし、 またそれぞれの第一および第二のゲートを互いに接続して一つの入力端子とした四 端子二重絶縁ゲート電界効果トランジスタによる CMOSインバータに置き換えても良 いことは無論である。さらに、上記 P形および N形と導電形の異なる四端子二重絶縁 ゲート電界効果トランジスタを 2個用い、各ドレインを接続して一つの出力端子とし、 またそれぞれの第一のゲートを接続して一つの入力端子とし、さらにそれぞれの第二 のゲートはそれぞれしきい値電圧調整用の電源に接続されており、 P形の四端子二 重絶縁ゲート電界効果トランジスタのソースは高電位の電源に、 N形の四端子二重 絶縁ゲート電界効果トランジスタのソースは低電位の電源に接続されてなる四端子 二重絶縁ゲート電界効果トランジスタによる CMOSインバータに置き換えることもでき る。この利点は各段での四端子二重絶縁ゲート電界効果トランジスタのしき 、値電圧 を独立に変化させることが出来る点にある。例えば、初段の四端子二重絶縁ゲート電 界効果トランジスタのしきい値電圧の絶対値を後段のそれよりも大きくし、初段のォー プンループゲインを後段より大きくし、後段のオフセット電圧の全体の増幅器に与え る影響を小さくすることも出来るし、初段を多入力にしたことによるオープンループゲ イン低下の影響を軽減できる。
[0009] さらに、上記においてそれぞれの第二のゲートをしきい値電圧調整用の電源に接 続する代わりに、それぞれを接続して第二の入力端子とした四端子二重絶縁ゲート 電界効果トランジスタ力もなる CMOSインバータに置き換える。この場合例えば、上 記二つの手段で二入力の CMOSインバータを実現するには素子 4個が必要であつ たが、素子 2個で済むと言うように、素子数を半分に減らせることが利点である。 さらにまた、上記複数個の入力端子を有する増幅器の少なくとも一つを高入力イン ピーダンスの信号入力端子として用い、他の入力端子は負帰還回路構成のためや オフセット電圧調整回路構成のために用いて従来の欠点を除去する。
[0010] 具体的には以下の通りである。
(1) CMOS増幅器は、
第一の四端子二重絶縁ゲート電界効果トランジスタおよびそれとは導電形が反対の 第二の四端子二重絶縁ゲート電界効果トランジスタのそれぞれのドレインを接続して 出力端子とし、前記両トランジスタそれぞれの第一のゲート電極を接続して第一の入 力端子とし、前記両トランジスタそれぞれの第二のゲート電極を接続して第二の入力 端子とし、前記両トランジスタそれぞれのソースをそれぞれ第一の電源および第二の 電源に接続させたことを特徴とする。
(2)多入力 CMOS増幅器は、
前記 CMOS増幅器複数個からなる増幅器であって、それぞれの前記 CMOS増幅 器の入力端子をそれぞれ入力端子とし、それぞれの前記 CMOS増幅器の出力端子 を共通接続して一つの出力端子としたことを特徴とする。
(3)上記(2)記載の多入力 CMOS増幅器は、
前記 CMOS増幅器のそれぞれが同等の特性を有することを特徴とする。
(4)高利得多入力増幅器は、
上記(1)記載の前記 CMOS増幅器又は上記(2)又は(3)記載の前記多入力 CMO S増幅器を初段とし、その初段の出力端子に反転出力を得、かつオープンループゲ インを増大させるように上記(1)記載の前記 CMOS増幅器又は上記(2)又は(3)記 載の前記多入力 CMOS増幅器を偶数段接続したことを特徴とする。
(5)上記 (4)記載の高利得多入力増幅器は、
前記初段の CMOS増幅器又は多入力 CMOS増幅器を構成する前記各 CMOS増 幅器の各絶縁ゲート電界効果トランジスタのしきい値電圧の絶対値を前記後段の前 記 CMOS増幅器を構成する各絶縁ゲート電界効果トランジスタのしきい値電圧の絶 対値よりも大きくしたことを特徴とする。
(6)上記(1)記載の CMOS増幅器は、少なくとも一つの入力端子を信号入力端子と し、他の入力端子の一つを、入力オフセット電圧を調整するための電源に接続したこ とを特徴とする。
(7)上記(2)又は(3)記載の多入力 CMOSは、少なくとも一つの入力端子を信号入 力端子とし、他の入力端子の一つを、入力オフセット電圧を調整するための電源に 接続したことを特徴とする。
(8)上記 (4)又は(5)記載の高利得多入力 CMOS増幅器は、少なくとも一つの入力 端子を信号入力端子とし、他の入力端子の一つを、入力オフセット電圧を調整する ための電源に接続したことを特徴とする。
(9)上記(1)記載の CMOS増幅器は、上記(1)記載の第一の前記 CMOS増幅器に おいて、複数個の入力端子の内の一つを選択し、これと前記出力端子とを負帰還回 路を通して接続し、前記選択した端子以外の他の前記入力端子は基準電位に保ち
、負帰還増幅器を構成して前記出力端子にオフセット電圧調整電位を発生させ、前 記出力端子を前記第一の CMOS増幅器と同じ構成を有する第二の前記 CMOS増 幅器の、選択された入力端子に相当する入力端子に接続して前記第二の CMOS増 幅器の入力オフセット電圧を調整したことを特徴とする。
(10)上記(2)又は(3)記載の多入力 CMOS増幅器は、上記(2)又は(3)記載の第 一の前記多入力 CMOS増幅器おいて、複数個の入力端子の内の一つを選択し、こ れと前記出力端子とを負帰還回路を通して接続し、前記選択した端子以外の他の前 記入力端子は基準電位に保ち、負帰還増幅器を構成して前記出力端子にオフセッ ト電圧調整電位を発生させ、前記出力端子を前記多入力 CMOS増幅器と同じ構成 を有する第二の前記多入力 CMOS増幅器の、選択された入力端子に相当する入力 端子に接続して多入力 CMOS増幅器の入力オフセット電圧を調整したことを特徴と する。
(11)上記 (4)又は(5)記載の高利得多入力 CMOS増幅器は、上記 (4)又は(5)記 載の前記高利得多入力 CMOS増幅器において、複数個の入力端子の内の一つを 選択し、これと前記出力端子とを負帰還回路を通して接続し、前記選択した端子以 外の他の前記入力端子は基準電位に保ち、負帰還増幅器を構成して前記出力端子 にオフセット電圧調整電位を発生させ、前記出力端子を前記高利得多入力 CMOS 増幅器と同じ構成を有する前記高利得多入力 CMOS増幅器の、選択された入力端 子に相当する入力端子に接続して前記高利得多入力 CMOS増幅器の入力オフセ ット電圧を調整したことを特徴とする。
(12)高利得高安定多入力 CMOS増幅器は、上記(6)記載の前記 CMOS増幅器を 、反転出力を得、かつオープンループゲインを増大させるように奇数段従属接続した ことを特徴とする。
(13)高利得高安定多入力 CMOS増幅器は、上記(7)又は(8)記載の前記多入力 CMOS増幅器又は高利得多入力 CMOS増幅器を、反転出力を得、かつオープン ループゲインを増大させるように奇数段従属接続したことを特徴とする。
(14)上記(2)、(3)および(7)のいずれ力 1項記載の多入力 CMOS増幅器は、前記 入力端子を 3個以上とし、少なくとも一つの前記入力端子を信号入力に用い、他の前 記入力端子の一つを、入力オフセット電圧を調整するための入力端子とし、残りの前 記入力端子の一つを負帰還回路からの入力端子としたことを特徴とする。 (15)上記 (4)、 (5)および (8)のいずれ力 1項記載の高利得多入力 CMOS増幅器 は、前記入力端子を 3個以上とし、少なくとも一つの前記入力端子を信号入力に用 い、他の前記入力端子の一つを、入力オフセット電圧を調整するための入力端子と し、残りの前記入力端子の一つを負帰還回路からの入力端子としたことを特徴とする
(16)高安定多入力 CMOS増幅器は、上記(1)、(6)および(9)のいずれか 1項記載 の CMOS増幅器、上記(2)、(3)、(7)、(10)および(14)のいずれか 1項記載の多 入力 CMOS増幅器および上記(4)、(5)、(8)、(11)および(15)のいずれか 1項記 載の高利得多入力 CMOS増幅器のいずれか 1つの増幅器を複数個用い、それぞれ の出力端子を共通に接続して一つの出力端子としたことを特徴とする。
(17)高利得高安定多入力 CMOS増幅器は、上記(16)の高安定多入力 CMOS増 幅器の出力端子に、反転出力で、かつオープンループゲインを増大させるように上 記(1)、 (6)および(9)のいずれか 1項記載の CMOS増幅器、上記(2)、(3)、(7)、 (10)および(14)のいずれか 1項記載の多入力 CMOS増幅器および上記(4)、 (5) 、(8)、(11)および(15)のいずれ力 1項記載の高利得多入力 CMOS増幅器のいず れカゝ 1つの増幅器を複数個従属接続したことを特徴とする。
(18)多入力 CMOS差動増幅器は、
上記(1)、(6)および(9)のいずれか 1項記載の CMOS増幅器、上記(2)、(3)、 (7) 、(10)および(14)のいずれか 1項記載の多入力 CMOS増幅器、上記 (4)、(5)、 ( 8)、(11)および(15)のいずれ力 1項記載の高利得多入力 CMOS増幅器、上記(1 6)記載の高安定多入力 CMOS増幅器および上記( 12)、( 13)および( 17)のいず れカ 1項記載の高利得高安定多入力 CMOS増幅器のいずれか 1つの増幅器を奇 数段従属接続したものと、偶数段従属接続したもののぞれぞれの出力を、同相信号 除去比を高めるように共通に接続したことを特徴とする。
発明の効果
CMOSインバータは図 3の増幅器の記号で表すことにする。三角形の内部の入力 端子部分につけられて 、る「一」記号は反転出力が得られることを示して 、る。この場 合入力オフセット電圧を Vofsとすれば、小信号入力電圧 Vinに対し、出力電圧 Vout は、 Vout = — A( Vin - Vofs )で表せる。この増幅器の出力インピーダンス は小さくできるがゼロではなく有限の値 (これを簡単のため純抵抗とする)を有するの が普通である。さて、本発明ではこのような CMOSインバータ増幅器を複数個用意し 、各々の出力を接続して一つの出力端子とし、各入力はそれぞれ独立な複数個の入 力端子とする図 6に示す多入力 CMOS増幅器を構成する。具体的な回路図を簡単 のため n= 2の場合を例にとって、図 7に示す。図 6で、任意の j番目(j = l、 2、 ···.、 n )の多入力 CMOS増幅器のオープンループゲインを Aj、出力インピーダンスを Roj、 入力電圧を Vinj、入力オフセット電圧を Vofsjとすると、出力電圧 Voutは、
Vout = —K1*A1* (Vinl—Vofsl)—K2*A2* (Vin2—Vofs2)— ···· Kn*An* (Vinn— Vofsn) (η>1) ···· (1)
と表せる。
[0014] ここで、 K1、K2、 ···· 、Κηは
Kj = Roj/(Rol+Ro2H hRojH hRon)、 (j = l、 2、 · · ·、 n) である。 Kj(j = l、 2、 ···、、 n)は 1より小さいので、各入力から見たオープンループ ゲインは小さくなる。しかし、これは後段に同様な CMOSインバータ増幅器を従属接 続することで回避できる。さて、図 6で特に特性の同一の CMOSインバータ増幅器を 用いれば、
Vout = - (1/n) *A* ( Vin 1 -Vofs) - (1/n) *A* (Vin2— Vofs) - · ·· 一(lZn) *A* (Vinn— Vofs)、
Α=Α1=Α2=···=Αη; Vofs = Vofs 1 =Vofs2= · - - = Vofsn ···· (2) となり、各入力力 見たオープンループゲインは lZnとなる力 後段に同様 CMOS インバータ増幅器を従属接続、例えば図 8のように 2段目、 3段目を接続したとすると オープンループゲインは A * A * AZnとなる。 Aは通常 nよりは十分大き ヽと考えら れるのでこれにより十分大きなオープンループゲイン Gを有する高利得多入力 CMO S増幅器が得られる。以後、図 6や図 8など本発明の多入力 CMOS増幅器または高 利得多入力 CMOS増幅器を図 9に示す記号で統一して表すことにする。また、ォー プンループゲイン G、 A、 Al、 A2などは十分大きな値とする。
[0015] さて、このように複数個の入力端子を有する増幅器が得られたので、例えば図 10に 示すように 1番目の入力端子にこの多入力 CMOS増幅器または高利得多入力 CM OS増幅器の入力オフセット電圧をゼロ、すなわち他のすべての入力端子の入力電 圧が基準電位に等し 、時、出力電圧が基準電位となるような電位 Vaを与えることが 出来る。すなわち、式(1)から分力るように
Va = Vofsl + (K2 *A2 *Vofs2H hKn * An* Vofsn) / (Kl * A1) ·
· · (3)
とすれば良い。すなわち、一番目以外の入力端子全てに基準電位、 0Vを与えた時、 出力電圧を 0Vとすることが出来る。特に特性の同一な増幅器を用いた場合は、
Va = n *Vofs …(4)
とすれば良!、。その他の入力端子は高入力インピーダンスを有する信号入力端子と して用いることが出来る。図 10において、丸記号と Vaで上記 Vaなる電位を有する電 源、 GRDは基準電位の回路ノード、この場合は接地を示す。
上記のような、(3)式または(4)式で示した電位は同じ多入力 CMOS増幅器または 高利得多入力 CMOS増幅器を用いて発生させることが出来る。図 11に示されるよう に、例えば一番目の入力端子と出力端子とを負帰還回路を通して接続し負帰還増 幅器を構成し、その他、 2番目から n番目の入力端子を基準電位、この場合は接地電 位 (0V)に接続し、さらに負帰還回路のインピーダンス、 Zg、 Zfを調節してこの増幅 器の利得を (K1 *A1 — 1)Z(K1 *A1)とすると、出力電圧 Voutは
Vout = (Kl * Al * Vof s 1 +K2 * A2 * Vof s2 H hKn * An * Vofsn) /
( Kl水 Al)
となる。これは、(3)式の右辺に等しい。そこで、図 12に示すように、同じ回路構成の 多入力 CMOS増幅器または高利得多入力 CMOS増幅器である増幅器 1および増 幅器 2を用い、増幅器 1は図 11と同じ接続とし、その出力 Voutlを増幅器 2の 1番目 の入力に印加すれば、その増幅器 2の入力オフセット電圧をゼロにすることが出来る ことになる。これら二つの増幅器を同じ半導体チップ上に作製すれば、温度変化など による特性の変動は同じであるので極めて安定して入力オフセット電圧がゼロに調整 された増幅器が構成できる。さらに必要ならこれら入力オフセット電圧のゼロに調整さ れた増幅器を図 13のように多段接続して、動作範囲の安定した、かつオープンルー プゲインの極めて大きな高利得高安定多入力 CMOS増幅器を構成できる。この場 合、図に示したように後段の増幅器の入力端子数は 2でも十分であるし、あるいは、 入力オフセット調整用端子に用いた以外の入力端子を共通接続して前段の出力端 子と接続することでも良い。なお、図 13において、 Val、 Va2、および Va3で示した 電源はそれぞれの増幅器の、入力オフセット調整用電源であり、 GRDは基準電位の 回路ノードである。このように、多段接続された各増幅器の入力オフセット電圧が各 段でそれぞれ調整されていることは増幅器の出力電圧がどちらかの電源電圧にラッ チされてしまうなどの欠点を回避できるので重要である。なお、入力オフセット電圧の 増幅器全体の特性に及ぼす影響は後段の増幅器のものほど小さくなるので場合によ つては後段の入力オフセット電圧調整電源を省略することも出来る。これらの増幅器 も記号は図 9を用いることにする。
以上説明した多入力 CMOS増幅器または高利得多入力 CMOS増幅器または高 利得高安定多入力 CMOS増幅器において、 n> 2の場合は、他の入力端子の一つ を図 14のように破線で囲まれた部分の負帰還回路力もの帰還信号入力として用いる ことが出来る。なお、 Zfおよび Ziは負帰還回路を構成するインピーダンスであり、負 帰還回路の一例を示して 、る。
上記で述べた通常の絶縁ゲート電界効果トランジスタの代わりに P形、 N形の四端 子二重絶縁ゲート電界効果トランジスタ XTP1および XTN1を用い、図 15のように各 々の第二ゲートをしき!、値電圧調整用電源 Vptcおよび Vntcにそれぞれ接続して、 CMOSインバータ増幅器を構成することも出来る。この場合、しきい値電圧の絶対値 が大き 、増幅器はオープンループゲインが大き 、ので、多入力端子を有する上記各 種多入力 CMOS増幅器の初段を構成するのに用いると初段のオープンループゲイ ンの低下を軽減できる。しかし、しきい値電圧絶対値が大きい増幅器は負荷駆動能 力が低下するので、後段の増幅器はしきい値電圧の絶対値を小さくしてこれを補うよ うにする。最終段にこれを用いれば負荷駆動能力を高める効果は特に大きい。また、 しきい値電圧を動的に制御して、例えば、無信号時などの待機時や未使用時のとき はしきい値電圧の絶対値を大きくして、 CMOSインバータに流れる貫通電流を極め て/ Jヽさくすることが出来る。 [0018] しきい値電圧の制御は通常の絶縁ゲート電界効果トランジスタでも可能で、ボディ バイアスを可変にすることで出来る力 ソース、またはドレインとボディ間には PN接合 があることに注意しなければならない。すなわち、これをあまり順バイアスにすることが 出来ないのでしきい値電圧制御範囲が四端子二重絶縁ゲート電界効果トランジスタ を用いた場合より狭くなるし、ボディとソース間のリーク電流が増加する欠点を有する 。しかし、四端子二重絶縁ゲート電界効果トランジスタを用いればこの制限は軽減で きる利点がある。また、ゲートリーク電流は前者に比べて極めて小さくできる。
[0019] さらに、図 16のように P形、 N形の四端子二重絶縁ゲート電界効果トランジスタ XT PIおよび XTN1を用い、各々の第二ゲートを接続して、第二の入力端子とする増幅 器も構成できる。この場合、各四端子二重絶縁ゲート電界効果トランジスタ第一ゲー トと第二ゲートは同等と見なせる、あるいはそのように構成することができるので、図 1 6の増幅器の第一入力端子と第二入力端子力も見た特性は同等である。すなわち、 P形、 N形の四端子二重絶縁ゲート電界効果トランジスタそれぞれ一個で二入力の C MOS増幅器が構成でき、これは通常の絶縁ゲート電界効果トランジスタを用いた場 合より素子数が半分で済むと言う利点となる。この増幅器を上記で述べた、本発明の 通常の絶縁ゲート電界効果トランジスタの代わりに用いることができるのはもちろんで ある。図 16の回路構成を図 17の記号で表すことにする。そこで、図 18のように、一方 の入力端子に入力オフセット電圧調整用の電源 Vaを接続すれば、入力オフセット電 圧が調整された一入力の高安定 CMOS増幅器が構成できる。したがって、これを複 数個用い出力端子を共通にして接続すれば、図 19に示す入力オフセット電圧が調 整された高安定多入力 CMOS増幅器が構成できる。図において、 Val、 Va2、 · · · ·、 Vanはそれぞれの増幅器に対する入力オフセット電圧調整用の電源を示す。また 図 20のように、これらを多段従属接続すれば動作範囲の安定したオープンループゲ インの極めて大きな高利得高安定多入力 CMOS増幅器が構成可能である。初段に 図 19に示す高安定多入力 CMOS増幅器を用 、ても良 、こと無論である。
[0020] 上記では反転出力の各種多入力 CMOS増幅器のみを説明してきたが、非反転出 力を得るにはこれを偶数段接続すれば良い。
そこで、図 21 (簡単のため信号入力端子は一個の場合を示したが必要なら複数個 にしても良!ヽ)のように偶数段接続した増幅器 (図では 2個)と奇数段接続した増幅器 (図では一個)をそれぞれほぼ同じ十分大きなオープンループゲインとなるように調 整し、その出力を接続して新たな出力端子とすれば近似的な多入力差動増幅器が 得られる。
また、 CMOSインバータは最も高速で動作する回路であり、これを用いた増幅器は 高いカットオフ周波数を持たせることが出来る。また電源電圧が小さくても動作可能 であり、将来の素子微細化による電源電圧の低電圧化に対応し易いし、またより高い カットオフ周波数を有するように出来る。さらに、基本回路が同じ CMOSインバータで ある力もディジタル回路とアナログ回路の混載が容易である。 図面の簡単な説明
[図 1]従来の CMOSインバータ回路図である。
[図 2]図 1の回路の入力 出力特性図である。
[図 3]従来の CMOSインバータ回路の記号表示である。
[図 4]従来の反転増幅器回路図である。
[図 5]従来の負帰還回路を有する反転増幅器回路図である。
[図 6]本発明の CMOSインバータからなる多入力 CMOS増幅器回路図である。
[図 7]図 6の具体例の回路図である。
[図 8]図 6の回路の出力を増幅するようにした高利得多入力 CMOS増幅器回路図で ある。
[図 9]図 6および図 8の回路の記号表示図である。
[図 10]1つの入力端子に入力オフセット電圧調整用電圧を印加するようにした多入力 CMOS増幅器または高利得多入力 CMOS増幅器の回路図である。
[図 11]図 9において、負帰還回路を追加した回路図である。
[図 12]図 11の回路を用い入力オフセット電圧をゼロに調整した多入力 CMOS増幅 器または高利得多入力 CMOS増幅器回路図である。
[図 13]図 10または図 12の回路を多段積みした高利得高安定多入力 CMOS増幅器 増幅器回路図である。 [図 14]図 10において、負帰還回路を追加した多入力 CMOS増幅器または高利得多 入力 CMOS増幅器回路図である。
圆 15]四端子二重絶縁ゲート電界効果トランジスタを用いた CMOSインバータ回路 であって、それぞれの第 2ゲートをしきい値電圧調整用電源に接続した増幅器回路 図である。
圆 16]図 15の回路の両第 2ゲートを共通の入力端子に接続した増幅回路図である。
[図 17]図 16の記号表示図である。
[図 18]—方の入力端子に入力オフセット電圧調整用の電源 Vaを接続した図 16の回 路図である。
圆 19]入力オフセット電圧が調整された多入力 CMOS増幅器回路図である。
圆 20]各段の入力端子に入力オフセット電圧調整用の電源を接続した増幅器を多段 従属接続した回路図である。
圆 21]偶数段接続した増幅器と奇数段接続した増幅器をそれぞれほぼ同じ十分大き なオープンループゲインとなるように調整し、その出力を接続して新たな出力端子と した多入力 CMOS差動増幅器の回路図である。
符号の説明
TP1、TP2 : Ρ形絶縁ゲート電界効果トランジスタ
ΤΝ1、ΤΝ2 : Ν形絶縁ゲート電界効果トランジスタ
ΧΤΡ1、ΧΤΡ2 : Ρ形四端子絶縁ゲート電界効果トランジスタ
ΧΤΝ1、ΧΤΝ2 : Ν形四端子絶縁ゲート電界効果トランジスタ
+Vs、 -Vs : 正、負の電源の電圧
A、 Al、 A2、 · · ·、 An、 G :増幅器のオープンループゲイン、または単に利得 Vofs、 Vofsl、 Vofs2、 · · ·、 Vofsn:増幅器の入力オフセット電圧
Va、 Val、 Va2、 · · ·、 Van:入力オフセット電圧調整用電源の電位
Vin、 Vinl、 Vin2、 · · ·、 Vinn、: 増幅器の入力端子ある 、はその電位
Vinl l、 Vin21、 · · ·、 Vinnl:増幅器 1の各入力端子あるいはその電位
Vinl2、 Vin22、 · · ·、 Vinn2 :増幅器 2の各入力端子あるいはその電位
Vout、 Voutl、 Vout2 :増幅器の出力端子あるいはその電位 GRD : 接地
Zf、Zi、Zg : インピーダンス 発明を実施するための最良の形態
[0023] 本発明の実施の形態を図に基づいて詳細に説明する。
実施例
[0024] 本発明の第 1の実施例を図 6に示す。 P形および N形の絶縁ゲート電界効果トラン ジスタ TP1および TN1を用い、それぞれのドレインを接続して出力端子とし、 TP1の ソースは第一の電源に、また TN1のソースは第二の電源に接続し、またそれぞれの ゲート電極を接続して入力端子とする図 1の CMOSインバータを増幅器と見て図 2の 記号で表す CMOSインバータ増幅器複数個からなる増幅器であって、それぞれの C MOSインバータの入力端子を同複数個の入力端子として用い、またそれぞれの出 力端子を共通接続して一つの出力端子として用いて、複数個の入力端子と一つの 出力端子を有する多入力 CMOS増幅器を示して 、る。 図 7は個数を 2個とした場 合の具体的回路の例を示している。さらに、これら複数個の CMOSインバータをそれ ぞれ同等の特性、すなわち、 P形どうし N形どうしでそれぞれ同じ構造の絶縁ゲート 電界効果トランジスタを用いれば、各 CMOSインバータ増幅器は同等の特性 (例え ば、オープンループゲイン、入力オフセット電圧、電流駆動能力などに極端な違いが ないこと)となるので、それぞれ同等の特性の入力端子と見なせる多入力端子を有す る多入力 CMOS増幅器が得られる。上記において、第一の電源の電位を +Vss (Vs s >0)とし、第二の電源の電位を一 Vssとする二電源回路で示しているが一電源でも 差し支えない。図 6または図 7の場合、図示されてはいないが基準電位は接地 (GN D)の電位であり、その値は 0Vである。
[0025] また、上記のように構成した多入力 CMOS増幅器のオープンループゲインは、 CM OSインバータ増幅器のオープンループゲインよりも小さくなる力 本発明の第二の実 施例である図 8のように CMOSインバータ増幅器を複数段(図では 2段の場合を例示 する)従属接続すれば、十分な大きさのオープンループゲインを有する高利得多入 力 CMOS増幅器が得られる。ここで、初段の CMOSインバータを構成する各電界効 果トランジスタのしきい値電圧の絶対値を後段の CMOSインバータを構成する各電 界効果トランジスタのそれよりも大きくして、初段の各 CMOSインバータのオープンル ープゲインを高め、初段で用いた各 CMOSインバータの出力端子を共通接続したこ とによる初段のオープンループゲインの低下を軽減することが出来る。以上のようにし て得られた多入力、反転出力で、十分大きなオープンループゲイン Aを有する高利 得多入力 CMOS増幅器や図 6の多入力 CMOS増幅器を図 9に示す記号で表すこと にする。
[0026] 図 10は本発明の第三の実施例である。図 6の多入力 CMOS増幅器の入力端子の 任意の一つ、図 10では 1番目、をこの増幅器の入力オフセット電圧を調整するため の電源 Vaを接続するための端子として用いて 、る。入力オフセット電圧をゼロとする ように調整する場合、すなわち、他の全ての入力端子に基準電位 (0V)を与えた場 合に出力電圧も基準電位となるようにするには、例えば、式(3)または式 (4)に示し た電位に電源 Vaを調節すれば良い。また、別の電位を与えて意図的に入力オフセ ット電圧を大きくし、出力電圧が高電位から低電位に遷移する入力電圧範囲を変化 させることも出来る。そうすると、増幅器の機能を発揮させたり、停止させたりを制御で きることになる。また、以上の実施例では増幅器の動作点、すなわち入力および出力 の直流バイアス点は基準電位 (0V)であった。この直流バイアス点は基準電位以外 に設定することも可能である。例えば、図 2で出力電圧が +Vsから—Vsに変化し始 める部分など、入力電圧に対する出力電圧の変化が線形ではなぐ非線形性の強い ところに出力の直流バイアス点を設定し、二つの異なる信号周波数をもつ信号をそ れぞれの入力端子(同じ入力端子でも良いが、別々の方が入力回路に与える相互干 渉は少ない)に印加すれば、二つの信号のいわゆる混合器や周波数変換器として動 作させることが出来る。図 8の高利得多入力 CMOS増幅器の場合でも調整はより困 難となるが同様なことは出来る。
[0027] 図 12は本発明の第四の実施例を示す。同じ特性の図 6に示す多入力 CMOS増幅 器を 2個用い、一方の増幅器 1を図 11で示した負帰還増幅器として、負帰還信号入 力端子以外のすべての入力端子に基準電位 (この例では接地、 GRD電位)を与え 入力オフセット電圧調整のための電位発生に用い、これを他方の増幅器 2の対応す る入力端子、すなわち入力オフセット電圧調整用の端子に接続し、他の入力端子は 信号入力に用いる。
図 13は本発明の第五の実施例を示す。図 10または図 12の入力オフセット電圧を ゼロとするように調整された増幅器を奇数個用いて多段従属接続すれば、動作範囲 の安定した、かつ反転出力でオープンループゲインの極めて大きな高利得高安定多 入力 CMOS増幅器を構成できる。ただし、初段以外の増幅器の入力端子は 2個あ れば十分である。
図 14は本発明の第六の実施例を示す。以上述べた、本発明の実施例において、 入力端子数が 3個以上の場合、一つを入力オフセット電圧調整用の端子として用い 、他の一つを負帰還回路からの帰還信号入力に用い、さらに残りの入力端子を信号 入力に用いている。このようにすると、負帰還回路で定まる利得を有し、オフセット電 圧の調整された増幅器が構成できる。
[0028] 図 15は、通常の絶縁ゲート電界効果トランジスタの代わりに P形および N形の四端 子二重絶縁ゲート電界効果トランジスタ XTP 1および XTN 1を用い、それぞれの第一 ゲートを接続して入力端子とし、それぞれの第二ゲートはそれぞれのしきい値電圧を 調整するための電源、 Vptcおよび Vntcにそれぞれ接続してなる CMOSインバータ を構成した例を示している。この四端子二重絶縁ゲート電界効果トランジスタによる C MOSインバータを上記に述べた第一力 第六の実施例での CMOSインバータの代 わりに用いることも出来る。この場合、それぞれの四端子二重絶縁ゲート電界効果ト ランジスタのしき 、値電圧はその第二ゲートに印加する電位で制御できるので、ォー プンループゲインを各段で変化させたり、増幅器としての動作を停止させたりが出来 、またそのためのゲートリーク電流は通常の絶縁ゲート電界効果トランジスタのボディ ノィァス制御より少なぐ印加できる電圧範囲の極性による制限はな 、と 、う利点が ある。
[0029] 図 16は本発明の第七の実施例である。 P形および N形の四端子二重絶縁ゲート電 界効果トランジスタ XTP 1および XTN 1を用い、それぞれのドレインを接続して出力 端子 Voutとし、それぞれの第一ゲートを接続して第一の入力端子 Vinlとし、またそ れぞれの第二ゲートを接続して第二の入力端子 Vin2とし、さらに P形の四端子二重 絶縁ゲート電界効果トランジスタのソースは電位の高い第一の電源 +Vsに接続し、 N形の四端子二重絶縁ゲート電界効果トランジスタのドレインは電位の低 、第二の 電源—Vsに接続すれば、 P形および N形の四端子二重絶縁ゲート電界効果トランジ スタそれぞれ一個のみを用いて入力端子 2個の CMOS増幅器が得られる。この利点 は素子数の低減ができることにある。この構成の CMOS増幅器を第 1な 、し第 6の実 施例の従来の絶縁ゲート電界効果トランジスタによる多入力 CMOS増幅器と置き換 えることが出来き、それら各構成の素子数の低減が期待できる。
図 18は本発明の第八の実施例である。図 16および図 17の記号で示す二入力 C MOS増幅器の一方の入力端子を、入力オフセット電圧を調整する電源 Vaに接続し 、他方を信号入力に用いる四端子二重絶縁ゲート電界効果トランジスタによる高安 定 CMOS増幅器である。
図 19は本発明の第九の実施例である。図 18に示す四端子二重絶縁ゲート電界効 果トランジスタによる高安定 CMOS増幅器を複数個用い、各出力を共通に接続して 一つの新たな出力端子 Voutが構成され、同複数個の入力端子を有し、入力オフセ ット電圧が調整された四端子二重絶縁ゲート電界効果トランジスタによる高安定多入 力 CMOS増幅器である。
図 20は本発明の第十の実施例である。図 18の高安定 CMOS増幅器や図 19の高 安定多入力 CMOS増幅器を奇数個従属接続してオープンループゲインが増大され 、かつ反転出力で動作範囲の安定した高利得高安定多入力 CMOS増幅器を示す 。図では初段の信号入力端子は一つで、後段が高安定多入力 CMOS増幅器の場 合は信号入力端子は互いに接続して一入力とした場合を例として示す。
図 21は本発明の第十一の実施例を示す。以上の実施例では反転出力の CMOS 増幅器のみを説明してきたが、非反転出力を得るにはこれを偶数段接続すれば良い そこで、偶数段接続した増幅器 (図では 2個)と奇数段接続した増幅器 (図では一個 )をそれぞれほぼ同じ十分大きなオープンループゲインとなるように調整し、その出力 を接続して新たな出力端子とすれば近似的な CMOS差動増幅器が得られる。この 際、各段の入力オフセット電圧が調整されて 、る方が動作をより安定ィ匕できるので Va 1、 Va2、 Va3でそれぞれの増幅器のオフセット電圧を調整する例を示した。図では 信号入力端子が一個の場合を示したが必要なら複数個にして多入力 CMOS差動増 幅器とすることも出来る。
以上、 CMOS回路を基に説明した力 一般にインバータの利得さえ大きければ C MOS回路でなくても良い。例えば、抵抗などを N形四端子絶縁ゲート電界効果トラ ンジスタの負荷としてインバータを構成し、これを増幅器として用いても上記と同様な 回路を構成できる。ただし、 CMOSインバータ増幅器に比べて利得を大きくすること は負荷抵抗を高抵抗にしなければならず作製が困難であるし、出来たとしても抵抗 値の変動のため安定性に懸念がある。また周波数応答が悪くなる欠点がある。さらに 動作を止めるには N形四端子絶縁ゲート電界効果トランジスタをオフにする信号をあ たえるしかなぐ CMOS回路と比べて増幅器の動作の制御性に難点がある。

Claims

請求の範囲
[1] 第一の四端子二重絶縁ゲート電界効果トランジスタおよびそれとは導電形が反対の 第二の四端子二重絶縁ゲート電界効果トランジスタのそれぞれのドレインを接続して 出力端子とし、前記両トランジスタそれぞれの第一のゲート電極を接続して第一の入 力端子とし、前記両トランジスタそれぞれの第二のゲート電極を接続して第二の入力 端子とし、前記両トランジスタそれぞれのソースをそれぞれ第一の電源および第二の 電源に接続させたことを特徴とする CMOS増幅器。
[2] 前記 CMOS増幅器複数個からなる増幅器であって、それぞれの前記 CMOS増幅 器の入力端子をそれぞれ入力端子とし、それぞれの前記 CMOS増幅器の出力端子 を共通接続して一つの出力端子としたことを特徴とする多入力 CMOS増幅器。
[3] 前記 CMOS増幅器のそれぞれが同等の特性を有することを特徴とする請求項 2記 載の多入力 CMOS増幅器。
[4] 請求項 1記載の前記 CMOS増幅器又は請求項 2又は 3記載の前記多入力 CMOS 増幅器を初段とし、その初段の出力端子に反転出力を得、かつオープンループゲイ ンを増大させるように請求項 1記載の前記 CMOS増幅器又は請求項 2又は 3記載の 前記多入力 CMOS増幅器を偶数段接続したことを特徴とする高利得多入力 CMOS 増幅器。
[5] 前記初段の CMOS増幅器又は多入力 CMOS増幅器を構成する前記各 CMOS増 幅器の各絶縁ゲート電界効果トランジスタのしきい値電圧の絶対値を前記後段の前 記 CMOS増幅器を構成する各絶縁ゲート電界効果トランジスタのしきい値電圧の絶 対値よりも大きくしたことを特徴とする請求項 4記載の高利得多入力 CMOS増幅器。
[6] 少なくとも一つの入力端子を信号入力端子とし、他の入力端子の一つを、入力オフ セット電圧を調整するための電源に接続したことを特徴とする請求項 1記載の CMO S増幅器。
[7] 少なくとも一つの入力端子を信号入力端子とし、他の入力端子の一つを、入力オフ セット電圧を調整するための電源に接続したことを特徴とする請求項 2又は 3記載の 多入力 CMOS増幅器。
[8] 少なくとも一つの入力端子を信号入力端子とし、他の入力端子の一つを、入力オフ セット電圧を調整するための電源に接続したことを特徴とする請求項 4又は 5記載の 高利得多入力 CMOS増幅器。
[9] 請求項 1記載の第一の前記 CMOS増幅器において、複数個の入力端子の内の一 つを選択し、これと前記出力端子とを負帰還回路を通して接続し、前記選択した端子 以外の他の前記入力端子は基準電位に保ち、負帰還増幅器を構成して前記出力端 子にオフセット電圧調整電位を発生させ、前記出力端子を前記第一の CMOS増幅 器と同じ構成を有する第二の CMOS増幅器の、選択された入力端子に相当する入 力端子に接続して前記第二の CMOS増幅器の入力オフセット電圧を調整したことを 特徴とする請求項 1記載の CMOS増幅器。
[10] 請求項 2又は 3記載の第一の前記多入力 CMOS増幅器において、複数個の入力端 子の内の一つを選択し、これと前記出力端子とを負帰還回路を通して接続し、前記 選択した端子以外の他の前記入力端子は基準電位に保ち、負帰還増幅器を構成し て前記出力端子にオフセット電圧調整電位を発生させ、前記出力端子を前記多入 力 CMOS増幅器と同じ構成を有する第二の多入力 CMOS増幅器の、選択された入 力端子に相当する入力端子に接続して多入力 CMOS増幅器の入力オフセット電圧 を調整したことを特徴とする請求項 2又は 3記載の多入力 CMOS増幅器。
[11] 請求項 4又は 5記載の前記高利得多入力 CMOS増幅器において、複数個の入力端 子の内の一つを選択し、これと前記出力端子とを負帰還回路を通して接続し、前記 選択した端子以外の他の前記入力端子は基準電位に保ち、負帰還増幅器を構成し て前記出力端子にオフセット電圧調整電位を発生させ、前記出力端子を前記高利 得多入力 CMOS増幅器と同じ構成を有する高利得多入力 CMOS増幅器の、選択 された入力端子に相当する入力端子に接続して前記高利得多入力 CMOS増幅器 の入力オフセット電圧を調整したことを特徴とする請求項 4又は 5記載の高利得多入 力 CMOS増幅器。
[12] 請求項 6記載の前記 CMOS増幅器を、反転出力を得、かつオープンループゲインを 増大させるように奇数段従属接続したことを特徴とする高利得高安定多入力 CMOS 増幅器。
[13] 請求項 7又は 8記載の前記多入力 CMOS増幅器又は高利得多入力 CMOS増幅器 を、反転出力を得、かつオープンループゲインを増大させるように奇数段従属接続し たことを特徴とする高利得高安定多入力 CMOS増幅器。
[14] 前記入力端子を 3個以上とし、少なくとも一つの前記入力端子を信号入力に用い、 他の前記入力端子の一つを、入力オフセット電圧を調整するための入力端子とし、 残りの前記入力端子の一つを負帰還回路からの入力端子としたことを特徴とする請 求項 2、 3および 7のいずれ力 1項記載の多入力 CMOS増幅器。
[15] 前記入力端子を 3個以上とし、少なくとも一つの前記入力端子を信号入力に用い、 他の前記入力端子の一つを、入力オフセット電圧を調整するための入力端子とし、 残りの前記入力端子の一つを負帰還回路からの入力端子としたことを特徴とする請 求項 4、 5および 8の!、ずれ力 1項記載の高利得多入力 CMOS増幅器。
[16] 請求項 1、 6および 9のいずれ力 1項記載の CMOS増幅器、請求項 2、 3、 7、 10およ び 14のいずれ力 1項記載の多入力 CMOS増幅器および請求項 4、 5、 8、 11および 15のいずれ力 1項記載の高利得多入力 CMOS増幅器のいずれ力 1つの増幅器を 複数個用い、それぞれの出力端子を共通に接続して一つの出力端子としたことを特 徴とする高安定多入力 CMOS増幅器。
[17] 請求項 16の高安定多入力 CMOS増幅器の出力端子に、反転出力で、かつオーブ ンループゲインを増大させるように請求項 1、 6および 9のいずれ力 1項記載の CMO S増幅器、請求項 2、 3、 7、 10および 14のいずれ力 1項記載の多入力 CMOS増幅 器および請求項 4、 5、 8、 11および 15のいずれ力 1項記載の高利得多入力 CMOS 増幅器のいずれか 1つの増幅器を複数個従属接続したことを特徴とする高利得高安 定多入力 CMOS増幅器。
[18] 請求項 1、 6および 9のいずれ力 1項記載の CMOS増幅器、請求項 2、 3、 7、 10およ び 14のいずれ力 1項記載の多入力 CMOS増幅器、請求項 4、 5、 8、 11および 15の いずれか 1項記載の高利得多入力 CMOS増幅器、請求項 16記載の高安定多入力 CMOS増幅器および請求項 12、 13および 17のいずれか 1項記載の高利得高安定 多入力 CMOS増幅器のいずれか 1つの増幅器を奇数段従属接続したものと、偶数 段従属接続したもののぞれぞれの出力を、同相信号除去比を高めるように共通に接 続したことを特徴とする多入力 CMOS差動増幅器。
PCT/JP2006/319758 2005-10-14 2006-10-03 四端子二重絶縁ゲート電界トランジスタを用いたcmos増幅器、それを用いた多入力cmos増幅器、高利得多入力cmos増幅器、高利得高安定多入力cmos増幅器および多入力cmos差動増幅器 WO2007043389A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005299626A JP4784818B2 (ja) 2005-10-14 2005-10-14 四端子二重絶縁ゲート電界トランジスタを用いたcmos増幅器、それを用いた多入力cmos増幅器、高利得多入力cmos増幅器、高利得高安定多入力cmos増幅器および多入力cmos差動増幅器
JP2005-299626 2005-10-14

Publications (1)

Publication Number Publication Date
WO2007043389A1 true WO2007043389A1 (ja) 2007-04-19

Family

ID=37942633

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/319758 WO2007043389A1 (ja) 2005-10-14 2006-10-03 四端子二重絶縁ゲート電界トランジスタを用いたcmos増幅器、それを用いた多入力cmos増幅器、高利得多入力cmos増幅器、高利得高安定多入力cmos増幅器および多入力cmos差動増幅器

Country Status (2)

Country Link
JP (1) JP4784818B2 (ja)
WO (1) WO2007043389A1 (ja)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009064682A2 (en) * 2007-11-16 2009-05-22 Allegro Microsystems, Inc. Electronic circuits for driving series connected light emitting diode strings
US7675245B2 (en) 2007-01-04 2010-03-09 Allegro Microsystems, Inc. Electronic circuit for driving a diode load
US7999487B2 (en) 2008-06-10 2011-08-16 Allegro Microsystems, Inc. Electronic circuit for driving a diode load with a predetermined average current
US8692482B2 (en) 2010-12-13 2014-04-08 Allegro Microsystems, Llc Circuitry to control a switching regulator
US8957607B2 (en) 2012-08-22 2015-02-17 Allergo Microsystems, LLC DC-DC converter using hysteretic control and associated methods
US8994279B2 (en) 2013-01-29 2015-03-31 Allegro Microsystems, Llc Method and apparatus to control a DC-DC converter
US9144126B2 (en) 2012-08-22 2015-09-22 Allegro Microsystems, Llc LED driver having priority queue to track dominant LED channel
US9155156B2 (en) 2011-07-06 2015-10-06 Allegro Microsystems, Llc Electronic circuits and techniques for improving a short duty cycle behavior of a DC-DC converter driving a load
US9265104B2 (en) 2011-07-06 2016-02-16 Allegro Microsystems, Llc Electronic circuits and techniques for maintaining a consistent power delivered to a load

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011039846A1 (ja) * 2009-09-29 2011-04-07 株式会社 東芝 乱数生成回路
KR101251832B1 (ko) 2011-07-13 2013-04-09 삼성전기주식회사 저항 공유 스위칭 회로

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05291841A (ja) * 1992-04-13 1993-11-05 New Japan Radio Co Ltd 増幅回路
JPH0676089A (ja) * 1992-08-25 1994-03-18 Takayama:Kk 平均値回路

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4255564B2 (ja) * 1999-04-05 2009-04-15 誠 石田 増幅回路
KR100366616B1 (ko) * 1999-05-19 2003-01-09 삼성전자 주식회사 저전압 인터페이스용 고속 입력버퍼 회로
JP2003078355A (ja) * 2001-09-05 2003-03-14 Mitsubishi Electric Corp ミキサ回路
JP3811152B2 (ja) * 2003-09-30 2006-08-16 株式会社東芝 演算増幅器並びにこれを用いたサンプルホールド回路及びフィルタ回路
JP4122439B2 (ja) * 2004-03-11 2008-07-23 独立行政法人産業技術総合研究所 二重絶縁ゲート電界効果トランジスタを用いたcmos回路

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05291841A (ja) * 1992-04-13 1993-11-05 New Japan Radio Co Ltd 増幅回路
JPH0676089A (ja) * 1992-08-25 1994-03-18 Takayama:Kk 平均値回路

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
BECKETT P.: "Low-power spatial computing using dynamic threshold devices", IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS, vol. 3, 23 May 2005 (2005-05-23) - 26 May 2005 (2005-05-26), pages 2345 - 2348, XP003011725 *

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7675245B2 (en) 2007-01-04 2010-03-09 Allegro Microsystems, Inc. Electronic circuit for driving a diode load
US8274238B2 (en) 2007-01-04 2012-09-25 Allegro Microsystems, Inc. Electronic circuit for driving a diode load
WO2009064682A2 (en) * 2007-11-16 2009-05-22 Allegro Microsystems, Inc. Electronic circuits for driving series connected light emitting diode strings
WO2009064682A3 (en) * 2007-11-16 2010-02-04 Allegro Microsystems, Inc. Electronic circuits for driving series connected light emitting diode strings
US8169161B2 (en) 2007-11-16 2012-05-01 Allegro Microsystems, Inc. Electronic circuits for driving series connected light emitting diode strings
US8653756B2 (en) 2007-11-16 2014-02-18 Allegro Microsystems, Llc Electronic circuits for driving series connected light emitting diode strings
US9320094B2 (en) 2007-11-16 2016-04-19 Allegro Microsystems, Llc Electronic circuits for driving series connected light emitting diode strings
US9007000B2 (en) 2007-11-16 2015-04-14 Allegro Microsystems, Llc Electronic circuits for driving series connected light emitting diode strings
US7999487B2 (en) 2008-06-10 2011-08-16 Allegro Microsystems, Inc. Electronic circuit for driving a diode load with a predetermined average current
US8692482B2 (en) 2010-12-13 2014-04-08 Allegro Microsystems, Llc Circuitry to control a switching regulator
US9337727B2 (en) 2010-12-13 2016-05-10 Allegro Microsystems, Llc Circuitry to control a switching regulator
US9155156B2 (en) 2011-07-06 2015-10-06 Allegro Microsystems, Llc Electronic circuits and techniques for improving a short duty cycle behavior of a DC-DC converter driving a load
US9265104B2 (en) 2011-07-06 2016-02-16 Allegro Microsystems, Llc Electronic circuits and techniques for maintaining a consistent power delivered to a load
US9144126B2 (en) 2012-08-22 2015-09-22 Allegro Microsystems, Llc LED driver having priority queue to track dominant LED channel
US8957607B2 (en) 2012-08-22 2015-02-17 Allergo Microsystems, LLC DC-DC converter using hysteretic control and associated methods
US8994279B2 (en) 2013-01-29 2015-03-31 Allegro Microsystems, Llc Method and apparatus to control a DC-DC converter

Also Published As

Publication number Publication date
JP2007110460A (ja) 2007-04-26
JP4784818B2 (ja) 2011-10-05

Similar Documents

Publication Publication Date Title
WO2007043389A1 (ja) 四端子二重絶縁ゲート電界トランジスタを用いたcmos増幅器、それを用いた多入力cmos増幅器、高利得多入力cmos増幅器、高利得高安定多入力cmos増幅器および多入力cmos差動増幅器
JP3388721B2 (ja) 差動増幅器及び差動増幅器を補償する方法
US7956597B2 (en) Reference buffer circuits for providing reference voltages
US7973596B2 (en) Low-noise, low-power, low drift offset correction in operational and instrumentation amplifiers
US7719345B2 (en) Reference buffer circuits
US6518906B2 (en) Use of current folding to improve the performance of a current -steered DAC operating at low supply voltage
US20100283527A1 (en) Analog Switch
US7999617B2 (en) Amplifier circuit
JP4699856B2 (ja) 電流発生回路及び電圧発生回路
US7795975B2 (en) Class AB amplifier
US20120126895A1 (en) Variable gain amplifier with fixed bandwidth
US20080169847A1 (en) Driver and driver/receiver system
US9136806B2 (en) Amplifier circuit
TW201838327A (zh) 跨導放大器
US7688145B2 (en) Variable gain amplifying device
JP5375422B2 (ja) 半導体電子回路、発振回路およびフリップフロップ回路
JP2007180796A (ja) 差動増幅回路
JP4686758B2 (ja) 絶縁ゲート電界効果トランジスタを用いた多入力cmos増幅器と、それを用いた高利得多入力cmos増幅器、高安定多入力cmos増幅器、高利得高安定多入力cmos増幅器、多入力cmos差動増幅器
JP2008278298A (ja) アナログ信号選択回路
JP4725472B2 (ja) 引き算回路および演算増幅器
US20200212857A1 (en) Methods and apparatus for an operational amplifier with a variable gain-bandwidth product
US7327193B2 (en) Method for setting an amplifier, and corresponding amplifier circuit
JP2005328464A (ja) 増幅器及びこれを用いた液晶ディスプレイ装置
JP2004180268A (ja) 増幅回路及びこれを用いた液晶ディスプレイ装置
JP2008011051A (ja) 差動演算増幅器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06811106

Country of ref document: EP

Kind code of ref document: A1