EP1899595B1 - Vorrichtung zur rückführung und kühlung von abgas für eine brennkraftmaschine - Google Patents

Vorrichtung zur rückführung und kühlung von abgas für eine brennkraftmaschine Download PDF

Info

Publication number
EP1899595B1
EP1899595B1 EP06762098.9A EP06762098A EP1899595B1 EP 1899595 B1 EP1899595 B1 EP 1899595B1 EP 06762098 A EP06762098 A EP 06762098A EP 1899595 B1 EP1899595 B1 EP 1899595B1
Authority
EP
European Patent Office
Prior art keywords
exhaust
exhaust gas
valve
cooling
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP06762098.9A
Other languages
English (en)
French (fr)
Other versions
EP1899595A1 (de
Inventor
Jochen Eitel
Markus Flik
Peter Geskes
Thomas Heckenberger
Dieter Heinle
Jens Ruckwied
Andreas Thumm
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mahle Behr GmbH and Co KG
Original Assignee
Behr GmbH and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Behr GmbH and Co KG filed Critical Behr GmbH and Co KG
Publication of EP1899595A1 publication Critical patent/EP1899595A1/de
Application granted granted Critical
Publication of EP1899595B1 publication Critical patent/EP1899595B1/de
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/13Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories
    • F02M26/22Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories with coolers in the recirculation passage
    • F02M26/23Layout, e.g. schematics
    • F02M26/24Layout, e.g. schematics with two or more coolers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/02EGR systems specially adapted for supercharged engines
    • F02M26/04EGR systems specially adapted for supercharged engines with a single turbocharger
    • F02M26/06Low pressure loops, i.e. wherein recirculated exhaust gas is taken out from the exhaust downstream of the turbocharger turbine and reintroduced into the intake system upstream of the compressor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/02EGR systems specially adapted for supercharged engines
    • F02M26/08EGR systems specially adapted for supercharged engines for engines having two or more intake charge compressors or exhaust gas turbines, e.g. a turbocharger combined with an additional compressor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/13Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories
    • F02M26/22Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories with coolers in the recirculation passage
    • F02M26/23Layout, e.g. schematics
    • F02M26/25Layout, e.g. schematics with coolers having bypasses
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/13Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories
    • F02M26/22Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories with coolers in the recirculation passage
    • F02M26/23Layout, e.g. schematics
    • F02M26/28Layout, e.g. schematics with liquid-cooled heat exchangers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B29/00Engines characterised by provision for charging or scavenging not provided for in groups F02B25/00, F02B27/00 or F02B33/00 - F02B39/00; Details thereof
    • F02B29/04Cooling of air intake supply
    • F02B29/0406Layout of the intake air cooling or coolant circuit
    • F02B29/0412Multiple heat exchangers arranged in parallel or in series
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/13Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories
    • F02M26/14Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories in relation to the exhaust system
    • F02M26/15Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories in relation to the exhaust system in relation to engine exhaust purifying apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/13Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories
    • F02M26/22Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories with coolers in the recirculation passage
    • F02M26/29Constructional details of the coolers, e.g. pipes, plates, ribs, insulation or materials
    • F02M26/30Connections of coolers to other devices, e.g. to valves, heaters, compressors or filters; Coolers characterised by their location on the engine

Definitions

  • the invention relates to a device for returning and cooling exhaust gas of an internal combustion engine ( JP 11 200 955 ).
  • the exhaust gas recirculation (abbreviation: EGR), in particular the cooled exhaust gas recirculation is used in today's vehicles due to legal regulations, in order to reduce the particle and pollutant, in particular nitrogen oxide emissions.
  • EGR exhaust gas recirculation
  • the known EGR system has an exhaust gas turbocharger for a diesel engine and an EGR line with an EGR valve, which is arranged between the engine and the exhaust gas turbine.
  • the recirculated exhaust gas is preferably cooled in two stages, ie in two exhaust gas heat exchangers, which are each cooled by a separate coolant circuit and designed as a high-temperature and low-temperature exhaust gas cooler are.
  • the cooled, recirculated exhaust gas is combined with compressed and cooled charge air and fed to the intake manifold of the engine.
  • Exhaust heat exchangers in particular exhaust gas cooler are known in various embodiments:
  • the applicant has been known a welded construction for an exhaust gas heat exchanger, which consists of a bundle of exhaust pipes, which are surrounded on its outside by coolant, which is taken from the cooling circuit of the internal combustion engine.
  • Exhaust heat exchangers are often also equipped with a bypass duct for the exhaust gas, ie in the event that cooling of the exhaust gas or - for heating purposes - a heating of the coolant is not required or not advantageous.
  • a bypass duct for the exhaust gas, ie in the event that cooling of the exhaust gas or - for heating purposes - a heating of the coolant is not required or not advantageous.
  • the applicant and in the DE 102 03 003 A1 are such exhaust gas heat exchanger disclosed with an integrated bypass, wherein in an inlet diffuser or in the outlet region of the Abgas139übertragers a bypass valve, preferably in the form of a bypass valve is arranged, which acts as a switch for the exhaust gas flow and passes either through the bypassed by coolant tube bundle or through the bypass channel ,
  • the bypass duct for the exhaust gas heat exchanger can also be arranged separately, ie outside the heat exchanger.
  • the EGR valve is disposed in the return of the EGR passage, that is, downstream of the exhaust gas cooler in the exhaust gas flow direction.
  • a device for exhaust gas recirculation with a valve device in which a bypass channel is integrated with a bypass valve.
  • the exhaust gas heat exchanger has a bundle of U-shaped exhaust pipes, which are cooled by a liquid coolant.
  • the integration of a first and a second exhaust gas heat exchanger to a structural unit or a module is provided.
  • the two exhaust gas heat exchangers are preferably designed as high-temperature and low-temperature exhaust gas coolers, which are each cooled by a separate cooling circuit, by the coolant circuit of the internal combustion engine and by a low-temperature cooling circuit.
  • Both heat exchangers are mechanically or cohesively, ie connected by screwing, welding or soldering together to form a structural unit.
  • the advantage here is that such a module can be produced in a manufacturing process and mounted as a unit in the vehicle, which also eliminates the need to install intermediate cables. This reduces the costs.
  • a further advantage is a reduction of the installation space, since the components of the module are arranged compact and without intermediate lines.
  • the cooling of the exhaust gas is not limited to liquid cooling, air cooling or liquid and air cooling are also possible.
  • the two exhaust gas cooler on a bypass channel, which may be either integrated or arranged separately.
  • the bypass channel is assigned a bypass valve, which is arranged on the inlet or outlet side of the exhaust gas cooler.
  • the EGR valve is integrated into the module, wherein here also an arrangement on the exhaust gas inlet or exhaust gas outlet side is possible.
  • the EGR valve can either be designed as a pure shut-off valve or according to the invention as a flow control valve, as a three-way valve to regulate the recirculated mass flow.
  • the high-temperature radiator on an inlet diffuser in which a particulate filter and / or an oxidation catalyst is arranged, which is particularly advantageous for the exhaust gas purification of diesel engines and prevents soot in the exhaust pipes of the radiator.
  • the exhaust gas is cooled in the first or second radiator with air, wherein the respective other cooling stage is cooled with coolant.
  • Fig. 1a shows an exhaust gas recirculation (EGR) system for a supercharged, designed as a diesel engine internal combustion engine 1 of a motor vehicle, not shown.
  • the diesel engine 1 has an intake pipe 2 and an exhaust pipe 3, wherein in the exhaust pipe 3, an exhaust gas turbine 4 and in the intake 2 a driven by the exhaust turbine 4 compressor 5 (so-called exhaust gas turbocharger) are arranged.
  • a charge air cooler 6 is arranged, which, which is not shown, is cooled by a liquid coolant or by air.
  • a particulate filter and an oxidation catalyst represented by a rectangle 7, are arranged downstream of the exhaust gas turbine 4, a particulate filter and an oxidation catalyst, represented by a rectangle 7, are arranged.
  • the portion 3a of the exhaust pipe 3 located downstream of the exhaust gas turbine 4 and the portion 2a of the upstream pipe 2 located upstream of the compressor 5 are referred to as the low pressure side.
  • an exhaust gas recirculation line (EGR line) 8 and an exhaust gas cooler 9 are arranged, which is connectable via two nozzles 9a, 9b to a not shown coolant circuit of the engine 1.
  • the function of the illustrated EGR system is as follows: Fresh air is sucked in via the low-pressure section 2 a, brought from the compressor 5 to an elevated pressure, the boost pressure, fed to the charge air cooler 6 via the intake line 2, cooled there to increase the delivery rate and the engine 1 fed.
  • the exhaust gases leaving the engine drive the exhaust gas turbine 4, which in turn drives the compressor 5.
  • Behind the exhaust gas turbine 4, the diesel exhaust gases are cleaned by the particulate filter and the oxidation catalyst 7.
  • a partial flow is branched off via the EGR line 8, cooled in the exhaust gas cooler 9 and fed to the low-pressure section 2 a, where mixing of the recirculated exhaust gases with the intake fresh air takes place.
  • the performance or the Pressure difference at the compressor 5 is thus decisive for the exhaust gas recirculated via the exhaust gas cooler 9 (mass flow) and thus can be considerably increased, based on a known EGR system on the high pressure side, where only the pressure difference between the engine exhaust side and engine intake side is available for the flow ,
  • Fig. 1b shows an exhaust gas recirculation system (EGR system) as shown in Fig. 1a is described.
  • EGR system exhaust gas recirculation system
  • the tubing (4) is designed as a two-stage turbine system and the compressor (5) as a two-stage compression system with intermediate cooling.
  • the function of the illustrated EGR system is as follows: Fresh air is drawn in via the low-pressure section 2 a, brought from the first compressor stage 5 a to a higher pressure, the intermediate pressure and fed via an intermediate pressure section 2 b to an intermediate heat exchanger 25.
  • the intermediate heat exchanger the exhaust gas / air mixture is cooled to limit the temperature and then in a second compressor stage 5b increased to the intermediate pressure, the boost pressure, fed via the intake 2 to the intercooler 6, cooled there to increase the degree of delivery and the engine 1 supplied.
  • the exhaust gases leaving the engine drive a first exhaust gas turbine 4a, which in turn drives the second compressor stage 5b.
  • the expanded exhaust gas is fed to a second exhaust gas turbine 4b, which in turn drives the first compressor stage 5a.
  • the diesel exhaust gases are cleaned by the particulate filter and the oxidation catalyst 7.
  • a partial flow is branched off via the EGR line 8, cooled in the exhaust gas cooler 9 and fed to the low-pressure section 2 a, where mixing of the recirculated exhaust gases with the intake fresh air takes place.
  • Fig. 2a shows a further embodiment of the invention, ie an EGR system on the low pressure side of the engine 1 - for like parts, the same reference numerals as in Fig. 1a used.
  • the EGR system according to Fig. 2a corresponds on the high pressure side of the Fig. 1a ; on the low pressure side, ie between the line sections 2a, 3a is also a EGR line 8 is provided, which leads to a module 10, ie a constructed of different components assembly comprising primarily two exhaust side connected exhaust gas cooler 11, 12, the mechanical, ie, for example, by screwing or cohesively, ie by soldering or welding connected to each other.
  • the exhaust side upstream exhaust gas cooler 11 is formed as a high-temperature radiator and connected to the cooling circuit of the engine 1, not shown.
  • the exhaust side downstream cooler 12 is designed as a low-temperature cooler and connected to a low-temperature cooling circuit, not shown.
  • Upstream of the high-temperature cooler 11, a valve device 13 with a bypass flap 14 and a bypass line 15 bypassing the exhaust gas coolers 11, 12 is provided.
  • the latter can be integrated in the exhaust gas cooler 11, 12 or formed as a separate line.
  • the valve device 13 with bypass flap 14 can - contrary to the graphic representation - also downstream of the exhaust gas cooler 11, 12 may be arranged.
  • an EGR valve 16 designed as a shut-off valve is provided, which is likewise integrated into the module 10, ie connected to the remaining parts to form a structural unit.
  • a particulate filter and / or an oxidation catalytic converter 17, which is likewise structurally integrated, can be provided in an inlet diffuser, not shown, of the exhaust gas cooler 11, that is to say of the high-temperature radiator.
  • the module 10 is used in the assembly in the EGR line 8, the exhaust gas cooler 11, 12 are connected to the respective cooling circuits, and the valve device 13 and the control valve 16 are connected to control devices, not shown.
  • the attachment of the module 10 may take place at a suitable location in the motor vehicle.
  • the function of the illustrated EGR system is similar to Fig. 1a , initially with the difference that here is a two-stage cooling of the recirculated via the EGR line 8 exhaust stream. If no cooling is required or advantageous, both exhaust gas cooler 11, 12 by the bypass line 15 are bypassed.
  • the amount of the recirculated exhaust gas 8 is controlled by the shut-off valve 16, wherein in the simplest cases, a black-and-white control (open or close) is sufficient.
  • the particulate filter 17, which is provided in addition to the particulate filter 7 in the exhaust pipe 3a, prevents soot from accumulating in the exhaust pipes, not shown, of the two exhaust coolers 11, 12.
  • the exhaust gas cooler module 10 on the low pressure side (2a, 3a) is arranged, is also here an arbitrarily high pressure difference for the promotion of the exhaust gas flow to the compressor 5 is available, which is due to the large number of components in the EGR line 8 and high exhaust gas mass flows of advantage.
  • FIG. 2b shows a further embodiment of the invention, ie an EGR system on the low pressure side of the engine 1 - for like parts, the same reference numerals as in Fig. 1b and 2a used.
  • the tubing (4) is designed as a two-stage turbine system and the compressor (5) as a two-stage compression system with intermediate cooling, as in Fig. 1b is described.
  • FIG. 2c shows a further embodiment of the invention, ie an EGR system on the low pressure side of the engine 1 - for like parts, the same reference numerals as in Fig. 2a used.
  • Fig. 2a is formed as a shut-off valve EGR valve 16, which is also integrated into the module 10, that is connected to the other parts to form a unit, downstream of the exhaust gas cooler 11, 12 and the junction point of the bypass channel 15 is arranged.
  • Figure 2d shows a further embodiment of the invention, ie an EGR system on the low pressure side of the engine 1 - for like parts, the same reference numerals as in Fig. 2a and 2c used.
  • the tubing (4) is designed as a two-stage turbine system and the compressor (5) as a two-stage compression system with intermediate cooling; like this in Fig. 1b is described.
  • Fig. 3a shows a further embodiment of the invention for an EGR system on the low pressure side of the engine 1, again with like reference numerals be used for the same parts.
  • an exhaust gas recirculation guide 8 is arranged, which is largely integrated in a module 18.
  • the module 18, like the module 10 in FIG Fig. 2a also the exhaust gas cooler 11, 12, the valve device 13 with bypass valve 14 and bypass channel 15, and further includes the particulate filter and / or the oxidation catalyst 17.
  • Deviating from the embodiment according to Fig. 2 is a designed as a three-way valve flow control valve 19 (EGR valve), which is arranged at the branch point of the exhaust pipe 3a and EGR pipe 8.
  • EGR valve three-way valve flow control valve
  • the control valve 19 Through the control valve 19, the proportion of exhaust gas, which is taken from the total exhaust gas flow can be adjusted. As a result, a more accurate control of the recirculated exhaust gas mass flow is possible.
  • the functions of the module 18 are equal to the module 10 in FIG Fig. 2a ,
  • Fig. 3b shows a further embodiment of the invention for an EGR system on the low pressure side of the engine 1, again with the same reference numerals for the same parts as in Fig. 3a be used.
  • the tubing (4) is designed as a two-stage turbine system and the compressor (5) as a two-stage compression system with intermediate cooling, as in Fig. 1b is described.
  • Fig. 4a shows a further embodiment of the invention for an EGR system on the low pressure side of the engine 1, again using like reference numerals for the same.
  • the EGR valve 19, the valve device 13 and the bypass flap 14 are combined to form a structural unit, which form a multi-function valve 26.
  • Fig. 4b shows a further embodiment of the invention for an EGR system on the low pressure side of the engine 1, again using like reference numerals for the same.
  • tubing (4) is designed as a two-stage turbine system and the compressor (5) as a two-stage compression system with intermediate cooling, as in Fig. 1b is described.

Description

  • Die Erfindung betrifft eine Vorrichtung zur Rückführung und Kühlung von Abgas einer Brennkraftmaschine ( JP 11 200 955 ).
  • Die Abgasrückführung (Abkürzung: AGR), insbesondere die gekühlte Abgasrückführung wird in heutigen Fahrzeugen aufgrund gesetzlicher Bestimmungen eingesetzt, um die Partikel- und Schadstoff-, insbesondere Stickoxidemissionen zu senken. Da die Anforderungen an die Abgasreinhaltung strenger werden, sind größere Abgasmassenströme erforderlich, die mit den bekannten AGR-Systemen nur bedingt zu beherrschen sind.
  • Bekannte AGR-Systeme sind auf der Hochdruckseite des Verbrennungsmotors angeordnet, wie in der US 6,244,256 B1 beschrieben. Das bekannte AGR-System weist einen Abgasturbolader für einen Dieselmotor und eine AGR-Leitung mit einem AGR-Ventil auf, welches zwischen Motor und Abgasturbine angeordnet ist. Das rückgeführte Abgas wird vorzugsweise in zwei Stufen, d. h. in zwei Abgaswärmeübertragem gekühlt, welche jeweils durch einen gesonderten Kühlmittelkreislauf gekühlt werden und als Hochtemperatur- und Niedertemperatur-Abgaskühler ausgebildet sind. Das gekühlte, rückgeführte Abgas wird mit verdichteter und gekühlter Ladeluft zusammengeführt und dem Ansaugtrakt des Motors zugeführt.
  • Abgaswärmeübertrager, insbesondere Abgaskühler sind in verschiedenen Ausführungsformen bekannt: Durch die DE 199 07 163 A1 der Anmelderin wurde eine Schweißkonstruktion für einen Abgaswärmeübertrager bekannt, welcher aus einem Bündel von Abgasrohren besteht, die auf ihrer Außenseite von Kühlmittel umströmt werden, welches dem Kühlkreislauf der Brennkraftmaschine entnommen wird.
  • Abgaswärmeübertrager sind vielfach auch mit einem Bypasskanal für das Abgas ausgestattet, d. h. für den Fall, dass eine Kühlung des Abgases oder - bei Heizzwecken - eine Erwärmung des Kühlmittels nicht erforderlich oder nicht vorteilhaft ist. In der DE 199 62 863 A1 der Anmelderin und in der DE 102 03 003 A1 sind derartige Abgaswärmeübertrager mit einem integrierten Bypass offenbart, wobei in einem Eintrittsdiffusor oder im Austrittsbereich des Abgaswärmeübertragers ein Bypassventil, vorzugsweise in Form einer Bypassklappe angeordnet ist, welche als Weiche für den Abgasstrom wirkt und diesen entweder durch das von Kühlmittel umspülte Rohrbündel oder durch den Bypasskanal leitet.
  • Wie durch die EP 1 030 050 A1 bekannt, kann der Bypasskanal für den Abgaswärmeübertrager auch separat, d. h. außerhalb des Wärmeübertragers angeordnet sein. Bei diesem bekannten AGR-System ist das AGR-Ventil im Übrigen im Rücklauf der AGR-Leitung, d. h. in Abgasströmungsrichtung hinter dem Abgaskühler angeordnet.
  • Durch die DE 198 41 927 A1 wurde eine Vorrichtung zur Abgasrückführung mit einer Ventileinrichtung bekannt, in welche ein Bypasskanal mit einer Bypassklappe integriert ist. Der Abgaswärmeübertrager weist ein Bündel von U-förmig geformten Abgasrohren auf, welche durch ein flüssiges Kühlmittel gekühlt werden.
  • Durch die DE 197 50 588 A1 wurde eine Vorrichtung zur Abgasrückführung bekannt, bei welcher ein Abgaswärmeübertrager mit einem Abgasrückführventil (AGR-Ventil) zu einer Baueinheit integriert ist. Damit lässt sich eine vereinfachte und damit verbilligte Herstellung durchführen, da auf einzelne Teile verzichtet werden kann.
  • Nachteilig bei den bekannten AGR-Systemen ist, dass diese aus einer Vielzahl von Einzelteilen bestehen, die separat gefertigt und einzeln montiert werden, was die Kosten erhöht. Darüber hinaus ist bei den bekannten AGR-Systemen von Nachteil, dass größere Abgasmassenströme nicht rückgeführt werden können, da die Druckdifferenz - aufgrund der Anordnung des AGR-Systems auf der Hochdruckseite des Motors - zwischen Abgas- und Ansaugseite des Motors nicht ausreicht, um größere Massenströme zu fördern.
  • Es ist eine Aufgabe der vorliegenden Erfindung, eine Vorrichtung zur Abgasrückführung der eingangs genannten Art einfacher und kostengünstiger zu gestalten. Darüber hinaus ist es Aufgabe der Erfindung, eine Anordnung zur Abgasrückführung zu schaffen, welche die Rückführung und Kühlung größerer Abgasmassenströme ermöglicht.
  • Diese Aufgabe wird durch die Merkmale des Patentanspruches 1 gelöst. Erfindungsgemäß ist die Integration eines ersten und eines zweiten Abgaswärmeübertragers zu einer Baueinheit bzw. einem Modul vorgesehen. Vorzugsweise sind die beiden Abgaswärmeübertrager als Hochtemperatur- und Niedertemperatur-Abgaskühler ausgebildet, welche jeweils durch einen separaten Kühlkreis gekühlt werden, durch den Kühlmittelkreislauf der Brennkraftmaschine und durch einen Niedertemperaturkühlkreislauf. Beide Wärmeübertrager sind mechanisch oder stoffschlüssig, d. h. durch Verschraubung, Schweißen oder Löten miteinander zu einer Baueinheit verbunden. Vorteilhaft hierbei ist, dass ein solches Modul in einem Fertigungsprozess hergestellt und als Einheit im Fahrzeug montiert werden kann, wobei auch die Montage von Zwischenleitungen entfällt. Dies reduziert die Kosten. Vorteilhaft ist ferner eine Reduzierung des Bauraumes, da die Komponenten des Moduls kompakt und ohne Zwischenleitungen angeordnet sind. Die Kühlung des Abgases ist nicht auf eine Flüssigkeitskühlung beschränkt, eine Luftkühlung oder eine Flüssigkeits- und Luftkühlung sind ebenfalls möglich.
  • Gemäß der Erfindung weisen die beiden Abgaskühler einen Bypasskanal auf, der entweder integriert oder separat angeordnet sein kann. Dem Bypasskanal ist ein Bypassventil zugeordnet, welches eintritts- oder austrittsseitig am Abgaskühler angeordnet ist. Auch diese Komponenten, Bypass und Bypassventil, sind somit Bestandteil des erfindungsgemäßen Moduls.
  • Gemäß der Erfindung ist auch das AGR-Ventil in das Modul integriert, wobei auch hier eine Anordnung auf der Abgaseintritts- oder Abgasaustrittsseite möglich ist. Das AGR-Ventil kann entweder als reines Absperrventil oder ist erfindungsgemäß als Mengehregelventil, als Drei-Wege-Ventil ausgebildet, um den rückgeführten Massenstrom zu regeln.
  • In weiterer vorteilhafter Ausgestaltung der Erfindung weist der Hochtemperaturkühler einen Eintrittsdiffusor auf, in welchem ein Partikelfilter und/oder ein Oxidationskatalysator angeordnet ist, was insbesondere für die Abgasreinigung von Dieselmotoren von Vorteil ist und eine Rußablagerung in den Abgasrohren des Kühlers verhindert. Diese Komponenten werden also auch in das Modul integriert und bedürfen keiner zusätzlichen Montage.
  • In einer weiteren vorteilhaften Ausgestaltung wird das Abgas im ersten oder zweiten Kühler mit Luft gekühlt, wobei die jeweils andere Kühlstufe mit Kühlmittel gekühlt wird.
  • Ausführungsbeispiele der Erfindung sind in der Zeichnung dargestellt und werden im Folgenden näher beschreiben. Es zeigen
  • Fig. 1a
    ein AGR-System mit Abgaskühler auf der Niederruckseite,
    Fig. 1b
    ein AGR-System mit Abgaskühler auf der Niederruckseite und einem zweistufigen Turbinen-/Verdichtersystem mit Zwischenkühlung,
    Fig. 2a
    ein AGR-System mit zweistufiger Abgaskühlung und Abgaskühlermodul auf der Niederdruckseite, wobei das AGR-Ventil auf der heißen Abgasseite, d.h. vor der zweistufigen Abgaskühlung angeordnet ist,
    Fig. 2b
    ein AGR-System mit zweistufiger Abgaskühlung und Abgaskühlermodul auf der Niederdruckseite, wobei das AGR-Ventil auf der heißen Abgasseite, d.h. vor der zweistufigen Abgaskühlung angeordnet ist und das Turbinen-/ Verdichtersystem zweistufig ist sowie über eine Zwischenkühlung verfügt,
    Fig. 2c
    ein AGR-System mit zweistufiger Abgaskühlung und Abgaskühlermodul auf der Niederdruckseite, wobei das AGR-Ventil auf der kalten Abgasseite, d.h. nach der zweistufigen Abgaskühlung angeordnet ist,
    Fig. 2d
    ein AGR-System mit zweistufiger Abgaskühlung und Abgaskühlermodul auf der Niederdruckseite, wobei das AGR-Ventil auf der kalten Abgasseite, d.h. nach der zweistufigen Abgaskühlung angeordnet ist und das Turbinen-/ Verdichtersystem zweistufig ist sowie über eine Zwischenkühlung verfügt,
    Fig. 3a
    ein AGR-System mit Abgaskühlermodul und integriertem AGR-Ventil sowie Partikelfilter und/oder Oxidationskatalysator,
    Fig. 3b
    ein AGR-System mit Abgaskühlermodul und integriertem AGR-Ventil sowie Partikelfilter und/oder Oxidationskatalysator sowie einem zweistufigen Turbinen-/ Verdichtersystem mit Zwischenkühlung,
    Fig. 4a
    ein AGR-System mit Abgaskühlermodul und integriertem AGR-Ventil, Bypass-Ventil sowie Partikelfilter und/oder Oxidationskatalysator, wobei das AGR-Ventil und das Bypass-Ventil in einem Multifunktionsventil zu einer Baueinheit zusammengefasst sind und
    Fig. 4b
    ein AGR-System mit Abgaskühlermodul und integriertem AGR-Ventil, Bypass-Ventil sowie Partikelfilter und/oder Oxidationskatalysator, wobei das AGR-Ventil und das Bypass-Ventil in einem Multifunktionsventil zu einer Baueinheit zusammengefasst sind sowie einem zweistufigen Turbinen-/ Verdichtersystem mit Zwischenkühlung.
  • Fig. 1a zeigt ein Abgasrückführsystem (AGR-System) für eine aufgeladene, als Dieselmotor ausgebildete Brennkraftmaschine 1 eines nicht dargestellten Kraftfahrzeuges. Der Dieselmotor 1 weist eine Ansaugleitung 2 und eine Abgasleitung 3 auf, wobei in der Abgasleitung 3 eine Abgasturbine 4 und in der Ansaugleitung 2 ein von der Abgasturbine 4 angetriebener Verdichter 5 (so genannter Abgasturbolader) angeordnet sind. Zwischen Verdichter 5 und dem nicht näher dargestellten Ansaugtrakt des Motors 1 ist ein Ladeluftkühler 6 angeordnet, welcher, was nicht dargestellt ist, durch ein flüssiges Kühlmittel oder durch Luft gekühlt wird. Stromabwärts von der Abgasturbine 4 sind ein Partikelfilter und ein Oxidationskatalysator, dargestellt durch ein Rechteck 7, angeordnet. Der stromabwärts der Abgasturbine 4 befindliche Bereich 3a der Abgasleitung 3 und der stromaufwärts vom Verdichter 5 befindliche Abschnitt 2a der Ansauleitung 2 werden als Niederdruckseite bezeichnet. Zwischen den Leitungsabschnitten 2a, 3a sind eine Abgasrückführleitung (AGR-Leitung) 8 sowie ein Abgaskühler 9 angeordnet, welcher über zwei Stutzen 9a, 9b an einen nicht dargestellten Kühlmittelkreislauf des Motors 1 anschließbar ist.
  • Die Funktion des dargestellten AGR-Systems ist folgende: Frischluft wird über den Niederdruckabschnitt 2a angesaugt, vom Verdichter 5 auf einen erhöhten Druck, den Ladedruck, gebracht, über die Ansaugleitung 2 dem Ladeluftkühler 6 zugeführt, dort zwecks Erhöhung des Liefergrades gekühlt und dem Motor 1 zugeführt. Die den Motor verlassenden Abgase treiben die Abgasturbine 4 an, die ihrerseits den Verdichter 5 antreibt. Hinter der Abgasturbine 4 werden die Dieselabgase durch den Partikelfilter und den Oxidationskatalysator 7 gereinigt. Bevor die Abgase ins Freie treten, wird ein Teilstrom über die AGR-Leitung 8 abgezweigt, im Abgaskühler 9 gekühlt und dem Niederdruckabschnitt 2a zugeführt, wo eine Vermischung der rückgeführten Abgase mit der angesaugten Frischluft erfolgt. Die Leistung bzw. die Druckdifferenz am Verdichter 5 ist somit maßgebend für die über den Abgaskühler 9 rückgeführte Abgasmenge (Massenstrom) und kann somit beträchtlich gesteigert werden, bezogen auf ein bekanntes AGR-System auf der Hochdruckseite, wo nur die Druckdifferenz zwischen Motorabgasseite und Motoransaugseite für den Förderstrom zur Verfügung steht.
  • Fig. 1b zeigt ein Abgasrückführsystem (AGR-System) wie es in Fig. 1a beschrieben ist. Im Unterschied zu Fig. 1a ist die Tubine (4) als zweistufiges Turbinensystem und der Verdichter (5) als zweistufiges Verdichtungssystem mit Zwischenkühlung ausgeführt.
  • Die Funktion des dargestellten AGR-Systems ist folgende: Frischluft wird über den Niederdruckabschnitt 2a angesaugt, von der ersten Verdichterstufe 5a auf einen höheren Druck, den Zwischendruck gebracht und über einen Zwischendruckabschnitt 2b einem Zwischenwärmetauscher 25 zugeführt. In dem Zwischenwärmetauscher wird das Abgas-/Luftgemisch zur Temperaturbegrenzung gekühlt und anschließend in einer zweiten Verdichterstufe 5b auf einen gegenüber dem Zwischendruck erhöhten Druck, den Ladedruck, gebracht, über die Ansaugleitung 2 dem Ladeluftkühler 6 zugeführt, dort zwecks Erhöhung des Liefergrades gekühlt und dem Motor 1 zugeführt.
  • Die den Motor verlassenden Abgase treiben eine erste Abgasturbinen 4a an, die ihrerseits die zweite Verdichterstufe 5b antreibt. Über eine Abgaszwischenleitung 3b wird das entspannte Abgas einer zweiten Abgasturbine 4b zugeführt, die ihrerseits die erste Verdichterstufe 5a antreibt. Hinter der Abgasturbine 4 werden die Dieselabgase durch den Partikelfilter und den Oxidationskatalysator 7 gereinigt. Bevor die Abgase ins Freie treten, wird ein Teilstrom über die AGR-Leitung 8 abgezweigt, im Abgaskühler 9 gekühlt und dem Niederdruckabschnitt 2a zugeführt, wo eine Vermischung der rückgeführten Abgase mit der angesaugten Frischluft erfolgt.
  • Fig. 2a zeigt ein weiteres Ausführungsbeispiel der Erfindung, d. h. ein AGR-System auf der Niederdruckseite des Motors 1 - für gleiche Teile werden gleiche Bezugszahlen wie in Fig. 1a verwendet. Das AGR-System gemäß Fig. 2a entspricht auf der Hochdruckseite dem von Fig. 1a; auf der Niederdruckseite, d. h. zwischen den Leitungsabschnitten 2a, 3a ist ebenfalls eine AGR-Leitung 8 vorgesehen, welche zu einem Modul 10 führt, d. h. einer aus verschiedenen Komponenten aufgebauten Baueinheit, welche primär zwei abgasseitig hintereinander geschaltete Abgaskühler 11, 12 umfasst, die mechanisch, d. h. z. B. durch Verschraubung oder stoffschlüssig, d. h. durch Verlöten oder Verschweißen fest miteinander verbunden sind. Der abgasseitig stromaufwärts gelegene Abgaskühler 11 ist als Hochtemperaturkühler ausgebildet und an den nicht dargestellten Kühlkreislauf des Motors 1 angeschlossen. Der abgasseitig stromabwärts gelegene Kühler 12 ist als Niedertemperaturkühler ausgelegt und an einen nicht dargestellten Niedertemperaturkühlkreis angeschlossen. Stromaufwärts vom Hochtemperaturkühler 11 ist eine Ventileinrichtung 13 mit einer Bypassklappe 14 und einer die Abgaskühler 11, 12 umgehenden Bypassleitung 15 vorgesehen. Letztere kann in die Abgaskühler 11, 12 integriert oder als separate Leitung ausgebildet sein. Die Ventileinrichtung 13 mit Bypassklappe 14 kann - entgegen der zeichnerischen Darstellung - auch stromabwärts der Abgaskühler 11, 12 angeordnet sein. Vor der Ventileinrichtung 13, d. h. hier stromaufwärts gelegen, ist ein als Absperrventil ausgebildetes AGR-Ventil 16 vorgesehen, welches ebenfalls in das Modul 10 integriert, d. h. mit den übrigen Teilen zu einer Baueinheit verbunden ist. Schließlich kann in einem nicht dargestellten Eintrittsdiffusor des Abgaskühlers 11, also des Hochtemperaturkühters, ein Partikelfilter und/oder ein Oxidationskatalysator 17 vorgesehen werden, der ebenfalls baulich integriert wird. Somit sind die Komponenten 11, 12, 13, 14, 15, 16, 17 zu einem Modul 10 integriert, welches als eine Einheit herstellbar und lieferbar ist und somit auch als Einheit oder Baugruppe im Fahrzeug mit relativ wenigen Handgriffen montierbar ist. Das Modul 10 wird bei der Montage in die AGR-Leitung 8 eingesetzt, die Abgaskühler 11, 12 werden an die jeweiligen Kühlkreisläufe angeschlossen, und die Ventileinrichtung 13 sowie das Regelventil 16 werden mit nicht dargestellten Steuereinrichtungen verbunden. Die Befestigung des Moduls 10 kann an geeigneter Stelle im Kraftfahrzeug erfolgen.
  • Die Funktion des dargestellten AGR-Systems ist ähnlich wie bei Fig. 1a, zunächst mit dem Unterschied, dass hier eine zweistufige Abkühlung des über die AGR-Leitung 8 rückgeführten Abgasstromes erfolgt. Sofern keine Abkühlung erforderlich oder vorteilhaft ist, können beide Abgaskühler 11, 12 durch die Bypassleitung 15 umgangen werden. Die Menge des rückgeführten Abgases 8 wird über das Absperrventil 16 geregelt, wobei in den einfachsten Fällen eine Schwarz-Weiß-Regelung (auf oder zu) ausreichend ist. Der Partikelfilter 17, der zusätzlich zu dem Partikelfilter 7 in der Abgasleitung 3a vorgesehen ist, verhindert eine Rußablagerung in den nicht dargestellten Abgasrohren der beiden Abgaskühler 11, 12. Da das Abgaskühlermodul 10 auf der Niederdruckseite (2a, 3a) angeordnet ist, steht auch hier eine beliebig hohe Druckdifferenz zur Förderung des Abgasstromes am Verdichter 5 zur Verfügung, was aufgrund der Vielzahl von Komponenten in der AGR-Leitung 8 und hohen Abgasmassenströmen von Vorteil ist.
  • Fig.2b zeigt ein weiteres Ausführungsbeispiel der Erfindung, d. h. ein AGR-System auf der Niederdruckseite des Motors 1 - für gleiche Teile werden gleiche Bezugszahlen wie in Fig. 1b und 2a verwendet. Im Unterschied zu Fig. 2a ist die Tubine (4) als zweistufiges Turbinensystem und der Verdichter (5) als zweistufiges Verdichtungssystem mit Zwischenkühlung ausgeführt, wie dieses in Fig. 1b beschrieben ist.
  • Fig.2c zeigt ein weiteres Ausführungsbeispiel der Erfindung, d. h. ein AGR-System auf der Niederdruckseite des Motors 1 - für gleiche Teile werden gleiche Bezugszahlen wie in Fig. 2a verwendet. Im Unterschied zu Fig. 2a ist das als Absperrventil ausgebildete AGR-Ventil 16, welches ebenfalls in das Modul 10 integriert ist, d. h. mit den übrigen Teilen zu einer Baueinheit verbunden ist, stromabwärts der Abgaskühler 11, 12 und der Einmündungsstelle des Bypasskanals 15 angeordnet.
  • Fig.2d zeigt ein weiteres Ausführungsbeispiel der Erfindung, d. h. ein AGR-System auf der Niederdruckseite des Motors 1 - für gleiche Teile werden gleiche Bezugszahlen wie in Fig. 2a und 2c verwendet. Im Unterschied zu Fig. 2c ist die Tubine (4) als zweistufiges Turbinensystem und der Verdichter (5) als zweistufiges Verdichtungssystem mit Zwischenkühlung ausgeführt; wie dieses in Fig. 1b beschrieben ist.
  • Fig. 3a zeigt ein weiteres Ausführungsbeispiel der Erfindung für ein AGR-System auf der Niederdruckseite des Motors 1, wobei wiederum gleiche Bezugszahlen für gleiche Teile verwendet werden. Auf der Niederdruckseite, d. h. zwischen dem Ansaugleitungsabschnitt 2a und dem Abgasleitungsabschnitt 3a ist eine Abgasrückführleiturig 8 angeordnet, die weitestgehend in ein Modul 18 integriert ist. Das Modul 18 weist wie das Modul 10 in Fig. 2a ebenfalls die Abgaskühler 11, 12, die Ventileinrichtung 13 mit Bypassklappe 14 sowie Bypasskanal 15 auf, und enthält ferner das Partikelfilter und/oder den Oxidationskatalysator 17. Abweichend gegenüber dem Ausführungsbeispiel gemäß Fig. 2 ist ein als Drei-Wege-Ventil ausgebildetes Mengenregelventil 19 (AGR-Ventil), welches an der Abzweigungsstelle von Abgasleitung 3a und AGR-Leitung 8 angeordnet ist. Durch das Regelventil 19 kann der Anteil an Abgas, welcher dem Gesamtabgasstrom entnommen wird, eingestellt werden. Dadurch ist eine genauere Regelung des rückgeführten Abgasmassenstromes möglich. Im Übrigen sind die Funktionen des Moduls 18 gleich gegenüber dem Modul 10 in Fig. 2a.
  • Die Darstellungen der Module 10, 18 und ihrer Komponenten sind schematischer Art, d. h. es sind viele konstruktive Varianten möglich. Dies gilt zunächst für die Abgaskühler 11, 12, welche als Rohrbündel Wärmeübertrager mit geraden oder U-förmig gebogenen Rohren mit kreisförmigen, rechteckförmigen oder sonstigen Querschnitten ausgebildet sein können. Ebenso sind für die Bypasseinrichtung verschiedene Varianten bezüglich des Ventilschließgliedes, des zugehörigen Stellantriebes und des Bypasskanals (integriert oder separat) möglich. Entscheidend ist, dass die genannten Komponenten weitestgehend zu einer transportfähigen vorgefertigten Baueinheit zusammengefasst sind, die am Fahrzeug mit geringem Montage- und Zeitaufwand in das gesamte AGR-System einsetzbar und anschließbar ist. Daraus ergibt sich schließlich auch ein entscheidender Bauraumvorteil, da die Komponenten eine kompakte Multifunktionseinheit bilden.
  • Fig. 3b zeigt ein weiteres Ausführungsbeispiel der Erfindung für ein AGR-System auf der Niederdruckseite des Motors 1, wobei wiederum gleiche Bezugszahlen für gleiche Teile wie in Fig. 3a verwendet werden. Im Unterschied zu Fig. 3a ist die Tubine (4) als zweistufiges Turbinensystem und der Verdichter (5) als zweistufiges Verdichtungssystem mit Zwischenkühlung ausgeführt, wie dieses in Fig. 1b beschrieben ist.
  • Fig. 4a zeigt ein weiteres Ausführungsbeispiel der Erfindung für ein AGR-System auf der Niederdruckseite des Motors 1, wobei wiederum gleiche Bezugszahlen für gleiche verwendet werden.
  • Im Unterschied zu den vorhergehenden Ausführungsformen sind das AGR-Ventil 19, die Ventileinrichtung 13 und die Bypassklappe14 zu einer Baueinheit zusammengefasst, die ein Multifunktionsventil 26 bilden.
  • Fig. 4b zeigt ein weiteres Ausführungsbeispiel der Erfindung für ein AGR-System auf der Niederdruckseite des Motors 1, wobei wiederum gleiche Bezugszahlen für gleiche verwendet werden.
  • Im Unterschied zu Fig. 4a ist die Tubine (4) als zweistufiges Turbinensystem und der Verdichter (5) als zweistufiges Verdichtungssystem mit Zwischenkühlung ausgeführt, wie dieses in Fig. 1b beschrieben ist.

Claims (10)

  1. Vorrichtung zur Rückführung und Kühlung von Abgas einer Brennkraftmaschine (1), insbesondere eines Dieselmotors in einem Kraftfahrzeug mit einer Abgasrückführ(AGR)-Leitung (8), mindestens einem Abgaswärmeübertrager (11) und einem Abgasrückführ(AGR)-Ventil (19), wobei ein erster und ein zweiter Abgaswärmeübertrager (11, 12) zu einer Baueinheit zusammengefasst sind und ein Modul (10, 18) bilden, wobei der erste und der zweite Abgaswärmeübertrager abgasseitig hintereinander geschaltet und als Hochtemperaturkühler (11) und als Niedertemperaturkühler (12) ausgelegt sind und der Hochtemperaturkühler (11) von einem ersten Kühlkreis als dem Kühlkreislauf der Brennkraftmaschine (1) und der Niedertemperaturkühler (12) von einem zweiten Kühlkreis kühlbar sind, wobei der Hochtemperatur- und der Niedertemperaturkühler (11, 12) mechanisch oder stoffschlüssig miteinander verbunden sind, wobei der Hochtemperaturkühler (11) aus einem anderen Material besteht als der Niedertemperaturkühler (12) und der Hochtemperaturkühler (11) aus einem korrosionsbeständigen Edelstahl und der Niedertemperaturkühler (12) aus Aluminium besteht, das vor Korrosion geschützt ist, wobei die beiden Abgaswärmeübertrager im Gegenstrom betrieben werden, wobei der Hochtemperatur- und der Niedertemperaturkühler (11, 12) einen Bypasskanal (15) für das Abgas aufweisen, wobei dem Bypasskanal (15) ein Bypassventil (13, 14) zugeordnet ist, durch welches der Abgasstrom entweder durch die Kühler (11, 12) oder durch den Bypasskanal (15) lenkbar ist und das AGR-Ventil (16, 19) in das Modul (10, 18) integriert ist, wobei das AGR-Ventil (16, 19) vor den Kühlem (11, 12) angeordnet ist, wobei das AGR-Ventil ein Mengenregelventil ist, welches den rückgeführten Massenstrom regelt und das AGR-Ventil als Drei-Wege-Ventil ausgebildet ist.
  2. Vorrichtung nach Anspruch 1, dadurch gekennzeichnet, dass sich das Kühlmedium des ersten Kühlkreises von dem Kühlmedium des zweiten Kühlkreises unterscheidet.
  3. Vorrichtung nach einem der vorhergehenden Ansprüche 1 oder 2, dadurch gekennzeichnet, dass das Kühlmedium des ersten Kühlkreises gasförmig und das Kühlmedium des zweiten Kühlkreises flüssig ist oder umgekehrt.
  4. Vorrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das Kühlmedium des ersten Kühlkreises vorzugsweise Luft ist und das Kühlmedium des zweiten Kühlkreises vorzugsweise ein Kühlmittel ist oder umgekehrt.
  5. Vorrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der Partikelfilter mit dem AGR-Ventil (16) eine Baueinheit bildet.
  6. Vorrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der Hochtemperaturkühler (11) einen Einlassdiffusor aufweist, in dem ein Partikelfilter und/oder ein Oxidationskatalysator (17) angeordnet sind.
  7. Vorrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass sie eine erste Verdichterstufe (5a) und mindestens eine weitere Verdichterstufe (5b) umfasst.
  8. Vorrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass sie eine erste Abgasturbine (4a) und mindestens eine zweite Abgasturbine (4b) umfasst.
  9. Vorrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass sie mindestens einen Zwischenwärmetauscher (25) umfasst, der vorzugsweise abströmseitig der ersten Verdichterstufe (5a) und zuströmseitig der zweiten Verdichterstufe (5b) angeordnet ist.
  10. Vorrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die erste Abgasturbine (4a) mit der zweiten Verdichterstufe (5b) gekoppelt ist und die zweite Abgasturbine (4b) mit der ersten Verdichterstufe (5b) gekoppelt ist
EP06762098.9A 2005-06-24 2006-06-20 Vorrichtung zur rückführung und kühlung von abgas für eine brennkraftmaschine Not-in-force EP1899595B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102005029322A DE102005029322A1 (de) 2005-06-24 2005-06-24 Vorrichtung zur Rückführung und Kühlung von Abgas für eine Brennkraftmaschine
PCT/EP2006/005908 WO2006136372A1 (de) 2005-06-24 2006-06-20 Vorrichtung zur rückführung und kühlung von abgas für eine brennkraftmaschine

Publications (2)

Publication Number Publication Date
EP1899595A1 EP1899595A1 (de) 2008-03-19
EP1899595B1 true EP1899595B1 (de) 2013-08-14

Family

ID=36763233

Family Applications (1)

Application Number Title Priority Date Filing Date
EP06762098.9A Not-in-force EP1899595B1 (de) 2005-06-24 2006-06-20 Vorrichtung zur rückführung und kühlung von abgas für eine brennkraftmaschine

Country Status (4)

Country Link
US (1) US8061334B2 (de)
EP (1) EP1899595B1 (de)
DE (1) DE102005029322A1 (de)
WO (1) WO2006136372A1 (de)

Families Citing this family (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102005008103A1 (de) * 2005-02-21 2006-08-31 Behr Gmbh & Co. Kg Abgasturboladerbrennkraftmaschine
DE102007019089A1 (de) * 2007-04-23 2008-10-30 Behr Gmbh & Co. Kg Abgaswärmetauscher, Abgaswärmetauschersystem, Brennkraftmotor und Verfahren zum Behandeln von Abgasen eines Brennkraftmotors
DE102008014169A1 (de) 2007-04-26 2009-01-08 Behr Gmbh & Co. Kg Wärmetauscher, insbesondere zur Abgaskühlung, System mit einem Wärmetauscher zur Abgaskühlung, Verfahren zum Betreiben eines Wärmetauschers
US20080264081A1 (en) * 2007-04-30 2008-10-30 Crowell Thomas J Exhaust gas recirculation cooler having temperature control
DE102007025704A1 (de) * 2007-06-01 2008-12-04 Volkswagen Ag Brennkraftmaschine mit ND-EGR-Leitung
FR2919681B1 (fr) * 2007-07-30 2009-10-09 Peugeot Citroen Automobiles Sa Circuit des gaz d'echappement d'un moteur
GB2451862A (en) * 2007-08-15 2009-02-18 Senior Uk Ltd High gas inlet temperature EGR system
US8001778B2 (en) * 2007-09-25 2011-08-23 Ford Global Technologies, Llc Turbocharged engine control operation with adjustable compressor bypass
DE102007049184A1 (de) 2007-10-13 2009-04-16 Modine Manufacturing Co., Racine Wärmetauscher, insbesondere Abgaswärmetauscher
DE102007052117A1 (de) * 2007-10-30 2009-05-07 Voith Patent Gmbh Antriebsstrang, insbesondere für Lkw und Schienenfahrzeuge
FR2925608A3 (fr) * 2007-12-19 2009-06-26 Renault Sas Dispositif de recirculation des gaz d'echappement comportant un refroidisseur
FR2926113A1 (fr) * 2008-01-03 2009-07-10 Valeo Sys Controle Moteur Sas Boucle egr d'un moteur a combustion interne d'un vehicule automobile
US20090178396A1 (en) * 2008-01-11 2009-07-16 Cummins Inc. EGR catalyzation with reduced EGR heating
US8132407B2 (en) * 2008-04-03 2012-03-13 GM Global Technology Operations LLC Modular exhaust gas recirculation cooling for internal combustion engines
DE102008027316A1 (de) 2008-06-07 2009-12-10 Modine Manufacturing Co., Racine Wärmetauscher, beispielweise Abgaswärmetauscher
DE102008033823B4 (de) * 2008-07-19 2013-03-07 Pierburg Gmbh Abgasrückführvorrichtung für eine Verbrennungskraftmaschine
FR2938051B1 (fr) * 2008-11-06 2013-04-26 Valeo Systemes Thermiques Unite d'echange thermique a usage par exemple dans un circuit de recirculation de gaz d'echappement
ATE556284T1 (de) * 2008-12-03 2012-05-15 Behr Gmbh & Co Kg Abgaskühler mit integrierten partikelfilter für einen verbrennungsmotor
ES2388156B1 (es) * 2009-09-14 2013-09-06 Valeo Termico Sa Intercambiador de calor para gases, en especial de los gases de escape de un motor.
DE102010005803A1 (de) * 2010-01-27 2011-07-28 Audi Ag, 85057 Kraftwagen mit einer Abgasanlage
US8276366B2 (en) * 2010-03-30 2012-10-02 GM Global Technology Operations LLC Closely coupled exhaust aftertreatment system for an internal combustion engine having twin turbochargers
DE102010014843B4 (de) * 2010-04-13 2020-06-25 Pierburg Gmbh Abgaskühlmodul für eine Verbrennungskraftmaschine
DE102010034131A1 (de) 2010-08-12 2012-02-16 Volkswagen Aktiengesellschaft Verfahren zur Regelung der Temperatur des Gassystems einer Brennkraftmaschine
WO2012027688A1 (en) * 2010-08-26 2012-03-01 Modine Manufacturing Company Waste heat recovery system and method of operating the same
GB2493741B (en) * 2011-08-17 2017-02-22 Gm Global Tech Operations Llc Exhaust gas recirculation system for an internal combustion engine
DE102012216452A1 (de) * 2012-09-14 2014-03-20 Eberspächer Exhaust Technology GmbH & Co. KG Wärmeübertrager
US20140150758A1 (en) * 2012-12-04 2014-06-05 General Electric Company Exhaust gas recirculation system with condensate removal
WO2014203312A1 (ja) * 2013-06-17 2014-12-24 トヨタ自動車 株式会社 機関システムの冷却装置及びその制御方法
WO2015038111A1 (en) * 2013-09-11 2015-03-19 International Engine Intellectual Property Company, Llc Thermal screen for an egr cooler
GB2534900A (en) * 2015-02-04 2016-08-10 Gm Global Tech Operations Llc Internal combustion engine having a charge cooling system for a two stage turbocharger
WO2017050429A1 (de) * 2015-09-23 2017-03-30 Linde Aktiengesellschaft Verwendung unterschiedlicher materialien bei mehrteiligen wärmeübertragern
WO2017100590A2 (en) 2015-12-10 2017-06-15 Carrier Corporation Artificial aspiration device for a compressed natural gas engine
DE102016218990A1 (de) 2016-09-30 2018-04-05 Ford Global Technologies, Llc Aufgeladene Brennkraftmaschine mit gekühlter Abgasrückführung
US10815931B2 (en) 2017-12-14 2020-10-27 Cummins Inc. Waste heat recovery system with low temperature heat exchanger

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004051069A1 (de) * 2002-12-03 2004-06-17 Behr Gmbh & Co. Kg Vorrichtung zur kühlung

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4414429C1 (de) * 1994-04-26 1995-06-01 Mtu Friedrichshafen Gmbh Verfahren zur Kühlung von dieselmotorischen Abgasen
DE9421145U1 (de) * 1994-04-28 1995-05-04 Mtu Friedrichshafen Gmbh Dieselbrennkraftmaschine mit in einer Abgasrückführleitung angeordnetem Wärmetauscher für die Abgaskühlung
DE19734801A1 (de) 1997-08-12 1999-02-18 Pierburg Ag Abgasrückführsystem für eine Brennkraftmaschine mit einem Turbolader
DE19750588B4 (de) * 1997-11-17 2016-10-13 MAHLE Behr GmbH & Co. KG Vorrichtung zur Abgasrückführung für einen Verbrennungsmotor
JPH11200955A (ja) * 1998-01-06 1999-07-27 Mitsubishi Motors Corp 排気ガス還流装置
DE19907163C2 (de) 1998-04-24 2003-08-14 Behr Gmbh & Co Wärmetauscher, insbesondere Abgaswärmetauscher
JP4130512B2 (ja) 1998-04-24 2008-08-06 ベール ゲゼルシャフト ミット ベシュレンクテル ハフツング ウント コンパニー 熱交換器
DE19841927A1 (de) 1998-09-14 2000-03-16 Wahler Gmbh & Co Gustav Einrichtung zur Rückführung eines Abgasstromes zum Saugrohr einer Brennkraftmaschine
DE19906401C1 (de) * 1999-02-16 2000-08-31 Ranco Inc Of Delaware Wilmingt Abgasrückführsystem
SE521798C2 (sv) * 1999-03-09 2003-12-09 Volvo Lastvagnar Ab Förbränningsmotor med avgasåtercirkulation
US6301888B1 (en) * 1999-07-22 2001-10-16 The United States Of America As Represented By The Administrator Of The Environmental Protection Agency Low emission, diesel-cycle engine
US6244256B1 (en) * 1999-10-07 2001-06-12 Behr Gmbh & Co. High-temperature coolant loop for cooled exhaust gas recirculation for internal combustion engines
DE19962863B4 (de) 1999-12-24 2013-09-19 Behr Gmbh & Co. Kg Wärmeübertrager
DE10203003B4 (de) 2002-01-26 2007-03-15 Behr Gmbh & Co. Kg Abgaswärmeübertrager
US6688280B2 (en) * 2002-05-14 2004-02-10 Caterpillar Inc Air and fuel supply system for combustion engine
DE10232515A1 (de) * 2002-07-18 2004-04-08 Daimlerchrysler Ag Abgasrückführung einer Brennkraftmaschine
US7287378B2 (en) * 2002-10-21 2007-10-30 International Engine Intellectual Property Company, Llc Divided exhaust manifold system and method
EP1689997B1 (de) * 2002-11-13 2014-12-17 Honeywell International Inc. Doppelte und hybride abgasrückführungssysteme für eine turbogeladene brennkraftmaschine
US6978772B1 (en) * 2003-02-03 2005-12-27 Chapeau, Inc. EGR cooling and condensate regulation system for natural gas fired co-generation unit
JP4168809B2 (ja) * 2003-04-03 2008-10-22 いすゞ自動車株式会社 Egr付き排気過給エンジン
JP2005009406A (ja) * 2003-06-19 2005-01-13 Hino Motors Ltd 過給機付内燃機関
DE10351845B4 (de) * 2003-11-06 2006-02-02 Mtu Friedrichshafen Gmbh Abgaswärmetauscher
SE527479C2 (sv) * 2004-05-28 2006-03-21 Scania Cv Ab Arrangemang för återcirkulation av avgaser hos en överladdad förbränningsmotor
CN101171417A (zh) * 2005-05-11 2008-04-30 博格华纳公司 发动机空气管理系统
US7380544B2 (en) * 2006-05-19 2008-06-03 Modine Manufacturing Company EGR cooler with dual coolant loop

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004051069A1 (de) * 2002-12-03 2004-06-17 Behr Gmbh & Co. Kg Vorrichtung zur kühlung

Also Published As

Publication number Publication date
US8061334B2 (en) 2011-11-22
DE102005029322A1 (de) 2006-12-28
EP1899595A1 (de) 2008-03-19
US20090044789A1 (en) 2009-02-19
WO2006136372A1 (de) 2006-12-28

Similar Documents

Publication Publication Date Title
EP1899595B1 (de) Vorrichtung zur rückführung und kühlung von abgas für eine brennkraftmaschine
EP1653048B1 (de) Abgasturbolader
DE4240239C2 (de) Verbrennungskraftmaschine
EP1731748A1 (de) Vorrichtung zur gekühlten Rückführung von Abgas einer Brennkraftmaschine eines Kraftfahrzeuges
EP2302190B1 (de) Abgasrückführsystem
WO2007042209A1 (de) Anordnung zur rückführung und kühlung von abgas einer brennkraftmaschine
DE102015208418B4 (de) R2S Aufladesystem mit Zwischenabgasnachbehandlung
WO2005028848A1 (de) Abgaswärmeübertrager, insbesondere abgaskühler für abgasrückführung in kraftfahrzeugen
DE102017118455A1 (de) Abgasnachbehandlungssystem für einen Verbrennungsmotor und Verfahren zur Abgasnachbehandlung eines Verbrennungsmotors
DE102016212249A1 (de) Zweistufig aufladbare direkteinspritzende Brennkraftmaschine mit Abgasnachbehandlung und Verfahren zum Betreiben einer derartigen Brennkraftmaschine
EP3290668A1 (de) Antriebsvorrichtung, insbesondere für ein fahrzeug
WO2008155268A1 (de) Brennkraftmaschine mit zweistufiger turboaufladung und oxidationskatalysator
WO2009053025A1 (de) Vorrichtung und verfahren zur rückführung von abgas eines verbrennungsmotors
AT503458B1 (de) Abgasanlage einer antriebseinheit für ein kraftfahrzeug mit abgasrückführung
DE102007019089A1 (de) Abgaswärmetauscher, Abgaswärmetauschersystem, Brennkraftmotor und Verfahren zum Behandeln von Abgasen eines Brennkraftmotors
DE102010033718B4 (de) Kraftwagen mit einer Verbrennungskraftmaschine
DE10392766B4 (de) Abgasleitung für einen Brennkraftmotor mit einer thermischen Regelung der Abgase
EP1062419B1 (de) Vorrichtung zur rückführung von abgasen bei einem verbrennungsmotor
EP2573347B1 (de) Vorrichtung und Verfahren zur Aufbereitung von Abgas einer Brennkraftmaschine
DE102016212251A1 (de) Zweistufig aufladbare Brennkraftmaschine mit Abgasnachbehandlung und Verfahren zum Betreiben einer derartigen Brennkraftmaschine
DE202016103676U1 (de) Zweistufig aufladbare Brennkraftmaschine mit Abgasnachbehandlung
DE202015103037U1 (de) R2S Aufladesystem mit Zwischenabgasnachbehandlung
DE10156741A1 (de) Brennkraftmaschine mit zumindest einem Abgasturbolader
DE102015208421A1 (de) R2S Aufladesystem mit Zwischenabgasnachbehandlung
DE102020106076A1 (de) Brennkraftmaschine mit Ansaugluftführung und Verdichter zum Verdichten von Ansaugluft und Verfahren zu deren Betrieb

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20080124

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

DAX Request for extension of the european patent (deleted)
RIN1 Information on inventor provided before grant (corrected)

Inventor name: FLIK, MARKUS

Inventor name: GESKES, PETER

Inventor name: HECKENBERGER, THOMAS

Inventor name: EITEL, JOCHEN

Inventor name: RUCKWIED, JENS

Inventor name: HEINLE, DIETER

Inventor name: THUMM, ANDREAS

17Q First examination report despatched

Effective date: 20080821

DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 627016

Country of ref document: AT

Kind code of ref document: T

Effective date: 20130815

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502006013121

Country of ref document: DE

Effective date: 20131010

REG Reference to a national code

Ref country code: NL

Ref legal event code: VDEP

Effective date: 20130814

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130814

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130703

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131216

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130814

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131214

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130814

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130814

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130814

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130814

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131115

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130814

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130814

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130814

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130814

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130814

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130814

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130814

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130814

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130814

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20140515

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502006013121

Country of ref document: DE

Effective date: 20140515

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20140623

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130814

Ref country code: LU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140620

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20140620

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 502006013121

Country of ref document: DE

Representative=s name: GRAUEL, ANDREAS, DIPL.-PHYS. DR. RER. NAT., DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140630

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140630

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140620

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 502006013121

Country of ref document: DE

Representative=s name: GRAUEL, ANDREAS, DIPL.-PHYS. DR. RER. NAT., DE

Effective date: 20150323

Ref country code: DE

Ref legal event code: R081

Ref document number: 502006013121

Country of ref document: DE

Owner name: MAHLE INTERNATIONAL GMBH, DE

Free format text: FORMER OWNER: BEHR GMBH & CO. KG, 70469 STUTTGART, DE

Effective date: 20150323

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140620

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 627016

Country of ref document: AT

Kind code of ref document: T

Effective date: 20140620

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140620

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20160229

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130814

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140630

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130814

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20060620

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20190822

Year of fee payment: 14

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502006013121

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210101