WO2007042687A1 - Empilement de couches minces a basse emissivite ('low-e') - Google Patents

Empilement de couches minces a basse emissivite ('low-e') Download PDF

Info

Publication number
WO2007042687A1
WO2007042687A1 PCT/FR2006/050796 FR2006050796W WO2007042687A1 WO 2007042687 A1 WO2007042687 A1 WO 2007042687A1 FR 2006050796 W FR2006050796 W FR 2006050796W WO 2007042687 A1 WO2007042687 A1 WO 2007042687A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
zno
barrier
weight
layers
Prior art date
Application number
PCT/FR2006/050796
Other languages
English (en)
Inventor
Lars Ilho
Uwe Schmidt
Matthias Kuhne
Heinz Schicht
Original Assignee
Saint-Gobain Glass France
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Saint-Gobain Glass France filed Critical Saint-Gobain Glass France
Publication of WO2007042687A1 publication Critical patent/WO2007042687A1/fr

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • C03C17/36Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • C03C17/36Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal
    • C03C17/3602Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer
    • C03C17/3618Coatings of type glass/inorganic compound/other inorganic layers, at least one layer being metallic
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • C03C17/36Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal
    • C03C17/3602Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer
    • C03C17/3644Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer the metal being silver
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • C03C17/36Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal
    • C03C17/3602Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer
    • C03C17/3652Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer the coating stack containing at least one sacrificial layer to protect the metal from oxidation
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • C03C17/36Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal
    • C03C17/3602Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer
    • C03C17/3657Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer the multilayer coating having optical properties
    • C03C17/366Low-emissivity or solar control coatings

Definitions

  • the invention relates to a low-E (low-E) and high thermal resistance layer system for transparent substrates, in particular for windows, which has in the order a lower antireflection coating, consisting of a layer or a plurality of partial layers, a silver-based functional layer, a barrier coating above the functional layer, an upper antireflection coating consisting of one or more partial layers, and a covering layer consisting of a layer or several partial layers, the layers being deposited by vacuum spraying.
  • a lower antireflection coating consisting of a layer or a plurality of partial layers
  • a silver-based functional layer a barrier coating above the functional layer
  • an upper antireflection coating consisting of one or more partial layers
  • a covering layer consisting of a layer or several partial layers, the layers being deposited by vacuum spraying.
  • high thermal resistance layer systems layer systems that resist without being destroyed at the temperatures of about 600 to 750 0 C required for bending or tempering the glass and without their essential properties, namely high transmission in the visible range of the spectrum, high reflection in the range of thermal radiation, low dispersion, high color neutrality, high mechanical strength and high chemical resistance are compromised.
  • the antireflection layers consist of Si 3 N 4 which are separated from the silver functional layer by a thin layer of NiCr sacrificed metal.
  • Systems of layers which have these structures are described for example in the documents EP 0 567 735 B1, EP 0 717 014 B1, EP 0 771 766 B1, EP 0 646 551 B1 and EP 0 796 825 B1.
  • These layer systems are very thermally stable, but their manufacture is made very expensive by the known problems of spraying.
  • layer systems consisting at least in part of oxidized layers are advantageous.
  • various layer systems are known in which at least one antireflection layer or a partial layer of an antireflection coating consists of mixed oxides of a titanium alloy. This oxidized antireflection layer is generally performed by reactive sputtering of a target made of a titanium alloy.
  • EP 0 718 250 B1 discloses dipping layer systems which have oxide, nitride or carbide antireflection layers in which a barrier metal layer is arranged on the functional layer.
  • silver and may consist of Nb, Ta, Ti, Cr or Ni or an alloy of at least two of these metals.
  • the barrier layer will preferably consist of NbTa, NbCr, TaCr or NiCr.
  • the barrier layer located above the silver layer contains chemically bonded hydrogen and is made of Ti or an alloy of Ti and Zn and / or Al.
  • the covering coating consists of ZnO: Al / TiO 2 , ZnO: Al / Ti, Zn x Sn y O z / TiO 2 , Zn x Sn y O z / Ti, Zn x Ti y Al z O r , Ti x Al y O z , Ti x Al y , Ti x Al y N z , Ti x Al y O z N r , TiN, Ti, Zn x Sn y Sb z O r / TiO 2 , Zn x Sn y Sb z O r Or Ti or Zn x Sn y Al z O r / TiO 2 .
  • the functional layer contains a silver alloy which contains, as components Al, Ti, W, Ta, Zr, Hf, Ce, V, Ni, Cr, Zn or Nb, or a mixture of these metals. Above this functional layer is disposed a barrier layer made of Nb or an alloy or mixture of Ni and Cr.
  • a dielectric intermediate layer consisting of an oxide, nitride or oxynitride of a metal other than that of the barrier layer, in particular Ti, Ta, Zr, Al or Si or a mixture of these metals, being disposed on this barrier layer; .
  • DE 101 05 199 discloses a high thermal resistance layer structure in which a metal nitride layer, for example Si 3 N 4 or AlN, is arranged between the silver functional layer and the Cr-barrier metal layer. , Ni, Al, Ti, Mg, Mn, Si, Zn or Cu or an alloy of these metals.
  • a metal nitride layer for example Si 3 N 4 or AlN
  • DE 101 52 211 C1 discloses a layer structure which contains a mixed oxide layer which is prepared by reactive sputtering of a metal alloy target of 10 to 60 wt. 40% by weight of Zn and 0.5 to 8% by weight of one or more of metals Al, Ga and Sb.
  • This mixed oxide layer may be a lower and / or upper antireflection layer or a partial layer of antireflection coating lower and / or higher, but also the covering layer itself.
  • EP 0 304 234 B1 discloses a layer structure which does not have a high thermal resistance, for a window, in which the barrier layer is made of titanium and in which several layers of metal oxide are arranged at above the barrier metal layer, a layer consisting of an oxide of Ti, Zr, Hf or a mixture thereof being disposed between two layers of an oxide of Zn, Sn, In or Bi or a mixture of these metals.
  • DE 195 20 843 A1 discloses a layer system which can not be tempered and in which a titanium alloy can be placed on the silver layer as a barrier layer.
  • the barrier layer is a metal layer or a sub-stoichiometric oxide layer of a mixture of Ti, Cr and Nb.
  • the layer system described in DE 103 33 619 B3 is also part of diaper systems which can not be dipped.
  • the cover layer is a mixed oxide layer of TiZrHfO x .
  • the mixed oxide layer is deposited by reactive sputtering in a working gas atmosphere of Ar and O 2.
  • the invention is based on a system of layers with high thermal resistance which has the fundamental structure indicated at the beginning.
  • the problem underlying the invention is to further improve the properties of this layer system and in particular to further increase the transmission in the visible range, to further reduce the surface resistance and therefore the emission values and achieve reflection values as high as possible in the range of thermal radiation. According to the invention, this problem is solved with the features mentioned in claim 1.
  • the barrier coating thus comprises, according to the invention, a barrier layer disposed above and in contact with the functional layer which is a metal or slightly nitrided layer of a titanium alloy consisting of 50 to 97% by weight of Ti and of 3 at 50% by weight of one or more of the metals Cr, Fe, Zr and Hf and which comprises in particular chromium.
  • the barrier layer according to the invention then becomes at least partially oxidized.
  • the barrier layer according to the invention allows a notable improvement of the properties, in particular transmission values in the visible range of the spectrum, while retaining high values of reflection in the range of thermal radiation.
  • the lower antireflection coating comprises a wetting layer consisting essentially of ZnO to which the functional layer is connected.
  • the barrier layer is transformed into a particularly regular mixed oxide or mixed oxynitride layer.
  • the titanium which constitutes the main component of the alloy and the Cr, Fe, Zr, Al and Hf alloy additives have quite similar formation enthalpies during the oxidation and possibly ionic rays. comparable for the oxidation stages present.
  • the formation enthalpies are from -940 to -1 145 kJ / mole and the ionic radii of the various oxides are from 0.63 to 0.75 ⁇ .
  • titanium alloys consisting of 55 to 60% by weight of Ti, 35 to 45% by weight of Zr and 1 to 5% by weight of Hf are preferably used.
  • the Hf can thus be considered as a dopant.
  • the barrier layer according to the invention preferably has a thickness of 1 to 5 nm.
  • An advantageous development of the invention consists in placing on the metallic or slightly nitrided barrier layer an additional sub-oxidized barrier layer with a thickness of 1 to 3 nm deposited by sputtering a titanium alloy.
  • the barrier coating thus comprises an additional sub-oxidized layer of a titanium alloy and of a thickness of 1 to 3 nm disposed above the metallic or weakly nitrided barrier layer.
  • the titanium alloy used for the barrier layer in contact with the silver-based functional layer can also be used particularly advantageously for the top layer or the upper partial layer of the covering layer of the layer system. in a nitrided or oxynitrided compound and regardless of the use or otherwise of the barrier coating according to the invention.
  • the strongly absorbing nitride layer is converted into a weakly absorbing layer and thus free from visible defects.
  • the main component of the TiN is indeed completely oxidized to TiO 2 , and the other nitrided components, for example CrN, ZrN or AlN, are transformed into less strongly absorbing oxynitride structures.
  • This nitrided cover layer therefore acts as an oxygen trap in the heat treatment operation, so that less oxygen diffuses into the layer system and the barrier layer itself can thus be thinner.
  • the covering coating may thus comprise a nitrided or oxynitrided layer of a titanium alloy consisting of 50 to 97% by weight of Ti and 3 to 50% by weight of one or more of the metals Cr, Fe, Zr, Al and Hf.
  • the system of low emissivity and high thermal resistance layers for transparent substrates, in particular for windows, comprises a lower antireflection layer, oxidized, possibly consisting of several partial layers, a layer consisting essentially of ZnO to which is connected a silver functional layer, a substantially metallic barrier layer of a titanium alloy disposed above the silver layer, an upper antireflection layer optionally consisting of several partial layers and a covering layer possibly consisting of several partial layers, the layers being applied by vacuum spraying, the barrier layer disposed above the functional layer being a metal or slightly nitrided layer of a titanium alloy consisting of 50 to 97% by weight of Ti and of 3 50% by weight of one or more Cr, Fe, Zr and Hf metals.
  • the layer system according to the invention can in particular have the following advantageous structures: glass / SnO 2 / ZnO: Al / Zn / Ag / TiZrHfN 7 / ZnO: Al / Si 3 N 4 / ZnSnSbO x / Zn 2 TiO 4 .
  • the present invention also relates, of course, to the transparent substrate, flat or curved, provided with the layer system according to the invention, in particular when the substrate has the form of a glass tempered thermally after the deposition of the layer system.
  • compositions of the layer system as well as the preferred thickness ranges of the individual layers are apparent from the dependent claims and the following exemplary embodiments.
  • the invention is described in more detail with the aid of two exemplary embodiments which are compared with two comparative examples of the state of the art. Since the arrangements according to the invention optimize the optical and energetic properties in particular, the assessment of the quality of the layers is based essentially on the measurements of the scattered light, the surface resistance and the emissivity. Therefore, to evaluate the properties of the layers, the measurements and tests given below are carried out on the coated panes.
  • E. Measurement of the emissivity (E n ) in% with the MK2 measuring instrument from Sten Lofring. After measuring 1 emissivity is calculated emissivity values d 1 using the surface resistance values by the formula E 0.0106 x n R (see H.-J. Glaser. "Dunnfilmtechnologie auf Flachglas” Verlag Karl Hofmann 1999, p. 144) and the measured values E n are compared with the calculated values E * n . The smaller the difference between the measured values E n and the calculated values E * n , the better the thermal stability of the layer system.
  • specimens 40 x 50 cm cut in the central portion of coated glass with a thickness of 4 mm are used.
  • the test pieces are heated to a temperature of 720 to 730 ° C. in a quenching furnace of the EFKO firm, type 47067, and then quenched thermally by sudden cooling in air. In this way, all the specimens undergo the same thermal stress.
  • the layer system according to the invention achieves its best values in terms of thermal insulation, infrared reflection and transmission of light on windows after the heat treatment of the substrates. on which it is deposited (quenching).
  • the diffusion barrier layer also plays a key role in heat treatments.
  • the layer system described here can be used commercially with slight thermal insulation defects and light transmission even without having been heat treated, and therefore particularly on non-tempered glass, on plastic windows and also on movies.
  • the following embodiments however, all relate to the use of the layer system on substrates made of thermally hardened glass panes.
  • compositional data of the individual layers which follow when oxygen contents are denoted by O x and nitrogen by N y , are meant compounds whose degree Oxidation or nitriding is not clearly defined because the corresponding layers are not completely oxidized or nitrided.
  • These contents are established in a manner known per se during production in vacuum coating plants via the ratio between argon and oxygen or between argon and nitrogen.
  • a layer is completely oxidized or completely nitrided at a content of> 50% O 2 or N 2 in the working gas (with Ar), partially oxidized or partially nitrided at 30% C> 2 or N 2 in the working gas.
  • a layer is weakly oxidized or nitrided at about 5% C> 2 or N 2 in the working gas.
  • a low-emissivity layer system is deposited which corresponds to the state of the art (DE 102 35 154 B4) on float glass panes of 4 mm thickness, the figures which precede the chemical symbols indicating for each layer the thickness in nm:
  • the ZnO: Al layers are obtained by sputtering a metal target of ZnAl at 2% Al.
  • the thin layer of metallic Zn is deposited by sputtering the same target material but under nonreactive conditions.
  • the barrier layer disposed on the silver layer is deposited by sputtering a metal target which contains 64% by weight of Ti and 36% by weight of Al in a gas mixture.
  • Ar / H 2 work (90/10% by volume). In TiHi, 1 can be between 1 and 2, including these limits.
  • the upper antireflection layer is deposited by reactive sputtering of an Si target in a working gas mixture of Ar / N 2 .
  • the lower cover layer is made by sputtering a metal target of a ZnSnSb alloy containing 68% by weight of Zn, 30% by weight of Sn and 2% by weight of Sb in an Ar / O 2 working gas. and the upper overcoat layer (final layer) is deposited by reactive sputtering of a metal target into a ZnTi alloy at 73% by weight of Zn and 27% by weight of Ti.
  • test pieces After quenching, the test pieces are optically transparent, but a slightly white edge is observed on the edges. On the quenched test pieces of this comparative example, the following values are determined:
  • the quenched specimens are optically transparent, but these specimens also have a white edge on their edges.
  • the difference between the calculated emissivity and the measured emissivity of 0.9% is relatively high.
  • the modification compared with Comparative Example 1 is that instead of the barrier layer which contains hydrogen, a nitrided barrier layer according to the invention is used.
  • the metal target for producing the barrier layer consists of an alloy of 57.6% by weight of Ti, 41.4% by weight of Zr and 1.0% by weight of Hf.
  • the barrier layer is deposited by sputtering in a working gas of Ar / N 2, the N 2 content is only 5% by volume, whereby a low nitriding.
  • test pieces are quenched in the same manner as the test pieces of the comparative examples. Measurements made on the coated and quenched specimens give the following values:
  • Thickness d of the silver layer 11.7 nm
  • the specimens are optically transparent over their entire surface and without defects even in their borders.
  • the good visual appearance corresponds to the measured proportion of scattered light, which is only 0.17%.
  • the emissivity decreases by 5.5% for the two comparative examples to 3.6%.
  • the difference E n - E * n which is a measure of the thermal stability of the layer system, is much smaller.
  • nitrogen (N) can be detected by the SIMS method.
  • the covering coating consisting of the 3n ZnSnSbO x overlap layer and the 2nm Zn 2 TiO 4 top cover layer is replaced by a covering layer according to the invention, in mixed nitride
  • the specimens are again optically transparent over their entire surface and flawless, even in their borders.
  • the difference E n - E * n which is a measure of the thermal stability of the layer system, is significantly smaller than the values obtained for the comparative examples.
  • the slight decrease in transmission can be explained by residues of the ZrN and HfN absorbent components in the cover layer.
  • This layer system corresponds to the layer system of the embodiment example 1, but here, there is disposed directly on the barrier metal layer an additional barrier layer deposited under partially oxidizing conditions from a titanium alloy.
  • a target of a titanium alloy which contains 10% by weight of Cr has been found to be particularly suitable.
  • the layer system has the following structure:
  • the measurements made on the quenched specimens give the same values as in the embodiment example 1.
  • the dispersion of the emissivity values is significantly improved; whereas in the embodiment example 1, measuring values between 3.2 and 3.8%, the values measured in this embodiment 3 are 3.5% and 3.6%.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Surface Treatment Of Glass (AREA)

Abstract

Un système de couches à basse émissivité ('Low-E') à haute résistance thermique pour substrats transparents, en particulier pour vitres, comporte un revêtement antireflet inférieur, constitué d'une couche ou de plusieurs couches partielles, une couche fonctionnelle à base d'argent, une couche barrière disposée au-dessus de la couche fonctionnelle, un revêtement antireflet supérieur constitué d'une couche ou de plusieurs couches partielles et un revêtement de recouvrement constitué d'une couche ou de plusieurs couches partielles, les couches étant déposées par pulvérisation sous vide, le revêtement barrière comportant une couche barrière disposée au-dessus de la couche fonctionnelle qui est une couche métallique ou faiblement nitrurée d'un alliage de titane constitué de 50 à 97 % en poids de Ti et de 3 à 50 % en poids d'un ou de plusieurs des métaux Cr, Fe, Zr et Hf, cette couche barrière étant au moins partiellement oxydée après un éventuel traitement thermique.

Description

EMPILEMENT DE COUCHES MINCES À BASSE ÉMISSIVITÉ
("LOW-E")
L'invention concerne un système de couches à faible émissivité ("Low-E") et haute résistance thermique pour des substrats transparents, en particulier pour des vitres, qui présente dans l'ordre un revêtement antireflet inférieur, constitué d'une couche ou de plusieurs couches partielles, une couche fonctionnelle à base d'argent, un revêtement barrière au-dessus de la couche fonctionnelle, un revêtement antireflet supérieur constitué d'une couche ou de plusieurs couches partielles et un revêtement de recouvrement constitué d'une couche ou de plusieurs couches partielles, les couches étant déposées par pulvérisation sous vide.
Par systèmes de couches à haute résistance thermique, on entend des systèmes de couches qui résistent sans être détruits aux températures d'environ 600 à 7500C nécessaires pour une opération de bombage ou de trempe du verre et sans que leurs propriétés essentielles, à savoir une transmission élevée dans la plage visible du spectre, une réflexion élevée dans la plage du rayonnement thermique, une faible dispersion, une haute neutralité de la teinte, une haute résistance mécanique et une haute résistance chimique soient compromises.
On connaît différents modes de réalisation de systèmes de couches à haute résistance thermique. Dans un premier groupe de systèmes de couches à haute résistance thermique, les couches antireflets sont constituées de Si3N4 qui sont séparées de la couche fonctionnelle en argent par une mince couche de métal sacrifié en NiCr. Des systèmes de couches qui présentent ces structures sont décrits par exemple dans les documents EP 0 567 735 Bl, EP 0 717 014 Bl, EP 0 771 766 Bl, EP 0 646 551 Bl et EP 0 796 825 Bl. Ces systèmes de couches sont très stables thermiquement, mais leur fabrication est rendue très coûteuse par les problèmes connus que pose la pulvérisation.
Comme la plupart des couches oxydées peuvent être pulvérisées avec moins de problème que les couches nitrurées et que leur fabrication est plus économique, les systèmes de couches constitués au moins en partie de couches oxydées sont avantageux. Parmi les systèmes de couches de ce type, on connaît différents systèmes de couches dans lesquels au moins une couche antireflet ou une couche partielle d'un revêtement antireflet est constituée d'oxydes mixtes d'un alliage de titane. Cette couche antireflet oxydée est en général réalisée par pulvérisation réactive d'une cible constituée d'un alliage de titane.
Par le document EP 0 718 250 Bl, on connaît des systèmes de couches aptes à être trempés, qui présentent des couches antireflet à base d'oxyde, de nitrure ou de carbure, dans lesquels une couche métallique barrière est disposée sur la couche fonctionnelle en argent et peut être constituée de Nb, Ta, Ti, Cr ou Ni ou encore d'un alliage d'au moins deux de ces métaux. Dans ce cas, la couche barrière sera cependant constituée de préférence de NbTa, NbCr, TaCr ou NiCr.
Un système de couches à haute résistance thermique du type indiqué au début, qui présente une couche barrière à base d'un alliage de titane, est également divulgué par le document DE 10 235 154 B4. Dans ce système de couches, la couche barrière située au-dessus de la couche d'argent contient de l'hydrogène lié chimiquement et est constituée de Ti ou d'un alliage de Ti et de Zn et/ou Al. Dans ce système, le revêtement de recouvrement est constitué de ZnO:Al / TiO2, ZnO:Al / Ti, ZnxSnyOz / TiO2, ZnxSnyOz / Ti, ZnxTiyAlzOr, TixAlyOz, TixAly, TixAlyNz, TixAlyOzNr, TiN, Ti, ZnxSnySbzOr / TiO2, ZnxSnySbzOr / Ti ou ZnxSnyAlzOr / TiO2.
Un système de couches à haute résistance thermique est également décrit dans le document EP 1 060 140 Bl. Dans ce système de couches, la couche fonctionnelle contient un alliage d'argent qui contient comme composants Al, Ti, W, Ta, Zr, Hf, Ce, V, Ni, Cr, Zn ou Nb ou encore un mélange de ces métaux. Au-dessus de cette couche fonctionnelle est disposée une couche barrière en Nb ou en un alliage ou mélange de Ni et Cr.
Le document DE 196 40 800 Al (= EP 0 834 483) décrit un système de couches thermiquement isolant et à haute résistance thermique dans lequel une couche barrière métallique, par exemple en Al, CrNi, Ti ou Ta, est disposée sur la couche fonctionnelle, une couche intermédiaire diélectrique constituée d'un oxyde, nitrure ou oxynitrure d'un autre métal que celui de la couche barrière, en particulier Ti, Ta, Zr, Al ou Si ou un mélange de ces métaux, étant disposée sur cette couche barrière.
Par le document DE 101 05 199, on connaît une structure de couches à haute résistance thermique dans laquelle une couche en nitrure métallique, par exemple Si3N4 ou AlN, est disposée entre la couche fonctionnelle en argent et la couche métallique barrière en Cr, Ni, Al, Ti, Mg, Mn, Si, Zn ou Cu ou en un alliage de ces métaux.
Parmi les systèmes de couches qui ne sont pas à haute résistance thermique, c'est-à-dire qui ne conviennent pas pour des substrats en verre qui doivent être bombés à haute température et/ou trempés thermiquement avec leur revêtement, on en connaît qui présentent une ou plusieurs couches individuelles en un alliage oxydé de titane. Le document DE 101 52 211 Cl décrit par exemple une structure de couches qui contient une couche d'oxyde mixte qui est préparée par pulvérisation cathodique réactive d'une cible d'alliage métallique constituée de 10 à 60 % en poids de Ti, 90 à 40 % en poids de Zn et 0,5 à 8 % en poids d'un ou plusieurs des métaux Al, Ga et Sb. Cette couche d'oxyde mixte peut être une couche antireflet inférieure et/ou supérieure ou une couche partielle de revêtement antireflet inférieur et/ou supérieur, mais aussi la couche de recouvrement proprement dite.
Par le document EP 0 304 234 Bl, on connaît une structure de couches qui n'a pas une haute résistance thermique, pour une vitre, dans laquelle la couche barrière est réalisée en titane et dans laquelle plusieurs couches d'oxyde métallique sont disposées au-dessus de la couche métallique barrière, une couche constituée d'un oxyde de Ti, Zr, Hf ou d'un mélange de ceux-ci étant disposée entre deux couches d'un oxyde de Zn, Sn, In ou Bi ou d'un mélange de ces métaux .
A partir du document DE 195 20 843 Al, on connaît un système de couches qui ne peut être trempé et dans lequel un alliage de titane peut être disposé sur la couche d'argent à titre de couche barrière. Dans ce cas, la couche barrière est une couche métallique ou une couche sous- stoechiométrique d'oxyde d'un mélange de Ti, Cr et Nb.
Le système de couches décrit dans le document DE 103 33 619 B3 fait également partie des systèmes de couches qui ne peuvent être trempés. Dans ce système de couches connu, la couche de recouvrement est une couche d'oxyde mixte de TiZrHfOx. La couche d'oxyde mixte est déposée par pulvérisation réactive dans une atmosphère de gaz de travail d'Ar et d'02. Comme couches barrière, on utilise des couches de CrNi.
L'invention est basée sur un système de couches à haute résistance thermique qui présente la structure fondamentale indiquée au début. Le problème à la base de l'invention est d'améliorer encore les propriétés de ce système de couches et en particulier d'augmenter encore la transmission dans la plage visible, de diminuer encore la résistance superficielle et donc les valeurs d'émission et d'atteindre des valeurs de réflexion aussi hautes que possible dans la plage du rayonnement thermique. Selon l'invention, ce problème est résolu avec les caractéristiques mentionnées dans la revendication 1.
Le revêtement barrière comporte ainsi selon l'invention une couche barrière disposée au-dessus et au contact de la couche fonctionnelle qui est une couche métallique ou faiblement nitrurée d'un alliage de titane constitué de 50 à 97 % en poids de Ti et de 3 à 50 % en poids d'un ou de plusieurs des métaux Cr, Fe, Zr et Hf et qui comporte en particulier du chrome.
Si le substrat porteur du système de couche subi après le dépôt du système un traitement thermique du type bombage ou trempe, la couche barrière selon l'invention devient alors au moins partiellement oxydée.
Il s'est avéré que la couche barrière selon l'invention permet une notable amélioration des propriétés, en particulier des valeurs de transmission dans la plage visible du spectre, tout en conservant des valeurs élevées de réflexion dans la plage du rayonnement thermique.
Ces avantages sont atteints en particulier lorsque le revêtement antireflet inférieur comporte une couche de mouillage constituée essentiellement de ZnO à laquelle se raccorde la couche fonctionnelle.
A l'évidence, lors d'un traitement thermique, la couche barrière il se transforme en une couche d'oxyde mixte ou d'oxynitrure mixte particulièrement régulière. Cela est probablement dû au fait que le titane qui constitue le composant principal de l'alliage et les additifs d'alliage Cr, Fe, Zr, Al et Hf ont des enthalpies de formation assez similaires lors de l'oxydation et éventuellement des rayons ioniques comparables pour les étages d'oxydation présents. Ainsi, sur base des valences principales de ces composants d'alliage, les enthalpies de formation sont de -940 à -1 145 kJ / mole et les rayons ioniques des différents oxydes sont de 0,63 à 0,75 Â. Pour préparer la couche barrière, on utilise de préférence des alliages de titane constitués de 55 à 60 % en poids de Ti, 35 à 45 % en poids de Zr et 1 à 5 % en poids de Hf. Le Hf peut ainsi être considéré comme un dopant.
La couche barrière selon 1 ' invention présente de préférence une épaisseur de 1 à 5 nm. Un développement avantageux de l'invention consiste à disposer sur la couche barrière métallique ou faiblement nitrurée une couche barrière supplémentaire sous-oxydée d'une épaisseur de 1 à 3 nm, déposée par pulvérisation d'un alliage de titane.
Dans une variante, le revêtement barrière comporte ainsi une couche supplémentaire sous-oxydée d'un alliage de titane et d'une épaisseur de 1 à 3 nm disposée au-dessus de la couche barrière métallique ou faiblement nitrurée.
L'alliage de titane utilisé pour la couche barrière au contact de la couche fonctionnelle à base d'argent peut également être utilisé de manière particulièrement avantageuse pour la couche de recouvrement ou la couche partielle supérieure du revêtement de recouvrement du système de couches, et ce dans un composé nitruré ou oxynitruré et indépendamment de l'utilisation ou non du revêtement barrière suivant l'invention. Dans ce cas on peut utiliser également l'Ai comme autre métal d'alliage. Lors de l'opération de précontrainte ou de trempe, la couche nitrurée fortement absorbante se convertit en une couche faiblement absorbante et donc exempte de défaut visible. Le composant principal du TiN est en effet complètement oxydé en TiO2, et les autres composants nitrurés, par exemple CrN, ZrN ou AlN, se transformant en des structures d' oxynitruré moins fortement absorbantes. Cette couche nitrurée de recouvrement joue donc le rôle d'un piège à oxygène dans l'opération de traitement thermique, de sorte que moins d'oxygène diffuse dans le système de couches et que la couche barrière proprement dite peut ainsi être plus mince. Ces dispositions permettent d'améliorer d'autres propriétés des couches, telles que leur dureté et les contraintes dans le système de couches conforme au préambule de la revendication 1.
Le revêtement de recouvrement peut ainsi comporter une couche nitrurée ou oxynitrurée d'un alliage de titane constitué de 50 à 97 % en poids de Ti et de 3 à 50 % en poids d'un ou plusieurs des métaux Cr, Fe, Zr, Al et Hf.
Dans une variante particulière le système de couches à basse émissivité et haute résistance thermique pour substrats transparents, en particulier pour des vitres, selon l'invention comporte une couche inférieure antireflet, oxydée, éventuellement constituée de plusieurs couches partielles, une couche essentiellement constituée de ZnO à laquelle se raccorde une couche fonctionnelle en argent, une couche barrière essentiellement métallique en un alliage de titane disposée au-dessus de la couche d'argent, une couche supérieure antireflet éventuellement constituée de plusieurs couches partielles et une couche de recouvrement éventuellement constituée de plusieurs couches partielles, les couches étant appliquées par pulvérisation sous vide, la couche de barrière disposée au-dessus de la couche fonctionnelle étant une couche métallique ou faiblement nitrurée d'un alliage de titane constitué de 50 à 97 % en poids de Ti et de 3 à 50 % en poids d'un ou de plusieurs des métaux Cr, Fe, Zr et Hf.
Le système de couches selon l'invention peut en particulier présenter les structures avantageuses suivantes : verre / SnO2 / ZnO:Al / Zn / Ag / TiZrHfN7 / ZnO:Al / Si3N4 / ZnSnSbOx / Zn2TiO4.
verre / SnO2 / ZnO:Al / Zn / Ag / TiZrHfN7 / ZnO:Al / Si3N4 / TiZrHfNy.
verre / SnO2 / ZnO:Al / Zn / Ag / TiZrHfN7 / TiCrOx / ZnO: Al / Si3N4 / ZnSnSbOx / Zn2TiO4. La présente invention se rapporte aussi, bien sûr, au substrat transparent, plat ou bombé, doté du système de couches selon l'invention, en particulier lorsque le substrat présente la forme d'une vitre trempée thermiquement après le dépôt du système de couches.
Des compositions préférées du système de couches ainsi que les plages d'épaisseurs préférées des couches individuelles ressortent des revendications dépendantes et des exemples de réalisation qui suivent.
L'invention est décrite plus en détail à l'aide de deux exemples de réalisation qui sont comparés à deux exemples comparatifs de l'état de la technique. Comme les dispositions selon l'invention optimisent en particulier les propriétés optiques et énergétiques, l'évaluation de la qualité des couches est basée fondamentalement sur les mesures de la lumière diffusée, de la résistance superficielle et de 1 ' émissivité . Par conséquent, pour évaluer les propriétés des couches, on réalise sur les vitres revêtues les mesures et tests donnés ci-dessous.
A. Mesure de l'épaisseur (d) de la couche d'argent par analyse de fluorescence de rayons X.
B. Mesure de la lumière diffusée (H) en % à l'aide de l'appareil de mesure de lumière diffusée de la firme Gardner .
C. Mesure de la transmission (T) en % à l'aide de l'appareil de mesure de la firme Gardner.
D. Mesure de la résistance électrique superficielle (R) en Ω/D à l'aide de l'appareil FPP 5000 Veeco Instr. et de l'appareil de mesure manuelle SQOHM-I.
E. Mesure de l' émissivité (En) en % avec l'appareil de mesure MK2 de la firme Sten Lofring. Après la mesure de 1 ' émissivité, on calcule les valeurs d1 émissivité à l'aide des valeurs de résistance superficielle par la formule En = 0,0106 x R (voir H. -J. Glâser : "Dunnfilmtechnologie auf Flachglas", Verlag Karl Hofmann 1999, page 144) et les valeurs de mesure En sont comparées aux valeurs calculées E* n. Plus la différence entre les valeurs de mesure En et les valeurs calculées E* n est petite, meilleure est la stabilité thermique du système de couches.
Pour chacune des mesures, on utilise des éprouvettes de dimensions 40 x 50 cm découpées dans la partie centrale de vitre revêtue d'une épaisseur de 4 mm. Les éprouvettes sont chauffées à une température de 720 à 7300C dans un four de trempe de la firme EFKO type 47067 et ensuite trempées thermiquement par brusque refroidissement à l'air. Toutes les éprouvettes subissent de cette manière la même sollicitation thermique.
II faut par ailleurs indiquer que le système de couches selon l'invention n'atteint ses meilleures valeurs en termes d'isolation thermique, de réflexion de l'infrarouge et de transmission de la lumière sur des vitres qu'après le traitement thermique des substrats sur lesquels il est déposé (trempe) . La couche barrière à la diffusion joue également un rôle essentiel lors des traitements thermiques. Cependant, le système de couches décrit ici peut être utilisé commercialement avec de légers défauts d'isolation thermique et de transmission de lumière même sans avoir été traité thermiquement, et donc en particulier sur des vitres non trempées, sur des vitres en matière synthétique et également sur des films. Les exemples de réalisation ci-après concernent cependant tous l'utilisation du système de couches sur des substrats constitués de vitres en verre trempées thermiquement.
Dans les données de composition des couches individuelles qui suivent, lorsqu'on désigne des teneurs en oxygène par Ox et en azote par Ny, on entend des composés dont le degré d'oxydation ou de nitruration n'est pas défini de manière claire parce que les couches correspondantes ne sont pas complètement oxydées ou nitrurées. Ces teneurs sont établies de manière connue en soi lors de la production dans les installations de revêtement sous vide par l'intermédiaire du rapport entre l'argon et l'oxygène ou entre l'argon et l'azote. Par exemple, une couche est complètement oxydée ou complètement nitrurée à une teneur >_ 50 % d'O2 ou de N2 dans le gaz de travail (avec Ar), partiellement oxydée ou partiellement nitrurée à 30 % d'C>2 ou de N2 dans le gaz de travail. Une couche est faiblement oxydée ou nitrurée à environ 5 % d'C>2 ou de N2 dans le gaz de travail.
Ainsi, dans un même empilement, les valeurs désignées par x et y ne sont pas forcement identique d'une couche à 1' autre .
Exemple comparatif 1
Sur une installation industrielle de revêtement en continu, à l'aide du procédé de pulvérisation cathodique réactive assistée par champ magnétique, on dépose un système de couches à basse émissivité qui correspond à l'état de la technique (DE 102 35 154 B4) sur des vitres en verre flotté d'une épaisseur de 4 mm, les chiffres qui précèdent les symboles chimiques indiquant pour chaque couche l'épaisseur en nm :
verre / 25 SnO2 / 9 ZnO:Al / 1,5 Zn / 11,5 Ag / 2 TiAl (TiHi) / 5 ZnO:Al / 30 Si3N4 / 3 ZnSnSbOx / 2 Zn2TiO4
Les couches de ZnO:Al sont obtenues par pulvérisation d'une cible métallique de ZnAl à 2 % d'Al. La mince couche de Zn métallique est déposée par pulvérisation du même matériau de cible mais dans des conditions non réactives. La couche barrière disposée sur la couche d'argent est déposée par pulvérisation d'une cible métallique qui contient 64 % en poids de Ti et 36 % en poids d'Al dans un mélange de gaz de travail d'Ar / H2 (90 / 10 % en volume) . Dans TiHi, 1 peut être compris entre 1 et 2, en incluant ces limites.
La couche antireflet supérieure est déposée par pulvérisation réactive d'une cible de Si dans un mélange de gaz de travail d'Ar/N2.
La couche de recouvrement inférieure est réalisée par pulvérisation d'une cible métallique d'un alliage de ZnSnSb à 68 % en poids de Zn, 30 % en poids de Sn et 2 % en poids de Sb dans un gaz de travail Ar / O2, et la couche de recouvrement supérieure (couche finale) est déposée par pulvérisation réactive d'une cible métallique en un alliage de ZnTi à 73 % en poids de Zn et 27 % en poids de Ti.
Après la trempe, les éprouvettes sont optiquement transparentes, mais on observe une lisière légèrement blanche sur les bords. Sur les éprouvettes revêtues trempées de cet exemple comparatif, on détermine les valeurs suivantes:
Epaisseur d de la couche d'argent 11,6 nm
Lumière diffusée H 0,30 %
Transmission T 88,3 %
Résistance superficielle R 4,28 Ω / D
Emissivité En mesurée 5,5 %
Emissivité E*n calculée 4,5 %
Figure imgf000012_0001
so-
Exemple comparatif 2
Pour poursuivre la comparaison, on étudie une vitre obtenue sur le marché et également trempée thermiquement, dont le système de couches présente la structure suivante :
verre / 12 TiO2 / 12 SnO2 / 8 Zn:Al / 2 CrNiOx / 2 CrNiNy / 11 Ag / 2 CrNiNy / 2 CrNiOx / 10 SnO2 / 24 Si3N4 / 2 SiONy Les mesures réalisées sur les éprouvettes trempées thermiquement dans les mêmes conditions que dans l'exemple comparatif 1 donnent les valeurs suivantes:
Epaisseur d de la couche d'argent 11,5 nm Lumière diffusée H 0,25 %
Transmission T 87,2 %
Résistance superficielle R 4,3 Ω / D
Emissivité En mesurée 5,5 %
Emissivité E*n calculée 4,6 %
En - E*n 0,9 %
Les éprouvettes trempées sont optiquement transparentes, mais ces éprouvettes présentent également une lisière blanche sur leurs bords. De même que dans l'exemple comparatif 1, la différence entre l' emissivité calculée et 1' emissivité mesurée, de 0,9 %, est relativement élevée.
Exemple de réalisation 1
Sur la même installation de revêtement que pour l'exemple comparatif 1, on prépare un système de couches modifié selon l'invention, qui présente la structure suivante :
verre / 25 SnO2 / 9 ZnO:Al / 1,5 Zn / 11,7 Ag / 2,5 TiZrNy:Hf / 5 ZnO:Al / 30 Si3N4 / 3 ZnSnSbOx / 2 Zn2TiO4
La modification par rapport à l'exemple comparatif 1 réside en ce qu'au lieu de la couche barrière qui contient de l'hydrogène, on utilise une couche barrière nitrurée selon l'invention. La cible métallique pour la réalisation de la couche barrière est constituée d'un alliage de 57,6 % en poids de Ti, 41,4 % en poids de Zr et 1,0 % en poids de Hf. La couche barrière est déposée par pulvérisation dans un gaz de travail d'Ar / N2 dont la teneur en N2 n'est que de 5 % en volume, d'où il résulte une faible nitruration.
Les éprouvettes sont trempées de la même manière que les éprouvettes des exemples comparatifs. Les mesures réalisées sur les éprouvettes revêtues et trempes donnent les valeurs suivantes :
Epaisseur d de la couche d'argent 11,7 nm
Lumière diffusée H 0,17 %
Transmission T 89,0 %
Résistance superficielle R 3,23 Ω / D
Emissivité En mesurée 3,6 % (3,2 à 3,8)
Emissivité E*n calculée 3,4 %
Figure imgf000014_0001
so-
Les éprouvettes sont optiquement transparentes sur toute leur surface et sans défaut même dans leurs bordures. Au bon aspect visuel correspond la proportion mesurée de lumière diffusée, qui n'est que de 0,17 %. Pour une même épaisseur de la couche d'Ag, l' emissivité diminue de 5,5 % pour les deux exemples comparatifs à 3,6 %. La différence En - E*n, qui est une mesure de la stabilité thermique du système de couches, est nettement moindre. Dans la couche barrière oxydée par l'opération de chauffage, on peut détecter de l'azote (N) par la méthode SIMS.
Exemple de réalisation 2
Sur la même installation de revêtement que pour l'exemple comparatif 1, on réalise un système de couches modifié selon l'invention, qui présente la structure suivante :
verre / 25 SnO2 / 9 ZnO:Al / 1,5 Zn / 11,7 Ag / 2,5 TiZrHfNy / 7 ZnO:Al / 30 Si3N4 / 2 TiZrHfN7
Par rapport à l'exemple de réalisation 1, le revêtement de recouvrement constitué de la couche inférieure de recouvrement en ZnSnSbOx de 3 nm et de la couche supérieure de recouvrement en Zn2TiO4 de 2 nm est remplacé par une couche de recouvrement selon l'invention, en nitrure mixte
TiZrHfNy. Ce nitrure mixte est déposé par pulvérisation dans un mélange de gaz de travail d'Ar / N2 à 50 / 50, d'où il résulte un haute degré de nitruration. Après le traitement de chauffage et de trempe qui a lieu dans les mêmes conditions que pour les exemples précédents, on détermine les valeurs suivantes sur les éprouvettes :
Epaisseur d de la couche d'argent 11,7 nm Lumière diffusée H 0,30 %
Transmission T 88,3 %
Résistance superficielle R 3,6 Ω / D
Emissivité En mesurée 4,3 % (4,0 à 4,6)
Emissivité E*n calculée 3,8 %
En - E*n 0,5 %
Les éprouvettes sont de nouveau optiquement transparentes sur toute leur surface et sans défaut, même dans leurs bordures. La différence En - E*n, qui est une mesure de la stabilité thermique du système de couches, est nettement plus petite que les valeurs obtenues pour les exemples comparatifs. La légère diminution de la transmission peut s'expliquer par des résidus des composants absorbants ZrN et HfN dans la couche de recouvrement.
Exemple de réalisation 3
Ce système de couches correspond au système de couches de l'exemple de réalisation 1, mais ici, on dispose directement sur la couche métallique barrière une couche barrière supplémentaire déposée en conditions partiellement oxydantes à partir d'un alliage de titane. Dans ce but, une cible en un alliage de titane qui contient 10 % en poids de Cr s'est avérée convenir particulièrement bien. Le système de couches a la structure suivante:
verre / 25 SnO2 / 9 ZnO:Al / 1,5 Zn / 11,5 Ag / 2,5 TiZrHfNy / 2 TiCrOx / 5 ZnO:Al / 30 Si3N4 / 3 ZnSnSbOx / 2 Zn2TiO4
Les mesures effectuées sur les éprouvettes trempées donnent les mêmes valeurs que dans l'exemple de réalisation 1. La dispersion des valeurs d' emissivité est notablement améliorée; alors que dans l'exemple de réalisation 1, on mesure des valeurs comprises entre 3,2 et 3,8 %, les valeurs mesurées sur cet exemple de réalisation 3 sont de 3,5 % et 3,6 %.

Claims

REVENDICATIONS
1. Système de couches à basse émissivité et haute résistance thermique pour des substrats transparents, en particulier pour des vitres, comportant dans l'ordre un revêtement antireflet inférieur constitué d'une couche ou de plusieurs couches partielles, une couche fonctionnelle à base d'argent, un revêtement barrière disposé au-dessus de la couche fonctionnelle, un revêtement antireflet supérieur constitué d'une couche ou de plusieurs couches partielles et un revêtement de recouvrement constitué d'une couche ou de plusieurs couches partielles, caractérisé en ce que le revêtement barrière comporte une couche barrière disposée au-dessus de la couche fonctionnelle qui est une couche métallique ou faiblement nitrurée d'un alliage de titane constitué de 50 à 97 % en poids de Ti et de 3 à 50 % en poids d'un ou de plusieurs des métaux Cr, Fe, Zr et Hf, cette couche barrière étant au moins partiellement oxydée après un éventuel traitement thermique.
2. Système de couches selon la revendication 1, caractérisé en ce que la couche barrière est une couche métallique ou faiblement nitrurée d'un alliage constitué de 55 à 60 % en poids de Ti, 35 à 45 % en poids de Zr et 1 à 5 % en poids de Hf.
3. Système de couches selon les revendications 1 ou 2, caractérisé en ce que le revêtement barrière comporte une couche supplémentaire sous-oxydée d'un alliage de titane et d'une épaisseur de 1 à 3 nm disposée au-dessus de la couche barrière métallique ou faiblement nitrurée.
4. Système de couches selon la revendicationprécédente, caractérisé en ce que l'alliage de titane comporte du chrome.
5. Système de couches selon l'une des revendications 1 à 4, caractérisé en ce que le revêtement antireflet inférieur comporte une couche de mouillage constituée essentiellement de ZnO à laquelle se raccorde la couche fonctionnelle.
6. Système de couches selon l'une des revendications 1 à 5, caractérisé en ce que le revêtement de recouvrement comporte une couche nitrurée ou oxynitrurée d'un alliage de titane constitué de 50 à 97 % en poids de Ti et de 3 à 50 % en poids d'un ou plusieurs des métaux Cr, Fe, Zr, Al et Hf.
7. Système de couches selon l'une des revendications 1 à 5, caractérisé par la structure suivante : verre / SnO2 / ZnO:Al / Zn / Ag / TiZrHfN7 / ZnO:Al / Si3N4 / ZnSnSbOx / Zn2TiO4.
8. Système de couches selon l'une des revendications 1 à 6, caractérisé par la structure de couches suivante: verre / SnO2 / ZnO:Al / Zn / Ag / TiZrHfN7 / ZnO:Al / Si3N4 / TiZrHfNy.
9. Système de couches selon l'une des revendications 1 à 5, caractérisé par la structure de couches suivantes: verre / SnO2 / ZnO:Al / Zn / Ag / TiZrHfN7 / TiCrOx / ZnO:Al / Si3N4 / ZnSnSbOx / Zn2TiO4.
10. Substrat transparent doté d'un système de couches selon l'une des revendications précédentes.
11. Substrat selon la revendication 10, qui présente la forme d'une vitre trempée thermiquement après le dépôt du système de couches.
PCT/FR2006/050796 2005-08-12 2006-08-10 Empilement de couches minces a basse emissivite ('low-e') WO2007042687A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE200510038139 DE102005038139B4 (de) 2005-08-12 2005-08-12 Thermisch hoch belastbares Low-E-Schichtsystem und dessen Verwendung
DE102005038139.1 2005-08-12

Publications (1)

Publication Number Publication Date
WO2007042687A1 true WO2007042687A1 (fr) 2007-04-19

Family

ID=37681085

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2006/050796 WO2007042687A1 (fr) 2005-08-12 2006-08-10 Empilement de couches minces a basse emissivite ('low-e')

Country Status (2)

Country Link
DE (1) DE102005038139B4 (fr)
WO (1) WO2007042687A1 (fr)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008096089A2 (fr) 2007-01-05 2008-08-14 Saint-Gobain Glass France Procede de depot de couche mince et produit obtenu
DE202008018513U1 (de) 2008-01-04 2014-10-31 Saint-Gobain Glass France Dispositif
CN110506033A (zh) * 2017-03-09 2019-11-26 佳殿玻璃有限公司 具有带有ir反射层和含铪的高折射率氮化电介质层的低e涂层的涂覆制品
WO2020099799A1 (fr) * 2018-11-16 2020-05-22 Saint-Gobain Glass France Materiau traite thermiquement a proprietes mecaniques ameliorees
EP2440503B1 (fr) * 2009-06-12 2021-01-06 Saint-Gobain Glass France Procede de depot de couche mince et produit obtenu
US20220002191A1 (en) * 2018-11-16 2022-01-06 Saint-Gobain Glass France Heat-treated material having low resistivity and improved mechanical properties

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI386382B (zh) * 2007-03-26 2013-02-21 Hon Hai Prec Ind Co Ltd 低輻射玻璃
DE102008007981B4 (de) * 2008-02-07 2009-12-03 Saint-Gobain Sekurit Deutschland Gmbh & Co. Kg Thermisch hoch belastbares Schichtsystem für transparente Substrate und Verwendung zur Beschichtung eines transparenten flächigen Substrats
EP2894133A1 (fr) 2014-01-09 2015-07-15 INTERPANE Entwicklungs-und Beratungsgesellschaft mbH Système de revêtement résistant à la température comprenant du TiOx
EP2894134B1 (fr) * 2014-01-09 2016-05-25 INTERPANE Entwicklungs-und Beratungsgesellschaft mbH Utilisation d'hafnium en tant que matériau dopant pour l'amplification du rendement de pulvérisation
FR3088633B1 (fr) * 2018-11-16 2021-04-30 Saint Gobain Materiau traite thermiquement a proprietes mecaniques ameliorees
CN112495691B (zh) * 2020-10-27 2022-04-12 南京科赫科技有限公司 一种烟气净化用滤袋深度镀膜装置

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2641271A1 (fr) * 1989-01-05 1990-07-06 Glaverbel Substrat portant un revetement et procede de depot d'un tel revetement
DE4135701A1 (de) * 1991-10-30 1993-05-13 Leybold Ag Verfahren zum herstellen von scheiben mit hohem transmissionsverhalten im sichtbaren spektralbereich und mit hohem reflexionsverhalten fuer waermestrahlung sowie durch das verfahren hergestellte scheiben
EP0747330A1 (fr) * 1995-06-08 1996-12-11 Balzers und Leybold Deutschland Holding Aktiengesellschaft Plaque en matériau transparent et méthode de sa production
EP1010677A1 (fr) * 1998-12-17 2000-06-21 Saint-Gobain Vitrage Systeme de couches reflechissant la chaleur pour substrats transparents
WO2001027050A1 (fr) * 1999-10-14 2001-04-19 Glaverbel Vitrage
DE10105199C1 (de) * 2001-02-06 2002-06-20 Saint Gobain Vorspannbares Low-E-Schichtsystem für Fensterscheiben sowie mit dem Low-E-Schichtsystem beschichtete transparente Scheibe
US20030215622A1 (en) * 1994-12-23 2003-11-20 Saint-Gobain Glass France Glass substrates coated with a stack of thin layers having reflective properties in the infra-red and/or solar ranges
US20040247929A1 (en) * 2001-10-22 2004-12-09 Harry Buhay Coating stack comprising a layer of barrier coating
WO2005110939A2 (fr) * 2004-05-05 2005-11-24 Saint-Gobain Glass France Substrat muni d'un empilement a proprietes thermiques

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU631777B2 (en) * 1987-08-18 1992-12-10 Boc Technologies Limited Metal oxide films having barrier properties
US5344718A (en) * 1992-04-30 1994-09-06 Guardian Industries Corp. High performance, durable, low-E glass
US5376455A (en) * 1993-10-05 1994-12-27 Guardian Industries Corp. Heat-treatment convertible coated glass and method of converting same
US5514476A (en) * 1994-12-15 1996-05-07 Guardian Industries Corp. Low-E glass coating system and insulating glass units made therefrom
MX9605168A (es) * 1995-11-02 1997-08-30 Guardian Industries Sistema de recubrimiento con vidrio de baja emisividad, durable, de alto funcionamiento, neutro, unidades de vidrio aislante elaboradas a partir del mismo, y metodos para la fabricacion de los mismos.
US5770321A (en) * 1995-11-02 1998-06-23 Guardian Industries Corp. Neutral, high visible, durable low-e glass coating system and insulating glass units made therefrom
DE19640800C2 (de) * 1996-10-02 2002-01-17 Fraunhofer Ges Forschung Wärmedämmendes Schichtsystem für transparente Substrate
DE19807930B4 (de) * 1998-02-25 2009-04-30 Interpane Entwicklungs- Und Beratungsgesellschaft Mbh & Co.Kg Herstellung eines thermisch hochbelastbaren wärmereflektierenden Belags
DE10152211C1 (de) * 2001-10-23 2003-05-15 Saint Gobain Schichtsystem für transparente Substrate
DE10235154B4 (de) * 2002-08-01 2005-01-05 Saint-Gobain Glass Deutschland Gmbh Vorspannbares Schichtsystem für Glasscheiben
DE10333619B3 (de) * 2003-07-24 2004-12-16 Saint-Gobain Glass Deutschland Gmbh Schichtsystem für transparente Substrate

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2641271A1 (fr) * 1989-01-05 1990-07-06 Glaverbel Substrat portant un revetement et procede de depot d'un tel revetement
DE4135701A1 (de) * 1991-10-30 1993-05-13 Leybold Ag Verfahren zum herstellen von scheiben mit hohem transmissionsverhalten im sichtbaren spektralbereich und mit hohem reflexionsverhalten fuer waermestrahlung sowie durch das verfahren hergestellte scheiben
US20030215622A1 (en) * 1994-12-23 2003-11-20 Saint-Gobain Glass France Glass substrates coated with a stack of thin layers having reflective properties in the infra-red and/or solar ranges
EP0747330A1 (fr) * 1995-06-08 1996-12-11 Balzers und Leybold Deutschland Holding Aktiengesellschaft Plaque en matériau transparent et méthode de sa production
EP1010677A1 (fr) * 1998-12-17 2000-06-21 Saint-Gobain Vitrage Systeme de couches reflechissant la chaleur pour substrats transparents
WO2001027050A1 (fr) * 1999-10-14 2001-04-19 Glaverbel Vitrage
DE10105199C1 (de) * 2001-02-06 2002-06-20 Saint Gobain Vorspannbares Low-E-Schichtsystem für Fensterscheiben sowie mit dem Low-E-Schichtsystem beschichtete transparente Scheibe
US20040247929A1 (en) * 2001-10-22 2004-12-09 Harry Buhay Coating stack comprising a layer of barrier coating
WO2005110939A2 (fr) * 2004-05-05 2005-11-24 Saint-Gobain Glass France Substrat muni d'un empilement a proprietes thermiques

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2792651A1 (fr) 2007-01-05 2014-10-22 Saint-Gobain Glass France Procede de depot de couche mince et produit obtenu
EP2792650A1 (fr) 2007-01-05 2014-10-22 Saint-Gobain Glass France Procédé de dépôt de couche mince et produit obtenu
DE202008018514U1 (de) 2007-01-05 2014-10-30 Saint-Gobain Glass France Material
WO2008096089A2 (fr) 2007-01-05 2008-08-14 Saint-Gobain Glass France Procede de depot de couche mince et produit obtenu
DE202008018513U1 (de) 2008-01-04 2014-10-31 Saint-Gobain Glass France Dispositif
EP2440503B1 (fr) * 2009-06-12 2021-01-06 Saint-Gobain Glass France Procede de depot de couche mince et produit obtenu
CN110506033A (zh) * 2017-03-09 2019-11-26 佳殿玻璃有限公司 具有带有ir反射层和含铪的高折射率氮化电介质层的低e涂层的涂覆制品
WO2020099799A1 (fr) * 2018-11-16 2020-05-22 Saint-Gobain Glass France Materiau traite thermiquement a proprietes mecaniques ameliorees
FR3088636A1 (fr) * 2018-11-16 2020-05-22 Saint-Gobain Glass France Materiau traite thermiquement a proprietes mecaniques ameliorees
US20220002191A1 (en) * 2018-11-16 2022-01-06 Saint-Gobain Glass France Heat-treated material having low resistivity and improved mechanical properties
US20220009827A1 (en) * 2018-11-16 2022-01-13 Saint-Gobain Glass France Heat-treated material with improved mechanical properties
US11565968B2 (en) * 2018-11-16 2023-01-31 Saint-Gobain Glass France Heat-treated material having low resistivity and improved mechanical properties
US11673828B2 (en) 2018-11-16 2023-06-13 Saint-Gobain Glass France Heat-treated material with improved mechanical properties

Also Published As

Publication number Publication date
DE102005038139B4 (de) 2008-05-21
DE102005038139A1 (de) 2007-02-15

Similar Documents

Publication Publication Date Title
WO2007042687A1 (fr) Empilement de couches minces a basse emissivite ('low-e')
EP1917222B1 (fr) Empilement de couches minces a basse emissivite (low-e) avec couches intermediaires antidiffusion
EP1945587B1 (fr) Substrat muni d'un empilement a proprietes thermiques.
JP4385460B2 (ja) ガラス積層体、およびその製造方法
EP1663895B1 (fr) Substrat transparent revetu d un empilement de couches mince s a proprietes de reflexion dans l infrarouge et/ou dans le domaine du rayonnement solaire
EP0789005B1 (fr) Substrat transparent muni d'un empilement de couches minces à propriétés dans l'infrarouge
HU224665B1 (hu) Bevonatos üvegtábla és eljárás annak előállítására
US20070029186A1 (en) Method of thermally tempering coated article with transparent conductive oxide (TCO) coating using inorganic protective layer during tempering and product made using same
FR2893024A1 (fr) Substrat muni d'un empilement a proprietes thermiques
CN101415652A (zh) 用于透明基材的高度耐热的具有低发射性多层体系
EP1833768A2 (fr) Feuille de verre portant un empilage multi-couches
JP2021525692A (ja) 銀の下にドープされたシード層を有する低e整合性コーティングされた物品及び対応する方法
KR19990087438A (ko) 열 강화성의 투명한 코팅 유리용품
JP6092882B2 (ja) NiCu含有合金の層を含む日射調整グレージング
EP1527029A2 (fr) Systeme de couches apte a etre precontraint, pour vitrages
HU223651B1 (hu) Bevonatos üvegtábla, és eljárás annak előállítására
EP4007744A1 (fr) Substrat revêtu
JP2022543075A (ja) 強化可能な被覆基板
EP4007743A1 (fr) Substrat revêtu et trempable
CA2910317A1 (fr) Vitrage de controle solaire comprenant une couche d'un alliage de zinc et de cuivre

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase

Ref document number: 06841979

Country of ref document: EP

Kind code of ref document: A1