WO2007042209A1 - Anordnung zur rückführung und kühlung von abgas einer brennkraftmaschine - Google Patents

Anordnung zur rückführung und kühlung von abgas einer brennkraftmaschine Download PDF

Info

Publication number
WO2007042209A1
WO2007042209A1 PCT/EP2006/009667 EP2006009667W WO2007042209A1 WO 2007042209 A1 WO2007042209 A1 WO 2007042209A1 EP 2006009667 W EP2006009667 W EP 2006009667W WO 2007042209 A1 WO2007042209 A1 WO 2007042209A1
Authority
WO
WIPO (PCT)
Prior art keywords
exhaust gas
line
egr
integrated
component
Prior art date
Application number
PCT/EP2006/009667
Other languages
English (en)
French (fr)
Inventor
Rainer Lutz
Rolf Müller
Jens Ruckwied Ruckwied
Christian Saumweber
Original Assignee
Behr Gmbh & Co. Kg
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Behr Gmbh & Co. Kg filed Critical Behr Gmbh & Co. Kg
Priority to US12/089,402 priority Critical patent/US20080223038A1/en
Priority to EP06806076A priority patent/EP1937957A1/de
Priority to JP2008533943A priority patent/JP2009511797A/ja
Publication of WO2007042209A1 publication Critical patent/WO2007042209A1/de

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B37/00Engines characterised by provision of pumps driven at least for part of the time by exhaust
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D9/00Controlling engines by throttling air or fuel-and-air induction conduits or exhaust conduits
    • F02D9/02Controlling engines by throttling air or fuel-and-air induction conduits or exhaust conduits concerning induction conduits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/02EGR systems specially adapted for supercharged engines
    • F02M26/04EGR systems specially adapted for supercharged engines with a single turbocharger
    • F02M26/06Low pressure loops, i.e. wherein recirculated exhaust gas is taken out from the exhaust downstream of the turbocharger turbine and reintroduced into the intake system upstream of the compressor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/02EGR systems specially adapted for supercharged engines
    • F02M26/09Constructional details, e.g. structural combinations of EGR systems and supercharger systems; Arrangement of the EGR and supercharger systems with respect to the engine
    • F02M26/10Constructional details, e.g. structural combinations of EGR systems and supercharger systems; Arrangement of the EGR and supercharger systems with respect to the engine having means to increase the pressure difference between the exhaust and intake system, e.g. venturis, variable geometry turbines, check valves using pressure pulsations or throttles in the air intake or exhaust system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/13Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories
    • F02M26/17Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories in relation to the intake system
    • F02M26/21Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories in relation to the intake system with EGR valves located at or near the connection to the intake system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/13Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories
    • F02M26/35Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories with means for cleaning or treating the recirculated gases, e.g. catalysts, condensate traps, particle filters or heaters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/51EGR valves combined with other devices, e.g. with intake valves or compressors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M35/00Combustion-air cleaners, air intakes, intake silencers, or induction systems specially adapted for, or arranged on, internal-combustion engines
    • F02M35/10Air intakes; Induction systems
    • F02M35/10209Fluid connections to the air intake system; their arrangement of pipes, valves or the like
    • F02M35/10222Exhaust gas recirculation [EGR]; Positive crankcase ventilation [PCV]; Additional air admission, lubricant or fuel vapour admission
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M35/00Combustion-air cleaners, air intakes, intake silencers, or induction systems specially adapted for, or arranged on, internal-combustion engines
    • F02M35/10Air intakes; Induction systems
    • F02M35/10242Devices or means connected to or integrated into air intakes; Air intakes combined with other engine or vehicle parts
    • F02M35/10255Arrangements of valves; Multi-way valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B29/00Engines characterised by provision for charging or scavenging not provided for in groups F02B25/00, F02B27/00 or F02B33/00 - F02B39/00; Details thereof
    • F02B29/04Cooling of air intake supply
    • F02B29/0406Layout of the intake air cooling or coolant circuit
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D9/00Controlling engines by throttling air or fuel-and-air induction conduits or exhaust conduits
    • F02D9/02Controlling engines by throttling air or fuel-and-air induction conduits or exhaust conduits concerning induction conduits
    • F02D2009/0201Arrangements; Control features; Details thereof
    • F02D2009/0276Throttle and EGR-valve operated together
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/13Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories
    • F02M26/22Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories with coolers in the recirculation passage
    • F02M26/23Layout, e.g. schematics
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Definitions

  • the invention relates to an arrangement for the return and cooling of exhaust gas of an internal combustion engine according to the preamble of claim 1.
  • the exhaust gas recirculation (abbreviation: EGR), in particular the cooled exhaust gas recirculation is used in today's vehicles due to legal regulations, in order to reduce the particle and pollutant, in particular nitrogen oxide emissions.
  • EGR exhaust gas recirculation
  • DE 102 03 003 A1 of the applicant a high-pressure EGR system has been known in which the recirculated exhaust gas between the engine and the exhaust gas turbine is taken from the exhaust pipe and the intake manifold of the engine is supplied.
  • the achievable exhaust gas recirculation rate depends on the differential pressure between removal and return point in the EGR line, in which an EGR valve and an exhaust gas cooler are arranged.
  • EP 0 916 837 B1 has disclosed an apparatus for an EGR system in which an EGR valve and an exhaust gas cooler are integrated into a structural unit.
  • EP 1 030 050 B1 discloses a further exhaust gas cooler with bypass and by-pass valve for a high-pressure EGR system.
  • EP 1 203 148 B1 discloses a low-pressure EGR system for an internal combustion engine, ie a diesel engine, in whose exhaust gas strand an exhaust gas turbine is arranged, which drives a charge air compressor. Further, in the exhaust line, downstream of the turbine, there is arranged a catalyst / filter unit in the region of which exhaust gas is taken, cooled by an exhaust gas cooler and supplied to the intake tract of the engine upstream of the compressor. In the EGR line is located downstream of the exhaust gas cooler, an EGR valve, which regulates the flow rate in the EGR line.
  • An advantage of the known low-pressure EGR system is that higher exhaust gas recirculation rates than in the high-pressure system can be achieved because the recirculated exhaust gas is sucked from the compressor.
  • a disadvantage of the known EGR system is that each component must be manufactured and assembled individually, which increases the cost of the EGR system.
  • a first integration solution which includes the integration of the EGR valve, the EGR return point and a charge air throttle in the intake manifold of the engine.
  • the structural integration of these three components into one component provides the advantages of reducing installation space, simplifying installation, and reducing costs and weight.
  • the arrangement of the integrated component downstream of the exhaust gas cooler also results in the advantage that the thermal load, in particular during the regeneration phase of the particulate filter is reduced.
  • the dynamic behavior of the system is improved by the fact that the control elements for fresh air and Abgaszu- mixture are arranged immediately upstream of the compressor. This also results in a shortening of the response time with changed Lastzu- stood in comparison to an arrangement in front of the exhaust gas cooler.
  • the advantage of the integration solution according to the invention is that the total length of the lines in the EGR line is reduced, which leads to a reduction in the pressure losses and an increase in the maximum possible EGR rates.
  • the resulting from the integration of the components mentioned component has two inputs, an exhaust side and a fresh air side, and an output to the compressor suction side out.
  • the exhaust side inlet regulates the exhaust gas recirculation rate, while the fresh air side inlet throttles the charge air to be supplied to the compressor. It is important that a sufficient surge margin for the compressor is ensured by a restriction of the suction-side throttling. The latter is easier with an independent adjustability of both inputs - this largely decouples the regulation of the EGR feedback rate.
  • the two alternatives are provided that the inputs on the one hand independently of each other and on the other hand are dependent on each other adjustable, which in turn reduces the cost.
  • An advantage of an independent adjustability of the two inputs (throttle elements) is that the control range of the overall system increases.
  • an air filter arranged in the intake line is additionally integrated into the component and thus becomes part of an extended integration solution.
  • a condensate separator arranged in the EGR line (for the separation of corrosive condensate resulting from the exhaust gas cooling) is likewise part of the integration solution.
  • This integration solution with integrated condensate separator is possible with integrated air filter or without air filter.
  • the exhaust gas cooler in the EGR line is part of an integration solution, so that a component consisting of exhaust gas cooler with condensate, EGR valve, charge air throttle and / or air filter is possible.
  • a further variant of the integration provides that the compressor can be additionally integrated with the first integration solution, in particular also with condensate separator and air filter.
  • FIG. 1 shows a low-pressure EGR system (ND-EGR system) with individual components
  • FIG. 2 shows the LP EGR system with a first integrated structural unit
  • FIG. 6 shows the LP EGR system with a fifth integrated unit
  • FIG. 7 shows the LP EGR system with a sixth integrated unit.
  • Fig. 1 shows a low-pressure exhaust gas recirculation system, hereinafter abbreviated ND-EGR system 1 called in a schematic representation.
  • An internal combustion engine 2 preferably a diesel engine 2
  • EGR line 5 exhaust gas recirculation line 5
  • an exhaust gas turbine 6 is arranged, which drives a arranged in the intake manifold 4 charge air compressor 8 via a shaft 7.
  • Turbine 6, shaft 7 and compressor 8 thus form an exhaust gas turbocharger unit.
  • a charge air cooler 9 is arranged, which cools the compressed and heated charge air before it is supplied to the internal combustion engine 2.
  • a combined particulate filter and oxidation catalyst 10 is arranged in the exhaust pipe 3, from which the EGR line 5 branches off.
  • a return point 12 is arranged in the suction line 4 on the suction side of the compressor 8, where the recirculated exhaust gas is fed into the intake line 4.
  • an exhaust gas cooler 13 In the EGR line 5, an exhaust gas cooler 13, an EGR valve 14 and a condensate separator 15 are provided.
  • the exhaust gas cooler 13 may be air or water cooled.
  • the exhaust gas cooling can also take place in two stages in one or two exhaust gas coolers.
  • the EGR valve 14 regulates the exhaust gas recirculation rate via the passage cross section, while the condensate trap 15 traps and discharges the corrosive condensate formed in the exhaust gas cooler 13.
  • an exhaust gas back pressure valve 16 is arranged, through which the exhaust back pressure in the exhaust pipe 8 can be adjusted.
  • a charge air throttle 17 and an air filter 18 are arranged upstream of the return point 12. From the drawing it can be seen that the exhaust gas recirculation, ie the removal takes place on the low pressure side of the turbine 6 and the return on the suction side of the compressor 8. From such a low-pressure EGR system, the invention proceeds.
  • FIG. 2 shows the ND-EGR system of FIG. 1 in a first modified form, wherein the same reference numerals are used for the same parts.
  • an integrated component 19 is provided in which three components from FIG. 1, namely the EGR valve 14, the charge air throttle 17 and the return point 12, are structurally combined.
  • the three components are schematically represented by three triangles, indicated by the letters E, E, A, where E means input and A output, respectively.
  • the exhaust-gas inlet E and the fresh-air-side inlet E are throttling points, which on the one hand control the throughput of the recirculated exhaust gas and on the other hand the fresh air.
  • the adjustability can take place in a first variant together or dependent on each other or in a second variant independently.
  • FIG. 3 shows a second modification of the LP EGR system according to FIG. 1, namely with an integrated component 20, which on the one hand contains the components according to component 19 in FIG. 2 (EGR valve, charge air throttle, return point) and additionally an integrated component Air filter 18 'has.
  • EGR valve charge air throttle
  • Air filter 18 an integrated component Air filter
  • Fig. 4 shows the ND-EGR system in a third modification, i. H. with an integrated component 21 which, in addition to the components of the component 19 in FIG. 2, has an integrated condensate separator 15 '. Thus, four components are integrated in the component 21.
  • the air filter 18 is arranged separately in this illustration.
  • FIG. 5 shows a fourth modification of the LP-EGR system according to FIG. 1, namely with an integrated component 22 which, in addition to the component 19 according to FIG. 1, has an integrated condensate separator 15 'and an integrated air filter 18';
  • the integrated assembly 22 includes five integrated components.
  • FIG. 6 shows a fifth modification of the LP EGR system, namely with an integrated component 23 which, in addition to the component 19 according to FIG. 2, has an integrated exhaust gas cooler 13 ', an integrated condensate separator 15' and an integrated air filter 18 ' ,
  • the integrated component 23 includes six integrated components.
  • FIG. 7 shows a sixth modification of the LP EGR system according to FIG. 1, namely with an integrated component 24 which, in addition to the integrated component 19 according to FIG. 1, has an integrated charge-air compressor 8 ', a condensate separator 15' and an integrated one Air filter 18 'has.
  • the integrated component 24 thus consists of six integrated components or of the component 22 according to FIG. 5, in which additionally the compressor 8 'has been integrated. This also achieves a high degree of integration, combined with space and cost reduction.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Exhaust-Gas Circulating Devices (AREA)
  • Exhaust Gas After Treatment (AREA)
  • Supercharger (AREA)
  • Control Of Throttle Valves Provided In The Intake System Or In The Exhaust System (AREA)

Abstract

Die Erfindung betrifft eine Anordnung zur Rückführung und Kühlung von Abgas einer Brennkraftmaschine (2), insbesondere eines Dieselmotors in einem Kraftfahrzeug, wobei die Brennkraftmaschine (2) eine Abgasleitung (3) mit einer Abgasturbine (6) sowie eine Ansaugleitung (4) mit einem von der Abgasturbine (6) angetriebenen Ladeluftverdichter (8) aufweist, wobei stromabwärts der Turbine (6) eine Entnahmestelle (1 1 ) zur Abzweigung einer Abgasrückführleitung (AGR-Leitung 5) und stromaufwärts des Verdichters (8) eine Rückführstelle (12) zur Rückführung der AGR-Leitung (5) angeordnet und wobei in der AGR-Leitung (5) mindestens ein Abgaswärmeübertrager (13) und ein AGR-Ventil (14) angeordnet sind. Es wird vorgeschlagen, dass in der Ansaugleitung (4) ein Ladeluftdrosselorgan (17) angeordnet ist und dass das AGR-Ventil (14), die Rückführstelle (12) und das Drosselorgan (17) als ein integriertes Bauteil (19) ausgebildet sind.

Description

Anordnung zur Rückführung und Kühlung von Abgas einer Brennkraftmaschine
Die Erfindung betrifft eine Anordnung zur Rückführung und Kühlung von Abgas einer Brennkraftmaschine nach dem Oberbegriff des Patentanspruches 1.
Die Abgasrückführung (Abkürzung: AGR), insbesondere die gekühlte Abgas- rückführung wird in heutigen Fahrzeugen aufgrund gesetzlicher Bestimmungen eingesetzt, um die Partikel- und Schadstoff-, insbesondere Stickoxidemissionen zu senken. Bekannt sind AGR-Systeme, bei denen das Abgas auf der Hochdruckseite einer Abgasturbine oder auf der Niederdruckseite der Abgasturbine entnommen wird - man spricht daher von Hochdruck- oder Niederdruck-Abgasrückführung. Durch die DE 102 03 003 A1 der Anmelderin wurde ein Hochdruck-AGR-System bekannt, bei welchem das rückzuführende Abgas zwischen Motor und Abgasturbine der Abgasleitung entnommen und dem Ansaugtrakt des Motor zugeführt wird. Die erzielbare Abgas- rückführrate hängt dabei von dem Differenzdruck zwischen Entnahme- und Rückführstelle in der AGR-Leitung ab, in welcher ein AGR-Ventil und ein Abgaskühler angeordnet sind.
Durch die EP 0 916 837 B1 der Anmelderin wurde für ein AGR-System eine Vorrichtung bekannt, bei welcher ein AGR-Ventil und ein Abgaskühler zu einer Baueinheit integriert sind. Durch die EP 1 030 050 B1 wurde ein weiterer Abgaskühler mit Bypass und Bypassventil für ein Hochdruck-AGR- System bekannt.
Durch die EP 1 203 148 B1 wurde ein Niederdruck-AGR-System für eine Brennkraftmaschine, d. h. einen Dieselmotor bekannt, in dessen Abgas- strang eine Abgasturbine angeordnet ist, welche einen Ladeluftverdichter antreibt. Ferner ist im Abgasstrang, stromabwärts der Turbine eine Katalysator/Filtereinheit angeordnet, in deren Bereich Abgas entnommen, durch einen Abgaskühler gekühlt und dem Ansaugtrakt des Motors stromaufwärts des Verdichters zugeführt wird. In der AGR-Leitung befindet sich stromabwärts des Abgaskühlers ein AGR-Ventil, welches den Durchsatz in der AGR- Leitung regelt. Vorteilhaft bei dem bekannten Niederdruck-AGR-System ist, dass höhere Abgasrückführraten als beim Hochdrucksystem erzielt werden können, da das rückgeführte Abgas vom Verdichter angesaugt wird. Nachtei- lig bei dem bekannten AGR-System ist, dass jede Komponente einzeln hergestellt und montiert werden muss, was die Kosten des AGR-Systems erhöht.
Ausgehend von einem Niederdruck-AGR-System, ist es Aufgabe der vorlie- genden Erfindung, eine Anordnung zur Rückführung und Kühlung von Abgas der eingangs genannten Art zu schaffen, welche das Gesamtsystem vereinfacht, die Herstellungskosten senkt und den Wirkungsgrad des Systems erhöht.
Die Aufgabe wird durch die Merkmale des Patentanspruches 1 gelöst. Vorteilhafte Ausgestaltungen der Erfindung ergeben sich aus den Unteransprüchen.
Erfindungsgemäß ist eine erste Integrationslösung vorgesehen, welche die Integration des AGR-Ventils, der AGR-Rückführstelle und eines Ladeluftdrosselorgans in der Ansaugleitung des Motors beinhaltet. Durch die bauliche Integration dieser drei Komponenten zu einem Bauteil werden die Vorteile erreicht, dass der Bauraum reduziert, die Montage vereinfacht sowie Kosten und Gewicht gesenkt werden. Durch die Anordnung des integrierten Bauteiles stromab vom Abgaskühler ergibt sich ferner der Vorteil, dass die thermische Belastung, insbesondere während der Regenerationsphase des Partikelfilters verringert wird. Ferner wird das dynamische Verhalten des Systems dadurch verbessert, dass die Regelorgane für Frischluft und Abgaszu- mischung unmittelbar stromaufwärts des Verdichters angeordnet sind. Damit ergibt sich auch eine Verkürzung der Ansprechzeit bei geändertem Lastzu- stand im Vergleich zu einer Anordnung vor dem Abgaskühler. Schließlich wird durch die erfindungsgemäße Integrationslösung der Vorteil erreicht, dass die Gesamtlänge der Leitungen im AGR-Strang reduziert wird, was zu einer Verringerung der Druckverluste und einer Vergrößerung der maximal möglichen AGR-Raten führt.
Das aus der Integration der genannten Komponenten entstandene Bauteil weist zwei Eingänge, einen abgasseitigen und einen frisch luftseitigen, sowie einen Ausgang zur Verdichtersaugseite hin auf. Der abgasseitige Eingang regelt die Abgasrückführrate, während der frischluftseitige Eingang die dem Verdichter zuzuführende Ladeluft drosselt. Hierbei ist von Bedeutung, dass eine ausreichender Pumpgrenzenabstand für den Verdichter durch eine Beschränkung der saugseitigen Androsselung gewährleistet ist. Letzteres ist bei einer unabhängigen Verstellbarkeit beider Eingänge einfacher - dadurch wird die Reglung der AGR-Rückführrate weitgehend entkoppelt. Nach einer vorteilhaften Ausgestaltung sind daher die beiden Alternativen vorgesehen, dass die Eingänge einerseits unabhängig voneinander und andererseits abhängig voneinander verstellbar sind, was wiederum die Kosten senkt. Vorteilhaft bei einer unabhängigen Verstellbarkeit der beiden Eingänge (Dros- selorgane) ist, dass sich der Regelbereich des Gesamtsystems vergrößert.
Nach einer weiteren Variante ist vorgesehen, dass ein in der Ansaugleitung angeordnetes Luftfilter zusätzlich in das Bauteil integriert und damit Bestandteil einer erweiterten Integrationslösung wird. Damit kommen die vorgenann- ten Vorteile, nämlich Reduktion des Bauraumes, Vereinfachung der Montage und Reduktion von Kosten und Gewicht verstärkt zum Tragen.
Nach einer weiteren Variante ist vorgesehen, dass ein in der AGR-Leitung angeordneter Kondensatabscheider (zur Abscheidung von durch die Abgas- kühlung anfallendem korrosivem Kondensat) ebenfalls Bestandteil der Integrationslösung ist. Damit wird ein noch höherer Integrationsgrad mit einer Verstärkung der vorgenannten Vorteile erreicht. Diese Integrationslösung mit integriertem Kondensatabscheider ist mit integriertem Luftfilter oder ohne Luftfilter möglich. In weiterer Erhöhung des Integrationsgrades wird auch der Abgaskühler in der AGR-Leitung Bestandteil einer Integrationslösung, so dass ein Bauteil, bestehend aus Abgaskühler mit Kondensatabscheider, AGR-Ventil, Ladeluftdrossel und/oder Luftfilter möglich wird.
Eine weitere Variante der Integration sieht vor, dass der Verdichter zusätzlich mit der ersten Integrationslösung, insbesondere auch mit Kondensatabscheider und Luftfilter integrierbar ist.
Ausführungsbeispiele der Erfindung sind in der Zeichnung dargestellt und werden im Folgenden näher beschrieben. Es zeigen
Fig. 1 ein Niederdruck-AGR-System (ND-AGR-System) mit einzelnen Komponenten, Fig. 2 das ND-AGR-System mit einer ersten integrierten Baueinheit,
Fig. 3 das ND-AGR-System mit einer zweiten integrierten Baueinheit,
Fig. 4 das ND-AGR-System mit einer dritten integrierten Baueinheit,
Fig. 5 das ND-AGR-System mit einer vierten integrierten Baueinheit,
Fig. 6 das ND-AGR-System mit einer fünften integrierten Baueinheit und Fig. 7 das ND-AGR-System mit einer sechsten integrierten Baueinheit.
Fig. 1 zeigt ein Niederdruck-Abgasrückführ-System, im Folgenden abgekürzt ND-AGR-System 1 genannt in schematischer Darstellung. Eine Brennkraftmaschine 2, vorzugsweise ein Dieselmotor 2 weist eine Abgasleitung 3, eine Ansaugleitung 4 für Vebrennungs- bzw. Ladeluft sowie eine zwischen Abgasleitung 3 und Ansaugleitung 4 angeordnete Abgasrückführleitung, im Folgenden AGR-Leitung 5 genannt , auf. In der Abgasleitung 3 ist eine Ab- gasturbine 6 angeordnet, welche über eine Welle 7 einen in der Ansaugleitung 4 angeordneten Ladeluftverdichter 8 antreibt. Turbine 6, Welle 7 und Verdichter 8 bilden somit eine Abgasturboladereinheit. In Strömungsrichtung hinter dem Ladeluftverdichter 8 ist ein Ladeluftkühler 9 angeordnet, welcher die komprimierte und erhitzte Ladeluft abkühlt, bevor sie der Brennkraftmaschine 2 zugeführt wird. In Abgasströmungsrichtung hinter der Turbine 6 ist ein kombinierter Partikelfilter und Oxidationskatalysator 10 angeordnet. Stromabwärts des Oxidationskatalysators 10 ist eine Verzweigungs- oder Entnahmestelle 11 in der Abgasleitung 3 angeordnet, von welcher die AGR- Leitung 5 abzweigt. Analog ist in der Ansaugleitung 4 auf der Saugseite des Verdichters 8 eine Rückführstelle 12 angeordnet, wo das rückzuführende Abgas in die Ansaugleitung 4 eingespeist wird. In der AGR-Leitung 5 sind ein Abgaskühler 13, ein AGR-Ventil 14 sowie ein Kondensatabscheider 15 vorgesehen. Der Abgaskühler 13 kann luft- oder wassergekühlt sein. Die Ab- gaskühlung kann auch in zwei Stufen in einem oder zwei Abgaskühlern erfolgen. Das AGR-Ventil 14 regelt über den Durchtrittsquerschnitt die Abgas- rückführrate, während der Kondensatabscheider 15 das im Abgaskühler 13 entstehende korrosive Kondensat auffängt und abführt. In der Abgasleitung 3 ist stromabwärts von der Entnahmestelle 11 ein Abgasgegendruckventil 16 angeordnet, durch welches der Abgasgegendruck in der Abgasleitung 8 eingestellt werden kann. In der Ansaugleitung 4 sind stromaufwärts von der Rückführstelle 12 eine Ladeluftdrossel 17 sowie ein Luftfilter 18 angeordnet. Aus der Zeichnung ist ersichtlich, dass die Abgasrückführung, d. h. die Entnahme auf der Niederdruckseite der Turbine 6 und die Rückführung auf der Saugseite des Verdichters 8 erfolgt. Von einem derartigen Niederdruck- AGR-System geht die Erfindung aus.
Fig. 2 zeigt das ND-AGR-System gemäß Fig. 1 in einer ersten abgewandelten Form, wobei für gleiche Teile gleiche Bezugszahlen verwendet werden. Abweichend von Fig. 1 ist ein integriertes Bauteil 19 vorgesehen, in welchem drei Komponenten aus Fig. 1 , nämlich das AGR-Ventil 14, die Ladeluftdrossel 17 und die Rückführstelle 12 baulich zusammengefasst sind. Die drei Komponenten sind schematisch durch drei Dreiecke, gekennzeichnet durch die Buchstaben E, E, A dargestellt, wobei E jeweils Eingang und A Ausgang bedeutet. Der abgasseitige Eingang E und der frischluftseitige Eingang E sind Drosselstellen, welche einerseits den Durchsatz des rückgeführten Abgases und andererseits der Frischluft kontrollieren. Die Verstellbarkeit kann in einer ersten Variante gemeinsam bzw. voneinander abhängig erfolgen oder in einer zweiten Variante unabhängig voneinander. Bei einer unabhängigen Verstellbarkeit lässt sich ein größerer Regelbereich für das Gesamtsystem erreichen. Fig. 3 zeigt eine zweite Abwandlung des ND-AGR-Systems gemäß Fig. 1 , und zwar mit einem integrierten Bauteil 20, welches einerseits die Komponenten gemäß Bauteil 19 in Fig. 2 (AGR-Ventil, Ladeluftdrossel, Rückführstelle) und zusätzlich ein integriertes Luftfilter 18' aufweist. Somit sind in dem Bauteil 20 vier Komponenten baulich vereinigt, was eine vereinfachte Montage und einen reduzierten Bauraum bedeutet.
Fig. 4 zeigt das ND-AGR-System in einer dritten Abwandlung, d. h. mit einem integrierten Bauteil 21 , welches zusätzlich zu den Komponenten des Bauteiles 19 in Fig. 2 einen integrierten Kondensatabscheider 15' aufweist. Somit sind vier Komponenten im Bauteil 21 integriert. Das Luftfilter 18 ist in dieser Darstellung separat angeordnet.
Fig. 5 zeigt eine vierte Abwandlung des ND-AGR-Systems gemäß Fig. 1 , und zwar mit einem integrierten Bauteil 22, welches zusätzlich zu dem Bauteil 19 gemäß Fig. 1 einen integrierten Kondensatabscheider 15' sowie einen integrierten Luftfilter 18' aufweist; somit enthält die integrierte Baueinheit 22 fünf miteinander integrierte Komponenten.
Fig. 6 zeigt eine fünfte Abwandlung des ND-AGR-Systems, und zwar mit einem integrierten Bauteil 23, welches zusätzlich zu dem Bauteil 19 gemäß Fig. 2 einen integrierten Abgaskühler 13', einen integrierten Kondensatabscheider 15' sowie einen integrierten Luftfilter 18' aufweist. Somit enthält das integrierte Bauteil 23 sechs miteinander integrierte Komponenten.
Fig. 7 zeigt eine sechste Abwandlung des ND-AGR-Systems gemäß Fig. 1 , und zwar mit einem integrierten Bauteil 24, welches zusätzlich zu dem integrierten Bauteil 19 gemäß Fig. 1 einen integrierten Ladeluftverdichter 8', einen Kondensatabscheider 15' und ein integriertes Luftfilter 18' aufweist. Das in- tegrierte Bauteil 24 besteht somit aus sechs integrierten Komponenten bzw. aus dem Bauteil 22 gemäß Fig. 5, in welches zusätzlich der Verdichter 8' integriert wurde. Damit wird ebenfalls ein hoher Integrationsgrad, verbunden mit Bauraum- und Kostenreduzierung, erreicht.

Claims

P a t e n t a n s p r ü c h e
1. Anordnung zur Rückführung und Kühlung von Abgas einer Brennkraftmaschine (2), insbesondere eines Dieselmotors in einem Kraftfahrzeug, wobei die Brennkraftmaschine (2) eine Abgasleitung (3) mit einer Abgasturbine (6) sowie eine Ansaugleitung (4) mit einem von der Abgasturbine (6) angetriebenen Ladeluftverdichter (8) aufweist, wobei stromabwärts der Turbine (6) eine Entnahmestelle (11) zur Abzweigung einer Abgasrückführleitung (AGR-Leitung 5) und stromaufwärts des Verdichters (8) eine Rückführstelle (12) zur Rückführung der AGR-Leitung (5) angeordnet und wobei in der AGR-Leitung (5) mindestens ein Abgaswärmeübertrager (13) und ein AGR-Ventil (14) angeordnet sind, dadurch gekennzeichnet, dass in der Ansaugleitung (4) ein Ladeluftdrosselorgan (17) angeordnet ist und dass das AGR-Ventil (14), die Rückführstelle (12) und das Drosselorgan (17) als ein integriertes Bauteil (19) ausgebildet sind.
2. Anordnung nach Anspruch 1 , dadurch gekennzeichnet, dass das
Bauteil (19) einen abgasseitigen Eingang E und einen frischluftseiti- gen Eingang E aufweist, die bezüglich ihres Durchtrittsquerschnittes verstellbar sind.
3. Anordnung nach Anspruch 2, dadurch gekennzeichnet, dass die
Eingänge E unabhängig voneinander verstellbar sind.
4. Anordnung nach Anspruch 2, dadurch gekennzeichnet, dass die Eingänge E abhängig voneinander verstellbar sind.
5. Anordnung nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass ein Luftfilter (18) in der Ansaugleitung (4) angeordnet ist und dass das Luftfilter (181) zusätzlich in das Bauteil (19) integrierbar ist.
6. Anordnung nach mindestens einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass in der AGR-Leitung (5) ein Kondensatabscheider (15) angeordnet und dass der Kondensatabscheider (151) zusätzlich in das Bauteil (19) integrierbar ist.
7. Anordnung nach mindestens einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass der Abgaswärmeübertrager (13') zusätzlich in das Bauteil (19) integrierbar ist.
8. Anordnung nach mindestens einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass der Verdichter (8') zusätzlich in das Bauteil (19) integrierbar ist.
PCT/EP2006/009667 2005-10-10 2006-10-06 Anordnung zur rückführung und kühlung von abgas einer brennkraftmaschine WO2007042209A1 (de)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US12/089,402 US20080223038A1 (en) 2005-10-10 2006-10-06 Arrangement for Recirculating and Cooling Exhaust Gas of an Internal Combustion Engine
EP06806076A EP1937957A1 (de) 2005-10-10 2006-10-06 Anordnung zur rückführung und kühlung von abgas einer brennkraftmaschine
JP2008533943A JP2009511797A (ja) 2005-10-10 2006-10-06 内燃機関の排ガスを再循環および冷却するための装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102005048911.7 2005-10-10
DE102005048911A DE102005048911A1 (de) 2005-10-10 2005-10-10 Anordnung zur Rückführung und Kühlung von Abgas einer Brennkraftmaschine

Publications (1)

Publication Number Publication Date
WO2007042209A1 true WO2007042209A1 (de) 2007-04-19

Family

ID=37649332

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2006/009667 WO2007042209A1 (de) 2005-10-10 2006-10-06 Anordnung zur rückführung und kühlung von abgas einer brennkraftmaschine

Country Status (5)

Country Link
US (1) US20080223038A1 (de)
EP (1) EP1937957A1 (de)
JP (1) JP2009511797A (de)
DE (1) DE102005048911A1 (de)
WO (1) WO2007042209A1 (de)

Families Citing this family (95)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008150955A (ja) * 2006-12-14 2008-07-03 Denso Corp 排気還流装置
DE202007005986U1 (de) * 2007-04-24 2008-09-04 Mann+Hummel Gmbh Verbrennungsluft- und Abgasanordnung eines Verbrennungsmotors
FR2922960B1 (fr) * 2007-10-24 2014-01-31 Valeo Systemes Thermiques Systeme de reinjection de gaz de carter et echangeur de chaleur mis en oeuvre dans ledit systeme
FR2926113A1 (fr) * 2008-01-03 2009-07-10 Valeo Sys Controle Moteur Sas Boucle egr d'un moteur a combustion interne d'un vehicule automobile
FR2926114B1 (fr) 2008-01-03 2012-12-14 Valeo Sys Controle Moteur Sas Boucle egr d'un moteur a combustion interne d'un vehicule automobile
CA2934541C (en) 2008-03-28 2018-11-06 Exxonmobil Upstream Research Company Low emission power generation and hydrocarbon recovery systems and methods
CA2718803C (en) 2008-03-28 2016-07-12 Exxonmobil Upstream Research Company Low emission power generation and hydrocarbon recovery systems and methods
DE102008048973A1 (de) 2008-09-25 2010-04-08 Benteler Automobiltechnik Gmbh Abgasrückführsystem
US9222671B2 (en) 2008-10-14 2015-12-29 Exxonmobil Upstream Research Company Methods and systems for controlling the products of combustion
DE102009037923A1 (de) 2009-08-19 2011-02-24 Behr America, Inc., Troy Anordnung zur Rückführung und Kühlung von Abgas einer Brennkraftmaschine
DE102009043085A1 (de) 2009-09-25 2011-08-04 Volkswagen AG, 38440 Brennkraftmaschine mit einem Abgasturbolader und einem Abgasrückführsystem
DE102009046370B4 (de) * 2009-11-04 2017-03-16 Ford Global Technologies, Llc Verfahren und Anordnung zur Abgasrückführung bei einem Verbrennungsmotor
EP2499332B1 (de) 2009-11-12 2017-05-24 Exxonmobil Upstream Research Company Integriertes system zur energieumwandlung und vefahren für niedrig-emissions-kohlenwasserstoff-rückgewinnung mit energieumwandlung
DE102010007790A1 (de) * 2010-02-12 2011-08-18 Dr. Ing. h.c. F. Porsche Aktiengesellschaft, 70435 Abgasrückführsystem
US8733320B2 (en) 2010-04-02 2014-05-27 Ford Global Technologies, Llc Combustion stability enhancement via internal EGR control
US7934486B1 (en) 2010-04-02 2011-05-03 Ford Global Technologies, Llc Internal and external LP EGR for boosted engines
US7945377B1 (en) 2010-04-22 2011-05-17 Ford Global Technologies, Llc Methods and systems for exhaust gas mixing
MY164051A (en) 2010-07-02 2017-11-15 Exxonmobil Upstream Res Co Low emission triple-cycle power generation systems and methods
US9903316B2 (en) 2010-07-02 2018-02-27 Exxonmobil Upstream Research Company Stoichiometric combustion of enriched air with exhaust gas recirculation
US9732673B2 (en) 2010-07-02 2017-08-15 Exxonmobil Upstream Research Company Stoichiometric combustion with exhaust gas recirculation and direct contact cooler
JP5913305B2 (ja) 2010-07-02 2016-04-27 エクソンモービル アップストリーム リサーチ カンパニー 低エミッション発電システム及び方法
DE102010048466A1 (de) * 2010-10-14 2012-04-19 Daimler Ag Abgasrückführung mit Kondensat-Abführung
DE102010048465A1 (de) * 2010-10-14 2012-04-19 Daimler Ag Abgasrückführung mit Kondensatabführung
CN103154468A (zh) * 2010-10-18 2013-06-12 博格华纳公司 涡轮增压器egr模块
JP5825791B2 (ja) 2011-01-19 2015-12-02 三菱重工業株式会社 過給機およびこれを備えたディーゼル機関
CN103348120A (zh) * 2011-02-08 2013-10-09 丰田自动车株式会社 内燃机的排气循环装置
TWI564474B (zh) 2011-03-22 2017-01-01 艾克頌美孚上游研究公司 於渦輪系統中控制化學計量燃燒的整合系統和使用彼之產生動力的方法
TWI593872B (zh) 2011-03-22 2017-08-01 艾克頌美孚上游研究公司 整合系統及產生動力之方法
TWI563166B (en) 2011-03-22 2016-12-21 Exxonmobil Upstream Res Co Integrated generation systems and methods for generating power
TWI563165B (en) 2011-03-22 2016-12-21 Exxonmobil Upstream Res Co Power generation system and method for generating power
US8161746B2 (en) * 2011-03-29 2012-04-24 Ford Global Technologies, Llc Method and system for providing air to an engine
JP5742452B2 (ja) * 2011-05-11 2015-07-01 トヨタ自動車株式会社 内燃機関の排気再循環装置
WO2013095829A2 (en) 2011-12-20 2013-06-27 Exxonmobil Upstream Research Company Enhanced coal-bed methane production
DE102012004368A1 (de) * 2012-03-02 2013-09-05 Daimler Ag Brennkraftmaschine, insbesondere ein Dieselmotor oder ein Ottomotor
US9353682B2 (en) 2012-04-12 2016-05-31 General Electric Company Methods, systems and apparatus relating to combustion turbine power plants with exhaust gas recirculation
US9784185B2 (en) 2012-04-26 2017-10-10 General Electric Company System and method for cooling a gas turbine with an exhaust gas provided by the gas turbine
US10273880B2 (en) 2012-04-26 2019-04-30 General Electric Company System and method of recirculating exhaust gas for use in a plurality of flow paths in a gas turbine engine
US9239016B2 (en) * 2012-09-10 2016-01-19 Ford Global Technologies, Llc Catalyst heating with exhaust back-pressure
US9611756B2 (en) 2012-11-02 2017-04-04 General Electric Company System and method for protecting components in a gas turbine engine with exhaust gas recirculation
US9631815B2 (en) 2012-12-28 2017-04-25 General Electric Company System and method for a turbine combustor
US10107495B2 (en) 2012-11-02 2018-10-23 General Electric Company Gas turbine combustor control system for stoichiometric combustion in the presence of a diluent
US10215412B2 (en) 2012-11-02 2019-02-26 General Electric Company System and method for load control with diffusion combustion in a stoichiometric exhaust gas recirculation gas turbine system
US9599070B2 (en) 2012-11-02 2017-03-21 General Electric Company System and method for oxidant compression in a stoichiometric exhaust gas recirculation gas turbine system
US10138815B2 (en) 2012-11-02 2018-11-27 General Electric Company System and method for diffusion combustion in a stoichiometric exhaust gas recirculation gas turbine system
US9803865B2 (en) 2012-12-28 2017-10-31 General Electric Company System and method for a turbine combustor
US9574496B2 (en) 2012-12-28 2017-02-21 General Electric Company System and method for a turbine combustor
US9708977B2 (en) 2012-12-28 2017-07-18 General Electric Company System and method for reheat in gas turbine with exhaust gas recirculation
US9869279B2 (en) 2012-11-02 2018-01-16 General Electric Company System and method for a multi-wall turbine combustor
US20140150758A1 (en) * 2012-12-04 2014-06-05 General Electric Company Exhaust gas recirculation system with condensate removal
US10208677B2 (en) 2012-12-31 2019-02-19 General Electric Company Gas turbine load control system
US9581081B2 (en) 2013-01-13 2017-02-28 General Electric Company System and method for protecting components in a gas turbine engine with exhaust gas recirculation
US9512759B2 (en) 2013-02-06 2016-12-06 General Electric Company System and method for catalyst heat utilization for gas turbine with exhaust gas recirculation
US9938861B2 (en) 2013-02-21 2018-04-10 Exxonmobil Upstream Research Company Fuel combusting method
TW201502356A (zh) 2013-02-21 2015-01-16 Exxonmobil Upstream Res Co 氣渦輪機排氣中氧之減少
RU2637609C2 (ru) 2013-02-28 2017-12-05 Эксонмобил Апстрим Рисерч Компани Система и способ для камеры сгорания турбины
US20140250945A1 (en) 2013-03-08 2014-09-11 Richard A. Huntington Carbon Dioxide Recovery
CN105008499A (zh) 2013-03-08 2015-10-28 埃克森美孚上游研究公司 发电和从甲烷水合物中回收甲烷
TW201500635A (zh) 2013-03-08 2015-01-01 Exxonmobil Upstream Res Co 處理廢氣以供用於提高油回收
US9618261B2 (en) 2013-03-08 2017-04-11 Exxonmobil Upstream Research Company Power generation and LNG production
JP6096056B2 (ja) * 2013-05-31 2017-03-15 三菱重工業株式会社 脱硝装置の制御装置、脱硝装置、及び脱硝装置の制御方法
TWI654368B (zh) 2013-06-28 2019-03-21 美商艾克頌美孚上游研究公司 用於控制在廢氣再循環氣渦輪機系統中的廢氣流之系統、方法與媒體
US9835089B2 (en) 2013-06-28 2017-12-05 General Electric Company System and method for a fuel nozzle
US9617914B2 (en) 2013-06-28 2017-04-11 General Electric Company Systems and methods for monitoring gas turbine systems having exhaust gas recirculation
US9631542B2 (en) 2013-06-28 2017-04-25 General Electric Company System and method for exhausting combustion gases from gas turbine engines
US9587510B2 (en) 2013-07-30 2017-03-07 General Electric Company System and method for a gas turbine engine sensor
US9903588B2 (en) 2013-07-30 2018-02-27 General Electric Company System and method for barrier in passage of combustor of gas turbine engine with exhaust gas recirculation
US9951658B2 (en) 2013-07-31 2018-04-24 General Electric Company System and method for an oxidant heating system
DE102013111215B4 (de) * 2013-10-10 2019-11-07 Pierburg Gmbh Drosselklappenstutzen für eine Brennkraftmaschine sowie Verfahren zur Regelung einer Drosselklappe in einem Drosselklappenstutzen
US9752458B2 (en) 2013-12-04 2017-09-05 General Electric Company System and method for a gas turbine engine
US10030588B2 (en) 2013-12-04 2018-07-24 General Electric Company Gas turbine combustor diagnostic system and method
US10227920B2 (en) 2014-01-15 2019-03-12 General Electric Company Gas turbine oxidant separation system
DE102014200698A1 (de) * 2014-01-16 2015-07-16 Ford Global Technologies, Llc Niederdruck-EGR-Ventil
US9863267B2 (en) 2014-01-21 2018-01-09 General Electric Company System and method of control for a gas turbine engine
US9915200B2 (en) 2014-01-21 2018-03-13 General Electric Company System and method for controlling the combustion process in a gas turbine operating with exhaust gas recirculation
US10079564B2 (en) 2014-01-27 2018-09-18 General Electric Company System and method for a stoichiometric exhaust gas recirculation gas turbine system
US10047633B2 (en) 2014-05-16 2018-08-14 General Electric Company Bearing housing
US10060359B2 (en) 2014-06-30 2018-08-28 General Electric Company Method and system for combustion control for gas turbine system with exhaust gas recirculation
US10655542B2 (en) 2014-06-30 2020-05-19 General Electric Company Method and system for startup of gas turbine system drive trains with exhaust gas recirculation
US9885290B2 (en) 2014-06-30 2018-02-06 General Electric Company Erosion suppression system and method in an exhaust gas recirculation gas turbine system
US9819292B2 (en) 2014-12-31 2017-11-14 General Electric Company Systems and methods to respond to grid overfrequency events for a stoichiometric exhaust recirculation gas turbine
US9869247B2 (en) 2014-12-31 2018-01-16 General Electric Company Systems and methods of estimating a combustion equivalence ratio in a gas turbine with exhaust gas recirculation
US10788212B2 (en) 2015-01-12 2020-09-29 General Electric Company System and method for an oxidant passageway in a gas turbine system with exhaust gas recirculation
US10094566B2 (en) 2015-02-04 2018-10-09 General Electric Company Systems and methods for high volumetric oxidant flow in gas turbine engine with exhaust gas recirculation
US10253690B2 (en) 2015-02-04 2019-04-09 General Electric Company Turbine system with exhaust gas recirculation, separation and extraction
US10316746B2 (en) 2015-02-04 2019-06-11 General Electric Company Turbine system with exhaust gas recirculation, separation and extraction
US10267270B2 (en) 2015-02-06 2019-04-23 General Electric Company Systems and methods for carbon black production with a gas turbine engine having exhaust gas recirculation
US10145269B2 (en) 2015-03-04 2018-12-04 General Electric Company System and method for cooling discharge flow
US10480792B2 (en) 2015-03-06 2019-11-19 General Electric Company Fuel staging in a gas turbine engine
DE102015122736B4 (de) 2015-12-23 2022-12-15 Hanon Systems System zur Führung von gasförmigen Fluiden eines Verbrennungsmotors eines Kraftfahrzeugs und Verfahren zum Betreiben des Systems
US10215135B2 (en) 2016-07-22 2019-02-26 Ford Global Technologies, Llc System and methods for extracting water from exhaust gases for water injection
JP6590033B2 (ja) * 2018-06-22 2019-10-16 株式会社デンソー 低圧egr装置
EP3708821A1 (de) * 2019-03-15 2020-09-16 Borgwarner Inc. Verdichter zum laden eines verbrennungsmotors
CN113606063A (zh) * 2021-08-25 2021-11-05 安徽江淮汽车集团股份有限公司 可排出冷凝水的汽车egr系统
KR20230061842A (ko) * 2021-10-29 2023-05-09 현대자동차주식회사 엔진 시스템
CN114607535B (zh) * 2022-02-23 2023-06-13 浙江吉利控股集团有限公司 一种增压器

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04112957A (ja) * 1990-08-31 1992-04-14 Hino Motors Ltd ターボ過給エンジンのegr装置
EP0586123A2 (de) * 1992-08-31 1994-03-09 Hitachi, Ltd. Einlassluftanlage für Brennkraftmaschine
EP0916837A2 (de) * 1997-11-17 1999-05-19 Behr GmbH & Co. Vorrichtung zur Abgasrückführung für einen Verbrennungsmotor
WO2000028203A1 (en) * 1998-11-09 2000-05-18 Stt Emtec Aktiebolag A method and device for an egr-system and a valve as well as a regulation method and device
EP1030050A1 (de) * 1999-02-16 2000-08-23 Siebe Automotive (Deutschland) GmbH Abgasrückführsystem
WO2001007774A1 (en) * 1999-07-22 2001-02-01 U.S. Environmental Protection Agency Low emission, diesel-cycle engine
DE10203003A1 (de) * 2002-01-26 2003-08-07 Behr Gmbh & Co Abgaswärmeübertrager
WO2004031564A1 (de) * 2002-09-25 2004-04-15 Daimlerchrysler Ag Brennkraftmaschine mit einem verdichter im ansaugtrakt
EP1203148B1 (de) * 1999-06-15 2004-10-06 Johnson Matthey Public Limited Company Verbesserungen in der schadstoffausstossregelung
EP1529952A2 (de) * 2003-11-07 2005-05-11 Hitachi, Ltd. Elektronisches System zur Steuerung der Abgasrezirkulation

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
USRE37269E1 (en) * 1992-08-31 2001-07-10 Hitachi, Ltd. Air intake arrangement for internal combustion engine
JPH09228901A (ja) * 1995-12-21 1997-09-02 Denso Corp Egr制御弁およびそれを用いた排気ガス再循環装置
JPH1113553A (ja) * 1997-06-26 1999-01-19 Nippon Soken Inc 排出ガス再循環装置
US6494041B1 (en) * 2001-07-02 2002-12-17 Borgwarner, Inc. Total pressure exhaust gas recirculation duct
DE10341393B3 (de) * 2003-09-05 2004-09-23 Pierburg Gmbh Luftansaugkanalsystem für eine Verbrennungskraftmaschine

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04112957A (ja) * 1990-08-31 1992-04-14 Hino Motors Ltd ターボ過給エンジンのegr装置
EP0586123A2 (de) * 1992-08-31 1994-03-09 Hitachi, Ltd. Einlassluftanlage für Brennkraftmaschine
EP0916837A2 (de) * 1997-11-17 1999-05-19 Behr GmbH & Co. Vorrichtung zur Abgasrückführung für einen Verbrennungsmotor
WO2000028203A1 (en) * 1998-11-09 2000-05-18 Stt Emtec Aktiebolag A method and device for an egr-system and a valve as well as a regulation method and device
EP1030050A1 (de) * 1999-02-16 2000-08-23 Siebe Automotive (Deutschland) GmbH Abgasrückführsystem
EP1203148B1 (de) * 1999-06-15 2004-10-06 Johnson Matthey Public Limited Company Verbesserungen in der schadstoffausstossregelung
WO2001007774A1 (en) * 1999-07-22 2001-02-01 U.S. Environmental Protection Agency Low emission, diesel-cycle engine
DE10203003A1 (de) * 2002-01-26 2003-08-07 Behr Gmbh & Co Abgaswärmeübertrager
WO2004031564A1 (de) * 2002-09-25 2004-04-15 Daimlerchrysler Ag Brennkraftmaschine mit einem verdichter im ansaugtrakt
EP1529952A2 (de) * 2003-11-07 2005-05-11 Hitachi, Ltd. Elektronisches System zur Steuerung der Abgasrezirkulation

Also Published As

Publication number Publication date
DE102005048911A1 (de) 2007-04-12
JP2009511797A (ja) 2009-03-19
EP1937957A1 (de) 2008-07-02
US20080223038A1 (en) 2008-09-18

Similar Documents

Publication Publication Date Title
WO2007042209A1 (de) Anordnung zur rückführung und kühlung von abgas einer brennkraftmaschine
EP1899595B1 (de) Vorrichtung zur rückführung und kühlung von abgas für eine brennkraftmaschine
DE69815882T2 (de) Anlage einer brennkraftmaschine
EP2108807B1 (de) Abgasrückführsystem für eine Verbrennungskraftmaschine
DE102008043036B4 (de) Verbrennungsmotor mit Turboladung und Niederdruck-Abgasrückführung
EP1394380A1 (de) Aufladesystem für eine Brennkraftmaschine
DE102004040893A1 (de) Abgasturbolader
WO2010020323A1 (de) Abgasturbolader für eine brennkraftmaschine eines kraftfahrzeugs
DE102009028354A1 (de) Gasführungssystem für eine Peripherie einer Brennkraftmaschine zur Führung von Gas der Brennkraftmaschine, Brennkraftmaschine und Verfahren zum Betrieb der Brennkraftmaschine
EP1455078B1 (de) Brennkraftmaschine mit einem Abgasturbolader und einem Abgasrückführsystem
DE102008048681A1 (de) Brennkraftmaschine mit zwei Ladern und Verfahren zum Betreiben derselben
DE102008056337A1 (de) Brennkraftmaschine mit Abgasrückführung
EP2462333A1 (de) Verbrennungskraftmaschine
WO2012076095A1 (de) Turbine für einen abgasturbolader
DE102012015259A1 (de) Verfahren zum Behandeln von Abgas und Anordnung einer Abgasanlage an einer Verbrennungskraftmaschine
EP2151570A1 (de) Abgasrückführsystem für eine Verbrennungskraftmaschine
DE102006055814B4 (de) Turbogeladener Verbrennungsmotor mit Abgasrückführung
DE102013201710B4 (de) Brennkraftmaschine mit Spenderzylinderkonzept
WO2016005152A1 (de) Abgasrückführungssystem für eine verbrennungskraftmaschine und verfahren zum betreiben eines solchen abgasrückführungssystems
DE102005008638B4 (de) Partikelfilteranordnung für einen Dieselmotor mit Abgasrückführung
DE102013008827A1 (de) Aufgeladene Brennkraftmaschine
WO2010072227A1 (de) Abgasrückführungssystem und verfahren zur abgasrückführung
DE102009020625A1 (de) Verbrennungskraftmaschine
WO2004111406A2 (de) Brennkraftmaschine mit abgasrückführeinrichtung und verfahren hierzu
DE102007019089A1 (de) Abgaswärmetauscher, Abgaswärmetauschersystem, Brennkraftmotor und Verfahren zum Behandeln von Abgasen eines Brennkraftmotors

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006806076

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2008533943

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 12089402

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 2006806076

Country of ref document: EP