WO2007040023A1 - Process for producing film with rugged pattern and production apparatus therefor - Google Patents

Process for producing film with rugged pattern and production apparatus therefor Download PDF

Info

Publication number
WO2007040023A1
WO2007040023A1 PCT/JP2006/318110 JP2006318110W WO2007040023A1 WO 2007040023 A1 WO2007040023 A1 WO 2007040023A1 JP 2006318110 W JP2006318110 W JP 2006318110W WO 2007040023 A1 WO2007040023 A1 WO 2007040023A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
concavo
refractive index
roll
particles
Prior art date
Application number
PCT/JP2006/318110
Other languages
French (fr)
Japanese (ja)
Inventor
Takeshi Tanaka
Takashi Murakami
Toshiaki Shibue
Original Assignee
Konica Minolta Opto, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konica Minolta Opto, Inc. filed Critical Konica Minolta Opto, Inc.
Priority to JP2007538678A priority Critical patent/JPWO2007040023A1/en
Publication of WO2007040023A1 publication Critical patent/WO2007040023A1/en

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/11Anti-reflection coatings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C35/00Heating, cooling or curing, e.g. crosslinking or vulcanising; Apparatus therefor
    • B29C35/02Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould
    • B29C35/08Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation
    • B29C35/0888Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation using transparant moulds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C37/00Component parts, details, accessories or auxiliary operations, not covered by group B29C33/00 or B29C35/00
    • B29C37/0067Using separating agents during or after moulding; Applying separating agents on preforms or articles, e.g. to prevent sticking to each other
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C39/00Shaping by casting, i.e. introducing the moulding material into a mould or between confining surfaces without significant moulding pressure; Apparatus therefor
    • B29C39/14Shaping by casting, i.e. introducing the moulding material into a mould or between confining surfaces without significant moulding pressure; Apparatus therefor for making articles of indefinite length
    • B29C39/148Shaping by casting, i.e. introducing the moulding material into a mould or between confining surfaces without significant moulding pressure; Apparatus therefor for making articles of indefinite length characterised by the shape of the surface
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C59/00Surface shaping of articles, e.g. embossing; Apparatus therefor
    • B29C59/02Surface shaping of articles, e.g. embossing; Apparatus therefor by mechanical means, e.g. pressing
    • B29C59/04Surface shaping of articles, e.g. embossing; Apparatus therefor by mechanical means, e.g. pressing using rollers or endless belts
    • B29C59/046Surface shaping of articles, e.g. embossing; Apparatus therefor by mechanical means, e.g. pressing using rollers or endless belts for layered or coated substantially flat surfaces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C35/00Heating, cooling or curing, e.g. crosslinking or vulcanising; Apparatus therefor
    • B29C35/02Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould
    • B29C35/08Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation
    • B29C35/0805Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation using electromagnetic radiation
    • B29C2035/0827Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation using electromagnetic radiation using UV radiation

Definitions

  • the present invention relates to a method and apparatus for producing a concavo-convex pattern film using an embossing roll.
  • Liquid crystal display devices such as personal computers, word processors, and liquid crystal televisions do not emit light!
  • the backside force is also illuminated by a surface light source device (also called a backlight).
  • a surface light source device also called a backlight.
  • the backlight includes an edge light system in which light of a linear light source power is incident from a side end surface of a light guide plate provided with a light scattering pattern and shines in a planar shape.
  • Such a surface light source device for example, emits light having a light source power incident from the side surface of a light guide plate having a reflection plate on the back surface side, and further scatters and diffuses the light, thereby irradiating the surface.
  • an optical film having an optical function such as a light diffusing film, a polarized light separating film, a lens film, a protective light diffusing film is provided, and the surface side is further provided with an anti-glare to prevent reflection of external light.
  • Such an optical film is required to hide the light scattering pattern of the light guide plate, which has good light diffusivity and diffusibility, light transmittance, and color rendering, and is combined with other polarization separation films and lens films. When used, it is required that no interference fringes are generated even when touched.
  • one type of optical film such as a light diffusing film, a protective light diffusing film, or an antiglare film is one in which an optical functional layer having fine irregularities on the surface is formed on a transparent base film.
  • an embossing roll having a fine irregularity shape is rotated, and the concave portions of the embossing roll are filled with an ionizing radiation curable resin solution, and synchronized with the rotation direction of the embossing roll.
  • embossing rolls form fine irregular shapes on the surface of roll cores (simply rolls), plate materials, and films, including engraving, electroplating, sandblasting, electrical discharge machining, and etching. Processing is known.
  • a blasting method using a resist is known (for example, see Patent Document 1).
  • a light diffusing member that transfers surface irregularities such as a roll core material (corresponding to an embossing roll).
  • the transparent substrate film that is continuously run is pressed against this mold roller, and the ionizing radiation curable resin is irradiated with ionizing radiation through the transparent substrate film in this state, and the ionizing radiation curable resin is cured.
  • the ionizing radiation curable resin is adhered to the transparent substrate film, and then the ionizing radiation curable resin having a regular concavo-convex pattern is peeled from the mold roller together with the transparent substrate film.
  • Patent Document 4. 0
  • the sheet-like film coated with the ultraviolet curable resin and the uneven surface of the embossing roll are brought into close contact with each other, it is common.
  • Discloses a method for producing a film having a cured uneven surface by irradiating the sheet-like film surface side with ultraviolet rays see, for example, Patent Document 5).
  • an ultraviolet light source such as a high-pressure mercury lamp is installed inside the roll.
  • the curable resin composition can be cured, A polymer film sheet having a concavo-convex surface formed by curing the ultraviolet curable resin layer on the polymer film sheet original fabric with the roll concavo-convex surface transferred can be produced (for example, see Patent Document 6). .)
  • Patent Document 1 Japanese Patent Laid-Open No. 7-144364
  • Patent Document 2 Japanese Patent Laid-Open No. 2000-284106
  • Patent Document 3 Japanese Patent Laid-Open No. 2004-90187
  • Patent Document 4 Japanese Patent Laid-Open No. 2002-333508
  • Patent Document 5 Japanese Unexamined Patent Application Publication No. 2005-138296
  • Patent Document 6 Japanese Patent Laid-Open No. 2001-347220
  • the present invention has been made in view of the above problems, and an object of the present invention is to provide a method of manufacturing a concavo-convex pattern film excellent in the uniformity of the concavo-convex pattern and a manufacturing apparatus therefor. .
  • the embossing roll is stone and the embossing roll
  • An ultraviolet curable resin composition is introduced between the transparent resin film wound around and the embossing roll, and the ultraviolet ray is irradiated from the inside of the hollow roll supported by a plurality of support portions toward the roll surface from the ultraviolet irradiation device.
  • the method for producing a concavo-convex pattern film is characterized in that, after irradiating, an ultraviolet-cured resin layer having a concavo-convex surface is peeled off together with an embossing roll force together with a transparent resin film.
  • the ultraviolet irradiation device has a water-cooled light source (1) or (1)
  • FIG. 1 is a view schematically showing a specific example of an embossing roll supported by a plurality of supporting portions used in the method for producing an uneven pattern film of the present invention.
  • FIG. 2 is a perspective view showing a specific example of FIG. 1 (a).
  • FIG. 3 is a perspective view of a comparative concavo-convex pattern film manufacturing method.
  • FIG. 4 is a schematic cross-sectional view of FIG.
  • FIG. 5 is a view showing a concavo-convex pattern manufacturing apparatus used in the concavo-convex pattern film manufacturing method of the present invention.
  • FIG. 7 is a cross-sectional view schematically illustrating sandblasting according to the present invention.
  • FIG. 8 is a diagram schematically showing the method for producing a concavo-convex pattern film of the present invention.
  • FIG. 9 is a schematic view showing a cross section of the antiglare antireflection film according to the present invention.
  • the present invention provides a method for producing an uneven pattern film in which an uneven pattern is formed on a transparent resin film using an emboss roll having an uneven surface, wherein the emboss roll is quartz glass, An ultraviolet curable resin composition is introduced between the transparent resin film wound around the roll and the embossing roll, and ultraviolet rays are irradiated from the inside of the hollow roll supported by a plurality of support portions toward the roll surface by an ultraviolet irradiation device. After the irradiation, the ultraviolet curable resin layer having irregularities formed on the surface is peeled off with the transparent resin film by using an embossed roll film.
  • the ultraviolet irradiation device is movable and has a structure in which the internal force of the hollow roll can be easily attached and detached.
  • the embossing roll of the present invention is a hollow roll supported by a plurality of support portions.
  • FIG. 1 shows examples (a) to (f) in which an embossing roll having a concave and convex shape formed on the surface of a hollow quartz roll is supported by a plurality of support portions.
  • the number of support parts is preferably 2 or more, particularly 3 or more.
  • (F) shows an example having a -roll, which can also serve as a support.
  • FIG. 2 is a perspective view showing a specific example of (a) in FIG.
  • the support part is a roll with a smaller diameter than the embossing roll (C1), or the diameter of the embossing roll is changed so that it is supported only at the end of the embossing roll (B1).
  • Examples include the ones that were installed. In this way, even if a quartz roll such as a metal roll, which is difficult to obtain a high processing accuracy roll, is used, the problem that the concave and convex pattern changes periodically due to the eccentricity of the shaft is significantly reduced.
  • Fig. 3 is a perspective view showing a method for producing a comparative uneven pattern film, which is made of quartz.
  • a rotating shaft is attached to both ends of the hollow embossing roll. Since an ultraviolet irradiation device is provided inside, the power cable for power supply is routed, which has the disadvantage that the structure becomes complicated. In addition, it is necessary to remove the embossing roll from the rotating shaft every time when exchanging the embossing roll or when maintaining the ultraviolet irradiation device, resulting in poor maintenance.
  • FIG. 4 is a cross-sectional view of FIG. 3, where (a) is a cross-sectional view from the side and (b) is a cross-sectional view from the axial direction.
  • FIG. 5 is a view showing an uneven pattern manufacturing apparatus used in the uneven pattern film manufacturing method of the present invention.
  • (a) shows an embossing roll supported by a supporting portion and an ultraviolet irradiation device arranged in the embossing roll.
  • (C) shows the lateral force
  • (b) shows the state of conveyance in which the resin film passes through the embossing roll and a concavo-convex pattern film is formed.
  • the embossing roll is supported by a plurality of support portions, and an ultraviolet irradiation device is disposed therein.
  • the ultraviolet irradiation device is supported by a support and is disposed at a predetermined position of the embossing roll. It is preferable that the UV irradiation device is supported by a supporting column and fixed to a horizontal support.
  • the struts may be supported by two from both sides of the embossing roll as long as they are strong.
  • FIG. 6 is a diagram showing a movable installation of the ultraviolet irradiation device.
  • the rail is arranged so as to be slidable from a predetermined position in the embossing roll to the outside of the embossing roll, thereby further improving the maintainability. Therefore, the horizontal support member is preferably longer than twice the width of the embossing roll.
  • the horizontal support material may always be longer than twice the width of the embossing roll, but as shown in (b), the horizontal support material has a structure in which the horizontal support material is long due to the slide structure, folding structure, or extension structure. I like to! At this time, it is preferable to slide one side of the column with a rail.
  • At least one of the columns supporting the ultraviolet irradiation device has a strength capable of supporting the ultraviolet irradiation device only on one side.
  • a method in which the horizontal support member and the ultraviolet irradiation device attached thereto are moved without moving the column is also preferable because maintenance can be easily performed.
  • a cleaning device such as an adhesive roll, a brush, an air blower or the like. It is preferable to have. Foreign matter may be removed continuously during continuous production, or the leader film may be controlled to be cleaned only while it is passing.
  • a method for producing a quartz embossing roll having irregularities on the surface is not particularly limited, but it can be produced by subjecting the quartz roll to a sandblasting treatment or an etching treatment with hydrogen fluoride.
  • Quartz glass consists of silicon dioxide (SiO 2) alone, also called fused quartz, silica glass, and fused silica.
  • Quartz rolls are manufactured using quartz, quartz,
  • quartz has a high ultraviolet-transmitting ability, it could be arranged to irradiate ultraviolet rays from the inside of the embossing roll as in the present invention.
  • blast particles having an average particle size of 10 ⁇ m or less at a blast pressure (gauge pressure) of 200 kPa or less.
  • a blast pressure gauge pressure
  • the initial fine scratches are preferable because they have an appropriate depth.
  • the particle size distribution of the blast particles is preferably as sharp as possible. A sharp particle size distribution is preferable because the homogeneity of the resulting antiglare optical film is improved. Examples of the blast particles include Sumiko Random AA-5 (average particle size 5 ⁇ m) and Sumiko Random AA-18 (average particle size 18 m) manufactured by Sumitomo Chemical Co., Ltd.
  • FIG. 7 illustrates the sandblasting process according to the present invention.
  • the roll 20 is rotatably fixed on the pedestal 33 on the conveyor 31 by the roll shaft 27 by the left and right bearing portions 35.
  • Roll 20 is already mirror-polished with a metal plating layer.
  • the roll 1 is rotated via an embossing roll shaft 27 by a driving source (not shown), and is also swung left and right on a conveyor 31.
  • blast particles are sprayed from the tip of the injection nozzle 37 by the force of compressed air or the like over the entire surface of the roll 20.
  • fine irregularities are formed in the entire surface of the roll 20 in a grain shape, and an emboss roll is obtained.
  • the amount of rotation and swing of the roll, the amount of blast particles sprayed, and the spraying time may be appropriately selected according to the desired uneven shape.
  • embossing may be performed on the entire surface up to the end of the embossing roll, it is preferable to support at this part where it is preferable to leave about 1 to 20 cm of the part that is not embossed.
  • the hydrofluoric acid solution (hydrogen fluoride aqueous solution) having a concentration of about 1 to 10% by mass is suitable as the aqueous solution containing hydrogen fluoride to be used, and more preferably 5 to 10% by mass.
  • Concentration of hydrofluoric acid When the concentration of hydrogen fluoride exceeds 10% by mass, the in-plane uniformity of the rough surface generated by etching decreases, which is not preferable. Yes. When the concentration of hydrogen fluoride is less than 1% by mass, the etching rate becomes extremely slow, which is not practical.
  • the etching temperature is preferably about 20 to 50 ° C, more preferably 30 to 40 ° C.
  • An etching temperature below 20 ° C is not preferable because a practical etching rate cannot be obtained.
  • the etching temperature force exceeds 0 ° C, it is preferable because the in-plane uniformity of the rough surface generated by etching is lowered.
  • fine scratches may be formed on the glass surface by sandblasting, and then etched with an aqueous solution containing hydrogen fluoride to form fine unevenness. Good.
  • the arithmetic average roughness (Ra) of the surface is preferably 0.02 ⁇ m or more and 2 ⁇ m or less, and the average period (Sm) of the irregularities is 200 ⁇ m or less, particularly preferably 100 ⁇ m or less.
  • the arithmetic average roughness is 0.05 to 111 to 1.50 / zm or less S, preferably 0.0 to 111 to 1.2 / zm or less S, more preferably 0.1 to 111 to 1. Most preferably, it is 0 m or less. If the arithmetic average roughness is less than 0.02 / zm, a sufficient anti-glare function cannot be obtained. If the arithmetic average roughness exceeds 2 m, the resolution decreases or an image is displayed when exposed to external light. It glows white.
  • the average period of the irregularities is preferably 5 m or more and 100 ⁇ m or less, more preferably 10 ⁇ m or more and 50 ⁇ m or less.
  • Ra and Sm3 ⁇ 4JIS B0601 are specified.
  • the arithmetic average roughness and average period of the irregularities can be measured and analyzed using a commercially available surface roughness measuring instrument. In the present invention, it can be determined using a small surface roughness measuring instrument (model number; SJ-401, manufactured by Mitutoyo Corporation).
  • the linear pressure applied by the embossing roll and the backup roll is 100 N / cm or more and 12000 N / cm or less. More preferably, it should be less than OOONZcm.
  • the embossing roll is provided with a temperature adjusting mechanism, and the temperature can be adjusted appropriately.
  • the temperature can be controlled by blowing air for adjusting the temperature inside the embossing roll or by pressing a temperature-controlled roll inside or outside the embossing roll.
  • the temperature of the emboss roller 14 is preferably 40 ° C or higher and 140 ° C or lower.
  • the temperature distribution is wide, preferably within ⁇ 10 ° C, more preferably within ⁇ 5 ° C, and most preferably within ⁇ 1 ° C. It is preferable that the processing speed for applying the concave / convex pattern is from 0.3 mZ to 50 mZ, more preferably from lmZ to 30 mZ.
  • a fluorine-based or silicon-based water-repellent or oil-repellent coating on the surface of the embossing roll, a fluoroalkylsilane compound, a fluoroalkylsilanesilane compound, silicon oil. It is preferable to form a water-repellent or oil-repellent film on the surface by applying a coating composition containing the above or by CVD treatment. In particular, the contact angle is preferably 90 ° or more. These compounds are known to be added to the low refractive index layer and antifouling layer of the antireflection film, and can be used.
  • the ultraviolet curable resin composition according to the present invention is obtained by appropriately mixing a polymerizable unsaturated bond or a prepolymer having an epoxy group, an oligomer, and Z or a monomer in the molecule.
  • Examples of prepolymers and oligomers in the UV curable resin composition include unsaturated polyesters such as unsaturated dicarboxylic acid and polyhydric alcohol condensates, polyester metatalates, polyether metatalylates, Metatalates such as polyol metatalylate and melamine metatalylate, polyester acrylate, epoxy acrylate, urethane acrylate, polyether acrylate, polyol acrylate and melamine acrylate, cation polymerization type epoxy compounds Is mentioned.
  • Examples of monomers in the ultraviolet curable resin composition include styrene monomers such as styrene and methylstyrene, methyl acrylate, 2-ethylhexyl acrylate, methoxyethyl acrylate, and butoxycyl acrylate.
  • Acrylic acid esters such as sibutyl and acrylic acid methacrylate, methyl methacrylate, methacrylic acid ethyl ester, propyl methacrylate, methacrylic acid methacrylate, ethoxymethyl methacrylate, methacrylic acid phenol, lauryl methacrylate, and other methacrylic acid esters
  • Unsaturated substituted substituted amino alcohol esters such as propyl, unsaturated carboxylic acid amides such as acrylamide and methacrylamide, ethylene glycol ditalylate, propylene glycol ditalylate, neopentyl glycol ditalylate, 1,
  • Z or a polythiol compound having two or more thiol groups in the molecule such as trimethylolpropane trithioglycolate, trimethylolpropane trithiopropylate, pentaerythritol tetrathioglycolate, and the like.
  • an ultraviolet curable resin composition with ultraviolet rays For example, ultra-high pressure mercury lamps, high pressure mercury lamps, low pressure mercury lamps, carbon arc, xenon arc, or metal nano lamp lamps that emit light sources, etc. Can be used. These light sources may be air-cooled or water-cooled, but are more preferably water-cooled. It is preferable to add a photopolymerization initiator to the ultraviolet curable resin composition.
  • Photopolymerization initiators include acetophenones, benzophenones, Michler benzoyl benzoate, o methyl benzoyl benzoate, aldoxime, tetramethylmeurum monosulfide, thixanthone, and / or a photosensitizer n —Ptylamine, triethylamine, tri-butylphosphine and the like.
  • the ultraviolet curable resin composition used in the present invention may be a non-solvent type or a type diluted with a solvent.
  • the ultraviolet curable resin composition according to the present invention may contain a solvent as necessary.
  • the solvent include alcohols such as methanol, ethanol, 1 propanol, 2 propanol, and butanol; acetone, methyl ethyl ketone, cyclohexane Ketones such as hexanone; aromatic hydrocarbons such as benzene, toluene, xylene; glycolenoles such as ethylene glycol, propylene glycol, hexylene glycolole; ethylcellsolve, butylcellsolve, ethylcarbitol, Glycol ethers such as butyl carbitol, jetinoresenoresonolev, jetyl carbitol, propylene glycol monomethyl ether; N-methylpyrrolidone, dimethylformamide, methyl lactate, ethyl lactate, methyl acetate, ethyl acetate, amyl
  • glycol ethers include, but are not limited to, the following solvents.
  • Examples thereof include ethylene glycol acetate, ethylene glycol monobutynoate ethere, ethylene glycol monomer monoethyl etherate, ethylene glycol monomer monoethyl etherate, ethylene glycol monoethyl acetate.
  • the ultraviolet curable resin composition according to the present invention may contain fine particles as necessary for the purpose of adjusting the refractive index or imparting internal scattering properties.
  • examples of the fine particles that can be contained in the ultraviolet curable resin composition include inorganic fine particles and organic fine particles.
  • Examples of the inorganic fine particles include compounds containing silicon, silicon dioxide, and aluminum oxide.
  • Silicon dioxide fine particles include, for example, Aerosil R972, R972V, R974, R812. , 200, 200V, 300, R202, OX50, TT600 (above, Nippon Aerosil Co., Ltd.) and other commercial products can be used.
  • As fine particles of zirconium oxide commercially available products such as Aerosil R97 6 and R811 (manufactured by Nippon Aerosil Co., Ltd.) can be used.
  • organic fine particles polymethacrylic acid methyl acrylate fine particles, talyl styrene fine particles, polymethyl methacrylate fine particles, silicon fine particles, polystyrene fine particles, Polycarbonate resin fine particles, benzoguanamine resin fine particles, melamine resin fine particles, polyolefin resin fine particles, polyester resin fine particles, polyamide resin fine particles, polyimide resin fine particles, or polyfluorinated styrene resin fine particles Etc.
  • the surface of the fine particles is preferably surface-treated by a known method, and fine particles having improved dispersibility are preferably used.
  • the average particle size of the fine particles used in the present invention is preferably 0.001 to 5 ⁇ m, more preferably 0.005 to 3 ⁇ m, and particularly preferably 0.01 to 1 ⁇ m.
  • the addition amount of the fine particles is 0.1 to 50% by mass, preferably 0.5 to 30% by mass with respect to the ultraviolet curable resin composition.
  • a release agent in the ultraviolet curable resin composition from the viewpoints of releasability and heat resistance.
  • the mold release agent include a wax system, a silicone compound system, and a fluorine compound. Since the release agent in the present invention is blended and applied in the resin composition and needs to be in contact with the mold surface during molding, the affinity with other components in the resin composition is not excessive. It is more preferable to use a modified silicone in which dimethyl silicone oil is substituted with various substituents.
  • Modified silicones can be reactive modified silicones such as amino-modified, epoxy-modified, carboxyl-modified, or alcohol-modified, or non-reactive modified silicones such as polyether-modified, methylstyryl-modified, alkyl-modified, higher fatty acid ester-modified. , Hydrophilic special modification, higher alkoxy modification, higher fatty acid-containing, or fluorine-modified.
  • a reactive modified silicone is blended as a release agent, a reaction with an ultraviolet curable resin monomer occurs when irradiated with ultraviolet rays, so that the silicone blended as a release agent appears on the surface.
  • the mold release agent is blended in an amount of about 0.01 to 2 with respect to 100 of the total mass of the resin composition. If the upper limit is exceeded, curing when irradiated with ultraviolet rays will not be sufficient.
  • a transparent resin film having a film thickness of 10 to 500 ⁇ m, particularly preferably 30 to 200 ⁇ m is preferable as the transparent resin film for forming an uneven pattern with the ultraviolet curable resin composition.
  • a film formed by a melt casting method or a film formed by a solution casting method can be preferably used as the transparent resin film.
  • cellulose esters for example, cellulose triacetate, cenorelose diacetate, cenorelose propionate, cenorelose butyrate, cenoellose acetate propionate, cenorelose acetate butyrate cenorelose acetate) Propionate butyrate, nitrocellulose, etc.
  • polyamide for example, polycarbonate, cycloolefin polymer (for example, Arton (manufactured by JSR), zeonoa (manufactured by Nippon Zeon)), polyester (for example, polyethylene terephthalate, polyethylene naphthalate, poly) 1,4-cyclohexanedimethylene terephthalate, polyethylene 1,2 diphenoxyethane 4,4'-dicanoloxylate, polybutylene terephthalate, etc., polystyrene (eg, syndiotactic polices) Ren, etc.), polyolefins (e.g., poly
  • cellulose ester films include Co-Camino Nortac KC8 UX, KC4UX, KC5UX, KC8UY ⁇ KC4UY ⁇ KC12UR ⁇ KC8UY— HA ⁇ KC8 UCR-3, KC8UCR-4, KC8UCR-5 ( From the above, Co-Caminoltopt Co., Ltd.) and Fujitac TD80UF (Fuji Photo Film Co., Ltd.) are preferably used.
  • the transparent resin film according to the present invention preferably contains an ultraviolet absorber.
  • the ultraviolet absorber is intended to improve durability by absorbing ultraviolet rays of 400 nm or less, and is particularly preferably added so that the transmittance at a wavelength of 370 nm is 10% or less. More preferably, it is 5% or less, and further preferably 2% or less.
  • the ultraviolet absorber is not particularly limited, and examples thereof include oxybenzophenone compounds, benzotriazole compounds, salicylic acid ester compounds, benzophenone compounds, cyanoacrylate compounds, triazine compounds, nickel Examples thereof include complex salt compounds and inorganic powders.
  • the polymeric ultraviolet absorbers described in JP-A-2002-31715 and JP-A-2002-47357 can also be preferably used.
  • an image display device such as a liquid crystal display device
  • visibility is significantly impaired when external light is reflected on the image display surface.
  • Reflective liquid crystal displays such as TVs and personal computers that emphasize image quality, applications such as video cameras and digital cameras used outdoors with strong external light, and mobile phones that display using reflected light
  • the surface of the display device is usually treated to prevent these reflections.
  • the anti-reflection process is broadly divided into an anti-reflection process using interference by the optical multilayer film and a so-called anti-glare process that scatters incident light by forming fine irregularities on the surface and blurs the reflected image.
  • the former non-reflective treatment has a problem of high cost because it is necessary to form a multilayer film having a uniform optical film thickness.
  • the antiglare film is prepared by, for example, applying an ultraviolet curable resin in which a filler is dispersed on a transparent substrate, drying the film, and then irradiating with ultraviolet light to cure the resin, Manufactured by methods such as forming random irregularities.
  • an ultraviolet curable resin in which a filler is dispersed on a transparent substrate
  • drying the film and then irradiating with ultraviolet light to cure the resin
  • Manufactured by methods such as forming random irregularities.
  • many proposals have been made for providing an antiglare property by forming fine irregularities on the surface of a film used for an image display device.
  • the antiglare film produced by the method for producing a concavo-convex pattern film of the present invention is excellent in antiglare effect, has a good improvement in surface whiteness, and is visible when mounted on an image display device. Excellent.
  • the antiglare film can be used as a polarizing plate protective film. That is, the polarizing plate is generally of a type in which a protective film is laminated on at least one side of a polarizer having a polyvinyl alcohol-based resin film force in which iodine or a dichroic dye is adsorbed and oriented.
  • An antiglare polarizing plate can be obtained by laminating an optical film provided with the above-described antiglare unevenness on one surface thereof.
  • Another polarizing plate protective film can be used on the other surface of the polarizer.
  • a retardation film, an optical compensation film, or an optically isotropic film of Rt Onm or Ro Onm can be disposed.
  • Co-Camino Nortack KC8UX, KC4UX, KC5UX, KC8UY ⁇ KC4UY ⁇ KC12UR ⁇ KC8UCR-3, KC8UCR-4, KC8UCR-5 (above, manufactured by Co-Caminoltopto Corp.), Fujitac TD 80UF (Fuji Photo Film (Fuji Photo Film) Etc.) are preferably used.
  • the antiglare antireflection film according to the present invention has an antireflection layer including at least a fluorine-containing resin or a low refractive index layer containing inorganic fine particles on an ultraviolet curable resin layer, and the inorganic fine particles are porous.
  • Composite particles having particles and a coating layer provided on the surface of the porous particles, or hollow particles filled with a solvent, gas, or porous substance are preferable.
  • the method for providing the antireflection layer is not particularly limited, and it is preferably formed by force application such as sputtering, atmospheric pressure plasma treatment, application, and the like.
  • a method for forming the antireflection layer by coating a metal oxide is contained in a binder resin dissolved in a solvent.
  • Preferred antiglare antireflection films are shown below, but are not limited thereto.
  • a cellulose ester film is a preferred example.
  • the no-coat layer means an ultraviolet curable resin layer in which irregularities are formed.
  • a knock coat layer is provided on the surface opposite to the side on which the hard coat layer of the cellulose ester film is applied.
  • the middle refractive index layer or the high refractive index layer may also serve as the antistatic layer.
  • a low refractive index layer is formed as the uppermost layer, and a metal oxide layer of a high refractive index layer is formed between the ultraviolet curable resin layer, and an ultraviolet curable resin layer is further formed.
  • a medium refractive index layer metal oxide layer content or ratio to the resin binder, metal oxide layer with the refractive index adjusted by changing the metal type) between the high refractive index layer and the high refractive index layer Is preferable for reducing the reflectance.
  • the refractive index of the high refractive index layer is preferably 1.55 to 2.30, more preferably 1.57-2.20.
  • the refractive index of the medium refractive index layer is adjusted so as to be an intermediate value between the refractive index (about 1.5) of the cellulose ester film as the substrate and the refractive index of the high refractive index layer.
  • the refractive index of the middle refractive index layer is preferably 1.55 to L80. Low bending
  • the refractive index of the refractive index layer is preferably 1.3 to 1.44, more preferably 1.35-1.41.
  • the thickness of each layer is preferably 5nm to 0.5m. ⁇ 0. Power S 30 ⁇ more preferable! Most preferred is ⁇ 0.2 m.
  • the reflected hue is (-10 ⁇ a * ⁇ + 10, 15 ⁇
  • the transmitted hue is preferably achromatic (2 ⁇ a * and b * ⁇ 2). These can be achieved by adjusting the refractive index and film thickness of each refractive index layer.
  • the haze of the metal oxide layer is preferably 5% or less, more preferably 3% or less, and most preferably 1% or less.
  • the strength of the metal oxide layer is preferably 3H or more in terms of lead writing hardness of 1 kg load, and most preferably 4H or more.
  • the metal oxide layer is formed by coating, it preferably contains inorganic fine particles and a binder polymer.
  • the inorganic fine particles are: (I) composite particles comprising porous particles and a coating layer provided on the surface of the porous particles, or (II) cavities inside, and the contents are solvent, gas Or hollow particles filled with a porous material.
  • the low refractive index layer may contain either (I) composite particles or (II) hollow particles, or both.
  • the hollow particles are particles having cavities inside, and the cavities are surrounded by particle walls. The cavity is filled with contents such as the solvent, gas, or porous material used during preparation.
  • the average particle size of such inorganic fine particles is desirably in the range of 5 to 300 nm, preferably 10 to 200 nm.
  • the average particle size of the inorganic fine particles used is appropriately selected according to the thickness of the transparent film to be formed, and is in the range of 2Z3 to 1/10 of the film thickness of the transparent film such as the low refractive index layer to be formed. Is desirable.
  • These inorganic fine particles are preferably used in a state dispersed in an appropriate medium for forming a low refractive index layer.
  • dispersion medium examples include water, alcohol (eg, methanol, ethanol, isopropyl alcohol), and ketone (eg, For example, methyl ethyl ketone, methyl isobutyl ketone) and ketone alcohol (for example, diacetone alcohol) are preferred.
  • alcohol eg, methanol, ethanol, isopropyl alcohol
  • ketone eg, methyl ethyl ketone, methyl isobutyl ketone
  • ketone alcohol for example, diacetone alcohol
  • the thickness of the coating layer of the composite particles or the thickness of the particle walls of the hollow particles is desirably in the range of 1 to 20 nm, preferably 2 to 15 nm.
  • the thickness of the coating layer is less than 1 nm, the particles may not be completely covered, and the coating liquid components described later, which are low polymerization degree monomers and oligomers, can be easily obtained.
  • the inside of the composite particles may enter and the internal porosity may decrease, and the low refractive index effect may not be sufficiently obtained.
  • the carboxylic acid monomer and oligomer do not enter the inside, but the porosity (pore volume) of the composite particles is lowered and the effect of low refractive index is sufficient. It may not be obtained.
  • the particle wall thickness is less than 1 nm, the particle shape may not be maintained, and even if the thickness exceeds 20 nm, the low refractive index effect may not be sufficiently exhibited. .
  • the coating layer of the composite particles or the particle wall of the hollow particles has silica as a main component.
  • the coating layer of the composite particle or the particle wall of the hollow particle may contain components other than silica. Specifically, Al O, B 2 O, TiO, ZrO, SnO, CeO, P
  • Porous particles constituting composite particles are described above, Sb 2 O, MoO, ZnO, WO and the like. Porous particles constituting composite particles
  • Examples of the child include those made of silica, those made of silica and inorganic compounds other than silica, and those made of CaF, NaF, NaAlF, MgF, and the like. Of these, silica and silica
  • Porous particles having a complex acidity with other inorganic compounds are preferred.
  • Inorganic compounds other than silica include Al 2 O, B 2 O, TiO, ZrO, SnO, CeO, P 2 O, Sb 2 O, and MoO.
  • silica is represented by SiO and inorganic compounds other than silica are oxidized.
  • Molar ratio when expressed in terms of conversion (MOx) MOxZSiO is from 0.0001 to L0, preferred
  • the silica ratio is reduced, so that particles having a small pore volume and a low refractive index are obtained. It may not be possible.
  • the pore volume of such porous particles is desirably in the range of 0.1 to 1.5 mlZg, preferably 0.2 to 1.5 ml / g. If the pore volume is less than 0.1 mlZg, particles having a sufficiently low refractive index cannot be obtained, and if it exceeds 1.5 mlZg, the strength of the fine particles may be reduced, and the strength of the resulting coating may be reduced.
  • the pore volume of such porous particles can be determined by mercury porosimetry.
  • Examples of the contents of the hollow particles include a solvent, a gas, and a porous material used when preparing the particles.
  • the solvent may contain unreacted particle precursors used in preparing the hollow particles, the catalyst used, and the like.
  • Examples of the porous substance include those having the compound power exemplified in the porous particles. These contents may be a single component, or a mixture of multiple components.
  • the method for preparing composite oxide colloidal particles disclosed in paragraphs [0010] to [0033] of JP-A-7-133105 is preferable. Adopted. Specifically, when the composite particles are composed of silica and an inorganic compound other than silica, the following first to third step force inorganic compound particles are produced.
  • Step 1 Preparation of porous particle precursor
  • an alkali aqueous solution of a silica raw material and an inorganic compound raw material other than silica is separately prepared in advance, or a mixed aqueous solution of a silica raw material and an inorganic compound raw material other than silica is prepared in advance.
  • a porous particle precursor is prepared by gradually adding it to an alkaline aqueous solution of pHIO or more while stirring.
  • an alkali metal, ammonium or an organic base silicate is used as a silica raw material.
  • alkali metal silicate sodium silicate (water glass) or potassium silicate is used.
  • organic bases include quaternary ammonium salts such as tetraethylammonium salts, and amines such as monoethanolamine, diethanolamine, and triethanolamine.
  • Ammonium silicates or organic base silicates have alkaline properties in which ammonia, quaternary ammonium hydroxide, amine compounds, etc. are added to the key acid solution. Solutions are also included.
  • alkali-soluble inorganic compounds are used as a raw material for inorganic compounds other than silica.
  • elemental oxoacids selected from Al, B, Ti, Zr, Sn, Ce, P, Sb, Mo, Zn, W, alkali metal salts or alkaline earth metal salts of the oxoacids, ammonia -Um salt, quaternary ammonia salt. More specifically, sodium aluminate, sodium tetraborate, zirconyl ammonium carbonate, potassium antimonate, potassium stannate, sodium aluminosilicate, sodium molybdate, cerium ammonium nitrate, sodium phosphate Is appropriate.
  • the aqueous solution finally has a pH value determined by the type of inorganic oxide and its mixing ratio. There is no particular limitation on the addition rate of the aqueous solution at this time.
  • a dispersion of seed particles can be used as a starting material.
  • the seed particles are not particularly limited, but inorganic oxides such as SiO, Al 2 O, TiO or ZrO or fine particles of these composite oxides
  • a child is used, usually this
  • the porous particle precursor dispersion obtained by the above production method may be used as a seed particle dispersion.
  • the pH of the seed particle dispersion is adjusted to 10 or more, and then the aqueous solution of the compound is added to the above-described alkaline aqueous solution while stirring. In this case, it is not always necessary to control the pH of the dispersion.
  • seed particles are used in this way, it is easy to control the particle size of the porous particles to be prepared, and particles with uniform particle sizes can be obtained.
  • silica raw material and the inorganic compound raw material described above have high solubility on the alkali side.
  • solubility of oxalate ions such as silicate and aluminate ions decreases, and these composites precipitate and grow into fine particles. Or precipitate on the seed particles to cause particle growth. Therefore, it is not always necessary to perform pH control as in the conventional method for precipitation and growth of fine particles.
  • the composite ratio of silica and inorganic compound other than silica in the first step is preferably calculated by converting the inorganic compound to silica into oxide (MOx), and the molar ratio of MOxZSiO is 0.05 to 2.0. It is desirable that it is within the range of 0.2 to 2.0. Within this range, the pore volume of the porous particles increases as the proportion of silica decreases. However, even if the molar ratio exceeds 2.0, the pore volume of the porous particles hardly increases. On the other hand, when the molar ratio is less than 0.05, the pore volume becomes small.
  • the ratio should be in the range of 0.25-2.
  • Second step removal of inorganic compounds other than silica from the porous particles
  • the second step at least a part of inorganic compounds other than silica (elements other than silicon and oxygen) is selectively removed from the porous particle precursor obtained in the first step.
  • the inorganic compound in the porous particle precursor is removed by dissolution using mineral acid or organic acid, or ion exchange removal by contacting with a cation exchange resin.
  • the porous particle precursor obtained in the first step is a particle having a network structure in which silicon and an inorganic compound constituent element are bonded through oxygen.
  • inorganic compound elements other than silicon and oxygen
  • porous particles having a larger porosity and a larger pore volume can be obtained.
  • the amount of removing the inorganic oxide (elements other than silicon and oxygen) from the porous particle precursor is increased, the hollow particles can be prepared.
  • the porous particle precursor force can be obtained by removing alkali metal salt of silica from the porous particle precursor dispersion obtained in the first step prior to removing inorganic compounds other than silica. It is preferable to form a silica protective film by adding a caustic acid solution or a hydrolyzable organosilicon compound.
  • the thickness of the silica protective film may be 0.5 to 15 nm. Even when the silica protective film is formed, the protective film in this step is porous and thin, so that it is possible to remove the inorganic compound other than silica described above by the porous particle precursor force.
  • silica protective film By forming such a silica protective film, it is possible to remove the inorganic compound other than silica described above with the porous particle precursor force while maintaining the particle shape. Further, when forming the silica coating layer described later, the pores of the porous particles are not blocked by the coating layer, and therefore the silica coating layer described later can be formed without reducing the pore volume. it can. If the amount of inorganic compound to be removed is small, the particles will not break! /, So it is not always necessary to form a protective film. [0103] When preparing hollow particles, it is desirable to form this silica protective film.
  • the inorganic compound is removed to obtain a hollow particle precursor composed of a silica protective film, a solvent in the silica protective film, and an undissolved porous solid content.
  • a coating layer which will be described later, is formed on the particle precursor, the formed coating layer becomes a particle wall to form hollow particles.
  • the amount of the silica source added for forming the silica protective film is preferably small as long as the particle shape can be maintained. When the amount of the silica source is too large, the silica protective film becomes too thick, and it may be difficult to remove inorganic compounds other than the porous particle precursor force silica.
  • the hydrolyzable organosilicon compound used for forming the silica protective film has the general formula R S
  • tetraanoloxysilanes such as tetramethoxysilane, tetraethoxysilane, and tetraisopropoxysilane are preferably used.
  • a solution obtained by adding a small amount of alkali or acid as a catalyst to a mixed solution of these alkoxysilane, pure water, and alcohol is added to the dispersion of the porous particles, and the alkoxysilane is hydrolyzed.
  • the keyed acid polymer produced by decomposition is deposited on the surface of inorganic oxide particles.
  • alkoxysilane, alcohol and catalyst may be simultaneously added to the dispersion.
  • the alkali catalyst ammonia, an alkali metal hydroxide, or an amine can be used.
  • the acid catalyst various inorganic acids and organic acids can be used.
  • a silica protective film can be formed using a caustic acid solution.
  • a key acid solution a predetermined amount of the key acid solution is added to the dispersion, and at the same time an alkali is added to deposit the key acid solution on the porous particle surface.
  • a silica protective film may be produced by using a combination of a key acid solution and the above alkoxysilane! /.
  • Step 3 Formation of silica coating layer
  • the porous particle dispersion prepared in the second step (in the case of hollow particles, hollow particles By adding a hydrolyzable organosilicon compound or a key acid solution to the precursor precursor dispersion), the surface of the particles is coated with a polymer such as a hydrolyzable organosilicon compound or a key acid solution and coated with silica. Form a layer.
  • Examples of the hydrolyzable organosilicon compound used for forming the silica coating layer include the general formula R Si (OR ') [R,: alkyl group, aryl group, bur group, acrylic group as described above.
  • tetraalkoxysilanes such as tetramethoxysilane, tetraethoxysilane, and tetraisopropoxysilane are preferably used.
  • a solution obtained by adding a small amount of alkali or acid as a catalyst to a mixed solution of these alkoxysilane, pure water, and alcohol is used as the porous particles (in the case of hollow particles, hollow particle precursors).
  • the carboxylic acid polymer produced by hydrolysis of alkoxysilane is deposited on the surface of the porous particles (in the case of hollow particles, the hollow particle precursor).
  • alkoxysilane, alcohol, and catalyst may be simultaneously added to the dispersion.
  • the alkali catalyst ammonia, an alkali metal hydroxide or an amine can be used.
  • the acid catalyst various inorganic acids and organic acids can be used.
  • the dispersion medium of porous particles in the case of hollow particles, the hollow particle precursor
  • a caustic acid solution is an aqueous solution of a low-polymerization product of key acid obtained by dealkalizing an aqueous solution of an alkali metal silicate such as water glass by ion exchange treatment.
  • the caustic acid solution is added to the dispersion of porous particles (in the case of hollow particles, hollow particle precursor).
  • alkali is added to deposit the low-key acid polymer on the surface of the porous particles (in the case of hollow particles, the hollow particle precursor).
  • the caustic acid solution may be used in combination with the above alkoxysilane for forming a covering layer.
  • the amount of the organosilicon compound or the caustic acid solution used for forming the coating layer should be sufficient to cover the surface of the colloidal particles.
  • the final silica coating layer thickness should be 1 to 20 nm. It is added in an amount so as to be in a dispersion of porous particles (in the case of hollow particles, hollow particle precursor).
  • the silica protective film is formed. In this case, the organosilicon compound or the caustic acid solution is added in such an amount that the total thickness of the silica protective film and the silica coating layer is in the range of 1 to 20 nm.
  • the particle dispersion having the coating layer formed thereon is heat-treated.
  • the heat treatment in the case of porous particles, the silica coating layer covering the surface of the porous particles is densified, and a dispersion of composite particles in which the porous particles are coated with the silica coating layer is obtained.
  • the formed coating layer is densified to become hollow particle walls, and a dispersion of hollow particles having cavities filled with a solvent, gas, or porous solid content is obtained.
  • the heat treatment temperature at this time is not particularly limited as long as it can close the fine pores of the silica coating layer, and is preferably in the range of 80 to 300 ° C.
  • the heat treatment temperature is less than 80 ° C, the fine pores of the silica coating layer may not be completely closed and densified, and the treatment time may take a long time.
  • the heat treatment temperature exceeds 300 ° C for a long time, fine particles may be formed, and the effect of low refractive index may not be obtained.
  • the refractive index of the inorganic fine particles obtained in this way is as low as less than 1.44. Such inorganic fine particles are presumed to have a low refractive index because they retain the porosity inside the porous particles or are hollow inside.
  • a fluorine-containing resin that is crosslinked by heat or ionizing radiation (hereinafter also referred to as "fluorine-containing resin before crosslinking") is preferably used.
  • Preferred examples of the fluorinated resin before crosslinking include a fluorinated copolymer and a fluorinated copolymer formed with a monomer force for imparting a crosslinkable group.
  • Specific examples of the above-mentioned fluorine-containing monomer unit include, for example, fluoroolefins (for example, fluoroethylene, vinylidene fluoride, tetrafluoroethylene, hexafluoroethylene, hexafluoropropylene, Perfluoro-2,2-dimethyl-1,3-dioxole), partially (meth) acrylic acid or fully fluorinated alkyl ester derivatives (for example, Biscoat 6FM (Osaka Organic Chemical) or M-2020 (Daikin)) ), Fully or partially fluorinated vinyl ethers.
  • fluoroolefins for example, fluoroethylene, vinylidene fluoride, tetrafluoroethylene, hexafluor
  • Monomers for imparting a crosslinkable group include glycidyl methacrylate, butyltrimethyoxysilane, ⁇ -methacryloyloxypropyltrimethoxysilane, and vinyldaricidyl ester.
  • vinyl monomers having a crosslinkable functional group in the molecule as in the case of TEL, etc. vinyl monomers having a carboxyl group, a hydroxyl group, an amino group, a sulfonic acid group, etc.
  • crosslinkable group examples include attalyloyl, methacryloyl, isocyanate, epoxy, aziridine, oxazoline, aldehyde, carbonyl, hydrazine, carboxyl, methylol, and active methylene group.
  • thermosetting type When the fluorine-containing copolymer is crosslinked by heating with a crosslinking group that reacts by heating, or a combination of an ethylenically unsaturated group and a thermal radical generator or an epoxy group and a thermal acid generator, the thermosetting type is used.
  • crosslinking by irradiation with light preferably ultraviolet rays, electron beams, etc.
  • the ionizing radiation curable type is used.
  • a fluorine-containing copolymer formed by using a monomer other than the fluorine-containing bull monomer and the monomer for imparting a crosslinkable group is used as a fluorine-containing resin before crosslinking. May be.
  • olefins ethylene, propylene, isoprene, butyl chloride, vinylidene chloride, etc.
  • acrylates methyl acrylate, methyl acrylate, ethyl acrylate, 2-ethylhexyl acrylate
  • methacrylates methyl methacrylate, ethyl methacrylate, butyl methacrylate, ethylene glycol dimethacrylate, etc.
  • styrene derivatives styrene, dibutenebenzene, butyltoluene, a- methylstyrene, etc.
  • Butyl ethers such as methyl vinyl ether
  • vinyl esters such as vinyl acetate, vinyl propionate, and cinnamate bur
  • acrylamides such as N-tertbutylacrylamide, N-cyclohexylatrylamide
  • methacrylamides Acrylo Ru
  • polyorganosiloxane bones are added to the fluorine-containing copolymer to provide slipperiness and antifouling properties. It is also preferable to introduce a case or a perfluoropolyether skeleton. This is because, for example, polyorganosiloxane or perfluoropolyether having an acrylic group, methacrylic group, butyl ether group, styryl group or the like at the terminal is polymerized with the above monomer, or a polyorganoyl having a radical generating group at the terminal.
  • Use percentage of each monomer used to form the fluorine-containing copolymer before crosslinking a fluorine-containing Bulle monomer preferably 20 to 70 mole 0/0, more preferably 40 to 70 molar 0/0, the crosslinking monomer is preferably 1 to 20 mol 0/0 for groups imparting, more preferably 5-20 mole 0/0, preferably other monomers to be used in combination 10 to 70 mole 0/0 , more preferably a ratio of 10 to 50 mole 0/0.
  • the fluorine-containing copolymer can be obtained by polymerizing these monomers in the presence of a radical polymerization initiator by means of solution polymerization, bulk polymerization, emulsion polymerization, suspension polymerization or the like.
  • the fluorine-containing resin before crosslinking is commercially available and can be used.
  • Examples of commercially available fluorinated resin in front of a bridge include Cytop (Asahi Glass), Teflon (registered trademark) AF (DuPont), polyvinylidene fluoride, Lumiflon (Asahi Glass), Opster CFSR ) And the like.
  • the low refractive index layer comprising a cross-linked fluorine-containing resin as a constituent component has a coefficient of dynamic friction of 0.03 to 0.00.
  • the contact angle to water is in the range of 15 to 15 degrees, in the range of 15.
  • the low refractive index layer containing a cross-linked fluorine-containing resin as a constituent component contains the aforementioned inorganic particles.
  • sol-gel materials can also be used as a binder matrix for other low refractive index layers.
  • metal alcoholates such as silane, titanium, aluminum, zirconium, etc.
  • organoalkoxy metal compounds and hydrolysates thereof can be used.
  • alkoxysilane, organoalkoxysilane, and a hydrolyzate thereof are preferable. Examples of these include tetraalkoxysilane (tetramethoxysilane, tetraethoxysilane, etc.), alkyltrialkoxysilane (methyltrimethylsilane).
  • organoalkoxysilanes with various functional groups (butyralkoxysilane, methylvinyl dialkoxysilane, ⁇ -glycidyloxypropyltrialkoxysilane, ⁇ ⁇ -glycidyloxypropylmethyl dialkoxysilane, j8 — (3,4-epoxycyclohexane) Hexyl ) ethyltrialkoxysilane, ⁇ -methacryloyloxypropyltrialkoxysilane, ⁇ -aminopropyltrialkoxysilane, ⁇ -mercaptopyltrialtrialkoxysilane, ⁇ -chloropropyltrialkoxysilane, etc.), perfluoro Silane compounds containing an alkyl group (for example, (heptadecafluoro-1,1,2,2-tetradecyl) triethoxysilane, 3,3,3-trifluoropropyltrime
  • the aforementioned organoalkoxy metal compound and the hydrolyzate thereof may be used as an acid catalyst.
  • Inorganic acids such as acid and nitric acid and organic acids such as formic acid, acetic acid, trichloroacetic acid, succinic acid, and citrate can be used.
  • the coating composition contains a metal compound.
  • the metal compound include tri- ⁇ -butoxychelacetoacetate zirconium, di- ⁇ -butoxybis (ethylacetoacetate) zirconium, ⁇ -butoxytris (ethinoreacetoacetate).
  • Zirconium compounds such as zirconium, tetrakis ( ⁇ -propylacetoacetate) zirconium, tetrakis (acetylacetoacetate) zirconium, tetrakis (ethylacetoacetate) zirconium; diisopropoxybis (ethylacetoacetate) titanium, diisopropoxy 'Bis (acetinoreacetate) titanium, diisopropoxy' Titanium compounds such as' bis (acetylacetone) titanium; diisopropoxychetinoreacetoacetate anoreminium, diisopropoxyacetino Asetona DOO aluminum, isopropoxybis (E chill ⁇ Seth acetate) aluminum, Isopurobo Kis
  • metal compounds preferred are tri-n-butoxychetylacetate zirconium, diisopropoxybis (acetinoreacetonate) titanium, diisopropoxychetylacetate aluminum, tris (ester). Tylacetoacetate) aluminum.
  • metal compounds may be used alone or in combination of two or more.
  • the partial hydrolyzate of these metal compounds can also be used. Ratio in the composition of the metal compound relative to the organosilane as a raw material in the sol solution, from 0.01 to 50 weight 0/0, preferably from 0.1 to 50 wt%, more preferably from 0.5 to 10 mass %.
  • the low refractive index layer preferably contains the polymer in an amount of 5 to 50% by mass.
  • the polymer has a function of adhering the fine particles and maintaining the structure of the low refractive index layer including voids.
  • the amount of polymer used is adjusted so that the strength of the low refractive index layer can be maintained without filling the voids.
  • the amount of the polymer is preferably 10 to 30% by mass of the total amount of the low refractive index layer.
  • the force to bind the polymer to the surface treatment agent of the fine particles (2) the force to form a polymer shell around the fine particles as the core or ( 3) It is preferable to use a polymer as a binder between fine particles.
  • the polymer to be bonded to the surface treating agent of (1) is preferably a shell polymer of (2) or a binder polymer of (3).
  • the polymer (2) is preferably formed around the fine particles by a polymerization reaction before preparing the coating solution for the low refractive index layer.
  • the polymer (3) is preferably formed by adding a monomer to the coating solution for the low refractive index layer, and by a polymerization reaction simultaneously with or after the coating of the low refractive index layer. It is preferable to implement a combination of two or all of the above (1) to (3) (1) and (3), or (1) to (3) all combinations It is particularly preferable to do this.
  • (1) Surface treatment, (2) Shell and (3) Binder will be explained in order.
  • the surface treatment is a physical surface such as plasma discharge treatment or corona discharge treatment. It can be classified into surface treatment and chemical surface treatment using a coupling agent. It is preferable to carry out only chemical surface treatment or a combination of physical surface treatment and chemical surface treatment.
  • an organoalkoxy metal compound for example, a titanium coupling agent or a silane coupling agent
  • a titanium coupling agent for example, titanium silane coupling agent
  • a silane coupling agent for example, silane coupling agent
  • silane coupling agent a silane coupling agent described later is preferably used.
  • the surface treatment with a coupling agent can be carried out by adding a coupling agent to a dispersion of fine particles and leaving the dispersion at a temperature from room temperature to 60 ° C for several hours to 10 days.
  • inorganic acids eg, sulfuric acid, hydrochloric acid, nitric acid, chromic acid, hypochlorous acid, boric acid, orthokeic acid, phosphoric acid, carbonic acid
  • organic acids eg, acetic acid, polyacrylic acid
  • salts thereof eg, metal salts, ammonium salts
  • the polymer forming the shell is preferably a polymer having a saturated hydrocarbon as the main chain.
  • a polymer containing a fluorine atom in the main chain or side chain is preferred, and a polymer containing a fluorine atom in the side chain is more preferred.
  • Most preferred are esters of fluorine-substituted alcohols with polyacrylic acid esters or polymethacrylic acid esters and polyacrylic acid or polymethacrylic acid.
  • the refractive index of the shell polymer decreases as the fluorine atom content in the polymer increases.
  • the shell polymer preferably contains 35 to 80% by mass of fluorine atoms, and more preferably contains 45 to 75% by mass of fluorine atoms.
  • Polymers containing fluorine atoms are preferably synthesized by the polymerization reaction of ethylenically unsaturated monomers containing fluorine atoms.
  • ethylenically unsaturated monomers containing fluorine atoms include fluoroolefins (eg, fluoroethylene, vinylidene fluoride, tetrafluoroethylene, hexafluoropropylene, perfluoro 2, 2 -Dimethyl-1,3-dioquinol), fluorinated butyl ether and esters of fluorine-substituted alcohols with acrylic acid or methacrylic acid.
  • fluoroolefins eg, fluoroethylene, vinylidene fluoride, tetrafluoroethylene, hexafluoropropylene, perfluoro 2, 2 -Dimethyl-1,3-dioquinol
  • fluorinated butyl ether and esters of fluorine-substituted alcohols with acrylic acid or methacrylic acid.
  • the polymer forming the shell does not contain a repeating unit containing a fluorine atom and a fluorine atom.
  • V may be a copolymer with repeating unit power.
  • the fluorine atom-free // repeating unit is preferably obtained by a polymerization reaction of an ethylenically unsaturated monomer not containing a fluorine atom.
  • ethylenically unsaturated monomers that do not contain fluorine atoms include olefins (eg, ethylene, propylene, isoprene, butyl chloride, vinylidene chloride), acrylate esters (eg, methyl acrylate, ethyl acrylate, acrylic acid).
  • 2-ethyl hexyl methacrylic acid esters (for example, methyl methacrylate, ethyl methacrylate, butyl metatalylate, ethylene glycol dimetatalylate), styrene and its derivatives (for example, styrene, dibutylbenzene, butyltoluene, a -methylstyrene), butyl ether (eg, methyl butyl ether), butyl ester (eg, vinyl acetate, propionate butyl, cinnamate butyl), acrylamide (eg, N-tertbutyl acrylamide, N-cyclohexyl acryl) Ami ), Methacrylamide and acrylonitrile.
  • methacrylic acid esters for example, methyl methacrylate, ethyl methacrylate, butyl metatalylate, ethylene glycol dimetatalylate
  • styrene and its derivatives
  • a crosslinkable functional group may be introduced into the shell polymer to chemically bond the shell polymer and the binder polymer by crosslinking.
  • the shell polymer may have crystallinity.
  • the glass transition temperature (Tg) of the shell polymer is higher than the temperature at the time of forming the low refractive index layer, and it is easy to maintain the microvoids in the low refractive index layer. However, if Tg is higher than the temperature at which the low refractive index layer is formed, the fine particles are not fused, and the low refractive index layer may not be formed as a continuous layer (resulting in a decrease in strength).
  • the binder polymer (3) described later in combination it is desirable to use the binder polymer (3) described later in combination, and to form the low refractive index layer as a continuous layer with a noinder polymer.
  • core-shell fine particles By forming a polymer shell around the fine particles, core-shell fine particles can be obtained. There are 5 cores in the core-shell particles that have inorganic fine-particle strength.
  • fixture 15-80 volume 0/0 contained 90 volume 0/0 It is further favorable preferable that it is contained preferably fixture 15-80 volume 0/0 contained 90 volume 0/0.
  • Two or more kinds of core-shell fine particles may be used in combination. Also, use inorganic fine particles without shell and core shell particles together.
  • the Noinder polymer is a polymer having a saturated hydrocarbon as the main chain, preferably a polymer having a saturated hydrocarbon or a polyether as the main chain.
  • the binder polymer is preferably crosslinked. Saturated hydrocarbon as main chain It is preferable to obtain the polymer obtained by the polymerization reaction of ethylenically unsaturated monomers. In order to obtain a cross-linked Noinder polymer, it is preferable to use a monomer having two or more ethylenically unsaturated groups.
  • Examples of monomers having two or more ethylenically unsaturated groups include esters of polyhydric alcohols with (meth) acrylic acid (for example, ethylene glycol di (meth) acrylate, 1, 4-dichloro).
  • esters of polyhydric alcohols with (meth) acrylic acid for example, ethylene glycol di (meth) acrylate, 1, 4-dichloro.
  • the polymer having a polyether as the main chain is preferably synthesized by a ring-opening polymerization reaction of a polyfunctional epoxy compound.
  • a crosslinked structure may be introduced into the binder polymer by the reaction of a crosslinkable group.
  • crosslinkable functional groups include isocyanato groups, epoxy groups, aziridine groups, oxazoline groups, aldehyde groups, carboxylic groups, hydrazine groups, carboxyl groups, methylol groups and active methylene groups.
  • Bullsulfonic acid, acid anhydride, cyanoacrylate derivative, melamine, etherified methylol, ester and urethane can also be used as monomers for introducing a crosslinked structure.
  • a functional group that exhibits crosslinkability as a result of the decomposition reaction such as a block isocyanate group, may be used.
  • the cross-linking group is not limited to the above compound, and may be one that exhibits reactivity as a result of decomposition of the functional group.
  • the polymerization initiator used in the polymerization reaction and the crosslinking reaction of the binder polymer a thermal polymerization initiator or a photopolymerization initiator is used, and the photopolymerization initiator is more preferable.
  • photopolymerization initiators include: acetophenones, benzoins, benzophenones, phosphine oxides, ketals, anthraquinones, thixanthones, azo compounds, peroxides. , 2, 3 dialkyldione compounds, disulfide compounds, fluoroamine compounds and aromatic sulfomes.
  • acetophenones examples include 2,2-jetoxyacetophenone, p-dimethylacetophenone, 1-hydroxydimethylphenol ketone, 1-hydroxycyclohexyl phenyl ketone, 2 methyl 4-methylthio 2 morpholinopropiophenone and 2- Benzyl-2-dimethylamino 1- (4 morpholinophenyl) monobutanone.
  • benzoins include benzoin methyl ether, benzoin ethyl ether and benzoin isopropyl ether.
  • benzophenones examples include benzophenone, 2,4 dichlorobenzophenone, 4,4-diclobenzophenone and p-clobenzophenone.
  • phosphine oxides examples include 2,4,6 trimethylbenzoyldiphosphine phosphoxide.
  • the binder polymer is preferably formed by adding a monomer to the coating solution for the low refractive index layer, and at the same time or after the coating of the low refractive index layer by a polymerization reaction (further crosslinking reaction if necessary).
  • a polymerization reaction further crosslinking reaction if necessary.
  • a small amount of polymer in the low refractive index coating solution for example, polybulualcohol, polyoxyethylene, polymethylmetatalylate, polymethyl acrylate, diacetyl cellulose, triacetyl cellulose, nitrocellulose, polyester, alkyd resin
  • a slipperiness that is preferably added to a low refractive index layer or other refractive index layer according to the present invention.
  • silicone oil or a wax-like substance is preferably used.
  • a compound represented by the following general formula is preferred.
  • R represents a saturated or unsaturated aliphatic hydrocarbon group having 12 or more carbon atoms.
  • R is an OM group (M is an alkali metal such as Na or K)
  • an unsaturated aliphatic hydrocarbon group preferably an alkyl group or an alkenyl group.
  • R is preferably an OH group, an NH group or an OR group.
  • higher fatty acids such as behenic acid, stearamide, and pentacoic acid, or derivatives thereof, and carnauba wax, beespox, and montane wax that contain many of these components as natural products can be preferably used.
  • Particularly preferably used silicon oil is a compound described in Table 1 of JP-A-2005-156801.
  • ⁇ slip agent used in the low refractive index layer is 0. 01 ⁇ : LOmgZm 2 is preferably
  • the present invention in order to reduce the reflectance, it is also preferable to provide a high refractive index layer between the transparent support provided with the ultraviolet curable resin layer and the low refractive index layer.
  • a middle refractive index layer between the transparent support and the high refractive index layer in order to reduce the reflectance.
  • the refractive index of the high refractive index layer is preferably 1.55-2.30, more preferably 1.57-2.20.
  • the refractive index of the middle refractive index layer is adjusted to be an intermediate value between the refractive index of the transparent support and the refractive index of the high refractive index layer.
  • the refractive index of the middle refractive index layer is preferably 1.55 to L80.
  • the thickness of the high refractive index layer and the middle refractive index layer is preferably 5 nm to: m, more preferably 10 nm to 0.2 m, and even more preferably 30 nm to 0.1 m. Is most preferred.
  • the haze of the high refractive index layer and the medium refractive index layer is preferably 5% or less, more preferably 3% or less, and even more preferably 1% or less.
  • the strength of the high refractive index layer and the medium refractive index layer is preferably H or higher, more preferably 2H or higher, and more preferably 3H or higher, with a pencil hardness of 1 kg load.
  • the high refractive index layer is formed by applying and drying a coating solution containing a monomer, oligomer or hydrolyzate of an organic titanium compound represented by the following general formula: A layer with a rate of 1.55 to 2.5 is preferred.
  • R 1 is preferably an aliphatic hydrocarbon group having 1 to 8 carbon atoms, preferably an aliphatic hydrocarbon group having 1 to 4 carbon atoms.
  • organotitanium compound monomers, oligomers, or their hydrolysates form alkoxide groups that are hydrolyzed and react like TiO-Ti to form a crosslinked structure, forming a hardened layer. To do.
  • O-n-C H) 2 to 10-mer and Ti (0—n—C H) 2 to 10-mer are particularly preferable.
  • the organic titanium compound in a solution in which water and an organic solvent described later are sequentially added. If water is also added, hydrolytic Z polymerization does not proceed uniformly, resulting in white turbidity or reduced film strength. After adding water and organic solvent, it is preferable to stir, mix and dissolve in order to mix well.
  • an organic titanium compound and an organic solvent are mixed and this mixed solution is added to the mixed and stirred solution of water and the organic solvent.
  • the amount of water is preferably in the range of 0.25 to 3 mol with respect to 1 mol of the organic titanium compound.
  • the amount is less than 25 mol, hydrolysis and polymerization are not sufficiently progressed and film strength is lowered. If it exceeds 3 moles, hydrolysis and polymerization will proceed excessively, resulting in the generation of coarse TiO particles.
  • the water content is preferably less than 10% by mass relative to the total amount of the coating solution. If the water content is 10% by mass or more based on the total amount of the coating solution, it is not preferable because the coating solution is not stable over time and may become cloudy.
  • the organic solvent used in the present invention is preferably a water-miscible organic solvent.
  • the water-miscible organic solvent include alcohols (e.g., methanol, ethanol, propanol, isopropanol, butanol, isobutanol, secondary butanol, tertiary butanol, pentanol, hexanol, cyclohexane).
  • polyhydric alcohols eg, ethylene glycol, polyethylene glycol, triethylene glycol, polyethylene glycol, propylene glycol, dipropylene glycol, polypropylene glycol, butylene glycol, hexanediol, pentanediol, Glycerin, hexanetriol, thiodiglycol, etc.
  • polyhydric alcohol ethers eg, ethylene glycol monomethyl ether, ethylene glycol
  • Remonotino enotenole Ethylene glycol monole butylenoate, Diethylene glycone mono metheno enoate, Diethylene glycol monomethino enoate, Diethylene glycol monobutyl ether, Propylene glycol monomethyl ether, Propylene glycol monomethyl ether, Propylene glycol enomonobuty Noleyatenore, Ethyleneglycolenomonoethyleneate acetate, Triethyleneglycoleno
  • the amount of these organic solvents used can be adjusted by adjusting the total amount of water and the organic solvent so that the content of water is less than 10% by mass relative to the total amount of the coating solution as described above. Good.
  • the monomer, oligomer or hydrolyzate of the organotitanium compound used in the present invention may occupy 50.0 to 98.0 mass% of the solid content in the coating solution. desirable.
  • the solid content ratio is more preferably 50 to 90% by mass, and further preferably 55 to 90% by mass.
  • the high refractive index layer and the medium refractive index layer preferably contain a metal compound in the coating composition for improving physical properties.
  • metal compounds include tri-n-butoxychetyl acetate acetate dinoreconium, di-n-butoxybis (ethinoreacetoacetate) zirco-um, n-butoxytris (ethylacetoacetate) zirconium.
  • Zirconium compounds such as tetrakis (n-propinoreacetoacetate) zirconium, tetrakis (acetinoreacetoacetate) dinorecum, tetrakis (ethylacetoacetate) zirconium;
  • Titanium compounds such as titanium, diisopropoxy bis (acetyl acetate) titanium, diisopropoxy bis (acetylacetone) titanium; diisopropoxy cetylacetoacetium aluminum, disopropoxy acetylenoaceto Natoanolinumium, isopropoxybis (ethinoreacetoacetate) aluminum, isopropoxybis (acetylacetonate) aluminum, tris (ethylacetoacetate) aluminum, tris (acetylacetonate) And aluminum compounds such as aluminum, monoacetylacetate bis (ethylacetoacetate) aluminum, and the like.
  • metal compounds preferred are tri-n-butoxy cetylacetate zirconium, diisopropoxybis (acetinoreacetonate) titanium, diisopropoxy cetylacetoacetate aluminum, tris (ester). Tylacetoacetate) aluminum.
  • metal compounds may be used alone or in combination of two or more.
  • the partial hydrolyzate of these metal compounds can also be used.
  • the ratio of the metal compound in the composition is 0.01 to 50% by mass, preferably 0.1 to 50% by mass, and more preferably 0.5 to 10% by mass, based on the solid content of each layer.
  • the high refractive index layer and the medium refractive index layer those containing metal oxide particles as fine particles and further containing a binder polymer are also preferably used.
  • the hydrolyzed Z-polymerized organotitanium compound and metal oxide particles are combined in the coating solution preparation method, the metal oxide particles and hydrolyzed Z-polymerized organotitanium compound are firmly bonded to each other. It is possible to obtain a strong coating film having both the hardness of the film and the flexibility of a uniform film.
  • the metal oxide particles used for the high refractive index layer and the medium refractive index layer preferably have a refractive index of 1.80 to 2.80. preferable.
  • the mass average diameter of the primary particles of the metal oxide particles is preferably from 1 to 150 nm, and more preferably from 1 to: LOOnm, and most preferably from 1 to 80 nm.
  • the mass average particle diameter of the metal oxide particles in the layer is preferably 1 to 200 nm, more preferably 5 to 150 nm, and even more preferably 10 to 100 nm. 10 Most preferably, it is ⁇ 80 nm.
  • the average particle diameter of the metal oxide particles is 20 to 30 nm or more, it is measured by a light scattering method, and if it is 20 to 30 nm or less, it is measured by an electron micrograph.
  • the specific surface area of the metal oxide particles is preferably 10 to 400 m 2 Zg as measured by the BET method.
  • it is 200 m 2 Zg, most preferably 30-150 m 2 Zg.
  • metal oxide particles are selected from Ti, Zr, Sn, Sb, Cu, Fe, Mn, Pb, Cd, As, Cr, Hg, Zn, Al, Mg, Si, P, and S Specifically, titanium oxide (eg, rutile, rutile Z anatase mixed crystal, anatase, amorphous structure), tin oxide, indium oxide, zinc oxide, and zirconium oxide. Nium. Among these, titanium oxide, acid tin tin and indium oxide are particularly preferable.
  • the metal oxide particles are mainly composed of oxides of these metals, can further contain other elements, and fine particles imparted with conductivity are also preferably used.
  • the main component means a component having the largest content (mass%) among the components constituting the particles.
  • examples of other elements include Ti, Zr, Sn, Sb, Cu, Fe, Mn, Pb, Cd, As, Cr, Hg, Zn, Al, Mg, Si ⁇ P, and S.
  • the metal oxide particles are preferably surface-treated.
  • the surface treatment can be performed using an inorganic compound or an organic compound.
  • inorganic compounds used for the surface treatment include alumina, silica, zirconium oxide and iron oxide. Of these, alumina and silica are preferred.
  • organic compounds used for the surface treatment include polyols, Examples include alkanolamines, stearic acid, silane coupling agents and titanate coupling agents. Of these, a silane coupling agent is most preferable.
  • silane coupling agent examples include methyltrimethoxysilane, methyltriethoxysilane, methyltrimethoxyethoxysilane, methyltriacetoxysilane, methyltributoxysilane, etyltrimethoxysilane, etyltriethoxysilane, Butyltrimethoxysilane, vinyltriethoxysilane, vinyltriacetoxysilane, vinyltrimethoxyethoxysilane, phenyltrimethoxysilane, phenyltriethoxysilane, phenyltriacetoxysilane, ⁇ ⁇ -clopropylpropyltrimethoxy silane, .gamma.
  • examples of silane coupling agents having a disubstituted alkyl group with respect to silicon include dimethylenoresimethoxymethoxysilane, pheninolemethinoresimethoxymethoxysilane, dimethylenolegetoxysilane, and phenenolemethinolegetoxy.
  • Oxy-propyltrimethoxysilane, ⁇ -Ataryloxypropylmethyldimethoxysilane, ⁇ -ataryloxypropylmethyljetoxysilane, ⁇ -pyrumethyljetoxysilane , Methyl-vinyldimethoxysilane and methylvinyljetoxysilane are preferred.
  • Two or more coupling agents may be used in combination.
  • other silane coupling agents may be used.
  • Other silane coupling agents include alkyl esters of orthokeys (eg, methyl orthokeate, ethyl orthokete, orthopropyl ⁇ propyl, orthopropyl o-propyl, orthokete n-butyl, orthokete sec butyl, orthokete t -Butyl) and hydrolysates thereof.
  • Surface treatment with a coupling agent can be carried out by adding a coupling agent to a dispersion of fine particles and allowing the dispersion to stand at a temperature from room temperature to 60 ° C for several hours to 10 days.
  • inorganic acids eg, sulfuric acid, hydrochloric acid, nitric acid, chromic acid, hypochlorous acid, boric acid, orthokeic acid, phosphoric acid, carbonic acid
  • organic acids eg, acetic acid, polyacrylic acid
  • salts thereof eg, metal salts, ammonium salts
  • silane coupling agents are preferably hydrolyzed with a necessary amount of water in advance.
  • a stronger film is formed in which the surfaces of the organic titanium compound and the metal oxide particles are easily reacted.
  • a hydrolyzed silane coupling agent is added to the coating solution in advance.
  • the water used for the hydrolysis can also be used for the hydrolysis Z polymerization of the organic titanium compound.
  • Two or more kinds of surface treatments may be combined and processed. Metal oxide particle shape
  • the shape is preferably a rice grain shape, a spherical shape, a cubic shape, a spindle shape or an indefinite shape.
  • Two or more kinds of metal oxide particles may be used for the high refractive index layer or the middle refractive index layer!
  • the ratio of the metal oxide particles in the high refractive index layer and the medium refractive index layer is preferably 5 to 65% by volume, more preferably 10 to 60% by volume, and still more preferably. 20-55% by volume.
  • the metal oxide particles are supplied to a coating liquid for forming a high refractive index layer and a medium refractive index layer in a dispersion state dispersed in a medium.
  • a dispersion medium for metal oxide particles it is preferable to use a liquid having a boiling point of 60 to 170 ° C.
  • the dispersion solvent include water, alcohol (eg, methanol, ethanol, isopropanol, butanol, benzyl alcohol), ketone (eg, acetone, methyl ethyl ketone, methyl isobutyl ketone, cyclohexanone), ketone alcohol.
  • esters eg, methyl acetate, ethyl acetate, propyl acetate, butyl acetate, methyl formate, ethyl formate, propyl formate, butyl formate
  • aliphatic hydrocarbons eg, hexane, cyclohexane
  • Halogenated hydrocarbons eg methylene chloride, black form, carbon tetrachloride
  • aromatic hydrocarbons eg benzene, toluene, xylene
  • amides eg dimethylformamide, dimethylacetamide, n-methyl
  • ether eg Echirueteru, Jiokisan, tetrahydrate port furan
  • ether alcohols e.g., 1-methoxy-one 2-propanol
  • the metal oxide particles can be dispersed in the medium using a disperser.
  • the disperser include a sand grinder mill (for example, a bead mill with a pin), a high-speed impeller mill, a pebble mill, a roller mill, an attritor, and a colloid mill.
  • a sand grinder mill and a high speed impeller mill are particularly preferred.
  • preliminary dispersion processing may be performed.
  • the disperser used for the preliminary dispersion treatment include a ball mill, a three-roll mill, a kneader, and an etastruder.
  • the high refractive index layer and the middle refractive index layer are polymers having a crosslinked structure (hereinafter referred to as a crosslinked polymer).
  • a crosslinked polymer are also used as the binder polymer.
  • the crosslinked polymer include polymers having a saturated hydrocarbon chain such as polyolefin (hereinafter collectively referred to as polyolefin), crosslinked products such as polyetherol, polyurea, polyurethane, polyester, polyamine, polyamide and melamine resin.
  • polyolefins, polyethers and polyurethane cross-linked products are preferred.
  • Polyolefins and polyether cross-linked products are more preferred. Polyolefin cross-linked products are most preferred.
  • the crosslinked polymer has a ionic group.
  • the ionic group has a function of maintaining the dispersed state of the inorganic fine particles, and the crosslinked structure has a function of imparting a film forming ability to the polymer and strengthening the film.
  • the above-described ionic group may be directly bonded to the polymer chain, or may be bonded to the polymer chain via a linking group, but may be bonded to the main chain as a side chain via the linking group. And it is preferable to do that.
  • the terionic group examples include a carboxylic acid group (carboxyl), a sulfonic acid group (sulfo), and a phosphoric acid group (phosphono). Of these, a sulfonic acid group and a phosphoric acid group are preferable.
  • the eron group may be in a salt state.
  • the cation that forms a salt with the ionic group is preferably an alkali metal ion.
  • the proton of the teron group may be released.
  • the linking group that binds the terionic group and the polymer chain is preferably a divalent group selected from CO—, —O 1, an alkylene group, an arylene group, and a combination force thereof.
  • the crosslinked polymer which is a preferable binder polymer is preferably a copolymer having a repeating unit having a terionic group and a repeating unit having a crosslinked structure.
  • the proportion of the repeating unit having a ionic group in the copolymer is 2 to 96% by mass.
  • the repeating unit may have 2 or more ionic groups.
  • the crosslinked polymer having a terionic group may contain other repeating units (a repeating unit having neither erionic group nor crosslinked structure).
  • Other repeating units are preferably a repeating unit having an amino group or a quaternary ammonium group and a repeating unit having a benzene ring.
  • the amino group or quaternary ammonium group has the function of maintaining the dispersed state of the inorganic fine particles in the same manner as the eron group.
  • the benzene ring is a high refractive index layer It has a function of increasing the refractive index. The same effect can be obtained even when the amino group, quaternary ammonium group and benzene ring are contained in a repeating unit having a terionic group or a repeating unit having a crosslinked structure.
  • the amino group or quaternary ammonium group may be directly bonded to the polymer chain. However, it may be bonded to the polymer chain as a side chain via a linking group, but the latter is more preferable.
  • the amino group or quaternary ammonium group is preferably a secondary amino group, a tertiary amino group or a quaternary ammonium group. A tertiary amino group or a quaternary ammonium group is preferred. More preferably it is.
  • the group bonded to the nitrogen atom of the secondary amino group, tertiary amino group or quaternary ammonium group is preferably an alkyl group, more preferably an alkyl group having 1 to 12 carbon atoms, and still more preferably carbon. It is an alkyl group of the number 1-6.
  • the counter ion of the quaternary ammonium-um group is preferably a no-ride ion.
  • the linking group that connects the amino group or the quaternary ammonium group to the polymer chain is —CO—, —NH—, —O—, an alkylene group, an arylene group, or a combination force thereof. It is preferably a group.
  • the proportion is preferably from 0.06 to 32% by mass, and from 0.08 to 30% by mass. It is most preferable that the content is 0.1 to 28% by mass.
  • a monomer for forming the crosslinked polymer is blended to prepare a coating solution for forming the high refractive index layer and the middle refractive index layer, and the polymer is polymerized simultaneously with or after the coating of the coating solution. It is preferable to produce by reaction. Each layer is formed as the crosslinked polymer is formed.
  • the monomer having a er-on group functions as a dispersant for inorganic fine particles in the coating solution.
  • the monomer having a terionic group is preferably used in an amount of 1 to 50% by mass, more preferably 5 to 40% by mass, and still more preferably 10 to 30% by mass with respect to the inorganic fine particles.
  • a monomer having an amino group or quaternary ammonium group functions as a dispersion aid in the coating solution.
  • the monomer having an amino group or a quaternary ammonium group is preferably used in an amount of 3 to 33% by mass based on the monomer having a terionic group.
  • the coating solution is applied by a method in which a crosslinked polymer is produced by a polymerization reaction.
  • the monomer used in the present invention is most preferably a monomer having two or more ethylenically unsaturated groups.
  • esters of polyhydric alcohols and (meth) acrylic acid for example, , Ethylene glycol di (meth) acrylate, 1,4-dichlorohexanediatalate, pentaerythritol tetra (meth) acrylate, pentaerythritol tri (meth) acrylate, trimethylolpropane tri (meth) acrylate, trimethylol ester Tantri (meth) acrylate, dipentaerythritol tetra (meth) acrylate, dipentaerythritol pent (meth) acrylate, penta erythritol hex (meth) acrylate, 1, 2, 3 cyclohexane tetra methacrylate Rate, Polyurethane Poly Atylate, Poly Ester polyat
  • Derivatives eg, 1,4-dibutenebenzene, 4-bulubenzoic acid 2 allyloylethyl ester, 1,4-dibulecyclohexanone), bulesulphone (eg, dibule sulfone), acrylamide (eg, methylenebisacrylamide), and methacrylamide Can be mentioned.
  • Monomers having an ionic group and monomers having an amino group or a quaternary ammonium group may be commercially available monomers.
  • Examples of the monomer having a commercially available amino group or quaternary ammonia group are DMAA (manufactured by Osaka Organic Chemical Industry Co., Ltd.), DMAEA, DMAPAA (manufactured by Kojin Co., Ltd.), Bremer QA (Nippon Yushi Co., Ltd.), New Frontier C-1615 (Daiichi Kogyo Seiyaku Co., Ltd.), and the like.
  • the polymerization reaction of the polymer may be a photopolymerization reaction or a thermal polymerization reaction.
  • a photopolymerization reaction is particularly preferable.
  • a polymerization initiator is preferably used for the polymerization reaction. example Examples thereof include a thermal polymerization initiator and a photopolymerization initiator, which will be described later, used for forming the binder polymer of the ultraviolet curable resin layer.
  • a commercially available polymerization initiator may be used as the polymerization initiator.
  • a polymerization accelerator may be used.
  • the addition amount of the polymerization initiator and the polymerization accelerator is preferably in the range of 0.2 to LO mass% of the total amount of monomers.
  • the coating liquid (dispersion of inorganic fine particles containing monomer) may be heated to promote polymerization of the monomer (or oligomer). Further, it may be heated after the photopolymerization reaction after coating to additionally process the thermosetting reaction of the formed polymer.
  • the medium refractive index layer and the high refractive index layer it is preferable to use a polymer having a relatively high refractive index.
  • polymers with a high refractive index include the reaction of polystyrene, styrene copolymers, polycarbonate, melamine resin, phenol resin, epoxy resin, and cyclic (alicyclic or aromatic) isocyanates with polyols. The resulting polyurethane is mentioned.
  • Polymers having other cyclic (aromatic, heterocyclic, alicyclic) groups, and polymers having halogen atoms other than fluorine as substituents can also be used with a high refractive index.
  • Each layer of the antireflection layer is formed by a dip coating method, an air knife coating method, a curtain coating method, a roller coating method, a wire bar coating method, a gravure coating method, a micro gravure coating method, an etatrusion coating method, or a spray coating method. It can be formed by coating by an ink jet method.
  • a back coat layer on the surface opposite to the side on which the ultraviolet curable resin layer on which the unevenness of the uneven pattern film according to the present invention is formed is provided.
  • the knock coat layer is provided to correct curling caused by the formation of an uneven surface, an ultraviolet curable resin layer, and other layers. That is, the degree of curling can be balanced by imparting the property of being rounded with the surface provided with the knock coat layer inside.
  • the back coat layer is coated as an anti-blocking layer, and in that case, it is preferred that fine particles are added to the knock coat layer coating composition in order to provide an anti-blocking function.
  • the fine particles added to the knock coat layer include, as examples of inorganic compounds, silicon dioxide, titanium dioxide, aluminum oxide, zirconium oxide, calcium carbonate, calcium carbonate. And talc, clay, calcined kaolin, calcined calcium silicate, tin oxide, indium oxide, zinc oxide, ⁇ , hydrated calcium silicate, aluminum silicate, magnesium silicate and calcium phosphate. Fine particles containing silicon are preferred in that haze is low, and silicon dioxide is particularly preferred.
  • These fine particles are sold under the trade names of Aerosil R972, R972V, R974, R812, 200, 20 OV, 300, R202, 0X50, TT600 (above, manufactured by Enomoto Aerosil Co., Ltd.). And can be used.
  • the fine particles of zirconium oxide are commercially available under the trade names of Aerosil R976 and R811 (manufactured by Nippon Aerosil Co., Ltd.) and can be used.
  • Examples of the polymer include silicone resin, fluorine resin, and acrylic resin.
  • Silicone resin is preferred, especially the power of having a three-dimensional network structure S, and if it is arranged, Tosuno Kunore 103, 105, 108, 120, 145, 3120 and 240 (or more , Manufactured by Toshiba Silicone Co., Ltd., and can be used.
  • Aerosil 200V and Aerosil R972V are particularly preferably used because they have a large anti-blocking effect while keeping haze low.
  • the antiglare antireflection film used in the present invention preferably has a dynamic friction coefficient of 0.9 or less, particularly 0.1 to 0.9, on the back side of the UV-cured resin layer.
  • fine particles contained in the knock coat layer preferably be 0. 1 to 50 mass 0/0 containing the binder instrument 0. 1: more preferably L0 mass%.
  • the haze increase when the backcoat layer is provided is preferably 1% or less, more preferably 0.5% or less, and particularly preferably 0.0 to 0.1%. .
  • the knock coat layer is formed by applying a composition containing a solvent for dissolving or swelling a transparent resin film such as cellulose ester.
  • the solvent to be used may include a solvent to be dissolved and a mixture of Z or a solvent to be swollen in addition to a solvent that is not further dissolved, and these are mixed at an appropriate ratio depending on the curl degree of the transparent resin film and the type of resin.
  • the composition and the coating amount are used.
  • Methylene chloride ethylene chloride
  • tetrachloromethane trichloroethane
  • blackform examples of the solvent that does not dissolve include methanol, ethanol, n-propyl alcohol, i-propyl alcohol, n-butanol, cyclohexanol, and hydrocarbons (toluene, xylene).
  • coated yarns for gravure coater, dip coater, reverse coater, wire bar coater, die coater, spray coating, ink jet coating, etc.
  • V surface thickness of transparent resin film
  • coating thickness l It is preferable to apply with -lOO ⁇ m, and it is particularly preferably 5 to 30 m.
  • the resin used as a binder for the backcoat layer include a salty vinyl-vinyl acetate copolymer, vinyl chloride resin, vinyl acetate resin, a copolymer of vinyl acetate and vinyl alcohol, and a partially hydrolyzed resin.
  • Copolymer salt-bulu monosalt-biuridene copolymer, salt-bulu-acrylonitrile copolymer, ethylene vinyl alcohol copolymer, chlorinated polysalt-bule, ethylene vinyl chloride copolymer , Ethylene-vinyl acetate copolymer and other vinyl polymers or copolymers, nitrocellulose, cellulose acetate propionate (preferably acetyl group substitution degree 1.8 to 2.3, propiol group substitution degree 0.1 to 1.0), cellulose derivatives such as diacetyl cellulose, cellulose acetate butyrate resin, maleic acid and Z or acrylic acid copolymers, acrylic ester copolymers, acrylonitrile styrene copolymers, Chlorinated polyethylene, acrylonitrile monochlorinated polyethylene styrene copolymer, methyl methacrylate-butadiene styrene Copolymers, acrylic resins, polyblucetal
  • acrylic resin Ataripet MD, VH, MF IV (Mitsubishi Rayon Co., Ltd.), Hyperl M-4003, M-4005, M-4006, M-4202, M-5000, M- 5001, M-4501 (Negami Kogyo Co., Ltd.), Dianal BR-50, BR-52, BR-53, BR-60, BR-64, BR
  • a cellulose-based resin layer such as diacetyl cellulose and cellulose acetate propionate.
  • the order in which the backcoat layer is applied may be before or after the ultraviolet curable resin layer having irregularities is provided, but the backcoat layer may be provided after the ultraviolet curable resin layer having irregularities is provided. preferable.
  • FIG. 9 is a schematic view showing a cross section of the antiglare antireflection film according to the present invention.
  • an ultraviolet curable resin layer 104 and an antireflection layer 105 having irregularities formed by the method of the present invention are laminated.
  • 106 is a backcoat layer.
  • the fine particles added to the UV-cured resin layer 104 having unevenness can provide an internal scattering effect and can further provide an excellent anti-glare effect.
  • the quartz roll thus sandblasted is ultrasonically cleaned and dried, then immersed in 1% by mass of hydrofluoric acid at 40 ° C for about 10 minutes, then thoroughly washed with pure water, dried and dried. An embossing roll was produced.
  • the quartz embossing roll thus produced had an arithmetic average roughness (Ra) of O 3 / zm and an average unevenness period of 25 ⁇ m.
  • the following materials were stirred and mixed to obtain an ultraviolet curable resin composition.
  • Silicon oxide fine particles (Aerosil R972V Nippon Aerosil Co., Ltd.) 10 parts by weight Irgacure 184 (Ciba Specialty Chemicals Co., Ltd.) 20 parts by weight Propylene glycol monomethyl ether 110 parts by weight Ethyl acetate 110 parts by weight
  • the above composition was applied on one side of a triacetyl cellulose film containing an ultraviolet absorber having a thickness of 80 ⁇ m manufactured by Co-Caminoltop Co., Ltd. using a die coater in a dark place. This is dried in an oven at 80 ° C for 5 minutes and then passed between the guide roll 6 and the quartz emboss roll shown in Fig. 8.
  • An air-cooled ultraviolet irradiation device (high pressure mercury lamp) 10 is installed in the quartz embossing roll at the position shown in Fig. 8, and an ultraviolet curable resin composition is applied between the guide roll 6 and the guide roll 6.
  • the triacetyl cellulose film passes, it is irradiated with ultraviolet rays and cured. Quantity of ultraviolet light at this time is 0. 5jZcm 2.
  • Quartz emboss rolls were also peeled from the triacetyl cellulose film coated with UV-cured resin.
  • the following back coat layer composition was applied to the opposite side of the surface on which the concavo-convex pattern was formed with an extrusion coater so as to have a wet film thickness of 14 / zm, dried at 85 ° C, wound up, and knocked. A single layer was provided.
  • Diacetino Resenorelose 0.6 parts by mass
  • Ultrafine silica 2% acetone dispersion (Aerosil 200V manufactured by Nippon Aerosil Co., Ltd.)
  • the ultraviolet irradiation device since the ultraviolet irradiation device is movable, it is easy to replace the quartz embossing roll and maintain the ultraviolet irradiation device even during continuous production.
  • a concavo-convex pattern film 2 was produced in the same manner as the concavo-convex pattern film 1 except that a water-cooled ultraviolet irradiator was used instead of the air-cooled ultraviolet irradiator.
  • a concavo-convex pattern film 3 was produced in the same manner as the concavo-convex pattern film 1 except that the resin film of the embossing roll was in contact and an adhesive roll was installed on the part.
  • a comparative concavo-convex pattern film was formed in the same manner as the concavo-convex pattern film 2 except that an air-cooled ultraviolet irradiation apparatus was used using the apparatus for producing the concavo-convex pattern film shown in FIG.
  • the surface roughness of the concavo-convex pattern film manufactured by the method of the concavo-convex pattern film 1, 2, 3 and the comparative concavo-convex pattern film was measured at 5 points in the width direction of the film and 10 points every 50 Om in the longitudinal direction.
  • the average value and fluctuation range of the surface roughness Ra obtained at each measurement point were examined by the following method.
  • the method for producing a concavo-convex pattern film of the present invention can continuously produce a long film having a stable concavo-convex shape with less uneven and uneven patterns. It was done.
  • the uneven pattern film 2 using a water-cooled ultraviolet irradiation device and the uneven pattern film 3 using an adhesive roll as a cleaning device are good.
  • An antireflection layer was provided as follows on the concavo-convex pattern film made of the cured ultraviolet resin prepared with the concavo-convex pattern films 1, 2, and 3 of Example 1 and the comparative concavo-convex pattern film.
  • composite particles were prepared.
  • the reaction mother liquor was prepared by mixing and heated to 80 ° C.
  • the pH of this reaction mother liquor is 10.5.
  • Table 1 shows the average particle size, SiO ZMOx (molar ratio), and refractive index of this composite particle (P-1).
  • the average particle diameter is measured by a dynamic light scattering method, and the refractive index is a standard refractive liquid. Measurement was performed by the following method using Series A and AA manufactured by CARGILL.
  • the concavo-convex pattern film made of the above cured UV resin is heated to 50 ° C and immersed in a 1.5M-NaOH aqueous solution for 2 minutes, treated with alkali, washed with water, and 0.5% by mass—HSO water.
  • an antireflection layer was coated in the order of a high refractive index layer and then a low refractive index layer as described below to produce an antiglare antireflection film.
  • the following coating composition 1 with a high refractive index layer is applied onto a hard coat film by an extrusion coater, dried at 80 ° C for 1 minute, then cured by irradiation with 0.1 ljZcm 2 of ultraviolet light, and further 1 at 100 ° C.
  • a high refractive index layer 1 having a thickness of 120 nm was provided by partial heat curing. The refractive index of this high refractive index layer was 1.60.
  • Zinc antimonate sol (CX—Z610M—F2, manufactured by Nissan Chemical Industries, Ltd.)
  • Ionizing radiation curable resin 9 parts by weight of dipentaerythritol hexaatalylate
  • Photoinitiator Irgacure 907 (manufactured by Ciba Specialty Chemicals)
  • the following low refractive index layer coating composition 1 was applied by an extrusion coater, dried at 100 ° C. for 1 minute, cured by irradiation with 0.1 ljZcm 2 of ultraviolet light, and further 120 °. C
  • Hydrolyzate A was prepared by mixing 289 g of tetraethoxysilane and 553 g of ethanol, adding 157 g of 1.6% acetic acid aqueous solution, and stirring in water nose at 25 ° C for 30 hours.
  • Tetraethoxysilane hydrolyzate A 102 parts by mass Hollow silica-based fine particle dispersion (P-1 above) 26 parts by mass Aluminum ethyl acetate diisopropylate 0.5 parts by mass
  • KBM503 Silane coupling agent, manufactured by Shin-Etsu Chemical Co., Ltd. 4 parts by mass
  • the spots on the antiglare antireflection film thus prepared were evaluated as follows. (Evaluation of spots)

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Thermal Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Elements Other Than Lenses (AREA)
  • Shaping Of Tube Ends By Bending Or Straightening (AREA)
  • Casting Or Compression Moulding Of Plastics Or The Like (AREA)

Abstract

A process for producing a film with rugged pattern excelling in the uniformity of rugged pattern; and a production apparatus therefor. There is provided a process for producing a film with rugged pattern, comprising forming a rugged pattern on a transparent resin film by means of an emboss roll with rugged surface, characterized in that the emboss roll is made of quartz, and that an ultraviolet hardening resin composition is introduced in an interstice of the emboss roll and the transparent resin film wound round the emboss roll and irradiated with ultraviolet rays emitted by an ultraviolet irradiation unit from the interior of a cavity roll supported by multiple supporting members toward the roll surface to thereby form an ultraviolet hardened resin layer with rugged surface, this ultraviolet hardened resin layer together with the transparent resin film detached from the emboss roll.

Description

明 細 書  Specification
凹凸パターンフィルムの製造方法及び製造装置  Method and apparatus for producing uneven pattern film
技術分野  Technical field
[0001] 本発明は、エンボスロールを用いた凹凸パターンフィルムの製造方法及び製造装 置に関する。  TECHNICAL FIELD [0001] The present invention relates to a method and apparatus for producing a concavo-convex pattern film using an embossing roll.
背景技術  Background art
[0002] パソコン、ワープロ、液晶テレビなどの液晶表示装置は液晶自体が発光しな!、ので [0002] Liquid crystal display devices such as personal computers, word processors, and liquid crystal televisions do not emit light!
、面光源装置 (バックライトともいう)で裏側力も照明する。該バックライトは液晶画面の 全体を均一に照射させるため、線状光源力 の光を光散乱パターンが設けられた導 光板の側端面より入射させて面状に光らせるエッジライト方式などがある。 The backside force is also illuminated by a surface light source device (also called a backlight). In order to uniformly illuminate the entire liquid crystal screen, the backlight includes an edge light system in which light of a linear light source power is incident from a side end surface of a light guide plate provided with a light scattering pattern and shines in a planar shape.
[0003] このような面光源装置は、例えば、裏面側に反射板を有する導光板の側面から入 射した光源力 の光を光出射面力 出射させ、更に光を散乱、拡散させ、照射面の 輝度を均一にするために光拡散フィルム、偏光分離フィルム、レンズフィルム、保護 光拡散フィルムなどの光学機能を有する光学フィルムが設けられ、更に表面側には 外光の写り込みを防止する防眩フィルムを有している。このような光学フィルムは光散 乱性及び拡散性、光線透過率、並びに演色性がよぐ導光板の光散乱パターンを隠 せる等が要求され、また他の偏光分離フィルムやレンズフィルムと組み合されて使用 する際には、接触しても干渉縞が発生しないことが要求される。 [0003] Such a surface light source device, for example, emits light having a light source power incident from the side surface of a light guide plate having a reflection plate on the back surface side, and further scatters and diffuses the light, thereby irradiating the surface. In order to make the brightness uniform, an optical film having an optical function such as a light diffusing film, a polarized light separating film, a lens film, a protective light diffusing film is provided, and the surface side is further provided with an anti-glare to prevent reflection of external light. Has a film. Such an optical film is required to hide the light scattering pattern of the light guide plate, which has good light diffusivity and diffusibility, light transmittance, and color rendering, and is combined with other polarization separation films and lens films. When used, it is required that no interference fringes are generated even when touched.
[0004] また、カラー液晶表示装置で要求される充分な輝度を得るため、なお一層の光透 過性と正面方向への出射光が要求される。このため光拡散フィルム、保護光拡散フィ ルム、防眩フィルムなどの光学フィルムの 1種として、透明な基材フィルムへ表面に微 細な凹凸を有する光学機能層を形成したものがある。 [0004] Further, in order to obtain sufficient luminance required for a color liquid crystal display device, still further light transmission and outgoing light in the front direction are required. For this reason, one type of optical film such as a light diffusing film, a protective light diffusing film, or an antiglare film is one in which an optical functional layer having fine irregularities on the surface is formed on a transparent base film.
[0005] この微細な凹凸を形成する方法として、微細凹凸形状を形成したエンボスロールを 回転させ、該エンボスロールの凹部に電離放射線硬化性榭脂液を充填し、エンボス ロールの回転方向に同期して走行する透明基材を接触させて、接触している間に電 離放射線を照射して硬化させ、該硬化と同時に電離放射線硬化樹脂と透明基材とを 密着させ、エンボスロール力 剥離する方法がある。該エンボスロールの凹凸は必要 面積内で均一で、所望の光学機能を有する凹凸形状を有することが重要である。 [0005] As a method of forming the fine irregularities, an embossing roll having a fine irregularity shape is rotated, and the concave portions of the embossing roll are filled with an ionizing radiation curable resin solution, and synchronized with the rotation direction of the embossing roll. A transparent substrate that is traveling in contact with the substrate, and is cured by irradiating it with ionizing radiation while it is in contact. There is. Unevenness of the embossing roll is necessary It is important to have an uneven shape that is uniform within the area and has the desired optical function.
[0006] 従来、エンボスロールはロール芯材(単にロールとも 、う)、板材、フィルムの表面へ 微細な凹凸形状を形成し、その方法としては彫刻、電铸、サンドブラスト処理、放電 加工処理、エッチング処理が知られている。しかしながら、必要面積の全域に亘つて ムラなく均一な凹凸形状を形成することは極めて難しいという欠点がある。また、レジ ストを用いるブラスト法が知られている(例えば、特許文献 1参照。 ) o更に、ロール芯 材 (エンボスロールに相当する)などの表面凹凸形状を転写する光拡散部材の製造 法において、凹凸形状をサンドブラスト処理工程後、エッチング工程及び Zまたは薄 膜の積層工程で作製することが知られている(例えば、特許文献 2参照。 ) 0エンボス 口ールの表面に金属メツキ層を形成し、この金属メツキ層面にセラミックビーズをブラ スト処理して、表面に微細な凹凸を形成する技術 (例えば、特許文献 3参照。)も知ら れている。また表面に規則的な凹凸パターンが形成されている型ローラの表面に塗 布手段で電離放射線硬化性榭脂を塗布し、型ローラの凹凸パターンに電離放射線 硬化性榭脂を充填させ、次いで回転するこの型ローラに連続走行される透明基材フ イルムを押し当て、その状態で透明基材フィルムを透過して電離放射線硬化性榭脂 に電離放射線を照射し、電離放射線硬化性榭脂を硬化させると共にこの電離放射 線硬化性榭脂を透明基材フィルムに接着させ、その後、規則的な凹凸パターンが形 成された電離放射線硬化性榭脂を透明基材フィルムと共に型ローラから剥離するこ とにより反射防止材を得る方法が提案されている (例えば、特許文献 4参照。 )0 また、紫外線硬化榭脂を塗布したシート状フィルムとエンボスロールの凹凸面を密着 させると共にシート状フィルム面側力 紫外線を照射して、硬化した凹凸面を有する フィルムを作製する方法 (例えば、特許文献 5参照。)が開示されている。 [0006] Conventionally, embossing rolls form fine irregular shapes on the surface of roll cores (simply rolls), plate materials, and films, including engraving, electroplating, sandblasting, electrical discharge machining, and etching. Processing is known. However, there is a drawback that it is extremely difficult to form a uniform uneven shape over the entire required area without unevenness. In addition, a blasting method using a resist is known (for example, see Patent Document 1). Furthermore, in a method of manufacturing a light diffusing member that transfers surface irregularities such as a roll core material (corresponding to an embossing roll). It is known that an uneven shape is produced by a sandblasting process, an etching process, and a Z or thin film laminating process (see, for example, Patent Document 2). 0 Embossing A metal plating layer is formed on the surface of the mouthpiece. In addition, a technique for forming fine irregularities on the surface of the metal plating layer by blasting ceramic beads is also known (for example, see Patent Document 3). Also, apply ionizing radiation curable resin on the surface of the mold roller with a regular uneven pattern on the surface by coating means, fill the uneven pattern on the mold roller with ionizing radiation curable resin, and then rotate it. The transparent substrate film that is continuously run is pressed against this mold roller, and the ionizing radiation curable resin is irradiated with ionizing radiation through the transparent substrate film in this state, and the ionizing radiation curable resin is cured. The ionizing radiation curable resin is adhered to the transparent substrate film, and then the ionizing radiation curable resin having a regular concavo-convex pattern is peeled from the mold roller together with the transparent substrate film. (For example, refer to Patent Document 4.) 0 In addition, when the sheet-like film coated with the ultraviolet curable resin and the uneven surface of the embossing roll are brought into close contact with each other, it is common. Discloses a method for producing a film having a cured uneven surface by irradiating the sheet-like film surface side with ultraviolet rays (see, for example, Patent Document 5).
[0007] し力し、これら技術においては、凹凸パターンの形成したフィルムとエンボスロール との剥離に問題を有しており、そのため凹凸パターンフィルムとしての性能、更には その生産'性の問題があった。  [0007] However, these technologies have a problem in peeling between the film having the concavo-convex pattern and the embossing roll, and as a result, there are problems in the performance as the concavo-convex pattern film as well as the productivity. It was.
[0008] なお、表面に凹凸の形状を有するロールとして石英ガラス管等のように紫外線を透 過する透明な中空ロールを用いることにより、ロール内部に高圧水銀灯等の紫外線 光源を設置することにより紫外線硬化性榭脂組成物を硬化させることができ、これに よりロール凹凸面を転写した状態で高分子フィルムシート原反上の紫外線硬化性榭 脂層を硬化して凹凸面を成形した高分子フィルムシートを製造することができる(例え ば、特許文献 6参照。)。 [0008] Incidentally, by using a transparent hollow roll that transmits ultraviolet rays, such as a quartz glass tube, as a roll having an uneven shape on the surface, an ultraviolet light source such as a high-pressure mercury lamp is installed inside the roll. The curable resin composition can be cured, A polymer film sheet having a concavo-convex surface formed by curing the ultraviolet curable resin layer on the polymer film sheet original fabric with the roll concavo-convex surface transferred can be produced (for example, see Patent Document 6). .)
これらの文献では、石英ガラス管等のように紫外線を透過する透明な中空ロールを 用いる具体的な装置は提案されていな力 た。本発明者らが鋭意検討を重ねた結果 In these documents, a specific apparatus using a transparent hollow roll that transmits ultraviolet rays such as a quartz glass tube has not been proposed. As a result of intensive studies by the present inventors
、石英ガラス管等のように紫外線を透過する透明な中空ロールを用いた場合、凹凸 ノ ターンの斑が発生したり、連続生産中に凹凸パターンが変動する現象がおきること が判明し、その改善が必要であった。 When transparent hollow rolls that transmit ultraviolet rays, such as quartz glass tubes, are used, it was found that uneven patterns occur, and uneven patterns fluctuate during continuous production. Was necessary.
特許文献 1:特開平 7— 144364号公報  Patent Document 1: Japanese Patent Laid-Open No. 7-144364
特許文献 2:特開 2000— 284106号公報  Patent Document 2: Japanese Patent Laid-Open No. 2000-284106
特許文献 3:特開 2004— 90187号公報  Patent Document 3: Japanese Patent Laid-Open No. 2004-90187
特許文献 4:特開 2002— 333508号公報  Patent Document 4: Japanese Patent Laid-Open No. 2002-333508
特許文献 5 :特開 2005— 138296号公報  Patent Document 5: Japanese Unexamined Patent Application Publication No. 2005-138296
特許文献 6:特開 2001— 347220号公報  Patent Document 6: Japanese Patent Laid-Open No. 2001-347220
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0009] 本発明は、上記課題を鑑みてなされたものであり、その目的は、凹凸パターンの均 一性に優れた凹凸パターンフィルムの製造方法及びそのための製造装置を提供す ることにめる。 [0009] The present invention has been made in view of the above problems, and an object of the present invention is to provide a method of manufacturing a concavo-convex pattern film excellent in the uniformity of the concavo-convex pattern and a manufacturing apparatus therefor. .
課題を解決するための手段  Means for solving the problem
[0010] 本発明の上記目的は、下記構成により達成された。 [0010] The above object of the present invention has been achieved by the following constitution.
[0011] (1)表面に凹凸を有するエンボスロールを用いて透明榭脂フィルム上に凹凸パタ ーンを形成する凹凸パターンフィルムの製造方法において、該エンボスロールが石 英であって、該エンボスロールに巻きまわした透明榭脂フィルムと該エンボスロールと の間に紫外線硬化型榭脂組成物を導入し、複数の支持部で支持された空洞ロール 内部からロール表面に向力つて紫外線照射装置より紫外線を照射した後、表面に凹 凸が形成された紫外線硬化榭脂層を透明榭脂フィルムと共にエンボスロール力ゝら剥 離することを特徴とする凹凸パターンフィルムの製造方法。 [0012] (2)前記紫外線照射装置が可動式であり、前記エンボスロールが容易に着脱可能 な構造を有することを特徴とする前記(1)に記載の凹凸パターンフィルムの製造方法 [0011] (1) In the method for producing a concavo-convex pattern film in which a concavo-convex pattern is formed on a transparent resin film using an embossing roll having concavo-convex on the surface, the embossing roll is stone and the embossing roll An ultraviolet curable resin composition is introduced between the transparent resin film wound around and the embossing roll, and the ultraviolet ray is irradiated from the inside of the hollow roll supported by a plurality of support portions toward the roll surface from the ultraviolet irradiation device. The method for producing a concavo-convex pattern film is characterized in that, after irradiating, an ultraviolet-cured resin layer having a concavo-convex surface is peeled off together with an embossing roll force together with a transparent resin film. [0012] (2) The method for producing a concavo-convex pattern film according to (1), wherein the ultraviolet irradiation device is movable, and the embossing roll is easily detachable.
[0013] (3)前記紫外線照射装置が水冷式光源を有することを特徴とする前記(1)または([0013] (3) The ultraviolet irradiation device has a water-cooled light source (1) or (1)
2)に記載の凹凸パターンフィルムの製造方法。 The manufacturing method of the uneven | corrugated pattern film as described in 2).
[0014] (4)前記エンボスロール表面に清掃装置を有することを特徴とする前記(1)〜(3) のいずれか 1項に記載の凹凸パターンフィルムの製造方法。 [0014] (4) The method for producing a concavo-convex pattern film according to any one of (1) to (3), wherein a cleaning device is provided on the surface of the embossing roll.
[0015] (5)前記エンボスロールがサンドブラスト処理によって形成されたものであることを特 徴とする前記(1)〜 (4)のいずれ力 1項に記載の凹凸パターンフィルムの製造方法。 [0015] (5) The method for producing an uneven pattern film according to any one of (1) to (4) above, wherein the embossing roll is formed by sandblasting.
[0016] (6)前記エンボスロールがフッ化水素処理によって形成されたものであることを特徴 とする前記(1)〜(5)のいずれ力 1項に記載の凹凸パターンフィルムの製造方法。 [0016] (6) The method for producing a concavo-convex pattern film as described in any one of (1) to (5) above, wherein the embossing roll is formed by a hydrogen fluoride treatment.
[0017] (7)前記紫外線硬化型榭脂組成物中に離型剤を含ませることを特徴とする前記(1(7) The above-mentioned (1), wherein a release agent is contained in the ultraviolet curable resin composition.
)〜(6)の 、ずれか 1項に記載の凹凸パターンフィルムの製造方法。 The manufacturing method of the uneven | corrugated pattern film of any one of 1) of ()-(6).
[0018] (8)前記透明榭脂フィルムが紫外線吸収性であることを特徴とする前記(1)〜(7) のいずれか 1項に記載の凹凸パターンフィルムの製造方法。 [0018] (8) The method for producing a concavo-convex pattern film as described in any one of (1) to (7) above, wherein the transparent resin film is UV-absorbing.
[0019] (9)前記エンボスロールからの剥離が剥離ロールによって行われることを特徴とす る前記(1)〜(8)のいずれ力 1項に記載の凹凸パターンフィルムの製造方法。 [0019] (9) The method for producing a concavo-convex pattern film as described in any one of (1) to (8) above, wherein the peeling from the embossing roll is performed by a peeling roll.
[0020] (10)前記凹凸パターンフィルムが防眩性フィルムであることを特徴とする前記(1)[0020] (10) The above (1), wherein the uneven pattern film is an antiglare film
〜(9)の 、ずれか 1項に記載の凹凸パターンフィルムの製造方法。 The manufacturing method of the uneven | corrugated pattern film of any one of (9).
[0021] (10)前記(1)〜(9)の 、ずれか 1項に記載の凹凸パターンフィルムの製造方法を 用いることを特徴とする製造装置。 [0021] (10) A manufacturing apparatus using the method for manufacturing a concavo-convex pattern film according to any one of (1) to (9).
発明の効果  The invention's effect
[0022] 本発明により、凹凸パターンの均一性に優れた凹凸パターンフィルムの製造方法 及びそのための製造装置を提供することができた。  [0022] According to the present invention, it was possible to provide a method for producing a concavo-convex pattern film having excellent concavo-convex pattern uniformity and a production apparatus therefor.
図面の簡単な説明  Brief Description of Drawings
[0023] [図 1]本発明の凹凸パターンフィルム製造方法に用いられる複数の支持部で支持さ れたエンボスロールの具体例をを模式的に示した図である。  FIG. 1 is a view schematically showing a specific example of an embossing roll supported by a plurality of supporting portions used in the method for producing an uneven pattern film of the present invention.
[図 2]図 1の(a)についての具体例を斜視図で示したものである。 [図 3]比較の凹凸パターンフィルム製造方法の斜視図である。 FIG. 2 is a perspective view showing a specific example of FIG. 1 (a). FIG. 3 is a perspective view of a comparative concavo-convex pattern film manufacturing method.
[図 4]図 3の概略断面図である。 FIG. 4 is a schematic cross-sectional view of FIG.
[図 5]本発明の凹凸パターンフィルム製造方法に用いられる凹凸パターン製造装置 を示した図である。  FIG. 5 is a view showing a concavo-convex pattern manufacturing apparatus used in the concavo-convex pattern film manufacturing method of the present invention.
圆 6]紫外線照射装置の可動式設置を示す図である。 [6] It is a diagram showing a movable installation of the ultraviolet irradiation device.
圆 7]本発明に係るサンドブラスト処理を模式的に説明する断面図である。 [7] FIG. 7 is a cross-sectional view schematically illustrating sandblasting according to the present invention.
圆 8]本発明の凹凸パターンフィルム製造方法を模式的に示す図である。 [8] FIG. 8 is a diagram schematically showing the method for producing a concavo-convex pattern film of the present invention.
圆 9]本発明に係る防眩性反射防止フィルムの断面を示した模式図である。 [9] FIG. 9 is a schematic view showing a cross section of the antiglare antireflection film according to the present invention.
符号の説明 Explanation of symbols
1 エンボスローノレ  1 Embossing Nore
2 透明榭脂フィルム  2 Transparent resin film
3 塗布装置  3 Application equipment
4 紫外線硬化型榭脂組成物  4 UV curable resin composition
5 透明榭脂フィルム供給ロール  5 Transparent resin film supply roll
6 ガイド、ロール  6 Guide, roll
7 乾燥ゾーン  7 Drying zone
8 ノックアップローノレ  8 Knock-up Ronore
9 凹凸パターンフィルム卷き取りロール  9 Uneven pattern film scraping roll
10 紫外線照射装置  10 UV irradiation equipment
11 支持部  11 Support section
20 ローノレ  20 Ronore
27 ローノレ軸  27 Ronore axis
31 コンベア  31 conveyor
33 台座  33 pedestal
35 軸受け部  35 Bearing
37 噴射ノズル  37 Injection nozzle
101 低屈折率層  101 Low refractive index layer
102 高屈折率層 103 中屈折率層 102 High refractive index layer 103 Medium refractive index layer
104 紫外線硬化榭脂層  104 UV-cured resin layer
105 反射防止層  105 Antireflection layer
106 バックコート層  106 Backcoat layer
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0025] 本発明は、表面に凹凸を有するエンボスロールを用いて透明榭脂フィルム上に凹 凸パターンを形成する凹凸パターンフィルムの製造方法において、該エンボスロー ルが石英ガラスであって、該エンボスロールに巻きまわした透明榭脂フィルムと該ェ ンボスロールとの間に紫外線硬化型榭脂組成物を導入し、複数の支持部で支持され た空洞ロール内部からロール表面に向かって紫外線照射装置により紫外線を照射し た後、表面に凹凸が形成された紫外線硬化榭脂層を透明榭脂フィルムと共にェンボ スロールカ 剥離することを特徴とする凹凸パターンフィルムの製造方法に関する。 [0025] The present invention provides a method for producing an uneven pattern film in which an uneven pattern is formed on a transparent resin film using an emboss roll having an uneven surface, wherein the emboss roll is quartz glass, An ultraviolet curable resin composition is introduced between the transparent resin film wound around the roll and the embossing roll, and ultraviolet rays are irradiated from the inside of the hollow roll supported by a plurality of support portions toward the roll surface by an ultraviolet irradiation device. After the irradiation, the ultraviolet curable resin layer having irregularities formed on the surface is peeled off with the transparent resin film by using an embossed roll film.
[0026] 特に、エンボスロールのメンテナンスのために、前記紫外線照射装置が可動式であ り、前記空洞ロール内部力 容易に着脱可能な構造を有することが好ましい。  In particular, for maintenance of the embossing roll, it is preferable that the ultraviolet irradiation device is movable and has a structure in which the internal force of the hollow roll can be easily attached and detached.
[0027] 本発明のエンボスロールは複数の支持部で支持された空洞ロールである。図 1で は、中空石英ロール表面に铸型となる凹凸を形成したエンボスロールを複数の支持 部で支持している例(a)〜(f)を示している。支持部の数は 2個以上が好ましぐ特に 3箇所以上であることが好ましい。また下部のみならず側面、更に上部にも支持部を 有することが好ましい。(f)は-ップロールを有する例を示しており、これは支持部も 兼ねることができる。  [0027] The embossing roll of the present invention is a hollow roll supported by a plurality of support portions. FIG. 1 shows examples (a) to (f) in which an embossing roll having a concave and convex shape formed on the surface of a hollow quartz roll is supported by a plurality of support portions. The number of support parts is preferably 2 or more, particularly 3 or more. Moreover, it is preferable to have a support part not only in the lower part but also in the side face and further in the upper part. (F) shows an example having a -roll, which can also serve as a support.
[0028] 図 2は図 1の(a)についての具体例を斜視図で示したものである。支持部としてはェ ンボスロールよりも直径が小さなロール状(C1)やエンボスロール端部のみで支える ように幅手で直径が変化して ヽるもの (B1)、両端部にそれぞれ独立した支持部を設 けたものなどが挙げられる。このようにすることによって、金属ロールのように高い加工 精度のロールが得にくい石英ロールを用いても、軸の偏芯などの影響によって凹凸 ノ ターンが周期的に変化するという問題も著しく低減され、設備の製作が容易になる [0029] 図 3は比較の凹凸パターンフィルムの製造方法を斜視図で示したものあり、石英製 の中空エンボスロールの両端に回転軸を取り付けたものである。内部に紫外線照射 装置を設けるため、電力供給のための電源ケーブルを取り回すため、構造が複雑に なるという欠点がある。また、エンボスロールを交換する際、あるいは紫外線照射装置 のメンテナンスの際にもいちいち回転軸から取り外したりする必要があり、メンテナン ス性に劣っている。 FIG. 2 is a perspective view showing a specific example of (a) in FIG. The support part is a roll with a smaller diameter than the embossing roll (C1), or the diameter of the embossing roll is changed so that it is supported only at the end of the embossing roll (B1). Examples include the ones that were installed. In this way, even if a quartz roll such as a metal roll, which is difficult to obtain a high processing accuracy roll, is used, the problem that the concave and convex pattern changes periodically due to the eccentricity of the shaft is significantly reduced. [0029] Fig. 3 is a perspective view showing a method for producing a comparative uneven pattern film, which is made of quartz. A rotating shaft is attached to both ends of the hollow embossing roll. Since an ultraviolet irradiation device is provided inside, the power cable for power supply is routed, which has the disadvantage that the structure becomes complicated. In addition, it is necessary to remove the embossing roll from the rotating shaft every time when exchanging the embossing roll or when maintaining the ultraviolet irradiation device, resulting in poor maintenance.
[0030] 図 4は図 3の断面図であり、(a)は横から、(b)は軸方向からの断面図である。  4 is a cross-sectional view of FIG. 3, where (a) is a cross-sectional view from the side and (b) is a cross-sectional view from the axial direction.
[0031] 図 5は本発明の凹凸パターンフィルム製造方法に用 ヽられる凹凸パターン製造装 置を示した図である。 (a)は支持部で支持されたエンボスロールとその内部に配置さ れた紫外線照射装置を示している。(c)はそれを横力も見た図であり、(b)は榭脂フ イルムが該エンボスロール部を通過して、凹凸パターンフィルムが形成される搬送の 様子を示してる。図 5で示したように、エンボスロールは複数の支持部によって支えら れており、その内部に紫外線照射装置が配置されている。紫外線照射装置は支柱に よって支えられ、エンボスロールの所定の位置に配置されている。紫外線照射装置 は支柱によって支えられて 、る水平支持材に固定されて 、ることが好まし 、。支柱は 強度があれば 1本でもよぐエンボスロールの両側から 2本で支えてもよい。 FIG. 5 is a view showing an uneven pattern manufacturing apparatus used in the uneven pattern film manufacturing method of the present invention. (a) shows an embossing roll supported by a supporting portion and an ultraviolet irradiation device arranged in the embossing roll. (C) shows the lateral force, and (b) shows the state of conveyance in which the resin film passes through the embossing roll and a concavo-convex pattern film is formed. As shown in FIG. 5, the embossing roll is supported by a plurality of support portions, and an ultraviolet irradiation device is disposed therein. The ultraviolet irradiation device is supported by a support and is disposed at a predetermined position of the embossing roll. It is preferable that the UV irradiation device is supported by a supporting column and fixed to a horizontal support. The struts may be supported by two from both sides of the embossing roll as long as they are strong.
[0032] 図 6は紫外線照射装置の可動式設置を示す図である。(a)で示したように、レール によってエンボスロール内の所定の位置からエンボスロールの外までスライド可能に 配置されていることが好ましぐこれによつてメンテナンス性が更に向上する。そのた め、前記水平支持材はエンボスロールの幅の 2倍より長いことが好ましい。水平支持 材は常時エンボスロールの幅の 2倍より長くてもよいが、 (b)に示したようにスライド構 造、折りたたみ構造、もしくは継ぎ足し構造で水平支持材が長くなるような構造を有し て!、ることが好まし 、。このとき支柱の一方の側をレールなどでスライドさせることが好 ましい。なお、紫外線照射装置を支えている支柱の少なくとも 1方は、一方の側のみ で該紫外線照射装置を支えられる強度を有して 、ることが特に好まし 、。これによつ て、エンボスロールを交換する場合に一方の支柱をスライドさせて外した後、そちら側 力 エンボスロールをぬきとり、別のエンボスロールを挿入するという交換作業が可能 となり、更にメンテナンス性が向上する。また、(c)に示すように紫外線照射装置を支 えて 、る支柱力 Sスライド可能であり、紫外線照射装置をエンボスロール外にスライド可 能であるとエンボスロールの交換と紫外線照射装置のメンテナンスが容易に行えるた め特に好ましい。更に(d)に示すように、支柱は動かずに水平支持部材とそれに取り 付けられた紫外線照射装置が移動する方法もまたメンテナンスが容易に行えるため 好ましい。 FIG. 6 is a diagram showing a movable installation of the ultraviolet irradiation device. As shown in (a), it is preferable that the rail is arranged so as to be slidable from a predetermined position in the embossing roll to the outside of the embossing roll, thereby further improving the maintainability. Therefore, the horizontal support member is preferably longer than twice the width of the embossing roll. The horizontal support material may always be longer than twice the width of the embossing roll, but as shown in (b), the horizontal support material has a structure in which the horizontal support material is long due to the slide structure, folding structure, or extension structure. I like to! At this time, it is preferable to slide one side of the column with a rail. It is particularly preferable that at least one of the columns supporting the ultraviolet irradiation device has a strength capable of supporting the ultraviolet irradiation device only on one side. As a result, when replacing the embossing roll, it is possible to replace the embossing roll by removing one of the struts and then removing the other side embossing roll and inserting another embossing roll. Will improve. In addition, as shown in (c), it is possible to slide the strut force S supported by the ultraviolet irradiation device and slide it outside the embossing roll. It is particularly preferable to be able to replace the embossing roll and maintain the ultraviolet irradiation device. Furthermore, as shown in (d), a method in which the horizontal support member and the ultraviolet irradiation device attached thereto are moved without moving the column is also preferable because maintenance can be easily performed.
[0033] また、水冷式の紫外線照射装置を内部に設置するとメンテナンス製が更に悪くなる 。紫外線照射装置は空冷式が一般的である力 本発明において特に好ましい紫外 線照射装置は水冷式であり、例えば、これらは特開平 6— 267509号公報、同 6— 2 67512号公報に記載されている。水冷式紫外線照射装置を用いることによって、凹 凸パターンフィルムで形成される凹凸パターンの斑が著しく低減することが確認され た。また、連続生産中に凹凸パターンが変化していくことも低減された。これらは、凹 凸パターン生産中のエンボスロール温度変化や温度斑が低減されたことによるものと 推測している。本発明の好ましい態様である可動式の紫外線照射装置の場合、上記 したようにメンテナンス性が向上するため、本発明にお 、ては水冷式の紫外線照射 装置を用いることができる。  [0033] In addition, if a water-cooled ultraviolet irradiation device is installed inside the product, the product made by maintenance will become worse. Force that ultraviolet-ray irradiation apparatus is generally air-cooled type Particularly preferable ultraviolet-ray irradiation apparatus in the present invention is water-cooled type. For example, these are described in JP-A-6-267509 and JP-A-6-267512. Yes. By using a water-cooled ultraviolet irradiation device, it was confirmed that the unevenness of the uneven pattern formed by the uneven pattern film was significantly reduced. In addition, changes in the uneven pattern during continuous production were also reduced. These are presumed to be due to a reduction in embossing roll temperature changes and temperature spots during the production of concave and convex patterns. In the case of the movable ultraviolet irradiation device which is a preferred embodiment of the present invention, since the maintainability is improved as described above, a water-cooled ultraviolet irradiation device can be used in the present invention.
[0034] またエンボスロール表面には、剥離が不十分なとき紫外線硬化樹脂が残る可能性 があり、そのため本発明の凹凸パターンフィルムの製造方法においては、粘着ロー ル、ブラシ、エアブロア等の清掃装置を有することが好ましい。連続生産中に連続的 に異物除去してもよいし、リーダーフィルムが通過中のみ清掃するように制御してもよ い。  [0034] On the surface of the embossing roll, there is a possibility that an ultraviolet curable resin may remain when peeling is insufficient. Therefore, in the method for producing a concavo-convex pattern film of the present invention, a cleaning device such as an adhesive roll, a brush, an air blower or the like. It is preferable to have. Foreign matter may be removed continuously during continuous production, or the leader film may be controlled to be cleaned only while it is passing.
[0035] 本発明において、表面に凹凸を形成した石英のエンボスロールの製造方法は特に 限定されないが、石英ロールにサンドブラスト処理またはフッ化水素によるエッチング 処理を施すことによって作製することができる。石英ガラス (quartz glass)は溶融石 英(fused quartz)、シリカガラス(silica glass)、溶融シリカ(fused silica)とも呼 ばれる二酸化ケイ素(SiO )単独からな  In the present invention, a method for producing a quartz embossing roll having irregularities on the surface is not particularly limited, but it can be produced by subjecting the quartz roll to a sandblasting treatment or an etching treatment with hydrogen fluoride. Quartz glass consists of silicon dioxide (SiO 2) alone, also called fused quartz, silica glass, and fused silica.
2  2
るガラスである。密度 2. 20g ' cm 3、軟ィ匕点 1650°C、比熱 4. 19J 'g— 1、熱膨張率は 5 . 5〜5. 8 X 10—7/°Cと極めて小さぐ従って耐熱衝撃性に優れている。屈折率 n 1. Glass. Density 2. 20g 'cm 3,軟I匕点1650 ° C, the specific heat 4. 19J' g- 1, the thermal expansion coefficient 5. 5~5. 8 X 10- 7 / ° C and very small sag Therefore thermal shock Excellent in properties. Refractive index n 1.
D  D
4585、紫外線透過能は大きい。石英ロールの作製は石英、水晶、ケ  4585, UV transmission ability is large. Quartz rolls are manufactured using quartz, quartz,
ィ石あるいはケィ砂を溶融した後、冷却、加工して作製される。 [0036] 上記のように石英は紫外線透過能が大きいため、本発明のようにエンボスロールの 内側より紫外線を照射する配置とすることができた。 After melting keystone or key sand, it is manufactured by cooling and processing. [0036] As described above, since quartz has a high ultraviolet-transmitting ability, it could be arranged to irradiate ultraviolet rays from the inside of the embossing roll as in the present invention.
[0037] (サンドブラスト処理)  [0037] (Sandblasting)
サンドブラスト処理においては、平均粒径 10 μ m以下のブラスト粒子を 200kPa以 下のブラスト圧力(ゲージ圧)で使用することが好ましい。ブラスト粒子の平均粒径が 1 0 mを超える場合、またはブラスト圧力が 200kPa以下とすることで、初期の微細傷 が適度な深さとなるため好ましい。また、ブラスト粒子の粒径分布はできるだけシヤー プであることが好ましい。粒径分布がシャープな場合、得られる防眩性光学フィルム の均質性が向上するため、好ましい。ブラスト粒子としては、例えば、住友化学工業( 株)製のスミコランダム AA— 5 (平均粒径 5 μ m)、スミコランダム AA— 18 (平均粒径 18 m)が挙げられる。  In the sandblast treatment, it is preferable to use blast particles having an average particle size of 10 μm or less at a blast pressure (gauge pressure) of 200 kPa or less. When the average particle diameter of the blast particles exceeds 10 m, or when the blast pressure is 200 kPa or less, the initial fine scratches are preferable because they have an appropriate depth. The particle size distribution of the blast particles is preferably as sharp as possible. A sharp particle size distribution is preferable because the homogeneity of the resulting antiglare optical film is improved. Examples of the blast particles include Sumiko Random AA-5 (average particle size 5 μm) and Sumiko Random AA-18 (average particle size 18 m) manufactured by Sumitomo Chemical Co., Ltd.
[0038] 図 7に本発明に係るサンドブラスト処理について説明する。  FIG. 7 illustrates the sandblasting process according to the present invention.
[0039] 図 7のように、ロール 20はロール軸 27によって、コンベア 31上の台座 33上に、左 右の軸受け部 35によって、回転自在に固定される。ロール 20は既に金属メツキ層を 設け、鏡面研磨されている。該ロール 1は図示しない駆動源でエンボスロール軸 27を 経て回転され、またコンベア 31に左右揺動される。該回転と揺動により、ロール 20の 表面の全面にわたって、圧搾空気等の力で噴射ノズル 37の先端から、ブラスト粒子 が吹き付けられる。該ブラスト処理により、ロール 20の表面の全面に微細な凹凸が砂 目状に形成され、エンボスロールが得られる。ロールの回転と揺動の量、ブラスト粒 子が吹き付け量、吹き付け時間は所望の凹凸形状に合わせて適宜選択すればよい 。なお、エンボスロールの端部まで全面にエンボス加工を施してもよいが、エンボス加 ェしない部分を l〜20cm程度残すことが好ましぐこの部分で支持することが好まし い。  As shown in FIG. 7, the roll 20 is rotatably fixed on the pedestal 33 on the conveyor 31 by the roll shaft 27 by the left and right bearing portions 35. Roll 20 is already mirror-polished with a metal plating layer. The roll 1 is rotated via an embossing roll shaft 27 by a driving source (not shown), and is also swung left and right on a conveyor 31. By the rotation and swinging, blast particles are sprayed from the tip of the injection nozzle 37 by the force of compressed air or the like over the entire surface of the roll 20. By the blast treatment, fine irregularities are formed in the entire surface of the roll 20 in a grain shape, and an emboss roll is obtained. The amount of rotation and swing of the roll, the amount of blast particles sprayed, and the spraying time may be appropriately selected according to the desired uneven shape. Although embossing may be performed on the entire surface up to the end of the embossing roll, it is preferable to support at this part where it is preferable to leave about 1 to 20 cm of the part that is not embossed.
[0040] (エッチング処理)  [0040] (Etching treatment)
フッ化水素処理によるエッチングにおいて、用いるフッ化水素を含む水溶液は 1〜 10質量%程度の濃度のフッ化水素酸 (フッ化水素の水溶液)が適当であり、より好ま しくは 5〜 10質量%濃度のフッ化水素酸である。フッ化水素の濃度が 10質量%を超 える場合、エッチングにより生成する粗面の面内均一性が低下するため、好ましくな い。フッ化水素の濃度が 1質量%を下回る場合、エッチング速度が極端に遅くなるの で、実用的でない。 In the etching using hydrogen fluoride treatment, the hydrofluoric acid solution (hydrogen fluoride aqueous solution) having a concentration of about 1 to 10% by mass is suitable as the aqueous solution containing hydrogen fluoride to be used, and more preferably 5 to 10% by mass. Concentration of hydrofluoric acid. When the concentration of hydrogen fluoride exceeds 10% by mass, the in-plane uniformity of the rough surface generated by etching decreases, which is not preferable. Yes. When the concentration of hydrogen fluoride is less than 1% by mass, the etching rate becomes extremely slow, which is not practical.
[0041] エッチングの温度は 20〜50°C程度が好ましぐ 30〜40°Cがより好ましい。エツチン グ温度が 20°Cを下回ると、実用的なエッチング速度が得られないため、好ましくない 。また、エッチング温度力 0°Cを超える場合、エッチングにより生成する粗面の面内 均一性が低下するため好ましくな 、。  [0041] The etching temperature is preferably about 20 to 50 ° C, more preferably 30 to 40 ° C. An etching temperature below 20 ° C is not preferable because a practical etching rate cannot be obtained. Further, when the etching temperature force exceeds 0 ° C, it is preferable because the in-plane uniformity of the rough surface generated by etching is lowered.
[0042] なお、表面凹凸化のためには、サンドブラスト処理にて微小な傷をガラス表面に生 成させ、その後にフッ化水素を含む水溶液によるエッチングを行って、微細な凹凸を 形成させてもよい。  [0042] In order to make the surface uneven, fine scratches may be formed on the glass surface by sandblasting, and then etched with an aqueous solution containing hydrogen fluoride to form fine unevenness. Good.
[0043] (エンボス加工)  [0043] (embossing)
表面に凹凸を形成した石英のエンボスロールにおいて、凹凸はランダムに形成され てい  In the embossed roll of quartz with irregularities on the surface, irregularities are randomly formed.
ることが好ましい。表面の算術平均粗さ (Ra)は 0. 02 μ m以上 2 μ m以下であること が好ましぐ且つその凹凸の平均周期(Sm)が 200 μ m以下、特に好ましくは 100 μ m以下であることが好ましい。算術平均粗さは 0. 05 111以上1. 50 /z m以下とするこ と力 S好ましく、 0. 07 111以上1. 2 /z m以下とすること力 S更に好ましく、 0. 1 111以上1 . 0 m以下とすることが最も好ましい。算術平均粗さが 0. 02 /z m未満であると、充 分な防眩機能を得ることができず、また 2 mを越えると、解像度が低下したり、外光 が当たった際に像が白く光ったりする。  It is preferable. The arithmetic average roughness (Ra) of the surface is preferably 0.02 μm or more and 2 μm or less, and the average period (Sm) of the irregularities is 200 μm or less, particularly preferably 100 μm or less. Preferably there is. The arithmetic average roughness is 0.05 to 111 to 1.50 / zm or less S, preferably 0.0 to 111 to 1.2 / zm or less S, more preferably 0.1 to 111 to 1. Most preferably, it is 0 m or less. If the arithmetic average roughness is less than 0.02 / zm, a sufficient anti-glare function cannot be obtained. If the arithmetic average roughness exceeds 2 m, the resolution decreases or an image is displayed when exposed to external light. It glows white.
[0044] Smが 200 mより大きい場合には、解像度が低下したり、フィルムの表面にざらつ き感が生じてしまい、質感が悪くなる。凹凸の平均周期は好ましくは 5 m以上 100 μ m以下、より好ましくは 10 μ m以上 50 μ m以下である。  [0044] When Sm is larger than 200 m, the resolution is deteriorated or the surface of the film is rough, and the texture is deteriorated. The average period of the irregularities is preferably 5 m or more and 100 μm or less, more preferably 10 μm or more and 50 μm or less.
[0045] Ra、Sm¾JIS B0601に規定されている。  [0045] Ra and Sm¾JIS B0601 are specified.
[0046] なお、凹凸の算術平均粗さ及び平均周期は、市販の表面粗さ測定器を用いて測 定と解析を行うことができる。本発明においては、小型表面粗さ測定器 (型番; SJ— 4 01、(株)ミツトヨ製)を用いて求めることができる。  [0046] The arithmetic average roughness and average period of the irregularities can be measured and analyzed using a commercially available surface roughness measuring instrument. In the present invention, it can be determined using a small surface roughness measuring instrument (model number; SJ-401, manufactured by Mitutoyo Corporation).
[0047] 本発明におけるエンボス加工は、エンボスロールとバックアップロールによるプレス 線圧を 100N/cm以上 12000N/cm以下とすることが好ましぐ 500NZcm以上 4 OOONZcm以下とすることがより好まし 、。 [0047] For embossing in the present invention, it is preferable that the linear pressure applied by the embossing roll and the backup roll is 100 N / cm or more and 12000 N / cm or less. More preferably, it should be less than OOONZcm.
[0048] エンボスロールは温度調整機構を設けて、適宜その温度を調整することができる。  [0048] The embossing roll is provided with a temperature adjusting mechanism, and the temperature can be adjusted appropriately.
例えば、エンボスロール内部に温度調整用のエアを送風したり、温度制御されたロー ルを前記エンボスロールの内側もしくは外側力 押し当てて温度制御することができ る。これにより、フィルムの温度を 20°C以上 150°Cに加熱することが好ましい。ェンボ スローラ 14の温度は、 40°C以上 140°C以下とすることが好ましい。  For example, the temperature can be controlled by blowing air for adjusting the temperature inside the embossing roll or by pressing a temperature-controlled roll inside or outside the embossing roll. Thus, it is preferable to heat the film to 20 ° C or higher and 150 ° C. The temperature of the emboss roller 14 is preferably 40 ° C or higher and 140 ° C or lower.
[0049] 温度分布は幅手で ± 10°C以内が好ましぐ ±5°C以内がより好ましぐ ± 1°C以内 が最も好ましい。凹凸パターン付与の処理の速度は 0. 3mZ分以上 50mZ分以下 とすることが好ましぐ lmZ分以上 30mZ分以下とすることがより好ましい。  [0049] The temperature distribution is wide, preferably within ± 10 ° C, more preferably within ± 5 ° C, and most preferably within ± 1 ° C. It is preferable that the processing speed for applying the concave / convex pattern is from 0.3 mZ to 50 mZ, more preferably from lmZ to 30 mZ.
[0050] なお、エンボスロールの表面にはフッ素系もしくはシリコン系の撥水性もしくは撥油 性の被膜を形成することも好ましぐフルォロアルキルシラン化合物、フルォロアルキ ルエーテルシランィ匕合物、シリコンオイルなどを含む塗布組成物を塗布もしくは CVD 処理によって表面に撥水性もしくは撥油性の被膜を形成することが好ましい。特に接 触角 90° 以上とすることが好ましい。これらの化合物は反射防止フィルムの低屈折 率層や防汚層に添加することが知られて 、る化合物を用いることができる。  [0050] Note that it is also preferable to form a fluorine-based or silicon-based water-repellent or oil-repellent coating on the surface of the embossing roll, a fluoroalkylsilane compound, a fluoroalkylsilanesilane compound, silicon oil. It is preferable to form a water-repellent or oil-repellent film on the surface by applying a coating composition containing the above or by CVD treatment. In particular, the contact angle is preferably 90 ° or more. These compounds are known to be added to the low refractive index layer and antifouling layer of the antireflection film, and can be used.
[0051] (紫外線硬化型榭脂組成物)  [0051] (UV-curable resin composition)
本発明に係る紫外線硬化型榭脂組成物としては、分子中に重合性不飽和結合ま たは、エポキシ基を有するプレボリマー、オリゴマー、及び Zまたはモノマーを適宜に 混合したものである。  The ultraviolet curable resin composition according to the present invention is obtained by appropriately mixing a polymerizable unsaturated bond or a prepolymer having an epoxy group, an oligomer, and Z or a monomer in the molecule.
[0052] 紫外線硬化型榭脂組成物中のプレボリマー、オリゴマーの例としては、不飽和ジカ ルボン酸と多価アルコールの縮合物等の不飽和ポリエステル類、ポリエステルメタタリ レート、ポリエーテルメタタリレート、ポリオールメタタリレート、メラミンメタタリレート等の メタタリレート類、ポリエステルアタリレート、エポキシアタリレート、ウレタンアタリレート 、ポリエーテルアタリレート、ポリオールアタリレート、メラミンアタリレート等のアタリレー ト、カチオン重合型エポキシィ匕合物が挙げられる。  [0052] Examples of prepolymers and oligomers in the UV curable resin composition include unsaturated polyesters such as unsaturated dicarboxylic acid and polyhydric alcohol condensates, polyester metatalates, polyether metatalylates, Metatalates such as polyol metatalylate and melamine metatalylate, polyester acrylate, epoxy acrylate, urethane acrylate, polyether acrylate, polyol acrylate and melamine acrylate, cation polymerization type epoxy compounds Is mentioned.
[0053] 紫外線硬化型榭脂組成物中のモノマーの例としては、スチレン、 ひ メチルスチレ ン等のスチレン系モノマー、アクリル酸メチル、アクリル酸 2—ェチルへキシル、ァク リル酸メトキシェチル、アクリル酸ブトキシェチル、アクリル酸ブチル、アクリル酸メトキ シブチル、アクリル酸フエ-ル等のアクリル酸エステル類、メタクリル酸メチル、メタタリ ル酸ェチル、メタクリル酸プロピル、メタクリル酸メトキシェチル、メタクリル酸エトキシメ チル、メタクリル酸フエ-ル、メタクリル酸ラウリル等のメタクリル酸エステル類、アクリル 酸ー2—(N, N ジェチルァミノ)ェチル、アクリル酸 2— (N, N ジメチルァミノ) ェチル、アクリル酸— 2— (N, N ジベンジルァミノ)メチル、アクリル酸— 2— (N, N ージェチルァミノ)プロピル等の不飽和置換の置換ァミノアルコールエステル類、ァク リルアミド、メタクリルアミド等の不飽和カルボン酸アミド、エチレングリコールジアタリレ ート、プロピレングリコールジアタリレート、ネオペンチルグリコールジアタリレート、 1, 6—へキサンジオールジアタリレート、トリエチレングリコールジアタリレート等の化合物 、ジプロピレングリコールジアタリレート、エチレングリコールジアタリレート、プロピレン グリコールジメタタリレート、ジエチレングリコールジメタタリレート等の多官能性化合物[0053] Examples of monomers in the ultraviolet curable resin composition include styrene monomers such as styrene and methylstyrene, methyl acrylate, 2-ethylhexyl acrylate, methoxyethyl acrylate, and butoxycyl acrylate. , Butyl acrylate, methacrylic acid Acrylic acid esters such as sibutyl and acrylic acid methacrylate, methyl methacrylate, methacrylic acid ethyl ester, propyl methacrylate, methacrylic acid methacrylate, ethoxymethyl methacrylate, methacrylic acid phenol, lauryl methacrylate, and other methacrylic acid esters Acrylic acid-2- (N, N dimethylamino) ethyl, acrylic acid 2- (N, N dimethylamino) ethyl, acrylic acid-2- (N, N dibenzylamino) methyl, acrylic acid-2- (N, N-jetylamino) ) Unsaturated substituted substituted amino alcohol esters such as propyl, unsaturated carboxylic acid amides such as acrylamide and methacrylamide, ethylene glycol ditalylate, propylene glycol ditalylate, neopentyl glycol ditalylate, 1, 6-hexanediol diatali Polyfunctional compounds such as dipropylene glycol dimethacrylate, dipropylene glycol dimethacrylate, dipropylene glycol ditalariate
、及び Zまたは分子中に 2個以上のチオール基を有するポリチオール化合物、例え ばトリメチローラプロパントリチォグリコレート、トリメチローラプロパントリチォプロビレー ト、ペンタエリスリトールテトラチォグリコレート等が挙げられる。 And Z or a polythiol compound having two or more thiol groups in the molecule, such as trimethylolpropane trithioglycolate, trimethylolpropane trithiopropylate, pentaerythritol tetrathioglycolate, and the like.
[0054] 紫外線硬化型榭脂組成物を紫外線で硬化させる場合にお!ヽては、超高圧水銀灯 、高圧水銀灯、低圧水銀灯、カーボンアーク、キセノンアークまたはメタルノヽライドラン プ等の光源力 発する紫外線等を使用することができる。これらの光源は空冷式であ つても水冷式であってもよいが、水冷式であることがより好ましい。紫外線硬化型榭 脂組成物には光重合開始剤を添加させることが好ましい。光重合開始剤としては、ァ セトフエノン類、ベンゾフエノン類、ミヒラーベンゾィルベンゾエート、 o ベンゾィル安 息香酸メチル、アルドォキシム、テトラメチルメウラムモノサルファイド、チォキサントン 、及び/または光増感剤である n—プチルァミン、トリェチルァミン、トリ—ブチルホス フィン等が挙げられる。 [0054] In the case of curing an ultraviolet curable resin composition with ultraviolet rays! For example, ultra-high pressure mercury lamps, high pressure mercury lamps, low pressure mercury lamps, carbon arc, xenon arc, or metal nano lamp lamps that emit light sources, etc. Can be used. These light sources may be air-cooled or water-cooled, but are more preferably water-cooled. It is preferable to add a photopolymerization initiator to the ultraviolet curable resin composition. Photopolymerization initiators include acetophenones, benzophenones, Michler benzoyl benzoate, o methyl benzoyl benzoate, aldoxime, tetramethylmeurum monosulfide, thixanthone, and / or a photosensitizer n —Ptylamine, triethylamine, tri-butylphosphine and the like.
[0055] 本発明で用いられる紫外線硬化型榭脂組成物は、ノンソルベントタイプであっても 溶媒で希釈して用いるタイプであってもよ 、。  [0055] The ultraviolet curable resin composition used in the present invention may be a non-solvent type or a type diluted with a solvent.
[0056] 本発明に係る上記紫外線硬化型榭脂組成物には、必要に応じて溶媒を含有させ ることができる。溶剤としては、例えば、メタノール、エタノール、 1 プロパノール、 2 プロパノール、ブタノール等のアルコール類;アセトン、メチルェチルケトン、シクロ へキサノン等のケトン類;ベンゼン、トルエン、キシレン等の芳香族炭化水素類;ェチ レングリコール、プロピレングリコール、へキシレングリコーノレ等のグリコーノレ類;ェチ ルセルソルブ、ブチルセルソルブ、ェチルカルビトール、ブチルカルビトール、ジェチ ノレセノレソノレブ、ジェチルカルビトール、プロピレングリコールモノメチルエーテル等の グリコールエーテル類; N—メチルピロリドン、ジメチルフオルムアミド、乳酸メチル、乳 酸ェチル、酢酸メチル、酢酸ェチル、酢酸アミル等のエステル類;ジェチルエーテル 等のエーテル類、水等が挙げられ、それらを単独または 2種以上混合して使用するこ とができる。また、分子内にエーテル結合をもつものが特に好ましぐグリコールエー テル類も好ましく用いられる。 [0056] The ultraviolet curable resin composition according to the present invention may contain a solvent as necessary. Examples of the solvent include alcohols such as methanol, ethanol, 1 propanol, 2 propanol, and butanol; acetone, methyl ethyl ketone, cyclohexane Ketones such as hexanone; aromatic hydrocarbons such as benzene, toluene, xylene; glycolenoles such as ethylene glycol, propylene glycol, hexylene glycolole; ethylcellsolve, butylcellsolve, ethylcarbitol, Glycol ethers such as butyl carbitol, jetinoresenoresonolev, jetyl carbitol, propylene glycol monomethyl ether; N-methylpyrrolidone, dimethylformamide, methyl lactate, ethyl lactate, methyl acetate, ethyl acetate, amyl acetate, etc. These esters include ethers such as jetyl ether, water and the like, and these can be used alone or in admixture of two or more. In addition, glycol ethers that have an ether bond in the molecule are particularly preferred.
[0057] グリコールエーテル類としては、具体的には下記の溶剤が挙げられる力 特にこれ らに限定されない。プロピレングリコールモノメチルエーテル、プロピレングリコールモ ノエチルエーテル、プロピレングリコールモノブチルエーテル、ジエチレングリコーノレ ジメチノレエーテノレ、エチレングリコーノレモノメチノレエーテノレ、エチレングリコーノレモノメ チルェ [0057] Specific examples of glycol ethers include, but are not limited to, the following solvents. Propylene glycol monomethyl ether, propylene glycol monoethyl ether, propylene glycol monobutyl ether, diethylene glycol monodimethylenoate, ethylene glycol monomethylenoate, ethylene glycol monomethyl ether
ーテノレアセテート、エチレングリコーノレモノブチノレエーテノレ、エチレングリコーノレモノ ェチノレエーテノレ、エチレングリコーノレモノェチノレエーテノレアセテート、エチレングリコ 一ルジェチルエーテル等を挙げることができる。  Examples thereof include ethylene glycol acetate, ethylene glycol monobutynoate ethere, ethylene glycol monomer monoethyl etherate, ethylene glycol monomer monoethyl etherate, ethylene glycol monoethyl acetate.
[0058] 本発明に係る上記紫外線硬化型榭脂組成物には、屈折率調整あるいは内部散乱 性を付与するなどの目的のため、必要に応じて微粒子を含有させることができる。 [0058] The ultraviolet curable resin composition according to the present invention may contain fine particles as necessary for the purpose of adjusting the refractive index or imparting internal scattering properties.
[0059] 本発明にお ヽて、紫外線硬化型榭脂組成物中に含有せしめることのできる微粒子 としては、例えば、無機微粒子または有機微粒子を挙げることができる。 [0059] In the present invention, examples of the fine particles that can be contained in the ultraviolet curable resin composition include inorganic fine particles and organic fine particles.
[0060] 無機微粒子としては、例えば、珪素を含む化合物、二酸化珪素、酸ィ匕アルミニウム[0060] Examples of the inorganic fine particles include compounds containing silicon, silicon dioxide, and aluminum oxide.
、酸ィ匕ジルコニウム、酸化錫、酸化インジウム、 ιτο、酸化アンチモン、酸化亜鉛、酸 化チタン、炭酸カルシウム、タルク、クレイ、焼成カオリン、焼成ケィ酸カルシウム、水 和ケィ酸カルシウム、ケィ酸アルミニウム、ケィ酸マグネシウム及びリン酸カルシウム 等が好ましぐ更に好ましくは、ケィ素を含む無機化合物や酸ィ匕ジルコニウムである 力 二酸化珪素が特に好ましく用いられる。 , Zirconium oxide, tin oxide, indium oxide, ιτο, antimony oxide, zinc oxide, titanium oxide, calcium carbonate, talc, clay, calcined kaolin, calcined calcium silicate, hydrated calcium silicate, aluminum silicate, ca Magnesium oxide, calcium phosphate, and the like are preferable, and inorganic compounds containing silicon and strong silicon dioxide which is zirconium oxide are particularly preferably used.
[0061] 二酸化珪素の微粒子としては、例えば、ァエロジル R972、 R972V、 R974、 R812 、 200、 200V, 300、 R202、 OX50、 TT600 (以上、 日本ァエロジル (株)製)等の 巿販品が使用できる。酸ィ匕ジルコニウムの微粒子としては、例えば、ァエロジル R97 6及び R811 (以上、 日本ァエロジル (株)製)等の市販品が使用できる。 [0061] Silicon dioxide fine particles include, for example, Aerosil R972, R972V, R974, R812. , 200, 200V, 300, R202, OX50, TT600 (above, Nippon Aerosil Co., Ltd.) and other commercial products can be used. As fine particles of zirconium oxide, commercially available products such as Aerosil R97 6 and R811 (manufactured by Nippon Aerosil Co., Ltd.) can be used.
[0062] また、有機微粒子としては、ポリメタアクリル酸メチルアタリレート榭脂微粒子、アタリ ルスチレン系榭脂微粒子、ポリメチルメタタリレート榭脂微粒子、シリコン系榭脂微粒 子、ポリスチレン系榭脂微粒子、ポリカーボネート榭脂微粒子、ベンゾグアナミン系榭 脂微粒子、メラミン系榭脂微粒子、ポリオレフイン系榭脂微粒子、ポリエステル系榭脂 微粒子、ポリアミド系榭脂微粒子、ポリイミド系榭脂微粒子、またはポリ弗化工チレン 系榭脂微粒子等を挙げることができる。  [0062] Further, as the organic fine particles, polymethacrylic acid methyl acrylate fine particles, talyl styrene fine particles, polymethyl methacrylate fine particles, silicon fine particles, polystyrene fine particles, Polycarbonate resin fine particles, benzoguanamine resin fine particles, melamine resin fine particles, polyolefin resin fine particles, polyester resin fine particles, polyamide resin fine particles, polyimide resin fine particles, or polyfluorinated styrene resin fine particles Etc.
[0063] また、微粒子の表面は公知の方法で表面処理されていることが好ましぐこれによつ て分散性を改善した微粒子が好ましく用いられる。  [0063] The surface of the fine particles is preferably surface-treated by a known method, and fine particles having improved dispersibility are preferably used.
[0064] 本発明で用いる微粒子の平均粒径は 0. 001-5 μ mが好ましぐ更に好ましくは 0 . 005〜3 μ mであり、特に好ましくは 0. 01〜1 μ mである。粒径や屈折率の異なる 2 種以上の微粒子を含有させてもよい。例えば、平均 1次粒径が 0. 001-0.: mの 微粒子と平均 1次粒径が 0. 1〜5 mの微粒子を含有することが好ましい。微粒子の 添加量は紫外線硬化型榭脂組成物に対して 0. 1〜50質量%、好ましくは 0. 5〜30 質量%である。  [0064] The average particle size of the fine particles used in the present invention is preferably 0.001 to 5 µm, more preferably 0.005 to 3 µm, and particularly preferably 0.01 to 1 µm. You may contain 2 or more types of microparticles | fine-particles from which a particle size and refractive index differ. For example, it is preferable to contain fine particles having an average primary particle size of 0.001-0.:m and fine particles having an average primary particle size of 0.1 to 5 m. The addition amount of the fine particles is 0.1 to 50% by mass, preferably 0.5 to 30% by mass with respect to the ultraviolet curable resin composition.
[0065] (離型剤)  [0065] (Release agent)
本発明にお ヽて、剥離性と!ヽぅ観点から紫外線硬化型榭脂組成物に離型剤を含ま せることが好ましい。離型剤としては、ワックス系、シリコーンィ匕合物系、もしくはフッ素 化合物等を挙げることができる。本発明における離型剤は榭脂組成物中に配合して 適用され、成型の際に型面に接する必要があることから、榭脂組成物中の他の成分 との親和性が過度ではないものを用いることが好ましぐジメチルシリコーンオイルを 種々の置換基で置換した変性シリコーンを使用することがより好ましい。変性シリコー ンとしては反応性変性シリコーンであるアミノ変性、エポキシ変性、カルボキシル変性 、もしくはアルコール変性のもの力、または非反応性変性シリコーンであるポリエーテ ル変性、メチルスチリル変性、アルキル変性、高級脂肪酸エステル変性、親水性特 殊変性、高級アルコキシ変性、高級脂肪酸含有、もしくはフッ素変性のものがある。 [0066] 離型剤として反応性変性シリコーンを配合すると、紫外線照射を受けた際に紫外線 硬化榭脂ゃモノマー等との反応が起こるので、離型剤として配合したシリコーンが表 面に出てくることが阻害されやす 、ので、本発明にお 、ては非反応性変性シリコーン を離型剤として配合したものが好まし 、。 In the present invention, it is preferable to include a release agent in the ultraviolet curable resin composition from the viewpoints of releasability and heat resistance. Examples of the mold release agent include a wax system, a silicone compound system, and a fluorine compound. Since the release agent in the present invention is blended and applied in the resin composition and needs to be in contact with the mold surface during molding, the affinity with other components in the resin composition is not excessive. It is more preferable to use a modified silicone in which dimethyl silicone oil is substituted with various substituents. Modified silicones can be reactive modified silicones such as amino-modified, epoxy-modified, carboxyl-modified, or alcohol-modified, or non-reactive modified silicones such as polyether-modified, methylstyryl-modified, alkyl-modified, higher fatty acid ester-modified. , Hydrophilic special modification, higher alkoxy modification, higher fatty acid-containing, or fluorine-modified. [0066] When a reactive modified silicone is blended as a release agent, a reaction with an ultraviolet curable resin monomer occurs when irradiated with ultraviolet rays, so that the silicone blended as a release agent appears on the surface. In the present invention, it is preferable to use a non-reactive modified silicone as a release agent.
[0067] 離型剤は榭脂組成物全体の質量 100に対し 0. 01〜2程度を配合することが好ま しぐ離型剤の配合量が下限未満であると脱型を円滑にする効果が乏しくなり、また 上限を超えると紫外線を照射した際の硬化が充分に行なわれない。  [0067] It is preferable that the mold release agent is blended in an amount of about 0.01 to 2 with respect to 100 of the total mass of the resin composition. If the upper limit is exceeded, curing when irradiated with ultraviolet rays will not be sufficient.
[0068] (透明榭脂フィルム)  [0068] (Transparent resin film)
本発明において、紫外線硬化型榭脂組成物により凹凸パターンを形成する透明榭 脂フィルムとしては、膜厚 10〜500 μ m、特〖こ好ましくは 30〜200 μ mの透明榭脂フ イルムが好ましく用いられる。透明榭脂フィルムとしては、溶融流延法によって製膜さ れたフィルムであっても、溶液流延法によって製膜されたフィルムであっても好ましく 用いることができる。具体的には、セルロースエステル(例えば、セルローストリァセテ ート、セノレロースジアセテート、セノレロースプロピオネート、セノレロースブチレート、セ ノレロースアセテートプロピオネート、セノレロースアセテートブチレートセノレロースァセ テートプロピオネートブチレート、ニトロセルロース等)、ポリアミド、ポリカーボネート、 シクロォレフインポリマー(例えば、アートン (JSR社製)、ゼォノア(日本ゼオン社製) ) ポリエステル(例えば、ポリエチレンテレフタレート、ポリエチレンナフタレート、ポリー1 , 4ーシクロへキサンジメチレンテレフタレート、ポリエチレン 1, 2 ジフエノキシエタ ン 4, 4' ージカノレボキシレート、ポリブチレンテレフタレート等)、ポリスチレン(例え ば、シンジオタクチックポリスチレン等)、ポリオレフイン (例えば、ポリプロピレン、ポリ エチレン、ポリメチルペンテン等)、ポリスルホン、ポリエーテルスルホン、ポリアリレート 、ポリエーテルイミド、ポリメチルメタタリレート及びポリエーテルケトンが含まれる。特 に好ましくはセルロースエステルフィルムが挙げられる。  In the present invention, a transparent resin film having a film thickness of 10 to 500 μm, particularly preferably 30 to 200 μm is preferable as the transparent resin film for forming an uneven pattern with the ultraviolet curable resin composition. Used. As the transparent resin film, a film formed by a melt casting method or a film formed by a solution casting method can be preferably used. Specifically, cellulose esters (for example, cellulose triacetate, cenorelose diacetate, cenorelose propionate, cenorelose butyrate, cenoellose acetate propionate, cenorelose acetate butyrate cenorelose acetate) Propionate butyrate, nitrocellulose, etc.), polyamide, polycarbonate, cycloolefin polymer (for example, Arton (manufactured by JSR), zeonoa (manufactured by Nippon Zeon)), polyester (for example, polyethylene terephthalate, polyethylene naphthalate, poly) 1,4-cyclohexanedimethylene terephthalate, polyethylene 1,2 diphenoxyethane 4,4'-dicanoloxylate, polybutylene terephthalate, etc., polystyrene (eg, syndiotactic polices) Ren, etc.), polyolefins (e.g., polypropylene, poly ethylene, polymethyl pentene, etc.), polysulfone, polyether sulfone, polyarylate, polyetherimide, polymethyl methacrylate Tari rate and polyether ketones. Particularly preferred is a cellulose ester film.
[0069] 具体的には市販のセルロースエステルフィルムとしては、コ-カミノルタタック KC8 UX、 KC4UX、 KC5UX、 KC8UYゝ KC4UYゝ KC12URゝ KC8UY— HAゝ KC8 UCR— 3、 KC8UCR— 4、 KC8UCR— 5 (以上、コ-カミノルタォプト(株)製)、フジ タック TD80UF (富士写真フィルム (株)製)が好ましく用いられる。 [0070] 本発明に係る透明榭脂フィルムにおいては、紫外線吸収剤を含有することが好まし い。紫外線吸収剤は 400nm以下の紫外線を吸収することで、耐久性を向上させるこ とを目的としており、特に波長 370nmでの透過率が 10%以下となるように添加され ていることが好ましぐより好ましくは 5%以下、更に好ましくは 2%以下である。 [0069] Specifically, commercially available cellulose ester films include Co-Camino Nortac KC8 UX, KC4UX, KC5UX, KC8UY ゝ KC4UY ゝ KC12UR ゝ KC8UY— HA ゝ KC8 UCR-3, KC8UCR-4, KC8UCR-5 ( From the above, Co-Caminoltopt Co., Ltd.) and Fujitac TD80UF (Fuji Photo Film Co., Ltd.) are preferably used. [0070] The transparent resin film according to the present invention preferably contains an ultraviolet absorber. The ultraviolet absorber is intended to improve durability by absorbing ultraviolet rays of 400 nm or less, and is particularly preferably added so that the transmittance at a wavelength of 370 nm is 10% or less. More preferably, it is 5% or less, and further preferably 2% or less.
[0071] 紫外線吸収剤は特に限定されないが、例えば、ォキシベンゾフヱノン系化合物、ベ ンゾトリアゾール系化合物、サリチル酸エステル系化合物、ベンゾフエノン系化合物、 シァノアクリレート系化合物、トリアジン系化合物、ニッケル錯塩系化合物、無機粉体 等が挙げられる。例えば、 5 クロ口 2— (3, 5 ジ— sec ブチル—2 ヒドロキシ ルフエ-ル)—2H—ベンゾトリァゾール、(2— 2H—ベンゾトリアゾール—2—ィル) 6- (直鎖及び側鎖ドデシル)—4—メチルフエノール、 2 ヒドロキシ— 4 ベンジル ォキシベンゾフエノン、 2, 4一べンジルォキシベンゾフエノン等があり、またチヌビン 1 09、チヌビン 171、チヌビン 234、チヌビン 326、チヌビン 327、チヌビン 328等のチ ヌビン類があり、これらは 、ずれもチノく'スペシャルティ ·ケミカルズ社製の市販品であ り、好ましく使用することができる。また、特開 2002— 169020号  [0071] The ultraviolet absorber is not particularly limited, and examples thereof include oxybenzophenone compounds, benzotriazole compounds, salicylic acid ester compounds, benzophenone compounds, cyanoacrylate compounds, triazine compounds, nickel Examples thereof include complex salt compounds and inorganic powders. For example, 5 black 2— (3,5 di-sec butyl-2-hydroxysulfuric) —2H-benzotriazole, (2—2H-benzotriazole-2-yl) 6- (linear and side chain) Dodecyl) —4-methylphenol, 2-hydroxy-4 benzyloxybenzophenone, 2,4 monobenzyloxybenzophenone, etc., and Tinuvin 109, Tinuvin 171, Tinuvin 234, Tinuvin 326, Tinuvin 327 Tinuvins such as Tinuvin 328, which are commercially available from Specialty Chemicals, can be used preferably. JP 2002-169020 A
公報、同 2002— 31715号公報、同 2002— 47357号公報記載の高分子紫外線吸 収剤も好ましく用いることができる。  The polymeric ultraviolet absorbers described in JP-A-2002-31715 and JP-A-2002-47357 can also be preferably used.
[0072] (防眩性反射防止フィルム)  [0072] (Anti-glare anti-reflection film)
液晶表示装置をはじめとする画像表示装置は、その画像表示面に外光が映り込む と視認性が著しく損なわれる。画質を重視するテレビやパーソナルコンピュータなど の用途、外光の強い屋外で使用されるビデオカメラやデジタルカメラなどの用途、ま た反射光を利用して表示を行う携帯電話のような反射型液晶表示装置などの用途で は、これらの映り込みを防止する処理が表示装置表面になされるのが通例である。映 り込み防止処理は、光学多層膜による干渉を利用した無反射処理と、表面に微細な 凹凸を形成することにより入射光を散乱させ、映り込み像をぼかすいわゆる防眩処理 とに大別される。前者の無反射処理は、均一な光学膜厚の多層膜を形成する必要上 、コスト高になるという問題がある。これに対して後者の防眩処理は、比較的安価に 実現できるため大型のパーソナルコンピュータやモニタなどの用途に用いられている [0073] 防眩性のフィルムは、例えば、フィラーを分散させた紫外線硬化型榭脂を透明基材 上に塗布し、乾燥させた後、紫外線を照射して榭脂を硬化させ、フィルム表面にラン ダムな凹凸を形成する等の方法により製造されている。そしてこれまでにも、画像表 示装置に用 、るフィルムの表面に微細な凹凸を形成して防眩性を付与する提案が 多数なされている。 In an image display device such as a liquid crystal display device, visibility is significantly impaired when external light is reflected on the image display surface. Reflective liquid crystal displays such as TVs and personal computers that emphasize image quality, applications such as video cameras and digital cameras used outdoors with strong external light, and mobile phones that display using reflected light In applications such as devices, the surface of the display device is usually treated to prevent these reflections. The anti-reflection process is broadly divided into an anti-reflection process using interference by the optical multilayer film and a so-called anti-glare process that scatters incident light by forming fine irregularities on the surface and blurs the reflected image. The The former non-reflective treatment has a problem of high cost because it is necessary to form a multilayer film having a uniform optical film thickness. On the other hand, the latter anti-glare treatment can be realized at a relatively low cost and is used for applications such as large personal computers and monitors. [0073] The antiglare film is prepared by, for example, applying an ultraviolet curable resin in which a filler is dispersed on a transparent substrate, drying the film, and then irradiating with ultraviolet light to cure the resin, Manufactured by methods such as forming random irregularities. In the past, many proposals have been made for providing an antiglare property by forming fine irregularities on the surface of a film used for an image display device.
[0074] 本発明の凹凸パターンフィルムの製造方法で作製された防眩性フィルムは防眩効 果に優れ、且つ表面の白ちやけが良好に改善され、画像表示装置に装着したときに 視認性に優れる。  [0074] The antiglare film produced by the method for producing a concavo-convex pattern film of the present invention is excellent in antiglare effect, has a good improvement in surface whiteness, and is visible when mounted on an image display device. Excellent.
[0075] 画像表示装置が液晶ディスプレイである場合には、この防眩性フィルムを偏光板保 護フィルムとすることができる。即ち、偏光板は一般にヨウ素または二色性染料が吸 着配向されたポリビニルアルコール系榭脂フィルム力 なる偏光子の少なくとも片面 に保護フィルムが積層された形のものが多いが、このような偏光子の一方の面に上記 のような防眩性の凹凸が付与された光学フィルムを貼合することにより、防眩性の偏 光板を得ることができる。偏光子のもう一方の面には別の偏光板保護フィルムを用い ることができる。具体的には、位相差フィルムや光学補償フィルムあるいは Rt Onm、 Ro Onmの光学的等方性フィルムを配置することができる。例えば、コ-カミノルタタ ック KC8UX、 KC4UX、 KC5UX、 KC8UYゝ KC4UYゝ KC12URゝ KC8UCR— 3 、 KC8UCR— 4、 KC8UCR— 5 (以上、コ-カミノルタォプト(株)製)、フジタック TD 80UF (富士写真フィルム (株)製)等が好ましく用いられる。  [0075] When the image display device is a liquid crystal display, the antiglare film can be used as a polarizing plate protective film. That is, the polarizing plate is generally of a type in which a protective film is laminated on at least one side of a polarizer having a polyvinyl alcohol-based resin film force in which iodine or a dichroic dye is adsorbed and oriented. An antiglare polarizing plate can be obtained by laminating an optical film provided with the above-described antiglare unevenness on one surface thereof. Another polarizing plate protective film can be used on the other surface of the polarizer. Specifically, a retardation film, an optical compensation film, or an optically isotropic film of Rt Onm or Ro Onm can be disposed. For example, Co-Camino Nortack KC8UX, KC4UX, KC5UX, KC8UY ゝ KC4UY ゝ KC12UR ゝ KC8UCR-3, KC8UCR-4, KC8UCR-5 (above, manufactured by Co-Caminoltopto Corp.), Fujitac TD 80UF (Fuji Photo Film (Fuji Photo Film) Etc.) are preferably used.
[0076] 〈反射防止層〉  <Antireflection layer>
本発明に係る防眩性反射防止フィルムは紫外線硬化榭脂層上に、少なくとも含フッ 素榭脂もしくは無機微粒子を含有する低屈折率層を含む反射防止層を有し、該無機 微粒子が多孔質粒子と該多孔質粒子表面に設けられた被覆層を有する複合粒子、 あるいは内部に溶媒、気体、または多孔質物質で充填された空洞粒子であることが 好ましい。  The antiglare antireflection film according to the present invention has an antireflection layer including at least a fluorine-containing resin or a low refractive index layer containing inorganic fine particles on an ultraviolet curable resin layer, and the inorganic fine particles are porous. Composite particles having particles and a coating layer provided on the surface of the porous particles, or hollow particles filled with a solvent, gas, or porous substance are preferable.
[0077] 本発明では反射防止層を設ける方法は特に限定されず、スパッタ、大気圧プラズ マ処理、塗布などが挙げられる力 塗布により形成することが好ましい。反射防止層 を塗布により形成する方法としては、溶剤に溶解したバインダー榭脂中に金属酸ィ匕 物の粉末を分散し、塗布乾燥する方法、架橋構造を有するポリマーをバインダー榭 脂として用いる方法、エチレン性不飽和モノマーと光重合開始剤を含有させ、活性線 を照射することにより層を形成する方法等の方法を挙げることができる。 In the present invention, the method for providing the antireflection layer is not particularly limited, and it is preferably formed by force application such as sputtering, atmospheric pressure plasma treatment, application, and the like. As a method for forming the antireflection layer by coating, a metal oxide is contained in a binder resin dissolved in a solvent. A method of dispersing a product powder, coating and drying, a method of using a polymer having a crosslinked structure as a binder resin, an ethylenically unsaturated monomer and a photopolymerization initiator, and irradiating with actinic radiation to form a layer Examples thereof include a method.
[0078] 好ましい防眩性反射防止フィルムの構成を下記に示すが、これらに限定されるもの では  [0078] Preferred antiglare antireflection films are shown below, but are not limited thereto.
ない。ここで透明榭脂フィルムとして、セルロースエステルフィルムが好ましい例として 挙げられる。  Absent. Here, as the transparent resin film, a cellulose ester film is a preferred example.
[0079] ここでノ、ードコート層とは、凹凸を形成した紫外線硬化榭脂層を意味する。  Here, the no-coat layer means an ultraviolet curable resin layer in which irregularities are formed.
[0080] セルロースエステルフィルム Zハードコート層 Z低屈折率層 [0080] Cellulose ester film Z hard coat layer Z low refractive index layer
セルロースエステルフィルム Zハードコート層 Z高屈折率層 Z低屈折率層 セルロースエステルフィルム Zハードコート層 Z中屈折率層 Z高屈折率層 Z低屈 折率層  Cellulose ester film Z Hard coat layer Z High refractive index layer Z Low refractive index layer Cellulose ester film Z Hard coat layer Z Medium refractive index layer Z High refractive index layer Z Low refractive index layer
セルロースエステルフィルム Z熱可塑性榭脂層 Zハードコート層 Z低屈折率層 セルロースエステルフィルム z熱可塑性榭脂層 Zハードコート層 Z高屈折率層 Z 低屈折率層  Cellulose ester film Z Thermoplastic resin layer Z Hard coat layer Z Low refractive index layer Cellulose ester film z Thermoplastic resin layer Z Hard coat layer Z High refractive index layer Z Low refractive index layer
セルロースエステルフィルム z熱可塑性榭脂層 Zハードコート層 Z中屈折率層 Z 高屈折率層 Z低屈折率層  Cellulose ester film z Thermoplastic resin layer Z Hard coat layer Z Middle refractive index layer Z High refractive index layer Z Low refractive index layer
いずれもセルロースエステルフィルムのハードコート層を塗設した側と反対面には、 ノ ックコート層を設けることが好ましい。また、中屈折率層もしくは高屈折率層が帯電 防止層を兼ねてもよい。  In any case, it is preferable that a knock coat layer is provided on the surface opposite to the side on which the hard coat layer of the cellulose ester film is applied. Further, the middle refractive index layer or the high refractive index layer may also serve as the antistatic layer.
[0081] 防眩性反射防止フィルムでは最上層に低屈折率層を形成し、紫外線硬化榭脂層と の間に高屈折率層の金属酸化物層を形成したり、更に紫外線硬化榭脂層と高屈折 率層との間に中屈折率層(金属酸ィ匕物の含有量あるいは榭脂バインダーとの比率、 金属の種類を変更して屈折率を調整した金属酸化物層)を設けることは、反射率の 低減のために好ましい。高屈折率層の屈折率は 1. 55〜2. 30であることが好ましぐ 1. 57-2. 20であることが更に好ましい。中屈折率層の屈折率は、基材であるセル ロースエステルフィルムの屈折率 (約 1. 5)と高屈折率層の屈折率との中間の値とな るように調整する。中屈折率層の屈折率は 1. 55〜: L 80であることが好ましい。低屈 折率層の屈折率は 1. 3〜1. 44、より好ましくは 1. 35-1. 41であることが好ましい。 各層の厚さは 5nm〜0. 5 mであることが好ましぐ ΙΟηπ!〜 0. であること力 S 更に好ましぐ 30ηπ!〜 0. 2 mであることが最も好ましい。 [0081] In the antiglare antireflection film, a low refractive index layer is formed as the uppermost layer, and a metal oxide layer of a high refractive index layer is formed between the ultraviolet curable resin layer, and an ultraviolet curable resin layer is further formed. A medium refractive index layer (metal oxide layer content or ratio to the resin binder, metal oxide layer with the refractive index adjusted by changing the metal type) between the high refractive index layer and the high refractive index layer Is preferable for reducing the reflectance. The refractive index of the high refractive index layer is preferably 1.55 to 2.30, more preferably 1.57-2.20. The refractive index of the medium refractive index layer is adjusted so as to be an intermediate value between the refractive index (about 1.5) of the cellulose ester film as the substrate and the refractive index of the high refractive index layer. The refractive index of the middle refractive index layer is preferably 1.55 to L80. Low bending The refractive index of the refractive index layer is preferably 1.3 to 1.44, more preferably 1.35-1.41. The thickness of each layer is preferably 5nm to 0.5m. ~ 0. Power S 30 π more preferable! Most preferred is ~ 0.2 m.
[0082] また、 CIE— Lab表色系において、反射色相が(― 10≤a*≤ + 10、— 15≤  [0082] Also, in the CIE—Lab color system, the reflected hue is (-10 ≤ a * ≤ + 10, 15 ≤
b*≤ + 15、l≤L≤10)にあることが好ましく、透過色相が無彩色( 2≤ a*及び b*≤ 2)であることが好ましい。これらは各屈折率層の屈折率と膜厚を調整することに よって達成することできる。  b * ≤ + 15, l≤L≤10), and the transmitted hue is preferably achromatic (2≤a * and b * ≤2). These can be achieved by adjusting the refractive index and film thickness of each refractive index layer.
[0083] 金属酸ィ匕物層のヘイズは 5%以下であることが好ましぐ 3%以下であることが更に 好ましぐ 1%以下であることが最も好ましい。金属酸ィ匕物層の強度は lkg荷重の鉛 筆硬度で 3H以上であることが好ましぐ 4H以上であることが最も好ましい。金属酸化 物層を塗布により形成する場合は、無機微粒子とバインダーポリマーとを含むことが 好ましい。  [0083] The haze of the metal oxide layer is preferably 5% or less, more preferably 3% or less, and most preferably 1% or less. The strength of the metal oxide layer is preferably 3H or more in terms of lead writing hardness of 1 kg load, and most preferably 4H or more. When the metal oxide layer is formed by coating, it preferably contains inorganic fine particles and a binder polymer.
[0084] 低屈折率層に好ましく含有される、多孔質粒子と該多孔質粒子表面に設けられた 被覆層を有する複合粒子、あるいは内部に溶媒、気体、または多孔質物質で充填さ れた空洞粒子にっ 、て説明する。  [0084] Composite particles having porous particles and a coating layer provided on the surface of the porous particles, preferably contained in the low refractive index layer, or cavities filled with a solvent, gas, or porous substance I will explain the particles.
[0085] 無機微粒子は、 (I)多孔質粒子と該多孔質粒子表面に設けられた被覆層とからな る複合粒子、または (II)内部に空洞を有し、且つ内容物が溶媒、気体または多孔質 物質で充填された空洞粒子である。なお、低屈折率層には (I)複合粒子または (II) 空洞粒子のいずれかが含まれていればよぐまた双方が含まれていてもよい。なお、 空洞粒子は内部に空洞を有する粒子であり、空洞は粒子壁で囲まれている。空洞内 には、調製時に使用した溶媒、気体または多孔質物質などの内容物で充填されてい る。  [0085] The inorganic fine particles are: (I) composite particles comprising porous particles and a coating layer provided on the surface of the porous particles, or (II) cavities inside, and the contents are solvent, gas Or hollow particles filled with a porous material. The low refractive index layer may contain either (I) composite particles or (II) hollow particles, or both. The hollow particles are particles having cavities inside, and the cavities are surrounded by particle walls. The cavity is filled with contents such as the solvent, gas, or porous material used during preparation.
[0086] この様な無機微粒子の平均粒子径が 5〜300nm、好ましくは 10〜200nmの範囲 にあることが望ましい。使用される無機微粒子の平均粒径は形成される透明被膜の 厚さに応じて適宜選択され、形成される低屈折率層などの透明被膜の膜厚の 2Z3 〜1/10の範囲にあることが望ましい。これらの無機微粒子は低屈折率層の形成の ため適当な媒体に分散した状態で使用することが好ましい。分散媒としては、水、ァ ルコール(例えば、メタノール、エタノール、イソプロピルアルコール)及びケトン(例え ば、メチルェチルケトン、メチルイソブチルケトン)、ケトンアルコール(例えば、ジァセ トンアルコール)が好まし 、。 [0086] The average particle size of such inorganic fine particles is desirably in the range of 5 to 300 nm, preferably 10 to 200 nm. The average particle size of the inorganic fine particles used is appropriately selected according to the thickness of the transparent film to be formed, and is in the range of 2Z3 to 1/10 of the film thickness of the transparent film such as the low refractive index layer to be formed. Is desirable. These inorganic fine particles are preferably used in a state dispersed in an appropriate medium for forming a low refractive index layer. Examples of the dispersion medium include water, alcohol (eg, methanol, ethanol, isopropyl alcohol), and ketone (eg, For example, methyl ethyl ketone, methyl isobutyl ketone) and ketone alcohol (for example, diacetone alcohol) are preferred.
[0087] 複合粒子の被覆層の厚さまたは空洞粒子の粒子壁の厚さは l〜20nm、好ましくは 2〜15nmの範囲にあることが望ましい。複合粒子の場合、被覆層の厚さが lnm未満 の場合は、粒子を完全に被覆することができないことがあり、後述する塗布液成分で ある重合度の低いケィ酸モノマー、オリゴマーなどが容易に複合粒子の内部に進入 して内部の多孔性が減少し、低屈折率の効果が十分得られないことがある。また、被 覆層の厚さが 20nmを越えると、前記ケィ酸モノマー、オリゴマーが内部に進入する ことはないが、複合粒子の多孔性 (細孔容積)が低下し低屈折率の効果が十分得ら れなくなることがある。また空洞粒子の場合、粒子壁の厚さが lnm未満の場合は粒 子形状を維持できないことがあり、また厚さが 20nmを越えても、低屈折率の効果が 十分に現れないことがある。  [0087] The thickness of the coating layer of the composite particles or the thickness of the particle walls of the hollow particles is desirably in the range of 1 to 20 nm, preferably 2 to 15 nm. In the case of composite particles, if the thickness of the coating layer is less than 1 nm, the particles may not be completely covered, and the coating liquid components described later, which are low polymerization degree monomers and oligomers, can be easily obtained. The inside of the composite particles may enter and the internal porosity may decrease, and the low refractive index effect may not be sufficiently obtained. In addition, when the thickness of the covering layer exceeds 20 nm, the carboxylic acid monomer and oligomer do not enter the inside, but the porosity (pore volume) of the composite particles is lowered and the effect of low refractive index is sufficient. It may not be obtained. In the case of hollow particles, if the particle wall thickness is less than 1 nm, the particle shape may not be maintained, and even if the thickness exceeds 20 nm, the low refractive index effect may not be sufficiently exhibited. .
[0088] 前記複合粒子の被覆層または空洞粒子の粒子壁は、シリカを主成分とすることが 好ましい。また複合粒子の被覆層または空洞粒子の粒子壁には、シリカ以外の成分 が含まれていてもよぐ具体的には、 Al O、 B O、 TiO、 ZrO、 SnO、 CeO、 P  [0088] It is preferable that the coating layer of the composite particles or the particle wall of the hollow particles has silica as a main component. In addition, the coating layer of the composite particle or the particle wall of the hollow particle may contain components other than silica. Specifically, Al O, B 2 O, TiO, ZrO, SnO, CeO, P
2 3 2 3 2 2 2 2 2 2 3 2 3 2 2 2 2 2
O、 Sb O、 MoO、 ZnO、 WOなどが挙げられる。複合粒子を構成する多孔質粒O, Sb 2 O, MoO, ZnO, WO and the like. Porous particles constituting composite particles
3 2 3 3 2 3 3 2 3 3 2 3
子としては、シリカからなるもの、シリカとシリカ以外の無機化合物とからなるもの、 Ca F、 NaF、 NaAlF、 MgFなどからなるものが挙げられる。この内特にシリカとシリカ以 Examples of the child include those made of silica, those made of silica and inorganic compounds other than silica, and those made of CaF, NaF, NaAlF, MgF, and the like. Of these, silica and silica
2 6 2 6
外の無機化合物との複合酸ィ匕物力 なる多孔質粒子が好適である。シリカ以外の無 機化合物としては、 Al O、 B O、 TiO、 ZrO、 SnO、 CeO、 P O、 Sb O、 MoO  Porous particles having a complex acidity with other inorganic compounds are preferred. Inorganic compounds other than silica include Al 2 O, B 2 O, TiO, ZrO, SnO, CeO, P 2 O, Sb 2 O, and MoO.
2 3 2 3 2 2 2 2 2 3 2 3 3 2 3 2 3 2 2 2 2 2 3 2 3 3
、 ZnO、 WO等との 1種または 2種以上を挙げることがで , ZnO, WO, etc.
2 3  twenty three
きる。  wear.
[0089] この様な多孔質粒子では、シリカを SiOで表し、シリカ以外の無機化合物を酸ィ匕物  In such porous particles, silica is represented by SiO and inorganic compounds other than silica are oxidized.
2  2
換算(MOx)で表したときのモル比 MOxZSiOが 0. 0001〜: L 0、好まし  Molar ratio when expressed in terms of conversion (MOx) MOxZSiO is from 0.0001 to L0, preferred
2  2
くは 0. 001〜0. 3の範囲にあることが望ましい。多孔質粒子のモル比 MOx/SiO  Or in the range of 0.001 to 0.3. Molar ratio of porous particles MOx / SiO
2 が 0. 0001未満のものは得ることが困難であり、得られたとしても更に屈折率が 低いものを得ることはない。また、多孔質粒子のモル比 MOxZSiOが 1. 0を越え  When 2 is less than 0.0001, it is difficult to obtain, and even if it is obtained, a material having a lower refractive index is not obtained. Also, the molar ratio of porous particles MOxZSiO exceeds 1.0.
2  2
ると、シリカの比率が少なくなるので細孔容積が小さぐ且つ屈折率の低い粒子を得 られないことがある。 As a result, the silica ratio is reduced, so that particles having a small pore volume and a low refractive index are obtained. It may not be possible.
[0090] この様な多孔質粒子の細孔容積は 0. 1〜1. 5mlZg、好ましくは 0. 2〜1. 5ml/ gの範囲であることが望ましい。細孔容積が 0. lmlZg未満では十分に屈折率の低 下した粒子が得られず、 1. 5mlZgを越えると微粒子の強度が低下し、得られる被膜 の強度が低下することがある。  [0090] The pore volume of such porous particles is desirably in the range of 0.1 to 1.5 mlZg, preferably 0.2 to 1.5 ml / g. If the pore volume is less than 0.1 mlZg, particles having a sufficiently low refractive index cannot be obtained, and if it exceeds 1.5 mlZg, the strength of the fine particles may be reduced, and the strength of the resulting coating may be reduced.
[0091] なお、この様な多孔質粒子の細孔容積は水銀圧入法によって求めることができる。  [0091] The pore volume of such porous particles can be determined by mercury porosimetry.
また、空洞粒子の内容物としては、粒子調製時に使用した溶媒、気体、多孔質物質 などが挙げられる。溶媒中には空洞粒子調製する際に使用される粒子前駆体の未 反応物、使用した触媒などが含まれていてもよい。また多孔質物質としては、前記多 孔質粒子で例示した化合物力 なるものが挙げられる。これらの内容物は単一の成 分力もなるものであってもよ 、が、複数成分の混合物であってもよ 、。  Examples of the contents of the hollow particles include a solvent, a gas, and a porous material used when preparing the particles. The solvent may contain unreacted particle precursors used in preparing the hollow particles, the catalyst used, and the like. Examples of the porous substance include those having the compound power exemplified in the porous particles. These contents may be a single component, or a mixture of multiple components.
[0092] この様な無機微粒子の製造方法としては、例えば、特開平 7— 133105号公報の 段落番号 [0010]〜[0033]に開示された複合酸ィ匕物コロイド粒子の調製方法が好 適に採用される。具体的には複合粒子がシリカ、シリカ以外の無機化合物とからなる 場合、以下の第 1〜第 3工程力 無機化合物粒子は製造される。  [0092] As a method for producing such inorganic fine particles, for example, the method for preparing composite oxide colloidal particles disclosed in paragraphs [0010] to [0033] of JP-A-7-133105 is preferable. Adopted. Specifically, when the composite particles are composed of silica and an inorganic compound other than silica, the following first to third step force inorganic compound particles are produced.
[0093] 第 1工程:多孔質粒子前駆体の調製  [0093] Step 1: Preparation of porous particle precursor
第 1工程では、予めシリカ原料とシリカ以外の無機化合物原料のアルカリ水溶液を 個別に調製するか、またはシリカ原料とシリカ以外の無機化合物原料との混合水溶 液を調製しておき、この水溶液を目的とする複合酸ィ匕物の複合割合に応じて、 pHIO 以上のアルカリ水溶液中に攪拌しながら徐々に添加して多孔質粒子前駆体を調製 する。  In the first step, an alkali aqueous solution of a silica raw material and an inorganic compound raw material other than silica is separately prepared in advance, or a mixed aqueous solution of a silica raw material and an inorganic compound raw material other than silica is prepared in advance. In accordance with the composite ratio of the composite oxide to be prepared, a porous particle precursor is prepared by gradually adding it to an alkaline aqueous solution of pHIO or more while stirring.
[0094] シリカ原料としては、アルカリ金属、アンモ-ゥムまたは有機塩基のケィ酸塩を用い る。アルカリ金属のケィ酸塩としては、ケィ酸ナトリウム (水ガラス)やケィ酸カリウムが 用いられる。有機塩基としては、テトラエチルアンモ -ゥム塩などの第 4級アンモ-ゥ ム塩、モノエタノールァミン、ジエタノールァミン、トリエタノールァミンなどのアミン類を 挙げることができる。なお、アンモ-ゥムのケィ酸塩または有機塩基のケィ酸塩には、 ケィ酸液にアンモニア、第 4級アンモ-ゥム水酸ィ匕物、アミンィ匕合物などを添加したァ ルカリ性溶液も含まれる。 [0095] また、シリカ以外の無機化合物の原料としては、アルカリ可溶の無機化合物を用い られる。具体的には、 Al、 B、 Ti、 Zr、 Sn、 Ce、 P、 Sb、 Mo、 Zn、 Wなどから選ばれる 元素のォキソ酸、該ォキソ酸のアルカリ金属塩またはアルカリ土類金属塩、アンモ- ゥム塩、第 4級アンモ-ゥム塩を挙げることができる。より具体的には、アルミン酸ナトリ ゥム、四硼酸ナトリウム、炭酸ジルコ二ルアンモ-ゥム、アンチモン酸カリウム、錫酸力 リウム、アルミノケィ酸ナトリウム、モリブデン酸ナトリウム、硝酸セリウムアンモニゥム、 燐酸ナトリウムが適当である。 [0094] As a silica raw material, an alkali metal, ammonium or an organic base silicate is used. As the alkali metal silicate, sodium silicate (water glass) or potassium silicate is used. Examples of organic bases include quaternary ammonium salts such as tetraethylammonium salts, and amines such as monoethanolamine, diethanolamine, and triethanolamine. Ammonium silicates or organic base silicates have alkaline properties in which ammonia, quaternary ammonium hydroxide, amine compounds, etc. are added to the key acid solution. Solutions are also included. [0095] Further, as a raw material for inorganic compounds other than silica, alkali-soluble inorganic compounds are used. Specifically, elemental oxoacids selected from Al, B, Ti, Zr, Sn, Ce, P, Sb, Mo, Zn, W, alkali metal salts or alkaline earth metal salts of the oxoacids, ammonia -Um salt, quaternary ammonia salt. More specifically, sodium aluminate, sodium tetraborate, zirconyl ammonium carbonate, potassium antimonate, potassium stannate, sodium aluminosilicate, sodium molybdate, cerium ammonium nitrate, sodium phosphate Is appropriate.
[0096] これらの水溶液の添加と同時に混合水溶液の pH値は変化する力 この pH値を所 定の範囲に制御するような操作は特に必要ない。水溶液は最終的に無機酸化物の 種類及びその混合割合によつて定まる pH値となる。このときの水溶液の添加速度に は特に制限はない。また、複合酸化物粒子の製造に際して、シード粒子の分散液を 出発原料と使用することも可能である。当該シード粒子としては特に制限はないが、 SiO、 Al O、 TiOまたは ZrO等の無機酸化物またはこれらの複合酸化物の微粒 [0096] Force of changing pH value of mixed aqueous solution simultaneously with addition of these aqueous solutions No particular operation is required to control this pH value within a predetermined range. The aqueous solution finally has a pH value determined by the type of inorganic oxide and its mixing ratio. There is no particular limitation on the addition rate of the aqueous solution at this time. Further, in the production of composite oxide particles, a dispersion of seed particles can be used as a starting material. The seed particles are not particularly limited, but inorganic oxides such as SiO, Al 2 O, TiO or ZrO or fine particles of these composite oxides
2 2 3 2 2 2 2 3 2 2
子が用いられ、通常、こ  A child is used, usually this
れらのゾルを用いることができる。更に前記の製造方法によって得られた多孔質粒子 前駆体分散液をシード粒子分散液としてもよ!ヽ。シード粒子分散液を使用する場合、 シード粒子分散液の pHを 10以上に調整した後、該シード粒子分散液中に前記化合 物の水溶液を、上記したアルカリ水溶液中に攪拌しながら添加する。この場合も必ず しも分散液の pH制御を行う必要はない。この様にしてシード粒子を用いると、調製す る多孔質粒子の粒径コントロールが容易であり、粒度の揃ったものを得ることができる  These sols can be used. Further, the porous particle precursor dispersion obtained by the above production method may be used as a seed particle dispersion. When the seed particle dispersion is used, the pH of the seed particle dispersion is adjusted to 10 or more, and then the aqueous solution of the compound is added to the above-described alkaline aqueous solution while stirring. In this case, it is not always necessary to control the pH of the dispersion. When seed particles are used in this way, it is easy to control the particle size of the porous particles to be prepared, and particles with uniform particle sizes can be obtained.
[0097] 上記したシリカ原料及び無機化合物原料はアルカリ側で高い溶解度を有する。し 力しながら、この溶解度の大き!/ヽ pH領域で両者を混合するとケィ酸イオン及びアルミ ン酸イオンなどのォキソ酸イオンの溶解度が低下し、これらの複合物が析出して微粒 子に成長したり、あるいはシード粒子上に析出して粒子成長が起る。従って、微粒子 の析出、成長に際して、従来法のような pH制御は必ずしも行う必要がない。 [0097] The silica raw material and the inorganic compound raw material described above have high solubility on the alkali side. However, when both are mixed in the pH range, the solubility of oxalate ions such as silicate and aluminate ions decreases, and these composites precipitate and grow into fine particles. Or precipitate on the seed particles to cause particle growth. Therefore, it is not always necessary to perform pH control as in the conventional method for precipitation and growth of fine particles.
[0098] 第 1工程におけるシリカとシリカ以外の無機化合物との複合割合は、シリカに対する 無機化合物を酸化物(MOx)に換算し、 MOxZSiOのモル比が 0. 05〜2. 0、好ま しくは 0. 2〜2. 0の範囲内にあることが望ましい。この範囲内において、シリカの割合 が少なくなる程、多孔質粒子の細孔容積が増大する。し力しながら、モル比が 2. 0を 越えても、多孔質粒子の細孔の容積は殆ど増加しない。他方、モル比が 0. 05未満 の場合は細孔容積が小さくなる。空洞粒子を調製する場合、 MOx/SiOのモル [0098] The composite ratio of silica and inorganic compound other than silica in the first step is preferably calculated by converting the inorganic compound to silica into oxide (MOx), and the molar ratio of MOxZSiO is 0.05 to 2.0. It is desirable that it is within the range of 0.2 to 2.0. Within this range, the pore volume of the porous particles increases as the proportion of silica decreases. However, even if the molar ratio exceeds 2.0, the pore volume of the porous particles hardly increases. On the other hand, when the molar ratio is less than 0.05, the pore volume becomes small. When preparing hollow particles, MOx / SiO mole
2 比 は 0. 25-2. 0の範囲内にあることが望ましい。  2 The ratio should be in the range of 0.25-2.
[0099] 第 2工程:多孔質粒子からのシリカ以外の無機化合物の除去 [0099] Second step: removal of inorganic compounds other than silica from the porous particles
第 2工程では、前記第 1工程で得られた多孔質粒子前駆体から、シリカ以外の無機 化合物 (珪素と酸素以外の元素)の少なくとも一部を選択的に除去する。具体的な除 去方法としては、多孔質粒子前駆体中の無機化合物を鉱酸ゃ有機酸を用いて溶解 除去したり、あるいは、陽イオン交換樹脂と接触させてイオン交換除去する。  In the second step, at least a part of inorganic compounds other than silica (elements other than silicon and oxygen) is selectively removed from the porous particle precursor obtained in the first step. As a specific removal method, the inorganic compound in the porous particle precursor is removed by dissolution using mineral acid or organic acid, or ion exchange removal by contacting with a cation exchange resin.
[0100] なお、第 1工程で得られる多孔質粒子前駆体は、珪素と無機化合物構成元素が酸 素を介して結合した網目構造の粒子である。この様に多孔質粒子前駆体力 無機化 合物 (珪素と酸素以外の元素)を除去することにより、一層多孔質で細孔容積の大き い多孔質粒子が得られる。また、多孔質粒子前駆体から無機酸化物 (珪素と酸素以 外の元素)を除去する量を多くすれば、空洞粒子を調製することができる。 [0100] The porous particle precursor obtained in the first step is a particle having a network structure in which silicon and an inorganic compound constituent element are bonded through oxygen. By removing the porous particle precursor force inorganic compound (elements other than silicon and oxygen) in this way, porous particles having a larger porosity and a larger pore volume can be obtained. Moreover, if the amount of removing the inorganic oxide (elements other than silicon and oxygen) from the porous particle precursor is increased, the hollow particles can be prepared.
[0101] また、多孔質粒子前駆体力もシリカ以外の無機化合物を除去するに先立って、第 1 工程で得られる多孔質粒子前駆体分散液に、シリカのアルカリ金属塩を脱アルカリし て得られるケィ酸液あるいは加水分解性の有機珪素化合物を添加してシリカ保護膜 を形成することが好ましい。シリカ保護膜の厚さは 0. 5〜15nmの厚さであればよい。 なおシリカ保護膜を形成しても、この工程での保護膜は多孔質であり厚さが薄いので 、前記したシリカ以外の無機化合物を多孔質粒子前駆体力 除去することは可能で ある。 [0101] In addition, the porous particle precursor force can be obtained by removing alkali metal salt of silica from the porous particle precursor dispersion obtained in the first step prior to removing inorganic compounds other than silica. It is preferable to form a silica protective film by adding a caustic acid solution or a hydrolyzable organosilicon compound. The thickness of the silica protective film may be 0.5 to 15 nm. Even when the silica protective film is formed, the protective film in this step is porous and thin, so that it is possible to remove the inorganic compound other than silica described above by the porous particle precursor force.
[0102] この様なシリカ保護膜を形成することによって、粒子形状を保持したまま、前記した シリカ以外の無機化合物を多孔質粒子前駆体力 除去することができる。また、後述 するシリカ被覆層を形成する際に、多孔質粒子の細孔が被覆層によって閉塞されて しまうことがなぐこのため細孔容積を低下させることなく後述するシリカ被覆層を形成 することができる。なお、除去する無機化合物の量が少ない場合は、粒子が壊れるこ とがな!/、ので必ずしも保護膜を形成する必要はな 、。 [0103] また空洞粒子を調製する場合は、このシリカ保護膜を形成しておくことが望ま 、。 空洞粒子を調製する際には、無機化合物を除去すると、シリカ保護膜と、該シリカ保 護膜内の溶媒、未溶解の多孔質固形分とからなる空洞粒子の前駆体が得られ、該 空洞粒子の前駆体に後述の被覆層を形成すると、形成された被覆層が粒子壁となり 空洞粒子が形成される。 [0102] By forming such a silica protective film, it is possible to remove the inorganic compound other than silica described above with the porous particle precursor force while maintaining the particle shape. Further, when forming the silica coating layer described later, the pores of the porous particles are not blocked by the coating layer, and therefore the silica coating layer described later can be formed without reducing the pore volume. it can. If the amount of inorganic compound to be removed is small, the particles will not break! /, So it is not always necessary to form a protective film. [0103] When preparing hollow particles, it is desirable to form this silica protective film. When preparing the hollow particles, the inorganic compound is removed to obtain a hollow particle precursor composed of a silica protective film, a solvent in the silica protective film, and an undissolved porous solid content. When a coating layer, which will be described later, is formed on the particle precursor, the formed coating layer becomes a particle wall to form hollow particles.
[0104] 上記シリカ保護膜形成のために添加するシリカ源の量は、粒子形状を保持できる範 囲で少ないことが好ましい。シリカ源の量が多過ぎると、シリカ保護膜が厚くなり過ぎ るので、多孔質粒子前駆体力 シリカ以外の無機化合物を除去することが困難となる ことがある。シリカ保護膜形成用に使用される加水分解性の有機珪素化合物としては 、一般式 R S  [0104] The amount of the silica source added for forming the silica protective film is preferably small as long as the particle shape can be maintained. When the amount of the silica source is too large, the silica protective film becomes too thick, and it may be difficult to remove inorganic compounds other than the porous particle precursor force silica. The hydrolyzable organosilicon compound used for forming the silica protective film has the general formula R S
i (ORf ) 〔R、R' :アルキル基、ァリール基、ビュル基、アクリル基等の炭化 i (OR f ) [R, R ': Carbonization of alkyl group, aryl group, bur group, acrylic group, etc.
4-n  4-n
水素基、 n=0、 1、 2または 3〕で表されるアルコキシシランを用いることができる。特に 、テトラメトキシシラン、テトラエトキシシラン、テトライソプロボキシシラン等のテトラァノレ コキシシランが好ましく用いられる。  An alkoxysilane represented by a hydrogen group, n = 0, 1, 2, or 3] can be used. In particular, tetraanoloxysilanes such as tetramethoxysilane, tetraethoxysilane, and tetraisopropoxysilane are preferably used.
[0105] 添加方法としては、これらのアルコキシシラン、純水、及びアルコールの混合溶液 に触媒としての少量のアルカリまたは酸を添加した溶液を、前記多孔質粒子の分散 液に加え、アルコキシシランを加水分解して生成したケィ酸重合物を無機酸ィ匕物粒 子の表面に沈着させる。このとき、アルコキシシラン、アルコール、触媒を同時に分散 液中に添カ卩してもよい。アルカリ触媒としては、アンモニア、アルカリ金属の水酸化物 、アミン類を用いることができる。また、酸触媒としては、各種の無機酸と有機酸を用 いることがでさる。 [0105] As an addition method, a solution obtained by adding a small amount of alkali or acid as a catalyst to a mixed solution of these alkoxysilane, pure water, and alcohol is added to the dispersion of the porous particles, and the alkoxysilane is hydrolyzed. The keyed acid polymer produced by decomposition is deposited on the surface of inorganic oxide particles. At this time, alkoxysilane, alcohol and catalyst may be simultaneously added to the dispersion. As the alkali catalyst, ammonia, an alkali metal hydroxide, or an amine can be used. As the acid catalyst, various inorganic acids and organic acids can be used.
[0106] 多孔質粒子前駆体の分散媒が水単独、または有機溶媒に対する水の比率が高!、 場合には、ケィ酸液を用いてシリカ保護膜を形成することも可能である。ケィ酸液を 用いる場合には、分散液中にケィ酸液を所定量添加し、同時にアルカリを加えてケィ 酸液を多孔質粒子表面に沈着させる。なお、ケィ酸液と上記アルコキシシランを併用 してシリカ保護膜を作製してもよ!/、。  [0106] In the case where the dispersion medium of the porous particle precursor is water alone or the ratio of water to the organic solvent is high, a silica protective film can be formed using a caustic acid solution. In the case of using a key acid solution, a predetermined amount of the key acid solution is added to the dispersion, and at the same time an alkali is added to deposit the key acid solution on the porous particle surface. In addition, a silica protective film may be produced by using a combination of a key acid solution and the above alkoxysilane! /.
[0107] 第 3工程:シリカ被覆層の形成  [0107] Step 3: Formation of silica coating layer
第 3工程では、第 2工程で調製した多孔質粒子分散液 (空洞粒子の場合は空洞粒 子前駆体分散液)に加水分解性の有機珪素化合物またはケィ酸液等を加えること〖こ より、粒子の表面を加水分解性有機珪素化合物またはケィ酸液等の重合物で被覆し てシリカ被覆層を形成する。 In the third step, the porous particle dispersion prepared in the second step (in the case of hollow particles, hollow particles By adding a hydrolyzable organosilicon compound or a key acid solution to the precursor precursor dispersion), the surface of the particles is coated with a polymer such as a hydrolyzable organosilicon compound or a key acid solution and coated with silica. Form a layer.
[0108] シリカ被覆層形成用に使用される加水分解性の有機珪素化合物としては、前記し たような一般式 R Si (OR' ) 〔R、 :アルキル基、ァリール基、ビュル基、アクリル  [0108] Examples of the hydrolyzable organosilicon compound used for forming the silica coating layer include the general formula R Si (OR ') [R,: alkyl group, aryl group, bur group, acrylic group as described above.
n 4-n  n 4-n
基等の炭化水素基、 n=0、 1、 2または 3〕で表されるアルコキシシランを用いることが できる。特に、テトラメトキシシラン、テトラエトキシシラン、テトライソプロボキシシラン等 のテトラアルコキシシランが好ましく用いられる。  A hydrocarbon group such as a group, and alkoxysilanes represented by n = 0, 1, 2 or 3] can be used. In particular, tetraalkoxysilanes such as tetramethoxysilane, tetraethoxysilane, and tetraisopropoxysilane are preferably used.
[0109] 添加方法としては、これらのアルコキシシラン、純水、及びアルコールの混合溶液 に触媒としての少量のアルカリまたは酸を添加した溶液を前記多孔質粒子 (空洞粒 子の場合は空洞粒子前駆体)分散液に加え、アルコキシシランを加水分解して生成 したケィ酸重合物を多孔質粒子 (空洞粒子の場合は空洞粒子前駆体)の表面に沈 着させる。このとき、アルコキシシラン、アルコール、触媒を同時に分散液中に添加し てもよい。アルカリ触媒としては、アンモニア、アルカリ金属の水酸ィ匕物、アミン類を用 いることができる。また、酸触媒としては、各種の無機酸と有機酸を用いることができる [0109] As the addition method, a solution obtained by adding a small amount of alkali or acid as a catalyst to a mixed solution of these alkoxysilane, pure water, and alcohol is used as the porous particles (in the case of hollow particles, hollow particle precursors). ) In addition to the dispersion, the carboxylic acid polymer produced by hydrolysis of alkoxysilane is deposited on the surface of the porous particles (in the case of hollow particles, the hollow particle precursor). At this time, alkoxysilane, alcohol, and catalyst may be simultaneously added to the dispersion. As the alkali catalyst, ammonia, an alkali metal hydroxide or an amine can be used. As the acid catalyst, various inorganic acids and organic acids can be used.
[0110] 多孔質粒子 (空洞粒子の場合は空洞粒子前駆体)の分散媒が水単独、または有機 溶媒との混合溶媒であって、有機溶媒に対する水の比率が高!ヽ混合溶媒の場合に は、ケィ酸液を用いて被覆層を形成してもよい。ケィ酸液とは、水ガラス等のアルカリ 金属ケィ酸塩の水溶液をイオン交換処理して脱アルカリしたケィ酸の低重合物の水 溶液である。 [0110] When the dispersion medium of porous particles (in the case of hollow particles, the hollow particle precursor) is water alone or a mixed solvent with an organic solvent and the ratio of water to the organic solvent is high! May form a coating layer using a caustic acid solution. The key acid solution is an aqueous solution of a low-polymerization product of key acid obtained by dealkalizing an aqueous solution of an alkali metal silicate such as water glass by ion exchange treatment.
[0111] ケィ酸液は多孔質粒子 (空洞粒子の場合は空洞粒子前駆体)分散液中に添加され [0111] The caustic acid solution is added to the dispersion of porous particles (in the case of hollow particles, hollow particle precursor).
、同時にアルカリを加えてケィ酸低重合物を多孔質粒子 (空洞粒子の場合は空洞粒 子前駆体)表面に沈着させる。なお、ケィ酸液を上記アルコキシシランと併用して被 覆層形成用に使用してもよ ヽ。被覆層形成用に使用される有機珪素化合物またはケ ィ酸液の添加量は、コロイド粒子の表面を十分被覆できる程度であればよぐ最終的 に得られるシリカ被覆層の厚さが l〜20nmとなるように量で多孔質粒子 (空洞粒子 の場合は空洞粒子前駆体)分散液中で添加される。また前記シリカ保護膜を形成し た場合はシリカ保護膜とシリカ被覆層の合計の厚さが l〜20nmの範囲となるような量 で、有機珪素化合物またはケィ酸液は添加される。 At the same time, alkali is added to deposit the low-key acid polymer on the surface of the porous particles (in the case of hollow particles, the hollow particle precursor). Note that the caustic acid solution may be used in combination with the above alkoxysilane for forming a covering layer. The amount of the organosilicon compound or the caustic acid solution used for forming the coating layer should be sufficient to cover the surface of the colloidal particles. The final silica coating layer thickness should be 1 to 20 nm. It is added in an amount so as to be in a dispersion of porous particles (in the case of hollow particles, hollow particle precursor). Also, the silica protective film is formed. In this case, the organosilicon compound or the caustic acid solution is added in such an amount that the total thickness of the silica protective film and the silica coating layer is in the range of 1 to 20 nm.
[0112] 次いで、被覆層が形成された粒子の分散液を加熱処理する。加熱処理によって、 多孔質粒子の場合は、多孔質粒子表面を被覆したシリカ被覆層が緻密化し、多孔質 粒子がシリカ被覆層によって被覆された複合粒子の分散液が得られる。また空洞粒 子前駆体の場合、形成された被覆層が緻密化して空洞粒子壁となり、内部が溶媒、 気体または多孔質固形分で充填された空洞を有する空洞粒子の分散液が得られる [0112] Next, the particle dispersion having the coating layer formed thereon is heat-treated. By the heat treatment, in the case of porous particles, the silica coating layer covering the surface of the porous particles is densified, and a dispersion of composite particles in which the porous particles are coated with the silica coating layer is obtained. In the case of a hollow particle precursor, the formed coating layer is densified to become hollow particle walls, and a dispersion of hollow particles having cavities filled with a solvent, gas, or porous solid content is obtained.
[0113] このときの加熱処理温度は、シリカ被覆層の微細孔を閉塞できる程度であれば特に 制限はなぐ 80〜300°Cの範囲が好ましい。加熱処理温度が 80°C未満では、シリカ 被覆層の微細孔を完全に閉塞して緻密化できないことがあり、また処理時間に長時 間を要してしまうことがある。また加熱処理温度が 300°Cを越えて長時間処理すると 緻密な粒子となることがあり、低屈折率の効果が得られないことがある。この様にして 得られた無機微粒子の屈折率は 1. 44未満と低い。この様な無機微粒子は多孔質 粒子内部の多孔性が保持されているか、内部が空洞であるので屈折率が低くなるも のと推察される。 [0113] The heat treatment temperature at this time is not particularly limited as long as it can close the fine pores of the silica coating layer, and is preferably in the range of 80 to 300 ° C. When the heat treatment temperature is less than 80 ° C, the fine pores of the silica coating layer may not be completely closed and densified, and the treatment time may take a long time. In addition, when the heat treatment temperature exceeds 300 ° C for a long time, fine particles may be formed, and the effect of low refractive index may not be obtained. The refractive index of the inorganic fine particles obtained in this way is as low as less than 1.44. Such inorganic fine particles are presumed to have a low refractive index because they retain the porosity inside the porous particles or are hollow inside.
[0114] 低屈折率層のバインダーマトリックスとしては、熱または電離放射線により架橋する 含フッ素榭脂 (以下、「架橋前の含フッ素榭脂」ともいう)も好ましく用いられる。  [0114] As the binder matrix of the low refractive index layer, a fluorine-containing resin that is crosslinked by heat or ionizing radiation (hereinafter also referred to as "fluorine-containing resin before crosslinking") is preferably used.
[0115] 架橋前の含フッ素榭脂としては、含フッ素ビュルモノマーと架橋性基付与のための モノマー力 形成される含フッ素共重合体を好ましく挙げることができる。上記含フッ 素ビュルモノマー単位の具体例としては、例えば、フルォロォレフイン類 (例えば、フ ルォロエチレン、ビ-リデンフルオライド、テトラフルォロエチレン、へキサフルォロェ チレン、へキサフルォロプロピレン、パーフルオロー 2, 2—ジメチルー 1, 3—ジォキ ソール等)、(メタ)アクリル酸の部分または完全フッ素化アルキルエステル誘導体類 ( 例えば、ビスコート 6FM (大阪有機化学製)や M— 2020 (ダイキン製)等)、完全また は部分フッ素化ビニルエーテル類等が挙げられる。  [0115] Preferred examples of the fluorinated resin before crosslinking include a fluorinated copolymer and a fluorinated copolymer formed with a monomer force for imparting a crosslinkable group. Specific examples of the above-mentioned fluorine-containing monomer unit include, for example, fluoroolefins (for example, fluoroethylene, vinylidene fluoride, tetrafluoroethylene, hexafluoroethylene, hexafluoropropylene, Perfluoro-2,2-dimethyl-1,3-dioxole), partially (meth) acrylic acid or fully fluorinated alkyl ester derivatives (for example, Biscoat 6FM (Osaka Organic Chemical) or M-2020 (Daikin)) ), Fully or partially fluorinated vinyl ethers.
[0116] 架橋性基付与のためのモノマーとしては、グリシジルメタタリレートや、ビュルトリメト キシシラン、 γ—メタクリロイルォキシプロピルトリメトキシシラン、ビニルダリシジルェ 一テル等のように分子内に予め架橋性官能基を有するビニルモノマーの他、カルボ キシル基ゃヒドロキシル基、アミノ基、スルホン酸基等を有するビニルモノマー(例え ば、(メタ)アクリル酸、メチロール (メタ)アタリレート、ヒドロキシアルキル (メタ)アタリレ ート、ァリルアタリレート、ヒドロキシアルキルビュルエーテル、ヒドロキシアルキルァリ ルエーテル等)が挙げられる。後者は共重合の後、ポリマー中の官能基と反応する基 ともう 1つ以上の反応性基を持つ化合物を加えることにより、架橋構造を導入できるこ とが特開平 10— 25388号、同 10— 147739号の各公報に記載されている。架橋性 基の例には、アタリロイル、メタクリロイル、イソシアナート、エポキシ、アジリジン、ォキ サゾリン、アルデヒド、カルボニル、ヒドラジン、カルボキシル、メチロール及び活性メ チレン基等が挙げられる。 [0116] Monomers for imparting a crosslinkable group include glycidyl methacrylate, butyltrimethyoxysilane, γ-methacryloyloxypropyltrimethoxysilane, and vinyldaricidyl ester. In addition to vinyl monomers having a crosslinkable functional group in the molecule as in the case of TEL, etc., vinyl monomers having a carboxyl group, a hydroxyl group, an amino group, a sulfonic acid group, etc. (for example, (meth) acrylic acid, methylol) (Meth) acrylate, hydroxyalkyl (meth) acrylate, aryl acrylate, hydroxyalkyl butyl ether, hydroxyalkyl butyl ether, etc.). In the latter case, it is possible to introduce a crosslinked structure after copolymerization by adding a compound that reacts with a functional group in the polymer and one or more reactive groups. — It is described in each publication of No. 147739. Examples of the crosslinkable group include attalyloyl, methacryloyl, isocyanate, epoxy, aziridine, oxazoline, aldehyde, carbonyl, hydrazine, carboxyl, methylol, and active methylene group.
[0117] 含フッ素共重合体が加熱により反応する架橋基、もしくはエチレン性不飽和基と熱 ラジカル発生剤もしくはエポキシ基と熱酸発生剤等の組み合わせにより、加熱により 架橋する場合、熱硬化型であり、エチレン性不飽和基と光ラジカル発生剤、もしくは エポキシ基と光酸発生剤等の組み合わせにより、光 (好ましくは紫外線、電子ビーム 等)の照射により架橋する場合、電離放射線硬化型である。  [0117] When the fluorine-containing copolymer is crosslinked by heating with a crosslinking group that reacts by heating, or a combination of an ethylenically unsaturated group and a thermal radical generator or an epoxy group and a thermal acid generator, the thermosetting type is used. In the case of crosslinking by irradiation with light (preferably ultraviolet rays, electron beams, etc.) by a combination of an ethylenically unsaturated group and a photo radical generator, or an epoxy group and a photo acid generator, the ionizing radiation curable type is used.
[0118] また上記モノマーにカ卩えて、含フッ素ビュルモノマー及び架橋性基付与のための モノマー以外のモノマーを併用して形成された含フッ素共重合体を架橋前の含フッ 素榭脂として用いてもよい。併用可能なモノマーには特に限定はなぐ例えば、ォレ フィン類(エチレン、プロピレン、イソプレン、塩化ビュル、塩化ビ-リデン等)、アクリル 酸エステル類(アクリル酸メチル、アクリル酸メチル、アクリル酸ェチル、アクリル酸 2— ェチルへキシル)、メタクリル酸エステル類(メタクリル酸メチル、メタクリル酸ェチル、メ タクリル酸ブチル、エチレングリコールジメタタリレート等)、スチレン誘導体 (スチレン、 ジビュルベンゼン、ビュルトルエン、 aーメチルスチレン等)、ビュルエーテル類(メチ ルビニルエーテル等)、ビニルエステル類(酢酸ビニル、プロピオン酸ビニル、桂皮酸 ビュル等)、アクリルアミド類(N— tertブチルアクリルアミド、 N—シクロへキシルアタリ ルアミド等)、メタクリルアミド類、アクリロニトリル誘導体等を挙げることができ る。 [0118] In addition to the above monomer, a fluorine-containing copolymer formed by using a monomer other than the fluorine-containing bull monomer and the monomer for imparting a crosslinkable group is used as a fluorine-containing resin before crosslinking. May be. For example, olefins (ethylene, propylene, isoprene, butyl chloride, vinylidene chloride, etc.), acrylates (methyl acrylate, methyl acrylate, ethyl acrylate, 2-ethylhexyl acrylate), methacrylates (methyl methacrylate, ethyl methacrylate, butyl methacrylate, ethylene glycol dimethacrylate, etc.), styrene derivatives (styrene, dibutenebenzene, butyltoluene, a- methylstyrene, etc.) ), Butyl ethers (such as methyl vinyl ether), vinyl esters (such as vinyl acetate, vinyl propionate, and cinnamate bur), acrylamides (such as N-tertbutylacrylamide, N-cyclohexylatrylamide), and methacrylamides , Acrylo Ru can be mentioned tolyl derivatives and the like.
[0119] また、含フッ素共重合体中に滑り性、防汚性付与のため、ポリオルガノシロキサン骨 格やパーフルォロポリエーテル骨格を導入することも好ましい。これは、例えば、末端 にアクリル基、メタクリル基、ビュルエーテル基、スチリル基等を持つポリオルガノシロ キサンやパーフルォロポリエーテルと上記のモノマーとの重合、末端にラジカル発生 基を持つポリオルガノシロキサンやパーフルォロポリエーテルによる上記モノマーの 重合、官能基を持つポリオルガノシロキサンやパーフルォロポリエーテルと含フッ素 共重合体との反応等によって得られる。 [0119] In addition, polyorganosiloxane bones are added to the fluorine-containing copolymer to provide slipperiness and antifouling properties. It is also preferable to introduce a case or a perfluoropolyether skeleton. This is because, for example, polyorganosiloxane or perfluoropolyether having an acrylic group, methacrylic group, butyl ether group, styryl group or the like at the terminal is polymerized with the above monomer, or a polyorganoyl having a radical generating group at the terminal. It can be obtained by polymerization of the above monomers with siloxane or perfluoropolyether, reaction of a polyorganosiloxane or perfluoropolyether having a functional group with a fluorine-containing copolymer, or the like.
[0120] 架橋前の含フッ素共重合体を形成するために用いられる上記各モノマーの使用割 合は、含フッ素ビュルモノマーが好ましくは 20〜70モル0 /0、より好ましくは 40〜70モ ル0 /0、架橋性基付与のためのモノマーが好ましくは 1〜20モル0 /0、より好ましくは 5〜 20モル0 /0、併用されるその他のモノマーが好ましくは 10〜70モル0 /0、より好ましくは 10〜50モル0 /0の割合である。 [0120] Use percentage of each monomer used to form the fluorine-containing copolymer before crosslinking, a fluorine-containing Bulle monomer preferably 20 to 70 mole 0/0, more preferably 40 to 70 molar 0/0, the crosslinking monomer is preferably 1 to 20 mol 0/0 for groups imparting, more preferably 5-20 mole 0/0, preferably other monomers to be used in combination 10 to 70 mole 0/0 , more preferably a ratio of 10 to 50 mole 0/0.
[0121] 含フッ素共重合体は、これらモノマーをラジカル重合開始剤の存在下で溶液重合、 塊状重合、乳化重合、懸濁重合法等の手段により重合することにより得ることができ る。  [0121] The fluorine-containing copolymer can be obtained by polymerizing these monomers in the presence of a radical polymerization initiator by means of solution polymerization, bulk polymerization, emulsion polymerization, suspension polymerization or the like.
[0122] 架橋前の含フッ素榭脂は市販されており、使用することができる。市販されている架 橋前の含フッ素榭脂の例としては、サイトップ (旭硝子製)、テフロン (登録商標) AF ( デュポン製)、ポリフッ化ビ-リデン、ルミフロン (旭硝子製)、ォプスター CFSR製)等が 挙げられる。  [0122] The fluorine-containing resin before crosslinking is commercially available and can be used. Examples of commercially available fluorinated resin in front of a bridge include Cytop (Asahi Glass), Teflon (registered trademark) AF (DuPont), polyvinylidene fluoride, Lumiflon (Asahi Glass), Opster CFSR ) And the like.
[0123] 架橋した含フッ素榭脂を構成成分とする低屈折率層は、動摩擦係数が 0. 03〜0.  [0123] The low refractive index layer comprising a cross-linked fluorine-containing resin as a constituent component has a coefficient of dynamic friction of 0.03 to 0.00.
15の範囲、水に対する接触角が 90〜 120度の範囲にあることが好まし 、。  It is preferable that the contact angle to water is in the range of 15 to 15 degrees, in the range of 15.
[0124] 架橋した含フッ素榭脂を構成成分とする低屈折率層は前述の無機粒子を含有する [0124] The low refractive index layer containing a cross-linked fluorine-containing resin as a constituent component contains the aforementioned inorganic particles.
[0125] また、他の低屈折率層用のバインダーマトリックスとして、各種ゾルゲル素材を用い ることもできる。この様なゾルゲル素材としては、金属アルコレート(シラン、チタン、ァ ルミ-ゥム、ジルコニウム等のアルコレート)、オルガノアルコキシ金属化合物及びそ の加水分解物を用いることができる。特に、アルコキシシラン、オルガノアルコキシシ ラン及びその加水分解物が好ましい。これらの例としては、テトラアルコキシシラン (テ トラメトキシシラン、テトラエトキシシラン等)、アルキルトリアルコキシシラン (メチルトリメ トキシシラン、ェチルトリメトキシシラン等)、ァリールトリアルコキシシラン(フエ-ルトリ メトキシシラン等)、ジアルキルジアルコキシシラン、ジァリールジアルコキシシラン等 が挙げられる。また、各種の官能基を有するオルガノアルコキシシラン (ビュルトリアル コキシシラン、メチルビニルジアルコキシシラン、 γ—グリシジルォキシプロピルトリア ルコキシシラン、 Ίーグリシジルォキシプロピルメチルジアルコキシシラン、 j8 —(3, 4 —ェポキジシクロへキシル)ェチルトリアルコキシシラン、 Ί—メタクリロイルォキシプロ ピルトリアルコキシシラン、 γ—ァミノプロピルトリアルコキシシラン、 γ—メルカプトプ 口ピルトリアルコキシシラン、 γ—クロ口プロピルトリアルコキシシラン等)、パーフルォ 口アルキル基含有シランィ匕合物(例えば、(ヘプタデカフルオロー 1, 1, 2, 2—テトラ デシル)トリエトキシシラン、 3, 3, 3—トリフルォロプロピルトリメトキシシラン等)、フル ォロアルキルエーテル基含有シランィ匕合物を用いることも好まし 、。特にフッ素含有 のシランィ匕合物を用いることは、層の低屈折率ィ匕及び撥水 ·撥油性付与の点で好ま しい。 [0125] Various sol-gel materials can also be used as a binder matrix for other low refractive index layers. As such sol-gel materials, metal alcoholates (alcohols such as silane, titanium, aluminum, zirconium, etc.), organoalkoxy metal compounds and hydrolysates thereof can be used. In particular, alkoxysilane, organoalkoxysilane, and a hydrolyzate thereof are preferable. Examples of these include tetraalkoxysilane (tetramethoxysilane, tetraethoxysilane, etc.), alkyltrialkoxysilane (methyltrimethylsilane). Toxisilane, etyltrimethoxysilane, etc.), aryl trialkoxysilane (phenol trimethoxysilane, etc.), dialkyl dialkoxysilane, dialyl dialkoxysilane, and the like. In addition, organoalkoxysilanes with various functional groups (butyralkoxysilane, methylvinyl dialkoxysilane, γ-glycidyloxypropyltrialkoxysilane, グ リ -glycidyloxypropylmethyl dialkoxysilane, j8 — (3,4-epoxycyclohexane) Hexyl ) ethyltrialkoxysilane, Ί -methacryloyloxypropyltrialkoxysilane, γ-aminopropyltrialkoxysilane, γ-mercaptopyltrialtrialkoxysilane, γ-chloropropyltrialkoxysilane, etc.), perfluoro Silane compounds containing an alkyl group (for example, (heptadecafluoro-1,1,2,2-tetradecyl) triethoxysilane, 3,3,3-trifluoropropyltrimethoxysilane, etc.), fluoro Alkyl ether group-containing It is also preferable to use a Ni 匕合 thereof. In particular, the use of a fluorine-containing silane compound is preferable in terms of providing a layer with a low refractive index and imparting water and oil repellency.
[0126] 前述のオルガノアルコキシ金属化合物及びその加水分解物は、また酸触媒として は、塩  [0126] The aforementioned organoalkoxy metal compound and the hydrolyzate thereof may be used as an acid catalyst.
酸、硝酸などの無機酸と蟻酸、酢酸、トリクロ口酢酸、蓚酸、クェン酸などの有機酸を 用いることができる。更に低屈折率層の物性改善のため、塗布組成物中に金属化合 物を含有することが好まし 、。  Inorganic acids such as acid and nitric acid and organic acids such as formic acid, acetic acid, trichloroacetic acid, succinic acid, and citrate can be used. In order to further improve the physical properties of the low refractive index layer, it is preferable that the coating composition contains a metal compound.
[0127] 金属化合物の具体例としては、トリ— η—ブトキシェチルァセトアセテートジルコユウ ム、ジ— η—ブトキシビス(ェチルァセトアセテート)ジルコニウム、 η—ブトキシトリス(ェ チノレアセトアセテート)ジルコニウム、テトラキス(η—プロピルァセトアセテート)ジルコ ユウム、テトラキス(ァセチルァセトアセテート)ジルコニウム、テトラキス(ェチルァセト アセテート)ジルコニウムなどのジルコニウム化合物;ジイソプロポキシ ·ビス(ェチルァ セトアセテート)チタニウム、ジイソプロポキシ 'ビス(ァセチノレアセテート)チタニウム、 ジイソプロポキシ 'ビス(ァセチルアセトン)チタニウムなどのチタニウム化合物;ジイソ プロポキシェチノレアセトアセテートァノレミニゥム、ジイソプロポキシァセチノレアセトナー トアルミニウム、イソプロポキシビス(ェチルァセトアセテート)アルミニウム、イソプロボ キシビス(ァセチルァセトナート)ァノレミ-ゥム、トリス(ェチノレアセトアセテート)アルミ- ゥム、トリス(ァセチルァセトナート)アルミニウム、モノァセチルァセトナート 'ビス(ェチ ルァセトアセテート)アルミニウムなどのアルミニウム化合物などが挙げられる。 Specific examples of the metal compound include tri-η-butoxychelacetoacetate zirconium, di-η-butoxybis (ethylacetoacetate) zirconium, η-butoxytris (ethinoreacetoacetate). Zirconium compounds such as zirconium, tetrakis (η-propylacetoacetate) zirconium, tetrakis (acetylacetoacetate) zirconium, tetrakis (ethylacetoacetate) zirconium; diisopropoxybis (ethylacetoacetate) titanium, diisopropoxy 'Bis (acetinoreacetate) titanium, diisopropoxy' Titanium compounds such as' bis (acetylacetone) titanium; diisopropoxychetinoreacetoacetate anoreminium, diisopropoxyacetino Asetona DOO aluminum, isopropoxybis (E chill § Seth acetate) aluminum, Isopurobo Kishibisu (§ cetyl § Seth diisocyanate) Anoremi - © beam, tris (E Chino Les acetoacetate) aluminum - And aluminum compounds such as aluminum, tris (acetylacetate) aluminum, monoacetylacetylate'bis (ethylacetoacetate) aluminum, and the like.
[0128] これらの金属化合物のうち好ましいものは、トリー n—ブトキシェチルァセトァセテー トジルコニウム、ジイソプロポキシビス(ァセチノレアセトナート)チタニウム、ジイソプロボ キシェチルァセトアセテートアルミニウム、トリス(ェチルァセトアセテート)アルミニウム である。  [0128] Among these metal compounds, preferred are tri-n-butoxychetylacetate zirconium, diisopropoxybis (acetinoreacetonate) titanium, diisopropoxychetylacetate aluminum, tris (ester). Tylacetoacetate) aluminum.
[0129] これらの金属化合物は 1種単独であるいは 2種以上混合して使用することができる。  [0129] These metal compounds may be used alone or in combination of two or more.
また、これらの金属化合物の部分加水分解物を使用することもできる。金属化合物の 組成物中の割合は、ゾル液の原料であるオルガノシランに対し、 0. 01〜50質量0 /0、 好ましくは 0. 1〜50質量%、更に好ましくは 0. 5〜10質量%である。 Moreover, the partial hydrolyzate of these metal compounds can also be used. Ratio in the composition of the metal compound relative to the organosilane as a raw material in the sol solution, from 0.01 to 50 weight 0/0, preferably from 0.1 to 50 wt%, more preferably from 0.5 to 10 mass %.
[0130] 低屈折率層は 5〜50質量%の量のポリマーを含むことが好ましい。ポリマーは微粒 子を接着し、空隙を含む低屈折率層の構造を維持する機能を有する。ポリマーの使 用量は、空隙を充填することなく低屈折率層の強度を維持できるように調整する。ポリ マーの量は低屈折率層の全量の 10〜30質量%であることが好ましい。  [0130] The low refractive index layer preferably contains the polymer in an amount of 5 to 50% by mass. The polymer has a function of adhering the fine particles and maintaining the structure of the low refractive index layer including voids. The amount of polymer used is adjusted so that the strength of the low refractive index layer can be maintained without filling the voids. The amount of the polymer is preferably 10 to 30% by mass of the total amount of the low refractive index layer.
[0131] ポリマーで微粒子を接着するためには、(1)微粒子の表面処理剤にポリマーを結 合させる力、(2)微粒子をコアとして、その周囲にポリマーシェルを形成する力 ある いは(3)微粒子間のバインダーとして、ポリマーを使用することが好ましい。(1)の表 面処理剤に結合させるポリマーは、(2)のシェルポリマーまたは(3)のバインダーポリ マーであることが好ましい。(2)のポリマーは、低屈折率層の塗布液の調製前に微粒 子の周囲に重合反応により形成することが好ましい。(3)のポリマーは、低屈折率層 の塗布液にモノマーを添加し、低屈折率層の塗布と同時または塗布後に、重合反応 により形成することが好まし 、。上記(1)〜(3)の内の二つまたは全てを組み合わせ て実施することが好ましぐ(1)と(3)の組み合わせ、または(1)〜(3)全ての組み合 わせで実施することが特に好ましい。 (1)表面処理、(2)シェル及び(3)バインダーに ついて順次説明する。  [0131] In order to adhere the fine particles with the polymer, (1) the force to bind the polymer to the surface treatment agent of the fine particles, (2) the force to form a polymer shell around the fine particles as the core or ( 3) It is preferable to use a polymer as a binder between fine particles. The polymer to be bonded to the surface treating agent of (1) is preferably a shell polymer of (2) or a binder polymer of (3). The polymer (2) is preferably formed around the fine particles by a polymerization reaction before preparing the coating solution for the low refractive index layer. The polymer (3) is preferably formed by adding a monomer to the coating solution for the low refractive index layer, and by a polymerization reaction simultaneously with or after the coating of the low refractive index layer. It is preferable to implement a combination of two or all of the above (1) to (3) (1) and (3), or (1) to (3) all combinations It is particularly preferable to do this. (1) Surface treatment, (2) Shell and (3) Binder will be explained in order.
[0132] (1)表面処理  [0132] (1) Surface treatment
微粒子 (特に無機微粒子)には、表面処理を実施してポリマーとの親和性を改善す ることが好ま U、。表面処理はプラズマ放電処理やコロナ放電処理のような物理的表 面処理と、カップリング剤を使用する化学的表面処理に分類できる。化学的表面処 理のみ、または物理的表面処理と化学的表面処理の組み合わせで実施することが 好ましい。カップリング For fine particles (especially inorganic fine particles), it is preferable to improve the affinity with the polymer by surface treatment. The surface treatment is a physical surface such as plasma discharge treatment or corona discharge treatment. It can be classified into surface treatment and chemical surface treatment using a coupling agent. It is preferable to carry out only chemical surface treatment or a combination of physical surface treatment and chemical surface treatment. Coupling
剤としては、オルガノアルコキシメタルイ匕合物(例えば、チタンカップリング剤、シラン カップリング剤)が好ましく用いられる。微粒子が SiOカゝらなる場合は、シランカツ  As the agent, an organoalkoxy metal compound (for example, a titanium coupling agent or a silane coupling agent) is preferably used. If the fine particles are made of SiO,
2  2
プリング剤による表面処理が特に有効に実施できる。具体的なシランカップリング剤 の例としては、後述するシランカップリング剤が好ましく用いられる。  Surface treatment with a pulling agent can be carried out particularly effectively. As a specific example of the silane coupling agent, a silane coupling agent described later is preferably used.
[0133] カップリング剤による表面処理は、微粒子の分散物にカップリング剤をカ卩え、室温か ら 60°Cまでの温度で、数時間から 10日間分散物を放置することにより実施できる。表 面処理反応を促進するため、無機酸 (例えば、硫酸、塩酸、硝酸、クロム酸、次亜塩 素酸、ホウ酸、オルトケィ酸、リン酸、炭酸)、有機酸 (例えば、酢酸、ポリアクリル酸、 ベンゼンスルホン酸、フエノール、ポリグルタミン酸)、またはこれらの塩(例えば、金属 塩、アンモ-ゥム塩)を、分散物に添加してもよい。  [0133] The surface treatment with a coupling agent can be carried out by adding a coupling agent to a dispersion of fine particles and leaving the dispersion at a temperature from room temperature to 60 ° C for several hours to 10 days. In order to accelerate the surface treatment reaction, inorganic acids (eg, sulfuric acid, hydrochloric acid, nitric acid, chromic acid, hypochlorous acid, boric acid, orthokeic acid, phosphoric acid, carbonic acid), organic acids (eg, acetic acid, polyacrylic acid) Acid, benzenesulfonic acid, phenol, polyglutamic acid), or salts thereof (eg, metal salts, ammonium salts) may be added to the dispersion.
[0134] (2)シェル  [0134] (2) Shell
シェルを形成するポリマーは、飽和炭化水素を主鎖として有するポリマーであること が好ましい。フッ素原子を主鎖または側鎖に含むポリマーが好ましぐフッ素原子を 側鎖に含むポリマーが更に好まし 、。ポリアクリル酸エステルまたはポリメタクリル酸ェ ステルが好ましぐフッ素置換アルコールとポリアクリル酸またはポリメタクリル酸とのェ ステルが最も好ましい。シェルポリマーの屈折率は、ポリマー中のフッ素原子の含有 量の増加に伴い低下する。低屈折率層の屈折率を低下させるため、シェルポリマー は 35〜80質量%のフッ素原子を含むことが好ましぐ 45〜75質量%のフッ素原子 を含むことが更に好ましい。フッ素原子を含むポリマーは、フッ素原子を含むェチレ ン性不飽和モノマーの重合反応により合成することが好ま U、。フッ素原子を含むェ チレン性不飽和モノマーの例としては、フルォロォレフイン(例えば、フルォロェチレ ン、ビ-リデンフルオライド、テトラフルォロエチレン、へキサフルォロプロピレン、パー フルオロー 2, 2—ジメチルー 1, 3—ジォキノール)、フッ素化ビュルエーテル及びフ ッ素置換アルコールとアクリル酸またはメタクリル酸とのエステルが挙げられる。  The polymer forming the shell is preferably a polymer having a saturated hydrocarbon as the main chain. A polymer containing a fluorine atom in the main chain or side chain is preferred, and a polymer containing a fluorine atom in the side chain is more preferred. Most preferred are esters of fluorine-substituted alcohols with polyacrylic acid esters or polymethacrylic acid esters and polyacrylic acid or polymethacrylic acid. The refractive index of the shell polymer decreases as the fluorine atom content in the polymer increases. In order to lower the refractive index of the low refractive index layer, the shell polymer preferably contains 35 to 80% by mass of fluorine atoms, and more preferably contains 45 to 75% by mass of fluorine atoms. Polymers containing fluorine atoms are preferably synthesized by the polymerization reaction of ethylenically unsaturated monomers containing fluorine atoms. Examples of ethylenically unsaturated monomers containing fluorine atoms include fluoroolefins (eg, fluoroethylene, vinylidene fluoride, tetrafluoroethylene, hexafluoropropylene, perfluoro 2, 2 -Dimethyl-1,3-dioquinol), fluorinated butyl ether and esters of fluorine-substituted alcohols with acrylic acid or methacrylic acid.
[0135] シェルを形成するポリマーは、フッ素原子を含む繰り返し単位とフッ素原子を含まな V、繰り返し単位力もなるコポリマーであってもよ 、。フッ素原子を含まな!/、繰り返し単 位は、フッ素原子を含まないエチレン性不飽和モノマーの重合反応により得ることが 好ましい。フッ素原子を含まないエチレン性不飽和モノマーの例としては、ォレフィン (例えば、エチレン、プロピレン、イソプレン、塩化ビュル、塩化ビ-リデン)、アクリル 酸エステル(例えば、アクリル酸メチル、アクリル酸ェチル、アクリル酸 2—ェチルへキ シル)、メタクリル酸エステル(例えば、メタクリル酸メチル、メタクリル酸ェチル、メタタリ ル酸ブチル、エチレングリコールジメタタリレート)、スチレン及びその誘導体(例えば 、スチレン、ジビュルベンゼン、ビュルトルエン、 a—メチルスチレン)、ビュルエーテ ル(例えば、メチルビ-ルエーテル)、ビュルエステル(例えば、酢酸ビニル、プロピオ ン酸ビュル、桂皮酸ビュル)、アクリルアミド (例えば、 N— tertブチルアクリルアミド、 N—シクロへキシルアクリルアミド)、メタクリルアミド及びアクリロニトリルが挙げられる。 [0135] The polymer forming the shell does not contain a repeating unit containing a fluorine atom and a fluorine atom. V, may be a copolymer with repeating unit power. The fluorine atom-free // repeating unit is preferably obtained by a polymerization reaction of an ethylenically unsaturated monomer not containing a fluorine atom. Examples of ethylenically unsaturated monomers that do not contain fluorine atoms include olefins (eg, ethylene, propylene, isoprene, butyl chloride, vinylidene chloride), acrylate esters (eg, methyl acrylate, ethyl acrylate, acrylic acid). 2-ethyl hexyl), methacrylic acid esters (for example, methyl methacrylate, ethyl methacrylate, butyl metatalylate, ethylene glycol dimetatalylate), styrene and its derivatives (for example, styrene, dibutylbenzene, butyltoluene, a -methylstyrene), butyl ether (eg, methyl butyl ether), butyl ester (eg, vinyl acetate, propionate butyl, cinnamate butyl), acrylamide (eg, N-tertbutyl acrylamide, N-cyclohexyl acryl) Ami ), Methacrylamide and acrylonitrile.
[0136] 後述する(3)のバインダーポリマーを併用する場合は、シェルポリマーに架橋性官 能基を導入して、シェルポリマーとバインダーポリマーとを架橋により化学的に結合さ せてもよい。シェルポリマーは結晶性を有していてもよい。シェルポリマーのガラス転 移温度 (Tg)が低屈折率層の形成時の温度よりも高!、と、低屈折率層内のミクロボイ ドの維持が容易である。但し、 Tgが低屈折率層の形成時の温度よりも高いと、微粒子 が融着せず、低屈折率層が連続層として形成されない (その結果、強度が低下する) 場合がある。その場合は、後述する(3)のバインダーポリマーを併用し、ノインダーポ リマーにより低屈折率層を連続層として形成することが望ましい。微粒子の周囲にポ リマーシェルを形成して、コアシェル微粒子が得られる。コアシェル微粒子中に無機 微粒子力もなるコアが 5 [0136] When the binder polymer (3) described later is used in combination, a crosslinkable functional group may be introduced into the shell polymer to chemically bond the shell polymer and the binder polymer by crosslinking. The shell polymer may have crystallinity. The glass transition temperature (Tg) of the shell polymer is higher than the temperature at the time of forming the low refractive index layer, and it is easy to maintain the microvoids in the low refractive index layer. However, if Tg is higher than the temperature at which the low refractive index layer is formed, the fine particles are not fused, and the low refractive index layer may not be formed as a continuous layer (resulting in a decrease in strength). In that case, it is desirable to use the binder polymer (3) described later in combination, and to form the low refractive index layer as a continuous layer with a noinder polymer. By forming a polymer shell around the fine particles, core-shell fine particles can be obtained. There are 5 cores in the core-shell particles that have inorganic fine-particle strength.
〜90体積0 /0含まれていることが好ましぐ 15〜80体積0 /0含まれていることが更に好 ましい。二種類以上のコアシェル微粒子を併用してもよい。また、シェルのない無機 微粒子とコアシェル粒子とを併用してもょ 、。 It is further favorable preferable that it is contained preferably fixture 15-80 volume 0/0 contained 90 volume 0/0. Two or more kinds of core-shell fine particles may be used in combination. Also, use inorganic fine particles without shell and core shell particles together.
[0137] (3)バインダー [0137] (3) Binder
ノインダーポリマーは飽和炭化水素またはポリエーテルを主鎖として有するポリマ 一であることが好ましぐ飽和炭化水素を主鎖として有するポリマーであることが更に 好ましい。バインダーポリマーは架橋していることが好ましい。飽和炭化水素を主鎖と して有するポリマーは、エチレン性不飽和モノマーの重合反応により得ることが好まし い。架橋しているノインダーポリマーを得るためには、 2以上のエチレン性不飽和基 を有するモノマーを用いることが好まし 、。 More preferably, the Noinder polymer is a polymer having a saturated hydrocarbon as the main chain, preferably a polymer having a saturated hydrocarbon or a polyether as the main chain. The binder polymer is preferably crosslinked. Saturated hydrocarbon as main chain It is preferable to obtain the polymer obtained by the polymerization reaction of ethylenically unsaturated monomers. In order to obtain a cross-linked Noinder polymer, it is preferable to use a monomer having two or more ethylenically unsaturated groups.
[0138] 2以上のエチレン性不飽和基を有するモノマーの例としては、多価アルコールと (メ タ)アクリル酸とのエステル(例えば、エチレングリコールジ (メタ)アタリレート、 1, 4— ジクロへキサンジアタリレート、ペンタエリスリトールテトラ(メタ)アタリレート、ペンタエリ スリトールトリ (メタ)アタリレート、トリメチロールプロパントリ(メタ)アタリレート、トリメチロ ールェタントリ(メタ)アタリレート、ジペンタエリスリトールテトラ(メタ)アタリレート、ジぺ ンタエリスリトールペンタ(メタ)アタリレート、ペンタエリスリトールへキサ(メタ)アタリレ ート、 1, 2, 3 シクロへキサンテトラメタタリレート、ポリウレタンポリアタリレート、ポリエ ステルポリアタリレート)、ビュルベンゼン及びその誘導体(例えば、 1, 4ージビュルべ ンゼン、 4 ビュル安息香酸 2 アタリロイルェチルエステル、 1, 4 ジビュルシク 口へキサノン)、ビニルスルホン(例えば、ジビニルスルホン)、アクリルアミド(例えば、 メチレンビスアクリルアミド)及びメタクリルアミドが挙げられる。  [0138] Examples of monomers having two or more ethylenically unsaturated groups include esters of polyhydric alcohols with (meth) acrylic acid (for example, ethylene glycol di (meth) acrylate, 1, 4-dichloro). Xanthiatalylate, pentaerythritol tetra (meth) acrylate, pentaerythritol tri (meth) acrylate, trimethylolpropane tri (meth) acrylate, trimethylol ethane tri (meth) acrylate, dipentaerythritol tetra (meth) acrylate, Dipentaerythritol penta (meth) acrylate, pentaerythritol hex (meth) acrylate, 1, 2, 3 cyclohexane tetramethacrylate, polyurethane polyacrylate, polyester polyacrylate), benzene and Its derivatives (for example, For example, 1,4-dibuluene benzene, 4 bulubenzoic acid 2 allyloylethyl ester, 1, 4 dibulucic hexanone), vinyl sulfone (eg divinyl sulfone), acrylamide (eg methylene bisacrylamide) and methacrylamide Can be mentioned.
[0139] ポリエーテルを主鎖として有するポリマーは、多官能ェポシキ化合物の開環重合反 応により合成することが好まし 、。 2以上のエチレン性不飽和基を有するモノマーの 代わりまたはそれに加えて、架橋性基の反応により、架橋構造をバインダーポリマー に導入してもよい。架橋性官能基の例としては、イソシアナ一ト基、エポキシ基、アジ リジン基、ォキサゾリン基、アルデヒド基、カルボ-ル基、ヒドラジン基、カルボキシル 基、メチロール基及び活性メチレン基が挙げられる。ビュルスルホン酸、酸無水物、 シァノアクリレート誘導体、メラミン、エーテル化メチロール、エステル及びウレタンも、 架橋構造を導入するためのモノマーとして利用できる。ブロックイソシアナート基のよ うに、分解反応の結果として架橋性を示す官能基を用いてもよい。また、架橋基は、 上記化合物に限らず上記官能基が分解した結果反応性を示すものであってもよい。  [0139] The polymer having a polyether as the main chain is preferably synthesized by a ring-opening polymerization reaction of a polyfunctional epoxy compound. Instead of or in addition to the monomer having two or more ethylenically unsaturated groups, a crosslinked structure may be introduced into the binder polymer by the reaction of a crosslinkable group. Examples of crosslinkable functional groups include isocyanato groups, epoxy groups, aziridine groups, oxazoline groups, aldehyde groups, carboxylic groups, hydrazine groups, carboxyl groups, methylol groups and active methylene groups. Bullsulfonic acid, acid anhydride, cyanoacrylate derivative, melamine, etherified methylol, ester and urethane can also be used as monomers for introducing a crosslinked structure. A functional group that exhibits crosslinkability as a result of the decomposition reaction, such as a block isocyanate group, may be used. The cross-linking group is not limited to the above compound, and may be one that exhibits reactivity as a result of decomposition of the functional group.
[0140] バインダーポリマーの重合反応及び架橋反応に使用する重合開始剤は、熱重合 開始剤や、光重合開始剤が用いられるが、光重合開始剤の方がより好ましい。光重 合開始剤の例としては、ァセトフエノン類、ベンゾイン類、ベンゾフエノン類、ホスフィン ォキシド類、ケタール類、アントラキノン類、チォキサントン類、ァゾィ匕合物、過酸化物 類、 2, 3 ジアルキルジオン化合物類、ジスルフイド化合物類、フルォロアミン化合 物類や芳香族スルホ -ゥム類がある。ァセトフエノン類の例としては、 2, 2—ジェトキ シァセトフエノン、 p ジメチルァセトフエノン、 1—ヒドロキシジメチルフエ-ルケトン、 1 ヒドロキシシクロへキシルフェニルケトン、 2 メチル 4ーメチルチオ 2 モルフ ォリノプロピオフエノン及び 2 -ベンジル - 2-ジメチルァミノ 1— (4 モルフォリノ フエニル)一ブタノンが挙げられる。ベンゾイン類の例としては、ベンゾインメチルエー テル、ベンゾインェチルエーテル及びべンゾインイソプロピルエーテルが挙げられる 。ベンゾフエノン類の例としては、ベンゾフエノン、 2, 4 ジクロロべンゾフエノン、 4, 4 —ジクロ口べンゾフエノン及び p クロ口べンゾフエノンが挙げられる。ホスフィンォキシ ド類の例としては、 2, 4, 6 トリメチルベンゾィルジフエ-ルフォスフィンォキシドが 挙げられる。 [0140] As the polymerization initiator used in the polymerization reaction and the crosslinking reaction of the binder polymer, a thermal polymerization initiator or a photopolymerization initiator is used, and the photopolymerization initiator is more preferable. Examples of photopolymerization initiators include: acetophenones, benzoins, benzophenones, phosphine oxides, ketals, anthraquinones, thixanthones, azo compounds, peroxides. , 2, 3 dialkyldione compounds, disulfide compounds, fluoroamine compounds and aromatic sulfomes. Examples of acetophenones include 2,2-jetoxyacetophenone, p-dimethylacetophenone, 1-hydroxydimethylphenol ketone, 1-hydroxycyclohexyl phenyl ketone, 2 methyl 4-methylthio 2 morpholinopropiophenone and 2- Benzyl-2-dimethylamino 1- (4 morpholinophenyl) monobutanone. Examples of benzoins include benzoin methyl ether, benzoin ethyl ether and benzoin isopropyl ether. Examples of benzophenones include benzophenone, 2,4 dichlorobenzophenone, 4,4-diclobenzophenone and p-clobenzophenone. Examples of phosphine oxides include 2,4,6 trimethylbenzoyldiphosphine phosphoxide.
[0141] バインダーポリマーは低屈折率層の塗布液にモノマーを添加し、低屈折率層の塗 布と同時または塗布後に重合反応 (必要ならば更に架橋反応)により形成することが 好ましい。低屈折率層の塗布液に、少量のポリマー(例えば、ポリビュルアルコール、 ポリオキシエチレン、ポリメチルメタタリレート、ポリメチルアタリレート、ジァセチルセル ロース、トリァセチルセルロース、ニトロセルロース、ポリエステル、アルキド榭脂)を添 カロしてちょい。  [0141] The binder polymer is preferably formed by adding a monomer to the coating solution for the low refractive index layer, and at the same time or after the coating of the low refractive index layer by a polymerization reaction (further crosslinking reaction if necessary). A small amount of polymer in the low refractive index coating solution (for example, polybulualcohol, polyoxyethylene, polymethylmetatalylate, polymethyl acrylate, diacetyl cellulose, triacetyl cellulose, nitrocellulose, polyester, alkyd resin) Please add it.
[0142] また、本発明に係る低屈折率層あるいは他の屈折率層には滑り剤を添加することが 好ましぐ滑り性を付与することによって耐傷性を改善することができる。滑り剤として は、シリコンオイルまたはワックス状物質が好ましく用いられる。例えば、下記一般式 で表される化合物が好まし 、。  [0142] Further, it is possible to improve the scratch resistance by imparting a slipperiness that is preferably added to a low refractive index layer or other refractive index layer according to the present invention. As the slip agent, silicone oil or a wax-like substance is preferably used. For example, a compound represented by the following general formula is preferred.
[0143] 一般式 R COR  [0143] General formula R COR
1 2  1 2
式中、 Rは炭素原子数が 12以上の飽和または不飽和の脂肪族炭化水素基を表す In the formula, R represents a saturated or unsaturated aliphatic hydrocarbon group having 12 or more carbon atoms.
1 1
。アルキル基またはァルケ-ル基が好ましぐ更に炭素原子数が 16以上のアルキル 基またはァルケ-ル基が好ましい。 Rは OM基(Mは Na、 K等のアルカリ金属を  . An alkyl group or a alkenyl group is preferred, and an alkyl group or a alkenyl group having 16 or more carbon atoms is preferred. R is an OM group (M is an alkali metal such as Na or K)
2 1 1  2 1 1
表す)、 OH基、 NH基、または OR基 (Rは炭素原子数が 12以上の飽和ま  OH group, NH group, or OR group (R is saturated or saturated with 12 or more carbon atoms)
2 3 3  2 3 3
たは不飽和の脂肪族炭化水素基、好ましくはアルキル基またはアルケニル基を表す )を表し、 Rとしては OH基、 NH基または OR基が好ましい。 [0144] 具体的には、ベヘン酸、ステアリン酸アミド、ペンタコ酸等の高級脂肪酸またはその 誘導体、天然物としてこれらの成分を多く含んでいるカルナバワックス、蜜蝌、モンタ ンワックスも好ましく使用できる。特公昭 53— 292号公報に開示されているようなポリ オルガノシロキサン、米国特許第 4, 275, 146号明細書に開示されているような高級 脂肪酸アミド、特公昭 58— 33541号公報、英国特許第 927, 446号明細書または 特開昭 55— 126238号公報及び同 58— 90633号公報に開示されているような高級 脂肪酸エステル (炭素数が 10〜24の脂肪酸と炭素数が 10〜24のアルコールのェ ステル)、そして米国特許第 3, 933, 516号明細書に開示されているような高級脂肪 酸金属塩、特開昭 51— 37217号公報に開示されているような炭素数 10までのジカ ルボン酸と脂肪族または環式脂肪族ジオール力 なるポリエステルィ匕合物、特開平 7 — 13292号公報に開示されているジカルボン酸とジオールからのオリゴポリエステル 等を挙げることができる。 Or an unsaturated aliphatic hydrocarbon group, preferably an alkyl group or an alkenyl group. R is preferably an OH group, an NH group or an OR group. [0144] Specifically, higher fatty acids such as behenic acid, stearamide, and pentacoic acid, or derivatives thereof, and carnauba wax, beespox, and montane wax that contain many of these components as natural products can be preferably used. Polyorganosiloxanes as disclosed in JP-B-53-292, higher fatty acid amides as disclosed in US Pat. No. 4,275,146, JP-B 58-33541, British patent No. 927, 446 or JP-A-55-126238 and 58-90633, such as higher fatty acid esters (fatty acids having 10 to 24 carbon atoms and 10 to 24 carbon atoms). Alcohol esters) and higher fatty acid metal salts as disclosed in U.S. Pat.No. 3,933,516, up to 10 carbon atoms as disclosed in JP-A-51-37217. Examples thereof include polyester compounds having a dicarboxylic acid and an aliphatic or cycloaliphatic diol strength, and oligopolyesters of dicarboxylic acids and diols disclosed in JP-A-7-13292.
[0145] 特に好ましく用いられるシリコンオイルは、特開 2005— 156801号公報の表 1に記 載の化合物である。  [0145] Particularly preferably used silicon oil is a compound described in Table 1 of JP-A-2005-156801.
[0146] 例えば、低屈折率層に使用する滑り剤の添力卩量は 0. 01〜: LOmgZm2が好ましい [0146] For example,添力卩量slip agent used in the low refractive index layer is 0. 01~: LOmgZm 2 is preferably
[0147] 本発明においては、反射率の低減のために、紫外線硬化榭脂層を付与した透明 支持体と低屈折率層との間に高屈折率層を設けることも好ましい。また、透明支持体 と高屈折率層との間に中屈折率層を設けることは、反射率の低減のために更に好ま しい。高屈折率層の屈折率は 1. 55-2. 30であることが好ましぐ 1. 57-2. 20で あることが更に好ましい。中屈折率層の屈折率は、透明支持体の屈折率と高屈折率 層の屈折率との中間の値となるように調整する。中屈折率層の屈折率は 1. 55〜: L 80であることが好ましい。高屈折率層及び中屈折率層の厚さは、 5nm〜: mであ ることが好ましぐ 10nm〜0. 2 mであることが更に好ましぐ 30nm〜0. 1 mであ ることが最も好ましい。高屈折率層及び中屈折率層のヘイズは、 5%以下であること が好ましぐ 3%以下であることが更に好ましぐ 1%以下であることが最も好ましい。 高屈折率層及び中屈折率層の強度は lkg荷重の鉛筆硬度で H以上であることが好 ましぐ 2H以上であることが更に好ましぐ 3H以上であることが最も好ましい。 [0148] 本発明に用いられる中、高屈折率層は下記一般式で表される有機チタン化合物の モノマー、オリゴマーまたはそれらの加水分解物を含有する塗布液を塗布し乾燥させ て形成させた屈折率 1. 55〜2. 5の層であることが好ましい。 In the present invention, in order to reduce the reflectance, it is also preferable to provide a high refractive index layer between the transparent support provided with the ultraviolet curable resin layer and the low refractive index layer. In addition, it is more preferable to provide a middle refractive index layer between the transparent support and the high refractive index layer in order to reduce the reflectance. The refractive index of the high refractive index layer is preferably 1.55-2.30, more preferably 1.57-2.20. The refractive index of the middle refractive index layer is adjusted to be an intermediate value between the refractive index of the transparent support and the refractive index of the high refractive index layer. The refractive index of the middle refractive index layer is preferably 1.55 to L80. The thickness of the high refractive index layer and the middle refractive index layer is preferably 5 nm to: m, more preferably 10 nm to 0.2 m, and even more preferably 30 nm to 0.1 m. Is most preferred. The haze of the high refractive index layer and the medium refractive index layer is preferably 5% or less, more preferably 3% or less, and even more preferably 1% or less. The strength of the high refractive index layer and the medium refractive index layer is preferably H or higher, more preferably 2H or higher, and more preferably 3H or higher, with a pencil hardness of 1 kg load. [0148] Among the refractive indexes formed in the present invention, the high refractive index layer is formed by applying and drying a coating solution containing a monomer, oligomer or hydrolyzate of an organic titanium compound represented by the following general formula: A layer with a rate of 1.55 to 2.5 is preferred.
[0149] 一般式 T OR1) [0149] General formula T OR 1 )
4  Four
式中、 R1としては炭素数 1〜8の脂肪族炭化水素基がよいが、好ましくは炭素数 1 〜4の脂肪族炭化水素基である。また、有機チタンィ匕合物のモノマー、オリゴマーま たはそれらの加水分解物は、アルコキシド基が加水分解を受けて Ti O— Ti一の ように反応して架橋構造を作り、硬化した層を形成する。 In the formula, R 1 is preferably an aliphatic hydrocarbon group having 1 to 8 carbon atoms, preferably an aliphatic hydrocarbon group having 1 to 4 carbon atoms. In addition, organotitanium compound monomers, oligomers, or their hydrolysates form alkoxide groups that are hydrolyzed and react like TiO-Ti to form a crosslinked structure, forming a hardened layer. To do.
[0150] 有機チタン化合物のモノマー、オリゴマーとしては、 Ti (OCH )、 Ti(OC H )、 Ti [0150] As monomers and oligomers of organic titanium compounds, Ti (OCH), Ti (OC H), Ti
3 4 2 5 4 3 4 2 5 4
(O-n-C H )、 Ti(0-i-C H )、 Ti (0—n—C H ) 、 Ti (0—n—C H ) の 2 (O-n-C H), Ti (0-i-C H), Ti (0—n—C H), Ti (0—n—C H)
3 7 4 3 7 4 4 9 4 3 7 4 3 7 4 3 7 4 4 9 4 3 7 4
〜10量体、 Ti(0— i C H ) の 2〜10量体、 Ti (0— n— C H ) の 2〜10量体等が ~ 10mer, Ti (0— i C H) dimer to 10mer, Ti (0—n—C H) dimer to 10mer, etc.
3 7 4 4 9 4  3 7 4 4 9 4
好ましい例として挙げられる。これらは単独で、または 2種以上組み合わせて用いるこ とができる。中でも Ti(0— n— C H ) 、Ti (0— i— C H ) 、Ti(0— n— C H )、Ti (  A preferred example is given. These can be used alone or in combination of two or more. Among them, Ti (0— n— C H), Ti (0— i— C H), Ti (0— n— C H), Ti (
3 7 4 3 7 4 4 9 4 3 7 4 3 7 4 4 9 4
O-n-C H ) の 2〜10量体、 Ti (0—n—C H ) の 2〜10量体が特に好ましい。 O-n-C H) 2 to 10-mer and Ti (0—n—C H) 2 to 10-mer are particularly preferable.
3 7 4 4 9 4  3 7 4 4 9 4
[0151] 高屈折率層用塗布液は、水と後述する有機溶媒が順次添加された溶液中に上記 有機チタンィ匕合物を添加することが好ましい。水を後力も添加した場合は、加水分解 Z重合が均一に進行せず、白濁が発生したり、膜強度が低下する。水と有機溶媒は 添加された後、良く混合させるために攪拌し混合溶解されて ヽることが好ま Uヽ。  [0151] In the coating solution for the high refractive index layer, it is preferable to add the organic titanium compound in a solution in which water and an organic solvent described later are sequentially added. If water is also added, hydrolytic Z polymerization does not proceed uniformly, resulting in white turbidity or reduced film strength. After adding water and organic solvent, it is preferable to stir, mix and dissolve in order to mix well.
[0152] また、別法として有機チタンィ匕合物と有機溶媒を混合させておき、この混合溶液を 上記水と有機溶媒の混合攪拌された溶液中に添加することも好まし 、態様である。  [0152] As another method, it is also preferable that an organic titanium compound and an organic solvent are mixed and this mixed solution is added to the mixed and stirred solution of water and the organic solvent.
[0153] また、水の量は有機チタン化合物 1モルに対して、 0. 25〜3モルの範囲であること が好ましい。 0. 25モル未満であると、加水分解、重合の進行が不十分で膜強度が 低下する。 3モルを超えると加水分解、重合が進行し過ぎて、 TiOの粗大粒子が発  [0153] The amount of water is preferably in the range of 0.25 to 3 mol with respect to 1 mol of the organic titanium compound. When the amount is less than 25 mol, hydrolysis and polymerization are not sufficiently progressed and film strength is lowered. If it exceeds 3 moles, hydrolysis and polymerization will proceed excessively, resulting in the generation of coarse TiO particles.
2  2
生し白濁するため好ましくない。従って水の量は上記範囲で調整する必要がある。  It is not preferable because it becomes cloudy. Therefore, the amount of water needs to be adjusted within the above range.
[0154] また、水の含有率は塗布液総量に対して 10質量%未満であることが好ましい。水 の含有率を塗布液総量に対して 10質量%以上にすると、塗布液の経時安定が劣り 白濁を生じたりするため好ましくない。 [0154] The water content is preferably less than 10% by mass relative to the total amount of the coating solution. If the water content is 10% by mass or more based on the total amount of the coating solution, it is not preferable because the coating solution is not stable over time and may become cloudy.
[0155] 本発明に用いられる有機溶媒としては、水混和性の有機溶媒であることが好ま Uヽ 。水混和性の有機溶媒としては、例えば、アルコール類 (例えば、メタノール、ェタノ ール、プロパノール、イソプロパノール、ブタノール、イソブタノール、セカンダリーブタ ノーノレ、ターシャリーブタノ一ノレ、ペンタノ一ノレ、へキサノーノレ、シクロへキサノーノレ、 ベンジルアルコール等)、多価アルコール類(例えば、エチレングリコール、ジェチレ ングリコール、トリエチレングリコール、ポリエチレングリコール、プロピレングリコール、 ジプロピレングリコール、ポリプロピレングリコール、ブチレングリコーノレ、へキサンジォ ール、ペンタンジオール、グリセリン、へキサントリオール、チォジグリコール等)、多価 アルコールエーテル類(例えば、エチレングリコールモノメチルエーテル、エチレング リコーノレモノェチノレエーテノレ、エチレングリコーノレモノブチノレエーテノレ、ジエチレング リコーノレモノメチノレエーテノレ、ジエチレングリコーノレモノメチノレエーテノレ、ジエチレン グリコールモノブチルエーテル、プロピレングリコールモノメチルエーテル、プロピレン グリコーノレモノブチノレエーテノレ、エチレングリコーノレモノメチノレエーテノレアセテート、 ト リエチレングリコーノレモノメチノレエーテル、トリエチレングリコーノレモノェチノレエーテノレ 、エチレングリコーノレモノフエニノレエーテノレ、プロピレングリコーノレモノフエニノレエーテ ル等)、アミン類(例えば、エタノールァミン、ジエタノールァミン、トリエタノールァミン[0155] The organic solvent used in the present invention is preferably a water-miscible organic solvent. . Examples of the water-miscible organic solvent include alcohols (e.g., methanol, ethanol, propanol, isopropanol, butanol, isobutanol, secondary butanol, tertiary butanol, pentanol, hexanol, cyclohexane). Xananol, benzyl alcohol, etc.), polyhydric alcohols (eg, ethylene glycol, polyethylene glycol, triethylene glycol, polyethylene glycol, propylene glycol, dipropylene glycol, polypropylene glycol, butylene glycol, hexanediol, pentanediol, Glycerin, hexanetriol, thiodiglycol, etc.), polyhydric alcohol ethers (eg, ethylene glycol monomethyl ether, ethylene glycol) Remonotino enotenole, Ethylene glycol monole butylenoate, Diethylene glycone mono metheno enoate, Diethylene glycol monomethino enoate, Diethylene glycol monobutyl ether, Propylene glycol monomethyl ether, Propylene glycol enomonobuty Noleyatenore, Ethyleneglycolenomonoethyleneate acetate, Triethyleneglycolenolemonomethinoreether, Triethyleneglycolenomonoethylenoatenore, Ethyleneglycolenomonoenoinoatenore, Propyleneglycolenomonomonoenoate Etc.), amines (eg ethanolamine, diethanolamine, triethanolamine)
、 N—メチルジェタノールァミン、 N—ェチルジェタノールァミン、モルホリン、 N—ェ チノレモノレホリン、エチレンジァミン、ジエチレンジァミン、トリエチレンテトラミン、テトラ エチレンペンタミン、ポリエチレンィミン、ペンタメチルジェチレントリアミン、テトラメチ ルプロピレンジァミン等)、アミド類(例えば、ホルムアミド、 N, N—ジメチルホルムアミ ド、 N, N—ジメチルァセトアミド等)、複素環類 (例えば、 2—ピロリドン、 N—メチル— 2—ピロリドン、シクロへキシルピロリドン、 2—ォキサゾリドン、 1, 3—ジメチル一 2—ィ ミダゾリジノン等)、スルホキシド類 (例えば、ジメチルスルホキシド等)、スルホン類 (例 えば、スルホラン等)、尿素、ァセトニトリル、アセトン等が挙げられるが、特にアルコー ル類、多価アルコール類、多価アルコールエーテル類が好ましい。 , N-Methyljetanolamine, N-Ethyljetanolamine, Morpholine, N-Ethenolemonoreforin, Ethylenediamine, Diethylenediamine, Triethylenetetramine, Tetraethylenepentamine, Polyethyleneimine, Pentamethyl Jetylenetriamine, tetramethylpropylenediamine, etc.), amides (eg, formamide, N, N-dimethylformamide, N, N-dimethylacetamide, etc.), heterocyclics (eg, 2-pyrrolidone, N-methyl-2-pyrrolidone, cyclohexylpyrrolidone, 2-oxazolidone, 1,3-dimethyl1-2-imidazolidinone, etc., sulfoxides (eg dimethyl sulfoxide etc.), sulfones (eg sulfolane etc.), Examples include urea, acetonitrile, and acetone. Polyhydric alcohols, polyhydric alcohol ethers are preferable.
[0156] これらの有機溶媒の使用量は、前述したように水の含有率が塗布液総量に対して 1 0質量%未満であるように、水と有機溶媒のトータルの使用量を調整すればよい。  [0156] The amount of these organic solvents used can be adjusted by adjusting the total amount of water and the organic solvent so that the content of water is less than 10% by mass relative to the total amount of the coating solution as described above. Good.
[0157] 本発明に用いられる有機チタン化合物のモノマー、オリゴマーまたはそれらの加水 分解物は、塗布液に含まれる固形分中の 50. 0〜98. 0質量%を占めていることが 望ましい。固形分比率は 50〜90質量%がより好ましぐ 55〜90質量%が更に好まし い。この他、塗布組成物には有機チタンィ匕合物のポリマー(予め有機チタンィ匕合物の 加水分解を行って架橋したもの)あるいは酸ィ匕チタン微粒子を添加することも好まし い。 [0157] The monomer, oligomer or hydrolyzate of the organotitanium compound used in the present invention may occupy 50.0 to 98.0 mass% of the solid content in the coating solution. desirable. The solid content ratio is more preferably 50 to 90% by mass, and further preferably 55 to 90% by mass. In addition, it is also preferable to add a polymer of an organic titanium composite (which has been previously crosslinked by hydrolysis of the organic titanium composite) or acid titanium fine particles to the coating composition.
[0158] 更に高屈折率層、中屈折率層には、物性改善のため塗布組成物中に金属化合物 を含有することが好ましい。金属化合物の具体例としては、トリ— n—ブトキシェチル ァセトアセテートジノレコニゥム、ジ—n—ブトキシビス(ェチノレアセトアセテート)ジルコ -ゥム、 n—ブトキシトリス(ェチルァセトアセテート)ジルコニウム、テトラキス(n—プロ ピノレアセトアセテート)ジルコニウム、テトラキス(ァセチノレアセトアセテート)ジノレコ-ゥ ム、テトラキス(ェチルァセトアセテート)ジルコニウムなどのジルコニウム化合物;ジィ ソプロポキシ 'ビス(ェチノレアセトアセテート)チタニウム、ジイソプロポキシ 'ビス(ァセ チルアセテート)チタニウム、ジイソプロポキシ 'ビス(ァセチルアセトン)チタニウムなど のチタニウム化合物;ジイソプロポキシェチルァセトアセテートアルミニウム、ジィソプ ロポキシァセチノレアセトナートァノレミニゥム、イソプロポキシビス(ェチノレアセトァセテ ート)アルミニウム、イソプロポキシビス(ァセチルァセトナート)アルミニウム、トリス(ェ チルァセトアセテート)アルミニウム、トリス(ァセチルァセトナート)アルミニウム、モノア セチルァセトナート ·ビス(ェチルァセトアセテート)アルミニウムなどのアルミニウム化 合物などが挙げられる。  [0158] Furthermore, the high refractive index layer and the medium refractive index layer preferably contain a metal compound in the coating composition for improving physical properties. Specific examples of metal compounds include tri-n-butoxychetyl acetate acetate dinoreconium, di-n-butoxybis (ethinoreacetoacetate) zirco-um, n-butoxytris (ethylacetoacetate) zirconium. , Zirconium compounds such as tetrakis (n-propinoreacetoacetate) zirconium, tetrakis (acetinoreacetoacetate) dinorecum, tetrakis (ethylacetoacetate) zirconium; ) Titanium compounds such as titanium, diisopropoxy bis (acetyl acetate) titanium, diisopropoxy bis (acetylacetone) titanium; diisopropoxy cetylacetoacetium aluminum, disopropoxy acetylenoaceto Natoanolinumium, isopropoxybis (ethinoreacetoacetate) aluminum, isopropoxybis (acetylacetonate) aluminum, tris (ethylacetoacetate) aluminum, tris (acetylacetonate) And aluminum compounds such as aluminum, monoacetylacetate bis (ethylacetoacetate) aluminum, and the like.
[0159] これらの金属化合物のうち好ましいものは、トリー n—ブトキシェチルァセトァセテー トジルコニウム、ジイソプロポキシビス(ァセチノレアセトナート)チタニウム、ジイソプロボ キシェチルァセトアセテートアルミニウム、トリス(ェチルァセトアセテート)アルミニウム である。 [0159] Among these metal compounds, preferred are tri-n-butoxy cetylacetate zirconium, diisopropoxybis (acetinoreacetonate) titanium, diisopropoxy cetylacetoacetate aluminum, tris (ester). Tylacetoacetate) aluminum.
[0160] これらの金属化合物は 1種単独であるいは 2種以上混合して使用することができる。  [0160] These metal compounds may be used alone or in combination of two or more.
また、これらの金属化合物の部分加水分解物を使用することもできる。金属化合物の 組成物中の割合は、各層の固形分に対し、 0. 01〜50質量%、好ましくは 0. 1〜50 質量%、更に好ましくは 0. 5〜10質量%である。  Moreover, the partial hydrolyzate of these metal compounds can also be used. The ratio of the metal compound in the composition is 0.01 to 50% by mass, preferably 0.1 to 50% by mass, and more preferably 0.5 to 10% by mass, based on the solid content of each layer.
[0161] 高屈折率層及び中屈折率層は、微粒子として金属酸ィ匕物粒子を含み、更にバイン ダーポリマーを含むものも好ましく用いられる。 [0162] あるいは、上記塗布液調製法で加水分解 Z重合した有機チタン化合物と金属酸化 物粒子を組み合わせると、金属酸化物粒子と加水分解 Z重合した有機チタン化合 物とが強固に接着し、粒子のもつ硬さと均一膜の柔軟性を兼ね備えた強い塗膜を得 ることがでさる。 [0161] As the high refractive index layer and the medium refractive index layer, those containing metal oxide particles as fine particles and further containing a binder polymer are also preferably used. [0162] Alternatively, when the hydrolyzed Z-polymerized organotitanium compound and metal oxide particles are combined in the coating solution preparation method, the metal oxide particles and hydrolyzed Z-polymerized organotitanium compound are firmly bonded to each other. It is possible to obtain a strong coating film having both the hardness of the film and the flexibility of a uniform film.
[0163] 高屈折率層及び中屈折率層に用いる金属酸化物粒子は、屈折率が 1. 80〜2. 8 0であることが好ましぐ 1. 90-2. 80であることが更に好ましい。金属酸化物粒子の 1次粒子の質量平均径は l〜150nmであることが好ましぐ 1〜: LOOnmであることが 更に好ましぐ l〜80nmであることが最も好ましい。層中での金属酸ィ匕物粒子の質 量平均径は l〜200nmであることが好ましぐ 5〜150nmであることがより好ましぐ 1 0〜100nmであることが更に好ましぐ 10〜80nmであることが最も好ましい。金属酸 化物粒子の平均粒径は 20〜30nm以上であれば光散乱法により、 20〜30nm以下 であれば電子顕微鏡写真により測定される。金属酸ィ匕物粒子の比表面積は、 BET 法で測定された値として 10〜400m2Zgであることが好ましぐ 20〜 [0163] The metal oxide particles used for the high refractive index layer and the medium refractive index layer preferably have a refractive index of 1.80 to 2.80. preferable. The mass average diameter of the primary particles of the metal oxide particles is preferably from 1 to 150 nm, and more preferably from 1 to: LOOnm, and most preferably from 1 to 80 nm. The mass average particle diameter of the metal oxide particles in the layer is preferably 1 to 200 nm, more preferably 5 to 150 nm, and even more preferably 10 to 100 nm. 10 Most preferably, it is ˜80 nm. If the average particle diameter of the metal oxide particles is 20 to 30 nm or more, it is measured by a light scattering method, and if it is 20 to 30 nm or less, it is measured by an electron micrograph. The specific surface area of the metal oxide particles is preferably 10 to 400 m 2 Zg as measured by the BET method.
200m2Zgであることが更に好ましく、 30〜 150m2Zgであることが最も好まし 、。 More preferably, it is 200 m 2 Zg, most preferably 30-150 m 2 Zg.
[0164] 金属酸化物粒子の例としては、 Ti、 Zr、 Sn、 Sb、 Cu、 Fe、 Mn、 Pb、 Cd、 As、 Cr、 Hg、 Zn、 Al、 Mg、 Si、 P及び Sから選択される少なくとも一種の元素を有する金属酸 化物であり、具体的には酸化チタン (例、ルチル、ルチル Zアナターゼの混晶、アナ ターゼ、アモルファス構造)、酸化錫、酸化インジウム、酸化亜鉛、及び酸化ジルコ二 ゥムが挙げられる。中でも、酸化チタン、酸ィ匕錫及び酸化インジウムが特に好ましい。 金属酸化物粒子は、これらの金属の酸化物を主成分とし、更に他の元素を含むこと が出来、導電性を付与した微粒子も好ましく用いられる。主成分とは、粒子を構成す る成分の中で最も含有量 (質量%)が多い成分を意味する。他の元素の例としては、 Ti、 Zr、 Sn、 Sb、 Cu、 Fe、 Mn、 Pb、 Cd、 As、 Cr、 Hg、 Zn、 Al、 Mg、 Siゝ P及び S 等が挙げられる。  [0164] Examples of metal oxide particles are selected from Ti, Zr, Sn, Sb, Cu, Fe, Mn, Pb, Cd, As, Cr, Hg, Zn, Al, Mg, Si, P, and S Specifically, titanium oxide (eg, rutile, rutile Z anatase mixed crystal, anatase, amorphous structure), tin oxide, indium oxide, zinc oxide, and zirconium oxide. Nium. Among these, titanium oxide, acid tin tin and indium oxide are particularly preferable. The metal oxide particles are mainly composed of oxides of these metals, can further contain other elements, and fine particles imparted with conductivity are also preferably used. The main component means a component having the largest content (mass%) among the components constituting the particles. Examples of other elements include Ti, Zr, Sn, Sb, Cu, Fe, Mn, Pb, Cd, As, Cr, Hg, Zn, Al, Mg, Si ゝ P, and S.
[0165] 金属酸ィ匕物粒子は表面処理されていることが好ましい。表面処理は無機化合物ま たは有機化合物を用いて実施することができる。表面処理に用いる無機化合物の例 としては、アルミナ、シリカ、酸化ジルコニウム及び酸化鉄が挙げられる。中でもアルミ ナ及びシリカが好ましい。表面処理に用いる有機化合物の例としては、ポリオール、 アルカノールァミン、ステアリン酸、シランカップリング剤及びチタネートカップリング剤 が挙げられる。中でも、シランカップリング剤が最も好ましい。 [0165] The metal oxide particles are preferably surface-treated. The surface treatment can be performed using an inorganic compound or an organic compound. Examples of inorganic compounds used for the surface treatment include alumina, silica, zirconium oxide and iron oxide. Of these, alumina and silica are preferred. Examples of organic compounds used for the surface treatment include polyols, Examples include alkanolamines, stearic acid, silane coupling agents and titanate coupling agents. Of these, a silane coupling agent is most preferable.
[0166] 具体的なシランカップリング剤の例としては、メチルトリメトキシシラン、メチルトリエト キシシラン、メチルトリメトキシエトキシシラン、メチルトリァセトキシシラン、メチルトリブト キシシラン、ェチルトリメトキシシラン、ェチルトリエトキシシラン、ビュルトリメトキシシラ ン、ビニルトリエトキシシラン、ビニルトリァセトキシシラン、ビニルトリメトキシエトキシシ ラン、フエニルトリメトキシシラン、フエニルトリエトキシシラン、フエニルトリァセトキシシ ラン、 Ί—クロ口プロピルトリメトキシシラン、 γ—クロ口プロピルトリエトキシシラン、 Ί —クロ口プロピルトリァセトキシシラン、 3, 3, 3—トリフルォロプロピルトリメトキシシラン エトキシシラン、 γ—(j8—グリシジルォキシエトキシ)プロピルトリメトキシシラン、 j8— (3, 4ーェポシシシクロへキシノレ)ェチノレトリメトキシシラン、 j8 (3, 4—エポキシシク 口へキシル)ェチルトリエトキシシラン、 γ—アタリロイルォキシプロピルトリメトキシシラ ン、 γ—メタクリロイルォキシプロピルトリメトキシシラン、 γ—ァミノプロピルトリメトキシ シラン、 γ—ァミノプロピルトリエトキシシラン、 γ—メルカプトプロピルトリメトキシシラ ン、 γ—メルカプトプロピルトリエトキシシラン、 N— j8— (アミノエチル) γ—アミノプ 口ピルトリメトキシシラン及び 13ーシァノエチルトリエトキシシランが挙げられる。 [0166] Specific examples of the silane coupling agent include methyltrimethoxysilane, methyltriethoxysilane, methyltrimethoxyethoxysilane, methyltriacetoxysilane, methyltributoxysilane, etyltrimethoxysilane, etyltriethoxysilane, Butyltrimethoxysilane, vinyltriethoxysilane, vinyltriacetoxysilane, vinyltrimethoxyethoxysilane, phenyltrimethoxysilane, phenyltriethoxysilane, phenyltriacetoxysilane, ク ロ -clopropylpropyltrimethoxy silane, .gamma. black port triethoxysilane, I - black port propyltrimethoxysilane § Seto silane, 3, 3, 3-triflate Ruo b trimethoxysilane silane, γ- (j8- glycidyl O ethoxy) Puropiruto Methoxysilane, j8— (3,4-epoxycyclohexenole) ethynoletrimethoxysilane, j8 (3, 4-epoxy cyclohexyl) ethyltriethoxysilane, γ-ataryloxypropyltrimethoxysilane, γ— Methacryloyloxypropyltrimethoxysilane, γ-aminopropyltrimethoxysilane, γ-aminopropyltriethoxysilane, γ-mercaptopropyltrimethoxysilane, γ-mercaptopropyltriethoxysilane, N-j8- (aminoethyl ) Γ-aminopropyl pyrtrimethoxysilane and 13-cyanoethyltriethoxysilane.
[0167] また、珪素に対して 2置換のアルキル基を持つシランカップリング剤の例として、ジメ チノレジメトキシシラン、フエニノレメチノレジメトキシシラン、ジメチノレジェトキシシラン、フ ェニノレメチノレジェトキシシラン、 Ίーグリシジノレ才キシプロピノレメチノレジェトキシシラン ルフエ二ルジェトキシシラン、 γ クロ口プロピルメチルジェトキシシラン、ジメチルジ ァセトキシシラン、 γ—アタリロイルォキシプロピルメチルジメトキシシラン、 γ—アタリ ロイルォキシプロピルメチルジェトキシシラン、 γ—メタクリロイルォキシプロピルメチ ルジメトキシシラン、 γ—メタクリロイルォキシプロピルメチルジェトキシシラン、 γ—メ ルカプトプロピルメチルジメトキシシラン、 γ メルカプトプロピルメチルジェトキシシラ ン、 γ—ァミノプロピルメチルジメトキシシラン、 γ—ァミノプロピルメチルジェトキシシ ラン、メチルビ-ルジメトキシシラン及びメチルビ-ルジェトキシシランが挙げられる。 [0168] これらの内、分子内に二重結合を有するビニルトリメトキシシラン、ビニルトリエトキシ シラン、ビニルトリァセトキシシラン、ビニルトリメトキシエトキシシラン、 γ—アタリロイル ォキシプロピルトリメトキシシラン及び Ί—メタクリロイルォキシプロピルトリメトキシシラ ン、珪素に対して 2置換のアルキル基を持つものとして γ—アタリロイルォキシプロピ ルメチルジメトキシシラン、 γ アタリロイルォキシプロピルメチルジェトキシシラン、 γ ピルメチルジェトキシシラン、メチルビ二ルジメトキシシラン及びメチルビ二ルジェトキ シシランが好ましぐ y—アタリロイルォキシプロピルトリメトキシシラン及び γ—メタタリ ロイルォキシプロピルトリメトキシシラン、 γ—アタリロイルォキシプロピルメチルジメト キシシラン、 γ—アタリロイルォキシプロピルメチルジェトキシシラン、 γ—メタクリロイ ルォキシプロピルメチルジメトキシシラン及び γ—メタクリロイルォキシプロピルメチル ジエトキシシランが特に好まし 、。 [0167] In addition, examples of silane coupling agents having a disubstituted alkyl group with respect to silicon include dimethylenoresimethoxymethoxysilane, pheninolemethinoresimethoxymethoxysilane, dimethylenolegetoxysilane, and phenenolemethinolegetoxy. Silane, グ リ -Glycidinore xyloxypropenolemethino lesoxy silane Lufenyl dioxy silane, γ-chloropropyl methoxy silane, dimethyl diacetoxy silane, γ-Atalo yloxy propyl methyl dimethoxy silane, γ-Atari oxy oxypropyl methyl Getoxysilane, γ-methacryloyloxypropylmethyldimethoxysilane, γ-methacryloyloxypropylmethyljetoxysilane, γ-mercaptopropylmethyldimethoxysilane, γ mercaptopropylmethyljetoxy Run-, .gamma. § amino propyl methyl dimethoxy silane, .gamma. § amino propyl methyl jet Kishishi run, Mechirubi - dimethoxysilane and Mechirubi - Rougier butoxy silane. [0168] Among these, vinyltrimethoxysilane, vinyltriethoxysilane, vinyltriacetoxysilane, vinyltrimethoxyethoxysilane, γ-ataryloxypropyltrimethoxysilane and Ί -methacryloyl having a double bond in the molecule Oxy-propyltrimethoxysilane, γ-Ataryloxypropylmethyldimethoxysilane, γ-ataryloxypropylmethyljetoxysilane, γ-pyrumethyljetoxysilane , Methyl-vinyldimethoxysilane and methylvinyljetoxysilane are preferred. Y-Attalyloxypropyltrimethoxysilane and γ-metataloyloxypropyltrimethoxysilane, γ-Attalyloxypropylmethyldimethoxysilane Orchids, .gamma. Atari Roy Ruo carboxypropyl methyl jet silane, .gamma. methacryloyl Ruo propyl methyl dimethoxy silane and .gamma.-methacryloyloxy Ruo propyl methyl diethoxy silane is particularly preferred.
[0169] 2種類以上のカップリング剤を併用してもよい。上記に示されるシランカップリング剤 に加えて、他のシランカップリング剤を用いてもよい。他のシランカップリング剤には、 オルトケィ酸のアルキルエステル(例えば、オルトケィ酸メチル、オルトケィ酸ェチル、 オルトケィ酸 η プロピル、オルトケィ酸 i プロピル、オルトケィ酸 n—ブチル、オルト ケィ酸 sec ブチル、オルトケィ酸 tーブチル)及びその加水分解物が挙げられる。  [0169] Two or more coupling agents may be used in combination. In addition to the silane coupling agents shown above, other silane coupling agents may be used. Other silane coupling agents include alkyl esters of orthokeys (eg, methyl orthokeate, ethyl orthokete, orthopropyl η propyl, orthopropyl o-propyl, orthokete n-butyl, orthokete sec butyl, orthokete t -Butyl) and hydrolysates thereof.
[0170] カップリング剤による表面処理は、微粒子の分散物にカップリング剤をカ卩え、室温か ら 60°Cまでの温度で数時間から 10日間分散物を放置することにより実施できる。表 面処理反応を促進するため、無機酸 (例えば、硫酸、塩酸、硝酸、クロム酸、次亜塩 素酸、ホウ酸、オルトケィ酸、リン酸、炭酸)、有機酸 (例えば、酢酸、ポリアクリル酸、 ベンゼンスルホン酸、フエノール、ポリグルタミン酸)、またはこれらの塩(例えば、金属 塩、アンモ-ゥム塩)を、分散物に添加してもよい。  [0170] Surface treatment with a coupling agent can be carried out by adding a coupling agent to a dispersion of fine particles and allowing the dispersion to stand at a temperature from room temperature to 60 ° C for several hours to 10 days. In order to accelerate the surface treatment reaction, inorganic acids (eg, sulfuric acid, hydrochloric acid, nitric acid, chromic acid, hypochlorous acid, boric acid, orthokeic acid, phosphoric acid, carbonic acid), organic acids (eg, acetic acid, polyacrylic acid) Acid, benzenesulfonic acid, phenol, polyglutamic acid), or salts thereof (eg, metal salts, ammonium salts) may be added to the dispersion.
[0171] これらシランカップリング剤は予め必要量の水で加水分解されていることが好ましい 。シランカップリング剤が加水分解されていると、前述の有機チタン化合物及び金属 酸化物粒子の表面が反応し易ぐより強固な膜が形成される。また、加水分解された シランカップリング剤を予め塗布液中に加えることも好ま 、。この加水分解に用いた 水も有機チタンィ匕合物の加水分解 Z重合に用いることができる。 [0172] 2種類以上の表面処理を組み合わせて処理されて 、ても構わな 、。金属酸化物粒 子の形 [0171] These silane coupling agents are preferably hydrolyzed with a necessary amount of water in advance. When the silane coupling agent is hydrolyzed, a stronger film is formed in which the surfaces of the organic titanium compound and the metal oxide particles are easily reacted. It is also preferable to add a hydrolyzed silane coupling agent to the coating solution in advance. The water used for the hydrolysis can also be used for the hydrolysis Z polymerization of the organic titanium compound. [0172] Two or more kinds of surface treatments may be combined and processed. Metal oxide particle shape
状は、米粒状、球形状、立方体状、紡錘形状あるいは不定形状であることが好ましい 。 2種類以上の金属酸ィ匕物粒子を高屈折率層ある 、は中屈折率層に用いてもよ!、。  The shape is preferably a rice grain shape, a spherical shape, a cubic shape, a spindle shape or an indefinite shape. Two or more kinds of metal oxide particles may be used for the high refractive index layer or the middle refractive index layer!
[0173] 高屈折率層及び中屈折率層中の金属酸ィ匕物粒子の割合は、 5〜65体積%である ことが好ましぐより好ましくは 10〜60体積%であり、更に好ましくは 20〜55体積% である。 [0173] The ratio of the metal oxide particles in the high refractive index layer and the medium refractive index layer is preferably 5 to 65% by volume, more preferably 10 to 60% by volume, and still more preferably. 20-55% by volume.
[0174] 上記金属酸化物粒子は、媒体に分散した分散体の状態で高屈折率層及び中屈折 率層を形成するための塗布液に供される。金属酸化物粒子の分散媒体としては、沸 点が 60〜170°Cの液体を用いることが好ましい。分散溶媒の具体例としては、水、ァ ルコール(例えば、メタノール、エタノール、イソプロパノール、ブタノール、ベンジル アルコール)、ケトン(例、アセトン、メチルェチルケトン、メチルイソブチルケトン、シク 口へキサノン)、ケトンアルコール(例えば、ジアセトンアルコール)、エステル(例えば 、酢酸メチル、酢酸ェチル、酢酸プロピル、酢酸ブチル、蟻酸メチル、蟻酸ェチル、 蟻酸プロピル、蟻酸プチル)、脂肪族炭化水素 (例えば、へキサン、シクロへキサン) 、ハロゲン化炭化水素(例えば、メチレンクロライド、クロ口ホルム、四塩化炭素)、芳香 族炭化水素(例、ベンゼン、トルエン、キシレン)、アミド (例えば、ジメチルホルムアミド 、ジメチルァセトアミド、 n—メチルピロリドン)、エーテル(例えば、ジェチルエーテル、 ジォキサン、テトラハイド口フラン)、エーテルアルコール(例えば、 1—メトキシ一 2— プロパノール)が挙げられる。中でも、トルエン、キシレン、メチルェチルケトン、メチル イソブチルケトン、シクロへキサノン及びブタノールが特に好まし!/、。  [0174] The metal oxide particles are supplied to a coating liquid for forming a high refractive index layer and a medium refractive index layer in a dispersion state dispersed in a medium. As a dispersion medium for metal oxide particles, it is preferable to use a liquid having a boiling point of 60 to 170 ° C. Specific examples of the dispersion solvent include water, alcohol (eg, methanol, ethanol, isopropanol, butanol, benzyl alcohol), ketone (eg, acetone, methyl ethyl ketone, methyl isobutyl ketone, cyclohexanone), ketone alcohol. (Eg, diacetone alcohol), esters (eg, methyl acetate, ethyl acetate, propyl acetate, butyl acetate, methyl formate, ethyl formate, propyl formate, butyl formate), aliphatic hydrocarbons (eg, hexane, cyclohexane) ), Halogenated hydrocarbons (eg methylene chloride, black form, carbon tetrachloride), aromatic hydrocarbons (eg benzene, toluene, xylene), amides (eg dimethylformamide, dimethylacetamide, n-methyl) Pyrrolidone), ether (eg Echirueteru, Jiokisan, tetrahydrate port furan), ether alcohols (e.g., 1-methoxy-one 2-propanol) and the like. Of these, toluene, xylene, methyl ethyl ketone, methyl isobutyl ketone, cyclohexanone and butanol are particularly preferred! /.
[0175] また、金属酸ィ匕物粒子は分散機を用いて媒体中に分散することができる。分散機 の例としては、サンドグラインダーミル (例えば、ピン付きビーズミル)、高速インペラ一 ミル、ぺッブルミル、ローラーミル、アトライター及びコロイドミルが挙げられる。サンド グラインダーミル及び高速インペラ一ミルが特に好ましい。また、予備分散処理を実 施してもよい。予備分散処理に用いる分散機の例としては、ボールミル、三本ロール ミル、ニーダー及びエタストルーダーが挙げられる。 [0175] The metal oxide particles can be dispersed in the medium using a disperser. Examples of the disperser include a sand grinder mill (for example, a bead mill with a pin), a high-speed impeller mill, a pebble mill, a roller mill, an attritor, and a colloid mill. A sand grinder mill and a high speed impeller mill are particularly preferred. In addition, preliminary dispersion processing may be performed. Examples of the disperser used for the preliminary dispersion treatment include a ball mill, a three-roll mill, a kneader, and an etastruder.
[0176] 高屈折率層及び中屈折率層は、架橋構造を有するポリマー (以下、架橋ポリマーと もいう)をバインダーポリマーとして用いることが好ましい。架橋ポリマーの例として、ポ リオレフイン等の飽和炭化水素鎖を有するポリマー(以下、ポリオレフインと総称する) 、ポリエーテノレ、ポリウレア、ポリウレタン、ポリエステル、ポリアミン、ポリアミド及びメラ ミン榭脂等の架橋物が挙げられる。中でも、ポリオレフイン、ポリエーテル及びポリウレ タンの架橋物が好ましぐポリオレフイン及びポリエーテルの架橋物が更に好ましぐ ポリオレフインの架橋物が最も好ましい。また、架橋ポリマーがァ-オン性基を有する ことは更に好ま ヽ。ァ-オン性基は無機微粒子の分散状態を維持する機能を有し 、架橋構造はポリマーに皮膜形成能を付与して皮膜を強化する機能を有する。上記 ァ-オン性基は、ポリマー鎖に直接結合していてもよいし、連結基を介してポリマー 鎖に結合して 、てもよ 、が、連結基を介して側鎖として主鎖に結合して 、ることが好 ましい。 [0176] The high refractive index layer and the middle refractive index layer are polymers having a crosslinked structure (hereinafter referred to as a crosslinked polymer). Are also used as the binder polymer. Examples of the crosslinked polymer include polymers having a saturated hydrocarbon chain such as polyolefin (hereinafter collectively referred to as polyolefin), crosslinked products such as polyetherol, polyurea, polyurethane, polyester, polyamine, polyamide and melamine resin. Of these, polyolefins, polyethers and polyurethane cross-linked products are preferred. Polyolefins and polyether cross-linked products are more preferred. Polyolefin cross-linked products are most preferred. It is further preferred that the crosslinked polymer has a ionic group. The ionic group has a function of maintaining the dispersed state of the inorganic fine particles, and the crosslinked structure has a function of imparting a film forming ability to the polymer and strengthening the film. The above-described ionic group may be directly bonded to the polymer chain, or may be bonded to the polymer chain via a linking group, but may be bonded to the main chain as a side chain via the linking group. And it is preferable to do that.
[0177] ァ-オン性基の例としては、カルボン酸基 (カルボキシル)、スルホン酸基 (スルホ) 及びリン酸基 (ホスホノ)が挙げられる。中でも、スルホン酸基及びリン酸基が好ましい 。ここでァ-オン性基は塩の状態であってもよい。ァ-オン性基と塩を形成するカチ オンは、アルカリ金属イオンであることが好ましい。また、ァ-オン性基のプロトンは解 離していてもよい。ァ-オン性基とポリマー鎖とを結合する連結基は、 CO—、—O 一、アルキレン基、ァリーレン基、及びこれらの組み合わせ力 選ばれる二価の基で あることが好ましい。好ましいバインダーポリマーである架橋ポリマーは、ァ-オン性 基を有する繰り返し単位と架橋構造を有する繰り返し単位とを有するコポリマーであ ることが好ましい。この場合、コポリマー中のァ-オン性基を有する繰り返し単位の割 合は 2〜96質量%  [0177] Examples of the terionic group include a carboxylic acid group (carboxyl), a sulfonic acid group (sulfo), and a phosphoric acid group (phosphono). Of these, a sulfonic acid group and a phosphoric acid group are preferable. Here, the eron group may be in a salt state. The cation that forms a salt with the ionic group is preferably an alkali metal ion. In addition, the proton of the teron group may be released. The linking group that binds the terionic group and the polymer chain is preferably a divalent group selected from CO—, —O 1, an alkylene group, an arylene group, and a combination force thereof. The crosslinked polymer which is a preferable binder polymer is preferably a copolymer having a repeating unit having a terionic group and a repeating unit having a crosslinked structure. In this case, the proportion of the repeating unit having a ionic group in the copolymer is 2 to 96% by mass.
であることが好ましぐ 4〜94質量%であることが更に好ましぐ 6〜92質量%であるこ とが最も好まし 、。繰り返し単位は 2以上のァ-オン性基を有して 、てもよ 、。  It is most preferably 4 to 94% by mass, and most preferably 6 to 92% by mass. The repeating unit may have 2 or more ionic groups.
[0178] ァ-オン性基を有する架橋ポリマーには、その他の繰り返し単位 (ァ-オン性基も 架橋構造も有しな 、繰り返し単位)が含まれて 、てもよ 、。その他の繰り返し単位とし ては、アミノ基または 4級アンモ-ゥム基を有する繰り返し単位及びベンゼン環を有す る繰り返し単位が好ましい。アミノ基または 4級アンモ-ゥム基は、ァ-オン性基と同 様に無機微粒子の分散状態を維持する機能を有する。ベンゼン環は高屈折率層の 屈折率を高くする機能を有する。なお、アミノ基、 4級アンモ-ゥム基及びベンゼン環 はァ-オン性基を有する繰り返し単位、あるいは架橋構造を有する繰り返し単位に含 まれていても、同様の効果が得られる。 [0178] The crosslinked polymer having a terionic group may contain other repeating units (a repeating unit having neither erionic group nor crosslinked structure). Other repeating units are preferably a repeating unit having an amino group or a quaternary ammonium group and a repeating unit having a benzene ring. The amino group or quaternary ammonium group has the function of maintaining the dispersed state of the inorganic fine particles in the same manner as the eron group. The benzene ring is a high refractive index layer It has a function of increasing the refractive index. The same effect can be obtained even when the amino group, quaternary ammonium group and benzene ring are contained in a repeating unit having a terionic group or a repeating unit having a crosslinked structure.
[0179] 上記アミノ基または 4級アンモ-ゥム基を有する繰り返し単位を構成単位として含有 する架橋ポリマーにおいて、アミノ基または 4級アンモ-ゥム基はポリマー鎖に直接結 合して 、てもよ 、し、あるいは連結基を介し側鎖としてポリマー鎖に結合して 、てもよ いが、後者がより好ましい。アミノ基または 4級アンモ-ゥム基は、 2級ァミノ基、 3級ァ ミノ基または 4級アンモ-ゥム基であることが好ましぐ 3級ァミノ基または 4級アンモ- ゥム基であることが更に好ましい。 2級ァミノ基、 3級ァミノ基または 4級アンモニゥム基 の窒素原子に結合している基としては、アルキル基が好ましぐより好ましくは炭素数 1〜 12のアルキル基であり、更に好ましくは炭素数 1〜6のアルキル基である。 4級ァ ンモ -ゥム基の対イオンは、ノ、ライドイオンであることが好ましい。アミノ基または 4級 アンモ-ゥム基とポリマー鎖とを結合する連結基は、—CO—、—NH—、—O—、ァ ルキレン基、ァリーレン基、及びこれらの組み合わせ力 選ばれる 2価の基であること が好ましい。 [0179] In the crosslinked polymer containing a repeating unit having an amino group or quaternary ammonium group as a constituent unit, the amino group or quaternary ammonium group may be directly bonded to the polymer chain. However, it may be bonded to the polymer chain as a side chain via a linking group, but the latter is more preferable. The amino group or quaternary ammonium group is preferably a secondary amino group, a tertiary amino group or a quaternary ammonium group. A tertiary amino group or a quaternary ammonium group is preferred. More preferably it is. The group bonded to the nitrogen atom of the secondary amino group, tertiary amino group or quaternary ammonium group is preferably an alkyl group, more preferably an alkyl group having 1 to 12 carbon atoms, and still more preferably carbon. It is an alkyl group of the number 1-6. The counter ion of the quaternary ammonium-um group is preferably a no-ride ion. The linking group that connects the amino group or the quaternary ammonium group to the polymer chain is —CO—, —NH—, —O—, an alkylene group, an arylene group, or a combination force thereof. It is preferably a group.
[0180] 架橋ポリマーがアミノ基または 4級アンモ-ゥム基を有する繰り返し単位を含む場合 、その割合は 0. 06〜32質量%であることが好ましぐ 0. 08〜30質量%であること が更に好ましぐ 0. 1〜28質量%であることが最も好ましい。  [0180] When the crosslinked polymer contains a repeating unit having an amino group or a quaternary ammonium group, the proportion is preferably from 0.06 to 32% by mass, and from 0.08 to 30% by mass. It is most preferable that the content is 0.1 to 28% by mass.
[0181] 架橋ポリマーは、架橋ポリマーを生成するためのモノマーを配合して高屈折率層及 び中屈折率層形成用の塗布液を調製し、塗布液の塗布と同時または塗布後に、重 合反応によって生成させることが好ましい。架橋ポリマーの生成と共に各層が形成さ れる。ァ-オン性基を有するモノマーは、塗布液中で無機微粒子の分散剤として機 能する。ァ-オン性基を有するモノマーは、無機微粒子に対して好ましくは 1〜50質 量%、より好ましくは 5〜40質量%、更に好ましくは 10〜30質量%使用される。また 、アミノ基または 4級アンモ-ゥム基を有するモノマーは、塗布液中で分散助剤として 機能する。アミノ基または 4級アンモ-ゥム基を有するモノマーは、ァ-オン性基を有 するモノマーに対して好ましくは 3〜33質量%使用される。塗布液の塗布と同時また は塗布後に、重合反応によって架橋ポリマーを生成する方法により、塗布液の塗布 前にこれらのモノマーを有効に機能させることができる。 [0181] For the crosslinked polymer, a monomer for forming the crosslinked polymer is blended to prepare a coating solution for forming the high refractive index layer and the middle refractive index layer, and the polymer is polymerized simultaneously with or after the coating of the coating solution. It is preferable to produce by reaction. Each layer is formed as the crosslinked polymer is formed. The monomer having a er-on group functions as a dispersant for inorganic fine particles in the coating solution. The monomer having a terionic group is preferably used in an amount of 1 to 50% by mass, more preferably 5 to 40% by mass, and still more preferably 10 to 30% by mass with respect to the inorganic fine particles. A monomer having an amino group or quaternary ammonium group functions as a dispersion aid in the coating solution. The monomer having an amino group or a quaternary ammonium group is preferably used in an amount of 3 to 33% by mass based on the monomer having a terionic group. At the same time as or after the application of the coating solution, the coating solution is applied by a method in which a crosslinked polymer is produced by a polymerization reaction. These monomers can function effectively before.
[0182] 本発明に用いられるモノマーとしては、 2個以上のエチレン性不飽和基を有するモ ノマーが最も好ましいが、その例としては、多価アルコールと (メタ)アクリル酸とのエス テル(例えば、エチレングリコールジ (メタ)アタリレート、 1, 4ージクロへキサンジアタリ レート、ペンタエリスリトールテトラ(メタ)アタリレート、ペンタエリスリトールトリ(メタ)ァク リレート、トリメチロールプロパントリ(メタ)アタリレート、トリメチロールェタントリ(メタ)ァ タリレート、ジペンタエリスリトールテトラ(メタ)アタリレート、ジペンタエリスリトールペン タ(メタ)アタリレート、ペンタエリスリトールへキサ(メタ)アタリレート、 1, 2, 3 シクロ へキサンテトラメタタリレート、ポリウレタンポリアタリレート、ポリエステルポリアタリレート )、ビュルベンゼン及びその  [0182] The monomer used in the present invention is most preferably a monomer having two or more ethylenically unsaturated groups. Examples thereof include esters of polyhydric alcohols and (meth) acrylic acid (for example, , Ethylene glycol di (meth) acrylate, 1,4-dichlorohexanediatalate, pentaerythritol tetra (meth) acrylate, pentaerythritol tri (meth) acrylate, trimethylolpropane tri (meth) acrylate, trimethylol ester Tantri (meth) acrylate, dipentaerythritol tetra (meth) acrylate, dipentaerythritol pent (meth) acrylate, penta erythritol hex (meth) acrylate, 1, 2, 3 cyclohexane tetra methacrylate Rate, Polyurethane Poly Atylate, Poly Ester polyatalylate), benzene and its
誘導体(例えば、 1, 4ージビュルベンゼン、 4 ビュル安息香酸 2 アタリロイルェ チルエステル、 1, 4 ジビュルシクロへキサノン)、ビュルスルホン(例えば、ジビュル スルホン)、アクリルアミド (例えば、メチレンビスアクリルアミド)及びメタクリルアミド等 が挙げられる。  Derivatives (eg, 1,4-dibutenebenzene, 4-bulubenzoic acid 2 allyloylethyl ester, 1,4-dibulecyclohexanone), bulesulphone (eg, dibule sulfone), acrylamide (eg, methylenebisacrylamide), and methacrylamide Can be mentioned.
[0183] ァ-オン性基を有するモノマー、及びアミノ基または 4級アンモ-ゥム基を有するモ ノマ一は巿販のモノマーを用いてもょ 、。好ましく用いられる巿販のァ-オン性基を 有するモノマーとしては、 KAYAMARPM— 21、 PM— 2 (日本化薬 (株)製)、 Ant oxMS— 60、 MS— 2N、 MS— NH4 (日本乳化剤(株)製)、ァロニックス M— 5000 、 M— 6000、 M— 8000シリーズ (東亞合成ィ匕学工業 (株)製)、ビス =3—卜 # 2000シ リーズ (大阪有機化学工業 (株)製)、ニューフロンティア GX— 8289 (第一工業製薬 ( 株)製)、 NKエステル CB—1、 A— SA (新中村ィ匕学工業 (株)製)、 AR— 100、 MR — 100、 MR— 200 (第八化学工業 (株)製)等が挙げられる。また、好ましく用いられ る巿販のァミノ基または 4級アンモ-ゥム基を有するモノマーとしては DMAA (大阪 有機化学工業 (株)製)、 DMAEA, DMAPAA (興人 (株)製)、ブレンマー QA (日 本油脂 (株)製)、ニューフロンティア C - 1615 (第一工業製薬 (株)製)等が挙げられ る。  [0183] Monomers having an ionic group and monomers having an amino group or a quaternary ammonium group may be commercially available monomers. Examples of the monomer having a commercially available ionic group include KAYAMARPM-21, PM-2 (manufactured by Nippon Kayaku Co., Ltd.), Ant oxMS-60, MS-2N, MS-NH4 (Nippon Emulsifier ( ), ALONIX M-5000, M-6000, M-8000 series (manufactured by Toagosei Co., Ltd.), screw = 3— 卜 # 2000 series (manufactured by Osaka Organic Chemical Industry Co., Ltd.) , New Frontier GX—8289 (Daiichi Kogyo Seiyaku Co., Ltd.), NK Ester CB—1, A—SA (Shin Nakamura Co., Ltd.), AR—100, MR — 100, MR—200 (Eighth Chemical Industry Co., Ltd.). Examples of the monomer having a commercially available amino group or quaternary ammonia group are DMAA (manufactured by Osaka Organic Chemical Industry Co., Ltd.), DMAEA, DMAPAA (manufactured by Kojin Co., Ltd.), Bremer QA (Nippon Yushi Co., Ltd.), New Frontier C-1615 (Daiichi Kogyo Seiyaku Co., Ltd.), and the like.
[0184] ポリマーの重合反応は光重合反応または熱重合反応を用いることができる。特に光 重合反応が好ましい。重合反応のため、重合開始剤を使用することが好ましい。例え ば、紫外線硬化榭脂層のバインダーポリマーを形成するために用いられる後述する 熱重合開始剤、及び光重合開始剤が挙げられる。 [0184] The polymerization reaction of the polymer may be a photopolymerization reaction or a thermal polymerization reaction. A photopolymerization reaction is particularly preferable. A polymerization initiator is preferably used for the polymerization reaction. example Examples thereof include a thermal polymerization initiator and a photopolymerization initiator, which will be described later, used for forming the binder polymer of the ultraviolet curable resin layer.
[0185] 重合開始剤として市販の重合開始剤を使用してもよい。重合開始剤に加えて、重 合促進剤を使用してもよい。重合開始剤と重合促進剤の添加量は、モノマーの全量 の 0. 2〜: LO質量%の範囲であることが好ましい。塗布液 (モノマーを含む無機微粒 子の分散液)を加熱して、モノマー(またはオリゴマー)の重合を促進してもよい。また 、塗布後の光重合反応の後に加熱して、形成されたポリマーの熱硬化反応を追加処 理してちよい。  [0185] A commercially available polymerization initiator may be used as the polymerization initiator. In addition to the polymerization initiator, a polymerization accelerator may be used. The addition amount of the polymerization initiator and the polymerization accelerator is preferably in the range of 0.2 to LO mass% of the total amount of monomers. The coating liquid (dispersion of inorganic fine particles containing monomer) may be heated to promote polymerization of the monomer (or oligomer). Further, it may be heated after the photopolymerization reaction after coating to additionally process the thermosetting reaction of the formed polymer.
[0186] 中屈折率層及び高屈折率層には、比較的屈折率が高いポリマーを用いることが好 ましい。屈折率が高いポリマーの例としては、ポリスチレン、スチレン共重合体、ポリ力 ーボネート、メラミン榭脂、フエノール榭脂、エポキシ榭脂及び環状 (脂環式または芳 香族)イソシァネートとポリオールとの反応で得られるポリウレタンが挙げられる。その 他の環状 (芳香族、複素環式、脂環式)基を有するポリマーや、フッ素以外のハロゲ ン原子を置換基として有するポリマーも、屈折率が高く用いることができる。  [0186] For the medium refractive index layer and the high refractive index layer, it is preferable to use a polymer having a relatively high refractive index. Examples of polymers with a high refractive index include the reaction of polystyrene, styrene copolymers, polycarbonate, melamine resin, phenol resin, epoxy resin, and cyclic (alicyclic or aromatic) isocyanates with polyols. The resulting polyurethane is mentioned. Polymers having other cyclic (aromatic, heterocyclic, alicyclic) groups, and polymers having halogen atoms other than fluorine as substituents can also be used with a high refractive index.
[0187] 反射防止層の各層は、ディップコート法、エアーナイフコート法、カーテンコート法、 ローラーコート法、ワイヤーバーコート法、グラビアコート法、マイクログラビアコート法 やエタストルージョンコート法、スプレーコート法、インクジェット法により、塗布により形 成することができる。  [0187] Each layer of the antireflection layer is formed by a dip coating method, an air knife coating method, a curtain coating method, a roller coating method, a wire bar coating method, a gravure coating method, a micro gravure coating method, an etatrusion coating method, or a spray coating method. It can be formed by coating by an ink jet method.
[0188] 〈バックコート層〉  [0188] <Backcoat layer>
本発明に係る凹凸パターンフィルムの凹凸を形成した紫外線硬化榭脂層を設けた 側と反対側の面にはバックコート層を設けることが好ましい。ノ ックコート層は、凹凸 面の形成や紫外線硬化榭脂層、その他の層を設けることで生じるカールを矯正する ために設けられる。即ち、ノ ックコート層を設けた面を内側にして丸まろうとする性質 を持たせることにより、カールの度合いをバランスさせることができる。あるいはバック コート層はブロッキング防止層として塗設され、その場合、ノ ックコート層塗布組成物 にはブロッキング防止機能を持たせるために微粒子が添加されることが好ま 、。  It is preferable to provide a back coat layer on the surface opposite to the side on which the ultraviolet curable resin layer on which the unevenness of the uneven pattern film according to the present invention is formed is provided. The knock coat layer is provided to correct curling caused by the formation of an uneven surface, an ultraviolet curable resin layer, and other layers. That is, the degree of curling can be balanced by imparting the property of being rounded with the surface provided with the knock coat layer inside. Alternatively, the back coat layer is coated as an anti-blocking layer, and in that case, it is preferred that fine particles are added to the knock coat layer coating composition in order to provide an anti-blocking function.
[0189] ノックコート層に添加される微粒子としては、無機化合物の例として、二酸化珪素、 二酸化チタン、酸化アルミニウム、酸化ジルコニウム、炭酸カルシウム、炭酸カルシゥ ム、タルク、クレイ、焼成カオリン、焼成ケィ酸カルシウム、酸化錫、酸化インジウム、酸 化亜鉛、 ιτο、水和ケィ酸カルシウム、ケィ酸アルミニウム、ケィ酸マグネシウム及びリ ン酸カルシウムを挙げることができる。微粒子は珪素を含むものがヘイズが低くなる点 で好ましぐ特に二酸ィ匕珪素が好ましい。 [0189] The fine particles added to the knock coat layer include, as examples of inorganic compounds, silicon dioxide, titanium dioxide, aluminum oxide, zirconium oxide, calcium carbonate, calcium carbonate. And talc, clay, calcined kaolin, calcined calcium silicate, tin oxide, indium oxide, zinc oxide, ιτο, hydrated calcium silicate, aluminum silicate, magnesium silicate and calcium phosphate. Fine particles containing silicon are preferred in that haze is low, and silicon dioxide is particularly preferred.
[0190] これらの微粒子は、例えば、ァエロジル R972、 R972V, R974、 R812、 200、 20 OV、 300、 R202、 0X50、 TT600 (以上、 曰本ァエロジル (株)製)の商品名で巿販 されており、使用することができる。酸ィ匕ジルコニウムの微粒子は、例えば、ァエロジ ル R976及び R811 (以上、 日本ァエロジル (株)製)の商品名で市販されており、使 用することができる。ポリマーの例として、シリコーン榭脂、フッ素榭脂及びアクリル榭 脂を挙げることができる。シリコーン榭脂が好ましぐ特に三次元の網状構造を有する ちの力 S好ましく、 ί列えば、、トスノく一ノレ 103、同 105、同 108、同 120、同 145、同 3120 及び同 240 (以上、東芝シリコーン (株)製)の商品名で市販されており、使用すること ができる。  [0190] These fine particles are sold under the trade names of Aerosil R972, R972V, R974, R812, 200, 20 OV, 300, R202, 0X50, TT600 (above, manufactured by Enomoto Aerosil Co., Ltd.). And can be used. The fine particles of zirconium oxide are commercially available under the trade names of Aerosil R976 and R811 (manufactured by Nippon Aerosil Co., Ltd.) and can be used. Examples of the polymer include silicone resin, fluorine resin, and acrylic resin. Silicone resin is preferred, especially the power of having a three-dimensional network structure S, and if it is arranged, Tosuno Kunore 103, 105, 108, 120, 145, 3120 and 240 (or more , Manufactured by Toshiba Silicone Co., Ltd., and can be used.
[0191] これらの中でもでァエロジル 200V、ァエロジル R972Vがヘイズを低く保ちながら、 ブロッキング防止効果が大きいため特に好ましく用いられる。本発明で用いられる防 眩性反射防止フィルムは、紫外線硬化榭脂層の裏面側の動摩擦係数が 0. 9以下、 特に 0. 1〜0. 9であることが好ましい。  [0191] Among them, Aerosil 200V and Aerosil R972V are particularly preferably used because they have a large anti-blocking effect while keeping haze low. The antiglare antireflection film used in the present invention preferably has a dynamic friction coefficient of 0.9 or less, particularly 0.1 to 0.9, on the back side of the UV-cured resin layer.
[0192] ノックコート層に含まれる微粒子は、バインダーに対して 0. 1〜50質量0 /0含有する ことが好ましぐ 0. 1〜: L0質量%であることがより好ましい。バックコート層を設けた場 合のヘイズの増加は 1%以下であることが好ましぐ 0. 5%以下であることがより好ま しぐ特に 0. 0〜0. 1%であることが好ましい。 [0192] fine particles contained in the knock coat layer, preferably be 0. 1 to 50 mass 0/0 containing the binder instrument 0. 1: more preferably L0 mass%. The haze increase when the backcoat layer is provided is preferably 1% or less, more preferably 0.5% or less, and particularly preferably 0.0 to 0.1%. .
[0193] ノックコート層は、具体的にはセルロースエステルなどの透明榭脂フィルムを溶解さ せる溶媒または膨潤させる溶媒を含む組成物を塗布することによって行われる。用い る溶媒としては、溶解させる溶媒及び Zまたは膨潤させる溶媒の混合物の他更に溶 解させない溶媒を含む場合もあり、これらを透明榭脂フィルムのカール度合いゃ榭脂 の種類によって適宜の割合で混合した組成物及び塗布量を用いて行う。 [0193] Specifically, the knock coat layer is formed by applying a composition containing a solvent for dissolving or swelling a transparent resin film such as cellulose ester. The solvent to be used may include a solvent to be dissolved and a mixture of Z or a solvent to be swollen in addition to a solvent that is not further dissolved, and these are mixed at an appropriate ratio depending on the curl degree of the transparent resin film and the type of resin. The composition and the coating amount are used.
[0194] カール防止機能を強めた!/ヽ場合は、用いる溶媒組成を溶解させる溶媒及び Zまた は膨潤させる溶媒の混合比率を大きくし、溶解させない溶媒の比率を小さくするのが 効果的である。この混合比率は好ましくは (溶解させる溶媒及び Zまたは膨潤させる 溶媒):(溶解させない溶媒) = 10 : 0〜1 : 9で用いられる。この様な混合組成物に含 まれる、透明榭脂フィルムを溶解または膨潤させる溶媒としては、例えば、ジォキサン 、アセトン、メチルェチルケトン、 N, N ジメチルホルムアミド、酢酸メチル、酢酸ェチ ル、トリクロロエチレン、メチレンクロライド、エチレンクロライド、テトラクロ口エタン、トリ クロ口エタン、クロ口ホルムなどがある。溶解させない溶媒としては、例えば、メタノー ル、エタノール、 n—プロピルアルコール、 i—プロピルアルコール、 n—ブタノール、シ クロへキサノールある 、は炭化水素類(トルエン、キシレン)などがある。 [0194] In the case of strengthening the curl prevention function! / ヽ, it is necessary to increase the mixing ratio of the solvent that dissolves the solvent composition to be used and Z or the solvent that swells and decrease the ratio of the solvent that does not dissolve It is effective. This mixing ratio is preferably (solvent to be dissolved and Z or solvent to be swollen) :( solvent not to be dissolved) = 10: 0 to 1: 9. Examples of the solvent for dissolving or swelling the transparent resin film contained in such a mixed composition include dioxane, acetone, methyl ethyl ketone, N, N dimethylformamide, methyl acetate, ethyl acetate, and trichloroethylene. , Methylene chloride, ethylene chloride, tetrachloromethane, trichloroethane, and blackform. Examples of the solvent that does not dissolve include methanol, ethanol, n-propyl alcohol, i-propyl alcohol, n-butanol, cyclohexanol, and hydrocarbons (toluene, xylene).
これらの塗布糸且成物をグラビアコーター、ディップコーター、リバースコーター、ワイ ヤーバーコ一ター、ダイコ一ター、あるいはスプレー塗布、インクジェット塗布等を用 V、て透明榭脂フィルムの表面〖こゥエツト膜厚 l-lOO ^ mで塗布するのが好まし ヽが 、特に 5〜30 mであることが好ましい。バックコート層のバインダーとして用いられる 榭脂としては、例えば、塩ィ匕ビニル—酢酸ビュル共重合体、塩化ビニル榭脂、酢酸 ビニル榭脂、酢酸ビュルとビニルアルコールの共重合体、部分加水分解した塩化ビ 二ルー酢酸ビニ  Use these coated yarns for gravure coater, dip coater, reverse coater, wire bar coater, die coater, spray coating, ink jet coating, etc. V, surface thickness of transparent resin film, coating thickness l It is preferable to apply with -lOO ^ m, and it is particularly preferably 5 to 30 m. Examples of the resin used as a binder for the backcoat layer include a salty vinyl-vinyl acetate copolymer, vinyl chloride resin, vinyl acetate resin, a copolymer of vinyl acetate and vinyl alcohol, and a partially hydrolyzed resin. Vinyl chloride biluene acetate
ル共重合体、塩ィ匕ビュル一塩ィ匕ビユリデン共重合体、塩ィ匕ビュル—アクリロニトリル 共重合体、エチレン ビニルアルコール共重合体、塩素化ポリ塩ィ匕ビュル、エチレン 一塩化ビニル共重合体、エチレン 酢酸ビニル共重合体等のビニル系重合体ある いは共重合体、ニトロセルロース、セルロースアセテートプロピオネート(好ましくはァ セチル基置換度 1. 8〜2. 3、プロピオ-ル基置換度 0. 1〜1. 0)、ジァセチルセル ロース、セルロースアセテートブチレート榭脂等のセルロース誘導体、マレイン酸及び Zまたはアクリル酸の共重合体、アクリル酸エステル共重合体、アクリロニトリルース チレン共重合体、塩素化ポリエチレン、アクリロニトリル一塩素化ポリエチレンースチ レン共重合体、メチルメタクリレートーブタジエン スチレン共重合体、アクリル榭脂、 ポリビュルァセタール榭脂、ポリビュルブチラール榭脂、ポリエステルポリウレタン榭 脂、ポリエーテルポリウレタン榭脂、ポリカーボネートポリウレタン榭脂、ポリエステノレ 榭脂、ポリエーテル榭脂、ポリアミド榭脂、アミノ榭脂、スチレン ブタジエン榭脂、ブ タジェン—アクリロニトリル榭脂等のゴム系榭脂、シリコーン系榭脂、フッ素系榭脂等 を挙げることができる力 これらに限定されるものではない。例えば、アクリル榭脂とし ては、アタリペット MD、 VH、 MFゝ V (三菱レーヨン(株)製)、ハイパール M— 4003、 M— 4005、 M— 4006、 M— 4202、 M— 5000、 M— 5001、 M— 4501 (根上工業 株式会社製)、ダイヤナール BR— 50、 BR—52、 BR— 53、 BR— 60、 BR— 64、 BRCopolymer, salt-bulu monosalt-biuridene copolymer, salt-bulu-acrylonitrile copolymer, ethylene vinyl alcohol copolymer, chlorinated polysalt-bule, ethylene vinyl chloride copolymer , Ethylene-vinyl acetate copolymer and other vinyl polymers or copolymers, nitrocellulose, cellulose acetate propionate (preferably acetyl group substitution degree 1.8 to 2.3, propiol group substitution degree 0.1 to 1.0), cellulose derivatives such as diacetyl cellulose, cellulose acetate butyrate resin, maleic acid and Z or acrylic acid copolymers, acrylic ester copolymers, acrylonitrile styrene copolymers, Chlorinated polyethylene, acrylonitrile monochlorinated polyethylene styrene copolymer, methyl methacrylate-butadiene styrene Copolymers, acrylic resins, polyblucetal resins, polybutyral resins, polyester polyurethane resins, polyether polyurethane resins, polycarbonate polyurethane resins, polyester resin resins, polyether resins, polyamide resins Rubber, amino resin, styrene butadiene resin, butane-acrylonitrile resin, silicone resin, fluorine resin, etc. It is not limited to these. For example, for acrylic resin, Ataripet MD, VH, MF IV (Mitsubishi Rayon Co., Ltd.), Hyperl M-4003, M-4005, M-4006, M-4202, M-5000, M- 5001, M-4501 (Negami Kogyo Co., Ltd.), Dianal BR-50, BR-52, BR-53, BR-60, BR-64, BR
— 73、 BR— 75、 BR— 77、 BR— 79、 BR— 80、 BR— 82、 BR— 83、 BR— 85、 BR— 73, BR—75, BR—77, BR—79, BR—80, BR—82, BR—83, BR—85, BR
— 87、 BR— 88、 BR— 90、 BR— 93、 BR— 95、 BR— 100、 BR— 101、 BR— 102 、 BR— 105、 BR— 106、 BR— 107、 BR— 108、 BR— 112、 BR— 113、 BR— 115 、 BR— 116、 BR— 117、 BR— 118等(三菱レーヨン (株)製)のアクリル及びメタタリ ル系モノマーを原料として製造した各種ホモポリマー並びにコポリマーなどが巿販さ れており、この中力 好ましいモノを適宜選択することもできる。 — 87, BR—88, BR—90, BR—93, BR—95, BR—100, BR—101, BR—102, BR—105, BR—106, BR—107, BR—108, BR—112 , BR-113, BR-115, BR-116, BR-117, BR-118, etc. (manufactured by Mitsubishi Rayon Co., Ltd.) and other homopolymers and copolymers manufactured using acrylic and methacrylate monomers as raw materials In addition, it is possible to appropriately select this medium-preferred thing.
[0196] 特に好ましくはジァセチルセルロース、セルロースアセテートプロピオネートのような セルロース系榭脂層である。  [0196] Particularly preferred is a cellulose-based resin layer such as diacetyl cellulose and cellulose acetate propionate.
[0197] バックコート層を塗設する順番は凹凸を有する紫外線硬化榭脂層を設ける前でも 後でも構わないが、凹凸を有する紫外線硬化榭脂層を設けた後でバックコート層を 設けることが好ましい。  [0197] The order in which the backcoat layer is applied may be before or after the ultraviolet curable resin layer having irregularities is provided, but the backcoat layer may be provided after the ultraviolet curable resin layer having irregularities is provided. preferable.
[0198] 図 9には本発明に係る防眩性反射防止フィルムの断面を示した模式図である。  FIG. 9 is a schematic view showing a cross section of the antiglare antireflection film according to the present invention.
[0199] 透明榭脂フィルム 100の上に本発明の方法で形成された凹凸を有する紫外線硬化 榭脂層 104及び反射防止層 105が積層されている。 106はバックコート層である。特 に凹凸を有する紫外線硬化榭脂層 104に添加する微粒子は内部散乱効果を与え、 更に優れた防眩効果を与えることができる。 [0199] On the transparent resin film 100, an ultraviolet curable resin layer 104 and an antireflection layer 105 having irregularities formed by the method of the present invention are laminated. 106 is a backcoat layer. In particular, the fine particles added to the UV-cured resin layer 104 having unevenness can provide an internal scattering effect and can further provide an excellent anti-glare effect.
実施例  Example
[0200] 以下、実施例をもって本発明を説明するが、本発明はこれに限定されない。  [0200] Hereinafter, the present invention will be described with reference to examples, but the present invention is not limited thereto.
[0201] 実施例 1 [0201] Example 1
〔凹凸パターンフィルム 1の作製〕  [Preparation of uneven pattern film 1]
《石英ロールのエンボス化》  《Embossing of quartz roll》
石英ロール(面長 1600mm、直径 300mm)の表面に図 7の装置でロールを回転 及び揺動しながら、住友ィ匕学工業 (株)製の単分散アルミナ結晶「スミコランダム AA 5」(平均粒径 5 μ m)でサンドブラスト処理を行った。ブラスト圧力は 50kPa、ブラス ト時間は 120秒とした。こうしてサンドブラスト処理した石英ロールを超音波洗浄し、乾 燥した後、 1質量%のフッ化水素酸に 40°Cで 10分程度浸漬し、次に純水で十分 洗浄し、乾燥して、石英エンボスロールを作製した。こうして作製された石英エンボス ロールにおける算術平均粗さ (Ra) O. 3 /z m、平均凹凸周期は 25 μ mであった。 The monodispersed alumina crystal “Sumicorundum AA 5” (average grain size) manufactured by Sumitomo Chemical Co., Ltd. was rotated and swung on the surface of a quartz roll (surface length: 1600 mm, diameter: 300 mm) using the apparatus shown in FIG. Sand blasting was performed at a diameter of 5 μm). Blast pressure is 50kPa, brass The total time was 120 seconds. The quartz roll thus sandblasted is ultrasonically cleaned and dried, then immersed in 1% by mass of hydrofluoric acid at 40 ° C for about 10 minutes, then thoroughly washed with pure water, dried and dried. An embossing roll was produced. The quartz embossing roll thus produced had an arithmetic average roughness (Ra) of O 3 / zm and an average unevenness period of 25 μm.
[0202] 《紫外線硬化型榭脂組成物》 [0202] << UV-curable resin composition >>
下記材料を攪拌、混合し紫外線硬化型榭脂組成物とした。  The following materials were stirred and mixed to obtain an ultraviolet curable resin composition.
[0203] アクリルモノマー; KAYARAD DPHA (ジペンタエリスリトールへキサアタリレート 、 日本化薬製) 200質量部 [0203] Acrylic monomer; KAYARAD DPHA (dipentaerythritol hexaatalylate, Nippon Kayaku) 200 parts by mass
ポリエーテル変性シリコーンオイル(GE東芝シリコーン (株)製、 TSF4440)  Polyether-modified silicone oil (GE Toshiba Silicone Co., Ltd., TSF4440)
1質量部  1 part by mass
酸ィ匕珪素微粒子(ァエロジル R972V 日本ァエロジル株式会社製) 10質量部 ィルガキュア 184 (チバスペシャルティケミカルズ (株)製) 20質量部 プロピレングリコールモノメチルエーテル 110質量部 酢酸ェチル 110質量部  Silicon oxide fine particles (Aerosil R972V Nippon Aerosil Co., Ltd.) 10 parts by weight Irgacure 184 (Ciba Specialty Chemicals Co., Ltd.) 20 parts by weight Propylene glycol monomethyl ether 110 parts by weight Ethyl acetate 110 parts by weight
上記組成物をコ-カミノルタォプト (株)製の厚さ 80 μ mの紫外線吸収剤を含むトリ ァセチルセルロースフィルムの片面にダイコーターを用いて暗所にて塗布した。これ を 80°Cのオーブン中で 5分間乾燥させた後、図 8に示すガイドロール 6と石英ェンボ スロールの間を通る。石英エンボスロール内には図 8に示す位置に空冷式紫外線照 射装置(高圧水銀ランプ) 10が設置されており、ガイドロール 6とガイドロール 6との間 を紫外線硬化型榭脂組成物を塗布したトリァセチルセルロースフィルムが通過する 際に紫外線照射され、硬化される。この時の紫外線の光量は 0. 5jZcm2である。 The above composition was applied on one side of a triacetyl cellulose film containing an ultraviolet absorber having a thickness of 80 μm manufactured by Co-Caminoltop Co., Ltd. using a die coater in a dark place. This is dried in an oven at 80 ° C for 5 minutes and then passed between the guide roll 6 and the quartz emboss roll shown in Fig. 8. An air-cooled ultraviolet irradiation device (high pressure mercury lamp) 10 is installed in the quartz embossing roll at the position shown in Fig. 8, and an ultraviolet curable resin composition is applied between the guide roll 6 and the guide roll 6. When the triacetyl cellulose film passes, it is irradiated with ultraviolet rays and cured. Quantity of ultraviolet light at this time is 0. 5jZcm 2.
[0204] 紫外線硬化榭脂がコートされたトリァセチルセルロースフィルムを石英エンボスロー ルカも剥離した。 [0204] Quartz emboss rolls were also peeled from the triacetyl cellulose film coated with UV-cured resin.
[0205] 更に、下記バックコート層組成物を凹凸パターンを形成した面と反対側にウエット膜 厚 14 /z mとなるように押し出しコーターで塗布し、 85°Cにて乾燥し巻き取り、ノ ックコ 一ト層を設けた。  [0205] Further, the following back coat layer composition was applied to the opposite side of the surface on which the concavo-convex pattern was formed with an extrusion coater so as to have a wet film thickness of 14 / zm, dried at 85 ° C, wound up, and knocked. A single layer was provided.
[0206] 〈バックコート層組成物〉  <Backcoat layer composition>
アセトン 30質量部 酢酸ェチル 45質量部 イソプロピルアルコール 10質量部 30 parts by mass of acetone Ethyl acetate 45 parts by weight Isopropyl alcohol 10 parts by weight
ジァセチノレセノレロース 0. 6質量部  Diacetino Resenorelose 0.6 parts by mass
超微粒子シリカ 2%アセトン分散液(日本ァエロジル (株)製ァエロジル 200V)  Ultrafine silica 2% acetone dispersion (Aerosil 200V manufactured by Nippon Aerosil Co., Ltd.)
0. 2質量部  0.2 parts by mass
また、図 6で示したように、紫外線照射装置が可動式であるため、連続生産中にお Vヽても、石英エンボスロールの交換や紫外線照射装置のメンテナンスが容易であつ た。  Also, as shown in Fig. 6, since the ultraviolet irradiation device is movable, it is easy to replace the quartz embossing roll and maintain the ultraviolet irradiation device even during continuous production.
〔凹凸パターンフィルム 2の作製〕  [Preparation of uneven pattern film 2]
空冷式紫外線照射装置に変えて水冷式紫外線照射装置を用いた以外は、凹凸パ ターンフィルム 1と同様にして凹凸パターンフィルム 2を作製した。  A concavo-convex pattern film 2 was produced in the same manner as the concavo-convex pattern film 1 except that a water-cooled ultraviolet irradiator was used instead of the air-cooled ultraviolet irradiator.
[0207] 〔凹凸パターンフィルム 3の作製〕  [Preparation of uneven pattern film 3]
エンボスロールの榭脂フィルムが接触して 、な 、部分に粘着ロールを設置した以 外は、凹凸パターンフィルム 1と同様にして凹凸パターンフィルム 3を作製した。  A concavo-convex pattern film 3 was produced in the same manner as the concavo-convex pattern film 1 except that the resin film of the embossing roll was in contact and an adhesive roll was installed on the part.
[0208] 〔比較凹凸パターンフィルムの作製〕  [Production of comparative uneven pattern film]
図 3に示した凹凸パターンフィルムの製造装置を用いて、空冷式紫外線照射装置 を用いた以外は、凹凸パターンフィルム 2と同様にして比較凹凸パターンフィルムを 形成した。  A comparative concavo-convex pattern film was formed in the same manner as the concavo-convex pattern film 2 except that an air-cooled ultraviolet irradiation apparatus was used using the apparatus for producing the concavo-convex pattern film shown in FIG.
[0209] なお、図 3の凹凸パターンフィルムの製造装置は製作が困難であり、高い精度を必 要とした。また、石英エンボスロールの交換や、紫外線照射装置のメンテナンスは、 エンボスロール自体をいちいち回転軸から取り外したりする必要があるため、連続生 産中のメンテナンスは事実上不可能であった。  [0209] It should be noted that the manufacturing apparatus of the uneven pattern film of Fig. 3 is difficult to manufacture and requires high accuracy. In addition, replacement of the quartz embossing roll and maintenance of the UV irradiation device require that the embossing roll itself be removed from the rotating shaft one by one, so maintenance during continuous production was virtually impossible.
[0210] 凹凸パターンフィルム 1、 2、 3及び比較凹凸パターンフィルムにおける方法で製造 した凹凸パターンフィルムの表面粗さを、フィルムの幅方向で 5点及び長手方向に 50 Omごとにおける 10点測定を行 、、下記の方法でそれぞれの測定点で求めた表面粗 さ Raの値の平均値と変動幅を調べた。  [0210] The surface roughness of the concavo-convex pattern film manufactured by the method of the concavo-convex pattern film 1, 2, 3 and the comparative concavo-convex pattern film was measured at 5 points in the width direction of the film and 10 points every 50 Om in the longitudinal direction. The average value and fluctuation range of the surface roughness Ra obtained at each measurement point were examined by the following method.
[0211] 《表面粗さ Raの測定方法》  [0211] << Measurement method of surface roughness Ra >>
測定装置としては、 WYKO社製 RSTPLUS非接触三次元微小表面形状測定シス テムを用いて、以下に記載の測定条件で行った。 As a measuring device, WYKO's RSTPLUS non-contact 3D micro surface shape measurement system The measurement conditions described below were used.
[0212] VSIモードにおいて対物レンズ 40倍、中間レンズ 1.0倍を用いた。測定条件の詳 細については、下記のように設定した。  [0212] In the VSI mode, an objective lens of 40 times and an intermediate lens of 1.0 times were used. The details of the measurement conditions were set as follows.
[0213] Scan depth: 40 [0213] Scan depth: 40
Mod thresh: 2.0%  Mod thresh: 2.0%
Scan back: 15.0 ^ m  Scan back: 15.0 ^ m
Resolution: 368 X 238full view  Resolution: 368 X 238full view
Scan speed: HIGH  Scan speed: HIGH
解析時は Term removalを tilt only (傾斜補正)で補正し、 Filteringは Median Smoothingで行った。結果の解析方法はプロファイルを 3次元で表示し、 149. 7 X111. 2 m測定視野内において、それぞれの中心線平均粗さ Raを求めた。  At the time of analysis, Term removal was corrected with tilt only, and Filtering was performed with Median Smoothing. In the analysis method of the results, the profile was displayed in three dimensions, and the centerline average roughness Ra was obtained within the measurement field of 149.7 X111.2 m.
[0214] その結果、下記の結果が得られ、本発明の凹凸パターンフィルムの製造方法が凹 凸パターンの斑や変動が少なぐ安定した凹凸形状を有する長尺フィルムを連続的 に製造できることが確認された。特に、水冷式紫外線照射装置を用いた凹凸パター ンフィルム 2、清掃装置である粘着ロールを用いた凹凸パターンフィルム 3は良好で ある。 [0214] As a result, the following results were obtained, and it was confirmed that the method for producing a concavo-convex pattern film of the present invention can continuously produce a long film having a stable concavo-convex shape with less uneven and uneven patterns. It was done. In particular, the uneven pattern film 2 using a water-cooled ultraviolet irradiation device and the uneven pattern film 3 using an adhesive roll as a cleaning device are good.
[0215] 凹凸パターンフィルム 1 Ra:0. 28 πι±0.  [0215] Uneven pattern film 1 Ra: 0. 28 πι ± 0.
凹凸ノ《ターンフィルム 2 Ra:0. 28μηι±0.02  Concavity and convexity 《Turn film 2 Ra: 0. 28μηι ± 0.02
凹凸ノ《ターンフィルム 3 Ra:0. 28 μ m±0. Ol^m  Concavity and convexity 《Turn film 3 Ra: 0. 28 μm ± 0. Ol ^ m
比較凹凸パターンフィルム Ra:0. 28μηι±0. 12μηι  Comparative pattern film Ra: 0. 28μηι ± 0.12μηι
実施例 2  Example 2
実施例 1の凹凸パターンフィルム 1、 2、 3及び比較凹凸パターンフィルムで作製し た硬化紫外線榭脂による凹凸パターンフィルム上に、下記のように反射防止層を設 けた。  An antireflection layer was provided as follows on the concavo-convex pattern film made of the cured ultraviolet resin prepared with the concavo-convex pattern films 1, 2, and 3 of Example 1 and the comparative concavo-convex pattern film.
[0216] 《反射防止層 (低屈折率層)の作製》  [0216] <Preparation of antireflection layer (low refractive index layer)>
最初に、複合粒子の調製を行った。  First, composite particles were prepared.
[0217] (複合粒子 Ρ— 1の調製) [0217] (Preparation of composite particles Ρ— 1)
平均粒径 5nm、 SiO濃度 20質量0 /0のシリカゾル 100gと純水 1900gとを 混合して反応母液を調製し、 80°Cに加温した。この反応母液の pHは 10. 5であり、 同母液に SiOとして 1. 5質量%のケィ酸ナトリウム水溶液 9000gと Al Oと The average particle diameter of 5 nm, a silica sol 100g of pure water 1900g of SiO concentration of 20 mass 0/0 The reaction mother liquor was prepared by mixing and heated to 80 ° C. The pH of this reaction mother liquor is 10.5. In the mother liquor, 9000 g of a 1.5 mass% sodium silicate aqueous solution as SiO and Al 2 O
2 2 3 して 0. 5質量%のアルミン酸ナトリウム水溶液 9000gとを同時に添カ卩した。その間、 反応液の温度を 80°Cに保持した。反応液の pHはケィ酸ナトリウムとアルミン酸ナトリ ゥムの添加直後、 12. 5に上昇し、その後、殆ど変化しな力つた。添加終了後、反応 液を室温まで冷却し、限外濾過膜で洗浄して固形分濃度 20質量%の SiO ·Α1 Ο  Then, 9000 g of a 0.5 mass% sodium aluminate aqueous solution was added simultaneously. Meanwhile, the temperature of the reaction solution was kept at 80 ° C. The pH of the reaction solution rose to 12.5 immediately after the addition of sodium silicate and sodium aluminate, and then almost unchanged. After completion of the addition, the reaction solution is cooled to room temperature, washed with an ultrafiltration membrane, and a solid content concentration of 20 mass% SiO · Α1 Ο
2 2 3 多孔質粒子前駆体の分散液 (Α)を調製した。(第 1工程)  2 2 3 A dispersion (液) of a porous particle precursor was prepared. (First step)
上記で得られた多孔質粒子前駆体の分散液 (A) 100gに純水 1900gをカ卩えて 95 °Cに加温し、この温度を保持しながら、ケィ酸ナトリウム水溶液 (SiOとして 1.  1900 g of pure water was added to 100 g of the porous particle precursor dispersion (A) obtained above and heated to 95 ° C. While maintaining this temperature, an aqueous sodium silicate solution (as SiO.
2  2
5g質量0 /O) 27000g及びアルミン酸ナトリウム水溶液 (AI Oとして 0· 5質量0 /0) 2700 5g mass 0 / O) 27000 g and sodium aluminate solution (AI O 0 - 5 wt 0/0) 2700
2 3  twenty three
Ogを同時に徐々に添加し、多孔質粒子前駆体の分散液 (A)の粒子をシー ド粒子として粒子成長を行った。添加終了後、室温まで冷却した後、限外濾過膜で 洗浄、濃縮して、固形分濃度 20質量%の SiO ·Α1 Ο多孔質粒子前駆体の分散液(  Og was gradually added simultaneously, and particle growth was performed using the particles of the dispersion (A) of the porous particle precursor as seed particles. After completion of addition, after cooling to room temperature, washing with an ultrafiltration membrane and concentrating, a dispersion of SiO · Α1 Ο porous particle precursor with a solid content concentration of 20% by mass (
2 2 3  2 2 3
Β)  Β)
を得た。(第 1工程) Got. (First step)
この多孔質粒子前駆体の分散液 (B) 500gを採り、次いで pH3の塩酸水溶液 10L と純水 5Lを加えながら限外濾過膜で溶解したアルミニウム塩を分離し、一部のアルミ -ゥムが除去された SiO ·Α1 0多孔質粒子の分散液 (C)を調製した。(第 2ェ  Take 500 g of this porous particle precursor dispersion (B), then separate the aluminum salt dissolved in the ultrafiltration membrane while adding 10 L of pH 3 hydrochloric acid aqueous solution and 5 L of pure water. A dispersion (C) of removed SiO 2 · 10 porous particles was prepared. (No. 2
2 2 3  2 2 3
程) About)
上記多孔質粒子の分散液(C) 1500gと、純水 500g、エタノール 1750g及び 28% アンモニア水 626gとの混合液を 35°Cに加温した後、ェチルシリケ一ト(SiO 28質量  A mixture of the above porous particle dispersion (C) 1500 g, pure water 500 g, ethanol 1750 g and 28% ammonia water 626 g was heated to 35 ° C., and then ethyl silicate (SiO 28 mass)
2 2
%) 104gを添加し、多孔質粒子の表面をェチルシリケートの加水分解 %) 104g was added and the surface of the porous particles was hydrolyzed with ethyl silicate.
重縮合物で被覆した。次いで、エバポレーターで固形分濃度 5質量%まで濃縮した 後、濃度 15質量0 /0のアンモニア水をカ卩えて pHIOとし、オートクレーブで 180°C、 2 時間加熱処理し、限外濾過膜を用いて溶媒をエタノールに置換した固形分濃度 20 質量%の複合粒子 (P— 1)の分散液を調製した。 (第 3工程) Coated with polycondensate. Was then concentrated to a solid content concentration of 5 wt% with an evaporator, the concentration of ammonia water 15 mass 0/0 and mosquito卩Ete PHIO, and 180 ° C, 2 hours of heat treatment in an autoclave, using an ultrafiltration membrane A dispersion of composite particles (P-1) having a solid content concentration of 20% by mass in which the solvent was replaced with ethanol was prepared. (3rd process)
この複合粒子(P— 1)の平均粒径、 SiO ZMOx (モル比)、及び屈折率を表 1  Table 1 shows the average particle size, SiO ZMOx (molar ratio), and refractive index of this composite particle (P-1).
2  2
に示す。ここで、平均粒径は動的光散乱法により測定し、屈折率は標準屈折液として CARGILL製の SeriesA、 AAを用い、以下の方法で測定した。 Shown in Here, the average particle diameter is measured by a dynamic light scattering method, and the refractive index is a standard refractive liquid. Measurement was performed by the following method using Series A and AA manufactured by CARGILL.
[0218] 〈粒子の屈折率の測定方法〉 <Method for Measuring Refractive Index of Particle>
( 1 )粒子分散液をエバポレーターに採り、分散媒を蒸発させる。  (1) Take the particle dispersion in an evaporator and evaporate the dispersion medium.
[0219] (2)これを 120°Cで乾燥し、粉末とする。 [0219] (2) This is dried at 120 ° C to obtain a powder.
[0220] (3)屈折率が既知の標準屈折液を 2、 3滴ガラス板上に滴下し、これに上記粉末を 混合する。  [0220] (3) Two or three drops of a standard refractive liquid having a known refractive index is dropped on a glass plate, and the above powder is mixed therewith.
[0221] (4)上記(3)の操作を種々の標準屈折液で行!ヽ、混合液が透明になったときの標 準屈折液の屈折率をコロイド粒子の屈折率とする。  [0221] (4) Perform the above operation (3) with various standard refractive liquids!ヽ The refractive index of the standard refraction liquid when the liquid mixture becomes transparent is the refractive index of the colloidal particles.
[0222] [表 1] [0222] [Table 1]
Figure imgf000057_0001
Figure imgf000057_0001
[0223] 《反射防止フィルムの作製》  [0223] <Preparation of antireflection film>
(表面処理)  (surface treatment)
上記の硬化紫外線榭脂による凹凸パターンフィルムを 50°Cに加熱した 1. 5M— N aOH水溶液に 2分間浸漬し、アルカリ処理を行い、水洗後、 0. 5質量%— H SO水  The concavo-convex pattern film made of the above cured UV resin is heated to 50 ° C and immersed in a 1.5M-NaOH aqueous solution for 2 minutes, treated with alkali, washed with water, and 0.5% by mass—HSO water.
2 4 溶液に室温で 30秒間浸漬し中和させ、水洗、乾燥を行った。  2 4 The solution was neutralized by immersion for 30 seconds at room temperature, washed with water and dried.
[0224] 上記作製した凹凸パターンフィルム(防眩フィルム)上に、下記のように高屈折率層 、次いで低屈折率層の順に反射防止層を塗設し、防眩性反射防止フィルムを作製し [0225] 《高屈折率層の作製》 [0224] On the concavo-convex pattern film (antiglare film) prepared above, an antireflection layer was coated in the order of a high refractive index layer and then a low refractive index layer as described below to produce an antiglare antireflection film. [0225] << Preparation of High Refractive Index Layer >>
ハードコートフィルム上に下記高屈折率層塗布組成物 1を押し出しコーターで塗布 し、 80°Cで 1分間乾燥させ、次いで紫外線を 0. ljZcm2照射して硬化させ、更に 10 0°Cで 1分熱硬化させ、厚さが 120nmの高屈折率層 1を設けた。なお、この高屈折率 層の屈折率は 1. 60であった。 The following coating composition 1 with a high refractive index layer is applied onto a hard coat film by an extrusion coater, dried at 80 ° C for 1 minute, then cured by irradiation with 0.1 ljZcm 2 of ultraviolet light, and further 1 at 100 ° C. A high refractive index layer 1 having a thickness of 120 nm was provided by partial heat curing. The refractive index of this high refractive index layer was 1.60.
[0226] 〈高屈折率層塗布組成物 1〉 <High refractive index layer coating composition 1>
アンチモン酸亜鉛ゾル (CX—Z610M—F2、日産化学工業 (株)製)  Zinc antimonate sol (CX—Z610M—F2, manufactured by Nissan Chemical Industries, Ltd.)
55質量部  55 parts by mass
電離放射線硬化型榭脂:ジペンタエリスリトールへキサアタリレート 9質量部 光重合開始剤:ィルガキュア 907 (チバスペシャルティケミカルズ (株)製)  Ionizing radiation curable resin: 9 parts by weight of dipentaerythritol hexaatalylate Photoinitiator: Irgacure 907 (manufactured by Ciba Specialty Chemicals)
2質量部  2 parts by mass
直鎖ジメチルシリコーン—EOブロックコポリマー(FZ— 2207、 日本ュ-カー(株) 製)の 10%プロピレングリコールモノメチルエーテル液 3質量部  3 parts by mass of 10% propylene glycol monomethyl ether solution of linear dimethyl silicone-EO block copolymer (FZ-2207, manufactured by Nippon Car Co., Ltd.)
プロピレングリコールモノメチルエーテル 250質量部 イソプロピルアルコール 500質量部  Propylene glycol monomethyl ether 250 parts by mass Isopropyl alcohol 500 parts by mass
メチルェチルケトン 80質量部  80 parts by weight of methyl ethyl ketone
《低屈折率層の作製》  << Production of low refractive index layer >>
前記高屈折率層上に下記の低屈折率層塗布組成物 1を押し出しコーターで塗布し 、 100°Cで 1分間乾燥させた後、紫外線を 0. ljZcm2照射して硬化させ、更に 120 °C On the high refractive index layer, the following low refractive index layer coating composition 1 was applied by an extrusion coater, dried at 100 ° C. for 1 minute, cured by irradiation with 0.1 ljZcm 2 of ultraviolet light, and further 120 °. C
で 5分間熱硬化させ、厚さ 80nmとなるように低屈折率層を設け、反射防止フィルムを 作製した。なお、この低屈折率層の屈折率は 1. 37であった。  Was heat-cured for 5 minutes, and a low-refractive index layer was provided so as to have a thickness of 80 nm to produce an antireflection film. The refractive index of this low refractive index layer was 1.37.
[0227] (低屈折率層塗布組成物 1の調製) [0227] (Preparation of low refractive index layer coating composition 1)
〈テトラエトキシシラン加水分解物 Aの調製〉  <Preparation of tetraethoxysilane hydrolyzate A>
テトラエトキシシラン 289gとエタノール 553gを混和し、これに 1. 6%酢酸水溶液 15 7gを添加し、 25°Cのウォーターノ ス中で 30時間攪拌することで加水分解物 Aを調製 した。  Hydrolyzate A was prepared by mixing 289 g of tetraethoxysilane and 553 g of ethanol, adding 157 g of 1.6% acetic acid aqueous solution, and stirring in water nose at 25 ° C for 30 hours.
[0228] テトラエトキシシラン加水分解物 A 102質量部 中空シリカ系微粒子分散液 (上記 P— 1) 26質量部 アルミニウムェチルァセトアセテートジイソプロピレート 0. 5質量部 [0228] Tetraethoxysilane hydrolyzate A 102 parts by mass Hollow silica-based fine particle dispersion (P-1 above) 26 parts by mass Aluminum ethyl acetate diisopropylate 0.5 parts by mass
KBM503 (シランカップリング剤、信越化学 (株)製) 4質量部  KBM503 (Silane coupling agent, manufactured by Shin-Etsu Chemical Co., Ltd.) 4 parts by mass
直鎖ジメチルシリコーン—EOブロックコポリマー(FZ— 2207、 日本ュ-カー(株) 製)の 10%プロピレングリコールモノメチルエーテル液 2質量部  2 parts by mass of 10% propylene glycol monomethyl ether solution of linear dimethyl silicone-EO block copolymer (FZ-2207, manufactured by Nippon Car Co., Ltd.)
プロピレングリコールモノメチルエーテル 430質量部 イソプロピルアルコール 430質量部  Propylene glycol monomethyl ether 430 parts by mass Isopropyl alcohol 430 parts by mass
このようにして作製した防眩性反射防止フィルムの斑を以下のように評価した。 (斑の評価)  The spots on the antiglare antireflection film thus prepared were evaluated as follows. (Evaluation of spots)
防眩性反射防止フィルムを 500mごとに 10点サンプリングし、表面を目視で観察し 、以下の基準に則り、反射光の斑の評価を行った。その結果、凹凸パターンフィルム 1〜3力ものものは 10点のサンプルで比較したところ、凹凸パターンフィルム 1では 10 点中半数で僅かに反射光に違いが認められた力 凹凸パターンフィルム 2及び 3で は 10サンプルとも違いが認められず均一であることが確認された。それに対して、比 較凹凸パターンフィルムからの防眩性反射防止フィルムは 10点ともそれぞれ違いが 認識でき、斑によってばらつ ヽて 、ることが確認された。  Ten points of the antiglare antireflection film were sampled every 500 m, the surface was observed visually, and the spots of reflected light were evaluated according to the following criteria. As a result, when the rugged pattern film with 1 to 3 strengths was compared with 10 samples, the concavo-convex pattern film 1 showed a slight difference in reflected light in half of the 10 points. No difference was observed in 10 samples, and it was confirmed to be uniform. On the other hand, the anti-glare anti-reflection film from the comparatively uneven pattern film was able to recognize all 10 points, and it was confirmed that the difference was caused by spots.

Claims

請求の範囲 The scope of the claims
[1] 表面に凹凸を有するエンボスロールを用いて透明榭脂フィルム上に凹凸パターンを 形成する凹凸パターンフィルムの製造方法において、該エンボスロールが石英であ つて、該エンボスロールに巻きまわした透明榭脂フィルムと該エンボスロールとの間 に紫外線硬化型榭脂組成物を導入し、複数の支持部で支持された空洞ロール内部 力もロール表面に向力つて紫外線照射装置より紫外線を照射した後、表面に凹凸が 形成された紫外線硬化榭脂層を透明榭脂フィルムと共にエンボスロールカゝら剥離す ることを特徴とする凹凸パターンフィルムの製造方法。  [1] In the method for producing a concavo-convex pattern film in which a concavo-convex pattern is formed on a transparent resin film using an embossing roll having a concavo-convex surface, the embossing roll is quartz and the transparent cocoon wound around the embossing roll An ultraviolet curable resin composition is introduced between the oil film and the embossing roll, and the internal force of the hollow roll supported by a plurality of support portions is also directed to the roll surface and irradiated with ultraviolet rays from an ultraviolet irradiation device. A method for producing a concavo-convex pattern film, comprising: peeling an ultraviolet-cured resin layer having concavo-convex formed on an embossing roll cover together with a transparent resin film.
[2] 前記紫外線照射装置が可動式であり、前記エンボスロールが容易に着脱可能な構 造を有することを特徴とする請求の範囲第 1項に記載の凹凸パターンフィルムの製造 方法。  [2] The method for producing a concavo-convex pattern film according to [1], wherein the ultraviolet irradiation device is movable, and the embossing roll has a structure that can be easily attached and detached.
[3] 前記紫外線照射装置が水冷式光源を有することを特徴とする請求の範囲第 1項また は第 2項に記載の凹凸パターンフィルムの製造方法。  [3] The method for producing a concavo-convex pattern film according to [1] or [2], wherein the ultraviolet irradiation device has a water-cooled light source.
[4] 前記エンボスロール表面に清掃装置を有することを特徴とする請求の範囲第 1項〜 第 3項のいずれか 1項に記載の凹凸パターンフィルムの製造方法。 [4] The method for producing a concavo-convex pattern film according to any one of claims 1 to 3, wherein a cleaning device is provided on the surface of the embossing roll.
[5] 前記エンボスロールがサンドブラスト処理によって形成されたものであることを特徴と する請求の範囲第 1項〜第 4項のいずれか 1項に記載の凹凸パターンフィルムの製 造方法。 [5] The method for producing a concavo-convex pattern film according to any one of claims 1 to 4, wherein the embossing roll is formed by sandblasting.
[6] 前記エンボスロールがフッ化水素処理によって形成されたものであることを特徴とす る請求の範囲第 1項〜第 4項のいずれか 1項に記載の凹凸パターンフィルムの製造 方法。  [6] The method for producing a concavo-convex pattern film according to any one of [1] to [4], wherein the embossing roll is formed by a hydrogen fluoride treatment.
[7] 前記紫外線硬化型榭脂組成物中に離型剤を含ませることを特徴とする請求の範囲 第 1項〜第 6項のいずれか 1項に記載の凹凸パターンフィルムの製造方法。  [7] The method for producing a concavo-convex pattern film according to any one of [1] to [6], wherein a release agent is included in the ultraviolet curable resin composition.
[8] 前記透明榭脂フィルムが紫外線吸収性であることを特徴とする請求の範囲第 1項〜 第 7項のいずれか 1項に記載の凹凸パターンフィルムの製造方法。  [8] The method for producing an uneven pattern film according to any one of [1] to [7], wherein the transparent resin film is UV-absorbing.
[9] 前記エンボスロールからの剥離が剥離ロールによって行われることを特徴とする請求 の範囲第 1項〜第 8項のいずれか 1項に記載の凹凸パターンフィルムの製造方法。  [9] The method for producing a concavo-convex pattern film according to any one of [1] to [8], wherein peeling from the embossing roll is performed by a peeling roll.
[10] 前記凹凸パターンフィルムが防眩性フィルムであることを特徴とする請求の範囲第 1 項〜第 9項のいずれ力 1項に記載の凹凸パターンフィルムの製造方法。 [10] The uneven pattern film according to [1], wherein the uneven pattern film is an antiglare film. Item 10. The method for producing a concavo-convex pattern film according to any one of Items 9 to 9, wherein:
請求の範囲第 1項〜第 10項のいずれか 1項に記載の凹凸パターンフィルムの製造 方法を用いることを特徴とする製造装置。 A manufacturing apparatus using the method for manufacturing a concavo-convex pattern film according to any one of claims 1 to 10.
PCT/JP2006/318110 2005-10-03 2006-09-13 Process for producing film with rugged pattern and production apparatus therefor WO2007040023A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007538678A JPWO2007040023A1 (en) 2005-10-03 2006-09-13 Method and apparatus for producing uneven pattern film

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005-289831 2005-10-03
JP2005289831 2005-10-03

Publications (1)

Publication Number Publication Date
WO2007040023A1 true WO2007040023A1 (en) 2007-04-12

Family

ID=37906067

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/318110 WO2007040023A1 (en) 2005-10-03 2006-09-13 Process for producing film with rugged pattern and production apparatus therefor

Country Status (2)

Country Link
JP (1) JPWO2007040023A1 (en)
WO (1) WO2007040023A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009118943A1 (en) * 2008-03-24 2009-10-01 シャープ株式会社 Process for production of nano-imprinted film, displays and liquid crystal displays
JP2010527046A (en) * 2007-05-16 2010-08-05 エルジー・ケム・リミテッド Anti-glare film composition and anti-glare film produced using the same
WO2011019268A1 (en) * 2009-08-13 2011-02-17 Peter Beck A method to cure roving with resin on a liner
USRE43694E1 (en) 2000-04-28 2012-10-02 Sharp Kabushiki Kaisha Stamping tool, casting mold and methods for structuring a surface of a work piece
JP2013035243A (en) * 2011-08-10 2013-02-21 Hoya Corp Roller mold, base material for roller mold, and pattern transfer method
JP2020001279A (en) * 2018-06-28 2020-01-09 東芝機械株式会社 Pattern transfer device

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60176245U (en) * 1984-04-28 1985-11-21 日本電池株式会社 Water-cooled ultraviolet irradiation device
JPS6283198U (en) * 1985-11-13 1987-05-27
JPH04200777A (en) * 1990-11-30 1992-07-21 Dainippon Printing Co Ltd Production of mat film
JPH0568631U (en) * 1992-02-24 1993-09-17 石川島播磨重工業株式会社 Roll and spindle attachment / detachment device
JPH06199410A (en) * 1993-01-07 1994-07-19 Mitsubishi Rayon Eng Co Ltd Roll cleaning device
JP3044996U (en) * 1997-06-17 1998-01-23 明和グラビア株式会社 Decorative sheet for mirror
JP2001187825A (en) * 1999-10-18 2001-07-10 Konica Corp Cellulose ester film, optical film and manufacturing method thereof
JP2001347220A (en) * 2000-06-05 2001-12-18 Sumitomo Bakelite Co Ltd Method for manufacturing polymer film sheet, manufacturing equipment and polymer film sheet for optics
JP2003071862A (en) * 2001-08-30 2003-03-12 Geltec Co Ltd Apparatus for manufacturing uneven molded sheet and manufacturing method using the same
JP2003191249A (en) * 2001-12-27 2003-07-08 Hitachi Chem Co Ltd Manufacturing methods of transfer master, transfer film and diffuse reflection plate
JP2004268270A (en) * 2003-03-05 2004-09-30 Toppan Printing Co Ltd Method for manufacturing sheet having fine uneven shape

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60176245U (en) * 1984-04-28 1985-11-21 日本電池株式会社 Water-cooled ultraviolet irradiation device
JPS6283198U (en) * 1985-11-13 1987-05-27
JPH04200777A (en) * 1990-11-30 1992-07-21 Dainippon Printing Co Ltd Production of mat film
JPH0568631U (en) * 1992-02-24 1993-09-17 石川島播磨重工業株式会社 Roll and spindle attachment / detachment device
JPH06199410A (en) * 1993-01-07 1994-07-19 Mitsubishi Rayon Eng Co Ltd Roll cleaning device
JP3044996U (en) * 1997-06-17 1998-01-23 明和グラビア株式会社 Decorative sheet for mirror
JP2001187825A (en) * 1999-10-18 2001-07-10 Konica Corp Cellulose ester film, optical film and manufacturing method thereof
JP2001347220A (en) * 2000-06-05 2001-12-18 Sumitomo Bakelite Co Ltd Method for manufacturing polymer film sheet, manufacturing equipment and polymer film sheet for optics
JP2003071862A (en) * 2001-08-30 2003-03-12 Geltec Co Ltd Apparatus for manufacturing uneven molded sheet and manufacturing method using the same
JP2003191249A (en) * 2001-12-27 2003-07-08 Hitachi Chem Co Ltd Manufacturing methods of transfer master, transfer film and diffuse reflection plate
JP2004268270A (en) * 2003-03-05 2004-09-30 Toppan Printing Co Ltd Method for manufacturing sheet having fine uneven shape

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
USRE46606E1 (en) 2000-04-28 2017-11-14 Sharp Kabushiki Kaisha Stamping tool, casting mold and methods for structuring a surface of a work piece
USRE43694E1 (en) 2000-04-28 2012-10-02 Sharp Kabushiki Kaisha Stamping tool, casting mold and methods for structuring a surface of a work piece
USRE44830E1 (en) 2000-04-28 2014-04-08 Sharp Kabushiki Kaisha Stamping tool, casting mold and methods for structuring a surface of a work piece
JP2010527046A (en) * 2007-05-16 2010-08-05 エルジー・ケム・リミテッド Anti-glare film composition and anti-glare film produced using the same
US8216669B2 (en) 2007-05-16 2012-07-10 Lg Chem, Ltd. Composition for anti-glare film and anti-glare film prepared using the same
US8384862B2 (en) 2008-03-24 2013-02-26 Sharp Kabushiki Kaisha Production method of nanoimprint film, display device, and liquid crystal display device
CN101909858A (en) * 2008-03-24 2010-12-08 夏普株式会社 Process for production of nano-imprinted film, displays and liquid crystal displays
WO2009118943A1 (en) * 2008-03-24 2009-10-01 シャープ株式会社 Process for production of nano-imprinted film, displays and liquid crystal displays
JPWO2009118943A1 (en) * 2008-03-24 2011-07-21 シャープ株式会社 Nanoimprint film manufacturing method, display device, and liquid crystal display device
JP4964985B2 (en) * 2008-03-24 2012-07-04 シャープ株式会社 Method for producing nanoimprint film
WO2011019268A1 (en) * 2009-08-13 2011-02-17 Peter Beck A method to cure roving with resin on a liner
CN102497965A (en) * 2009-08-13 2012-06-13 彼得·贝克 A method to cure roving with resin on a liner
JP2013035243A (en) * 2011-08-10 2013-02-21 Hoya Corp Roller mold, base material for roller mold, and pattern transfer method
JP2020001279A (en) * 2018-06-28 2020-01-09 東芝機械株式会社 Pattern transfer device
JP7105631B2 (en) 2018-06-28 2022-07-25 芝浦機械株式会社 pattern transfer device

Also Published As

Publication number Publication date
JPWO2007040023A1 (en) 2009-04-16

Similar Documents

Publication Publication Date Title
JP4888392B2 (en) Method for forming antiglare antireflection film and antiglare antireflection film
JP4747769B2 (en) Method for producing uneven pattern film
KR101182002B1 (en) Antireflection Film, Production Method of the Same, Polarizing Plate and Display
KR101375485B1 (en) Antireflection film, process for producing antireflection film, polarizing plate, and display device
KR101254336B1 (en) Production method of rolled optical film having coated layer, rolled optical film, polarizing plate and liquid crystal display
JP5170083B2 (en) Method for producing antiglare antireflection film, antiglare antireflection film, polarizing plate and display device
JP4510124B2 (en) Anti-glare hard coat film for image display device, polarizing plate and image display device using the same
KR101274848B1 (en) Antireflection film, process for producing antireflection film, hard coat film, polarizer, and display
KR101300850B1 (en) Antireflection film, method for producing antireflection film, polarizing plate and display
JP4857801B2 (en) Antireflection film, method for producing antireflection film, polarizing plate and display device
JP2009042351A (en) Optical film, polarizing plate, and display device
JP2009036818A (en) Antiglare film, antiglare antireflection film, polarizing plate and image display device
JP2008224718A (en) Antiglare antireflection film and display device
KR20060044595A (en) Antireflection film, polarizing plate and image display apparatus
JP2007025040A (en) Antiglare film, method for producing antiglare film, antiglare antireflection film, polarizing plate and display device
JP2005156642A (en) Antireflection film, polarizing plate, and image display device using the same
WO2007040023A1 (en) Process for producing film with rugged pattern and production apparatus therefor
JP2006227162A (en) Antireflection film, method of manufacturing antireflection film, polarizing plate, and display device
JP2005338549A (en) Antireflection film, polarizing plate, and image display device
JP2007025329A (en) Antireflection film, method for producing same, polarizing plate, and display device
JP2005208477A (en) Antireflection film, polarizing plate and picture display device
JP2005157037A (en) Antireflection film, polarizing plate and image display apparatus
JP2009223129A (en) Method for manufacturing optical film, optical film, polarizing plate, and liquid crystal display device
JPWO2008050576A1 (en) Antiglare film, method for producing antiglare film, polarizing plate and display device
JP2005156614A (en) Antireflection film, polarizing plate and image display apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
ENP Entry into the national phase

Ref document number: 2007538678

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06810075

Country of ref document: EP

Kind code of ref document: A1